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Functionalization of metal oxide nanoparticles enables their use in biological 

applications via hybridization of biological molecules and modification of surface 

properties.  This Ph. D research is aimed at increasing knowledge of the process of 

metal oxide nanoparticle functionalization for biological applications.  The 

achievements presented in this dissertation can be divided into three categories: i) a 

fluorescence-based quantitative evaluation of surface coverage and bio-activity of 

antibodies immobilized on magnetic nanoparticles (MNPs), ii) differential 

functionalization of SiO2/TiO2 mixed nanoparticles via preferential binding of 

phosphonic acids to TiO2 and subsequent trimethyl silyl group binding to the 

remaining surface, and iii) X-ray scattering (XRS)-mediated detection of peak shifts 

of a biological substrate, Escherichia coli (E. coli), as a function of applied magnetic 

field strength and magnetic nanoparticle concentration in a cell growth medium. 



  

 In a study of MNP surface modification, quantitative evaluation of anti-mouse 

IgG binding on MNPs and bioactivity on MNPs was conducted via fluorescence 

assays.  Nanosize γ-Fe2O3 particles were hybridized with anti-mouse IgG via silane 

chemistry with 3-aminopropyltriethoxy silane and glutaraldehyde activation.  A 

chemisorption isotherm via fluorescence assays demonstrated that immobilization of 

anti-mouse IgG can be stoichiometrically controlled with the surface coverage at 

saturation corresponding to 36% of the theoretical limit.  The immobilized anti-IgG 

retains ~50% of its bioactivity at saturation.   

 Differential functionalization of SiO2/TiO2 mixed nanoparticles was 

demonstrated via aqueous-phase preferential binding of phosphonic acids to TiO2 and 

subsequent binding of trimethyl silyl group to the remaining surface.  SiO2/TiO2 

mixed nanoparticles with three different mole ratios of Si/Ti together with pure SiO2 

and TiO2 nanoparticles were used in comparative XPS study of differential 

functionalization. Differential functionalization of metal oxide-metal oxide mixed 

nanoparticles demonstrated herein adds a route to multifunctional nanoparticles.   

An In situ XRS study of E. coli in applied magnetic fields up to 423 mT was 

performed.  Two peaks, a sharp peak at q = 0.528 Å-1 (1.189 nm) and a diffuse peak at 

q = 0.612 Å-1 (1.027 nm), were detected in XRS of MNP-absent E. coli culture.  The 

presence of SiO2/γ-Fe2O3 MNPs at 40 mg/L in E. coli growth medium changes the 

sharp peak to the lower side of q as a function of applied magnetic field strength, 

while the position of the diffuse peak is invariable.  362 mT was found to be a critical 

magnetic field strength, at which the sharp peak disappears.  This study demonstrates 

magnetic field-assisted interactions between E. coli cell membranes and MNPs.    
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Chapter 1: Introduction 

 

1.1 Motivation 

Nanosize metal oxide particles have emerged as versatile tools for biological 

applications due to their magnetic, electronic, photonic and optical properties.  

Surface modification of metal oxide nanoparticles adds to the usefulness of the 

nanoparticles on top of their intrinsic characteristics, since hybridization of functional 

molecules on the nanoparticles provides target-specific recognition, catalytic abilities, 

and controlled surface properties such as hydrophobicity.  Assemblies of metal oxide 

nanoparticles and biomolecules such as antibodies, enzymes, and streptavidin via 

surface modification of the nanoparticles have drawn a growing interest in the areas 

of bioanalysis and fabrication of bioelectronic devices.1, 2  A quantitative evaluation 

of biomolecule hybridization with nanoparticles is desired, since it will lead to a 

better control of nanoparticle-biomolecule assemblies.       

Multifunctional nanoparticles have promising potential in biological 

applications, especially in cancer-specific applications as drug carriers and imaging 

agents, because they multitask, overcoming biological barriers, targeting specific 

cancer cells and delivering drugs.3  Multiplexed nanoparticles such as metal-metal4, 5 

and metal-metal oxide3 nanocomposites have been applied as multifunctional 

nanoparticles via differential surface modification.  Differential surface modifications 

of SiO2-TiO2 surfaces,6-8 via the preferential binding of phosphonates to TiO2 and 

subsequent binding of  poly(L-lysine)-g-poly(ethylene glycol) or trimethyl silyl 



 

 2 
 

groups (-OSi-(CH3)3) to SiO2,open the possibility to develop multifunctionality on 

SiO2/TiO2 mixed nanoparticles9 synthesized in our group.  

The ever increasing number of biological applications of metal oxide 

nanoparticles, especially magnetic iron oxide nanoparticles, requires a better 

understanding of the interactions between biological cells and nanoparticles.  X-ray 

scattering (XRS) provides a useful tool for detection of the interactions between 

cellular membranes and magnetic nanoparticles, since XRS has been employed in 

measurement of layer separation of biomimetic phospholipid layers.10  

 

1.2 Objectives 

This research is aimed at biological applications of metal oxide nanoparticles, 

specifically γ-Fe2O3 nanoparticles and SiO2/TiO2 and SiO2/ γ-Fe2O3 mixed 

nanoparticles.  Surface modification of the metal oxide nanoparticles via silane 

chemistry plays a crucial role in hybridizing anti-mouse IgG on γ-Fe2O3 nanoparticles.  

A quantitative evaluation of surface coverage and bioactivity of the γ-Fe2O3 

nanoparticle-anti-mouse IgG assembly is provided via fluorescence characterization 

of the dye-labeled anti-mouse IgG.  Differential functionalization of SiO2/TiO2 mixed 

nanoparticles is achieved via preferential binding of phosphonic acids on TiO2 and 

subsequent reaction with a mild silylating reagent.  Various characterization methods 

including X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, 

fluorescence spectroscopy, and fluorometer measurement of emission from dye-

labeled antibodies along with electron microscopy are used to characterize the 

particle surfaces before and after surface modifications.  XRS is used to detect the 



 

 3 
 

interactions between E. coli cellular membranes and SiO2/ γ-Fe2O3 mixed 

nanoparticles as a function of applied magnetic field strength, concentrations of the 

magnetic mixed nanoparticles and divalent ions in the cell growth medium.     

 

1.3 Overview 

An overview of each chapter is presented as follows: 

 

Chapter 2–Background 

This chapter contains a literature review of the following three topics: i) 

generation of nanosize Fe3O4, Fe2O3, SiO2, and TiO2 particles and their 

nanocomposites such as Fe3O4-Au (or Ag) and SiO2-Fe2O3 composite particles via 

solution methods and aerosol synthesis, ii) ligands used to modify the surface of the 

metal oxide nanoparticles, and iii) E. coli cell membranes and X-ray scattering.  The 

section on solution phase synthesis of metal oxide nanoparticles and nanocomposites 

describes recent advances in the synthesis of the nanoparticles including iron oxide, 

titania, silica and metal oxide-noble metal composites.  The aerosol synthesis portion 

focuses mainly on the generation of metal oxide-metal oxide nanocomposites such as 

SiO2/TiO2 and SiO2/Fe2O3 composite nanoparticles.  Ligands used for surface 

modification of the metal oxide nanoparticles are reviewed including silanes, 

carboxylates, and diols.  Differential modifications of SiO2-TiO2 mixed surfaces are 

described focusing on the preferential binding of phosphonates to TiO2 surfaces.  The 

last part of this chapter is allotted for a brief description of E. coli cell membrane 

structures and X-ray scattering as a detection method of crystalline structures.    
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Chapter 3- Magnetic iron oxide nanoparticles for bio-recognition: Evaluation of 

surface coverage and activity 

This chapter describes a quantitative evaluation of anti-mouse IgG binding on 

γ-Fe2O3 nanoparticles via silane chemistry and glutaraldehyde activation.  A 

quantitative understanding of the anti-mouse IgG coverage of the magnetic 

nanoparticles (MNPs) and the bio-activity of the immobilized anti-mouse IgG is 

provided via measurements of fluorescence spectra of the dye-labeled anti-mouse 

IgGs and mouse IgGs.  The results demonstrate that loading of anti-IgG on the MNPs 

can be stoichiometrically adjusted with ~36% saturated surface coverage of the 

theoretical limit and the immobilized anti-IgG retains ~50% of its bioactivity at 

saturation.   

 

Chapter 4- Differential functionalization of SiO2/TiO2 mixed nanoparticles: an X-ray 

photoelectron spectroscopy study 

This chapter describes differential functionalization of aerosol-phase 

synthesized SiO2/ΤiΟ2 mixed nanoparticles.  Differential functionalization of the 

mixed metal oxide-metal oxide nanoparticles is achieved via preferential binding of 

phosphonic acids to TiO2 in aqueous solution and subsequent trimethyl silyl group-

binding to the remaining SiO2 surface.  An X-ray photoelectron spectroscopy study 

demonstrates the preferential binding of phenyl phosphonic acids to TiO2 of the 

mixed nanoparticles and ~80% retention of bound phenyl phosphonic acid following 
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trimethyl silyl group binding to SiO2.  Binding characteristics as a function of 

different mole ratios of Si to Ti are discussed.  

 

Chapter 5- X-ray scattering study of the interactions between magnetic nanoparticles 

and living cell membranes 

 This chapter describes an X-ray scattering (XRS) study of the interactions 

between E. coli cell membranes and magnetic SiO2/γ-Fe2O3 mixed nanoparticles in 

magnetic fields.  In situ X-ray scattering study of E. coli in the presence of magnetic 

fields up to 423 mT displays two peaks, a sharp peak at q = 0.528 Å-1 (1.189 nm) and 

a diffuse peak at q = 0.612 Å-1 (1.027 nm).  Addition of SiO2/γ-Fe2O3 mixed 

nanoparticles at a concentration of 40 mg/l of growth medium changes the sharp peak 

to the lower side of q, while the position of the diffuse peak is invariable.  362 mT is 

found to be a critical magnetic field strength, where the sharp peak disappears.  

 

Chapter 6-Conclusions and recommendations 

 This chapter contains conclusions and recommendations for future studies.  

Surface modification of metal oxide nanoparticles, especially iron oxide nanoparticles 

and SiO2/ΤiΟ2 mixed nanoparticles, is summarized.  In situ XRS study of E. coli is 

also summarized as a function of applied magnetic field strength up to 423 mT, and 

added SiO2/γ-Fe2O3 mixed nanoparticles.  Based on the summarized results, 

recommendations for future studies are presented.  
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Chapter 2: Background 
 

 

2.1 Abstract 

This chapter contains a literature review of synthesis and applications of 

nanosize metal oxide particles, focusing especially on Fe2O3, Fe3O4, TiO2, SiO2 and 

their nanocomposites.  A brief overview is presented of the synthesis of these metal 

oxide nanoparticles via solution phase and aerosol methods.  Several functional 

compounds are discussed, focusing on their metal oxide-surface modification 

capabilities for biological, medicinal, and catalytic applications.   Multiplexed 

nanoparticles, such as metal oxide-metal and metal oxide-metal oxide 

nanocomposites that demonstrate potential for utilization as multifunctional 

nanoparticles via differential surface modifications, are described.  Cell membrane 

structures along with X-ray scattering as a detection method for the d-spacing of a 

crystalline structure are briefly described at the end of the chapter.    

 

2.2 Introduction 

Nanosize metal oxide particles, especially Fe2O3, Fe3O4, TiO2 and SiO2, have 

been of intense interest due to their characteristic features such as electric, optical, 

magnetic, photo-sensitive properties.  In addition to their inherent characteristics, 

their amenability for surface modification has led to a great extension of their 

utilization in biological, medicinal and environmental applications.  Readily-available 
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functional groups including silanes, carboxylates, and diols have demonstrated 

capabilities for surface modification of these metal oxide nanoparticles.  Functional 

surface modifications of metal oxide nanoparticles have provided a number of tools 

for a construction of metal oxide nanoparticle-biomolecule hybrid systems, for 

example, iron oxide nanoparticle-antibody conjugates.1 

There is a great need for multifunctional nanoparticles in the areas such as 

magnetic resonance imaging (MRI), drug delivery and sensitive detection of 

pathogens.11  Multifunctional metal oxide nanoparticles have been constructed via the 

fabrications of metal oxide-metal3, 12  and metal oxide-metal oxide nanocomposites.6  

Differential surface modifications of metal oxide-metal oxide surfaces6-8 suggest the 

potential for the development of multifunctional metal oxide/metal oxide composite 

nanoparticles.     

 There is also a need for the investigation of the interactions between 

biological cell membranes and metal oxide nanoparticles for the purpose of 

enhancing understanding of the mechanisms of transport and for understanding 

chemical/physical interactions of the nanoparticles with cell membranes as drug 

carriers and cancer-treatment agents.  X-ray scattering is a useful tool for the 

detection of the interactions.13   

 This chapter is composed of the following sections: i) synthesis of Fe2O3, 

Fe3O4, TiO2 and SiO2 nanoparticles and their nanocomposites via solution phase and 

aerosol methods, ii) an overview of ligands for the surface modification of the metal 

oxide nanoparticles, iii) multifunctional metal oxide nanoparticles, focusing on metal 

oxide-metal oxide surfaces, and iv) E. coli cell membranes and X-ray scattering.  
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2.3 Generation of metal oxide nanoparticles 

2.3.1  Synthesis in solution 

Iron oxide nanoparticles:  Iron oxide nanoparticles have attracted much interest due 

to their useful characteristics including magnetic properties, biocompatibility and 

availability for surface modification.   

In the early 1980s, Massart developed a co-precipitation method of ferrous 

and ferric salts in alkaline and acidic aqueous phase to prepare Fe3O4 nanoparticles in 

the size range of 10-20 nm.14  The co-precipitation method has been used in many 

applications15-21 and also has been followed by efforts to improve the polydispersity 

by size fractionation after the co-precipitation step22-24.  Synthesis of monodisperse 

(standard deviation in size < 5%) iron oxide nanoparticles is highly desired in 

applications such as magnetic resonance imaging to enhance imaging capability.25, 26   

Recently, high-temperature decomposition of organic precursors led to the 

synthesis of monodisperse iron oxide nanoparticles.  Hyeon and collaborators27 

reported the synthesis of monodisperse γ-Fe2O3 nanoparticles with average diameters 

from 4 to 16 nm as a result of a careful control of the molar ratio of metal precursor to 

surfactant, Fe(CO)5 and oleic acid respectively. Amorphous monodisperse iron 

nanoparticles were first formed in their process and then were oxidized to 

nanocrystalline γ-Fe2O3 particles with a mild oxidant, trimethylamine oxide.  They 

further modified the methodology, thermolysis of the iron-oleate complex, as a source 

for ultra-large-scale synthesis of monodisperse nanocrystalline iron oxide particles, 

40 g in a batch.28  They were able to substitute the toxic and expensive organometallic 

compound, Fe(CO)5, with an environmentally benign and cost-effective reagent, 
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FeCl3·6H2O, in the metal-surfactant complex formation step.  They also investigated 

the mechanism of the nanocrystalline synthesis through analysis using transmission 

electron microscopy, infrared spectroscopy, thermogravimetric analysis, and 

differential scanning calorimetry.  According to their analysis results, the difference 

in temperature dependence between the rates of nucleation and particle growth is a 

key factor in synthesizing the monodisperse nanocrytalline metal oxides.  Sun and 

Zeng29 reported the synthesis of magnetite (Fe3O4) nanoparticles in high-temperature 

(265 OC) treatment of iron (III) acetylacetonate in phenyl ether in the presence of 

alcohol, oleic acid, and oleylamine.  4 nm size magnetite particles were synthesized in 

this process and larger magnetite particles up to 20 nm in diameter were made 

through a seed-mediated growth method.  In this approach, additional precursors are 

added to the 4 nm magnetite particles.    

The facile synthesis of monodisperse maghemite (Fe2O3) and magnetite 

nanoparticles via the methods including those mentioned above has led to an active 

application of the magnetic nanocrystallites in biological and medicinal areas through 

surface modification and fabrication of the nanoparticles.    

 

Silica nanoparticles: The Stöber process has typically been used to prepare spherical 

silica particles.30  The Stöber process involves hydrolysis of an alkoxy silane such as 

alkoxide tetraethoxysilane (TEOS) and silanol-condensation.  Silica-coatings in 

Fe2O3 core/shell structures have also been prepared using the Stöber process.31  In 

addition to the synthesis of spherical silica nanoparticles, Martin and collaborators32 

have demonstrated template-based synthesis of silica nanotubes.   
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Titania nanoparticles: TiO2 is a well-known and widely-used semiconductor 

material because of its photocatalytic property.  TiO2 has three phases: 

thermodynamically stable rutile, metastable anatase, and brookite.  Generally, anatase 

phase is found in crystalline TiO2 synthesized by the sol-gel and aerosol methods.  

Several preparation methods of TiO2 nanoparticles are available in the literature.  For 

example, hydrolysis of titanium (IV) alkoxides in aqueous and alcohol solvent led to 

TiO2 nanoparticles of three different sizes and phases: 0.7 nm (amorphous), 0.8-1.4 

nm (polycrystal-like), and 6.0 nm (polycrystal).33  Rajh and collaborators have 

synthesized nanocrystalline TiO2 in two steps: (i) dropwise addition of titanium (IV) 

chloride to cooled water, (ii) slow growth of the particles by dialysis until pH 3.5 was 

reached in the solution.34, 35  The synthesized TiO2 nanoparticles were 4.3 ± 0.4 nm in 

diameter.  Cozzoli et al.36 reported the synthesis of TiO2 nanocrystals by low-

temperature (80-100 OC) hydrolysis of titanium (IV) alkoxide in the presence of oleic 

acid as surfactant.    

 

Metal oxide-metal nanocomposites: Recent progress in the synthesis of metal-metal 

or metal oxide-metal composite nanoparticles has been reported.3, 12, 37-39  Figure 2.1 

summarizes the schemes for the attachment of Au (or Ag) nanoparticles on metal 

oxide nanoparticles.  

Metal oxide/Au (or Ag) nanocomposites were fabricated in several ways.  

Halas and collaborators have reported an application of the affinity between Au and 

the amine functional group to the fabrication of silica-gold nanoshells with tunable 
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optical properties.40-42  Gold nanoparticles were attached on amine groups of APTES-

modified silica core nanoparticles and a gold shell was grown along the attached Au 

nanoparticles in a subsequent treatment of HAuCl4.  The plasmonic characteristic of 

the dielectric silica core-gold shell structures was effective in inducing a thermal 

damage on carcinoma cells.  This approach was followed in the preparation of Fe3O4-

Au nanocomposites.43    



 

 12 
 

 

Organic 
droplet

Ag+
Ag+ Ag+

Ag+

Ag+
Ag+

Ag+

Ag+

Ag+

Aquous phase

Fe(CO)5 (i) decomposition

(ii) oxidation

APTES HAuCl4

= nanoparticle (Fe3O4, Au or FePt)

= Ag nanoparticle

SiO2 or Fe3O4

HAuCl4 (or AgNO3)/UV light

TiO2

Au

Fe3O4Au

(a)

(b)

(c)

(d)

   Au 
(or Ag)

Au

Si (CH2)3NH2
O

O
O =

 

 

Figure 2.1  Strategies to attach Au or Ag nanoparticles on metal oxide nanoparticles. 
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  Recent efforts have been directed to the development of heterodimeric iron 

oxide-metal nanocomposites.  The heterodimeric nanoparticles were synthesized in 

the following ways: i) metal oxide nanoparticle assembly at liquid-liquid interfaces 

and deposition and growth of Au (or Ag) on the metal oxide nanoparticles,3 ii) 

decomposition and oxidation of metal oxide precursor on the surface of Au 

nanoparticles.12  Xu and collaborators used nanoparticle assembly at a liquid-liquid 

interface to form heterodimeric nanoparticles, for example Fe3O4-Ag.3  Ag 

nanoparticles were seeded and grown on the surface of Fe3O4 nanoparticles (d= 8 nm) 

assembled at the interface between organic droplets and an aqueous phase (Figure 

2.1(d)).  Sun and collaborators12 also prepared heterodimeric Fe3O4-Au nanoparticles 

by high-temperature decomposition (> 450 OC) of iron pentacarbonyl on Au 

nanoparticles and oxidation in air.  These methods yielded heterodimers below 20 nm 

in diameter. Other preparation methods of metal oxide-Au composites led to the 

formation of composite particles over 100 nm in diameter.37, 38  

The well-known photocatalytic activity of TiO2 has led the semiconductor to 

be a material of intense study in the area of environmental treatment such as 

degradation of organic contaminants in wastewater and air.44  Deposition of Au (or 

Ag) on TiO2 nanostructures leads to increased photocatalytic activity and 

photoelectrochemical response due to the coupling between the noble metal and the 

semiconductor oxide.  The increased photoelectrochemical response results in 

reduced recombination of photogenerated charges.  Ag nanoparticles generated in a 

nanoporous TiO2 film under UV light exhibited reversible photochromatic behavior.45, 

46  The noble metal-TiO2 composite nanostructures have been generally prepared with 
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the following methods: (i) photoelectrochemical deposition of Ag or Au nanoparticle 

on TiO2 nanostructures,45-49 (ii) chemical reduction of precursor materials, HAuCl4 or 

AgNO3, on TiO2 nanoparticles.50    

 

2.3.2  Synthesis via aerosol methods 

Flame aerosol synthesis of oxide powders have typically been employed 

commercially in large-scale production of titania pigment and fumed silica additive.51, 

52  Flame processes have been effective in the synthesis of oxide-oxide composite 

particles9, 53-57 as well as single component oxide particles58-61.   

In the 1980s, Chung and Katz59 developed the counterflow diffusion flame 

burner to synthesize refractory oxides such as SiO2, Al2O3, and Fe2O3 in H2/O2 flame.  

Zachariah et al.58 investigated this counterflow geometry to see the effects of process 

variables such as precursor loading and flame temperatures on particle formation.  

Their results illustrated that flame temperatures were a key factor in particle 

morphology because of particle morphology dependence on chemical kinetic rates.  

In the late 1990s, Pratsinis and collaborators60 examined the effect of silicon 

precursors, organosilane compounds vs. SiCl4, on specific surface areas of the 

generated SiO2 particles in a diffusion flame reactor.  A smaller specific surface area 

of organosilane-derived SiO2 was attributed to the increase of the flame temperature 

involved with the additional combustion source from the organosilane precursors.  

Recently, Pratsinis and collaborators61 employed a premixed methane-oxygen flame 

to synthesize TiO2 nanoparticles from titanium tetraisopropoxide precursor and 

investigated various particle formation pathways by monitoring sampled particle 
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morphologies and flame temperatures.  Surface reaction was found to contribute to 

early particle growth in their reaction conditions.   

Mixed oxide powders are useful in industry in the area of ceramics, optical 

fibers, catalysts, and paint opacifiers.54  In early 1990s, Katz and collaborators 

demonstrated the flame synthesis of various metal oxide powders such as TiO2/SiO2, 

SiO2/GeO2, Al2O3/TiO2, V2O5/TiO2, and V2O5/Al2O3.53-55  Recently, Zachariah and 

collaborators62, 63 demonstrated aerosol-based sol-gel synthesis of nanoporous iron 

oxide and silica particles.  They also presented a method to coat an iron oxide layer 

on a strong oxidizer nanoparticle (potassium permanganate; ~150 nm).64  Serna and 

collaborators65 exhibited the direct synthesis of silica-coated γ-Fe2O3 hollow spherical 

particles (150 ± 100 nm) via the aerosol pyrolysis of precursors, iron ammonium 

citrate and TEOS dissolved in methanol.   

SiO2/TiO2 mixed nanoparticles have drawn a high level of interest because of 

an enhanced reactivity coming from a combined effect of photocatalytic activity of 

TiO2 and high absorption capability of SiO2.66  Since the early 1990s-report of the 

counterflow diffusion flame-synthesis of TiO2/SiO2 composites by Hung and Katz,54 

active studies on the aerosol-mediated formation of the mixed oxides and their 

catalytic activities have been reported.9, 56, 57, 66-71  For example, Ehrman et al.9, 56 

demonstrated the synthesis of SiO2/TiO2 and SiO2/Fe2O3 mixed nanoparticles 

(diameter < 100 nm) in an aerosol flame reactor.  High-temperature aerosol reactions 

(> 2300 K) led to a single-step generation of large amounts of the mixed 

nanoparticles.  They employed various mole ratio of the precursors, C6H18OSi2 versus 

TiCl4 or Fe(CO)5, to produce the phase-segregated nanoparticles with different 
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morphologies (Figure 2.2).  X-ray diffraction results along with transmission electron 

micrographs, electron energy loss spectra, and Fourier transform spectra illustrated 

the mole ratio-dependent distribution of the species.   

Theoretical studies have gained attention because of interest in achieving 

control of flame reactors.  Particle morphology of materials made by flame aerosol 

synthesis is a strong function of temperature and residence time.  Modeling and 

simulation studies61, 72-76 have been published relating particle morphology to 

measured process control parameters such as flame temperature, cooling rate, and 

precursor concentration.  A number of monitoring methods have been used including 

laser scattering,77 dynamic light scattering and thermophoretic sampling,54 particle 

mass spectrometry,78 Fourier transform infrared spectroscopy,9 and computer imaging 

analysis of transmission electron micrographs.79 
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Figure 2.2  Mole ratio-dependent morphologies of flame-synthesized SiO2/metal 

oxide mixed nanoparticles:  (a) SiO2/TiO2, (b) SiO2/Fe2O3.  The dark portions 

represent (a) TiO2 and (b) Fe2O3 respectively.9   
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2.4  Surface modification of metal oxide nanoparticles 

In addition to their intrinsic properties such as optical, electrical, and magnetic 

characteristics, surface modification of metal oxide nanoparticles is a key step to 

extend their applications in biological and medical areas.  Several ligands have shown 

their availability for surface modification of the metal oxide nanoparticles.  The 

ligands and the metal oxide surfaces reacting with the ligands are summarized in 

Table 2.1.  Details of the reactions of the metal oxide surface-modifying ligands are 

described as follows.  

2.4.1  Silanes 

Alkylalkoxysilanes with a functional group such as 3-aminopropyltriethoxy 

silane (APTES) and 3-aminopropyltrimethoxy silane (APTMS) are useful molecules 

to render functionalities on a metal oxide surface by the reaction with the surface 

hydroxyl groups.80  Reaction of silane compounds with a silica surface is a well-

established chemistry.81-85  Levy et al.86 modified the surface of silica-coated Fe2O3 

nanoparticles with anhydride-treated APTES to attach cancer-targeting hormones on 

the nanocomposites.  Martin and collaborators32 demonstrated differential 

functionalization to the inner versus outer surfaces of their silica nanotubes by 

sequential reaction with two different silanes in the process of the nanotube synthesis.  

Lee and collaborators87 applied a similar approach to iron oxide-layered silica 

nanotubes to have differentially-modified inner and outer surfaces with APTES and 

poly(ethylene glycol)-silane respectively.  APTES-modified interiors of the 

composite nanotubes were activated with glutaraldehyde to immobilize human IgG.   
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Table 2.1 Ligands and the ligand-functionalizing surfaces.88 

Ligand Name Reacting surfaces References 

R-SH 

R-S-S-R’ 

thiols 

disulfides 
Au, Ag, Cu, Hg, Fe 3-5, 112-115 

R C OH

O

 carboxylic acids metal oxides 25, 26, 33, 35, 

97, 98 

P

OH

OHR

O  

phosphonates 

phosphonic acids 
metal oxides 6-8, 49, 99-102 

R Si

O

O

O

R'

R'

R'  

siloxanes metal oxides 
32, 43, 80-87, 

89-96 

C
R

C
HO

R'

OH 
enediols transition metal oxides 

(TiO2, Fe2O3, ZrO) 
3, 34, 103-109 

HO CH2

C
R'

CH2

R

HO  

diols Fe2O3 
110, 111 
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 Silane chemistry has been employed extensively to modify the surface of iron 

oxide nanoparticles, maghemite (Fe2O3) and magnetite (Fe3O4).  Zhang and 

collaborators89, 90 adopted silane chemistry to magnetite nanoparticles in the 

application of the superparamagnetic nanoparticles for MRI (Figure 2.3).  They 

adapted APTES with a poly(ethylene) glycol (PEG)-bridge and terminal target-

recognizing functionalities such as folic acid and chlorotoxin to achieve the goals of 

improved particle suspension time in blood and adherence to the target cells at the 

same time.  They also achieved addition of dye molecules, Cy5.5, on the surface of 

the amine-functionalized magnetite surface for intraoperative optical application.  

Recently, Lin and collaborators91 demonstrated the usage of APTES-modified Fe3O4 

nanoparticles as controllable caps of mesoporous silica nanorods in their study of a 

controlled-release delivery system.  APTES-Fe3O4 nanoparticles capped the 

mesopores of the fluorescein-loaded nanorods through the reaction with 3-

(propyldisulfanyl)propionic acid functional groups on the pores.  The disulfide 

linkage was cleaved by cell-produced antioxidants and disulfide reducing agents to 

remove Fe3O4 caps from the mesopores and release florescein from inside of the 

mesoporous nanorods.  O’Connor and collaborators43 took advantage of affinity 

between Au and amine functional groups to attach Au nanoparticles around APTES-

modified Fe3O4 nanoparticles.  Hubbuch and Thomas92 illustrated the application of 

APTES-modified iron oxide nanocrystals in separation of trypsin from a mixture via a 

sequential modification of the APTES-iron oxide particles with polyglutaraldehyde, 

epicholorohydrin, and p-aminobenzamidine.  
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Figure 2.3  Schematic diagram of surface modification of Fe3O4 nanoparticles for 

MRI89, 90. (i) Activation of amine terminal group with N-succinimidyl iodoacetate, (ii) 

attachment of sulfhydryl-functionalized chlorotoxin to iodoacetate-modified particles. 
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Figure 2.4  Schemes of silane chemistry on iron oxide nanoparticles: (a) metal ion 

removal using imidazole functional groups grafted on γ-Fe2O3 nanoparticles,93 (b) 

bovine serum albumin (BSA) immobilization on Fe3O4 nanoparticles.94  

 

Xu and collaborators95 demonstrated APTES-modification of γ-Fe2O3 

nanoparticles in aqueous solution as well as in organic solutions such as toluene.  

They demonstrated the removal of divalent metal ions from solution with polymer-

grafted iron oxide nanoparticles (Figure 2.4(a)).93  For this purpose, they modified the 

terminal thiol group of 3-mercaptopropyltrimethoxysilane with poly(1-

vinylimidazole) and grafted the polymer on γ-Fe2O3 nanoparticles using silane 

chemistry.  Muhammed and collaborators96 modified APTMS-iron oxide particles 

with PEG to improve the biocompatibility of the magnetic particles.  They also 

demonstrated bovine serum albumin (BSA)-immobilization on iron oxide 
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nanoparticles in the succinimide-activated BSA treatment of the APTMS-iron oxide 

nanoparticles (Figure 2.4(b)).94  The BSA-immobilized magnetic nanoparticles did 

not cause cell damage and no endocytosis was seen in the incubation of the modified 

particles with human dermal fibroblast cells for 6 and 24 hours.  

2.4.2  Carboxylic acids 

Several reports are available describing the use of carboxylic functional 

groups in surface modification of iron oxide and titania nanoparticles.  Dyal et al.97 

demonstrated that enzymes immobilized on γ-Fe2O3 nanoparticles maintained their 

native activity for an extended period of one month.  They attached 11-

bromoundecanoic acid via the carboxylic linkage to the γ-Fe2O3 nanoparticles. After 

additional surface modifications, they then immobilized the enzyme via a C=N bond.  

Cheon and collaborators25, 26 illustrated recently that 2,3-dimercaptosuccinic acid 

(DMSA) was effective in surface modification of Fe3O4 nanocrystals through 

carboxylate bonding on the nanocrystals and intermolecular disulfide cross-linkages.  

They demonstrated size-dependent magnetic resonance (MR) signal intensity of the 

DMSA-modified Fe3O4 nanocrystals.  The spin-spin relation time-weighted MR 

signal intensity decreased as the size of the surface-modified magnetic nanocrystals 

increased from 4 to 6, 9 and 12 nm.  They achieved immobilization of cancer-specific 

antibodies on the magnetic nanocrystals by using the remaining free thiol groups of 

the surface-bound DMSA ligands.  They applied the antibody-immobilized magnetic 

nanocrystals to in vitro and in vivo mouse MRI.   

Dimitrijevic and collabotors35, 98 exhibited attachment of carboxyethyl β-

cyclodextrin on TiO2 nanoparticles via carboxyl linkages to the surface Ti atoms.  
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Surface-conjugated cyclodextrins were used as host molecules as the hydrophobic 

cavity of cyclodextrin is well-suited for host-guest interactions in aqueous solutions.  

They observed guest-oxidation potential controlling charge separation and trapping.  

The high oxidation potential of adamantane serving as a guest molecule prevented 

charge transfer between TiO2 and the entrapped guest, while the low oxidation 

potential of ferrocenemethanol led to oxidation and dissociation of the guest from the 

inclusion complex.  Weng and collaborators33 described size-controllable binding 

nature of all-trans-retinoic acid with TiO2 nanoparticles.  Their transient absorbance 

difference spectra demonstrated that chemical bonding became more dominant versus 

physisorption as the semiconductor nanoparticle-size decreased from 6 to 0.8-1.4, and 

0.7 nm.   

2.4.3 Phosphorous compounds 

 Organophosphorous compounds have attracted interest as an alternative to 

organosilane compounds in functionalization of inorganic surfaces due to their 

characteristic features such as a large number of available organophosphorous 

functional molecules and difference in surface reaction mechanisms between 

phosphorous- and silane-compounds.99  Many metal oxides, including metal oxides of 

titanium, aluminum, iron, steel, copper, and brass, have been used as matrix in 

organophosphorous compound-involved surface modification.99  Binding mode of 

organophosphorous molecules can be mono-, bi-, and tridentate as a combination of 

the property of functionalizing surfaces and the nature of the organophosphorous 

compounds.  Surface modification of TiO2 with phosphonates or phosphonic acids is 

an attractive topic because of the altered catalytic function of the transition metal 
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oxide surface.6  Phosphonates and phosphonic acids form self-assembled monolayers 

(SAMs) on TiO2 surface by the formation of Ti-O-P bonds.  Textor, Spencer, and 

collaborators have extensively studied alkyl phosphate-SAM formation on TiO2 in 

alkyl phosphate ammonium salt-dissolved aqueous solutions.7, 8, 100, 101  X-ray 

photoelectron spectroscopy was employed to study the binding of TiO2-alkyl 

phosphates.  Water contact angles on a SAM-formed surface depended on the nature 

of the tail group of the phosphates, either hydrophobic alkyl- or hydrophilic hydroxy-

alkyl groups.100  Grätzel and collaborators demonstrated dye-sensitized solar cells 

using a combined effect of photosensitivity of the TiO2 surface and surface 

modification-provided stability of the photovoltaic cells.102  An amphiphilic 

ruthenium compound and dodecyl phosphonic acids were bound to TiO2 surface to 

improve the lifetime of the solar cells.  Chen and Chen49 applied the affinity of TiO2-

phosphous compound to magnetic-field assisted separation of phosphopeptides from 

an enzyme-digest mixture using TiO2-coated Fe3O4 nanoparticles.       

2.4.4  Diols 

Bidentate binding of enediol ligands stabilizes undercoordinated surface metal 

atoms on the surface of transition metal oxide nanoparticles: TiO2, Fe2O3, and ZrO3.34  

This bidentate binding was reported to be characteristic of nanocrystalline metal 

oxide particles below 20 nm in diameter.  Enediol ligand-binding onto 4.5 nm TiO2 

nanoparticles altered the optical characteristics of the nanoparticles due to the shift in 

the dipole moment of Ti-ligand complexes.  Dopamine (DA) is of particular interest 

among the enediol ligands, since the terminal amine group of dopamine can be further 

modified by reaction with other functional molecules.  Dopamine pretreated with 
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functional molecules such as nitrilotriacetic acid (NTA) or biotin demonstrated a 

robust binding on iron oxide nanoparticles below 10 nm used for separation of 

histidine-tagged proteins or streptavidin.3, 103  DNA oligonucleotides were hybridized 

onto 4.5 nm TiO2 particles through dopamine-bridging and the photocatalytic, 

electronic, and bioactive characteristics of the TiO2-oligonucleotide nanocomposites 

were assessed. 104, 105  Size-dependent binding of enediol ligands such as dopamine on 

TiO2 nanocrystalline surfaces was the basis for tip-to-tip assembly of TiO2 

nanorods.106, 107  Biotinylated dopamine exhibited a preferential binding on 

undercoordinated Ti atoms at the highly-curved tips of the nanorods.  Reaction of 

avidin with the TiO2/DA-biotin structure resulted in a linear assembly of the nanorods.  

The presence of 3,4-dihydroxyphenylalanine (DOPA), the precursor of dopamine, is 

correlated with the adhesive properties of mussel adhesive proteins.  PEG-DOPA-

TiO2 nanoparticle complexes exhibited resistance to serum protein adsorption.108, 109 

Rotello and collaborators110 illustrated that 1,3-diols with bulky tail groups 

were attached to as-synthesized alkylamine-coated γ-Fe2O3 nanoparticles in an 

exchange reaction with the surface alkylamines.  They attributed the stability of the 

diol-modified magnetic nanoparticles to both the bidentate coordination of diols and 

steric stabilization of the bulky tail groups.  They demonstrated dendrimer-mediated 

self-assembly of the magnetic nanoparticles through an electrostatic interaction 

between cationic functional derivatives at the end of the 1,3-diol bulky tails and 

anionic polyamidoamine dendrimers.111  
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2.5  Multifunctional metal oxide nanoparticles and nanocomposites 

Multifunctionality of nanostructures including biobarrier-overcoming ability, 

target-specificity, and drug-delivery is a key feature to their biological applications.  

Differential functionalization of multi-component nanocomposites leads to 

fabrication of multifunctional nanostructures.  Differential functionalization of metal-

metal, metal-metal oxide, and metal oxide-metal oxide surfaces has been achieved via 

preferential binding of a given functional compound to a specific component and is 

described below.  

 

Differential functionalization of metal-metal surfaces:  Differential 

functionalization of metal-metal surfaces is achieved using multi-component 

nanowires synthesized in template-based fabrication methods.  Most of these 

approaches employ Au-metal nanowires to use thiol-affinity toward Au surface.  

Leong and collaborators5 demonstrated segment-dependent binding of DNA plasmids 

and targeting molecules to Au-Ni bimetallic nanowires.  They applied this approach 

to in vivo and in vitro gene delivery.  Mirkin and collaborators4 displayed  a 

magnetic-field assisted separation of histidine-tagged proteins by differential 

modification of Au-Ni-Au tri-segment nanowires with binding of thiolated PEG 

(PEG-SH) to Au end portions and affinity of histidine-groups to the Ni portion.  PEG-

SH binding to gold end segments functioned to suppress nonspecific binding of 

proteins and to stabilize suspension of the nanowires.  Metal-metal nanowires such as 

Au-Ni5 and Au-Pt4 exhibited the selective adsorption of functional molecules and 

proved their applicability in gene delivery and separation of histidine-tagged proteins.  
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Recent efforts to fabricate metal oxide-metal nanocomposites are described in Section 

2.3.1.   

 

Differential functionalization of metal-metal oxide surfaces:  Differential 

functionalization on metal oxide-Au heterodimeric nanoparticles was achieved using 

the preferential binding of a thiol group on Au surface over metal oxide surfaces.3  

Whiteside and collaborators demonstrated simultaneous differential functionalization 

of Au-alumina surface via preferential binding of Au-alkane thiol and alumina-alkane 

carboxylic acid.112  Since then a large number of applications have been reported 

using a similar approach to differently fabricated Au-metal oxide surfaces.113-115  

Specific binding interaction of Au-thiol compounds is also used for a differential 

modification of Au-metal oxide nanoparticles to acquire multifunctionality.  Very 

recently, Xu and collaborators3 developed binary nanoparticles of Fe3O4-Au via self-

assembly of metal oxide nanoparticles at liquid-liquid interface and partial exposure 

of the inorganic particle surface to a reactant, silver nitrate.  They employed a 

sequential surface-specific binding approach of Au-thiolated porphyrin and Fe3O4-

biotinylated dopamine. In this way, the differentially-modified Fe3O4-Au binary 

nanoparticles exhibited a dual function of porphyrin-related fluorescence and biotin-

mediated separation of avidin-functionalized molecules.     

 

Selective modification of metal oxide-metal oxide surfaces:  Selective reaction of 

functional molecules on a metal oxide-metal oxide surface is a challenging task 

compared with multifunctional reactions on metal-metal and metal-metal oxide 
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surfaces, since most functional groups exhibit a similar binding affinity to both the 

metal oxide surfaces.  Nonetheless, a few reports of selective functionalization on 

SiO2-TiO2 surfaces are available, using the preferential binding of phosphonic acids 

and organic phosphates on the TiO2 portions of the mixed metal oxide surfaces.  

Mutin et al.6 demonstrated through their solid-state NMR studies that phosphonic 

acids were bound on a SiO2 surface in toluene, an organic aprotic solvent (Figure 

2.5(a)).  However, the phosphonic acid-binding on the silica surface was not detected 

in an aqueous solution likely due to the hydrolysis of the Si-O-P bonds.  Much higher 

stability of Ti-O-P bonds against hydrolysis led to the formation of the bonds on a 

TiO2 surface via the reaction with the phosphonic acids in the aqueous environment.  

Both chemical bond formation and physical coordination of surface Ti atoms 

contributed to the binding of the phosphonic acids on the TiO2 surface.  In addition, 

scanning auger electron spectroscopy analysis of phosphonic acid-modified SiO2-

TiO2 support substantiated their NMR study results by showing a preferential binding 

of the phosphonic acid to the TiO2 region.  Based on their results, they suggested 

selective sequential functionalization of the SiO2-TiO2 mixed oxide surface by the 

following two steps: (i) preferential reaction of phosphonic acid on the TiO2 region, 

(ii) subsequent binding of trimethylsilyl group on the remaining SiO2 portion using a 

mild silylating agent, N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA).  Michel et 

al.7, 8 reported selective surface fabrication of a SiO2-TiO2 surface by using the 

preferential self-assembly of organic phosphates on the TiO2 region in an aqueous 

solution (Figure 2.5(b)).  The remaining SiO2 surface after the phosphate treatment 

became protein binding-resistant through adsorption of poly(L-lysine)-g-
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poly(ethylene glycol) (PLL-g-PEG) on the SiO2 portion.  They adopted X-ray 

photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass 

spectrometry (ToF-SIMS) to characterize the selective modification of the mixed 

oxide surface.  XPS results for the carbon (1s) region along with ToF-SIMS mapping 

results demonstrated that organic phosphates were selectively bound on the TiO2 

surface and the subsequent PLL-g-PEG treatment led to adsorption of PLL-g-PEG on 

both TiO2/phosphates and SiO2 surfaces.  Immersion of the selectively-modified 

TiO2-SiO2 surface in full serum resulted in replacement of the loosely-bound PLL-g-

PEG on TiO2/phosphates with proteins while the SiO2/PLL-g-PEG surface was 

unaffected.  They proved through florescence microscopy and atomic force 

microscopy studies that chemical patterns could be constructed on the selectively-

modified TiO2-SiO2 surface with organic phosphates and PLL-g-PEG due to the 

protein-binding resistant character of the SiO2/PLL-g-PEG surface.   
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Figure 2.5  Differential functionalizations of SiO2/TiO2 surfaces: Sequential 

functionalization with (a) DPA and BSTFA,6 and (b) DDA and PLL-g-PEG.7, 8  DPA: 

Dodecyl phosphonic acid, DDP: Dodecyl phosphate. 
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2.6  Cellular membranes and X-ray scattering 

2.6.1  E.coli cellular membrane 

Escherichia coli was used in Chapters 5 and 6 to demonstrate its magnetic 

field-assisted interactions with magnetic nanoparticles, SiO2/γ-Fe2O3 mixed particles.  

E. coli is gram-negative bacteria and the dimension of the E. coli cell is about 2 µm in 

length and a little less than 1 µm in diameter.  The cell envelope of gram-negative 

bacteria is composed of three layers: outer membrane, peptidoglycan layer and inner 

(cytoplasmic) membrane.116  Figure 2.6 demonstrates an electron micrograph of a 

gram negative cell wall. 

 

 

 

 

 

Figure 2.6  Electron micrograph of a gram negative cell wall.117  
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The peptidoglycan layer is generally 2-3 nm thick with the composition of 

cross-linked sugar polymers. The peptidoglycan layer helps the bacteria to maintain 

the shape and rigidity.  The cellular membranes are 7 nm in average thickness with 

the main composition of lipids and proteins. A fluid mosaic model of a cellular 

membrane (Figure 2.7) is generally used to understand the cellular membrane.    

 

2.6.2  X-ray scattering 

In this dissertation, the E. coli cell membrane-magnetic nanoparticle 

interactions were detected with X-ray scattering, as described in Chapters 5 and 6. X-

rays are electromagnetic radiation of wavelength in the range between 10 and 0.1 nm.  

A typical process of the generation of X-rays for X-ray scattering experiments is 

described as follows.  Monochromatic X-rays are produced when a beam of 

accelerated electrons in a high voltage such as 30 kV collide with a metal target, often 

copper.  Collisions with enough energy knock out some of the copper 1s (K shell) 

electrons.  Energy release in the transition of electrons from the outer-orbital (2p or 

3p) to the vacancy is emitted as X-ray radiation.  Copper 2p  1s transition is called 

Kα with a wavelength of 1.5418 Å.  This Kα radiation is commonly employed in X-

ray scattering experiments.  

Bragg’s Law is used to measure the perpendicular distance between adjacent 

planes of crystals, the d-spacing, from X-ray scattering data.  The derivation of 

Bragg’s Law is presented in Appendix C.4.1.  



 

 34 
 

(a) 

 

(b)  

 

 

 

 

 

 

 

Figure 2.7  Fluid mosaic model of a cell membrane. (a) A two dimensional model,118  

(b) an one dimensional model.119 

~70 Å~70 Å
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Chapter 3: Magnetic iron oxide nanoparticles for bio-

recognition: Evaluation of surface coverage and activity 

 

3.1 Abstract 

Modifying the surface of magnetic nanoparticles (MNPs) by the covalent 

attachment of biomolecules will enable their implementation as contrast agents for 

magnetic resonance imaging or as media for magnetically assisted bioseparations.  

This chapter describes both the surface coverage and activity of IgG antibodies on 

MNPs.  The antibodies were immobilized on γ-Fe2O3 nanoparticles by conventional 

methods using aminopropyltriethoxy silane and subsequent activation by glutaraldehyde.  

Novel fluorescence methods were used to provide a quantitative evaluation of this well-

known approach. The results show that surface coverage can be stoichiometrically 

adjusted with saturated surface coverage occurring at ~ 36% of the theoretical limit.  

The saturated surface coverage corresponds to 34 antibody molecules bound to an 

average-sized MNP (32 nm diameter).  The results also show that the immobilized 

antibodies retain ~50% of their binding capacity at surface-saturated levels. 

 

3.2 Introduction 

Magnetic iron oxide nanoparticles (MNPs) are inherently biocompatible97, 120  

and are amenable to post-synthesis surface modification making them excellent 

candidates for many important applications. For instance, biotechnological 
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applications of MNPs include magnetic resonance (MR) imaging contrast agents,25, 26, 

89, 90 targetable drug carriers,11 hyperthermia-inducing agents121, 122 and magnetically 

controlled media for sensitive separation and detection of biomolecules.123, 124  In 

order to optimize MNPs for these applications it is necessary to confer a high level of 

binding-specificity through surface chemistry.  High specificity can be introduced by 

using biological moieties that possess lock-and-key interactions including those 

observed in antibody-antigen and enzyme-substrate recognition.  In surface 

modifications involving biomolecules, surface coverage is critically important as is 

the ability for the immobilized molecules to retain their native conformations and 

binding profiles. 

One extremely useful route to post-synthetic modification of iron oxide 

nanoparticles is accessed by employing the common organosilane reagent, γ-

aminopropyl triethoxy silane (APTES).95 This approach has been used to produce 

polymer grafted magnetic nanoparticles (MNPs)89, 93, 96 and to attach proteins to iron 

oxide nanoparticles.94, 125  Studies of bovine serum albumin immobilized in this way 

on MNPs showed that the coated nanoparticles remain superparamagnetic and that 

they undergo translocation into human dermal fibroblast cells.94 Attachment of the 

enzyme horseradish peroxidase (HRP) to APTES-modified iron oxide nanoparticles 

was demonstrated by Ma et al125 and the immobilized HRP remained enzymatically 

active with a surface coverage approximately two times greater than with native 

particles.  These previous studies have relied upon thermogravimetric and chemical 

analysis to evaluate surface modification of nanoparticles prepared at a single protein-

nanoparticle stoichiometry.  Here this approach is complemented and expanded by 
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using fluorescence spectroscopy to report a full chemisorption isotherm analysis. 

Fluorescence microscopy is also employed to confirm antibody activity. 

This chapter reports the characterization of surface coverage, as well as 

antibody activity, of amine-coated MNPs modified with anti-mouse immunoglobulin 

G (IgG) antibodies (Scheme 3.1).  The results gained from these studies are of 

obvious importance since the antibody/antigen interaction can be exploited for a 

variety of target molecules and organisms.  APTES provides a common intermediate 

that is amenable to a wide range of subsequent modifications, particularly with 

respect to biomolecule immobilization.  In principle, any soluble protein can be 

immobilized using glutaraldehyde as a cross linker between an amine functional 

group on the protein and the APTES surface groups.  However, proteins with amine 

side chains (i.e. lysine residues) may have multiple points of attachment which 

introduce a further level of complexity in terms of the possible orientations.126, 127  To 

investigate the applicability of the APTES approach for antibody immobilization on 

MNPs, the well-characterized anti-IgG antibody has been immobilized.  

Fluorescence-based assays have provided a quantitative determination of surface 

coverage and evaluated the activity of the attached antibody.  Fluorescence assays 

provide high sensitivity and avoid problems due to spectral overlap between the iron 

oxide nanoparticles and fluorophores when both are present since iron oxide is not 

fluorescent.  These methods provide valuable quantitative information and should be 

applicable to a wide range of ligands. 
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(CH2)3NH2

O OO
32 nm

OHC(CH2)3CHO
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N

(a)
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γ-Fe2O3  
nanoparticle 

Alexa Fluor 568-labeled 
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Scheme 3.1 (a) Surface modification of γ-Fe2O3 nanoparticles with APTES for the 

immobilization of fluorescein-labeled anti-mouse IgG (FL-anti-mouse IgG). (b) 

Separation of Alexa Fluor 568-labeled mouse IgG (AF-mouse IgG) using the anti-

mouse IgG antibody coated MNPs. 
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3.3 Experimental methods 

3.3.1 Materials 

The γ-Fe2O3 particles were purchased from a commercial source (Alfa Aesar, 

Ward Hill, MA). The surface area of the particles is 42 m2/g (determined by BET 

measurement) and the average size is 32 ± 18 nm (from TEM).  These values are 

consistent with published values95, 128 and those supplied by the manufacturer.  

Reagent grade 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde were 

purchased from Sigma (St. Louis, MO) and polysciences (Warrington, PA), 

respectively. FL anti-mouse IgG and purified mouse IgG in phosphate buffered saline 

(PBS; pH 7.4, 0.05 % sodium azide), were purchased from Invitrogen (Carlsbad, CA) 

and from Zymed (South San Francisco, CA), respectively.  Alexa Fluor 568 

succinimidyl ester was purchased from Molecular Probes (Eugene,OR).  All 

chemicals were used as received without further purification except mouse IgG which 

was dialyzed to reduce the concentration of sodium azide prior to the dye-labeling 

reaction (see below). 

 

3.3.2 APTES modification of magnetic iron oxide nanoparticles 

All glassware was soaked in piranha solution (conc. H2SO4 and 35% H2O2, 

3:1 v/v) for one hour and rinsed with distilled water before use. 1.5 g of γ-Fe2O3 

nanoparticles was dispersed in 45 mL of distilled water using sonication to produce a 

homogenous suspension.  The suspension was then purged with nitrogen in a three-

necked flask.  5 mL of APTES was added to the suspension drop-wise for a final 
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concentration of 10 % APTES (v/v).  The solution was refluxed for 3 h at 120 °C 

under nitrogen atmosphere and with vigorous mechanical stirring.  The APTES-

modified particles were collected in a centrifuge tube using a neodymium-iron-boron 

permanent magnet (Arbor Scientific, Ann Arbor, MI) and then washed with double 

distilled water three times and with ethanol once.  The harvested particles were dried 

in vacuum overnight and stored in a desiccator.  

 

3.3.3 Preparation of antibody-coated iron oxide nanoparticles through crosslinking 

with glutaraldehyde 

Magnetic nanoparticles were coated with the fluorescently labeled secondary 

antibody, goat anti-mouse IgG.  10 mg of the APTES-modified nanoparticles were 

added in 0.5 mL of PBS (pH 7.4) and sonicated for 5 min. 1.5 mL of 8 % 

glutaraldehyde solution in PBS was added to the particle suspension and the mixture 

was vortexed briefly.  The suspended particles were mixed gently for 6 h at room 

temperature. The activated particles were magnetically collected and washed three 

times with PBS and then suspended in 4.0 mL of PBS.  80 µL of the suspension (0.20 

mg of particles) was added to a PBS solution of anti mouse IgG for a final volume of 

1.0 mL and shaken for 20 h at room temperature.  The resulting surface-modified 

MNPS were harvested and washed four times with 1 mL of PBS. The supernatant and 

washing solutions were kept to determine the amount of unreacted antibody. 

Quantitative determination of the amount of unreacted antibody was used to 

calculate the degree of surface coverage.  This approach was necessary for accurate 

quantification of antibody binding since absorption and scattering artifacts along with 
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particle settlement during measurement prevent the direct accurate measurement of 

conjugation in the actual product.  The amount of unreacted dye was fluorometrically 

determined after first establishing a standard calibration curve (Appendix A).  The 

amount of dye-labeled antibody bound to the nanoparticles was calculated using the 

following equation: 

Amount of bound antibody  

= initial quantity of antibody – unreacted quantity of antibody 

Interestingly, it was found that upon binding of the dye-labeled antibody to 

the nanoparticle surface, the emission efficiency of the fluorescein label was 

decreased by ~200 fold.  Quenching of the immobilized fluorophore upon surface 

immobilization is further reason for measuring unreacted antibody to determine 

surface coverage. 

 

3.3.4 Dye-labeling of target antibody 

The dye labeling of mouse IgG was carried out using methods described by 

the dye supplier.  In brief, mouse IgG (2.5 mg/mL) in 10 mM PBS (pH 7.4, 0.05% 

sodium azide) was dialyzed using a Spectra/Por (Rancho Dominguez, CA) dialysis kit 

(molecular weight cut-off 50,000) to reduce sodium azide concentration.  Next, 0.2 

mL of 1 M sodium bicarbonate buffer (pH 8.5) was added to 2 mL of the dialyzed 

antibody solution to attain the appropriate pH for the attachment of dyes.  1 mg of 

Alexa Fluor 568 succinimidyl ester dissolved in 0.1 mL of DMSO was added to the 

antibody solution and mixed for 1 h.  Alexa Fluor 568 labeled-mouse IgG (AF-mouse 

IgG) was separated from the unreacted dye with gel permeation chromatography 
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using Sephadex G-25 (Amersham Biosciences, Piscataway, NJ).  The degree of 

labeling of the resulting protein-dye conjugate was determined by UV-Vis absorbance 

at 280 nm and 575 nm to be 0.20 mg/mL for an average of 4.4 attached dye 

molecules per antibody. 

 

3.3.5 Magnetic immobilization of target antibody (mouse IgG) using the anti-mouse 

IgG modified MNPs 

Antibody coated magnetic nanoparticles (400 µL of 10 mg MNP/20 mL) were 

added to 600 µL of AF-mouse IgG.  A range of AF-mouse IgG concentrations were 

studied.  Samples were mixed for 3 h, collected and washed four times each with 1 

mL of PBS.  Steady-state fluorescence was used to evaluate the amount of bound 

primary antibody.  Fluorescence spectra of the magnetically captured nanoparticle 

suspensions were taken with excitation wavelength of either 480 nm for excitation of 

fluorescein or 550 nm for excitation of Alexa Fluor 568. 

 

3.3.6 Fluorescence microscopy and spectroscopy 

Steady state fluorescence measurements to evaluate antibody surface coverage 

and reactivity were conducted with either a Spex Fluorolog-3 fluorometer (Horiba 

Jobin Yvon Inc, Kyoto, Japan) or a Hitachi F-4500 fluorescence spectrophotometer 

(Tokyo, Japan).  For the quantitative determination of the concentration of fluorescein 

in washings and supernatant solutions, a calibration curve was first established over 

the dye concentration range of interest.  The fluorescence intensity was linear with 

dye concentration over the entire calibration curve.  Care was taken to conduct the 
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experiments under the same conditions used to establish the calibration curve to avoid 

pH and instrument effects when determining the experimental dye concentration. 

Fluorescence images and spectroscopic data were acquired using a sample 

scanning confocal microscope.  The microscope was described previously129, 130 and 

consists of a modified Axiovert 200 (Carl Zeiss, Oberkochen, Germany) with a 

NanoBio-2 (Mad City Labs, Madison, Wisconsin) closed-loop, piezoelectric scanning 

stage for nanometer precision.  The microscope is equipped with a 15 cm 

monochromator with a 150 g/mm grating (Acton Research Corporation, Acton, MA) 

for acquisition of emission spectrum from any region of a confocal image with high 

spatial resolution (300 nm) and positioning accuracy (< 10 nm).  For confocal 

microscopy studies, the particles in PBS were spin coated on a glass slide and imaged 

with 488 nm laser light (Melles Griot, Carlsbad, CA).  

 

3.3.7 X-ray photoelectron spectroscopy 

XPS measurements were performed using an AXIS 165 spectrometer (Kratos 

Analytical Inc, Chestnut Ridge, NY) with monochromatic Al Kα x-ray source (144 

W). A sample of powder, loaded onto a conductive carbon tape on a stub, was put 

into the vacuum chamber under a background pressure of 4 × 10-10 Torr.  Wide scan 

surveys and specific regions (for example, C1s, N1s) were measured in hybrid mode 

using both electrostatic and magnetic lenses with a step size of 0.1 eV.  XPS spectra 

were recorded in the FAT analyzer mode with pass energy of 80 eV and an average of 

ten scans. The charge neutralizer was off during the measurements and calibration of 

binding energy was carried out with respect to C1s at 284.6 eV.  Data processing was 
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done using Vision processing software(Kratos Analytical Inc, Chestnut Ridge, NY).  

After subtraction of a linear background, all spectra (except Fe2p) are fitted with 60% 

Gaussian /40% Lorentzian peaks, taking the minimum number of peaks consistent 

with the best fit. 

 

3.3.7  Transmission Electron Microscopy (TEM) 

Nanoparticle size and size distribution for unreacted-, APTES-modified, and 

FL-anti IgG immobilized MNPs were characterized with TEM using a Zeiss 

EM10CA microscope.  For TEM sample preparation MNPs were suspended in PBS 

(pH 7.4) and then drop cast on a TEM grid.  TEM images are provided in Appendix 

A.15.  

 

3.4 Results and Discussion 

The initial MNP surface modification step, reaction with APTES, was verified 

using X-ray photoelectron spectroscopy (XPS).  The XPS results are summarized in 

Figure 3.1.  Each panel of Figure 3.1 displays a region of the XPS spectrum 

corresponding to binding energies of an element that is characteristic of APTES or 

iron oxide.  For comparison, the XPS spectrum of bare unmodified MNPs is 

represented by Trace a in each panel while Trace b corresponds to the MNPs after 

reaction with APTES.  

  Comparisons of the peaks in each panel clearly show the appearance of new 

features at the binding energies of carbon, nitrogen and silicon.  The C1s peaks at 
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284.8 eV and 287.7 eV in Traces a and b are from the carbon tape which is used to 

introduce the powder samples into the UHV chamber of the XPS.  The additional 

peak at 286.5 eV, appearing in the XPS spectrum of the modified nanoparticles 

(Trace b), is assigned to the terminal methylenes of the propyl group (i.e. CH2-N and 

CH2-Si).  The broad N1s peak appearing at 402 eV is from the amine functional 

group in both protonated and unprotonated form present in APTES.95  There was no 

change in binding energy or peak shape observed in the Fe2p region for the magnetic 

particles before and after the silanization reaction with APTES. 

   XPS measurements of the carbon tape used to mount the samples confirmed 

the presence of a Si2p peak at 101.5 eV.  This peak is evident in the spectrum from 

the bare nanoparticles and is attributed to silicon impurities in the carbon tape.  The 

Si2p peak broadens significantly after the nanoparticles are reacted with APTES and 

was fit using a pair of Gaussians as shown in Figure 3.1.  One Gaussian represents the 

peak present in the bare carbon tape spectrum and the second Gaussian, centered at 

103.9 eV, is assigned to the APTES silicon atom bound to the iron oxide surface.  

This peak position, while occurring at a higher energy than previously reported by 

Finch and coworkers for APTES on γ-Fe2O3,95 is consistent with values for Si2p in 

silicates131 and indicates that the surface bound APTES may be substantially cross 

linked.  The APTES-modified nanoparticles were magnetically isolated and 

extensively rinsed before preparing XPS samples; therefore, the presence of new 

carbon, silicon and nitrogen peaks in the XPS spectra must arise from covalently 

attached, and not simply physisorbed, APTES.   
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Figure 3.1 XPS spectra of γ-Fe2O3 nanoparticles: a) unmodified γ-Fe2O3 

nanoparticles, b) APTES-modified γ-Fe2O3 nanoparticles.  
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Freshly prepared APTES modified particles were next modified by reaction 

with glutaraldehyde to activate the amine group for protein conjugation.  Protein 

conjugation was carried out by reacting 1.0 mL aliquots containing a fixed 

concentration of glutaraldehyde-activated nanoparticles with different concentrations 

of fluorescently-labeled anti-IgG antibody.  Quantitative fluorescence assays were 

conducted to determine the degree of surface coverage as a function of antibody 

concentration (described in Experimental Section).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2  Adsorption isotherm of fluorescein-labeled anti-mouse IgG 

antibody on γ-Fe2O3 nanoparticles. ●: glutaraldehyde-activated amino γ-Fe2O3 

particles, ϒ: plain γ-Fe2O3 particles.      
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Figure 3.2 shows the chemisorption isotherm for FL anti-mouse IgG on 

glutaraldehyde-activated APTES-coated nanoparticles (solid circles) and on bare γ-

Fe2O3 nanoparticles (empty squares).  The bare nanoparticles were used as a control 

sample for determining the amount of nonspecific binding.  In both cases, the surface 

coverage increases linearly at low antibody concentrations and is followed by a 

plateau region beginning near 160 µg  of added anti-IgG per mg of APTES-modified 

MNPs and at 60 µg of added anti-IgG per mg of bare MNPs.  In the case of bare 

nanoparticles, it is assumed that the saturation concentration is determined by 

adsorption/desorption kinetics of the antibody and the curve can be well described as 

a Langmuir isotherm (dotted line).  For modified nanoparticles coated with activated 

APTES, formation of a Schiff base occurs between the free aldehyde group on the 

nanoparticle and amine groups on the antibody surface.  This provides a stable 

covalent attachment and hence there is no observable desorption of the antibody.126, 

127  This is shown by the isotherm in which the linear region at low concentrations 

increases in direct proportion with the antibody in solution until the binding sites are 

saturated as indicated by the plateau at 160 µg  of added anti-IgG. 

The plateau corresponds to the loading capacity of available binding sites on 

the glutaraldehyde activated particles and extrapolates to 122 µg anti-IgG per mg 

MNP.  Based upon known antibody molecular dimensions (Y-shape; height = 8.5 nm, 

width = 14.5 nm, thickness = 4.0 nm)132 the antibody footprint on the immobilizing 

surface can vary from 34 to 120 nm2 depending on binding orientation. If the 

antibody binds to the surface through the Fc domain the per-molecule “footprint” 

should be 58 nm2. The average surface area for the magnetic iron oxide nanoparticles 
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from BET measurements is 42 m2/g.  These values indicate that a close-packed 

monolayer of Fc-bound IgG antibody would correspond to 200 µg anti-IgG/mg MNP.  

Hence the observed saturation at 122 µg anti-IgG/mg MNP is 61% of the theoretical 

monolayer for this orientation.  For maximum theoretical surface loading the antibody 

must bind in an edge-on orientation with the minimum footprint of 34 nm2.  In this 

case the observed saturation value would correspond to 36% coverage for this optimal 

orientation.  The calculations assume homogeneous orientation, rectangular footprints 

and perfect packing of the bound antibodies.  In reality the antibodies will have mixed 

orientations126, 127 and a monolayer with surface coverage below the theoretical 

maximum of 330 µg anti-IgG/mg MNP (assuming a homogeneous edge-on 

orientation for all bound IgG) can be expected.  Therefore, it is likely that our 

saturation value represents the maximum level of surface coverage obtainable with 

mixed orientations. 

The fact that 36% of the theoretical maximum coverage is obtained indicates 

that the activated-APTES surface-modification is a good promoter of efficient 

coverage by the antibody.  In comparison, bare nanoparticles exhibit only nonspecific 

adsorption which saturates at 20 µg anti-IgG/mg of the bare nanoparticles and this 

value corresponds to 6% of the theoretical monolayer.  Therefore, a six-fold increase 

is observed in surface coverage for APTES-modified nanoparticles corresponding to 

34 antibody molecules for an average size nanoparticle with 32 nm diameter.   

        In addition to adequate surface coverage, retention of bioactivity is critical for 

producing modified MNPs capable of bio-recognition.  To investigate whether the 

immobilized antibody remains active on the nanoparticle surface, magnetic-based 
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separations were conducted.  In these experiments the immobilized antibody (anti-

mouse IgG) is used to capture and hold a target antibody (mouse IgG) that is present 

in solution.  The MNPs are then magnetically separated and the amount of captured 

target antibody is measured and plotted against target antibody solution concentration 

(Figure 3.3C).  The MNPs used in this study were coated with anti-mouse IgG at 

levels corresponding to the saturation point in Figure 3.2 to ensure that the particle 

surfaces are initially well coated with anti-mouse IgG.  The concentration of MNPs 

was the same in all separations.  The target antibody, mouse IgG, was labeled with 

Alexa Fluor 568 (AF) as described in the supporting information.  The dye-labeling 

was performed on both the immobilized and the target antibody to enable direct 

spectroscopic verification of binding, separation and co-localization.  In actual 

applications this is not necessary. 

          Magnetic separation was performed by manually positioning a permanent 

magnet for 10 seconds on the side of a 5 mL-capacity vial containing a mixture of 

MNPs and target antibody in order to concentrate the MNPs so that the supernatant 

could be removed by pipette.  The magnetically captured nanoparticles were rinsed 

and re-suspended in phosphate buffered saline (PBS, pH 7.4) after which 

fluorescence emission spectra were acquired to determine the amount of captured AF-

mouse IgG.  Figure 3.3A shows the emission spectra acquired from the magnetically 

captured nanoparticles after exposure to four different concentrations of AF-mouse 

IgG.  The dashed lines in Figure 3.3A and 3.3B represent spectra acquired from FL-

anti-mouse IgG nanoparticles in the absence of AF-mouse IgG and show no peak at 

603 nm as expected.   



 

 51 
 

Figure 3.3  Fluorescence analysis of magnetic separations performed on mouse 

IgG.  MNPs were labeled with anti-mouse IgG and used to isolate mouse IgG.  

To verify the separation, anti-mouse IgG was labeled with fluorescein (λmax=520 

nm) and mouse IgG was labeled with Alexa Fluor 568 (λmax= 603 nm). Emission 

spectra of magnetically isolated MNPs were collected at two excitation 

wavelengths in panels A and B.  (A) Excitation at 480 nm directly excites the 

fluorescein of anti-mouse IgG.  (B) Excitation at 550 nm directly excites the 

Alexa Fluor label on mouse IgG.  The spectra in A and B were acquired from 

MNPs that were magnetically isolated from solutions of AF-mouse IgG ranging 

in concentrations from zero (dashed lined) to 500 µg IgG/mg MNP.  Arrows 

above the peaks in (A) and (B) indicate the direction of change with increasing 

concentration of Alexa Fluor-labeled mouse IgG.  (C) Amount of magnetically 

captured Alexa Fluor 568-labeled IgG as monitored by the areas under the 

fluorescence spectra of (B). 
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          In Figure 3.3A the excitation wavelength used was 480 nm for direct excitation 

of the FL-anti-mouse IgG.  The data show that, as the AF-mouse IgG concentration is 

increased, a decrease in emission from the immobilized FL-anti-mouse IgG is 

observed.  The decrease in FL emission is accompanied by increasing emission from 

the AF-mouse IgG.  The increasing intensity of the AF fluorescence is due to 

increased binding in proportion with the added antibody.  The quenching of the FL 

emission with increasing binding is likely due to Förster-type energy transfer in 

which FL acts as the fluorescence resonance energy transfer (FRET) donor and AF 

acts as the FRET acceptor.  The observed FRET efficiency133 is weak (approx. 15-

30%) but indicates that the dyes must be separated by an average distance of less than 

10 nm since the calculated Förster distance (dye separation-distance at which energy 

transfer is 50%) for the dye pair is 6.0 nm.  Hence, the presence of energy transfer 

provides strong evidence that the dyes are co-localized through antibody—antigen 

interactions. 

In Figure 3.3B, emission spectra were acquired from the magnetically isolated 

particles using direct excitation of the AF dye (λex= 550 nm).  Direct excitation of 

AF-mouse IgG provides better quantification of the amount of captured antibody, and 

data obtained in this way were used to construct the binding curve shown in Figure 

3.3C. The area under the AF peak (590-700 nm) in Figure 3.3B was determined after 

correction for background and is plotted against the IgG solution concentration in 

Figure 3.3C to form a binding isotherm.  Saturation was reached at 150 µg IgG/mg 

MNP, nearly the same point as the chemisorption isotherm (160 µg anti-IgG/mg 

MNP) obtained for the initial immobilization of anti-mouse IgG on the APTES 
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modified nanoparticles (Figure 3.2).  The closely corresponding saturation points of 

the two isotherms indicate that 1:1 binding is observed between the immobilized anti-

mouse IgG and target mouse IgG.  If the bound antibody is chemisorbed through a 

lysine in the Fc domain as suggested in Scheme 3.1, then both Fab regions are 

available for binding in which case 2:1 binding would be observed.  The actual case is 

presumably more complicated than depicted by Scheme 3.1 since the antibody 

molecules can react with the surface in a range of orientations due to the occurrence 

of multiple lysines as suggested by the original chemisorption isotherm in Figure 3.2.  

Therefore, if multiple orientations exist it may be assumed that some orientations will 

result in reduced binding, i.e. the ability to bind only one or even zero mouse IgG.  

The observed 1:1 binding is therefore interpreted as an average value obtained from a 

distribution of molecular orientations capable of binding zero, one or two IgG 

molecules and agrees with our proposed model of monolayer coverage composed of 

randomly oriented anti-mouse IgG.  An alternative explanation is that only 50% of 

the antibody remains active at the surface due to denaturation from surface 

interactions.  A combination of denaturation and packing effects could also be 

responsible for the diminished activity.  The relevant issue, however, is that APTES 

immobilized antibodies will retain an overall level of 50% activity without the need 

for extensive surface preparation or biochemical modification of the antibody.  Our 

observation of 50% activity agrees well with values obtained from immobilized 

antibodies on planar surfaces.127  It was noted that nanoparticle precipitation occurs 

over a period of minutes in the absence of stirring, and this was true for any of our 

nanoparticle products, regardless of surface chemistry.  No change in this behavior 
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was observed when AF-mouse IgG was captured, indicating that aggregation or 

solubility is not strongly affected by the changes in surface chemistry used here.  

Throughout our measurements care was taken to ensure that the samples were well 

dispersed during acquisition of spectra. 

To verify that the antibodies were indeed co-localized, samples were prepared 

for imaging with confocal microscopy and micro-spectroscopy.  In these experiments 

a drop of magnetically isolated particles were spin coated onto a glass coverslip.  Spin 

coated samples were prepared from magnetically isolated nanoparticles from 

solutions before and after adding mouse IgG.  Figure 3.4A shows a confocal 

fluorescence micrograph that was acquired from a sample corresponding to the 

middle of the saturated region in Figure 3.3C (350 µg of added IgG/mg MNP).  

Spatially-resolved fluorescence spectra were collected from individual points in the 

fluorescence image by positioning the focal point (370 nm FWHM) of the excitation 

laser at the desired image locations.  

Figure 3.4B shows two spectra that were obtained by averaging individual 

spectra from 10 different image locations of two different samples.  Spectra were 

averaged to provide an unbiased representation of the sample.  The spectrum acquired 

from nanoparticles in the absence of AF-mouse IgG (green line) shows only the 

characteristic FL band.  The spectrum acquired from nanoparticles that were isolated 

from mixtures containing AF-mouse IgG (red line), shows emission from both 

fluorophores indicating that the dye molecules are co-localized.  Further evidence for 

co-localization can be taken from the relative intensities of the two fluorophores.  

Each of the spectra in Figure 3.4B were acquired with an excitation wavelength of 
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488 nm and at this wavelength the molar extinction coefficient for FL is 

approximately 12 times greater than that of AF.  Therefore, the enhanced emission of 

AF relative to FL is noteworthy.  A probable explanation for this observation is that 

the fluorophores undergo energy transfer as suggested by the ensemble spectra of 

Figure 3.3.  The occurrence of energy transfer observed throughout the sample 

indicates that the two fluorophores are consistently co-localized within 10 nm of each 

other.  This could only occur through specific binding of the immobilized antibody 

with its target antibody.   
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Figure 3.4  Spectra of spin-coated MNPs excited with 488 nm Ar-ion laser.   a) 

Confocal micrograph of spatially segregated fluorescein anti-mouse IgG antibody-

immobilized MNPs after mixing with AF-mouse IgG. (b) Normalized emission 

intensity of fluorescein anti-mouse IgG antibody-immobilized MNPs before (green 

line; average of 15 spectra from different points of the micrograph) and after (red 

line; average of 12 spectra) mixing with AF-labeled mouse IgG.  
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3.5 Conclusion 

In this chapter, APTES provides a convenient route for protein immobilization 

on nanosize iron oxide particles by demonstration of the attachment of anti-IgG 

antibody on the MNPs.  A chemisorption isotherm was acquired using fluorescence-

based assays of dye-labeled antibodies. Minimum saturating surface coverage with 

anti-IgG antibody was determined to be 36%.  This corresponds to monolayer 

coverage by approximately 34 randomly oriented antibodies on an average diameter 

MNP of 32 nm.  Magnetically assisted extraction of the target antibody, mouse IgG, 

from solution was conducted and results show that the immobilized antibody retains 

the ability to bind a target antibody.  Surface modification of  MNPs with activated 

APTES should provide a convenient platform for sensitive detection and separation 

of biological entities such as cells,123, 134, 135 proteins,103, 136, 137 viruses,124 and DNA.120   
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Chapter 4: Differential functionalization of SiO2/TiO2 mixed 

nanoparticles: an X-ray photoelectron spectroscopy study 

 

4.1 Abstract 

In this chapter differential functionalization of aerosol phase-synthesized 

SiO2/TiO2 mixed nanoparticles is demonstrated via X-ray photoelectron spectroscopy 

(XPS) analysis.  The particles were functionalized using aqueous phase-mediated 

preferential binding of phenyl phosphonic acids (PPA) to TiO2 and subsequent 

binding of trimethyl silyl ((CH3)3Si-) groups to the remaining SiO2 surface.  The 

particles include pure SiO2 and TiO2, plus SiO2/TiO2 composite nanoparticles with 

three different mole ratios of Si:Ti = 5:1, 1:1, and 1:5.  The analysis of surface 

chemical components measured via XPS is used to confirm differential 

functionalization of SiO2/TiO2 composite nanoparticles.  After aqueous-phase 

reaction with PPA, SiO2/TiO2 mixed nanoparticles and TiO2 nanoparticles 

demonstrate 0.05 bound phosphorous molecules per surface Ti molecule, whereas no 

phosphorous peak is detected on PPA-reacted SiO2 nanoparticles.  80% ± 10% of the 

P to Ti ratio is retained after reaction of the PPA-reacted mixed nanoparticles with 

BSTFA.  XPS spectra in C 1s and Ti 2p region indicate the trimethyl silyl group 

binds to the nanoparticles in the silanation step.  PPA bound in tridentate mode may 

be found not only on the bulk TiO2 surface but also at the SiO2-TiO2 interface.    
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4.2 Introduction 

Differential functionalization of metal-metal,4, 5, 39, 88, 138-142 metal-metal 

oxide,3, 12, 37, 38, 112-115 and metal oxide-metal oxide6-9, 99 surfaces is useful in biological 

applications such as the construction of selective molecular assembly patterns7, 8, 114 

and the fabrication of multifunctional nanostructures3-5, 88, 138.  Selective binding of a 

functional compound to a specific portion of a multi-component surface is crucial to 

obtain differentially-functionalized heterogeneous surfaces.   

Thiol compounds (R-SH) are a typical example of functional molecules which 

show selectivity in noble metal-metal and noble metal-metal oxide systems due to 

their specific affinity for noble metals including Au and Ag.  In their early pioneering 

work, Whitesides and collaborators112 demonstrated simultaneous differential 

functionalization of Au-alumina surface using Au-alkane thiol and alumina-alkane 

carboxylic acid interaction.  Since then, the formation of a self-assembled monolayer 

of thiols on noble metals has frequently been employed to differentially modify 

metal-metal4, 88, 141 and metal-metal oxide surfaces3, 112-115.   

Finding a functionality that can bind selectively to one portion of a metal 

oxide-metal oxide surface is a highly challenging task, since most functional 

molecules show a similar binding affinity to different metal oxide surfaces.  For 

example, organosilanes, widely-used inorganic surface-functionalizing compounds, 

exhibit binding to both areas of SiO2-metal oxide surfaces.6  Recent studies show that 

organophosphorous compounds are a promising candidate for selective 

functionalization of SiO2-metal oxide surfaces101.  Textor and collaborators7, 8 

demonstrated the selective self-assembly of alkane phosphates on the TiO2 portion of 
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lithographically fabricated TiO2-SiO2 surfaces.  Subsequent adsorption of poly(L-

lysine)-g-poly(ethylene glycol) (PLL-g-PEG) to the remaining SiO2 area led to a 

patterned surface.  Proteins were selectively bound to the TiO2 surface, not to the 

protein-binding resistant SiO2 portion by the adsorbed PEG-compounds.  Mutin et 

al.6, 99 illustrated a selective phosphonic acid-binding to the TiO2 surface of SiO2-

TiO2 supports.  31P solid state nuclear magnetic resonance (NMR) spectra along with 

scanning Auger electron spectra were consistent, confirming the selective binding 

between TiO2 and phosphonic acid.  Further treatment of phosphonic acid-bound 

SiO2-TiO2 supports with a trimethylsilyl compound, N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA), led to formation of Me3Si-O-Si bonds 

on the SiO2 surface according to 29Si solid state NMR spectra.               

Multifunctional nanoparticles are desired in many biological applications such 

as nanoparticle-based cancer treatments11 requiring drug-loading, biobarrier-

overcoming, target-recognizing capability and extended stability in the blood stream.  

Solution-phase synthesized composite nanostructures, such as multi-component 

metal-metal nanorods,4, 5, 88, 141-143 and combined nanoparticles of metal-metal39 and 

metal-metal oxide3, 12, have been differentially functionalized for biological 

applications as multifunctional nanoparticles.  Research in this Chapter is aimed at 

differential functionalization of aerosol-phase synthesized SiO2/TiO2 mixed 

nanoparticles via selective binding of phosphonic acids to TiO2 and subsequent 

trimethylsilyl group binding to the SiO2 surface.  X-ray photoelectron spectroscopy 

(XPS) provides both quantitative and qualitative understanding of the sequential 

differential functionalization process.      
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4.3 Materials and methods 

Phenyl phosphonic acid (PPA; 98%) and N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA; liquid) were purchased from Aldrich 

and were used as received.  Pure SiO2 and TiO2 nanoparticles and SiO2/TiO2 mixed 

nanoparticles with different mole ratios of Si versus Ti were synthesized via an 

aerosol phase route according to a previously reported method.9  Briefly, liquid 

precursors for SiO2 and TiO2, C6H18OSi2 (98+%, Aldrich) and TiCl4 (99.9%, Cerac) 

respectively, were vaporized by sparging with nitrogen and were carried to a high 

temperature (~2300 K) premixed methane, nitrogen/ oxygen flame reactor to generate 

the metal oxide nanoparticles.  In the flame, the precursors rapidly oxidize and the 

particles form by gas-to-particles conversion.  The flow rates of the two precursors 

were controlled for the generation of SiO2/TiO2 mixed nanoparticles at a mole ratio of 

Si versus Ti being roughly 5:1, 1:1, and 1:5.  In each flame synthesis of the pure and 

composite particles, the total concentration of Ti and Si in the flame was maintained 

at 1.3 × 10-4 mol/L of flame gas at standard temperature and pressure.  

Scheme 4.1 demonstrates reaction schemes for reactions of SiO2 and TiO2 

nanoparticles, and SiO2/TiO2 mixed nanoparticles.  The metal oxide nanoparticles 

(MONPs) were reacted first with phenyl phosphonic acids (PPA) in an aqueous 

solution (MeOH:H2O = 4:1, v/v; pH 4) using the reported preferential binding of 

phosphonic acids on TiO2 versus SiO2.6-8  BSTFA, a mild silylating agent, was used 

in the next step of silanation of the PPA-reacted MONPs (MONP-PPA).   
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Scheme 4.1  Scheme of differential functionalization of SiO2, TiO2, and SiO2/TiO2 

mixed nanoparticles.  
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Selective modification of SiO2/TiO2 mixed nanoparticles with PPA:  An aqueous 

PPA solution was prepared by adding PPA to a mixture of methanol and water 

(MeOH:H2O = 4:1 v/v) at 4 mM concentration and adjusting the pH to pH 4.  SiO2, 

TiO2 and SiO2/TiO2 mixed nanoparticles were added to the PPA solution at 1.0 

mg/mL concentration.   

After sonication for 10 minutes, the particle-suspended PPA solution was 

stirred for 15 hours at room temperature.  The PPA-reacted MONPs were collected by 

centrifugation and washed several times thoroughly with mixed solvent of methanol 

and water (4:1, v/v).  The washed nanoparticles were dried at 120 OC for 15 hours in 

vacuum.   

 

Silanation with BSTFA:  Nanoparticles were added to a round bottomed flask and 

nitrogen was purged to create an inert environment for silanation reaction.  Dried 

toluene was added at 10 mg nanoparticle/ mL toluene.  Nanoparticles were suspended 

by sonicating for 10 minutes.  Then, BSTFA was added at a tenth of the added 

toluene volume. The particle-suspended BSTFA solution in toluene was stirred for 2 

hours at room temperature.  The reacted nanoparticles were centrifuged and washed 

five times with toluene.  The washed particles were dried at 120 OC overnight in 

vacuum.   

  

XPS analysis:  XPS analysis is described in the methods section of Chapter 3.  

Nanoparticles were made in pellet form without any additives for XPS scans to 

minimize background interference from carbon tape.   
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4.4 Results and discussion 

Figure 4.1 shows morphologies of SiO2, TiO2, and SiO2/TiO2 mixed 

nanoparticles at a mole ratio of Si to Ti being 5:1, 1:1, and 1:5 and a TEM image of 

SiO2/TiO2 mixed nanoparticles (Si:Ti = 1:1).  The interface between Ti-rich and Si-

rich domain shows curvature arising from the difference in surface energies of SiO2 

and TiO2, 0.3 and 0.5 J m-2 respectively.9  In a previous report on SiO2/TiO2 mixed 

particle synthesis, evidence of Si-O-Ti bonding was detected at 960 cm-1 in Fourier 

transform infrared spectra of the mixed nanoparticles.9  TEM images of SiO2/TiO2 

nanocomposites with three different mole ratio between Si and Ti are shown in Figure 

4.2.  The particle size is in the range between 10 and 50 nm.9  

Figure 4.3 displays XPS-scanned atomic concentrations (%) of Si and Ti, and 

the ratio of atomic concentration of Si/Ti of bare unreacted MONP, MONP-PPA, and 

BSTFA-reacted MONP-PPA (MONP-PPA-BSTFA).  Mole ratios of Si vs. Ti of SiO2 

nanoparticles, SiO2/TiO2 mixed nanoparticles, and TiO2 nanoparticles are controlled 

in the particle synthesis step as Si:Ti = 1:0, 5:1, 1:1, 1:5, and 0:1 respectively.  XPS-

mediated Si atomic concentration (%) of nanoparticles from SiO2, via SiO2/TiO2, to 

TiO2 nanoparticles is decreased from 27 to 18, 17, 3.7, and 0, while Ti atomic 

concentration (%) is increased from 0 to 2.6, 5.9, 10, and 19 respectively.  The 

corresponding XPS-determined atomic concentration ratio of Si vs. Ti is 3.9:1, 2.4:1, 

and 1:2.9 in the order of increased Ti portion in the mixed nanoparticles.  This ratio is 

roughly maintained in the XPS analysis of MONP-PPA and MONP-PPA-BSTFA 

(Figure 4.3).   
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Figure 4.1  (a) Morphologies of SiO2, TiO2, and SiO2/TiO2 mixed nanoparticles used 

in this work.  (b) TEM of SiO2/TiO2 (Si:Ti = 1:1) mixed nanoparticles.
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Figure 4.2 TEM of SiO2/TiO2 nanocomposites at different ratios of Si and Ti.  

The dark portion is TiO2.  (a) Si:Ti = 5:1, (b) Si:Ti = 1:1, (c) Si:Ti = 1:5.  
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Figure 4.3  Atomic concentration (%) of (a) Si and (b) Ti, and (c) the ratio of Ti 

versus Si atomic concentration in the XPS based upon analysis of SiO2, TiO2, and 

SiO2/TiO2 mixed nanoparticles.   
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The discrepancies of the XPS-determined ratios from the mole ratios in 

particle synthesis step are likely coming from three factors: i) In the particle synthesis 

process, there is some uncertainty in the flow rates of the precursors.  Since the 

precursor delivery rate was measured gravimetrically, 5-10% of uncertainty is 

involved in determination of the precursor flow rates. ii) As the TEM image in Figure 

4.1(b) shows, SiO2/TiO2 mixed nanoparticles with a mole ratio of Si:Ti = 1:1 do not 

display a perfect hemispherical-split but rather a bigger surface area of SiO2.  Since 

SiO2 (0.3 J m-2) has lower surface tension than TiO2 (0.5 J m-2), SiO2 may wet and 

have more surface area.  iii) Because of the surface-sensitive character of XPS, XPS-

mediated determination of the Si/Ti ratio is likely to be different from the bulk ratio.  

When the XPS signal detector is normal to the sampling surface as the case in this 

research, the escape depth of photoelectrons is given as three times the photoelectron 

mean free path.  The photoelectron mean free path is ~1.5 nm for both Si and Ti, 

which leads to the value of the escape depth being ~4.5 nm.  Considering the size 

range of the nanocomposites between 10 and 50 nm, the XPS results can be 

considered to be surface-specific rather than a determination of the bulk chemical 

composition of the nanocomposites.   

Figure 4.4 shows the phosphorous 2p region of bare MONPs and MONPs-

PPA.  Phosphorous can be used as an indicator of PPA binding to MONPs, since 

phosphorous does not exist on bare MONPs used in this work.  As expected, 

phosphorous of bare unreacted MONPs is not detected in the P 2p region of XPS.   
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Figure 4.4  Phosphorous 2p region of XPS scan of (a) SiO2 nanoparticles, (b)-(d) 

SiO2/TiO2 mixed nanoparticles, and (e) TiO2 nanoparticles.  A: Bare unreacted 

nanoparticles, B: Nanoparticles after reaction with phenyl phosphonic acid (PPA).  
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After reaction of SiO2 nanoparticles with PPA, no peak in the P 2p region of XPS is 

seen.  However, when mixed SiO2/TiO2 nanoparticles were reacted with PPA, a 

distinctive P 2p peak appeared at around 134 eV.100, 144  In general, the P 2p peak 

grows in intensity and signal to noise ratio as the mole ratio of Ti versus Si is 

increased.  Comparison of the P 2p XPS spectra before versus after PPA reaction 

clearly demonstrates selective phosphonic acid-binding to TiO2 of the mixed surfaces 

under aqueous reaction conditions.  This preferential binding is  due to the higher 

stability of Ti-O-P bonds to hydrolysis than Si-O-P bonds in an aqueous 

environment.6, 99, 101  Si-O-P bonds are formed in organic solvents.  In previously 

published reports, SiO2-phosphonic acid peaks were detected in 31P solid-state NMR 

spectra in an organic aprotic solvent such as hexane145 or toluene6.  However, the 

phosphorous peaks disappeared under aqueous reaction conditions due to the labile 

nature of Si-O-P bonds to hydrolysis.6, 99  Schematic representations of PPA reaction 

with TiO2 and SiO2 surfaces are given in Schemes 4.2 (b) and 4.3 (b).  The TiO2-PPA 

binding mode is described as predominantly tridentate (RP(OTi)3 species) by 17O 

solid-state NMR spectra146 and 31P solid state NMR spectra study6.  The tridentate 

binding of PPA to TiO2 surface modifies coordination number of Ti atoms on the 

surface, whereas trimethyl silyl group-binding by BSTFA reaction does not (Scheme 

4.2).  In a report of the use of PPA to modify TiO2 surfaces, this modified 

coordination number of Ti led to a reduced catalytic activity of the PPA-bound TiO2 

surface due to decreased Lewis acid character.6   

A minor peak of 31P solid state NMR spectra of TiO2-PPA was assigned to the 

presence of the surface-bound phosphonic acids with other binding modes or in a 
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distorted geometry.6, 146  These features likely lead to the appearance of another pair 

of Ti 2p peak of small intensity in XPS of TiO2-PPA, while trimethyl silyl group 

binding to TiO2 nanoparticles does not change the shape and the position of Ti 2p 

peaks (Figure 4.5).   

   Figure 4.6 shows the atomic concentration (%) of the P 2p peaks and the 

ratio of atomic concentration of P 2p peak/Ti 2p peaks of MONP-PPA and MONP-

PPA-BSTFA respectively.  The atomic concentration (%) of P of MONP-PPA grows 

from 0 for pure SiO2 nanoparticles to 0.19, 0.17, and 0.99 with the increasing 

percentage of surface Ti atoms of the mixed nanoparticles (Figure 4.6(a)).  The P 

atomic concentration of pure TiO2 nanoparticles is 0.84%.   

 

 

 



 

 71 
 

O
Ti

O
Ti

O
Ti

O

O O O

O

O

OH

O
Ti

O
Ti

O
Ti

O

O O O

HO

O

OH

P OH

O

P OH
O OH

O
Ti

O
Ti

O
Ti

O

O O O

O

O

O(a) BSTFA
Si

CH3H3C CH3

(b)

O
Ti

O
Ti

O
Ti

O

O O O

O

O

P O
ODrying

Si

CH3H3C CH3

Toluene

MeOH:H2O = 4:1 (v/v)
               pH = 4

120 OC
 15 hrs

 

 

Scheme 4.2  Schematic representation of surface modification of TiO2 nanoparticles 

with (a) BSTFA and (b) PPA. 
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Scheme 4.3  Schematic representation of surface modification of SiO2 nanoparticles 

with (a) BSTFA and (b) PPA. 
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Figure 4.5  Ti 2p XPS spectra of (a) bare unreacted TiO2, (b) BSTFA-reacted TiO2, 

and (c) PPA-reacted TiO2 nanoparticles.   
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Figure 4.6  (a) Atomic concentration (%) of phosphorous 2p (P 2p) peaks and (b) the 

ratio of atomic concentration of  P peaks versus atomic concentration of Ti peaks.    
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Figure 4.7  (a) Atomic concentration (%) of carbon 1s (C 1s) peaks and (b) the atomic 

concentration ratio of C 1s peaks versus (Si 2p + Ti 2p) peaks.    
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When the atomic concentration of the P 2p peak is divided by the atomic 

concentration of the Ti 2p peak, the XPS data in scanning of phosphorous are more 

comparable with each other as the Ti 2p peak can be used as an internal standard.  On 

average, 0.05 phosphorous atoms are bound per one Ti atom (Figure 4.6(b)).  The 

binding number of P per Ti is 0, 0.050, 0.021, 0.099, and 0.044 as the presence of Ti 

on the nanoparticles is increased from SiO2 to SiO2/TiO2 and TiO2 nanoparticles.  

Considering the dominant tridentate binding nature of PPA to TiO2 and the binding 

ratio of P/Ti being 0.044, the percentage of Ti occupied by PPA is 13% on TiO2-PPA.  

Fluctuation of the ratio is likely from different initial conditions of the particles, for 

example different amount of carbon contamination on bare unreacted nanoparticles 

(Figure 4.7(a)).  In the case of mixed nanoparticles of mole ratio of Si:Ti = 5:1 and 

1:5,  the binding ratio of P/Ti (0.050 and 0.099) is greater than the ratio of pure TiO2 

nanoparticles (0.044).  This observed phenomena can be partially ascribed to the 

formation of P-O-Si bonds at the SiO2-TiO2 interface of SiO2/TiO2 mixed 

nanoparticles (Scheme 4.4).6 

 

 
 

Scheme 4.4  Formation of phenyl-P(OTi)2(OSi) bonds at the interface of TiO2 and 

SiO2 portion of SiO2/TiO2 mixed nanoparticles.  
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Mutin et al.6 reported a significant increase of peak width from TiO2-PPA 

surface to SiO2/TiO2-PPA surface in their 31P solid state NMR spectra.  In their 

hypothesis, the increased peak width was explained by the formation of P-O-Si bonds 

during the drying process at the boundary between SiO2 and TiO2 in addition to the 

formation of P-O-Ti bonds (Scheme 4.4).  This hypothesis was proved by a 

significant suppression of the 31P NMR peak due to hydrolysis of some of the P-O-Si 

bonds, when the phosphonic acid-bound SiO2/TiO2 surface was immersed in a 

mixture of methanol and water.  The presence of P-O-Si bonds was also used to 

explain larger surface coverage (25%) by phosphonic acids on phosphonic acid-

reacted SiO2-TiO2 surface than the actual mole percentage of Ti (10 mole %) on the 

mixed surface.  

The phosphorous peak is maintained after silanation reaction with BSTFA, 

though atomic concentration ratio of P/Ti is decreased by 20% ± 10% on mixed 

nanoparticles (Figure 4.6(b)).  This decrease can be explained by the combined effect 

of the following: (i) The hydrolysis of the Ti-O-Si bond may lead to instability and 

even destruction of PPA binding at the interface between SiO2 and TiO2 and 

elimination of PPA on the surface of TiO2.  The higher retention of PPA binding to 

pure TiO2 nanoparticles after the BSTFA treatment demonstrates that the tridentate 

binding mode between PPA and the TiO2 surface contributes to the stability of the 

bonds.  (ii) Suspension in an organic solvent, toluene, can displace the phosphorous 

bonding.  The effect of toluene in the step of BSTFA reaction was investigated.  

TiO2-PPA particles were suspended in toluene without the addition of BSFTA for the 
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same time as in the case of BSTFA reaction and characterized with XPS.  The results 

are shown in Table 4.1.   

 

Table 4.1 Effect of solvent (toluene) in the BSTFA reaction step: atomic 

concentration (%). 

 

 
 

Before toluene treatment 
 

After toluene treatment 

Ti  
14.2 ± 1.4 

 
14.8 ± 1.5 

P 0.66 ± 0.07 0.61 ± 0.06 

P/Ti 0.047 ± 0.005 0.041 ± 0.004 

 

 

Phosphorous binding was decreased 12% after suspension in toluene.  

Loosely-bound PPA in mono- and bi-dentate binding mode and in distorted tri-

dentate binding mode was likely displaced in suspension in an organic solvent.   

Organosilanes such as BSTFA bind to both SiO2 and TiO2 surfaces.  Si was 

not detected on bare TiO2 and TiO2-PPA in XPS spectra (Figure 4.3).  Trimethyl silyl 

group binding to TiO2-PPA in BSTFA reaction led to the appearance of Si 2p peaks 

at a Si/Ti ratio of 0.16.    

 Figure 4.7 demonstrates XPS results for the carbon 1s region of MONP, 

MONP-PPA, and MONP-PPA-BSTFA.  Bare MONPs display carbon 
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contaminations.100, 108, 147  Intensive cleaning of the TiO2 surface did not remove 

carbon contamination completely in a previous report of XPS characterization, since 

carbon contamination is unavoidable in practice on ambient air-exposed inorganic 

surfaces.100  In general, the amount of carbon contamination increases from 4.8% of 

atomic concentration up to 25%, as the Ti portion increases from SiO2 to SiO2/TiO2, 

and to TiO2 nanoparticles.  Increase of surface-bound carbon is evident in PPA-

reacted SiO2/TiO2 (Si:Ti = 1:5) mixed nanoparticles because of the largest amount of 

P at a ratio of P/Ti being 0.099 (Figure 4.6(b)).  Binding of PPA accounts for the 

increase of 0.6 carbons per Ti out of the observed increase of 1.4 carbons per Ti.  The 

other portion of carbon increase on the mixed particles along with increase of carbon 

from 0.18 to 0.47 carbons per Si on SiO2 nanoparticles is likely from adsorption of 

methanol from solution.  The lack of a distinctive increase in carbon on the surface of 

other particles may be attributed to the uncertainty involved with different amounts of 

carbon contamination.  Pure nanoparticles demonstrate noticeable trimethyl silyl 

group binding to MONP-PPA, as the C/Si ratio is increased from 0.47 to 0.99 on SiO2 

nanoparticles and from 1.3 to 4.5 on TiO2 nanoparticles.  0.5 out of the 3.2 carbon 

number increase per Ti on TiO2 nanoparticles is attributed to the presence of 

trimethyl silyl binding, since the Si/Ti ratio was increased from 0 to 0.17 (Figure 4.3).  

The other portion of the increase may be related to physisorption of BSTFA, 

degraded parts of BSTFA, and toluene.   

 Note that a minor pair of peaks appears on a Ti 2p peak scan of TiO2-PPA 

compared with the peak of bare TiO2, while XPS spectra of TiO2-BSTFA in the Ti 2p 

region does not exhibit any change in peak shape. (Figure 4.5)  A similar trend is 
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observed with Ti 2p spectra of SiO2/TiO2-PPA and SiO2/TiO2-PPA-BSTFA (Figure 

4.8).  A pair of minor peaks, a 2p 3/2 peak and a 1/2 peak of Ti, vanishes with 

BSTFA reaction.  In addition to the partial hydrolysis of P-O-Si bonds addressed 

previously in the text, this phenomenon likely accounts for the displacement of 

loosely bound PPA molecules with bond modes other than undistorted tridentate 

binding and with distorted bonds, as discussed in the description of the 12% decrease 

of P/Ti ratio by suspension of TiO2-PPA in toluene.      

 

 

 

 

Figure 4.8 Ti 2p spectra of SiO2/TiO2 mixed nanoparticles. Si:Ti = 5:1 (A), 1:1 (B), 

and 1:5 (C).  
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4.5 Conclusions 

This study demonstrates differential functionalization of SiO2/TiO2 mixed 

nanoparticles via a preferential binding of PPA to TiO2 portion in an aqueous solution 

and a subsequent reaction of trimethyl silyl groups to the remaining surface.  For 

understanding of the effect of surface portion of TiO2 on differential functionalization, 

three different SiO2/TiO2 mixed nanoparticles were used with approximate mole 

ratios of Si:Ti = 5:1, 1:1, and 1:5.  XPS analysis of Si 2p and Ti 2p region displays 

mole ratios of Si:Ti =  3.9:1, 2.4:1, and 1:2.9 respectively.  The differences likely 

arise from uncertainties in determination of mole ratios in particle generation step, the 

fact that XPS investigates surface rather than bulk chemical compositions of the 

materials, and possibility of interferences from carbon tape background.  Detection of 

a P 2p peak after PPA reaction can be convincing evidence of PPA binding to the 

surface, since a P 2p peak does not appear in bare unreacted particles.  PPA-reacted 

SiO2 particles do not exhibit a P 2p peak, whereas all the other TiO2-included 

particles display the appearance of a P 2p peak in XPS spectra after the reaction with 

PPA.  This preferential binding of PPA to TiO2 vs. SiO2 surface derives from the 

much higher stability of Ti-O-P bond to hydrolysis than Si-O-P bond.  The averaged 

number of binding of P per Ti is 0.05, which is accountable for 0.15 carbon binding 

per Ti in consideration for previously reported tridentate binding mode of PPA to 

TiO2.  After trimethyl silyl group binding to the surface, the P/Ti ratio is retained at 

80% ± 10% for SiO2/TiO2 mixed nanoparticles, while 98% of P/Ti ratio of TiO2 

nanoparticles is maintained.  The displacement of P at 20% ± 10% level for the mixed 

nanoparticles is likely due to existence of Si-O-P bonds at the interface between SiO2 
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and TiO2 and hydrolysis of the labile bond in silanation, along with removal of 

loosely bound PPA.  Si 2p XPS spectra of TiO2 nanoparticles demonstrates trimethyl 

silyl group binding to PPA-reacted TiO2.  In addition to this silanation to TiO2, C 1s 

spectra and Ti 2p spectra are indicative of trimethyl silyl group binding to the mixed 

nanoparticles.  A variety of phosphorous compounds containing terminal functional 

groups such as –OH,100, 101 -SH,148 and –COOH149, 150 are available.  The 

demonstrated differential functionalization of SiO2/TiO2 nanoparticles herein and the 

presence of diverse functional phosphorous compounds together with well-

established silanation chemistry provide a promising opportunity for the use of the 

mixed nanoparticles as multifunctional nanoparticles for biological applications.    
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Chapter 5:  X-ray scattering study of the interactions between 

magnetic nanoparticles and living cell membranes 

 

 

5.1 Abstract 

Magnetic nanoparticles (MNPs) have found increased applicability in drug 

delivery, cancer treatment, and immunoassays.  There is a need for an improved 

understanding of how MNPs interact with living cell membranes in applied magnetic 

fields to use them effectively.  The interactions between Escherichia coli (E. coli) and 

SiO2/γ-Fe2O3 composite particles in magnetic fields were studied using X-ray 

scattering (XRS).  Magnetic field strengths up to 423 mT were applied to the samples 

to see the effects of the magnetic fields on the E. coli membranes in the presence of 

the magnetic particles in the cell cultures.  X-ray scattering results from continuous 

cultures of E. coli showed two peaks, a sharp peak at q = 0.528 Å-1 (1.189 nm) up to 

362 mT of magnetic field strength and a diffuse one at q = 0.612 Å-1 (1.027 nm).  The 

sharp peak was shifted to the smaller side of q when magnetic particles were added 

and the magnitude of the applied magnetic field strength was increased from 227 mT 

to 298 mT, to 362 mT, whereas the diffuse peak did not change.  A critical magnetic 

field strength at which the sharp peak disappears was found at 362 mT. 



 

 84 
 

5.2 Introduction 

The interactions between magnetic nanoparticles (MNPs) and cells in 

magnetic fields must be understood to learn to control technologies important to the 

fields of medicine and biotechnology.122, 134, 135, 151-156   Such applications include the 

ability of the MNPs to be used to deliver drugs effectively or to kill tumor cells by 

local heating from an alternating current magnetic field.122, 152-154  Physical model 

systems using phospholipid bilayers mimicking a cellular membrane have been 

investigated to understand the interactions between MNPs and the lipid bilayers.10, 157-

161  In studies using a lyotropic lamellar phase, a periodic stack, which ranged from 

20 to 40 nm in thickness with water and a suspension of γ-Fe2O3 nanoparticles in 

cyclohexane, was observed.157-159, 161  Particles adsorbed on the membranes rotated in 

the presence of a magnetic field, which resulted in a distortion of the lamellar 

structure.  A change in birefringence was determined using a polarizing microscope157 

or a polarized He-Ne laser,161 whereas X-ray scattering was used to measure the layer 

separation and the rotation angle of the layer molecules in the changing magnetic 

field.10  This rotation of the lipid layers could potentially be done with the lipid layers 

that constitute the cell membranes or walls. 

       Escherichia coli (E. coli) belongs to the class of gram negative bacteria, which 

have an outer membrane as well as a plasma membrane.  The lipid membranes 

extracted from E. coli cellular membranes have been of great interest, and have been 

used as a model system to test different interactions.  X-ray scattering (XRS) was one 

of the important tools to investigate the property of the lipid membranes extracted 

from E. coli.162-168  In their paper, Esfahani et al.162 found that studies of extracted 
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lipid membranes give results that are different from those of the lipid components of 

intact membranes due to the presence of proteins and other structural molecules in 

intact membranes. Recently, the interaction of gramicidin, an antimicrobial peptide, 

with the lipid bilayers membranes generated from E. coli membrane lipids was 

investigated using X-ray scattering along with 31P-NMR.169, 170  A study of the 

interactions between MNPs and E. coli cellular membranes has not been reported to 

date.  A study of living cells is needed to determine the effectiveness of using MNPs 

to deliver drugs or to kill tumor cells.122, 152-154  In this work, the cellular membranes 

of living cells, E. coli, were studied instead of artificial phospholipid bilayers or 

membranes of lipids extracted from the cells.  X-rays were employed as a tool to 

understand changes in the E. coli membrane bilayers with SiO2/γ-Fe2O3 composite 

nanoparticles under the influence of the applied magnetic fields.  

 

5.3 Methods 

5.3.1 Magnetic nanoparticles 

The unagglomerated SiO2/γ-Fe2O3 particles were synthesized from 

hexamethyl disiloxane and iron pentacarbonyl via a gas phase approach in a premixed 

aerosol flame reactor, where Si and Fe were mixed at a 1:1 mole ratio.9  A 

transmission electron microscope image of a typical particle is shown in Figure 5.1.  
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The dark region corresponds to iron oxide (γ-Fe2O3) whereas the light region is 

amorphous silica.  The iron oxide portion of the particle imparts magnetic properties, 

whereas the silica surface provides the particle with the potential for surface 

modification.  SiO2/γ-Fe2O3 composite particles were used as MNPs, ranging from 20 

to 100 nm in particle size.  The distribution of particle sizes as measured by TEM can 

be seen in Figure 5.2a.  The particles were sonicated to reduce agglomeration before 

being added to the growth medium of E. coli.  According to dynamic light scattering, 

they likely agglomerate again as a function of time during the course of the 

experiment (see Figure 5.2b).  Scattering from the cell in the region between 9 and 20 

nm due to the presence of the particles is investigated.  The experiments do not 

measure interactions at the 400 nm level.  

  

100 nm100 nm

Figure 5.1  Transmission electron microscope image of a SiO2/γ-Fe2O3 particle.  

The dark region of the particle corresponds to γ-Fe2O3 and the light region is 

amorphous silica.  
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Figure 5.2  (a) Distribution of particle sizes as measured using TEM.  (b) 

Agglomeration of the particles as a function of time in the M9 medium.   
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Batch cultures of E. coli were performed in our group to see if the SiO2/γ-

Fe2O3 particles have any inhibitory effect on the growth of the cells.  According to the 

results171 not presented here, these particles have no measurable effect on the growth 

of E. coli up to the particle concentration of 44 mg l-1.  The final concentration of the 

particles in this report was 40 mg l-1 in E. coli growth medium, taken under the 

maximum particle concentration in the toxicity test of the particles upon E. coli.  

 

5.3.2 Biological system 

   The bacteria were grown at 37 OC in modified M9 medium, where amounts 

of Ca and Mg in the medium were doubled to those in M9 medium, in both batch and 

continuous cultures.172  Ampicillin was added to each medium at the final 

concentration of 100 µg ml-1 to keep the sterility of the culture.172  The optical density 

(Absorbance reading at 600 nm) of E. coli was 1.8 ± 0.5 both in batch and continuous 

cultures, when samples were taken for the X-ray scattering.  For the continuous 

cultures of E. coli, the cells were grown in a working volume of 250 ml in a 500 ml 

three necked round bottomed flask.  A batch culture of the E. coli was performed for 

the purpose of attaining the maximum specific growth rate of the strain.  The 

maximum rate was determined to be 0.90 hr-1. A dilution rate of 0.4 hr-1 (flow rate of 

100 ml hr-1) was used below the maximum specific growth rate in the continuous 

growth of the E. coli to avoid washout of the cells.116  This amplitude of flow rate in 

continuous cultures and in situ X-ray scatterings is enough to give a mixing effect to 

the mixture in the vial so that the cells are kept in suspension and in homogeneous 

condition in the vial.  An overhead mechanical stirrer with a Teflon blade 
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(Chemglasss, Vineland, New Jersey) was used as an agitator rotating at 300 rpm.  

Filtered air was provided at 3 vvm. pH remained at 7, not changing much during the 

cultures.   The exiting culture out of the reactor was pumped to a glass vial to take an 

XRS. A schematic diagram of the continuous cultures of E .coli and in situ 

measurement of XRS is shown in Figure 5.3.  Growth studies on E. coli after 

exposure to the X-rays are given in Appendix C.5.  In brief, no adverse effects of the 

X-rays on cell culture health were observed. 

 

 

 

 

 

 

 

 

5.3.3 X-ray scattering system 

The X-ray machine is a Rigaku 18 kW rotating anode source with a Cu 

source.  The 1.54 Å line was chosen by a bent graphite monochromator, which has a 

resolution of ∆q = 0.017 q0 at  FWHM.  The beam was controllable by shutters, which 

were set at 1 x 0.2 cm2.  The power used was the maximum at 60 kV times 300 mA in 

in-situ X-ray scattering from continuous cultures of E. coli in the presence of the 

magnetic particles.  A power of 50 kV times 100 mA was used in the other cases.  It 

Figure 5.3  A schematic diagram of (a) the continuous culture of E. coli and  

(b) the in situ x-ray scattering. 
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took forty seconds to obtain one scattering measurement.   A silicon standard was 

used to center the sample and make sure that the differences observed were due to the 

magnetic particles and not to a slide in the X-ray motors. 

         The X-ray scattering study was performed on a glass vial (Kimble glass, 

Vineland, NJ; 13.4 mm in diameter and 45 mm high) containing E. coli culture 

samples.  A permanent magnet, made of neodymium-iron-boron (Arbor Scientific, 

Ann Arbor, MI), in cylindrical shape, 2.2 cm in diameter and 2.6 cm in length, was 

placed on each side of the vial to apply a magnetic field to the system.  A holder was 

devised to fix the position of the vial and the two magnets, where the long axis of the 

vial and the directions of the magnetic field were orthogonal.  The position of the 

magnets could be adjusted to change the distance between the magnets and thus the 

magnetic field strength.  The distance between the two magnets was set using an 

aluminum bar with a predetermined width corresponding to a magnetic field strength 

(Figure 5.4).  227, 298, 362 and 423 mT were employed in batch and continuous 

cultures of E. coli.  Before each XRS scan was started, the magnetic holder was 

adjusted into a position such that the magnetic field lines between the two magnets 

were perpendicular to the X-ray beam line when the two theta angle is zero.  

Four types of XRS results were obtained depending on whether or not E. coli 

was cultured with MNPs and whether or not the XRS of a sample was measured in a 

magnetic field, which are as follows: (1) XRS of an E. coli culture, (2) XRS of E. coli 

cultured with MNPs, (3) XRS in a magnetic field of an E. coli culture, and (4) XRS in 

a magnetic field of E. coli cultured with MNPs.  
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Figure 5.4  Magnetic field strength as a function of the distance between the two 

magnets.  Field strengths of 227, 298, 362, and 423 mT were used in the experiments.  
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5.3.4 Transmission electron microscope (TEM) images 

The interactions between the cells and the nanoparticles were observed using 

a Zeiss EM10 CA microscope at the Univerisity of Maryland Biological 

Ultrastructure Facility.  Samples of E. coli were withdrawn at points during late 

exponential phase, where the optical density at 600 nm was about 0.6.  After 

collection, they were centrifuged and suspended at room temperature in 0.12M 

Millonig’s phosphate buffer at pH 7.3 and later with 2% glutaraldehyde.  The cell 

pellets were then washed again with the buffer, and then the secondary fixation of the 

cells was performed with 1% OsO4.  At this point, they were washed with distilled 

water and then postfixed with 2% uranyl acetate, rinsed in the buffer and double 

distilled water, dehydrated in a series of ethanol and propylene oxide immersions, and 

embedded in Spurr’s resin.  A diamond knife was used to section the embedded cells.  

The sections were post-stained with 2.5% aqueous uranyl acetate and 0.2% aqueous 

lead citrate.   

 
 

5.4 Results and Discussion 

Two X-ray scattering studies were performed: one in batch grown E. coli and 

one in continuous cultures.  The results from the batch grown sample were difficult to 

assess, because the sample tended to settle at the bottom of the vial, introducing a 

non-homogeneity in the solution.  A solution measured with no magnetic field varied 

from one measured for example at 362 mT, and one measured without MNPs differed 

from one with MNPs but it could not be determined if it was due to the 
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inhomogeneity or the presence of the MNPs.  Therefore, the changes could not be 

exactly measured from one magnetic field to another or from one sample to the next. 

 In situ measurement of X-ray scattering using continuous cultures of E. coli 

was tried as an alternate to the batch cultures, for continuous cultures make it easier to 

maintain steady state growth conditions including the cell concentration among the 

measurements by controlling the dilution rate.  Reproducible results were obtained 

using this approach.  Because the E. coli sample is being continuously renewed, the 

MNP’s are not allowed much time to agglomerate.  

 Figure 5.5a shows the X-ray scattering taken of the E. coli corresponding to 

the continuous cell culture alone, without the MNPs. In a study of E. coli membranes, 

Esfahani et al.162 identified a diffuse band at 0.34 nm (3.4 Å), a sharp band at 0.42 nm 

(4.2 Å) and a diffuse band at 1.05 nm (10.5 Å).  The low angle (1.05 nm) corresponds 

to the long range organization173 of the hydrocarbon chains that make up the 

membrane. From Figure 5.4a, two peaks are resolved in this region, a sharp peak 

corresponding to q = 0.528 Å-1, which corresponds to a separation of 1.189 nm (11.89 

Å), and a diffuse one at 0.612 Å-1, which corresponds to the diffuse peak reported by 

Esfahani et al.162  The peak at 0.528 Å-1 or 1.189 nm probably corresponds to a lower 

reflection of the 0.42 nm sharp peak which corresponds to the lipid membrane.  

Figure 5.5a shows the four different magnetic fields applied in the experiments: 227, 

298, 362 and 423 mT.  None of the peaks are affected by the application of the 

magnetic fields, except the one at q = 0.534 Å-1 at 423 mT.  
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Figure 5.5  In situ X-ray scattering results from E. coli continous cultures (a) in the 

absence and (b)-(d) in the presence of the magnetic particles (three repeated 

experiments).  q = 4π sin θ/λ.
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             Figure 5.5 b-d show the effect of adding the magnetic nanoparticles to the 

cultures.  Figures 5.5c and 5.5d are repeats of the same experiment in Figure 5.5b.  

The peak at 0.528 Å-1 shifts to 0.485 Å-1, which corresponds to 1.296 nm (12.96 Å).  

This suggests an interaction of the cell and the magnetic particles, because of the 

magnetic field produced by the particles, without the application of the magnetic 

field.   Note that the 0.612 Å-1 peak does not change position.  The effect of the 

magnetic particles is summarized in Table 5.1 and Figure 5.6.  At 362 mT, the peak 

oscillates in value as seen in Figure 5.6, whereas the peaks for the other magnetic 

fields remains constant, as seen from Figure 5.5 b–d.  Therefore, it is a conclusion 

that 362 mT represents a critical field.  The 0.612 Å-1 peak does not change, probably 

because it is not a signal due to the lipids in the membranes.162  

Figure 5.7 shows two TEM images of E. coli and the magnetic nanoparticles. 

Note that not all the cells have magnetic particles in the vicinity, but the ones that 

have show that the particles are in contact with the cells.  Figure 5.7b suggests that 

maybe the particles are attaching themselves through the SiO2 portion, which is the 

more biologically compatible part of the nanoparticles.  The TEM images confirm 

that the X-ray scattering is looking at the particle-cell interactions.  The fact that the 

magnetic nanoparticles are not functionalized suggests that surface modification of 

the MNPs may have a greater impact on the structure and the interactions with the 

cellular membrane.  An indication that this is the case happens when the E. coli was 

mixed with 10nm FeCo particles that have been functionalized with polyethylene 

glycol.  A new peak corresponding to 1.672 nm (16.72 Å) appeared.174  Fe3O4 

particles covered with gum arabic and mixed with E .coli also indicate this.171  
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Table 5.1  Peak positions as a function of the presence of the particles and applied 

magnetic field strengths.  

 

 

 

 

 

                 

                Peak 1                 Peak 2 

 q (Å-1) d (Å) q (Å-1) d (Å) 

E. coli, 0 mT 0.528 11.89 0.612 10.27 

E. coli and MNPs, 0 mT 0.485 12.96 0.612 10.27 

E. coli and MNPs, 227 mT 0.485 12.96 0.612 10.27 

E. coli and MNPs, 298 mT 0.485 12.96 0.612 10.27 

E. coli and MNPs, 362 mT 

 

 

0.481 

0.485 

0.459 

N/A 

13.09 

12.96 

13.68 

N/A 0.612 10.27 

E. coli and MNPs, 423 mT N/A N/A 0.612 10.27 
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Figure 5.6  Peak position as a function of the applied magnetic field strengths. 
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Figure 5.7 Transmission electron micrograph images showing that E. coli have 

contacts with the SiO2/γ-Fe2O3 particles.  Arrows point out contacting parts 

between the cell and the particles.  (a)  An E. coli cell surrounded by the magnetic 

particles.  (b)  A magnetic particle is in contact with the E. coli membrane.  

100 nm

0.5 µm

(a)

(b)

100 nm

0.5 µm
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An XRS study was conducted to investigate the effect of MNP concentration up to 

100 mg l-1 to the peak shifts.  Effects of divalent ions such as Ca2+, Mg2+, and SO4
2- in 

cell culture medium on XRS-detected peak shifts were also studied.  The XRS data 

are presented in Appendix C.6 with a brief discussion of the results.   

 

5.4 Conclusions 

X-ray scattering was performed on continuous cultures of E. coli cells, which 

are grown in the absence/presence of SiO2/γ-Fe2O3 composite particles which are 

magnetic particles.  This study of the interactions between E. coli and the MNPs 

using XRS provides insight on how the MNPs affect the membrane structure in the 

applied magnetic fields.  Magnetic fields up to 423 mT were applied on the cells, to 

observe the effect of the magnetic particles and the magnetic field strengths.  In situ 

X-ray scattering from continuous cultures gave significant differences, depending on 

whether or not the particles were included in the cell cultures.  Two peaks were 

observed in the in situ X-ray scatterings from continuous cultures of E. coli, a sharp 

peak at q = 0.528 Å-1 up to 362 mT of magnetic field strength and a broad one at q = 

0.612 Å-1 when the particles were not added to the cultures.  The sharp peak showed a 

change from q = 0.53284 Å-1 to q = 0.485 Å-1 when the particles were added, due to 

the effect of the magnetic field of the particles.  A critical magnetic field strength was 

observed at 362 mT, at which the value for the peak oscillates every time the 

experiment is repeated.  Beyond this field the sharp peak disappears and only the 

peak at 0.512 Å-1 remains.  TEM images of the cells grown in the presence of the 

particles showed that some cells had the magnetic particles in contact with the 
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membranes, which supports the suggestion that the changes in X-ray scattering comes 

from the interactions between the particles and the cell membranes.  Non-

functionalized particles were used in these experiments.  Modifying the particles with 

biofunctional molecules may cause larger differences in the X-ray scattering since the 

particles may be able to penetrate the E. coli. 
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Chapter 6:  Conclusions and recommendations 

 

6.1 Conclusions 

 Systematic studies of the functionalization of metal oxide nanoparticles for 

biological applications were conducted.  Hybridization of anti-mouse IgG on 

magnetic γ-Fe2O3 nanoparticles was achieved via silane chemistry with 3-

aminopropyl triethoxy silane and glutaraldehyde activation.  The bio-activity of 

immobilized anti-mouse IgG was evaluated by magnetic-field assisted sequestration 

of mouse IgG in solution with the anti-mouse IgG immobilized MNPs.  A 

chemisorption isotherm, obtained via fluorescence-based assays, provides a 

quantitative evaluation of anti-mouse IgG binding to the magnetic nanoparticles 

(MNPs).  The results show that anti-IgG binding is controlled stoichiometrically and 

the saturated surface coverage is ~36% of the theoretical limit.  This saturated binding 

corresponds to 34 randomly oriented anti-mouse IgGs per average size MNP with 32 

nm diameter.  Fluorescence spectroscopy analysis of magnetic field assisted-

sequestration of mouse IgG indicates that the hybridized anti-mouse IgG retains 

~50% of its bio-activity at saturation. 

 Differential functionalization of aerosol-phase synthesized SiO2/TiO2 mixed 

nanoparticles was demonstrated via an X-ray photoelectron spectroscopy study.  

Differential functionalization of the composite metal oxide-metal oxide nanoparticles 

was achieved using a sequential reaction of preferential binding of phenyl phosphonic 

acids (PPA) to TiO2 and subsequent binding of trimethyl silyl group to the remaining 
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SiO2 surface.  For comparative understanding of differential functionalization, 

SiO2/TiO2 mixed nanoparticles with three approximate mole ratios of Si:Ti = 5:1, 1:1, 

and 1:5 as well as pure SiO2 and TiO2 nanoparticles were used.  XPS results in the P 

2p region demonstrate that aqueous phase reaction of the nanoparticles with PPA 

leads to preferential binding of PPA to TiO2 vs. SiO2 surfaces.  This preferential 

binding of PPA to TiO2 is presumably due to much higher stability of the Ti-O-P 

bond to hydrolysis than the Si-O-P bond.  Tridentate binding mode of PPA on the 

bulk TiO2 is described as PhP(OTi)3, while the tridentate binding of PPA to the 

interface of SiO2-TiO2 is suggested as PhP(OTi)x(OSi)y (here, x + y = 3, and x = 1 or 

2).  XPS analysis infers that PPA binds to a surface of TiO2 at an averaged atomic 

ratio of 0.05 P/Ti.  The atomic ratio of P/Ti is retained at 80% ± 10% for SiO2/TiO2 

mixed nanoparticles after silanation reaction with a trimethyl silyl group binding.  

XPS spectra in the C 1s and Ti 2p regions are indicative of trimethyl silyl group 

binding to PPA-reacted nanoparticles.                 

 An X-ray scattering (XRS)-mediated technique for the study of interactions 

between E. coli cell membranes and magnetic nanoparticles was developed.  In situ 

XRS of E. coli in a magnetic field up 423 mT displays two peaks, a sharp peak at q = 

0.528 Å-1 (1.189 nm) up to 362 mT of magnetic field strength and a diffuse one at q = 

0.612 Å-1 (1.027 nm).  The presence of SiO2/γ-Fe2O3 magnetic nanoparticles at a 

concentration of 40 mg/L shifted the sharp peak to a smaller side of q as applied 

magnetic field is increased from 227 mT to 298 mT and up to 362 mT, whereas the 

diffuse peak did not change.  A critical magnetic field strength was 362 mT, at which 

the peak disappears.  
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These three research topics mentioned above are related to each other in the 

sense that these studies have advanced our knowledge of nanoparticle 

functionalization and biological applications of the nanoparticles.  The quantitative 

understanding of antibody immobilization on magnetic nanoparticles based on 

fluorescence assays can be applied to construct multifunctional nanocomposites with 

biological functional groups using Fe2O3, SiO2/Fe2O3 or SiO2/TiO2 

nanoparticles.  The detailed study of surface modification adopting XPS 

characterization in Chapter 4 is helpful for better understanding APTES modification 

of magnetic iron oxide nanoparticles in Chapter 3 and future surface modification of 

the magnetic nanoparticles.  These particles are aimed at applications in biological 

systems in the presence of biological cells such as E. coli., such as for a sensitive 

detection of biological cells and for drug delivery purposes.  The improved 

understanding of interactions between E. coli and SiO2/γ-Fe2O3 nanoparticles 

obtained via the X-ray scattering study in Chapter 5 will be helpful in engineering 

specific interactions between biological cells and the nanoparticles in those biological 

applications.  

 

6.2 Recommendations 

The technique described in Chapter 3 to evaluate surface coverage and bio-

activity of dye-labeled antibodies bound on MNPs is a general method and can be 

applied to any dye-labeled proteins of interest to quantify their surface coverage on 

MNPs after hybridization.   
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The quantitative understanding of antibody hybridization with magnetic iron 

oxide nanoparticles opens the possibilities for the use of these nanoparticles in 

biological applications such as magnetic resonance imaging and sensitive bio-

separation.  Control of antibody immobilization on magnetic nanoparticles may lead 

to the formation of multifunctional nanoparticles by attachment of other 

functionalities such as an poly(ethylene glycol) (PEG) moiety for an extended blood 

circulation in cancer therapy (Figure 6.1).11  Monodisperse magnetic nanoparticles 

(MNPs) with diameters less than 10 nm are effective in MRI25, 26 and can be 

synthesized following recently reported methods27-29.  Zhang and collaborators used 

cancer-specific functionalities such as folic acid and chlorotoxin in their MRI 

studies.89, 90  Cancer-recognizing antibodies more readily available than specific 

binding moieties are suggested to be bound on MNPs for their MRI studies.  Cheon 

and collaborators attached cancer-specific antibodies on MNPs in their application for 

MRI.25, 26  However, the functionality for enhancing circulation in blood and 

overcoming biobarriers is absent in their MNP-antibody system.  Attachment of PEGs 

on the surface of MNPs by adding a controlled amount of activated PEG derivative 

such as mPEG-succinimidyl propionate (mPEG-SPA; Nektar, San Carlos, CA) is 

recommended as shown in Figure 6.1.  For the use of intraoperative optical devices, 

dye molecules can be attached, either directly on MNPs or indirectly via the binding 

of dye-labeled antibodies.   
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Figure 6.1 Proposed reactions to build multifunctional magnetic nanoparticles for MR 

imaging.  
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Kim and collaborators2 reported peptide-mediated intracellular uptake of 

MNP-peptide hybrids and identified target proteins inside living cells using 

movement of intracellular MNPs in applied magnetic fields.  They probed the 

movement and localization of MNPs by fluorescence-based confocal microscopy 

study.  Attachment of transducible peptide, TAT-HA2, on MNPs helped the MNP 

conjugates to be taken inside the cells.  For the application in cancer treatment via 

hyperthermia, it is suggested to hybridize MNPs with cancer-specific antibodies, 

TAT-H2, and dye molecules as described in the previous section.  Confocal 

microscopy-based study of hyperthermia will elucidate the effectiveness of the 

suggested methodology.  

 Monitoring expression of cell surface-bound proteins can be a target for future 

study using MNPs hybridized with the protein-specific molecules.  Magnetic field-

assisted separation of MNP-biological cell conjugates will confirm the existence of 

cell surface-expressed proteins.  

 Differential functionalization of SiO2/TiO2 nanoparticles by the sequential 

reaction with organophosphorous compounds and silane reagents can be an effective 

route to the fabrication of multifunctional nanoparticles. The availability of 

phosphorous compounds containing terminal functional groups such as –OH,100, 101 -

SH,148 and –COOH149, 150 and the well-established silane chemistry provide a number 

of ways to attach different functionalities on the mixed nanoparticles.  

Functionalization of SiO2/TiO2 by a surface-specific approach with different reaction 

groups is suggested as shown in Figure 6.2.  This differential functionalization with 
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both –SH and –NH2 functional groups on the surface will increase applicability of the 

mixed nanoparticles. 

 

 

 

Figure 6.2  Suggested scheme of differential functionalization.   
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variety of composites of Au-SiO2/TiO2 mixed nanoparticles can be made via selective 

binding of Au nanoparticles on a specific portion of differentially functionalized 

SiO2/TiO2 mixed nanoparticles using affinity of Au nanoparticles to thiolated- and 

amine-functionalized surface.  First, Au nanoparticles can be attached only onto a 

specific surface of the mixed nanoparticles (Figure 6.3).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3  Methodologies to attach noble metal nanoparticles only to TiO2 surfaces 

of SiO2/TiO2 nanoparticles. (a) Generation of Au (Ag) nanoparticles on a TiO2 

surface by a photocatalytic route.  (b) Selective attachment of Au nanoparticles to 

TiO2 via preferential binding of phosphonic acids with thiol (or amine) functional 

group and affinity of Au nanoparticles to TiO2-specific thiol (or amine) functional 

groups.   
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TiO2 is well known for its photocatalytic activity.  Noble metals are deposited 

on TiO2 surface via a photocatalytic route.45-48, 50, 176-179  This property can be applied 

to prepare TiO2-specific generation and binding of Au (Ag) nanoparticles (Figure 

6.3(a)).  The other way to preferentially bind Au nanoparticles is via selective binding 

of phosphonic acids in aqueous environment.  Phosphonic acids with a thiol or an 

amine functional group are first bound selectively on TiO2 surfaces.  Au nanoparticles 

prepared in another reaction can be applied to the thiol (amine) functionalized 

surfaces and are attached to them by Au-thiol group and Au-amine group affinity.   

 It is suggested that Au nanoparticles can be attached selectively on SiO2 

portion of SiO2/TiO2 mixed nanoparticles (Figure 6.4).  TiO2 surfaces are passivated 

by reaction with PPA.   Subsequent silane reaction with APTES renders Au-attracting 

amine functional groups on silica surfaces.  Addition of Au nanoparticles to the 

surface-functionalized particles leads to asymmetric binding of Au to SiO2 portion of 

the mixed nanoparticles.   

 Asymmetric binding of two different size-Au nanoparticles is suggested 

(Figure 6.5).  Preferential binding of Au nanoparticles to the SiO2 surfaces (Figure 

6.3(b)) is followed by passivation of the attached Au surfaces by the reaction with 

thiolated molecules and silanization of the SiO2 surfaces by the reaction with APTES.  

Larger Au nanoparticles are mixed with the functionalized nanocomposite particles 

leading to asymmetric binding of two different size-Au nanoparticles.  This will serve 

as visual evidence of differential functionalization of the mixed nanoparticles.   

Various thiol compounds can be used to react with the attached Au surfaces.  
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Figure 6.4  Selective binding of Au nanoparticles to the SiO2 portion of SiO2/TiO2 

mixed nanoparticles. PPA: phenyl phosphonic acid.
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Figure 6.5 Asymmetric binding of two different size-Au nanoparticles to SiO2/TiO2 

mixed nanoparticles. 
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 Finding a functionality, that binds preferentially to SiO2/Fe2O3 mixed 

nanoparticles, is the next task.  Since Si-O-P bonds are readily hydrolysable, the first 

trial can be to apply organophosphorous compounds to the mixed nanoparticles in an 

aqueous solution.   

The synthesis methodology of Fe3O4-Au dimmers at a liquid-liquid interface 

can be applied to prepare Au- SiO2/Fe2O3 dimers, where Au nanoparticles are 

attached to the Fe2O3 portion by making Fe2+ surface ions as catalytic sites.3, 9  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Synthesis of Au- SiO2/Fe2O3 dimers via nanoparticle assembly at a liquid-

liquid interface.   
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Effects of concentrations of SiO2/γ-Fe2O3 MNP up to 100 mg MNP/L and 

concentrations of divalent ions such as Ca2+, Mg2+, and SO4
2- on XRS scattering are 

discussed in Appendix C.6.  The nanoparticles used in the XRS study were bare 

unmodified particles.  Additional XRS studies using functionalized MNPs such as 

MNPs coated with a PEG layer and those suggested in Figure 6.6 need to be done to 

see if the functionalized particles are more lipophilic and can penetrate the cellular 

membrane.   
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Appendices 
 

Appendix A 

Appendix A covers protocols and experimental data related to Chapter 3.  

 

A.1  Protocol for APTES modification of magnetic iron oxide nanoparticles 

1.  Set up a 500 mL-capacity three neck round bottomed (RB) flask with a stirring rod 

combined with a Teflon blade (Chemglass, Vineland, NJ).  Apply vacuum grease 

at the junction between the RB flask and the stirring rod. 

--- Cleaning of the glassware--- 

2.  Clean the glassware with piranha solution (conc H2SO4 and 35% H2O2, 3:1 v/v) in 

the following order. Operate in a chemical hood. 

2a.  Add 150 mL of Con H2SO4 to the RB flask.  

2b.  Add 50 mL of 35% H2O2 to the H2SO4 in the RB flask. 

Note: Be careful because of a large amount of heat generation during this process.   

2c.  Wait for 1 hour. 

2d.  Decant the piranha solution to a waste bottle. Wash thoroughly the glassware 

ten times with 20 mL of fresh double distilled water each time.  

---APTES reaction--- 

3.  Add 45 mL of double distilled water in the RB flask.  

4.  Add 1.5 g of γ-Fe2O3 particles (Alfa Aesar, Ward Hill, MA). 
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5.  Suspend the γ-Fe2O3 particles in aqueous solution with 20 minute sonication in a 

bath sonicator. 

6.  Set up the RB flask with a condenser linked to a nitrogen source. Put the glassware 

in an oil bath on a heating plate. Connect the stirring rod with a mechanical stirrer. 

Turn on water, nitrogen, and heat.  

7.  Add 5 mL APTES drop by drop to the solution while vigorous mechanical stirring. 

8.  Control heat so that the temperature of the oil bath can be maintained at 120 OC. 

9.  Maintain this reflux condition for 3 hours. 

10.  Turn off the heater and cool down the reaction system. 

11.  Decant the reacted suspension of γ-Fe2O3 particles to a 50 mL-capacity 

centrifuge tube. 

12.  Separate the magnetic nanoparticles using a neodymium-iron-boron permanent 

magnet. 

---Washing--- 

13.  Add 20 mL of double distilled water to the separated magnetic particles.  

14.  Suspend and mix the particles for 3 minutes on a vortexer. 

15.  Repeat steps 12-14 twice more. 

16.  Repeat steps 12-14 once. This time use 20 mL of 95% ethanol instead of water in 

step 12. Separate the particles with the permanent magnet and remove the 

supernatant. 

17.  Remove the remnant ethanol as much as possible by centrifugation at 4500 rpm 

for 5 minutes. 

---Drying and storing--- 
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18.  Dry the resulting magnetic nanoparticles overnight in vacuum. 

19.  Store the dried particles in a desiccator until further usage. 
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A.2  Protocol for glutaraldehyde activation   

Glutaraldehyde kit was purchased from Polysciences (Warrington, PA)   

1.  Place 10 mg of APTES-modified iron oxide in a glass vial.    

2.  Add 1 mL of PBS to the vial and sonicate for 10 minutes in a bath sonicator.  

3.  Add 3 mL of 8 % glutaraldehyde in PBS (Polysciences, Warrington, PA) to the 

vial.  

     Note: This step makes the final glutaraldehyde concentration 6 %. 

4.  Mix for 5-6 hours at room temperature on a rocker table, rotary shaker, or any kind 

of shaker which provides end-to-end mixing.  

5.  Discard the supernatant while holding the particles using a magnet.   

6.  Resuspend particles in 2 mL of PBS (Washing step).  

7.  Vortex until the particles are completely dispersed.  

8.  Discard the supernatant while holding the particles using a permanent magnet.   

9.  Repeat steps 6-8 twice more.  

10.  Suspend the particles in a desired amount of PBS.  

      (Ex) 4.0 mL of PBS was added to 10 mg MNPs in the method of Chapter 3.  

11.  Use the glutaraldehyde-activated MNPs right away for immobilization of anti-

mouse IgG.  
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A.3  Protocol for immobilization of Fluorescein-labeled anti-mouse IgG on the MNPs 

1.  Prepare a PBS solution containing anti-mouse IgG at a desired concentration. 

2.  Add 80 µL of 4.0 mL of PBS solution containing 10 mg of glutaraldehyde-

activated MNPs (step A.2.10) to 920 µL of an anti-IgG solution in PBS.  The 

amount of MNPs in 1 mL of the mixture is 0.20 mg. 

3.  Shake at room temperature for 20 hours.  

4.  Separate the MNPs with a permanent magnet. 

5.  Take the supernatant and keep it separate for determination of amount of anti-IgG 

in the supernatant. 

6.  Add 1 mL of PBS (pH 7.4) and vortex briefly. 

7.  Repeat steps 4-6 twice. 

8.  Suspend 0.20 mg of the MNPs in 1.0 mL of PBS and store them in a refrigerator 

until further usage. 
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A.4  Protocol for labeling antibodies with reactive dyes with succinimidyl ester group 

Succinimidyl ester-functionalized dyes (Molecular probes, Eugene, OR) form 

a stable amide bond with amine groups of antibodies such as lysine.   

1.  Dialyze antibody solution containing sodium azide as preservatives for 2 hours in 

PBS solution, using Spectra/Por (Rancho Dominguez, CA) dialysis kit (molecular 

weight cut-off 50,000). 

2.  Dissolve succinimidyl ester-linked dyes in dimethyl sulfoxide (DMSO) right 

before a labeling reaction at 10 mg dye/mL DMSO. 

     (Ex)  Add 1 mg dye to 0.1 mL DMSO.  

3.  Add 0.1 mL sodium bicarbonate buffer (pH 8.3-9.0) for each mL of antibody 

solution, since succinimidyl ester-dyes react with ε-amino groups in a slightly 

basic buffer. 

4.  While stirring an antibody solution, add the reactive dye solution slowly.  Stir the 

mixture of antibody and dye for 1 hour at room temperature in protection from 

light.  

5.  Separate the conjugates from unreacted free dyes in a PBS-equilibrated Sephadex 

G-25 column.  The first excluded fraction to elution is the dye-antibody conjugate.  

6.  Store the dye-antibody conjugates at 4 OC in 2 mM sodium azide as preservative.    

7.  Determine the degree of labeling. 

7a.  Dilute the protein-dye conjugate to approximately 0.1 mg/mL.  Measure the 

absorbance of the protein-dye conjugate at 280 nm and at λmax (λmax of 

Alexa 568 = 578 nm) of the dye. 

7b.  Correct the contribution of the dye in the absorbance at 280 nm. 
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                 Aprotein = A280 – Amax × CF                                                            (A.1) 

        (CF = A280 free dye/Amax free dye; CF is given by the dye vendor)  

7c.  Calculate the protein concentration. 

       1.4: Aprotein = 1 mg/mL : Protein concentration (mg/mL)                        (A.2) 

       This equation is correct for IgG antibodies.  

7d. Calculate the degree of labeling (DOL). 

DOL is defined as the dye concentration in the antibody-dye conjugates 

divided by the antibody concentration in the conjugates. 

       DOL = 
antibody

dye

C
C

                                                                             (A.3) 

The Beer-Lambert Law is given as equation A.4. 

         A =  ε × C × l                                                                               (A.4) 

A: absorbance 

e: the extinction coefficient, cm-1M-1 

C: mole concentration; mol/L 

 l: light pathway length, 1 cm 

 

Combining Equation A.3 with the Beer-Lambert law leads to Equation A.5. 

      DOL = 

antibody

dye

dye

MW
Antibody

cm
A

][
1

max,

×ε
λ

                                                                      (A.5) 

  where [Antibody] = mass concentration of antibody (g/L).  
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   Rearranging Equation A.5 gives Equation A.6. 

             DOL = 
dye

antibodydye

Antibody
MWA

ε×

×

][
,578                                                        (A.6) 

  Because antibody does not have absorbance at 578 nm, A 578, dye is the same 

with A 578, conjugate. Therefore, 

    DOL = 
dye

antibodyconjugate

Antibody
MWA

ε×

×

][
,578                                                    (A.7) 

   where MW antibody : 150-170 kDa,  

              [Antibody]: given by equation A.2, and  

              ε Alexa 568 : 91,300 cm-1M-1.  

 

Therefore a measured absorbance of the mouse IgG-Alexa 568 conjugate at 

578 nm provides DOL from Equation A.7. 
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A.5  Sequestration of Alexa 568-labeled mouse IgGs from solution 

1.  Separate 0.20 mg of MNP-anti-mouse IgG conjugates from solution (A.3.8) with a 

neodymium-iron-boron permanent magnet. 

2.  Add 1.0 mL of PBS containing a desired amount of Alexa 568-labeled mouse IgG.  

3.  Mix for 2-3 hours in room temperature. 

4.  Separate the MNPs using a permanent magnet and discard the supernatant. 

5.  Add 1.0 mL of fresh PBS. 

6.  Vortex briefly. 

7.  Repeat steps 4-6 three times. 

8.  Keep the suspended particles in PBS in a refrigerator for later characterization. 
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A.6  Phosphate buffered saline (PBS; pH 7.4)  

    

NaCl                              9.00 g 

Na2HPO4    0.80 g 

KH2PO4    0.14 g 

dH2O   (distilled water)                    1000 mL  

Adjust pH to 7.4    

 

A.7  Maximum absorbance and emission wavelength of dyes used 

        in Chapter 3 

 

Table A.1 Maximum absorbance/emission wavelength of dyes. 

 
Maximum Absorbance 

Wavelength (nm) 
Maximum. Emission 

Wavelength (nm) 

Fluorescein 495 520 

Alexa Fluor 568 578 603 
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A.8  Spex Fluorolog-3 fluorometer (Dr. Robert Walker’s Laboratory)  

A.8.1 Operation protocol 

1.  Turn on the power switch. 

2.  Turn on the main lamp switch. 

3.  Turn on the SpectACQ computer. 

4.  Turn on the Dell Optiplex computer. 

5.  Turn on the monitor screen. Wait for 15 minutes for warming up. 

6.   Double click “shortcut to datamax_32” icon. 

7.  Click “OK” and then “Yes”. 

8.  Run “visual setup”, the third square icon. 

9.  Click on “sample chamber” in visual set up. 

10.  Click on image. 

11.  Take both polarizers “OUT” and then close window.  

12.  Close polarizer window. 

13.  Click on “run experiment” icon in “instrumental control center”. 

14.  Go to “collect” and click on “experiment”. 

15.  Double click “dtf1.exp”. 

16.  Click on “data file”. 

17.  Choose “1.spc” under file name. 

18.  Go to “visual setup” window. 

19.  Under “options”, choose “units” and change “slits” to “millimeters”.  Click OK. 

20.  In “main experiment” window, click on “slits” and change “excitation” to 0.5 

(mm)   and emission to 0. 
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21.  Click “OK” and “run”. 

22.  Click “Yes”. 

23.  Record wavelength, intensity, date and name in log book. 

24.  Click on “experiment” 

25.  Control slit width. 

  (Ex) Slits: Excitation: 3.00 nm, Emission: 3.00 nm 

26.  Set the excitation wavelength and emission scanning range. 

  (Ex) Fluorescence-labeled anti-mouse IgG: 

   Excitation at 495 nm, emission scan range: 500 – 700 nm 

27.  Save the set up condition as **.exp. 

28.  Load a sample in a quartz cuvette and put it into the Fluorometer. 

29.  Run the sample. 

30.  Save the plot as *.spc file. 

31.  After running all the samples, turn everything off in the reverse order. 

   Note: Wait 15 minutes before turning off power in order to cool down the lamp  

before shut off. 

32.  Turn off the power switch. 

  Note: Make sure to turn off the power switch, since it is easy to forget it after 

waiting for a while. 
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A.8.2 Data processing 

1.  Turn on the Dell Optiplex computer. 

2.  Turn on the monitor screen. 

3.  Double click “shortcut to datamax_32” icon. 

4.  Open “file” and “import/export”.  Click “export” without changing settings.  

     Choose a file(s) to transfer. 

5.  Retrieve through right click, start, and explore. 

6.  Turn off the computer. 

7.  Process the data with a data processing program such as Igor Pro 4.0 

(Wavematrics, Lake Oswego, Oregon). 
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A.9 Hitachi F-4500 fluorescence spectrophotometer (Dr. Lyle Isaacs’ lab) 

1.  Turn on the computer, the monitor and the spectrophotometer. 

2.  Wait for 15 minutes for warming up. 

3.  Click on the spectrophotometer icon. 

4.  Set up a scan condition. 

(Ex) Excitation/Emission slit: 5.0 nm/5.0 nm 

PMT voltage: 950 

Scan speed: 240 nm/min 

5.  Run the scan of antibody-MNP conjugates suspended in PBS (pH 7.4). 

5a.  Fluorescein-labeled anti-mouse IgG on the MNPs: 

Excitation at 480 nm; emission scan: 490- 700 nm 

5b.  Alexa 568-labeled mouse IgG on the MNPs: 

   Excitation at 550 nm; emission scan: 560 – 800 nm 

Note: Alexa 568-mouse IgGs caught by MNP-anti-mouse IgG conjugates 

were excited at 550 nm instead of 578 nm to evade scattering from the MNPs.  

6.  Turn off the computer and the spectrophotometer. 
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A.10  A standard calibration curve for quantification of Fluorescein-labeled anti-

mouse IgG  

A standard calibration curve of Fluorescein-labeled anti-mouse IgG is given in Figure 

A.1. 

 

A.10.1  Method  

-Spex Fluorolog-3 fluorometer in Dr. Robert Walker’s Laboratory 

-Slits: Excitation/Emission: 3.00 nm/3.00 nm 

-Excitation at 495 nm, emission scan range: 500 – 700 nm 

-Maximum emission intensity was measured at 520 nm. 

Figure A.1 Standard calibration curve of fluorescein-labeled anti-mouse IgG. 
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A.11  Washing effect of MNPs after reaction with Fluorescein-labeled anti mouse-

IgG 

 

 

 

 

 

 

 

 

 

Figure A.2  Washing effect of MNPs treated with fluorescein-labeled anti-mouse IgG. 

(a) Bare γ-Fe2O3 nanoparticles (the amount of added anti-mouse IgG = 160 µg/mg 

MNP), (b) APTES-modified and glutaraldehyde-activated γ-Fe2O3 nanoparticles (the 

amount of added anti-mouse IgG = 100 µg/mg MNP). 

 

Figure A.2 shows that three washing steps in Chapter 3 are reasonable for a 

quantitative analysis of anti-mouse IgG binding on the MNPs. 

0.01

0.1

1

10

100

1000

0 1 2 3 4 5 6 7

Washing number

N
or

m
al

iz
ed

 e
m

is
si

on a

0.01

0.1

1

10

100

0 1 2 3 4 5 6 7

Washing number

No
rm

al
iz

ed
 e

m
is

si
on

b



 

 130 
 

A.12  Calculation of anti-mouse IgG binding on MNPs 

MNPs interfere in a direct measurement of fluorescence and tend to settle 

during a fluorescence measurement.  The amount of anti-mouse IgG binding on 

MNPs was measured in an indirect way using the following equation. 

    The amount of bound anti-IgG  

= (Initial quantity of anti-IgG) – (unreacted quantity of anti-IgG)                  (A.8)

  

An example of calculation is given as follows.  24 µL of the anti-mouse IgG 

stock (Invitrogen;  2 µg IgG/µL) was added to a MNP solution. After a reaction 

following the procedure in Appendix A.3, the MNPs were washed four times with 1 

mL of PBS each time.  The supernatant of reacting solution along with washing 

solution was collected.  The volume of the combined supernatant solution was 

measured with a graduated cylinder.  It was 4.95 mL.  After diluting 2.5 times, the 

anti-IgG concentration in the diluted solution was determined to be 1.45 µg anti-

IgG/mL following the procedure of Appendix A.8 and the standard curve in Figure 

A.1.   

 Equation A.8 is rewritten in terms of concentration and volume. 

    The amount of anti-IgG bound on MNPs  

= Cbefore × Vbefore –  dilution factor × Cafter × Vafter                                                              (A.9) 

where Cbefore: the concentration of the anti-IgG stock solution  

            Vbefore:  the added volume of the anti-IgG stock solution 

 dilution factor: 2.5 in this example 
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           Cafter:  the concentration of anti-IgG in supernatants after the reaction  

    Vafter:  the volume of the supernatants after the binding reaction 

Therefore,  

The amount of anti-IgG bound on MNPs  

  = 2 × 24 – (2.5 ×1.45) × 4.95  

    = 30 µg anti-IgG                                                                                      (A.10) 

The amount of MNPs in the solution is 0.20 mg (step 2 of Appendix A.3). Therefore, 

The concentration of anti-IgG bound on MNPs 

= 30 µg anti-IgG/0.20 mg MNP   

= 150 µg anti-IgG/mg MNP                                                                    (A.11) 

150 µg anti-IgG per mg MNPs was calculated to be bound in this way.                                                       
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A.13 Calculation of MNP-coverage by anti-mouse IgG  

Based upon known antibody molecular dimensions (Y-shape; height = 8.5 nm, 

width = 14.5 nm, thickness = 4.0 nm),132 and the surface area of the MNPs being 42.2 

m2/g measured by BET method, the MNP-surface coverage by anti-mouse IgG is 

calculated below.  If the anti-IgG has the binding conformation on the side as in 

Figure A.3, the per-molecule “footprint” should be 34 nm2.  

 

 

 

 

 

Figure A.3  A schematic configuration of anti-IgG binding on the MNP surface.  The 

footprint is 34 nm2 in this case. 

 
  Under the assumption of close packing and all surface bound anti-IgGs taking 

the same conformation as in Figure A.3,  division of the particle surface area with the 

per-molecule footprint provides a maximum number of anti-IgG bound on the MNPs 

as in Equation A.12. 

                                 2

2

34

2.42

nm
g

m

  = 
g

18102.1 ×                                                     (A.12) 

The number of anti-IgG molecules is converted to a number of moles number using 

Avogadro’s number. 

4.0 nm
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g

18102.1 ×  =  2.1 × 10-6 mole anti-IgG/g MNP                                      (A.13) 

Using the molar weight of anti-IgG of 160 kDa,  

          2.1 × 10-6 mole anti-IgG/g MNP          

       = 3.3 × 10-1 g anti-IgG/g MNP 

       = 3.3 × 102 µg anti-IgG/mg MNP                                                        (A.14) 

Division of the saturated anti-IgG binding in the experiment, 122 µg anti-

IgG/mg MNP, with the maximum theoretical value in Equation A.14 provides a 

MNP-surface coverage by anti-mouse IgG.  

         Max. experimental saturated anti-IgG binding/Max. theoretical anti-IgG binding   

            = (1.22 × 102) / (3.3 × 102)  

            = 0.36                                                                                                      (A.15) 

  Therefore, a MNP surface coverage by the anti-mouse IgG is 36% under the 

assumptions.  Table 8.2 represents typical configurations of anti-IgGs on the MNP 

surface and the MNP-surface coverages in each case. 

Table A.2 Surface coverage of MNPs as a function of the anti-IgG orientation. 

 

 

 

 

 

 

34                  58                   120      

36                  61                   130

Anti-IgG
orientation

Case I Case II Case III

Saturated surface
coverage (%)

Foot print area
(nm2) 34                  58                   120      

36                  61                   130
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orientation
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Saturated surface
coverage (%)

Foot print area
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A.14  Calculation of the number of anti-IgGs bound on MNPs 

at saturation 

Under the assumption that all MNPs have the same size of 32 nm, the number 

of anti-IgGs bound per MNP at saturation can be calculated as below. 

The saturated binding of anti-mouse IgG is 122 µg anti-IgG/mg MNP in 

Chapter 3.  Using the molecular weight of antibody of approx..160 kDa and 

Avogadro’s number, the amount of anti-IgG is converted to a number of anti-IgGs. 

122 µg anti-IgG = 4.59 × 1014 anti-IgG       (A.16) 

The measured surface area (42.2 m2/g MNP) and the MNP-diameter (32 nm) are used 

to convert 1 mg of MNPs to a number of MNPs. 

1 mg MNP = 1.3 ×1013 MNP                       (A.17) 

Therefore, the saturated binding of anti-IgGs is converted to a number of anti-IgGs 

per MNP. 

        122 µg anti-IgG/mg MNP 

     = 4.59 × 1014 anti-IgG/ 1.3 ×1013 MNP 

     = 35 anti-IgG/MNP                                      (A.18) 

Therefore, 35 anti-IgGs are bound per average-size MNP (diameter = 32 nm) in 

saturated binding.  
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A.15 TEM images and particle size distributions of iron oxide MNPs 

 
 
 

 
 

Figure A.4   Transmission electron microscopy images for bare γ-Fe2O3 nanoparticles 

(A), APTES modified nanoparticles (B), and anti-mouse IgG modified nanoparticles 

(C) were acquired and are shown below. 

 
  

100 nm

100 nm

100 nm

A

C

B

Particles were suspended in PBS (pH 
7.4) before being loaded on a TEM grid
A: bare γ-Fe2O3

B: APTES-modified γ-Fe2O3

C: γ-Fe2O3 immobilized with anti-
mouse IgG
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Figure A.5  Particle size distribution of bare γ-Fe2O3 nanoparticles. Particle size 

distributions were created from the TEM images and were invariant with surface 

preparation.  The size distribution constructed from TEM images of bare 

nanoparticles is shown above. 
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Appendix B 

Appendix B contains protocols for sample preparations in Chapter 4.  

B.1  Protocol for phosphonic acid modification 

1.  Mix methanol and double distilled water with 4:1 ratio.    

2.  Add phenyl phosphonic acid (PPA) to be 4 mM in the mixed solvent.  

(Ex) PPA 0.632 g in 1.0 L of the mixed solvent  

3.  Adjust the pH of the PPA solution to be 4. 

4.  Add metal oxide nanoparticles at a concentration of 1.0 mg per 1.0 mL of the 

solvent. 

5.  Stir in room temperature for 15 hours. 

6.  Centrifuge the reacted nanoparticles.  

     (Ex) Centrifuge for 10 min at 10,000 × g (approx. 7000 rpm) using a 300 mL-

capacity Nalgene (Rochester, NY) tube in a centrifuge (Dr. Nam Sun Wang’s lab). 

     Note: Be careful not to break the centrifuge tube.  Centrifuge tubes tend to be 

broken by either loading too much sample in a centrifuge tube or setting up too 

high centrifugation speed.  

7.  Add 5-10 mL of pure mixed solvent (Methanaol:Water = 4:1 v/v) not containing 

PPA.  Resuspend the centrifuge particles by vortexing.  

8.  Transfer the particle suspension in 1.5 mL-centrifuge tubes.   

9.  Centrifuge for 4 minutes at 13,400 rpm in a centrifuge (Minispin, Eppendorf, 

Hamburg, Germany; Dr. Doug English’s Lab).  
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10.  Discard the supernatant. 

11.  Add 1 mL of the pure mixed solvent. 

12.  Vortex briefly to suspend the particles.  

13.  Repeat steps 9-12 seven times. 

14.  Discard the supernatant.  Dry the particles in a vacuum oven (1 mbar, 120 OC) for 

15 hours. 

15.  Store the dried particles in a desiccator.  

        Characterize the particles with XPS.  
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B.2  Protocol for reaction with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) 

1.  Add metal oxide nanoparticles in a RB flask.  

2.  Purge air in the flask with nitrogen. 

3.  Add dry toluene to the particles at a concentration of 10 mg/mL.  

4.  Sonicate the particles in a bath sonicator for 10 minutes. 

5.  Add BSTFA in one tenth volume of dry toluene. 

(Ex) Add 0.2 mL BSTFA to particle-suspended 2 mL dry toluene. 

6.  Stir for 2 hours. 

7.   Transfer the particle suspension in 1.5 mL-centrifuge tubes.   

8.  Centrifuge for 4 minutes at 13,400 rpm in a centrifuge (Minispin, Eppendorf, 

Hamburg, Germany; Dr. Doug English’s Lab).  

10.  Discard the supernatant. 

11.  Add 1 mL of the pure dry toluene. 

12.  Vortex briefly to suspend the particles.  

13.  Repeat steps 9-12 four times. 

14.  Discard the supernatant.  Dry the particles in a vacuum oven (1 mbar, 120 OC) 

overnight. 

15.  Store the dried particles in a desiccator.  

        Characterize the particles with XPS.  
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Appendix C 

Appendix C describes protocols in Chapters 5.  Operate in a Laminar flow 

bench to maintain sterility. 

C.1 Cell culture medium compositions 

C.1.1  Ampicillin 

Ampicillin is an antibiotics used to keep sterility in the cell culture.  E. coli 105 

harboring pBR 322 (ApR) is ampicillin-resistant.  The final concentration of 

ampicillin in a typical cell culture medium in Chapters 5 and 6 was 100 µg 

ampicillin/mL of medium.  One thousand time concentrated (1000 X; 100 mg/mL) 

ampicillin stock solution is prepared for afterward applications.  

 

1.  Dissolve 2.5 g of ampicillin powder in 25 mL of autoclaved distilled water.  

2.  Sterilize the ampicillin solution by filtering through a 0.20 µm pore size filter 

(Millipore, Billerica, MA).  

Note: Ampicllin is heat sensitive. Do not sterilize an ampicllin solution by 

autoclaving.  

3.  Divide the 25 mL filter-sterilized ampicillin solution into 1 mL aliquots.  Put each 

aliquot in an autoclaved 1.5 mL-capacity centrifuge tube.  

4.  Label the ampicillin aliquots in the centrifuge tubes. (Ex) 1000X Ap 

5.  Store the ampicillin aliquots in a -20 OC refrigerator until further usage.  
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C.1.2  Luria Bertani (LB) medium  

Bacto tryptone                 10 g 

Bacto yeast extract            5 g 

NaCl                                10 g 

dH2O (distilled water)     1 liter volume 

 

1.  Mix all ingredients together and adjust pH to 7.0 with 5 N NaOH (approx. 0.4 

mL/liter). 

2.  Autoclave for 20 min. 

3.  After cooling down the autoclaved medium, add 1 mL of 1000X antibiotics 

(ampicillin) solution.  

 

For agar plates,  

1.  In addition to the ingredients mentioned for liquid LB medium, add 15 g (for a 

harder agar plate, 20 g) agar to the liquid LB medium.  

2.  Autoclave for 20 minutes.  Keep in mind to leave a magnetic bar in the medium. 

3.  Cool down the medium to about 45 OC. Then, add 1 mL of 1000X ampicillin 

solution. 

4.  Mix the antibiotics-added LB medium for a minute on a magnetic stirring plate. 

5.  Pour out the LB-agar medium to a 10 cm diameter petri dish. You can make about 

forty agar plates using 1 L LB-agar medium. 

6.  Let the LB-agar medium in petri dishes cooled down and solidified overnight. 

7.  Store the solidified agar plates in a refrigerator until further usage.  
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C.1.3  M9 medium 

Medium composition  

Sterile 10X Salt*                        100 mL 

20% glucose                                  20 mL 

0.01 M CaCl2a                              10 mL 

0.1 M MgSO4a                             10 mL 

20% Casamino acids                     20 mL 

dH2Oa                                          840 mL 

Note:  Autoclave each ingredients separately, since sediments may form when they 

are mixed together and autoclaved. Mix the ingredients to make M9 medium 

after cooling down the separately-autoclaved ingredients.  

aNote: These ingredients may be changed in accordance with the different kind of M9 

medium in Table 6.1 of Chapter 6.  

 

* Salt Mix  10X 

Na2HPO4                              70 g 

or (Na2HPO4·7H2O)           (132 g) 

KH2PO4                                30 g 

NaCl                                        5 g 

NH4Cl                                   10 g 

H2O                                   1000 mL  
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C.1.4  Preparation of a MNP solution 

 

1.  Add a desired amount of MNPs in a glass vial. Add distilled water. 

2.  Sonicate the particles in the solution using a tip sonicator (Dr. Nam Sun Wang’s 

lab) or a bath sonicator (Dr. Doug English’s lab or Dr. Lyle Isaacs’ lab) for several 

minutes.  

3.  Autoclave for 20 minutes. 

4.  Add the autoclaved MNP solution to cell culture medium (M9 medium) between 

step 4 and 5 in Appendix C.2 (E. coli cell culture).  
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C.2  E. coli cell culture 

 

1 mL of 30% glycerol stock of E. coli JM 105 harboring pBR 322 (ApR) was a 

gift from the laboratory of Dr. William Bentley at the Department of Chemical and 

Biomolecular Engineering, University of Maryland.  Divide the 1 mL glycerol stock 

into ten 100 mL aliquots and store the aliquots in a -80 OC refrigerator.  Thaw and use 

one aliquot each time for a series of X-ray scattering experiments.   

 

1.  Sterilize a wire loop in a flame for about 10 seconds.  Cool down the hot wire in 

the air.  Dip the loop into the glycerol stock.  Streak the loop on solid agar of LB 

medium including 100 µg ampicillin/L in a petri dish (diameter = 10 cm).  

Note: Record the date of incubation, E. coli strain name, and the researcher name 

on the bottom of the petri dish near the rim. 

2.   Put the agar plate upside down in a 37 OC incubator.  Let the E. coli grow for a 

day or two in the incubator.  Store the agar plate in a refrigerator after the 

incubation.  E. coli on an agar plate are viable up to a few weeks in a refrigerator.  

It is recommended to use E. coli on an agar plate within one week from 

preparation time.   

   Note: You can transfer E. coli to another fresh agar plate by taking a colony of E. 

coli with a wire loop and streaking it on the fresh agar plate. 

3.    Take a colony with a flame-sterilized wire loop from an agar plate and inoculate 

it to a 5 mL LB medium in a 15 mL-capacity centrifuge tube.  

4.   Incubate the inoculated LB medium at 100 rpm for 6 hours in a 37 OC incubator. 
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5.  Inoculate 250 mL M9 medium in a 500 mL-capacity flask with the grown E. coli 

(5 mL) in a centrifuge tube.   

6.  Incubate the inoculated 250 mL M9 medium at 100 rpm for 12 hours in a 37 OC 

incubator. 

7.  Decant the grown E. coli to 500 mL or 1000 mL-capacity three necked flask. 

8.  Start an X-ray scattering experiment. 
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C.3  Continuous E. coli growth and in situ X-ray scattering 

 

Continuous E. coli culture is used for in situ X-ray scattering.  A detailed 

procedure is described as follows. 

 

1.  Apply vacuum grease at the junction between the RB flask and the stirring rod to 

prevent overheating by shear force during stirring. 

2.  Autoclave all the equipments including a 500 mL-capacity three neck RB flask, a 

glass vial for X-ray scattering, tubings, and an air filter. 

3.  Set up all the equipment for continuous growth of E. coli and in situ X-ray 

scattering.  Check the inlet and outlet pump flow rate to be the same at 

approximately 100 mL per hour.  

4.  Check the air flow rate to be approx. 3 vvm (vessel volume per minute; 3 vvm = 

750 mL per minute) using a bubble flowmeter. 

5.  Set up a motor for stirring and a water bath for keeping 37 OC during the E. coli 

culture. 

6.  Decant E. coli grown in 250 mL M9 medium to the three neck RB flask. 

7.  Start continuous growth of E. coli and in situ X-ray scattering. 
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C.4  Washout condition in continuous culture of E. coli 

 

A steady state CSTR (continuous-flow stirred tank reactor) material balance is 

given as equation C.1.116  

xDDx f )( µ−=                                       (C.1) 

where, D = the dilution rate, F/VR 

                 F = volumetric flow rate of feed and effluent liquid streams 

            VR = total volume of culture within the reactor 

            µ = specific grow rate of the cells  

            x = mass concentration of the cells within the reactor 

            xf = mass concentration of the cells in the feed 

 

The prepared feed stream is a sterile cell growth medium, so that xf  = 0.  

Non-zero cell concentration can be maintained only when, 

    D = µ                                           (C.2)  

Equation C.2 reveals that the specific cell growth rate is equal to the dilution 

rate in a steady state CSTR condition.  Equation C.2 also displays that the dilution 

rate should not exceed the maximum specific cell growth rate. 

The maximum specific cell growth rate was determined in a batch culture of E. 

coli in M9 medium.  The growth curve is given in Figure C.1. 
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Figure C.1  Growth curve of E. coli in M9 medium in a batch culture.  OD600 is 

optical density of cells at 600 nm.  

 

The specific growth rate (µ) is defined as follows. 

dt
xd

dt
dx

x
ln1

==µ                       (C.3) 

where x = mass concentration of the cells within the reactor 

 

The application of Equation C.3 to the growth curve results in Figure C.2.  
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Figure C.2  Specific growth rate as a function of the E. coli culture time. 

 

The maximum specific growth rate from Figure C.3 is 0.90 hr-1.  The 

maximum dilution rate is the same with 0.90 hr-1 in accordance to Equation C.2.  

Considering the definition of the dilution rate and the total volume of culture in the 

reactor of 250 mL, the maximum dilution rate 0.90 hr-1 corresponds to the maximum 

flow rate of 225 mL/hr.  This analysis displays that the continuous growth of E. coli 

should be operated within 225 mL/hr of the volumetric flow rate.  The procedures 

described in operations of Chapter 5 used a volumetric flow rate of 100 mL per hour 

within the limit of 225 mL/hr.  
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C.4  X-ray scattering 

C.4.1 Bragg’s Law 

 

 

Figure C.3  Derivation of Bragg’s law for X-ray scattering.180 

 

A,B: planes of a crystal structure 

d :  d-spacing, the perpendicular spacing between two adjacent planes of a crystal 

structure. 

θ :  incident angle of the X-rays, same as the reflection angle of the X-rays 

xy:  distance between x and y 

yz:  distance between y and z 

xyz: added value of xy and yz 

1, 2:  incident beams of the X-rays 

1’, 2’: reflected beams of the X-rays 
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Some of the X-rays are reflected from the plane A at the same angle of reflection with 

the angle of incidence, θ.  The rest are reflected from the adjacent plane, B.  A 

constructive interference between the two reflected beams occurs if and only if the 

following equations are satisfied.  From Figure C.3 

xy = yz = d sin θ                                                                                     (C.4) 

where  d: d-spacing, the perpendicular spacing between two adjacent planes of a 

crystal structure.   

            θ: incident angle of the X-rays 

Thus, 

xyz = 2d sin θ                                                                                         (C.5) 

For a constructive interference,  

xyz = nλ  (∵ n = 1, 2, 3 …)                                                                   (C.6) 

where λ: wavelength of the X-rays, 1.5418 Å in Kα radiation 

Therefore, 

 nλ = 2d sin θ                                                                                            (C.7) 

Customarily, n is set to one.  So, Bragg’s Law is given in the final form as such: 

 λ = 2d sin θ                                                                                              (C.8) 

The q vector is often used in description of X-ray scattering results instead of 

the incident angle θ. The q vector has an inverse relationship with the d-spacing 

according to the following definition.   

  
λ

θππ sin42
==

d
q                                                                                      (C.9) 
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Rigaku in Room 2219, James Patterson Building (Dr.  Luz Martínez-Miranda) 

Check the power of X-rays from the control panel and record the condition and time 

on a Log book.  

(Ex)  Nov 18 2004       50 kV  100 mA     0.502 mPa 

 

C.4.1 Increasing and decreasing the X-ray power 

When you increase the power to the operation power in Chapters 5 and 6 of 

60 kV and 150 mA, follow these steps.  When you decrease the power, you can 

follow the reverse way. 

 

20 kV  10 mA    5 min 

30 kV  10 mA    5 min 

30 kV  50 mA    5 min 

30 kV 100 mA   5 min 

40 kV 100 mA   5 min 

50 kV 100 mA   5 min 

60 kV 100 mA   5 min 

60 kV 150 mA   5 min 

 

Note: Make sure the pressure gauge in the control panel does not exceed 0.11 mPa.  
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C.4.2 Calibration 

 

X-ray machine is calibrated using silicon standard (peak at 2θ = 28.4O).  

Useful commands:  

ctrl-c = strop scanning  

resume=resume scanning 

 

Calibration example 

(Ex) a2scan tth 25 30 phi 12.5 15 50 20 

Note: tth = two theta scan 

          25 30 = scan range of two theta  

          phi = phi scan 

          12.5 15 = scan range of phi, half of the two theta scan range 

          50 = number of data points in the scan range 

          20 = time (second) taken for each data acquisition 

 

If a peak is found other than at 2θ = 28.4O, correct the X-ray machine. 

(Ex) When a peak was found at at 2θ = 27.9O,  

                mv tth 27.9 

                set tth 28.4 

         Note:  mv tth 27.9 = move the two theta arm to 27.9O 

                           set tth 28.4 = set the present two theta value as 28.4O 



 

 154 
 

C.4.3  Scanning protocol 

 

1.  Close the shutter of the X-ray control panel (Red light of the shutter control panel 

is OFF now).   

Note: When you open the door of the X-ray room without closing the shutter, X-

rays will be shut down automatically. 

2.  Open the door of the X-ray room and go inside. 

3.  Adjust the sample loading plate all the way down. 

4.  Load the sample holder in the sample loading plate.  

5.  Load the permanent magnets if necessary. 

      Adjust the distance between the permanent magnets by inserting an aluminum bar 

which has a thickness corresponding to a specific magnetic field strength.     

6.  Load the vial connected with the tubing inside the sample holder. 

7.  Start pumping E. coli culture in and out from the sample vial.   

8.  Wait for approximately 20 minutes until a steady state is reached. 

9.  Go out of the X-ray room and shut the door of the X-ray operation room. 

10.  Open the shutter of the X-ray control panel (Red light of the shutter control panel 

is ON now). 

11.  Name the file you are about to scan, so that you can recognize it easily later. 

(Ex) newfile SiFe40_0mT-CaMg_120804 

  Note: SiFe40: 40 mg of SiO2/Fe2O3 per L of M9 medium 

            0 mT: magnetic field strength of 0 mT 

               CaMg: Ca and Mg are doubled in M9 medium 
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              120804: running date is Dec 18 2004 

12.  Run the scan. 

(Ex) a2scan tth 3.0 12.0 phi 1.5 6.0 90 40 

   Note: tth = two theta scan 

             3.0 12.0 = scan range of two theta  

                  phi = phi scan 

                 1.5 6.0 = scan range of phi, half of the two theta scan range 

                 90 = number of data points in the scan range 

                 40 = time (second) taken for each data acquisition 

13.  Record the name of the file and the scanning condition on a logbook. 

14.  When one run is finished, repeat steps 1-2. If necessary, adjust the magnetic field 

strength by changing the distance between the two magnets in the sample holder. 

Repeat Steps 8-12. 

15. When all the scans are finished, clean the X-ray area.  Bring the X-ray power all 

the down to 20 kV and 10 mA following the order in Appendix C.4.1. 
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C.4.4 X-ray scattering data processing 

1.  Click open FTP. 

2.  In session properties window, type in “jmpatt-209.umd.edu” in Host name/address, 

“guest” in user ID, and a password.  Click “OK”. 

3.   Enter into the user’s directory. 

4.  Transfer a file(s) to the user’s own computer. 

5.  Open Origin 6.0. 

6.  File > Import > Single ASCII 

7.  Import a file(s) into Origin 6.0 by choosing the file(s). 

8.  In the data file, the first column contains two theta value and the last column 

includes. 

     X-ray scattering intensity.  Neglect the other columns. 

     Copy the first column and the last column to a new data sheet. 

9.  Two theta values can be converted to q values as follows. 

9a.  Change the name of two theta column head to “tth” 

9b.  Choose a vacant column. 

9c.  Column > Set column values 

9d.  Type in “2*pi*2*sin(pi/180*col(tth)/2)/1.54”,  

 since 
λ

θππ sin42
==

d
q , λ = 1.54 Å, and two theta values in degree needs to be 

converted to radian values for calculation of sin θ.  
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 10.  Choose two columns, either tth column & X-ray scattering data column or q 

column & X-ray scattering data column.  Make a graph.  Add another graph to 

the graph if needed.   
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C.5 Growth studies on E. coli after exposure to the X-rays                                             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure C.4  Comparison of growth curves of E. coli in batch cultures in LB medium. 

The seeds were sampled from different continuous culture conditions; ■: Neither X-

rays nor magnetic fields were applied, ∆: only X-rays were applied, and ○: X-rays 

and 423 mT of magnetic field strength were applied. Magnetic nanoparticles were not 

added to the continuous cultures from which the seeds were taken. 
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Figure C.5  Comparison of growth curves of E. coli in batch cultures in LB medium. 

The seeds were sampled from different continuous culture conditions: ■: Neither X-

rays nor magnetic fields were applied, ∆: only X-rays were applied, and ○: X-rays 

and 423 mT of magnetic field strength were applied. 20 mg/l of SiO2/γ-Fe2O3 

particles was added to the continuous cultures, from which the seeds were taken. 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-1 0 1 2 3 4 5 6 7 8 9

-2

-1

0

1

2

3

Time (hr)

S
pe

ci
fic

 C
el

l G
ro

w
th

 R
at

e 
(h

r-1
)O

pt
ic

al
 C

el
l D

en
si

ty
 (O

D
60

0) (a)

(b)



 

 160 
 

C.6  X-ray scattering study of the interactions between magnetic nanoparticles and 

living cell membranes: Effect of concentrations of magnetic nanoparticles and 

divalent salt ions 

 

Chapter 5 describes XRS results for 0 and 40 mg MNP/L concentrations as a 

function of applied magnetic field strengths.  One concentration of MNP, 40 mg 

MNP/L, was used in the XRS works reported in Chapter 5 to see the role of the 

presence of MNPs in an E. coli culture. Therefore, there is a need to investigate the 

effects of other MNP concentrations on the XRS results.  In addition to 0 and 40 mg 

MNP/L, MNP concentrations of 20 and 100 mg MNP/L were examined to see the 

effects of particle concentrations on XRS-detected peaks. 

Divalent ions in M9 medium such as Ca2+, Mg2+, and SO4
2- have a large effect 

on ionic strength of the medium, and thus on particle agglomerations and cell 

membranes.  Three sets of divalent concentration were used in order to see the effects 

of the divalent ion concentrations on XRS peaks (Table C.1).  The M9 medium used 

in Chapter 5 was M9 type II in Table C.1.  Figures C.5, C.6, and C.7 display 

representative XRS results at different MNP concentrations up to 100 mg MNP/L. 

XRS results at different MNP concentrations were shown on the same graph with the 

same scale for comparisons.  XRS peak positions are shown in Table C.2, C.3, and 

C.4.  

  M9 type I medium did not show a peak at around 0.52 Å-1 at MNP 

concentrations of 0 and 20 mg MNP/L as shown in Figure C.5.  
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Table C.1 Medium composition of three types of M9 media used in XRS studies 

 

 

 

Type I 

(mL) 

 

Type II 

(mL) 

 

Type III 

(mL) 

sterile 10X salt 100 100 100 

20% glucose 20 20 20 

0.01 M CaCl2 10 20 20 

0.1 M MgCl2 10 20 0 

0.1 M MgSO4 0 0 20 

20% casamino acids 20 20 20 

distilled H2O 840 820 820 
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Figure C.6  XRS data of M9 medium type I as a function of MNP concentration up to 

100 mg/L. 
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Table C.2 Peak positions of XRS data of M9 medium type I as a function of magnetic 

field strength and MNP concentration. 

 

 

 

 

 

 

                 

q (Å-1) 

 

 0 mg/L 20 mg/L 40 mg/L 100 mg/L 

0 mT N/A N/A 0.49 0.45 

227 mT N/A N/A 0.49 0.45 

298 mT N/A N/A 0.49 0.45 

362 mT N/A N/A 0.49 0.425 

423 mT N/A N/A N/A N/A 
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XRS peaks at around 0.49 Å-1 appeared in the presence of MNPs at 40 mg MNP/L.  

The peaks grew bigger in intensity and were shifted to the smaller side of q at 100 mg 

MNP/L.   

            M9 type II medium displays XRS results as a function of the concentrations of 

MNPs including the results reported in Chapter 5.  The peak positions at 0.52 Å-1 at 0 

mg MNP/L were not shifted in the presence of MNPs at 20 mg MNP/L.  40 mg 

MNP/L caused the sharp peak shifted to the lower side of q.  Basically, 100 mg 

MNP/L concentration of MNPs showed the same peak positions with XRS results at 

40 mg MNP/L.  

Figure C.7 shows XRS results for MNPs in M9 type III medium.  Distinct 

peaks were detected even at 0 mg MNP/L.  At 0 mg MNP/L, the sharp peak positions 

were shifted from 0.52 Å-1 in M9 type II to 0.46 Å-1 in M9 type III in the applied 

magnetic field strengths of 0, 227, and 298 mT.  362 mT of applied magnetic field 

strength shifted the sharp peak to 0.43 Å-1, whereas no peak shift was observed in M9 

type I and M9 type II at 362 mT and at 0 mg MNP/L.  XRS data at 20 mg MNP/L 

showed almost same peak positions with the case when no MNPs are present in the 

cell culture.  When 40 mg MNP/L was present in the cell culture medium, the XRS 

peaks grew both in intensities and peak widths.  The sharp peaks at 0, 227, and 298 

mT were shifted to 0.40 Å-1, while 362 mT showed the peak at 0.37 Å-1.  

Interestingly, 100 mg MNP/L of MNP concentration shifted back the sharp peak 

positions to the higher side of q.  This may be explained by the highest ionic strength 

of the M9 type III and the presence of MNPs at the highest concentration
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Figure C.7  XRS data of M9 medium type II as a function of MNP concentration up 

to 100 mg/L. 
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Table C.3 Peak positions of XRS data of M9 medium type II as a function of 

magnetic field strength and MNP concentration. 

 

 

                 

q (Å-1) 

 

 0 mg/L 20 mg/L 40 mg/L 100 mg/L 

0 mT 0.528 0.52 0.485 0.49 

227 mT 0.528 0.52 0.485 0.49 

298 mT 0.528 0.52 
0.485 

0.481 
0.49 

362 mT 0.528 0.52 

0.485 

0.459 

N/A 

0.475 

 

423 mT N/A N/A N/A N/A 
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Figure C.8  XRS data of M9 medium type III as a function of MNP concentration up 

to 100 mg/L. 
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Table C.4 Peak positions of XRS data of M9 medium type III as a function of 

magnetic field strength and MNP concentration. 

 

                 

q (Å-1) 

 

 0 mg/L 20 mg/L 40 mg/L 100 mg/L 

0 mT 
0.47 

0.46 

0.47 

0.46 

0.39 

0.399 
0.45 

227 mT 
0.47 

0.46 

0.47 

0.46 
0.39 0.45 

298 mT 
0.47 

0.46 

0.47 

0.46 
0.39 0.45 

362 mT 
0.43 

0.43 

0.43 

0.43 

0.375 

0.385 

0.365 

0.370 

0.40 

0.42 

423 mT N/A N/A N/A N/A 
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Particle agglomeration arising from high ionic strength environment did likely induce 

the shift-back effect at 100 mg MNP/L.  Figure C.8 shows d spacing as a function of 

magnetic field strength at different MNP concentrations.   

 Distinctive peak shifts of the sharp peak were observed at 362 mT.  The sharp 

peak positions at 0 and 362 mT are shown in Figure C.9 to demonstrate M9 medium 

type-dependent shifts of the sharp peak at 362 mT.  Doubling the amount of Ca2+ and 

Mg2+ in M9 medium shifted the d spacing to the smaller side (Figure C.9 (a)).  The 

presence of SO4
2- in cell culture medium led to an increased d spacing (Figure C.9 

(b)).   

The diffuse peak at 0.61 Å-1 did not show a peak shift in M9 type I and II, 

except the case of 100 mg MNP/L in M9 type I at which the peak was shifted to 0.64.  

The presence of SO4
2- caused the diffuse peak shifted to 0.67 Å-1.    

In this Appendix, the effects of MNP concentrations up to 100 mg/L and 

divalent ion concentrations on XRS results are shown.  In M9 type I, the sharp peak 

was not present at 0 and 20 mg MNP/L and began to appear at 40 mg MNP/L.  The 

peaks were shifted to the lower side of q at 100 mg/L.  In M9 type II, 40 mg/L is a 

critical concentration, at which the sharp peak was shifted to the lower side of q and 

additional presence of MNPs did not change the peak position further.  In M9 type 

III, the sharp peak position was shifted to the lower side of q at 40 mg/L and was 

shifted back to the higher side of q with the increase of the MNP concentration to 100 

mg/L.  This phenomenon was likely related to the presence of high ionic 

concentration in the cell culture medium.  As shown in Figure C.8, the difference of 

the XRS-determined d spacing between at 40 mg MNP/L and at 100 mg MNP/L is 
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dependent upon the ionic strength of cell culture medium.  The d spacing was 

increased when the MNP concentration was increased from 40 to 100 mg MNP/L in 

M9 type I medium with low ionic strength.  In M9 medium type II with middle ionic 

strength, the d spacing was almost identical between at 40 mg/L and at 100 mg/L.  

The presence of the high ionic strength of M9 medium type III led to a decrease in the 

d spacing when the MNP concentration was increased from 40 to 100 mg/L.   
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Figure C.9  d spacing (Å) as a function of applied magnetic field strengths at different 

MNP concentrations.  (a) M9 type I, (b) M9 type II, (c) M9 type III.
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Figure C.10  d spacing (Å) as a function of MNP concentration in the applied 

magnetic field strength of 0 and 362 mT. (a) Effect of concentrations of cationic 

divalent ions, Ca2+ and Mg2+,  (b) effect of anionic divalent ion, SO4
2-.   
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