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Multiple types of passively collected location data (PCLD) have emerged during the 

past 20 years. Its capability in travel demand analysis has also been studied and 

revealed. Unlike the traditional surveys whose sample is designed efficiently and 

carefully, PCLD features a non-probabilistic sample of dramatically larger size. 

However, PCLD barely contains any ground truth for both the human subjects 

involved and the movements they produce. The imputation for such missing 

information has been evaluated for years, including origin and destination, travel 

mode, trip purpose, etc. This research intends to advance the utilization of PCLD by 

imputing social demographic information, which can help to create a panorama for 

the large volume of travel behaviors observed and to further develop a rational 

weighting procedure for PCLD. The Conditional Inference Tree model has been 

employed to address the problems because of its abilities to avoid biased variable 

selection and overfitting. 
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Chapter 1: Introduction 
 

As the travel demand analysis keeps advancing for the past several decades, data 

always play an important role and serve as the foundation of nearly all the studies. 

From count data derived by roadway sensors to behavior data collected by 

complicated travel surveys, data benefit the researchers by providing support for 

transportation planning, infrastructure construction, traffic management and so on. 

Along with the development of Global Positioning System (GPS) and handheld 

devices, passively collected location data (PCLD) emerged at the end of 20th century. 

From then on, the potential of PCLD has been deliberately excavated by scholars in 

the transportation sector. However, the anonymousness of PCLD still remains 

unsolved, which has obstructed the exhaustive exploitation of PCLD. The thesis seeks 

to address the problem by developing an imputation method for social demographic 

information. The expected benefits will be uncovering the representativeness of 

PCLD sample and further extending the application of PCLD. 

1.1. Background 

Travel behaviors, such as trip origin and destination, travel mode, and trip purpose, 

have been studied as a major topic in the transportation field for decades. One of the 

most popular and prevalent data sources is the traditional household travel survey, 

who has an efficiently designed area sample. The National Household Travel Survey 

(NHTS) is conducted by Federal Highway Administration (FHWA) every five to 

eight years and includes more than 120,000 households across the nation [1]. 
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Meanwhile, the local agencies also tend to organize the regional household travel 

survey to recruit more sample units for the specific area, which is usually around ten 

thousand households [2]. The household travel survey is mainly fulfilled through 

telephone interviews in order to document the travel diaries of the entire household 

on one typical weekday. It has its advantages in collecting all-around information on 

the interviewed household and providing reliable details on the reported trips. On the 

other hand, there exist problems like underreported trips, expensive survey costs, 

short-term travel diary, etc. 

As the drawbacks of the traditional survey methods kept unsolved, an emerging data 

source has drawn researchers’ attention in the past years - passively collected location 

data (PCLD). PCLD gets its name from the origination that it is not generated by 

people’s subjective report but through a positioning device along with the traveler. 

The device can be as ordinary as a cell phone with location services or as professional 

as an in-vehicle GPS device. The locations of the device along with the timestamps 

will be recorded despite the fact that different devices can produce location data with 

different accuracy and frequency.  

PCLD has also experienced its own evolution, from intentionally recruiting a sample 

of limited size to employing a large portion of population who own a device with 

location services. The prevailing PCLD nowadays features an enormous and non-

probabilistic sample, such as call detail records (CDRs), cell phone GPS data, and 

social media location-based services. In spite of the attractiveness, the extremely 

large samples of PCLD are usually anonymous in order to protect the privacy of the 
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users, which only allows a rough weighting procedure. Barely with any ground truth 

information about the users and their trips, the primary step to utilize PCLD is to 

impute trip information from the timestamped positions. A variety of studies have 

attempted to detect the trip origin and destination, travel mode, trip purpose or 

activity type. Although the trip information underneath can be inferred at a relatively 

high accuracy, the representativeness of PCLD sample remains unclear and becomes 

a limit to exploit PCLD, which inspires the research topic of this thesis. 

1.2. Objectives 

The objective of this study is searching for a method to impute the sensitive 

individual-level social demographics based on PCLD, including gender, age, 

education, and household income. To fulfill the objective, several tasks will be 

accomplished: 1) evaluating the state-of-the-art methods and algorithms for similar 

problem specification; 2) for demographic classification, exploring what are the 

significant attributes depicting travel behaviors; 3) examining the model performance 

through case studies using two typical examples for the prevailing PCLD; 4) 

discussing the applications of social demographic imputation.  

The evaluation of the methods will be done based on relatively small datasets with 

full knowledge. In order to demonstrate the feasibility of applying such methods to 

the enormous and anonymous PCLD in reality, the theoretical strength and the model 

adaptability will be both considered in addition to the prediction accuracy. 
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1.3. Contributions 

This is the first study that imputes sensitive individual-level social demographics 

including income level based on PCLD. This is also the first one utilizing a 

multimodal trajectory dataset supported by multiple positioning systems for 

demographic imputation.  

1.3.1. Data-wise 

The thesis gives a comprehensive literature review on the evolution and utilization of 

PCLD. The two examples of PCLD involved are an in-vehicle GPS dataset and a 

smartphone location dataset, both of which are the trending types of PCLD nowadays. 

Furthermore, the multimodal trajectory dataset is studied for demographic imputation 

for the first time. The thesis will demonstrate the challenges in processing PCLD of 

various data qualities, especially related to trajectories of rather low quality. The data 

quality of the trajectories here is discussed in two dimensions: the recording 

frequency and the coordinate accuracy.  

Other than PCLD, the only additional data source needed is the Smart Location 

Database (SLD) released by the United States Environmental Protection Agency 

(EPA) [3]. SLD contains nearly a hundred attributes summarizing land use, 

demographics, transportation accessibility, etc. at census block group (CBG) level 

nationwide. Hence the findings and experience of this study can be easily tested and 

evaluated in other geographic settings.  
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1.3.2. Methodology-wise 

In this study, a new tree-based model―conditional inference tree (CIT)―is examined 

and applied to impute social demographics. The model has been selected based on its 

capability of preventing variable selection bias and overfitting problems.  

A thorough analysis on the feature set construction is delivered. Four aspects are 

taken into account including intuitive travel behaviors, home/work geographic 

characteristics, frequency of visiting different POIs, and frequency of trips with 

imputed purposes. This is the first study incorporating the imputed features of travel 

behaviors into the demographic prediction. The prediction strength of the features 

above is examined and compared. 

1.3.3. Application-wise 

The study aims at further exploitation of PCLD in practice. The social demographics 

are widely and continuously employed as the basis of sampling and weighting. As the 

drawback of PCLD being the unclear representativeness, the study attempts to 

develop a method to impute the social demographics of PCLD sample. It advances 

the utilization of PCLD while avoids violating the privacy. 

1.4. Outline 

The remainder of the thesis is organized as follows.  

Chapter 2 provides a comprehensive literature review concerning the evolution of 

PCLD, the investigation of PCLD, and the state-of-the-art imputation methods to 

utilize PCLD. Chapter 3 introduces the two PCLD datasets used in this study, which 



 

 

6 

 

are representative of the prevailing PCLD, and the Smart Location Database (SLD) as 

a supplement data source. Chapter 4 demonstrates the procedure of processing PCLD 

and the mechanism of CIT and CIT-based random forests. The feature set 

construction is also covered within the chapter. The model results are further 

illustrated and compared in Chapter 5. Finally, a review of the research and future 

works are concluded in Chapter 6. 
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Chapter 2: Literature Review 
 

The chapter will provide a comprehensive literature review regarding various aspects 

of PCLD. It is composed of three parts: the introduction and evolution of PCLD, the 

previous efforts on extracting information from PCLD, and the prevalent methods for 

imputing missing information from PCLD. 

2.1. Passively Collected Location Data 

In transportation field, PCLD is usually obtained through GPS travel survey. The first 

passively collected location dataset was created at the end of last century, known as 

“Lexington Area Travel Data”. One hundred households were included after pre-

solicitation efforts. The survey comprised an in-vehicle GPS device and a post-usage 

interview. They concluded that it was successful to install the GPS system in the 

household vehicle to collect raw GPS data as well as to allow manual input of travel 

information [4]. A handful of experiments also proved the feasibility of collecting 

travel data via GPS devices, either a handheld electronic travel diary (ETD) with GPS 

or a passive in-vehicle GPS system, to complement traditional household travel 

surveys [5-11]. The early studies emphasized the advantages of the GPS survey in 

collecting the misreported or underreported trips from traditional surveys and 

documenting more detailed travel activities. Meanwhile, there arose several concerns. 

For ETD with GPS, users may not carry the device when they consider it a burden. 

The passive in-vehicle GPS system is only able to capture driving trips and lacks a 

user interface to validate the trip information.  
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More researches have been done since the practicability of GPS travel survey was 

demonstrated. Shen and Stopher (2014) performed a comprehensive review of GPS 

travel survey and GPS data-processing methods. It is found that GPS travel survey 

has been applied for mutiple purposes [12]. Schönfelder et al. (2002) conducted a 

long-term GPS survey for transport safety purposes, which addressed the speeding 

problem specifically [13]. Bohte et al. (2007) and Bohte & Maat (2009) utilized a 

GPS travel survey to look into the relationship between residential self-selection and 

travel behavior [14, 15]. Pasquier et al. (2008) measured the effects of outdoor 

advertising [16]. Papinski et al. (2009) explored the travelers’ decision in route choice 

through a person-based GPS survey [17]. Stopher et al. (2009) and Stopher et al. 

(2013) monitored and evaluated voluntary travel behavior change employing the GPS 

survey [18,19]. Other studies were dedicated to complement or even replace the 

traditional household travel survey [20-26]. 

Since mobile phone—and later smartphone—gained their popularity, investigation 

into the individual-level mobility pattern has become more practical. The great value 

of various emerging data sources has been revealed too, including call detail record 

(CDR), cell phone GPS data, social media location-based services, etc. Call detail 

record (CDR) provides details on calls and messages, such as timestamp, duration, 

and location(s) of routing cell tower(s) [27]. Gonzalez et al. (2008) combined two sets 

of CDRs to explore the individual mobility pattern. One is composed of six-month 

records for 100,000 randomly selected anonymous individuals and another 

complementary dataset captured the location of 206 mobile phone users every two 

hours for one week [28]. Further studies on human mobility have been conducted 
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based on similar datasets [29-32]. CDR is also applied to other research topics such as 

social network, residential location, socioeconomic level, etc. [33-35]. Despite the 

large volume of data, CDR is limited to its spatial resolution determined by the 

density of cell towers but requires less advanced phones and should cause less 

concern about the user privacy. 

GPS-enabled mobile phone is a more convenient and less expensive replacement of 

the handheld ETD with GPS. The influence of the mobile phone location services on 

intelligent transportation system was discussed by Zhao, 2000. Then it is proved 

feasible to utilize a GPS-enabled cell phone to monitor locations and movements 

rather than a dedicated in-vehicle GPS system [37-42]. Cottrill et al. (2013) shared 

their experience in designing a smartphone-based mobility survey, which provided a 

better user interface than GPS-based travel survey [43]. Since GPS offers much more 

precise locations, the access to individual-level mobile GPS trajectories is highly 

restricted. There are several private sector companies who generated aggregated level 

of location data to reveal travel demand, such as INRIX, StreetLight Data, AirSage, 

etc. [44, 45]. 

Social media location data is more complicated and comprehensive since the spatial 

information could be implied in the posted text or the uploaded picture other than 

being directly recorded. At first, it mainly helps to enhance the contents of geographic 

and spatial data. Flanagin and Metzger (2008) included the photo-sharing site, Flickr, 

in their discussion about volunteered geographic information (VGI) [46]. De 

Choudhury et al. (2010) tried to automatically generate the travel itineraries for 



 

 

10 

 

popular touristic cities based on the photo streams uploaded to Flickr. They explored 

where and when the travelers were by mining the large amount of photos with 

timestamps shared by them [47]. Sui and Goodchild (2011) developed and 

complemented their original argument, ‘GIS as media’ [48], with the new opinion 

that ‘(Social) Media as GIS’. They illustrated the location-based social networking 

sites become more like GIS as they provided users’ locations with timestamps [49]. 

Naaman (2011) dig into the four aspects of geographic information that can be 

derived from social awareness streams (SAS) data, including districts, landmarks and 

attractions, paths (and Itineraries), and activities. Twitter, Facebook, the photo-

sharing site Flickr, and the Foursquare location and presence-sharing service are all 

counted as SAS platforms [50]. Zhong et al. (2015) combined the location check-ins 

from Sina Weibo (China’s Twitter) and the Points of Interest (POIs) of Sina Weibo 

and Dianping (a review website similar to Yelp) to realize user profiling [52]. 

Riederer et al. (2015) collected two-year public photo metadata from Instagram. They 

revealed the potential of social media location data in two ways: first, they 

demonstrated that the human mobility patterns drawn from photo-sharing networks 

are comparable with those from CDRs; after that, they proved that an individual’s 

ethnicity could be predicted solely based on the location data [53]. In addition, there 

are more studies utilizing such data to inspire new location-based services [54], 

predict the next location to visit [55], link users across domains [56], identify user’s 

home location [57], propose possible activity companion [58], etc. 

PCLD is widely applied beyond the transportation field. Troped et al. (2008) 

employed the GPS and accelerometer data to predict the physical activity mode, such 
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as walking, running, biking, or driving an automobile [59]. Gilbert and Karahalios 

(2009) utilized social media data to measure and predict the tie strength between 

social media friends [60]. Soto et al. (2011) tried to predict the socioeconomic levels 

of a population based on the aggregated CDRs. De Montjoye et al. [61]. (2013) 

tracked a long term of human mobility traces and concluded that they are highly 

unique, which draws discussion on the privacy protection of individuals [62]. Zhang 

et al. (2015) investigated the characteristics of mobile network behavior based on two 

types of telecommunication data, user-oriented and network-oriented [63].  

2.2. Trip Information Imputation 

Along with the development of PCLD, a lot of attempts have been made to derive the 

travel information from the raw data. Gong et al. (2014) conducted a literature review 

on the methodologies of deriving personal trips from GPS data [64]. Four processing 

procedures are discussed including data error recognition, trip identification, travel 

mode detection, and trip purpose inference. The potential of utilizing GPS trace data 

for travel behavior analysis was evaluated by Schönfelder et al. (2002) [13]. They 

tried to post-process the data to identify the drivers, trip ends, stops, trip purposes, 

and the potential to construct all-mode activity patterns using driving GPS records. 

Chung and Shalaby (2005) developed a map-matching algorithm to identify the 

roadway links traveled with the GPS data collected by GPS tracers and a GIS 

database. Built upon that, a rule-based model is constructed to detect the travel mode 

configuration including predefined multimodal patterns [65]. An enhanced 

framework was later proposed [66] that first applied a rule-based model to segment 

trips by mode transfer point (MTP) and then used a fuzzy logic-based algorithm to 
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identify mode within trip segments. The following research on trip identification and 

mode detection by Schuessler and Axhausen (2009) employed a fuzzy logic approach 

to detect the mode followed by a reasonability check. They also highlighted the 

model’s capability of dealing with a large sample and getting rid of manual 

intervention [67]. Gonzalez et al. (2010) developed a smartphone app TRAC-IT, in 

which a neural network algorithm for mode detection was embedded. The so-called 

multi-layer perceptron took speed, acceleration, estimated horizontal accuracy, and 

more as input variables [68]. Zhang et al. (2011) proposed a multi-stage algorithm: 

the three mode classes (walk, bike, motorized vehicles) are identified in the first stage 

by speed, acceleration, etc.; and in the second stage, the detailed modes under 

motorized vehicles are identified using Support Vector Machines (SVMs) method 

[69]. Gong et al. (2012) constructed a GIS algorithm to impute the travel mode from 

the enormous amount of GPS data in New York City, a complex urban environment, 

where the urban canyon effects and the multimodal transportation network need more 

attention [70]. Nitsche et al. (2014) mainly utilized the acceleration data collected by 

smartphone to automatically reconstruct the trips. They also employed a Discrete 

Hidden Markov Model (DHMM) to compute the travel modes [71]. 

In addition to travel mode, Wolf et al. (2004) conducted a proof-of-concept study. 

They integrated GPS trace details, associated survey details, and external POI data for 

the activity purpose imputation method and opened the discussion about trip-end 

identification in a GPS processing system [72]. Stopher et al. (2008) constructed a 

rule-based method to identify trip purpose based on the parcel-level GIS data and 

extra information collected, such as home/work/school location, and the two most 
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frequently used grocery stores or supermarkets [73]. Bohte and Matt (2009) inferred 

trip purpose using GIS information other than home and work locations. The travel 

mode was determined considering both speed and transit route [15]. Elango and 

Guensler (2010) tried to identify trip purposes (home, work, maintenance, 

discretionary, and multipurpose) based on the home/work locations and the closet 

POI to trip ends [74]. Huang et al. (2010) developed an algorithm for activity 

identification incorporating spatial temporal POIs’ attractiveness (STPA). STPA not 

only addressed the static attractiveness of business but also added a dynamic factor to 

demonstrate the variation due to the time of day, in which the business’s related 

activity usually happens [75]. Liu et al. (2013) imputed activity purposes based on 

mobile phone call locations and a set of machine learning algorithms [76]. Shen and 

Stopher (2013) further included tour type identification in their study [77]. Kim et al. 

(2014) developed a learning model to impute the activity associated with the given 

stop using data collected by a smartphone-based travel survey [78]. Oliveira et al. 

(2014) compared nested multinomial logit and decision tree model in terms of 

performance. They first categorized household members into eight person types and 

then incorporated GPS travel data to impute trip purposes [79]. Ermagun et al. (2017) 

utilized Google Place to realize real-time trip purpose prediction. They also found 

that random forest outperforms nested logit models [80]. More studies discussed the 

performance of machine learning methods in trip purpose imputation [81-84].  

Regarding the relatively new topic, imputing social demographic information based 

on PCLD, the literature is more limited. Lu and Pas (1999) demonstrated the 

relationship between social demographics, activity participation, and travel behavior 



 

 

14 

 

through a structure equation model. Although the paper focused on the direct and 

indirect effects of social demographics on travel behaviors, such as the number of 

trips per day, it inspired the possibility of studying the problem in a reversed way, 

which is to infer travelers’ social demographics based on their travel behaviors [85]. 

Altshuler et al. (2012) first tried to include some indirect location features (numbers 

of different cell tower IDs and different Wi-Fi network names) to impute individual 

attributes like ethnicity, whether a student, and whether a US-native [86].  

Auld et al. (2015) defined the problem in a specific scenario whether demographic 

characteristics of travelers could be derived from travel behaviors. Their method can 

be divided into two parts: person type clustering based on the similarity of their travel 

patterns and demographics modeling under each person type, including education, 

age, gender, license, and household type (defined by household size, number of 

vehicles, and presence of child). They used various models and algorithms to impute 

different attributes: partial decision tree classification algorithm (PART) for person 

type and license possession, nested logit for education, ordinal logit for age 

categories, binary logit for gender, and C4.5 for household type. They achieved 

similar prediction accuracy between the training data and test data from two surveys 

but their model is restricted to several assumptions, such as the GPS trace data needs 

to cover at least one full day of travel and the home/work/school locations need to be 

available [87]. Such assumptions may not be fulfilled in some prevailing data sources. 

For example, the location data gathered by mobile phones or CDR is of lower quality 

than that via GPS devices. Thus, processed data can miss some trips. 
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Zhong et al. (2015) did a similar job for a larger amount of users and their location 

check-ins through social network. The main demographic characteristics considered 

are gender, age, and education background. Since the location check-ins are not 

continuous, the feature set was composed of POI and temporal information. They also 

compared several methods for each response variable type, including logistic 

regression, SVM, neuron networks, etc. [52]. Riederer et al. (2015) aimed to infer the 

demographics (ethnicity and gender) from people’s location data collected by 

Instagram. They utilized a simple Bayesian inference method and compared the 

model performances with or without auxiliary data (Census data and surrounding 

venue data from Foursquare) [53]. Roy and Pebesma (2017) inferred gender first and 

then age groups under each gender type based on anonymized mobile phone GPS 

trajectories. For gender imputation, they chose a supervised learning approach of 

Linear Discriminant Analysis (LDA) and for age groups, a decision-tree based 

classification approach. They constructed the feature set with trip-based information 

and POI data as well as the frequently visited places they discovered [88]. 

2.3. Imputation Methods 

It can be concluded that the missing information of PCLD are usually treated as 

nominal variables. Therefore, the imputation of such responses is modeled as the 

nonlinear classification problem. Feng and Timmermans (2016) summarized and 

compared the algorithms applied to mode detection, including naive Bayesian, 

Bayesian network, logistic regression, multilayer perceptron, support vector machine, 

decision table, and C4.5. Those methods are also dominant in the imputation of trip or 

activity purposes [89]. 
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The naive Bayesian method is mainly based on the Bayes’ rule, where all the 

predictors are assumed to be independent from each other. The Bayesian network 

relaxes the assumption and considers the joint probability of an attribute with its 

parent attributes. But the joint probability distribution could hardly be employed 

when the dimensions of predictors and its possible values exceed two. To simplify the 

risk model, the conditionally independent assumption is often made in real-world 

applications [90]. 

Logistic regression in general is a regression model with the dependent variable to be 

categorical. It has been extensively used to model the discrete choice problem in 

transportation sector. The family includes several common model specifications, such 

as binary logit, multinomial logit and ordinal logit regarding the type of response 

variable, or nested logit in order to capture additional relationships between predictors 

[91]. To allow the variation of coefficients among decision makers, mixed logit with 

random coefficients was introduced [92]. However, it is sometimes hard for logistic 

regression to capture the nonlinear and complicated influence of independent 

variables in the real world. Also, it is hard to accommodate data with small sample 

size but large feature set. 

One intuitive way to handle the nonlinear problems is to employ machine learning 

methods, which has been evolved for almost 60 years. Some typical examples of 

machine learning algorithms are artificial neural networks (ANNs) [93], decision 

trees [94], and support vector machine (SVM) [95]. They were developed to address 
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the classification problem and become superior in their own way. For example, ANNs 

frequently outperform on huge and complex problems [96]. 

The Conditional Inference Tree (CIT) is selected to address the demographics 

imputation problem due to its eligibility to capture the influences of predictors from a 

small training dataset and to be interpreted in an intuitive way. It was first proposed 

by Hothorn et al. in 2006 [97] and later extended to the ensemble method as random 

forests [98]. The highlight of the CIT is its ability to handle the variable selection bias 

and overfitting problem that usually exist in decision trees. The method will be 

described thoroughly in Section 4.2. 
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Chapter 3: Data 
 

The chapter introduces the two PCLD datasets used for the study. The social 

demographic information of the data providers is also collected, including gender, age 

group, education level, and household income level.  

3.1. 2011-2012 In-vehicle GPS Travel Survey 

The in-vehicle GPS travel survey was conducted between October 2011 and February 

2012 in Maryland. A dedicated in-vehicle GPS device was installed and kept 

recording the vehicle’s location every one minute if any movement was detected. To 

obtain the ground truth for the survey subjects and the trips captured, both an initial 

participation form and a recall survey were designed to collect the social demographic 

information and one-day travel diary. More details about the survey design could be 

found in [99]. 

From the 230 initial survey participants, 163 subjects (69 females and 93 males) are 

selected who have provided at least one of the four social demographic attributes and 

continuous GPS traces of more than 30 days. Overall, there are more senior people 

recruited in the survey as shown in Figure 3-1. Although the sample is selected via a 

stratified random sampling method, there remains a bias towards people with high 

education level and household income level (Figure 3-2, 3-3).  
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Figure 3-1. In-vehicle GPS Survey: Age Group Distribution 

 

Figure 3-2. In-vehicle GPS Survey: Education Level Distribution 
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Figure 3-3. In-vehicle GPS Survey: Household Income Level Distribution 

Through a previous study [100], the raw data have been processed into trips based on 

the trip end identification rules, including spatial movements less than 200m, 

temporal duration greater than 5min, and any point speed recorded less than 5m/s. In 

addition, the trip purpose was imputed using random forests and HERE POI dataset. 

The overall prediction accuracy is above 80%. The imputation for home and work 

trips are more accurate with all the home trips and nearly 90% of work trips correctly 

predicted. The imputed mode will also be considered in the demographics prediction 

other than the travel behavior characteristics, land use, and POI information. 

3.2. 2017 SafeTrack Smartphone Travel Survey 

SafeTrack is an accelerated metro work plan which performs maintenance during a 

relatively short period in order to improve safety and reliability of the Washington 

Metrorail system. Since June 2016, 16 surges have been finished in different lines. 
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The main impact of one surge is either continuous single track or line segment 

shutdown. To study the influence of reduced service on metro riders’ travel 

behaviors, the National Transportation Center (NTC) at University of Maryland 

conducted a long-term survey in collaboration with George Mason University.  

For the first 11 surges, the travel behavior data were collected through paper-based 

and web-based questionnaires. Later, the survey team employed a smartphone 

application (shortened as app), TravelHelper, developed by NTC research team. The 

installation invitation was sent to previous survey respondents. More flyers were also 

distributed in the affected metro stations during the following surges until the end of 

SafeTrack. After that, an online recall survey was emailed to the app users. The 

questions are separately designed for the users enrolled from previous surges and 

from the flyer distribution. In general, the social demographic information for both 

groups of user are gathered.  

3.2.1. Questionnaire-based Survey 

Eventually, there are 128 app users (71 females and 57 males) who have provided at 

least one of the four social demographic attributes and stayed active for more than 3 

days. Since the app users were originally enrolled at the metro stations, there is no 

control of social demographics over the selected sample. Moreover, the sample units 

tend to have higher education level and income level (Figure 3-5, 3-6). 



 

 

22 

 

 

Figure 3-4. Smartphone-based Survey: Age Group Distribution 

 

Figure 3-5. Smartphone-based Survey: Education Level Distribution 
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Figure 3-6. Smartphone-based Survey: Household Income Level Distribution 

3.2.2. App-based Survey 

Each app user was assigned a unique identification character string (mobile ID) once 

registered. There are two versions of TravelHelper developed for iOS and Android 

with similar framework. The app users could voluntarily record their trips specifying 

the travel mode and trip purpose. When they clicked on the start or end button, the 

app automatically recorded the timestamps and locations. Since the app users were 

not required to report the actual address, the trip ends could be missing if the app 

failed to locate the smartphone via any of the three positioning methods (GPS, Wi-Fi, 

and cell towers).  

The app is also enabled to track the users in the background as long as it is not 

completely shut down. But due to the characteristics of the two operating systems, the 

reporting frequency and location accuracy are varied (Table 3-1). For the Android 
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version, the functions to monitor location are defined by NTC team so the parameters 

are clearly stated. For the iOS version, the functions are predefined by Apple 

Developer and the parameters within are unknown. The frequency and accuracy are 

summarized based on the observed records. Because of the multisource positioning 

scheme, the speed information is missing when the record is not generated through 

smartphone-embedded GPS. More details will be introduced in Chapter 4. 

Table 3-1. Location Data Quality for iOS and Android 

Operating 

System 

Frequency Location 

Accuracy Scenario Regular interval Fastest interval 

Android 
High battery, 

moving 
30s 10s High 

 
High battery, 

static 
10min 5min Balanced 

 
Low battery, 

moving 
5min 1min Balanced 

 
High battery, 

static 
30min 10min Balanced 

iOS Static Until significant location change is detected 2m - more 

than 100km  Moving 1-1137s 

 

3.3. Smart Location Database 

The Smart Location Database (SLD) is a public domain data product provided by the 

U.S. EPA Smart Growth Program. The SLD summarizes demographic, employment, 

and built environment variables for every Census block group (CBG) defined by 2010 

Census for the entire U.S. Several attributes are considered for the study. The SLD 

integrates different aspects of area characteristics at a fine geographic resolution. 

Nevertheless, there exists inconsistency between the population and the number of 

workers that some block groups have more workers (based on home location) than 

population. Thus, the data in such block groups are considered missing. Most 
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attributes from the SLD are straightforward but the one to depict land use diversity is 

slightly complicated and calculated as follows: 

D2a_EpHHm = −
∑ (𝑃𝑖 × ln 𝑃𝑖)𝑛

𝑖=1

ln 𝑛 × 𝐴𝑐_𝑈𝑛𝑝𝑟
 

where 𝑃𝑖 is the proportion of the employees or the housing units in land use type 𝑖 

found in a block group and 𝑛 is the number of types (𝑛 = 4), which is 

commercial/industrial/institutional, retail, recreational, and residential [101]. 

Table 3-2. Selected Attributes from the SLD 

Attribute Description Data Source 

Ac_Unpr 
Total land area in acres that is not protected from 

development (i.e., not a park or conservation area) 

Census, Navteq 

parks, PAD-US 

D1a Gross residential density (HU/acre) on unprotected land SLD 

D1b Gross population density (people/acre) on unprotected land " 

D1c Gross employment density (jobs/acre) on unprotected land " 

D2a_EpHHm Employment and household entropy " 

D3a Total road network density NAVSTREETS 

D4b050 
Proportion of CBG employment within ½ mile of fixed-

guideway transit stop 

TOD Database 

2012, SLD 

TotPop Population, 2010 
2010 decennial 

Census 

P_WrkAge Percent of population that is working aged, 2010 
2010 decennial 

Census 

Workers Number of workers in CBG (home location), 2010 
Census LEHD, 

2010 

R_LowWageWk 
Number of workers earning $1250/week or less (home 

location), 2010 
" 

R_MedWageWk 
Number of workers more than $1250/week but less than 

$3333/week (home location), 2010 
" 

R_HiWageWk 
Number of workers earning $3333/week or less (home 

location), 2010 
" 

TotEmp Total employment, 2010 " 

E_LowWageWk 
Number of workers earning $1250/week or less (work 

location), 2010 
" 

E_MedWageWk 
Number of workers more than $1250/week but less than 

$3333/week (work location), 2010 
" 

E_HiWageWk 
Number of workers earning $3333/week or less (work 

location), 2010 
" 
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Chapter 4: Methodology 
 

To fulfill the objectives of the study, the methodology for processing raw data of 

PCLD is developed in Section 4.1. The mechanism of CIT and CIT-based random 

forests is then introduced in Section 4.2. Section 4.3 describes the feature set 

construction for training the machine learning methods. Four sets of features are 

included and examined. 

4.1. PCLD Processing 

The PCLD collected from the in-vehicle GPS devices and the smartphone app have 

the same structure of raw data, which is composed of device/account ID, latitude, 

longitude, speed, accuracy, and timestamps. But the reporting frequency and location 

accuracy differentiate between the data sources and thus the processing procedures 

are also different. 

4.1.1. In-vehicle GPS Data 

The raw data generated by in-vehicle GPS device have relatively high frequency and 

accuracy so the processing method is developed by detecting the stops through 

continuous location points. As demonstrated in Figure 4-1, the trip end or activity 

location is identified as a set of successive points barely move. The criteria include 

that any distance between the first point and the rest points is less than 200m, the 

duration from the first point to the last one is no shorter than 5min, and any point 

speed detected in the set is no greater than 5m/s. If a set of successive points met all 

the criteria, then the set is considered as a trip end and the centroid of it is calculated 
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as the actual activity location. In addition, round trips without a middle stop longer 

than 5min are deleted since the trip purpose will be hard to infer. More details could 

be found in [100]. 

 

Figure 4-1. Processing Procedure for In-vehicle GPS Raw Data 

4.1.2. Smartphone Location Data from iOS Version 

The tracking strategy and data quality of the iOS version app is extremely different 

from that of in-vehicle GPS device. Instead of recording the locations with fixed 

intervals, the iOS app only starts to track the users when a significant location change 

is detected. Meanwhile, the app is enabled to position the smartphone through 

multiple ways, such as Wi-Fi and cell towers, other than GPS. As a result, the app 

could capture several locations within a short period (e.g. 1min) and try to record 

more than one coordinates even within 1sec if the accuracy is low. The data acquired 

will be uploaded to the cloud server for storage when the smartphone has access to 
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the Internet. The storage method sometimes causes wrong temporal order of raw data. 

In such cases, the first step is to sort the location records by timestamp and to keep 

only one record with the highest accuracy within one minute to avoid ambiguity. 

Another issue is that once the app starts tracking the location, it occasionally needs to 

cool down before terminating the function. Accordingly, the location records should 

be deleted after the user stopped the trip in reality. Such points are considered to be 

recorded after the actual trip ends: 1) the moving distance is less than 200m; 2) the 

average speed between points is less than 1m/s; 3) the duration between points is less 

than 20min. The average speed is used instead of point speed because the speed of 

most records is unavailable.  

The following step is to identify the trip ends by recording intervals. Based on the 

characteristics of the raw data, 20min is selected as the threshold to prevent 

separating a single trip. Consequently, many activities of short duration will be 

ignored and later treated by post-checking (Figure 4-2).  

The post-checking is designed to clean the misreported trips due to low accuracy, 

adjust the coordinates of trip ends, and break the round trips. It should be mentioned 

that the round trip imputed from the iOS app is different from that from in-vehicle 

GPS data. For example, the round trip inferred from the iOS app may last for nearly 

one hour with only four points captured. During the round trip, the user may have 

finished a grocery shopping, which should be taken into account.  
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Figure 4-2. Processing Procedure for Smartphone Location Data of iOS Version 

After the primary processing, some trips may be inferred incorrectly since the app 

mistakenly locates the smartphone. A trip is highly possible to be inaccurate if it is 

defined by only two raw data points and at least one of them is reported with accuracy 

worse than 1km. Likewise, the trips will be deleted with only one accurate point and 

the average speed is less than walking speed (1.4m/s). It is also observed that multiple 

accurate points exist within one trip but they are very close to each other. For 

instance, the user’s home location and another location more than 1km away from 

home were recorded alternately every hour from late night till early morning. The 

home location is reported with higher accuracy (less than 50m) while the other point 

with very low accuracy (more than 1km). To address the issue, the trips are deleted if 

the average speed is less than 1.4m/s and all the accurate points inside barely move. 
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In order to locate the trip start more precisely, the start point of a trip is adjusted if: 1) 

the accuracy of the start point is worse than 200m; 2) the following (second) point is 

accurate (less than 200m); 3) the distance between the two points is no longer than 

the error of the first inaccurate point. 

Then the round trip is identified as the average speed less than 1.4m/s. As mentioned 

before, the trip start is usually not recorded immediately so the distance between trip 

ends is not set as the criterion for round trip recognition. The middle stop is 

determined to be the point which is farthest from either trip end. The round trip is 

later divided by the middle stop into two sub-trips. 

4.1.3. Smartphone Location Data from Android Version 

The location data collected by the Android version app is very similar to that by in-

vehicle GPS device except for the lower frequency and accuracy. So the processing 

procedure is almost the same as described in Section 4.1.1 except for two steps. Due 

to the relatively low frequency and the further integration with iOS dataset, the trip 

ends are identified with total duration equal to or greater than 20min. Additionally, 

some short trips, usually as walking trips, are deleted if the distance between trip ends 

is less than 200m and the travel time is less than 5min (Figure 4-3). 
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Figure 4-3. Processing Procedure for Smartphone Location Data of Android Version 

4.1.4. Summary 

Based on the pervious processing strategies, the number of trips identified for each 

user is summarized in Figure 4-4. It can be observed that the number of imputed trips 

for each GPS device user tends to follow the normal distribution. On the other hand, 

the iOS users are skewed to having fewer imputed trips and the Android users have 

highly varied number of imputed trips. 
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Figure 4-4. Processing Procedure for Smartphone Location Data of Android Version 

4.2. Conditional Inference Trees 

4.2.1. Overview 

The Conditional Inference Tree (CIT) is a recursive partitioning framework with tree-

structured regression models and conditional inference procedures embedded. As 

shown in Figure 4-5, the main contributions of CITs are: 1) avoiding the overfitting 

problem by checking the global null hypothesis of independence between all the 

covariates and the response(s); 2) avoiding the variable selection bias by first 

selecting the covariate with the strongest correlation to the response(s) in each 

iteration. The unified framework is demonstrated in [98] and the following sections 

will introduce the specification applied to the imputation problem. 
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Figure 4-5. The Framework of Conditional Inference Tree 

4.2.2. Variable Selection and Stopping Criterion 

The specification of the model is given below with the univariate formulation, which 

is applied to this study. First, the learning sample is defined as:  

 ℒ𝑛 = {(𝑌𝑖, 𝑋1𝑖, … , 𝑋𝑚𝑖), 𝑖 = 1, … , 𝑛} (1) 

where 𝑛 is the sample size, 𝑚 is the number of covariates, 𝑌𝑖 is the response in the 𝑖th 

observation, and 𝑋𝑗𝑖 is the 𝑗th covariate in the 𝑖th observation, which can be missing. 

The nonnegative integer valued case weights 𝑤 = (𝜔1, … , 𝜔𝑛) is assigned to the 

learning sample.  

The global null hypothesis is composed of the 𝑚 partial hypotheses: 𝐻0 = ⋂ 𝐻0
𝑗𝑚

𝑗=1  

with 𝐻0
𝑗
: 𝐷(𝑌|𝑋𝑗) = 𝐷(𝑌) (𝑗 = 1, … , 𝑚), where 𝐷(𝑌|𝑋𝑗) is the conditional 
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distribution of the response 𝑌 given the covariate 𝑋𝑗. The case weights 𝜔𝑖 are either 

zero or one for simplification. The association between 𝑌 and 𝑋𝑗 is then measured by: 

 𝑇𝑗(ℒ𝑛, 𝑤) = ∑ 𝜔𝑖𝑔𝑗(𝑋𝑗𝑖)ℎ(𝑌𝑖, (𝑌1, … , 𝑌𝑛))
𝑛

𝑖=1
 (2) 

where 𝑔𝑗 is a nonrandom transformation of the covariate 𝑋𝑗 and ℎ is the influence 

function. For the nominal response with 𝐽 levels, the influence functions can be 

defined as ℎ(𝑌𝑖 , (𝑌1, … , 𝑌𝑛)) = 𝑒𝐽(𝑌𝑖). If the response is ordinal, the influence 

function is the same and a score vector can be added to the linear statistics. For 

numeric covariates, the transformation can be defined as 𝑔𝑗𝑖(𝑥) = 𝑥. 

The formulations for the conditional expectation 𝜇𝑗 and covariance Σ𝑗 of 𝑇𝑗(ℒ𝑛, 𝑤) 

were originally derived by Strasser and Weber (1999) and can be found in Hothorn et 

al. (2006). Once the conditional expectation and covariance are ready, the linear 

statistic can be standardized and the test statistics 𝑐 is used to examine if the 

significance level of the association is below or at level α (typically set to 5%). Since 

all the responses studied are nominal variables, the quadratic form of the test statistic 

is applied for efficiency: 𝑐𝑞𝑢𝑎𝑑(𝒕, 𝜇, Σ) = (𝒕 − 𝜇)Σ+(𝒕 − 𝜇)𝑇, where Σ+ is the Moore-

Penrose inverse of Σ. 

4.2.3. Splitting Criteria 

After the covariate 𝑋𝑗∗  is selected to perform the binary split, the goodness of a split is 

evaluated by the special case of the linear statistics which only has two samples. For 
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all possible subsets 𝐴, the two-sample statistic is formulated as (3) and the split 𝐴∗ is 

selected with the test statistics maximized (4): 

 𝑇𝑗∗
𝐴(ℒ𝑛, 𝑤) = ∑ 𝜔𝑖𝐼(𝑋𝑗∗𝑖 ∈ 𝐴)ℎ(𝑌𝑖, (𝑌1, … , 𝑌𝑛))

𝑛

𝑖=1
 (3) 

 𝐴∗ = argmax
𝐴

𝑐(𝒕𝑗∗
𝐴 , 𝜇𝑗∗

𝐴 , Σ𝑗∗
𝐴 ) (4) 

4.2.4. Random Forests 

The concept of random forests is first introduced by Breiman in 2001 [102] based on 

his earlier work about bagging predictors [103]. The basic idea is to construct a forest 

with multiple tree predictors and further generate an aggregated predictor. It has been 

extensively studied and examined in practice. Following the unified framework of the 

CIT, random forests composed of CITs are also examined [104]. The method 

produces an aggregated predictor in the following way: for each bootstrap sample 

drawn from the original sample, an CIT is constructed for the classification task. 

Instead of utilizing the whole variable set, only a small subset is randomly selected 

for each CIT. Eventually, the response is predicted as an average or majority vote 

from all the trees within the forest.  

Random forests cannot be interpreted and visualized in an intuitive way as the CIT. 

The importance of each variable needs to be measured based on all the trees within 

the forest. The naïve method is to count the number of trees where one variable has 

been used. Another method is to evaluate the performance improvement made by 

each variable, such as Gini importance. A more advanced method is called 

permutation accuracy importance [102], which measures the variable importance (VI) 
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by breaking its original association with the response(s) and evaluating how much the 

prediction accuracy has decrease. The basic formulation to calculate the VI of 𝑋𝑗 in 

tree 𝑡 is demonstrated as: 

 𝑉𝐼(𝑡)(𝑋𝑗) =
∑ 𝐼(𝛾𝑖 = 𝛾𝑖

(𝑡)
)𝑖∈𝐵(𝑡)

|𝐵(𝑡)|
−

∑ 𝐼(𝛾𝑖 = 𝛾𝑖,𝑝
(𝑡)

)𝑖∈𝐵(𝑡)

|𝐵(𝑡)|
 (5) 

where 𝐵(𝑡) is the out-of-bag sample for tree 𝑡, 𝛾𝑖
(𝑡)

 is the predicted class for 

observation 𝑖 before permutation and 𝛾𝑖,𝑝
(𝑡)

 is the predicted class after permutation of 

𝑋𝑗. Then the overall VI is measured as: 

 𝑉𝐼(𝑋𝑗) =
∑ 𝑉𝐼(𝑡)(𝑋𝑗)𝑛𝑡𝑟𝑒𝑒

𝑡=1

𝑛𝑡𝑟𝑒𝑒
 (6) 

A conditional permutation scheme was also introduced, which permutes the values of 

𝑋𝑗 conditionally on the variables 𝑍 who have empirical correlation with 𝑋𝑗 [105]. The 

term 𝛾𝑖,𝑝
(𝑡)

 in the basic formulation will be changed to 𝛾𝑖,𝑝|𝑍
(𝑡)

. 

To further develop a robust way considering class imbalance, an AUC-based 

permutation variable importance measure was proposed [106]. The measure is based 

on the area under the curve (AUC) instead of prediction accuracy. For a binary 

response variable 𝑌, AUC is the probability that a randomly selected observation 

from class 𝑌 = 1 receives higher scores for class 𝑌 = 1 than a randomly selected 

observation from class 𝑌 = 0. Since AUC is measured for binary response variable 

and there are missing values in the feature set, the basic formulation of the 

permutation accuracy importance is employed in the following contents. 
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4.2.5. Implementation 

The CIT has been implemented in the R package “party” and “partykit”. The 

command “ctree” is used to derive the classifier of a single CIT and “cforest” for the 

classifier of random forests made of CITs. For additional control over the CIT and 

CIT-based random forests, the function “ctree_control” and “cforest_unbiased” are 

employed. To compute the variable importance, the  function “varimp” is also 

utilized. 

4.3. Feature Set Construction 

As the general idea of the study is to impute social demographic information from 

PCLD, the feature set first contains attributes indicating the travelers’ travel 

behaviors. Some common examples are daily trip rate, departure time, travel distance, 

etc. On top of that, the home location and work location can be inferred from PCLD 

so the area characteristics of the two places are also considered.  

4.3.1. Travel Behavior Statistics 

Table 4-1 gives a summary of all the attributes regarding travel behaviors. As the app 

may be shut down sometime during the survey, the definition of active day is 

employed. An active day is counted only if there is at least one trip captured. The 

average trip rate is the average number of daily trips generated in the user’s active 

days. Two more trip rates are calculated separately for the active weekdays and the 

active weekends. The ratio between the average weekend trip rate and the weekday 

trip rate is included as well since the following attributes regarding departure time are 

measured by proportion. 
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Table 4-1. Attributes for Travel Behavior Characteristics 

Category Attribute Description 

Trip Rate 

Avg_Trip Average daily trip rate 

Avg_Trip_WDay Average weekday daily trip rate 

Avg_Trip_WEnd Average weekend daily trip rate 

WDay_WEnd_trip_rate The ratio of trip rate on weekends over that on weekdays 

Departure 

Time 

WDay/WEnd_am_prob % of trips starting at AM peak on weekdays/weekends 

WDay/WEnd_md_prob % of trips starting at midday on weekdays/weekends 

WDay/WEnd_pm_prob % of trips starting at PM peak on weekdays/weekends 

WDay/WEnd_nt_prob % of trips starting at night on weekdays/weekends 

WDay/WEnd_am_var 
% of trips with the dominant OD pair within the 

weekday/weekend AM peak 

WDay/WEnd_md_var 
% of trips with the dominant OD pair within the 

weekday/weekend midday 

WDay/WEnd_pm_var 
% of trips with the dominant OD pair within the 

weekday/weekend PM peak 

WDay/WEnd_nt_var 
% of trips with the dominant OD pair within the 

weekday/weekend night 

WDay/WEnd_am_dist 
Distance of the dominant OD pair within the 

weekday/weekend AM peak 

WDay/WEnd_md_dist 
Distance of the dominant OD pair within the 

weekday/weekend midday 

WDay/WEnd_pm_dist 
Distance of the dominant OD pair within the 

weekday/weekend PM peak 

WDay/WEnd_nt_dist 
Distance of the dominant OD pair within the 

weekday/weekend night 

Travel 

Time 

TT_Q0 Minimum travel time 

TT_Q5/25/50/75/95 5th/25th/50th/75th/95th percentile of travel time 

TT_Q1 Maximum travel time 

OD 

Distance 

TD_Q0 Minimum OD distance 

TD_Q5/25/5/75/95 5th/25th/50th/75th/95th percentile of OD distance 

TD_Q1 Maximum OD distance 

Maximum 

Speed 

Recorded 

Max_Spd_Q0 Minimum of the maximum speed recorded 

Max_Spd_Q5/25/50/75

/95 

5th/25th/50th/75th/95th percentile of the maximum speed 

recorded 

Max_Spd_Q1 Maximum of the maximum speed recorded 

 

The second part is the characteristics of departure time. One day is divided into four 

segments: AM peak (6 - 10 a.m.), midday (10 a.m. - 3 p.m.), PM peak (3 - 7 p.m.), 

night (7 p.m. - 6 a.m.). The difference between weekday and weekend should also be 

included, which leads to eight time periods in total. Besides the percentage of trips 

starting at different time periods (e.g., WDay_am_prob), the most frequent or 
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dominant OD pair within each time period is extracted to evaluate the variation and 

feature of the user’s travel pattern. The dominant OD pair is defined as follows:  

1) Summarize the frequency of the OD pairs (𝑝 ∈ 𝑃) in each time period, where 

OD is considered at the block group level. Sort the OD pairs by frequency. 

2) From the most frequent OD pair 𝑝1 ∈ 𝑃, compare the average coordinates of 

trip ends for 𝑝1  with those for the remaining OD pairs (𝑝𝑖, 𝑖 > 1). If the 

distance between OD pair 𝑝𝑗 and 𝑝1 is less than 1km, then 𝑝𝑗 is combined 

with 𝑝1 to become 𝑝∗ ∈ 𝑄, where 𝑄 represents the set of the adjusted OD 

pairs. Otherwise, 𝑝1 is removed from 𝑃 to 𝑄. 

3) Repeat 2) until there is no OD pair in 𝑃. Sort the OD pairs in 𝑄 by frequency. 

The first OD pair in 𝑄 is defined as the dominant OD pair. 

The variation of travel pattern is measured by the percentage of the trips following the 

dominant OD pair within each time period (e.g., WDay_am_var). The less varied the 

user’s travel pattern is, the higher the value will be. The distances of the dominant 

OD pairs are included since they probably represent the daily commuting distance or 

the typical grocery shopping distance of the user. 

Other attributes concerning the distribution of travel time, OD distance, and the 

maximum speed recorded are involved. As mentioned in Section 3.2.2, the speed 

information is missing for many records but the maximum speed recorded can also be 

interpretative. The records with speed larger than 120 mph are removed since they are 

observed to be part of air trips and thus the trips are always incomplete due to signal 
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issue during the flight. For all the three values, the 5th, 25th, 50th, 75th, and 95th 

percentile are taken into consideration in addition to the minimum and maximum. 

4.3.2. Geographic Information 

In this study, the comprehensive land use data is considered for two CBGs where the 

user’s home and work locations belong. Only a small portion of people reported the 

home location or recorded trips with home/work as the purpose, so the home and 

work CBGs are inferred based on the frequency and departure time as follows: 

 The two most frequent OD pairs are denoted as 𝑝𝑖(𝑡𝑖, 𝑜𝑖, 𝑑𝑖) (𝑖 = 1, 2), where 

𝑡𝑖 represents the time period when the OD pair is travelled, 𝑜𝑖 is the origin 

CBG of the OD pair and 𝑑𝑖 is the destination CBG. The five most visited 

CBGs are counted as 𝑑_𝐶𝐵𝐺𝑗, 𝑗 = 1, … , 5. 

 If the two most frequent OD pairs are generated in weekday AM or PM peak 

and one of the two most visited CBGs is either the origin of the AM peak OD 

pair or the destination of the PM peak OD pair, then the CBG is labelled as 

the home CBG:  

𝐾1 = {𝑜 ∈ 𝑝(𝑡 = 𝑊𝐷𝑎𝑦_𝑎𝑚), 𝑑 ∈ 𝑝(𝑡 = 𝑊𝐷𝑎𝑦_𝑝𝑚)} 

if 𝐾1 ≠ ∅ 

 for 𝑗=1 to 2 

  if 𝑑_𝐶𝐵𝐺𝑗 ∈ 𝐾1 

   ℎ𝑜𝑚𝑒_𝐶𝐵𝐺 = 𝑑_𝐶𝐵𝐺𝑗,  𝑗ℎ𝑜𝑚𝑒 = 𝑗 
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 If the home CBG is not found, then check if one of the two most visited CBGs 

is either the origin or destination of the OD pair during weekday night: 

if 𝐾1 = ∅ 

𝐾2 = {𝑜 ∈ 𝑝(𝑡 = 𝑊𝐷𝑎𝑦_𝑛𝑡), 𝑑 ∈ 𝑝(𝑡 = 𝑊𝐷𝑎𝑦_𝑛𝑡)} 

if 𝐾2 ≠ ∅ 

  for 𝑗=1 to 2 

   if 𝑑_𝐶𝐵𝐺𝑗 ∈ 𝐾2 

    ℎ𝑜𝑚𝑒_𝐶𝐵𝐺 = 𝑑_𝐶𝐵𝐺𝑗, 𝑗ℎ𝑜𝑚𝑒 = 𝑗 

 If the two most frequent OD pairs are generated in weekday AM or PM peak 

and one of the five most visited CBGs is either the destination of the AM peak 

OD pair or the origin of the PM peak OD pair, then the CBG is labelled as the 

work CBG:  

𝐾3 = {𝑑 ∈ 𝑝(𝑡 = 𝑊𝐷𝑎𝑦_𝑎𝑚), 𝑜 ∈ 𝑝(𝑡 = 𝑊𝐷𝑎𝑦_𝑝𝑚)} 

if 𝐾3 ≠ ∅ 

 for 𝑗=1 to 5 

  if 𝑑_𝐶𝐵𝐺𝑗 ∈ 𝐾3 

   𝑤𝑜𝑟𝑘_𝐶𝐵𝐺 = 𝑑_𝐶𝐵𝐺𝑗, 𝑗𝑤𝑜𝑟𝑘 = 𝑗 

 If the home CBG is still not found, the most visited CBG which is not labelled 

as the work CBG will be labelled as the home CBG: 

if 𝑗ℎ𝑜𝑚𝑒 = 𝑛𝑢𝑙𝑙 

 𝑗ℎ𝑜𝑚𝑒 = min 𝑗 ∈ {1 ≤ 𝑗 ≤ 5, 𝑗 ≠ 𝑗𝑤𝑜𝑟𝑘} 
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 If the work CBG is not found, the most visited CBG which is not labelled as 

the home CBG will be labelled as the work CBG: 

if 𝑗𝑤𝑜𝑟𝑘 = 𝑛𝑢𝑙𝑙 

 𝑗𝑤𝑜𝑟𝑘 = min 𝑗 ∈ {1 ≤ 𝑗 ≤ 5, 𝑗 ≠ 𝑗ℎ𝑜𝑚𝑒} 

 The home CBG and work CBG are found: 

ℎ𝑜𝑚𝑒_𝐶𝐵𝐺 = 𝑑_𝐶𝐵𝐺𝑗ℎ𝑜𝑚𝑒
 

𝑤𝑜𝑟𝑘_𝐶𝐵𝐺 = 𝑑_𝐶𝐵𝐺𝑗𝑤𝑜𝑟𝑘
 

Once the home and work CBGs are defined, the area characteristics will be 

introduced from the SLD as summarized in Table 4-2.  

Table 4-2. Attributes for Geographic Information 

Location Attribute Description 

Both home 

and work 

CBGs 

Ac_Unpr 
Total land area in acres that is not protected from 

development (i.e., not a park or conservation area) 

D1a Gross residential density (HU/acre) on unprotected land 

D1b Gross population density (people/acre) on unprotected land 

D1c Gross employment density (jobs/acre) on unprotected land 

D2a_EpHHm Employment and household entropy 

D3a Total road network density 

D4b050 
Proportion of CBG employment within ½ mile of fixed-

guideway transit stop 

Home CBG 

home_P_WrkAge % of population that is working aged 

home_P_WORKERS % of workers in CBG 

home_P_LowWage % of workers earning $1250/week or less  

home_P_MedWage 
% of workers earning more than $1250/week but less than 

$3333/week  

home_P_HiWage % of workers earning $3333/week or less 

Work CBG 

work_P_LowWage % of workers earning $1250/week or less 

work_P_MedWage 
% of workers earning more than $1250/week but less than 

$3333/week 

work_P_HiWage % of workers earning $3333/week or less 
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The area and density information are directly borrowed from Table 3-2 and other 

demographic attributes are computed based on the SLD. Some examples are: 

ℎ𝑜𝑚𝑒_𝑃_𝑊𝑜𝑟𝑘𝑒𝑟𝑠 = 𝑊𝑜𝑟𝑘𝑒𝑟𝑠 𝑇𝑜𝑡𝑃𝑜𝑝⁄ × 100%, 

ℎ𝑜𝑚𝑒_𝑃_𝐻𝑖𝑊𝑎𝑔𝑒 = 𝑅_𝐻𝑖𝑊𝑎𝑔𝑒𝑊𝑘 𝑊𝑜𝑟𝑘𝑒𝑟𝑠⁄ × 100%. 

𝑤𝑜𝑟𝑘_𝑃_𝐻𝑖𝑊𝑎𝑔𝑒 = 𝐸_𝐻𝑖𝑊𝑎𝑔𝑒𝑊𝑘 𝑇𝑜𝑡𝐸𝑚𝑝⁄ × 100%. 

4.3.3. POIs and Imputed Trip Purpose 

The model containing the aforementioned features only is named “Naïve Model”. In 

addition, the previous study [100] employed random forests to infer the trip purpose 

and reached more than 80% of accuracy for the in-vehicle GPS survey. Though it was 

concluded that POI information does not play an important role in trip purpose 

prediction, the frequency of visiting places with various POI categories is considered 

for the demographic imputation based on the in-vehicle GPS dataset (Table 4-3). The 

difference between “daily_poi_near” and “daily_poi_gene” is whether the POI 

information is extracted based on the nearest place for trip ends or based on the 

dominant category with a buffer of 250m. The model including features about POI 

information is named “POI Model”. 

The imputed trip purpose is also added to the feature set for the in-vehicle GPS 

dataset to evaluate its contribution. The attributes related to imputed trip purpose are 

summarized in Table 4-4, where more details about work/shop/social trips are 

considered. 
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Table 4-3. Attributes for POI Information 

Attribute Description 

daily_poi_near/gene_1 # of daily trips visiting places about automotive  

daily_poi_near/gene_2 # of daily trips visiting community service centers 

daily_poi_near/gene_3 # of daily trips visiting restaurants 

daily_poi_near/gene_4 # of daily trips visiting travel destinations 

daily_poi_near/gene_5 # of daily trips visiting transportation hubs 

daily_poi_near/gene_6 # of daily trips visiting miscellaneous places 

daily_poi_near/gene_7 # of daily trips visiting shopping places  

daily_poi_near/gene_8 # of daily trips visiting education institutions 

daily_poi_near/gene_9 # of daily trips visiting places about entertainment 

daily_poi_near/gene_10 # of daily trips visiting medical places  

daily_poi_near/gene_11 # of daily trips visiting business facilities 

daily_poi_near/gene_13 # of daily trips visiting border crossing 

daily_poi_near/gene_14 # of daily trips visiting parks or recreational places 

daily_poi_near/gene_15 # of daily trips visiting parking places  

daily_poi_near/gene_16 # of daily trips visiting financial institutions  

daily_poi_gene_99 # of daily trips visiting places where multiple categories of POIs 

 

Table 4-4. Attributes for Imputed Trip Purpose 

Attribute Description 

home_prob % of home trips 

work_prob % of work trips 

shop_prob % of shopping trips 

soci_prob % of social/recreational trips 

pick_prob % of pick-up/drop-off trips 

othe_prob % of other trips 

work_WDay_am/md/pm/nt 
% of work trips at AM peak/midday/PM peak/night on 

weekdays 

work_WEnd_am/md/pm/nt 
% of work trips at AM peak/midday/PM peak/night on 

weekends 

shop_WDay_am/md/pm/nt 
% of shopping trips at AM peak/midday/PM peak/night on 

weekdays 

shop_WEnd_am/md/pm/nt 
% of shopping trips at AM peak/midday/PM peak/night on 

weekends 

soci_WDay_am/md/pm/nt 
% of social/recreational trips at AM peak/midday/PM 

peak/night on weekdays 

soci_WEnd_am/md/pm/nt 
% of social/recreational trips at AM peak/midday/PM 

peak/night on weekends 
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Chapter 5: Imputation Results 
 

Based on the classifiers (CIT and CIT-based random forests) and feature sets 

introduced in Chapter 4, the imputation results are demonstrated and discussed within 

this chapter. Section 5.1 compares the prediction accuracy for the in-vehicle GPS 

dataset based on the four sets of features and evaluates the variable importance in 

each case. Section 5.2 looks into the results for the smartphone location dataset, 

which includes multimodal traveling data. Section 5.3 summarizes the findings from 

both examinations. 

5.1. Imputation Results for the In-vehicle GPS Dataset 

To study and compare the goodness of imputation based on different feature sets, four 

models are specified for the in-vehicle GPS dataset in Table 5-1. The focus of the 

comparison will be evaluating the prediction strength of POI information and imputed 

purpose, which could provide some suggestions for feature set construction in future 

research. 

Table 5-1. Model Specification 

 Naïve Model POI Model Purpose Model Full Model 

Travel Behavior Statistics ✓ ✓ ✓ ✓ 

Geographic Information ✓ ✓ ✓ ✓ 

POI Information  ✓  ✓ 

Imputed Trip Purpose   ✓ ✓ 
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5.1.1. Gender 

The imputation results for the test datasets are listed in Table 5-2 categorized by the 

four model specifications. The 7-fold cross-validation is employed to evaluate the 

model performance. To make the results comparable, the random seeds to generate 

the bootstrap samples are fixed.  

In the table, “Recall” is the fraction of relevant instances that have been retrieved 

over the total amount of relevant instances (i.e., the proportion of correctly imputed 

instances) and “Precision” is the fraction of relevant instances among the retrieved 

instances. “F1” is the F1 score, which is the harmonic mean of precision and recall 

(𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
). “Overall” is the proportion of correctly imputed instances 

for both groups. “CIT” represents the single CIT classifier with the significance level 

α for the variable association test. “Random Forests” represents the CIT-based 

random forests and the number of trees is by default set as 500.  

The classifier with the best and balanced performance is marked in bold for each 

model. The criteria include that the overall accuracy increase should be greater than 

the summation of the F1 score increase and the F1 scores should all be greater than 

10%. For example, the overall accuracy of the random forest classifier (58.38%) is 

larger than that of the CIT with 10% significance level in the naïve model, but the 

summation of the F1 score increase (-16.27%+7.30%=-8.97%) is smaller than the 

accuracy increase (1.54%). As a result, the CIT with 10% significance level is marked 

as the best model.  
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Within each model, the two CIT classifiers have the better and more balanced 

prediction strength while the CIT-based random forest shows a strong tendency to 

predict the “Male” group correctly whose sample size is 30% larger. Among the four 

models, the naïve model has the highest accuracy. It indicates that POI information 

and imputed purpose do not benefit the imputation of gender much. Nevertheless, the 

travel behavior statistics and the geographic information of the imputed home and 

work locations have provided considerable evidence for gender prediction. 

Table 5-2. Imputation Accuracy for Gender 

 Recall Precision F1 
Overall 

 Female Male Female Male Female Male 

Naïve Model 

CIT (α=0.05) 0.2783 0.7054 0.4285 0.5656 0.3374 0.6278 0.5135 

CIT (α =0.10) 0.4837 0.6222 0.4937 0.6230 0.4887 0.6226 0.5684 

Random Forests 0.2190 0.8496 0.6048 0.5889 0.3215 0.6956 0.5838 

POI Model 

CIT (α =0.05) 0.4733 0.5366 0.4254 0.5833 0.4480 0.5590 0.5127 

CIT (α =0.10) 0.5241 0.5078 0.4484 0.5781 0.4833 0.5407 0.5249 

Random Forests 0.1594 0.7921 0.3337 0.5548 0.2157 0.6525 0.5227 

Purpose Model 

CIT (α =0.05) 0.4676 0.5891 0.4802 0.5924 0.4738 0.5908 0.5365 

CIT (α =0.10) 0.5247 0.5212 0.4465 0.5942 0.4824 0.5553 0.5240 

Random Forests 0.1883 0.8247 0.5286 0.5704 0.2777 0.6744 0.5525 

Full Model 

CIT (α =0.05) 0.4354 0.6351 0.4883 0.5975 0.4603 0.6157 0.5489 

CIT (α =0.10) 0.4782 0.5841 0.4645 0.5958 0.4712 0.5899 0.5365 

Random Forests 0.2417 0.8293 0.5803 0.5889 0.3413 0.6887 0.5779 

 

The CIT with 10% significance level in the naïve model is visualized in Figure 5-1. It 

can be noted that the instances all belong to class “Male” when the 5 percentiles of 

OD distances are longer than 0.4km and the OD distance of the dominant OD pair 

during weekday PM peak is larger than 10.5km. It may indicate that males intend to 
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have longer commuting distance. Almost all the instances belong to class “Female” if 

the 5 percentiles of OD distances are shorter than 0.4km and the transit accessibility 

of home is higher. It can be summarized that females tend to live in denser block 

groups and the areas with larger proportion of working-aged people. 

 

Figure 5-1. Gender: The CIT with 10% Significance Level in the Naïve Model 

5.1.2. Age Group 

The model has been tested for age of three groups and two groups. The cut points are 

selected to be 35 and 65 years old. The assumptions are that people under 35 are 

thought to be young and travel more diversely, people aged between 35 and 65 are 

more mature and may follow less varied travel patterns, and people over 65 are often 

retired and may travel less than the other two groups. However, there is only one 
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sample unit aged over 65 years old from the in-vehicle GPS survey, which is not 

sufficient for training the model. As a result, the last two groups are combined and the 

age is finally categorized as “Under 35” and “35+”. 

In Table 5-3, random forests have better performance in most cases but the bias 

towards “35+” class (whose sample size is four times larger) is still significant. 

Though the accuracy of the naïve model is the highest, the POI information and the 

imputed purpose have significantly increased the prediction strength for the “Under 

35” class. It indicates that the attributes regarding POIs help to impute the age group a 

lot. The full model does not outperform the POI model and purpose model, which 

may result from the strong association between POIs and trip purposes. 

Table 5-3. Imputation Accuracy for Age Group without Weight Adjustment 

 Recall Precision F1 
Overall 

 Under 35 35+ Under 35 35+ Under 35 35+ 

Naïve Model 

CIT (α=0.05) 0.1524 0.8260 0.1537 0.8127 0.1531 0.8193 0.7149 

CIT (α =0.10) 0.1524 0.8181 0.1512 0.8103 0.1518 0.8142 0.7087 

Random Forests 0.0929 0.9211 0.1083 0.8200 0.1000 0.8676 0.7648 

POI Model 

CIT (α=0.05) 0.1524 0.7531 0.1463 0.7948 0.1493 0.7734 0.6536 

CIT (α =0.10) 0.1524 0.7531 0.1463 0.7948 0.1493 0.7734 0.6536 

Random Forests 0.3405 0.8662 0.3503 0.8383 0.3453 0.8520 0.7522 

Purpose Model 

CIT (α=0.05) 0.3524 0.7816 0.3129 0.8445 0.3315 0.8118 0.7157 

CIT (α =0.10) 0.3524 0.7816 0.3129 0.8445 0.3315 0.8118 0.7157 

Random Forests 0.0714 0.8927 0.1429 0.8109 0.0952 0.8498 0.7465 

Full Model 

CIT (α=0.05) 0.3238 0.7904 0.3097 0.8394 0.3166 0.8141 0.7157 

CIT (α =0.10) 0.3238 0.7904 0.3097 0.8394 0.3166 0.8141 0.7157 

Random Forests 0.3071 0.8484 0.2863 0.8194 0.2963 0.8336 0.7271 
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The default case weight is one for all instances. Since the number of instances in the 

“35+” group is more than double that in the “Under 35” group, an integer weight is 

applied to each instance in the “Under 35” group based on the number of each class in 

each training dataset within the cross-validation. The weighting strategy is as follows. 

For class 𝑐𝑚 (𝑚 = 1, … , 𝑀), there is class 𝑐𝑚∗ with the largest number of instances 

𝑛𝑚∗. The weight for each instance in class 𝑐𝑚∗ is set as one (𝜔𝑖∈𝑐𝑚∗ = 1) and those 

for the instances in other classes (𝜔𝑖∈𝑐𝑚
, 𝑚 ≠ 𝑚∗) are set as the integer part of 

𝑛𝑚∗

𝑛𝑚
. 

As shown in Table 5-4, the weight adjustment has helped to decrease the error rate of 

imputing the “Under 35” group when the CIT classifier is applied. However, it does 

not benefit the random forest classifier.  

Table 5-4. Imputation Accuracy for Age Group with Weight Adjustment 

 Recall Precision F1 
Overall 

 Under 35 35+ Under 35 35+ Under 35 35+ 

Naïve Model 

CIT (α=0.05) 0.4167 0.8365 0.3143 0.8555 0.3583 0.8459 0.7462 

CIT (α =0.10) 0.3929 0.8365 0.3000 0.8490 0.3402 0.8427 0.7400 

Random Forests 0.3143 0.6606 0.1935 0.8203 0.2395 0.7318 0.6052 

POI Model 

CIT (α=0.05) 0.4881 0.7372 0.2706 0.8515 0.3482 0.7902 0.6787 

CIT (α =0.10) 0.4881 0.7372 0.2706 0.8515 0.3482 0.7902 0.6787 

Random Forests 0.2643 0.6637 0.1832 0.8091 0.2164 0.7292 0.6038 

Purpose Model 

CIT (α=0.05) 0.4810 0.7517 0.2532 0.8631 0.3318 0.8036 0.6989 

CIT (α =0.10) 0.4810 0.7517 0.2532 0.8631 0.3318 0.8036 0.6989 

Random Forests 0.3405 0.6543 0.2058 0.8168 0.2565 0.7266 0.5991 

Full Model 

CIT (α=0.05) 0.3952 0.7226 0.1798 0.8395 0.2472 0.7767 0.6557 

CIT (α =0.10) 0.3952 0.7226 0.1798 0.8395 0.2472 0.7767 0.6557 

Random Forests 0.5762 0.6475 0.2768 0.8513 0.3739 0.7356 0.6238 
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Looking into the CIT predictor with 5% significance level and weight adjustment in 

the naïve model (Figure 5-2), it can be summarized that the younger people (under 

35) tend to take longer trips. They tend to live in the areas with higher proportion of 

workers earning median wages but smaller proportion of workers earning high wages. 

The areas with smaller block group size and higher density of road networks are also 

preferred by the “under 35” group. In contrast, the “35+” group tends to take shorter 

trips, e.g. on weekend midday. They usually live in the areas with more high income 

workers and larger block group size. They are probably insensitive to the road 

network density. Overall, they may prefer to live in suburban areas. 

 

Figure 5-2. Age: The CIT with 5% Significance Level and Weight Adjustment in the 

Naïve Model 
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5.1.3. Education Level 

The education level is originally surveyed with six categories (high school, associate 

degree, some college, bachelor’s degree, master’s degree, and doctoral degree) but 

the first two categories only covered two and four subjects. It is later regrouped into 

three levels: less than bachelor’s degree (LB), bachelor’s degree (B), and graduate 

degree (G). The imbalance also exists among the three classes so the model with 

weight adjustment is examined. 

Table 5-5. Imputation Accuracy for Education Level without Weight Adjustment 

 Recall Precision F1 
Overall 

 LB B G LB B G LB B G 

Naïve Model 

CIT 

α=0.05 
0.2476 0.2905 0.7246 0.2262 0.3470 0.5962 0.2364 0.3162 0.6541 0.4956 

CIT 

α =0.10 
0.3190 0.3569 0.6075 0.1706 0.4063 0.6020 0.2224 0.3800 0.6047 0.4641 

Random 

Forests 
0.1000 0.3563 0.5319 0.1476 0.2700 0.5852 0.1192 0.3072 0.5572 0.3938 

POI Model 

CIT 

α=0.05 
0.5000 0.3804 0.4466 0.3241 0.3663 0.5573 0.3933 0.3732 0.4959 0.4335 

CIT 

α =0.10 
0.5000 0.3661 0.4336 0.2935 0.3663 0.5471 0.3699 0.3662 0.4838 0.4211 

Random 

Forests 
0.2143 0.4408 0.5198 0.1420 0.3541 0.5397 0.1708 0.3927 0.5295 0.4322 

Purpose Model 

CIT 

α=0.05 
0.2238 0.3978 0.4890 0.2349 0.3462 0.5247 0.2292 0.3702 0.5062 0.4022 

CIT 

α =0.10 
0.2810 0.4754 0.4061 0.2111 0.3855 0.5407 0.2411 0.4258 0.4639 0.3960 

Random 

Forests 
0.1190 0.2329 0.5921 0.0397 0.1746 0.5231 0.0595 0.1996 0.5554 0.3832 

Full Model 

CIT 

α=0.05 
0.5000 0.4034 0.4850 0.3024 0.4512 0.5652 0.3769 0.4260 0.5221 0.4581 

CIT 

α =0.10 
0.5000 0.4605 0.4630 0.3024 0.4274 0.5845 0.3769 0.4433 0.5167 0.4581 

Random 

Forests 
0.3238 0.2793 0.4539 0.3429 0.2015 0.4895 0.3331 0.2341 0.4710 0.3521 
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In Table 5-5, it can be observed that the CIT classifier with 5% significance level 

performs better for each model specification. The POI information and imputed 

purpose do not improve the prediction accuracy significantly but they to some extent 

help correctly impute the “LB” class whose sample size is the smallest.  

The imputation results with weight adjustment have been listed in Table 5-6. The 

weight adjustment does not increase the prediction accuracy though in some models, 

such as the naïve model and the POI model, it helps to identify the “LB” class more. 

Table 5-6. Imputation Accuracy for Education Level with Weight Adjustment 

 Recall Precision F1 
Overall 

 LB B G LB B G LB B G 

Naïve Model 

CIT 

α=0.05 
0.3905 0.2338 0.5483 0.2204 0.3141 0.5249 0.2818 0.2680 0.5363 0.4062 

CIT 

α =0.10 
0.3905 0.2338 0.5223 0.2204 0.3141 0.5117 0.2818 0.2680 0.5170 0.3938 

Random 

Forests 
0.4429 0.1692 0.5776 0.2549 0.3750 0.5721 0.3236 0.2331 0.5748 0.4319 

POI Model 

CIT 

α=0.05 
0.5095 0.2931 0.4940 0.3699 0.3253 0.5000 0.4286 0.3083 0.4970 0.4127 

CIT 

α =0.10 
0.5095 0.3645 0.4736 0.3699 0.3396 0.5136 0.4286 0.3516 0.4928 0.4127 

Random 

Forests 
0.5952 0.2297 0.4835 0.2420 0.5048 0.5472 0.3441 0.3157 0.5134 0.4067 

Purpose Model 

CIT 

α=0.05 
0.3000 0.2517 0.4477 0.1888 0.2341 0.5039 0.2318 0.2426 0.4742 0.3575 

CIT 

α =0.10 
0.3000 0.2517 0.4477 0.1888 0.2341 0.5039 0.2318 0.2426 0.4742 0.3575 

Random 

Forests 
0.5238 0.0143 0.5665 0.2196 0.0286 0.5125 0.3095 0.0190 0.5381 0.3833 

Full Model 

CIT 

α=0.05 
0.3143 0.2471 0.5059 0.2279 0.2501 0.5247 0.2642 0.2486 0.5151 0.3889 

CIT 

α =0.10 
0.3143 0.3185 0.4855 0.2279 0.2653 0.5383 0.2642 0.2894 0.5105 0.3889 

Random 

Forests 
0.5381 0.2549 0.5719 0.3214 0.3889 0.6359 0.4025 0.3079 0.6022 0.4559 
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The CIT with 5% significance level and without weight adjustment in the naïve 

model is visualized in Figure 5-3. Taking the terminal node with the most instances 

imputed correctly for class “G” as an example, the people with graduate or 

professional degree tend to drive carefully and take shorter trips at PM peak on 

weekends. They also tend to live in the areas with lower roadway density. For the 

“LB” group, they tend to drive faster and take longer trips at PM peak on weekends. 

The “B” group is more similar to the “G” group ― they prefer to work in the areas 

with higher land use diversity and take shorter trips on weekend PM peak. 

 

Figure 5-3. Education: The CIT with 5% Significance Level and without Weight 

Adjustment in the Naïve Model 
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5.1.4. Household Income Level 

The household income level is originally surveyed with seven categories as described 

in Section 3.1 and later regrouped into three levels: less than $50,000 (low), $50,000-

$150,000 (middle), $150,000+ (high). The levels are defined according to the 

low/median/high weekly wages in the SLD. Since the 7-fold cross-validation may 

result in many cases of zero instance for a certain group in the test dataset, the 3-fold 

cross-validation is applied instead. The imputation results without weight adjustment 

are listed in Table 5-7.  

Table 5-7. Imputation Accuracy for Income Level without Weight Adjustment 

 Recall Precision F1 
Overall 

 Low Mid High Low Mid High Low Mid High 

Naïve Model 

CIT 

α=0.05 
0.1333 0.6880 0.1171 0.1818 0.6156 0.1454 0.1538 0.6498 0.1297 0.4906 

CIT 

α =0.10 
0.1333 0.6678 0.1367 0.1818 0.6111 0.1556 0.1538 0.6382 0.1455 0.4845 

Random 

Forests 
0.0000 0.7589 0.2343 - 0.6372 0.2611 - 0.6927 0.2470 0.5525 

POI Model 

CIT 

α=0.05 
0.2444 0.5963 0.1409 0.1185 0.6235 0.1576 0.1596 0.6096 0.1488 0.4484 

CIT 

α =0.10 
0.2444 0.5788 0.1409 0.1051 0.6177 0.1576 0.1470 0.5976 0.1488 0.4362 

Random 

Forests 
0.0000 0.8565 0.1320 - 0.6498 0.1548 - 0.7390 0.1425 0.5822 

Purpose Model 

CIT 

α=0.05 
0.1778 0.7146 0.1213 0.1018 0.6217 0.2571 0.1295 0.6649 0.1648 0.5045 

CIT 

α =0.10 
0.1778 0.6742 0.1998 0.1018 0.6328 0.3095 0.1295 0.6528 0.2428 0.5045 

Random 

Forests 
0.1333 0.6951 0.2884 0.1250 0.6567 0.2990 0.1290 0.6754 0.2936 0.5344 

Full Model 

CIT 

α=0.05 
0.1778 0.6924 0.0975 0.1111 0.6406 0.1870 0.1368 0.6655 0.1282 0.4856 

CIT 

α =0.10 
0.1778 0.6520 0.1760 0.1111 0.6538 0.2394 0.1368 0.6529 0.2029 0.4856 

Random 

Forests 
0.0000 0.7570 0.1974 0.0000 0.6237 0.2922 - 0.6839 0.2356 0.5337 
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Among the four models, the random forest classifier in the purpose model has the 

highest prediction accuracy. But the random forest classifier in either the naïve model 

or the purpose model fails to identify any instance from the low income group. It is an 

extreme case of the previous observed bias as the sample size of the main income 

class “Mid” is six times larger than that of the low income class.  

The results with weight adjustment are listed in Table 5-8. Although the weight 

adjustment benefits the imputation of the low and high income group, it has not 

improved the overall accuracy. 

Table 5-8. Imputation Accuracy for Income Level with Weight Adjustment 

 Recall Precision F1 
Overall 

 Low Mid High Low Mid High Low Mid High 

Naïve Model 

CIT 

α=0.05 
0.2444 0.6523 0.2469 0.2063 0.6255 0.2698 0.2237 0.6386 0.2578 0.5027 

CIT 

α =0.10 
0.2444 0.6523 0.2469 0.2063 0.6255 0.2698 0.2237 0.6386 0.2578 0.5027 

Random 

Forests 
0.1778 0.4263 0.3948 0.0812 0.6404 0.2894 0.1115 0.5119 0.3340 0.3981 

POI Model 

CIT 

α=0.05 
0.3000 0.5407 0.2035 0.1935 0.6190 0.1301 0.2353 0.5772 0.1587 0.4237 

CIT 

α =0.10 
0.3000 0.5407 0.2035 0.1935 0.6190 0.1301 0.2353 0.5772 0.1587 0.4237 

Random 

Forests 
0.5952 0.2297 0.4835 0.2420 0.5048 0.5472 0.3441 0.3157 0.5134 0.4067 

Purpose Model 

CIT 

α=0.05 
0.3889 0.5794 0.2212 0.1958 0.6548 0.2683 0.2605 0.6148 0.2425 0.4668 

CIT 

α =0.10 
0.3889 0.5794 0.2212 0.1958 0.6548 0.2683 0.2605 0.6148 0.2425 0.4668 

Random 

Forests 
0.1222 0.4310 0.3705 0.0463 0.6583 0.3050 0.0672 0.5209 0.3346 0.3803 

Full Model 

CIT 

α=0.05 
0.2556 0.6206 0.1236 0.1741 0.6199 0.1702 0.2071 0.6202 0.1432 0.4553 

CIT 

α =0.10 
0.2556 0.6206 0.1236 0.1741 0.6199 0.1702 0.2071 0.6202 0.1432 0.4553 

Random 

Forests 
0.3667 0.4893 0.4472 0.1714 0.6826 0.3426 0.2336 0.5700 0.3880 0.4791 
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The importance for the first 15 variables in random forest classifier without weight 

adjustment in the purpose model is listed as Figure 5-4. The employment density in 

the home location shows the strongest prediction power. The proportion of people at 

working age and the proportion of people earning low wages both help to classify the 

income level. Among the attributes related to travel behaviors, the social/recreational 

trips on weekends has the highest importance following by the variation of weekday 

trips, the first quantile of travel time, OD distance statistics, etc. 

 

Figure 5-4. Income: Variable Importance without Weight Adjustment in the Purpose 

Model 
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5.2. Imputation Results for the Smartphone Location Dataset 

5.2.1. Gender 

The imputation results for the test datasets in the 7-fold cross-validation are listed in 

Table 5-9. In general, the CIT with 10% significance level slightly outperforms the 

other two classifiers. It can be observed that CITs have more balanced accuracy for 

both groups while random forests seem to have higher accuracy for “Female” group, 

which has more instances. 

Table 5-9. Imputation Accuracy of Naïve Model for Gender 

 
Recall Precision F1 

Overall 
Female Male Female Male Female Male 

CIT (α=0.05) 0.5006 0.5321 0.5747 0.4620 0.5351 0.4945 0.5206 

CIT (α=0.10) 0.5328 0.5495 0.5814 0.5103 0.5560 0.5292 0.5274 

Random 

Forests 
0.7571 0.2986 0.5885 0.3763 0.6622 0.3330 0.5270 

 

The CIT with 10% significance level is visualized in Figure 5-5. It can be 

summarized that females tend to take fewer trips on weekend night. Considering the 

attributes about geographic information, the work location of female has higher 

employment density and higher proportion of workers earning median wages. Males 

seem to have a travel routine at night on weekends. 
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Figure 5-5. Gender: The CIT with 10% Significance Level 

5.2.2. Age Group 

The model has been tested for age of three groups and two groups. The cut points are 

also selected to be 35 and 65 years old. However, there is only six sample units aged 

over 65 years old in the smartphone location survey. As a result, the last two groups 

are combined and the age is finally categorized as “Millennials” (M) and “Non-

millennials” (N) considering the survey time. For age imputation, the performance of 

random forests is slightly better than the other two and the CIT with α=0.05 ranks 

second (Table 5-10). 
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Table 5-10. Imputation Accuracy of Naïve Model for Age Group 

 
Recall Precision F1 

Overall 
M N M N M N 

CIT (α=0.05) 0.5612 0.4984 0.4438 0.6164 0.4956 0.5512 0.5214 

CIT (α=0.10) 0.5612 0.4841 0.4373 0.6096 0.4915 0.5397 0.5135 

Random 

Forests 
0.4757 0.5747 0.4996 0.6009 0.4873 0.5875 0.5373 

 

The variable importance for the random forest classifier is ranked in Figure 5-6. For 

age group classification, the geographic information about home locations may play 

an important role, such as the road network density, the residential density, the transit 

accessibility, and the proportion of workers. It leads to inferences similar to Section 

5.1.2 that younger people tend to live in the areas where it is convenient for them to 

commute. In addition, the OD distance on weekday PM peak and the variation of 

travel patterns at midday on weekdays should have considerable prediction strength. 

 

Figure 5-6. Age: Variable Importance without Weight Adjustment 
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5.2.3. Education Level 

The education level is originally surveyed with six categories (less than high school, 

high school graduate, associate degree, some college, bachelor’s degree, and graduate 

or professional degree) but later regrouped into three levels: less than bachelor’s 

degree (LB), bachelor’s degree (B), and graduate degree (G). Since the “LB” group 

only has nine observations, 3-fold cross-validation is employed and the classifier with 

weight adjustment is also evaluated (Table 5-11).  

Table 5-11. Imputation Accuracy of Naïve Model for Education Level 

 Recall Precision F1 
Overall 

 LB B G LB B G LB B G 

Without Weight Adjustment 

CIT 

(α=0.05) 
0.0000 0.1000 0.8303 0.0000 0.1799 0.6569 - 0.1285 0.7335 0.5591 

CIT 

(α=0.10) 
0.0000 0.2778 0.6225 0.0000 0.2278 0.6551 - 0.2503 0.6384 0.4882 

Random 

Forests 
0.0000 0.0889 0.8984 - 0.2714 0.6290 - 0.1339 0.7400 0.5901 

With Weight Adjustment 

CIT 

(α=0.05) 
0.3333 0.2778 0.6300 0.2407 0.3205 0.6218 0.2796 0.2976 0.6259 0.5029 

CIT 

(α=0.10) 
0.3333 0.3111 0.6192 0.2407 0.3325 0.6273 0.2796 0.3214 0.6232 0.5029 

Random 

Forests 
0.2500 0.3667 0.5338 0.0733 0.4111 0.6858 0.1133 0.3876 0.6003 0.4649 

 

In Table 5-11, it can be observed that the classifiers without weight adjustment fail to 

categorize any instance into the “LB” group even though they generally reach higher 

accuracy. Among the three classifiers with weight adjustment, the overall 

performances of the two CIT classifiers are similar. On the other hand, the random 

forests classifier shows weaker imputation strength and mistakenly classifies the 
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instances of the “B” and “G” groups into the “LB” group according to the extreme 

small value of precision for the “LB” group. 

The CIT with 5% significance level and weight adjustment is visualized in Figure 5-

7. According to the number of instances within each class, the case weight is set as 8 

for group “LB”, 2 for group “B”, and 1 for group “G”. The case weight should be 

considered when reading the information of terminal nodes.  

 

Figure 5-7. Education: The CIT with 5% Significance Level and Weight Adjustment 
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Due to the complexity of the tree, one terminal node for each class is illustrated where 

the most relevant instances are imputed correctly. For group “LB”, they either work 

in a CBG with higher transit accessibility and live in the areas with higher density of 

road network or work in the areas with lower transit accessibility and live in the areas 

with lower roadway density. Considering the travel behaviors, they have more 

variation of travel patterns at night on weekdays and they travel more at night on 

weekends. For group “B”, they prefer living in the areas with higher road network 

density and they travel less at night on weekends. For group “G”, they usually live in 

the areas with lower road network density and residential density, which may be 

suburban areas. Their work locations have lower proportion of people earning median 

wages and lower employment density. Travel behaviors have not contributed 

significantly in distinguishing people with bachelor’s degree or graduate degree, 

except for the proportion of trips starting at PM peak on weekends. 

5.2.4. Household Income Level 

The household income level is originally surveyed with seven categories as described 

in Section 3.2.1 and later regrouped into three levels: less than $50,000 (low), 

$50,000-$150,000 (middle), $150,000+ (high). 3-fold cross-validation is employed to 

evaluate the accuracy.  

In Table 5-12, the CIT classifier with 5% significance level has the best overall 

accuracy but has a very low recall value for high-income group. By examining the 

confusion matrix for one single model, it is found that a large portion of the high-

income instances have been misclassified as the middle-income group. A possible 
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explanation is that the travel behaviors and the residential selection for the two groups 

may be alike. 

Table 5-12. Imputation Accuracy of Naïve Model for Income Level 

 Recall Precision F1 
Overall 

 Low Mid High Low Mid High Low Mid High 

Without Weight Adjustment 

CIT 

(α=0.05) 
0.3167 0.7682 0.0714 0.3750 0.6318 0.1556 0.3434 0.6934 0.0979 0.5254 

CIT 

(α=0.10) 
0.3167 0.6541 0.1558 0.3194 0.6218 0.2037 0.3180 0.6375 0.1766 0.4849 

Random 

Forests 
0.0667 0.7377 0.0000 0.0714 0.5723 0.0000 0.0690 0.6445 - 0.4516 

With Weight Adjustment 

CIT 

(α=0.05) 
0.1222 0.3937 0.3290 0.1667 0.5746 0.1882 0.1410 0.4673 0.2394 0.3619 

CIT 

(α=0.10) 
0.1222 0.3937 0.3290 0.1667 0.5746 0.1882 0.1410 0.4673 0.2394 0.3619 

Random 

Forests 
0.2500 0.4598 0.1970 0.0995 0.5791 0.1815 0.1424 0.5126 0.1889 0.3775 

 

The CIT with 10% significance level and without weight adjustment is visualized in 

Figure 5-8. It can be noticed that high income group travel less at AM peak but more 

at midday on weekends. They also live in the areas with more workers earning high 

wages but lower density of employment. Similar as people with higher education, 

their work locations tend to have lower employment density too. The low income 

group travel less at midday and have smaller variation of travel patterns at AM peak 

on weekends. Their home locations have higher proportion of workers. The middle 

income group seems to take more trips than the low income group and have larger 

variation of travel patterns on weekend AM peak. 
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Figure 5-8. Income: The CIT with 10% Significance Level and without Weight 

Adjustment 

5.3. Discussion 

This section will summarize the detailed illustrations for each demographic attribute 

based on the two datasets. For gender imputation, the general rules are that people are 

more likely to be males if they travel longer, have smaller variation of travel patterns 

on weekend night, and live in the areas with fewer people of working age and larger 

CBG size. On the other hand, people who live in the areas with higher transit 

accessibility, higher proportion of workers, and smaller block group size are 

identified as females. Also, a person is recognized as female if she tends to follow a 
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travel routine on weekdays, travel less on weekend night, as well as work in the areas 

with higher employment density and higher proportion of workers earning median 

wages.  

Those inferences are identical to the common sense. Females usually pay more 

attention to convenience, which can explain why the areas with more urban features 

are preferred. Their less activity at night on weekends may be due to the safety 

concerns. When it comes to the travel behaviors, males may take the lead role in 

long-distance driving trips. 

Based on the results of age group imputation, the significant travel behavior variables 

include trip frequency on weekend night and travel distance. The younger people 

under 35 years old have higher probability to take longer trips. People are also 

classified into the “under 35” group if they live in the areas with more workers 

earning median wages and with higher density of road network. It is reasonable that 

people under 35 are at their early stage of career so they make the residential 

selection considering the convenience to commute. In contrast, people over 35 tend to 

live in the areas with larger proportion of high income workers but lower density of 

road network. It may be caused by their preferences in residential areas with better 

environment. 

People with bachelor’s degrees (B) and graduate degrees (G) share many similar 

characteristics. Compared to people whose education level is less than bachelor’s 

degree (LB), they are identified as working in the areas with higher land use diversity. 

Besides that, the “LB” class either tends to live in the areas with lower roadway 
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density and work in the areas with lower transit accessibility or in the opposite way. 

There still exists difference between the “B” and “G” group. For instance, people 

with bachelor’s degree live in the areas with higher residential density while people 

with graduate degree in the areas with lower roadway density and lower residential 

density. The “G” group works in the areas with lower employment density and 

smaller proportion of middle income workers. It may indicate that people with higher 

education level prefer to live in suburban or rural areas. 

The high income group shows propensity for residential selection similar to the high 

education group. The travel behaviors on weekends are generally key to income 

group classification. On weekends, the low income group travels less at midday and 

have smaller variation of travel patterns at AM peak period while the middle and high 

income groups make fewer trips at AM peak but more during midday. Overall, the 

middle income group also generate more trips than the low income group. The 

prediction power of travel behaviors on weekends may indicate that people in higher 

income groups have more social or recreational activities. 

Though the two datasets were created with a five-year gap, there are some similar 

inferences drawn from the imputation results. For example, the age group 

classification is sensitive to road network density for both datasets. The inferences 

generated in both datasets also supplement each other and create more comprehensive 

implications regarding each demographic attribute. 
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In general, the POI information and imputed purpose do not improve the overall 

model performance significantly. Nevertheless, they help to identify the minor group 

correctly and thus should be still valuable for imputation. 
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Chapter 6: Conclusion 
 

6.1. Summary of Research 

Following the introduction on the background and objective of the research, a 

thorough literature review has been delivered in Chapter 2. The emergence, evolution, 

and three types of PCLD have been covered. The derivative studies are later 

summarized, including trip identification, travel mode detection, trip purpose 

inference, and social demographic imputation based on PCLD. The common methods 

for imputing missing information of PCLD are compared and evaluated too. 

In Chapter 3, two datasets are introduced: one is an in-vehicle GPS dataset and 

another is a smartphone-based location dataset. While in-vehicle GPS devices provide 

more precise and accurate data, smartphones are able to capture trips of other modes, 

such as transit, bicycle, walking, etc. The Smart Location Database (SLD) is 

employed for its all-around feature set, fine geographic resolution, and wide 

coverage. 

Chapter 4 develops different frameworks for processing raw PCLD considering the 

recording frequency and location accuracy. It is followed by the demonstration of the 

selected machine learning methods: conditional inference tree (CIT) and CIT-based 

random forests. Multiple types of feature sets are constructed for training the model. 

Since the feature selection is embedded in the CIT classifier, the feature sets comprise 

all the variables that may have an influence. 
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In Chapter 5, the imputation results for each demographic attribute and for each 

dataset are discussed in detail. The rules generated from CIT are visualized and the 

variables with higher importance are listed based on the random forest classifier. In 

Section 5.3, the inferences about each demographic attribute are analyzed across the 

datasets and no contradiction has been found. 

6.2. Future Research 

Built upon the progress made by the thesis, several directions of future research can 

be explored. The remaining part of the section will provide some primary ideas and 

discussions on data quality, feature set enrichment, alternative imputation methods, 

sample recruitment and real-world application. 

The datasets examined in the thesis have detailed trajectories of sample units with 

few trips missing. However, most large datasets of PCLD have even lower frequency 

of data records and lower precision for locations recorded. An analysis could be done 

to evaluate the feasibility of demographic imputation and the prediction strength 

based on different levels of knowledge owned by PCLD. 

For the multimodal PCLD dataset, additional features can be considered about mode 

selection and the interaction terms of mode, departure time, travel distance, etc. There 

are also some attributes on the response side that are easier to identify, such as car 

ownership and household composition. They may be imputed and later serve as better 

intermediate variables than trip purpose. 
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In this study, CIT and CIT-base random forest are applied to impute the social 

demographics. They provide interpretable results and rules but may be inferior to 

other machine learning methods considering the imputation accuracy. It would be 

valuable to conduct a comprehensive comparison among the alternative imputation 

methods and summarize the advantages and disadvantages for different models. 

Experience from the thesis also shed some light on the sample recruitment. The two 

datasets included were not originally designed for the social demographic imputation 

so the class imbalance problem has resulted in some limits. To develop an algorithm 

ready for practice, a sample is needed with balanced and comprehensive social 

demographic groups. Furthermore, both the sample design and the social 

demographic categorization should consider the application scenarios. 

Beyond the research topics on the imputation process, the application of the imputed 

social demographics is also appealing. With imputation model established from the 

relatively small datasets with ground truth, the social demographics of large real-

world anonymous PCLD datasets can be derived. They will then serve as the input to 

weighting the non-probabilistic sample of PCLD and be applied to estimate the travel 

behaviors for population. In addition, the imputation results can help in other fields, 

such as personalized location-based services and mobile advertising, which can bring 

more ease and convenience to daily life. 
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