Cost Models for Query Processing Strategies in the Active Data
Repository *

Chialin Chang
Institute for Advanced Computer Studies and
Department of Computer Science
University of Maryland, College Park 20742

chialin@s. und. edu

Abstract

Exploring and analyzing large volumes of data playsan increasingly important rolein many domains
of scientific research. We have been devel oping the Active Data Repository (ADR), an infrastructurethat
integrates storage, retrieval, and processing of large multi-dimensional scientific datasets on distributed
memory parallel machines with multiple disks attached to each node. In earlier work, we proposed three
strategies for processing range queries within the ADR framework. Our experimental results show that
therelative performance of the strategies changes under varying application characteristics and machine
configurations. In thiswork we describe analytica models to predict the average computation, 1/0O and
communi cation operation counts of the strategies when input data elements are uniformly distributedin
the attribute space of the output dataset, restricting the output dataset to be aregular d-dimensional array.
We vdidate these model s for various synthetic datasets and for several driving applications.

1 Introduction

The exploration and analysis of large datasets is playing an increasingly central role in many areas of
scientific research. Over the past several years we have been actively working on dataintensive applications
that employ large-scale scientific datasets, including applications that explore, compare, and visualize
results generated by large scale simulations[8], visualize and generate data products from global coverage
satellite data [4], and visualize and analyze digitized microscopy images [1]. Such applications often use
only a subset of all the data available in both the input and output datasets. References to data items are
described by arange query, namely a multi-dimensional bounding box in the underlying multi-dimensional
attribute space of the dataset(s). Only the data items whose associated coordinates fall within the multi-
dimensiona box are retrieved and processed. The processing structures of these applications also share
common characteristics. Figure 1 shows high-level pseudo-code for the basic processing loop in these
applications. The processing steps consist of retrieving input and output data items that intersect the range
query (steps 1-2 and 4-5), mapping the coordinates of the retrieved input items to the corresponding output
items (step 6), and aggregating, in some way, all the retrieved input items mapped to the same output data
items(steps 7-8). Correctness of the output dataval uesusually does not depend on the order input dataitems
are aggregated. The mapping function, M ap(i.), maps an input item to a set of output items. We extend
the computational model to alow for an intermediate data structure, referred to as an accumulator, that can

*This research was supported by the National Science Foundation under Grant #ACI-9619020 (UC Subcontract # 10152408)
and the Office of Naval Research under Grant #N6600197C8534.

O « Output Dataset, I < Input Dataset
(* Initialization *)

1. foreach o, in O do

2. reado.

3. a. < Initialize(o.)
(* Reduction *)

4, foreach . in { do

5. readi,

6. Sa— Map(i.)

7. foreach a.in S, do

8 a. — Aggregate(i.,a.)
(* Output *)

9. foreach q. do

10. o. < Output(a.)

11. writeo.

Figure 1: The basic processing loop in the target applications.

be used to hold intermediate results during processing. For example, an accumulator can be used to keep a
running sum for an averaging operation. Theaggregation function, Aggregate(i., a.), aggregatesthevalue
of an input item with the intermediate result stored in the accumulator element (¢.). The output dataset
from a query is usualy much smaller than the input dataset, hence steps 4-8 are called the reduction phase
of the processing. Accumulator elements are alocated and initiaized (step 3) before the reduction phase.
Theintermediate results stored in the accumul ator are post-processed to produce final results (steps 9-11).

We have been developing the Active Data Repository (ADR) [2], a software system that efficiently
supports the processing loop shown in Figure 1, integrating storage, retrieval, and processing of large
multi-dimensional scientific datasets on distributed memory parallel machines with multiple disks attached
to each node. ADR is designed as a set of modular services implemented in C++. Through use of
these services, ADR allows customization for application specific processing (i.e. the I'nitialize, Map,
Aggregate, and Output functions described above), while providing support for common operations such
as memory management, dataretrieval, and scheduling of processing across aparallel machine. The system
architecture of ADR consists of a front-end and a parallel back-end. The front-end interacts with clients,
and forwards range queries with references to user-defined processing functions to the parallel back-end.
During query execution, back-end nodes retrieve input data and perform user-defined operations over the
data items retrieved to generate the output products. Output products can be returned from the back-end
nodes to the requesting client, or stored in ADR.

In earlier work [3, 7], we described three potentia processing strategies, and eva uated the rel ative per-
formance of these strategiesfor several application scenarios and machine configurations. Our experimental
results showed that the relative performance of the strategies changes under varying application charac-
teristics and machine configurations. In this paper we describe anaytical models to predict the average
operation counts of the strategies when input data elements are uniformly distributed in the attribute space
of the output dataset, restricting the output dataset to be aregular d-dimensional array. We validate these
cost modelswith queries for synthetic datasets and for severa driving applications[1, 4, 8].

2 Overview of ADR

In this section we briefly describe three strategies for processing range queries in ADR. First we briefly
describe how datasets are stored in ADR, and outline the main phases of query execution in ADR. More
detailed descriptions of these strategies and of ADR in general can befoundin[2, 3, 7].

2.1 Storing Datasetsin ADR

A dataset is partitioned into a set of chunks to achieve high bandwidth data retrieval. A chunk consists
of one or more data items, and is the unit of I/O and communication in ADR. That is, a chunk is always
retrieved, communicated and computed on asawhol e during query processing. Every dataitemisassociated
with apoint in amulti-dimensional attribute space, so every chunk is associated with a minimum bounding
rectangle (MBR) that encompasses the coordinates (in the associated attribute space) of al the dataitems
in the chunk. In the remaining of this paper, we use the MBR of a chunk to determine the extent, the
volume, the mid-point, and the top-right corner of the chunk. Since datais accessed through range queries,
it is desirable to have data items that are close to each other in the multi-dimensional space placed in the
same chunk. Chunks are distributed across the disks attached to ADR back-end nodes using a declustering
algorithm[5, 9] to achieve 1/O parallelism during query processing. Each chunk isassigned to asingledisk,
and isread and/or written during query processing only by the local processor to which the disk is attached.
If achunk isrequired for processing by one or more remote processors, it is sent to those processors by the
local processor viainterprocessor communication. After all datachunksare stored into the desired locations
in the disk farm, an index (e.g., an R-tree [6]) is constructed using the MBRs of the chunks. Theindex is
used by the back-end nodes to find the local chunkswith MBRs that intersect the range query.

2.2 Query Processing in ADR

Processing of aquery in ADR isaccomplished in two steps; query planning and query execution.

A plan specifies how parts of the final output are computed and the order the input data chunks are
retrieved for processing. Planning is carried out in two steps; tiling and workload partitioning. In thetiling
step, if the output dataset istoo large to fit entirely into the memory;, it is partitioned into output tiles. Each
output tile contains a distinct subset of the output chunks, so that the tota size of the chunks in an output
tileis less than the amount of memory available for output data. Tiling of the output implicitly resultsin
atiling of the input dataset. Each input tile contains the input chunks that map to the output chunksin the
output tile. Similar to data chunks, an output tile is associated with a MBR that encompassesthe MBRs (in
the associated attribute space) of al the output chunksin thetile. During query processing, each output tile
is cached in main memory, and input chunks from the required input tile are retrieved. Since a mapping
function may map an input e ement to multiple output e ements, an input chunk may appear in more than
oneinput tileif the corresponding output chunks are assigned to different tiles. Hence, an input chunk may
be retrieved multiple times during execution of the processing loop. In the workload partitioning step, the
workload associated with each tile (i.e. aggregation of input items into accumulator chunks) is partitioned
across processors. This is accomplished by assigning each processor the responsibility for processing a
subset of the input and/or accumulator chunks.

The execution of aquery on aback-end processor progresses through four phases for each tile:

1. Initialization. Accumulator chunks in the current tile are alocated space in memory and initialized.
If an existing output dataset is required to initialize accumul ator €l ements, an output chunk isretrieved
by the processor that has the chunk onitsloca disk, and the chunk isforwarded to the processors that
requireit.

2. Local Reduction. Input data chunks on the local disks of each back-end node are retrieved and
aggregated into the accumulator chunks allocated in each processor’s memory in phase 1.

3. Global Combine. If necessary, results computed in each processor in phase 2 are combined across
all processorsto computefinal results for the accumulator chunks.

4. Output Handling. Thefinal output chunks for the current tile are computed from the corresponding
accumulator chunks computed in phase 3.

A query iterates through these phases repeatedly until al tiles have been processed and the entire output
dataset has been computed. To reduce query execution time, ADR overlaps disk operations, network
operations and processing as much as possibleduring query processing. Overlap isachieved by maintaining
explicit queues for each kind of operation (data retrieval, message sends and receives, data processing) and
switching between queued operations asrequired. Pending asynchronous!/O and communication operations
in the queues are polled and, upon their completion, new asynchronous operations are initiated when there
is more work to be done and memory buffer space is available. Data chunks are therefore retrieved and
processed in a pipelined fashion.

2.3 Query Processing Strategies

In the following discussion, we refer to an input/output data chunk stored on one of the disks attached to a
processor as a local chunk on that processor. Otherwise, it is aremote chunk. A processor owns an input
or output chunk if it isaloca input or output chunk. A ghost chunk is a copy of an accumulator chunk
allocated in the memory of a processor that does not own the corresponding output chunk.

In the tiling phase of all the strategies described in this section, we use a Hilbert space-filling curve [5]
to create the tiles. The goal is to minimize the total length of the boundaries of the tiles, by assigning
chunksthat are spatialy closein the multi-dimensional attribute space to the sametile, to reduce the number
of input chunks crossing tile boundaries. The advantage of using Hilbert curves is that they have good
clustering properties[9], sincethey preserve locality. In our implementation, the mid-point of the bounding
box of each output chunk is used to generate a Hilbert curve index. The chunks are sorted with respect to
thisindex, and selected in this order for tiling.

Fully Replicated Accumulator (FRA) Strategy. In this scheme each processor performs processing as-
sociated with itslocal input chunks. The output chunks are partitioned into tiles, each of which fitsinto the
availableloca memory of asingle back-end processor. When an output chunk is assigned to atile, the cor-
responding accumulator chunk is put into the set of local accumulator chunksin the processor that ownsthe
output chunk, and is assigned as aghost chunk on all other processors. Thisscheme effectively replicatesall
of the accumulator chunksin atile on each processor, and during the local reduction phase, each processor
generates partial results for the accumulator chunks using only itslocal input chunks. Ghost chunks with
partial results are then forwarded to the processors that own the corresponding output (accumulator) chunks
during the global combine phase to produce the completeintermediate result, and eventually thefinal output
product.

Sparsaly Replicated Accumulator (SRA) Strategy. The FRA strategy replicates each accumulator chunk
in every processor, even if no input chunkswill be aggregated into the accumulator chunksin some proces-
sors. Thisresultsin unnecessary initialization overhead in the initialization phase of query execution, and
extra communication and computation in the global combine phase. The available memory in the system
also is not efficiently employed, because of unnecessary replication. Such replication may result in more
tiles being created than necessary, which may cause a large number of input chunks to be retrieved from

4

Pl P1p2/p2
P1P1p2/P2
P4 P4P3|P3
P4 P4/ P3|P3

Output Data

Reduction Result

Inititalization

P1 P2 P3 P4 H} H}

,,,,,,,,,,,,,,,,,,,,

Communication for Replicated Output Blocks Pl P2 P3 P4
Local Reduction Phase ______LocalReductionPhase
AR ER B E
<] 1 : L AT /5 S S e I
7v | | b N 2N :
ﬁﬁ \ ! SR ‘.,,,, ,,,,J
PL P2 P3 P4 P1 ‘7P2 P3 pooe P
o Global CombinePhase < 7777777777 N . 7
5 T e R A
S 2=t N T L N 2
,,,,,,,,,, - — =
Communication for Input Elements
P1 P2 P3 P4 (Black regionsrepresent the clipped out regions of triangles)
Communication for Replicated Output Blocks Trianglesreceived from other processors

Figure 2: FRA strategy (left) and DA strategy (right).

disk more than once. In SRA strategy, a ghost chunk is allocated only on processors owning at least one
input chunk that maps to the corresponding accumulator chunk.

Distributed Accumulator (DA) Strategy. In thisscheme, every processor isresponsiblefor all processing
associated with itsloca output chunks. Tiling is done by selecting, for each processor, local output chunks
from that processor until the memory space alocated for the corresponding accumulator chunks in the
processor isfilled. Asin the other schemes, output chunks are selected in Hilbert curve order.

Since no accumulator chunks are replicated by the DA strategy, no ghost chunks are allocated. This
allows DA to make more effective use of memory and produce fewer tiles than the other two schemes.
As a result, fewer input chunks are likely to be retrieved for multiple tiles. Furthermore, DA avoids
interprocessor communication for accumulator chunks during the initialization phase and for ghost chunks
during the global combine phase, and aso requires no computation in the global combine phase. On the
other hand, it introduces communication in the local reduction phase for input chunks; all the remote input
chunks that map to the same output chunk must be forwarded to the processor that owns the output chunk.
Since a projection function may map an input chunk to multiple output chunks, an input chunk may be
forwarded to multiple processors.

Figure 2 illustrates the FRA and DA strategies for an example application. One possible distribution
of input and output chunks to the processorsisillustrated at the top. Input chunks are denoted by triangles
while output chunks are denoted by rectangles. The final result to be computed by reduction (aggregation)
operationsis also shown.

3 Assumptions and Definitions

In this section, we describe assumptions about our cost models and the definitions of parameters to be
used in the models. We also define how the MBR of an output tile is partitioned into regions for analysis
purpose. As to be seen later, the regions will be used to estimate the expected number of output tiles an
input chunk mapsto and the expected number of messages that DA generates for an input chunk during the
local reduction phase.

3.1 Assumptions

The cost model's presented in this paper make the following assumptions.

3.2

A shared-nothing architecture with local disksis employed.
All processors are assumed to have the same amount of memory.

All input chunks are of the same number of bytes, and have the same extent when mapped into the
output attribute space.

All output chunksare of the same number of bytes, and their extentsform aregular multi-dimensiona
grid.

All input chunks map to the same number of output chunks, and al output chunks are mapped to by
the same number of input chunks.

An accumulator chunk is assumed to have the same number of bytes as that of its corresponding
output chunk.

Input chunks and output chunks are assumed to be distributed among processors by a declustering
algorithm that achieves perfect declustering; that is, al the input (output) chunks whose MBRs
intersect agiven range query are distributed to as many processors as possible.

Definitions

We define the parameters to be used in the rest of this paper.

1 : thetotal number of input chunks required by the given query.

U : thetotal number of output chunks to be computed by the given query.

¢ : thesize of aninput chunk.

u : the size of an output chunk.

P : the number of processors.

M : theavailable memory size of a processor.

a : the number of output chunks an input chunk mapsto.

[: the number of input chunks an output chunk is mapped to.

d : the number of dimensionsfor the output attribute space.

yu2} |R4 R2 R4

ol &

yi2} R4 R2 R4

y0/2 y0/2

@ (b)

Figure 3: (a) An example of a 2-dimensiona output dataset partitioned into 3 x 3 output tiles, and input
chunk i1, i2 and i3, whose mid-pointsfall inside output tile¢. Input chunk i1, i2 and i3 map to one, two and
four output tiles, respectively. (b) An aternative way to partition an output tile, based on the mid-points
of the input chunks. z; and y;, for j € {0, 1}, are the extents of an output tile and an input chunk along
dimension j, respectively.

x; wherej =0,1,...,d— 1: theextent of an output tile along dimension ; of the output attribute space.
y; wherej =0,1,...,d — 1: the extent of an input chunk along dimension ;j of the output attribute space.
z; wherej =0,1,...,d— 1: theextent of an output chunk along dimension ; of the output attribute space.
A : the average number of input chunksthat map to an output tile under strategy s.

B, : theaverage number of output chunks assigned to an output tile under strategy s.

T, : thetotal number of output tiles under strategy s.

The vaues of many parameters can be obtained by accessing the index of the input and output datasets. In
practice, averages are used when single values cannot be assumed for 7, u, «, 3, y; and z;.

3.3 Partitioning MBR of An Output TileInto Regions

For analysis purpose, the MBR of an output tile is partitioned into severa regions. Figure 3(a) shows an
example of a 2-dimensional output dataset partitioned into 3 x 3 output tiles with three input chunks. The
MBRs of the output tiles are shown as white rectangles, while the MBRs of the input chunks are shown as
the shaded rectangles. In thisexample, input chunk i1 maps to one output tile, i2 maps to two output tiles,
and i3 maps to four output tiles. Let’s consider al the input chunksin 7 whose mid-points fall inside an
output tile, such asil, i2 and i3 of Figure 3(a) falling inside output tile ¢, and group those input chunks by
the number of output tiles they map to. Assuming that an input chunk has a smaller extent than that of an
output tile, the grouping of the input chunks implies a partitioning of the MBR of output tile ¢ into three
regions, Rq, R, and R4, such that all input chunks whose mid-pointsfall insideregion £; map to exactly j
output tiles.

An dternative way to partition the MBR of output tile ¢ is by considering al the input chunks in I
whose top-right corners fall inside . Figure 4(a) shows an example of a 2-dimensiona output dataset
partitioned into 3 x 3 output tiles, with three input chunks whose MBRS are shown as shaded rectangles.
In this example, input chunk i1 mapsto one output tile, i2 maps to two output tiles, with two along the first

x0

t Xl-yl R <2,1> R <1,1>
ey :
] I
|Q7J yl R <2,2> ! R 1,2>
y0 x0-y0
@ (b)

Figure 4: (a) An example of a 2-dimensiona output dataset partitioned into 3 x 3 output tiles, and input
chunk i1, i2 and i3, whose top-right corners fall inside output tile ¢. Input chunk i1, i2 and i3 map to one,
two and four output tiles, respectively. (b) Partitioning of output tile ¢ into four regions when the extents of
input chunks are smaller than that of an output tile.

dimension (ie the horizontal dimension) and one aong the second dimension (ie the vertical dimension),
and i3 maps to four output tiles, with two aong each of the two dimensions. Let’s consider al the input
chunks in I whose top-right corners fall inside an output tile, such asil, i2 and i3 of Figure 4(a) faling
inside output tile ¢, and group those input chunks by the number of output tiles they map to along each
dimension. Assuming that an input chunk has asmaller extent than that of an output tile, the grouping of the
input chunks implies a partitioning of output tilet into four regions, R <115, R<1.2>, R<2,1> and R<225,
such that all input chunks whose top-right corners fall inside region R ; .~ map to exactly j x k& output
tiles: 5 output tiles along dimension 0 and & output tiles along dimension 1. These regions are shown in
Figure 4(b). For example, in Figure 4(a), input chunk i2 belongs to region R 2 1>, while i3 belongs to
region R22-. In general, a d-dimensional output tile can be partitioned into 2¢ regions, each of which
labeled as R < yp,01,...,v4_1>» @0d an input chunk whose top-right corner falls inside region R, maps to v;
output tilesalong dimension j, for j = 0,1, ..., d — 1. Since we assume that the input chunks are randomly
distributed in the output space, the ratio between the volume of region R <., 4,,....v,_,> and thetotal volume
of an output tile can be used as an estimate for the probability that an input chunk would map to v; output
tilesalong dimension j, for j = 0,1,...,d — 1. In therest of this subsection, we derive the volumes for
these regions.

Note that region R 1,15 in Figure 4(b) corresponds to region R1 in Figure 3, R<12> and R<21>
together correspond to R, and R .2 2 correspondsto R4. Although the two approaches of partitioning an
output tile generate different regions, each pair of corresponding regions from the two approaches have the
same volume. Since the approach based on the top-right corners of input chunks extends more naturally
to the scenario where input chunks have larger extents than that of an output tile, we will refer to regions
generated by this approach during discussion in the remaining of this paper.

Assumethat the d-dimensional output grid is partitioned regularly into rectangular output tilesand there
are B output chunks per output tile. Let each output chunk have a minimum bounding rectangle (MBR)
of size z; dlong dimension j = 0,1,...,d — 1. Then, the extent of the MBR for an output tile in each
dimension can be computedasz; = z;n; for j = 0,1,...,d — 1, where n; isthe number of output chunks
along dimension j of the output tile. In our analysis, we will assume that ng = n1 = --- = n4_1, and
therefore we haven; = +/B. We now derive the volumesof the regions described earlier. We first consider
the scenario where the input chunks have smaller extent than that of an output tile, and later consider the

scenario where the input chunks have larger extent than that of an output tile.

Small Input Chunks: (iez; > y;,V5 =0,1,...,d - 1)
d = 2: (see Figure 4(b))

Vol(R<11>) = (20— yo)(#1— y1)
Vol(R<12>) = (20— yo)y1
Vol(R<21>) yo(r1 — y1)
Vol(R<225) = yon1
d=3:
Vol(R<111>) = (20— o)1 — y1)(z2 — 2)
Vol(R<1,1,2>) (20— yo)(z1— y1)y2
Vol(R<1,21>) (7o — yo)ya(w2 — y2)
Vol(R<1.2,25) (70— Yo)y1y2
Vol(R<2,1,1>) yo(z1 — y1)(z2 — y2)
Vol(R<21,2>) yo(r1 — y1)y2
VOl(R<2,2,1>) yoy1(x2 — y2)
VOl(R<2225) = Yoyry2

Let function I" (s, ¢, 7, .5') be defined as follows.

. s ifjels

M(s,t,5,5) = { t otherwise
where s and ¢ are scalars, j isan integer and .5 is a set of integers. That is, for a given set of integers .5,
M(s,t,7,9)returns s if j belongs to set .5; otherwise, it returns¢. In general, region R <y vy.....0,_,> IS @
d-dimensional hyper-box. Since theinput chunks are assumed to have smaller extentsthan that of an output
tile, an input chunk can only map to one or two output tilesal ong any particular dimension. Hence, we have
v; € {1,2}. Assuggested by Figure 4(a) when d = 2, theextent of region R «<y41....v,_,> dong dimension
jiseither z; — y; when v; = 1, or y; when v; = 2. Therefore, the volume of region R <o vs.....0,_,> CaN
be computed as follows.

d-1

VOI(R<UO,U17~~7UCJ—1>) = H r($]‘ — Y5, Y55 Y5, {1}) (1)
7=0

Note that there are 2¢ regionsin total.

Large Input Chunks: (iedj € [0,d — 1], such that z; < y;)
Let r; bethe smallest number of output tilesalong dimension j in the output attribute space that can entirely
contain the MBR of an input chunk aong that dimension. That is,

r; = [%1 for j=0,1,2,...,d—1

J

Note that thisimpliesthe following, for j = 0,1,2,...,d — 1.

(rj =D <y; <rja;

9

rI*x1-yl R 21> i R <11>
i1 | ri*x1
t y1-(r1-1)yl Rool Ras
i2 \ r0*x0-y0
yO-(r0-1)x0
@) (b)

Figure 5: (a) An example of an output dataset partitioned into 6 x 4 outpuit tiles, and input chunksil and
i2, whose extents map to six and eight output tiles, respectively. (b) Partitioning of output tile ¢ into four
regions when the extents of input chunks are larger than that of an output tile.

r; > 1

Figure 5(a) shows the output dataset partitioned into 6 x 4 output tiles, and two input chunks with extents
larger than that of an output tile mapping to six and eight output tiles, respectively. In this example, we
have rg = 3and r1 = 2. Figure 5(b) shows how output tile ¢ is partitioned into four regions according to
the same way of grouping input tiles whose top-right corners fall insidetile ¢ that was used earlier.

We now compute the volume for region R < g v4.... v,_,>, LEt's first consider the case where the output
spaceis 2-dimensional.

VOl(R <rg,r1>
VOI(R<7’0+1J1>

VOI(R<7’07T1+1>

vol (R<To+1ﬂ°1+l>

(rozo — yo)(riz1 — y1)

[yo — (ro — D)zo](r1z1 — y1)
(rozo — yo)[yr — (r1 — L)a4]

[0 — (ro — L)zo][yr — (r1 — L)z4]

P N N N

Extending the analysis carried out for a 2-dimensiona attribute space to a d-dimensiona output space, we
have the following.

VOI(R <ro,r1,rgr>) (roro — yo)(rare — y1) - (Td—1%d—1 — Ya—1)
VOI(R <rot1r,rg_s>) = |
VOI(R<T0,T1,...,Tk_1,rk—I—l,7°k+1,...,7°d_1>) = (rozo—yo)(riz1 —y1) - - (Tk—1Tk—1 — Yk—1)
[yr = (rie = D) (riga12h41 — Yrga) -
(

Td—1%d—1 — Yd—1)

(rozo — yo)(rize — y1) - (Th—1%k-1 — Yp—1)
[yr = (rie = D) (riga12h41 — Yrga) -
(rj—1zj-1—yj-1)ly; — (r; — Day]
(7417541 — Yj41) -+ (rg—12d—1 — Yd—1)

VOI(R<7°077°17~~~77°k—177°k+177°k+17~~~77°j—177°] +1r5-1,07g—1>) =

10

yo— (ro— Dzo)(rires — y1) -+ - (rg—1%4-1 — Ya-1)

VO(R <ot 1,141, ira_1t1>) = [Yo— (ro— L)zol[yr — (r1 — D)aa] - -
[Ya—1 — (rg—1 — L)z g_1]

Note that an input chunk can only map to ; or r; + 1 output tiles along a particular dimension. Therefore,
we have v; € {r;,r; + 1}, and there are 2¢ regionsin total. Let W be the set of regions from partitioning
output tile ¢.

In general, the extent of region R <.y.04,....0,_,> dlOng dimension j iseither r;z; — y; whenv; = r;, or
y; — (r; — 1)x; when v; = r; + 1. The volume of region R« v,.....v,_,>, Can therefore be computed as
follows.

d-1
VOl(R<upun,vacs >) = JT T(rjay = w95 = (1 = Vg, 05, {rj}) 2
7=0
Notethat withrg = r1 = --- = r4_1 = 1, Equation (2) becomes Equation (1). Therefore, intherest of this

paper, we will use Equation (2) to compute the volume of aregion for both scenarios.

Asdiscussed earlier, the ratio between the volume of region R« v,,....0,_,> and thetotal volume of an
output tilecan be used as an estimatefor the probability that an input chunk would map to v; output tilesalong
dimension 5. By the definition of R g v,....v,_,>, @ input chunk that belongs to region R« 1.... 041>
maps to H;l;é v; output tiles, Therefore, the expected number of output tiles that an input chunk maps to,
A, can be computed as follows.

(vovy -+ - v4-1)

VoY e
R<vo,v1,...,vd_1>ew (p)
1

= . VOI(R cuov1....v Ceevg_
vol(an output tile) RZE:LP[(Rcvo01,mva-g>) v0VL Vi1

1 d—1
= — {”0”1 vgma [T(rjes — i yy — (g — D, v, {7‘]‘})} ©)

oLl Tq— .
0T1 d-1 1 Zy 2o

4 Analytical Cost Models

In this section we present analytical models to predict the average operation counts of the three query
processing strategies. In particular, our model s estimate the number of 1/0, communi cation, and computation
operationsthat must be performed by an processor for an output tilein each of the query processing phases
(initialization, loca reduction, globa combine and output handling).

Table 1 shows the expected average number of operations per processor for atilein each phase. In the
remaining of this section, we describe the methods used to compute the expected number of operations. The
main assumption of the analytical models described in this paper isthat the distribution of the input chunks
in the output attribute space must be uniform, and the output dataset must be aregular d-dimensiona dense

array.
4.1 Computing Operation Countsfor FRA

Thenumber of output tilesand the average number of output chunksin an output tiledepend onthe aggregate
system memory that can be effectively utilized by a query processing strategy. Since an output chunk is
replicated across al processorsfor FRA, the effective system memory for FRA isthe size of memory on a

11

Query Query Processing Strategy
Execution FRA SRA DA
Phase /O Comm. Comp. /O | Comm. | Comp. [/O | Comm. | Comp
Init:_aliczgaltion % %(P -1 Bira % g B;;a e Blga 0 %
o Afra Byra Acra Bira Agq Bgg
Reduction P 0 7 P 0 P 2 Insg | P
Globd Byra Bira
Combine 0 5P -1) (P-1) 0 g g 0 0 0
Output Bira Bira Bera Bera B, B,
Handling P 0 P P 0 P P 0 P

Table 1. The expected average number of I/0O, communication, and computation operations per processor
for atilein each phase. By,,, Bs,., and By, denote the expected average number of output chunks per
tile for the FRA, SRA, and DA strategies, respectively. Similarly, A, Asqq, and Ay, are the expected
average number of input chunks retrieved per tile for the FRA, SRA, and DA strategies. ¢ isthe expected
average number of ghost chunks per processor for atilein SRA, and I,,, 5, is the expected average number
of messages per processor for input chunksin atile for DA. The average number of output chunks that an
input chunk maps to is denoted by «, and 5 represents the average number of input chunks that map to an
output chunk. P isthe number of processors executing the query.

single processor, M. Hence, the average number of output chunks per output tile, By, and the number of
output tiles, 7%, can be computed as follows.

M

B ra —

! Uu
U Uu
TTa = = o5
! Bfa M

Theexpected extent of an outputtilealong dimension j iscomputedasz; = /By, z;,forj =0,1,...,d—
1. Equation (3) (see Section 3.3) computesthe expected number of output tilesthat an input chunk intersects.
Therefore, the expected number of input chunks out of 7 input chunks that map to a given output tile can be

computed as follows.
Al

T

Assuming perfect declustering, each processor reads % output chunks during the initialization phase,
and % input chunks during the loca reduction phase. Each output chunk is sent to P — 1 processors,

therefore each processor sendsout % (P —1) output chunksduring theinitialization phaseand % (P-1)
output chunks during the global combine phase. Since each output chunk is mapped to by /5 input chunks,
By, .3 computation operations are carried out in total for an output tile of B, output chunks. Assuming
perfect declustering of the input chunks across all processors, each processor is responsible for M
computation operations per output tile.

12

4.2 Computing Operation Countsfor SRA

Let e be the average percent of system memory used for local output chunksin an output tile. That is, if ¢
isthe average number of ghost chunks per processor per output tile, we have

bsra

bsra + g

where b,,, isthe average number of local output chunks per processor per output tile. Note that we have
Z—f < e < 1. When e isequal to % SRA isequivaent to FRA and g = b,,,(P — 1). Given thevaue of e,
we have the following.

Bsra = cPM
Uu
bsra = BST& = ﬂ
P U
U Uu
Torg = =
By, ePM

We compute ¢ and ¢ as follows. The goal of the declustering agorithms used in ADR [5, 9] is to
achieve good 1/0O parallelism when retrieving input and output chunks from disks. To achieve this goal,
the algorithms distribute spatialy close chunks evenly across as many processors as possible. Therefore,
input chunks that map to an output chunk on processor p can be expected to be distributed across as many
processors as possible. Let ¢’ be the average number of ghost chunks that are created for an output chunk.
Then, with b,., local output chunks per processor in an output tile, on average a processor creates atotal of
g = bsy.g’ ghost chunks per output tile, and P processors create Pb,, g’ ghost chunks per output tile.

Under the assumption that input chunks that map to the same output chunk are distributed across as
many processors as possible, SRA becomes FRA if 5 > P. When g < P, we have

g’ = prob{pisoneof 3 procs}(3 — 1) + prob{p isnot one of 5 procs} s
g g
= pB-1+(1-5)0
P-1
= Tﬁ
And hence,
bsra bsra 1 P
€ = = = =
bsra + g bsra + bsragl 1 + gl r + ﬁ(P - 1)
P-1
_ I _
g - bsrag - bsra P ﬁ

Similar to FRA, the expected extent of an output tile along the dimension j iscomputed as z; = /By, 25,
forj =0,1,...,d— 1, and A iscomputed by Equation (3). The expected number of input chunks out of 7
input chunks that intersect with a given output tile therefore can be computed as follows.

MM
Tsra

Asra =

Assuming perfect declustering, each processor reads b, = B;;a output chunks during theinitiaization
phase, and % input chunks during the local reduction phase. Each processor sends ¢ messages for output

chunks during the initialization phase, and ¢ messages for output chunks during the globa combine phase.

13

Similar to FRA, since each output chunk is mapped to by 3 input chunks, B,/ computation operations
are carried out in total for an output tile of B,,, output chunks. Assuming perfect declustering of the input
chunks across al processors, each processor is responsible for M computation operations per output

tile.

4.3 Computing Operation Countsfor DA

For DA, the output chunks are not replicated, so the effective overall system memory is P x M. Therefore,
the average number of output chunks and the number of output tiles can be computed as follows.

PM
By, = ——

(i

U Uun
Ta = = —
d By, PM

Similar to FRA, the expected extent of an output tile along dimension j, z; for j = 0,1,...,d — 1, and
the expected number of input chunks out of I input chunks that map to a given output tile, A4,, can be
computed as follows.

T; = \d/BdaZ]‘ forj=0,1,...,d-1
Al
Aga =
! Tda

Duringthelocal reduction phasefor DA, local input chunksthat map to output chunkson other processors
must be sent to those processors. As aresult, DA requires interprocessor communication for input chunks.
We estimate the number of messages for input chunks for each processor, 1,,,,,, as follows.

1. Computefor eachregion R, € W of an output tile (see Section 3.3) the expected number of messages
generated for an input chunk that belongsto R,,. Thisisdenoted as /,.

2. Compute I,,5, as the sum of all I,’s, weighted by the volumes of the regions that correspond to the
1,’s.
3 vol(R,)

vol(an output tile) "

Imsg =
R,eW

Equation (2) in Section 3.3 computes the volume of region R.,,. We now compute /,,, the expected number
of messages for an input chunk inregion R, € W. First, let C be defined as follows.
rP-1 ifk>P
Clk, P) = { (k—1)%&+k(1- %) otherwise

[P-1 ifk>P
- P21 otherwise

For aninput chunk that mapsto & output chunksin an output tile, under perfect declustering, those & output
chunks are expected to be distributed to as many processors as possible. That is, if £ > P, then the k
mapped output chunks are stored on P processors, otherwise, they are stored on & processors. C(k, P)
therefore gives the expected number of remote processors that own at least one of the & mapped output
chunks. Notethat thisis aso the expected number of messagesthat are generated in DA for an input chunk
that mapsto £ output chunksin an output tile.

14

We now continue the computation of 7, for region R,. First, consider the scenario where input chunks
have extents smaller than that of an output tile. See Figure 4(b) for the four regions of an output tile in
this scenario. To simplify the analysis, for each of the four regions, we designate an input chunk as a
representative input chunk for all input chunksin the sameregion, and use the expected number of messages
that are generated by DA for the representative input chunk as the expected number of messages generated
for each input chunk in that region.

First consider region R <1 1> in Figure 4(b). Since al input chunksin region R 1,1 map to only one
output tile, they are all expected to generate the same number of messages. With each input chunk mapping
to o output chunks, we have

Iaas =C(a, P)

Now let’s consider an input chunk ¢ in region R <1 2-, where ¢ maps to two output tiles, say ¢ and s.
Under the assumption that the output dataset is a regular 2-dimensiona dense array, the number of output
chunks that input chunk ¢ mapsto in output tile ¢ is proportional to the volume (or area when d = 2) of the
portion of ¢ that fallsinside output tile . Suppose that the volume of the portion of input chunk ¢ contained
inoutput tilet isw1, and the volume of the portion of ¢ contained in output tile s iSw», and vol(c) = wy + w>.
Then the expected number of messages generated for input chunk ¢ can be computed as the sum of the
expected number of messag&efor ¢ inoutput tilet and the expected number of messagesfor ¢ in output tile
s, whichisequal to C(Ao, P) + C(525 o, P).

Imaginethetop-ri ght corner of input chunk ¢ slidesfrom the top towards the bottom of region R <1 - in
output tilet. Initially, most of the o output chunksthat ¢ mapsto belongtot. Asc slidestowardsthe bottom
of region R«1,2> int, c overlaps with s, and therefore some of the o output chunks now belong to ¢. When
itstop-right corner islocated at the mid-point of region R <1 >, input chunk ¢ is evenly split between ¢ and
s. Asaresult, half of the o output chunks that ¢ maps to belong to output tile ¢, and half of them belong
to output tile s. Asitstop-right corner moves passed the mid-point of region R 1 - towards the bottom
of the region in ¢, more and more of the « output chunks that ¢ maps to belong to output tile s. One can
obviously seethat as ¢ didesfrom the top towards the bottom of region R .1 2> int, the expected number of
messagesfor ¢ first increases, maxsout at the mid-point of R .1 2, and then decreases. To pick areasonable
representative input chunk for region R 1 -, we choose the input chunk whose top-right corner is|located
at one-quarter below the top of region R .1 2-. and one-quarter to the left of the right-boundary of region
R <1,2>, though the input chunk whose top-right corner islocated at one-quarter above the bottom of region
R<1,2> isequaly desired. Figure 6 shows the top-right corners of the four representative input chunks for
the four regions of an output tile. Asdiscussed earlier, al input chunksinregion R .1 1> generate the same
number of messages, and hence any input chunk in that region can be chosen as the representative input
chunk. For convenience, we choose the onewith itstop-right corner located at one-quarter from the top and
one-quarter from the right boundaries of region R 1 1. The top-right corners of the representative input
chunksfor theother tworegions, R <2 1> and R 2 2>, arechoseninasimilar way asfor region R <1 2. The
number of messages that these four representative input chunks generate are used for the expected numbers
of messages for input chunks in the four regions, and they are computed as follows.

I<171> = C(O[,P)

3 1
Yoz91 Yyozy1 3 1
1 = C a,P +C a,P :C_Oé’P —I—C—a,P
ha (Yoy1)+ Yoy1) (4) (4)
%3/0@/1 %yoyl 3 1
1 = C a,P +C a,P :C_Oé’P —I—C—a,P
= (Yoy1)+ Yoy1) (4) (4)
Lok 3,0l
Ioos = C(MO[7P)—I—C(M)_|_C(43/043/1)—|—C(4y04y1 P
Yyoy1 Yyoy1i Yoy1 Youy1

15

y0/4 (x0-y0)/4
) l

| (xly1)a

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

y0 x0-y0

Figure 6: The top-right corners, shown as shaded triangles, of the four representative input chunks for the
four regions of an output tile, under the assumption that input chunk extents are smaller than that of an
output tile.

1 3 9
1—6a,P) +2C(—=a, P)+ C(l—Ga,

= 16

P)

Note that the representative chunks in region R<1.1s, R<1.2>, R<2,1> and R<2 2> map to one, two, two
and four output tiles, respectively. Thatiswhy 111>, I<125, [<21> and 15 2 are computed as sums of
one, two, two and four terms, respectively.

Now consider the scenario where input chunks have extents larger than that of an output tile. Let’s start
with the 2-dimensional case. Similar to the analysisin the scenario where input chunks have small extents,
we choose a representative input chunk for each of the four regions shown in Figure 5(b). The top-right
corners of those representative input chunks are chosen the same way they were chosen for the smaller
input chunk scenario, and Figure 7 showsthe four representative input chunksfor an examplewhererg = 3
and r1 = 1. The expected number of messages for the four representative input chunks for the examplein
Figure 7 are given below.

yo—(ro—4)zo 3yo—(3ro—4)xo

Tar> = (10— 20000 P) 4+ C(——E 0, P) 4 C(——2—a, P)
3 1
T Zlvo — (ro — 1)zoly1 7lvo — (ro — 1)zo)y1
Tposires = (ro—DC(22, py oo o= Vot)\ palvo = (o= Duolyn,,)
Yyoy1 Yyoy1 Yyoy1
3 1
ToZY1 ToZY1
I<Toﬂ“1-|-l> = (TO - Z)C(4 7P) + (TO - Z)C(4 7P)
Yoy1 Yoy1
yo—(ro—4)x0 3 yo—(ro—4)wo 1
Fo(——= 20 Pyt o(—~=——Ra. P)
Yoy1 Yoy1
3yo—(37’0—4)1’0 § 3yo—(37’0—4)1’0 l
HO(——2 0, P) 4 (——2 0. p)
Yoy1 Yoy1
3 1
ToZY1 ToZY1
I<To+177°1+1> = (TO - 1)6(4 7P) + (TO - 1)6(4 7P)
Yoy1 Yoy1

(%[3/0 —(ro— 1)900]%@/10[7]3) e 3lyo — (ro— 1)960]%3/1a

P
Yoy1 Yoy1 P)

+C

16

(L-yD)/4 (YO-(r0-1x0)/4 (x1-y1)/4 (rOx0-y0)/4

avi L oan %L\
<2,1> 3 <1,1>
x1 x1
X0 H x0 !
y0-(r0-1)x0 rox0-y0
yv4 (yO-(r0-1)x0)/4 yl/4 (rOx0-y0)/4 —,
| Il | ‘ !
,,,,,,,, LR LR<12>
- N <2,2> - | ! j
yl / yl] /
| T
x| Y ! x1| yl4
X0 - x0 -
y0-(r0-1)x0 rox0-y0

Figure 7: The representative input chunks, shown as the shaded rectangles, for region R .2 15 (top-left),
R<1,1> (top-right), R <22~ (bottom-left) and R 1 25 (bottom-right), withrg = 3and 1 = 1.

Lrun — — Dazal3 Lrun — — Danld
6(4[3/0 (ro)900]43/1%]3) e lvo — (o)900]4@/1a
Yyoy1 Yyoy1

+ , P)

For the d-dimensiona case, one could apply the same analysis for the 2-dimensional case to each of the d
dimensions separately, and combine the results from the d dimensionsinto the final result as follows. All
representative input chunks of an output tile, when projected onto dimension j, becomestwo segments. one
correspondsto representativeinput chunksinregionsR <, ., and theother correspondsto representative
input chunks in regions R, 11,.~. We refer to these two segmentsas S, and S, +1. Depending on
the value of r;, each of the two segments would intersect one or many output tiles along dimension 5, and
for each intersection, the length of the overlap between a segment and an output tile determinesin part how
many messages DA generates for a representative input chunk when processing that output tile. As one
will see, for each segment, there are at most three different lengths. Definee; (k,), wherek € {r;,r; + 1}
and! € {0, 1, 2}, as the three possible |engths of the overlap between S, and the output tiles Sj, intersects,
and let ¢;(k,) bethe number of output tilesthat Sy, intersects at the length of e; (%, 7). We now look at two
different cases, r; = 1 and r; > 2, and for each case, compute c;(k,!) and e;(k,1).

Caselr; =1 (iey; < z;). Figure 8 shows the two segments obtained by projecting MBRs of the
representative input chunks onto dimension 5 when the extents of input chunks are smaller than that
of an output tile.

e Segment S, isentirely contained within one output tile, and hence the length of the overlapping

17

<., fj+1,.>

Figure 8: Two segments, S, ontopand S, 11 at bottom, obtained by projecting the MBRs of all represen-
tative input chunks onto dimension j, when the input chunk extents are smaller than that of an output tile.
The solid line in the middl e represents the extents of two output tiles projected onto dimension 5. Segment
S, isentirely contained within one output tile, while segment S, ; intersects two output tiles.

segment between S, and the output tileis y;. Therefore, we have

oo {1 ifi=0
¢j(rj;1) = 0 otherwise

-)y ifl=0
€j(ri1) = { 0 otherwise

e Segment S, 1 intersects one output tile at length %yj and another at length %yj. Therefore, we

have
1 ifl=0,1
¢j(rj+1.1)= { 0 otherwise
8y, ifi=0
e(ry+1L,0)=1¢ %y, ifl=1
0 otherwise

Case2: r; > 2 (iey; > z;). Figure 9 shows the two segments obtained by projecting the MBRs of the
representative input chunks onto dimension ; when the extents of input chunks are larger than that of
an output tile.

e Segment S, intersects onetile at length W, r; — 2 output tiles at length z;, and one

output tile at length w. Therefore, we have
1 ifl=0,2
ci(rj,)=1% r;,—2 ifi=1
0 otherwise
vy =4 if/=0
z; ifi=1

ej(k, 1) = W=Gu=fe i =

0 otherwise

18

[3yi-(3rj-4)x1/4 [yi-(ri-4)xj]/4

D -
|

— j R

! <elfyon>
i

[m
[yi-(ri-1)xj]/4 3lyj-(ri-1)xjl/4

Figure 9: Two segments, S, ontopand S, 11 at bottom, obtained by projecting the MBRs of all represen-
tative input chunks onto dimension j, when the input chunk extent is larger than that of an output tile. The
solid line in the middle represents the extents of ; + 1 output tiles projected onto dimension ;. Segment
S, intersects r; output tiles, while ssgment S, 11 intersects r; + 1 output tiles.

R <. fj+l..>

T; cj,€; [=0 =1 [=2
r; =211 ¢(r;l) 1 0 0
e;(r;, 1) Y; 0 0
C]‘(T]‘ +1, l) 1 1 0
ej(r;+1,1) 2 2y
r; > 2 c;i(r;,0) 1 r;—2 1
6]‘(7‘]‘, l) yj_(TJ4_4)xJ T 39]‘(37;{]_4)1’]
cj(rj +1,1) 1 r—1 1
ei(ri + L0 [3l =y =D] | x5 | gly; — (rj — Dzj]

Table 2: Summary of thevaluesfor ¢;(k,!)and e;(k,l) wherek = r;,r7; + landl = 0,1, 2.

o Segment S, 1 intersects onetile at length 3[yo — (r; — D)x;], r; — Loutput tiles at length =,
and one output tile at length 1[y; — (r; — 1)z1]. Therefore, we have

1 ifl=0,2
ci(ri+L0)=¢ r;—1 ifﬁlzl
0 otherwise
alyj = (rj = Day] if1=0
0 otherwise

Table 2 summarizes the values of ¢;(k,!) and e;(k,). Define ©, as the set of al possible d-dimensional
vectors where the domain of each element of these vectorsis {0, 1, 2}. That is,

@d2{< no,N1ye-y,Ng—1 > |n]‘ € {0,1,2} fOI’jIO,l,...,d—l}

19

For given ro, 71, - -+, 7a—1, I<ugun....0y_,> CAN be computed as follows.

<00,01,...,0q_1>€Oq J=

d—1 d—1
Tcvpv,vges> = > { [Cj(vja@‘)] C(al]T 6;‘(%‘79]‘)],13)}
0 =0

wherev; € {r;,r; + 1} for j = 0,1,2,...,d — 1. Now that we can compute I, for each of the 2¢ regions
of an output tile, the expected number of messagesfor an input chunk, m, can be computed as follows.

- g)

Rocw LTOTL " Ta—

wherevol(R,) iscomputed by Equation (2) in Section 3.3. With A, input chunks per output tile, 7,,, ,,, the
expected number of input chunk messages for a processor per tile, can be computed as follows.

Ada
lsg = ;m
TS {MI}
P Rocw LL0T1- T4l v

Assuming perfect declustering, each processor reads % output chunks during the initialization phase,
and % input chunks during the loca reduction phase. Each processor sends 7,,,;, messages for input
chunks during the the local reduction phase. Similar to FRA, since each output chunk is mapped to by 5
input chunks, B,/ computation operations are carried out in total for an output tile of B, output chunks.
Assuming perfect declustering of the input chunks across all processors, each processor is responsible for
BaaP computation operations per outpit tile.

5 Cost Modd Validation

In this section we validate our cost models with queries for synthetic datasets and for several driving
applications.

We first use synthetic datasets to evaluate the cost models under controlled scenarios. The output
dataset is a 2-dimensiona rectangular array. The entire output attribute space is regularly partitioned into
non-overlapping rectangles, with each rectangle representing an output chunk in the output dataset. The
input dataset has a 3-dimensional attribute space, and input chunkswere placed in the input space randomly
withauniform distribution. Theassignment of input and output chunksto the diskswas done using a Hilbert
curve-based declustering algorithm [5]. In these experiments the size of the input and output datasets were
fixed. The output dataset size is set at 400MB, with 1600 output chunks. The input dataset size is set at
1.6GBytes. We varied the number and extent of input chunks to produce two sets of queries: one set with
a = (4, and the other with 8 = 3, where « is the number of output chunks that an input chunk maps
to, and /5 is the number of input chunks that an output chunk is mapped to. For each set of queries, «
issetto 1.5, 4, 9, and 16. We set the computation time to 1 millisecond for processing an output chunk
in the initialization, globa combine, and output handling phases, and to 5 milliseconds for processing
each intersecting (input,output) chunk pair in the loca reduction phase. The number of ADR back-end
processorsisvaried from 8, 16, 32, 64 to 128. For agiven number of processors, a query plan is generated
for each query under each of the three strategies. Actua operation counts for a given query are obtained
by scanning through the query plan and selecting the maximum counts among all the processors, while
estimated operation counts per processor are computed from the cost models. These actual and estimated

20

300 1 300

250 1 250 1
o o
= =
o 200 OFRA o 200 OFRA
£ EDA E EDA
E 150 + OSRA E 150 + OSRA
Q Q
~ 100 1 ~ 100 1

N m N m
o : : : m O 1 o : : : m O]
8 16 32 64 128 8 16 32 64 128
Number of Processors Number of Processors

IS
3
ES
3

OFRA
mDA
OSRA

OFRA
mDA
OSRA

N w
o ow o
[
I
|
|
|
N w 4
o ow o
I
I
~ 1
|
|
|

=
o
L

Computation Time (sec)
=
o N
|

Computation Time (sec)
N

H

1
-

1

1 i
o LI | ‘ A i o LI | ‘ Aml
8 16 32 64 128 8 16 32 64 128
Number of Processors Number of Processors

1400 1400

1200 +— 1 — 1200 _ — r rn—
o o =
€ 1000 I € 1000 I
(] (]
£ £
S S
E 800 - OFRA E 800 - OFRA
c HDA c HDA
£ 600 ——|osrA £ 600 ——|osrA
L L
5 5
2 400 1 — 2 400 1 =
£ £
o o
- IT - IT

LIl il SHi LIl i =l “mE
8 16 32 64 128 8 16 32 64 128
Number of Processors Number of Processors

Figure 10: Actual (left) and estimated (right) I/O volume, computation time and communication volume
for the synthetic query witha = 3 = 1.5.

counts are turned into I/O volume, computation time and communication volume, and compared against
each other. Figure 10— 17 show the actua and estimated values for 1/0 volume, computation time and
communication volume for the two sets of synthetic queries. Asis seen from the figures, the cost models
are able to accurately estimate the I/O volume, computation time and communication volume for the query
processing strategies for different « and 3 values for varying number of processors.

Figure 10— 17 show that both FRA and SRA read more data than DA does, and thisis because FRA and
SRA use part of the system memory for ghost chunks and therefore generates more output tiles than DA
does. Asaresult, input chunks are retrieved from disks more timesin FRA and SRA than they are in DA.
The figures aso show that the computation time decreases for al strategies as the number of processors
increases. Thisis because the computation operations are distributed among all processors and therefore
as the number of processors increases, each processor is responsible for less computation. Due to the
computation overhead for initializing the ghost chunks during the initialization phase and for combining
the ghost chunks during the globa combine phase, both FRA and SRA perform more computation than

21

N
=)
=]

350
300
o o
s 250
< HOFRA = BFRA
E HDA £ 200 HDA
S OSRA S OSRA
> >
o g 150
100
50
0
8 16 32 64 128 16 32 64 128
Number of Processors Number of Processors
8 8
7 7
< 6 < 6
g g
@5 @5
£ EFRA £ EFRA
= mDA T4 mDA
o
= OSRA = OSRA
EE EE
g g
52 52
1 1
0 0
8 16 32 64 128 16 32 64 128
Number of Processors Number of Processors
1800 1800
1600 1600
o o
s 1400 : 1400
[[
E 1200 E 1200
E 1000 EFRA E 1000 EFRA
c mDA c mDA
£ 800 OSRA £ 800 OSRA
£ 600 £ 600
g g
£ 400 £ 400
8 8
200 200
0 0
8 16 32 64 128 16 32 64 128
Number of Processors Number of Processors

Figure 11: Actual (left) and estimated (right) 1/0 volume, computation time and communication volume

for the synthetic query witha = 5 = 4.

22

400

350

1/0 Volume (MB)
= = N N w
u o u o a1 o
o o o o o o

o

8 16 32 64
Number of Processors

128

EFRA
EDA
OSRA

400

350

1/0 Volume (MB)
= = N N w
u o u o a1 o
o o o o o o

o

EFRA
EDA
OSRA

16 32 64 128
Number of Processors

o oy
g g
@ [
£ EFRA E EFRA
E mDA c mDA
=] u] = u]
3 SRA 3 SRA
5 5
Qo Q
g g
o o
8 16 32 64 128 16 32 64 128
Number of Processors Number of Processors
3000 3000
. 2500 _. 2500
[e]]
s s
[
g 2000 E 2000
E EFRA E EFRA
< 1500 HDA s 1500 mDA
2 OSRA 2 OSRA
o 3
‘E 1000 ‘S 1000
=] =]
3 500 8 500
0 0
8 16 32 64 128 16 32 64 128
Number of Processors Number of Processors

Figure 12: Actual (left) and estimated (right) 1/0 volume, computation time and communication volume

for the synthetic query witha = 5 = 9.

23

500

8 16 32 64 128
Number of Processors

450 450
400 400
_. 350 _. 350
E E
<3 OFRA < 300 OFRA
E 2 HDA E 250 HDA
g 2 OSRA g 200 OSRA
[e) e)
Q. = 150
100 100
50
0
8 16 32 64 128 16 32 64 128
Number of Processors Number of processors
o oy
8 8
@ [
£ EFRA E EFRA
E mDA c mDA
=] 0 = u]
3 SRA 3 SRA
5 5
Qo Q
g £
o o
8 16 32 64 128 16 32 64 128
Number of Processors Number of Processsors
3500 3500
3000 3000
o o
2 2500 2 2500
[[
s s
E 2000 EFRA E 2000 EFRA
c mDA c mDA
£ 1500 OSRA £ 1500 OSRA
L k]
5 5
g 1000 g 1000
£ £
o o
O 500 O 500

16 32 64 128
Number of Processors

Figure 13: Actua (left) and estimated (right) 1/0 volume, computation time and communication volume

for the synthetic query witha = 5 = 16.

24

350 350
300 300
250 250
g g
o 200 EFRA o 200 EFRA
|5 HDA |5 HDA
E 150 OSRA E 150 OSRA
[e) e)
= 100 = 100
50 50
0 0
16 32 64 128 16 32 64 128
Number of Processors Number of Processors
18 18
16 16
14 14
(%) (%)
& 12 & 12
@ [
.E 10 OFRA E 10 OFRA
= mDA 5 mDA
£ 8 OSRA £ 8 OSRA
g g
2 6 2 6
g g
o 4 o 4
2 2
0 0
16 32 64 128 16 32 64 128
Number of Processors Number of Processors
1800
1600
o o
B 1400 s
[[
E 1200 E
E 1000 EFRA E EFRA
c mDA c mDA
S S
S 800 OSRA 2 OSRA
< <
£ 600 5
£ £
£ 400 £
o o
o [§)
200
0
16 32 64 128 16 32 64 128
Number of Processors Number of Processors

Figure 14: Actua (left) and estimated (right) 1/0 volume, computation time and communication volume

for the synthetic query witha = 1.5, 5 = 12.

25

400 400

350 350

300 300
2 250 2 250
< HOFRA by BFRA
g 200 HDA g 200 mDA
5 OSRA 5 OSRA
> >
o 150 o 150

100 100

50 50

0 0
8 16 32 64 128 8 16 32 64 128
Number of Processors Number of Processors

40
35
(%) (%)
g g
[o 25
£ EFRA E EFRA
E mDA <20 mDA
E=1 [m] = OSRA
3 SRA E 15
5 5
g g
8 8 10
5
0
8 16 32 64 128 8 16 32 64 128
Number of Processors Number of Processors
o o
£ £
[[
£ £
=] =]
3 EIFRA g HFRA
c mDA c mDA
o o
2 OSRA 2 OSRA
L k]
c c
=] =]
£ £
g g
o [§)
8 16 32 64 128 8 16 32 64 128
Number of Processors Number of Processors

Figure 15: Actua (left) and estimated (right) 1/0 volume, computation time and communication volume
for the synthetic query witha = 4, 5 = 32.

26

450 450
400 400
350 350
@ 300 = 300
= =
o 250 OFRA o 250 OFRA
|5 HDA |5 HDA
S 200 S 200
g OSRA g OSRA
Q 150 Q 150
100 100
50 50
0 0
8 16 32 64 128 8 16 32 64 128
Number of Processors Number of Processors
80 80
70 70
< 60 < 60
@ @
2 2
o 50 o 50
.E EFRA E EFRA
5 40 HDA 5 40 mDA
= OSRA = OSRA
£ 30 £ 30
g g
8 20 8 20
10 10
0 0
8 16 32 64 128 8 16 32 64 128
Number of Processors Number of Processors
3000 3000
_ 2500 _ 2500
[e]]
£ £
[[
E 2000 E 2000
3 EIFRA g HFRA
= 1500 mDA = 1500 mDA
8 8
§ OSRA § OSRA
‘E 1000 ‘E 1000
=] =]
£ £
£ £
S 500 S 500
0 0
8 16 32 64 128 8 16 32 64 128
Number of Processors Number of Processors

Figure 16: Actual (left) and estimated (right) 1/0 volume, computation time and communication volume

for the synthetic query witha = 9, 5 = 72.

27

500 500
450 450
400 400
_. 350 _. 350
E E
<3 OFRA < 300 OFRA
E 2 HDA E 250 HDA
§ 2 OSRA g 200 OSRA
[e) e)
Q. = 150
100 100
50
0
8 16 32 64 128 16 32 64 128
Number of Processors Number of Processors
140 140
120 120
3 100 2 100
2 2
@ [
£ 80 EFRA E 80 EFRA
E mDA c mDA
=] = u]
3 60 OSRA 3 60 SRA
5 5
Qo Q
£ 40 £ 40
o o
o o
20 20
0 0
8 16 32 64 128 16 32 64 128
Number of Processors Number of Processors
3500 3500
3000 3000
o o
2 2500 2 2500
[[
s s
E 2000 EFRA E 2000 EFRA
c mDA c mDA
£ 1500 OSRA £ 1500 OSRA
< <
5 5
g 1000 g 1000
£ £
o o
O 500 O 500
0 0
8 16 32 64 128 16 32 64 128
Number of Processors Number of Processors

Figure 17: Actua (left) and estimated (right) 1/0 volume, computation time and communication volume
for the synthetic query with o = 16, 3 = 128.

28

DA. SRA often performs less computation than FRA because SRA may replicate fewer ghost chunks and
therefore incur less computation overhead. Thisis confirmed by the observation that whenever SRA incurs
less computation overhead than FRA , SRA aso generates less communication volume. In fact, the cost
model predicts that SRA behaves exactly the same as FRA until the point where 5 = P, after which an
output chunk is only mapped to by 3 input chunks, and therefore is only replicated by SRA on a most
processors. FRA, on the other hand, always replicates an output chunk on al P processors, and therefore
generates more communication volume as the number of processors increases. The predicted relationship
between FRA and SRA is most clearly displayed by the estimated communication volume in Figure 15.
The actual communication volume shown in Figure 15, however, indicates that the actua behaviour of
SRA tendsto depart from that of FRA even with 5 < P. Thisis because the cost model assumes perfect
declustering of the input chunks that map to an output chunk, which in practice is not achieved. Asaresult,
SRA replicates an output chunk on fewer than 3 processors, and therefore generates |ess communication
volumethat what the cost model predicts. Notethat due to the same reason, the cost model for DA does not
accurately estimate the communication volume for 16 processors for the query with « = 16 and 5 = 128,
as seen in Figure 17. The cost model assumes perfect declustering of the output chunks that an input
chunk mapsto. Thus, with @ = 16, an input chunk on one processor is expected to be sent to fifteen other
processors. In practice, however, perfect declustering is not achieved, and an input chunk is sent to fewer
than fifteen processors. As a result, the actual communication volume is less than what the cost model
predicts.

We have also evaluated the cost models for different application scenarios, varying the number of
processors and the input dataset size. We used application emulators [11] to generate various application
scenarios for the applications classes that motivated the design of ADR (see Section 1). An application
emulator provides a parameterized model of an application class; adjusting the parameter values makes it
possible to generate different application scenarios within the application class and scale applicationsin a
controlled way. Theassignment of both input and output chunksto the diskswas done using aHilbert curve
based declustering a gorithm [5].

Table 3 summarizes dataset sizes and application characteristics for three application classes; satellite
data processing (SAT) [4], analysis of microscopy data with the Virtual Microscope (VM) [1], and water
contamination studies (WCS) [8]. The output dataset size was a fixed size for each application. The last
column shows the computation time per chunk for the different phases of query execution (see Section 2);
I-LR-GC-OH represents the Initialization-L ocal Reduction-Globa Combine-Output Handling phases. The
computation times shown represent the relative computation cost of the different phases within and across
the different applications. The LR vaue denotes the computation cost for each intersecting (input chunk,
accumulator chunk) pair. Thus, an input chunk that maps to a larger number of accumulator chunks takes
longer to process. In al of these applications the output datasets are regular arrays, hence each output
dataset isdivided into regular multi-dimensional rectangul ar regions. Thedistribution of theindividual data
items and the data chunks in the input dataset for SAT isirregular. Thisis because of the polar orbit of the
satellite [10]; the data chunks near the poles are more elongated on the surface of the earth than those near
the equator and there are more overlapping chunks near the poles. The input datasets for WCS and VM
are regular dense arrays that are partitioned into equal-sized rectangular chunks. We selected the values
for the various parameters to represent some typical scenarios for these application classes, based on our
experience with the complete applications.

Figures 18-20 show the measured and estimated values for |/O volume, computation time and commu-
nication volume for each application. Asis seen from the figures, the cost models are able to estimate the
volumesof I/O and communication in most application scenarios. However, the cost modelsfail to estimate
the computation times of the strategies for the SAT and WCS applications. Our experiments show that
in these two applications there is aload imbalance in the computation assigned to the various processors.

29

Input Dataset Output Dataset Computation

Num. of | Total | Num. of | Total | Average | Average | (in milliseconds)
App. | Chunks | Size | Chunks Size I} o I-LR-GC-OH
SAT 9K 1.6GB 256 25MB 161 4.6 1-40-20-1
WCS | 75K 1.7GB 150 17MB 60 12 1-20-1-1
VM 16K 1.5GB 256 192MB 64 1.0 1-5-1-1

Table 3: Application characteristics.

There are two main reasons for the load imbalance in these applications. First, the distribution of data
elements in the output attribute space is not uniform for SAT. Second, the Hilbert curve-based declustering
algorithmsdo not achieve optimal distribution of theinput and output chunks across the processors, causing
load imbalance in some cases. Since the cost models assume perfect declustering and auniform distribution
of the computations across the processors, the models may fail to predict the relative computation times of
the strategies in those cases.

6 Conclusion

We have presented cost model sto estimate the average operation countsfor three query processing strategies,
FRA, SRA and DA, in ADR. These cost models alow us to estimate the average 1/0 volume, computation
time and communication volume for each processor. We have also validated our cost models with queries
for synthetic datasets and queries for three driving applications. Our experiments show that our cost models
are able to accurately estimate 1/0 volume, the computation time and communication volume for each of
the three query processing strategies.

However, the ultimate goa of our research isto predict the relative query execution timefor each query
processing strategy so that for a given query and machine configuration, the ADR planning serviceis able
to choose the query processing strategy that would process the query in the least amount of time. The
cost models presented in this paper are able to accurately predict the 1/0O volume, computation time and
communication volume for the three query processing strategies, but stop short of estimating the actual
execution time. One solution is use the I/0O and communication bandwidths of the machine that ADR runs
onto turn I/O and communi cation volumesinto I/0O and communi cation times, and the average computation
time for the data processing functions specified by the given query to turn computation operation counts
into computation time. The sum can then be used as the estimated execution time. 1/0O and communication
bandwidths can be measured by running a set of sample queries and use the average bandwidths observed
by those queries. Computation time of the data processing functions can be obtained from statistics gathered
either during ADR startup time or from earlier queries that invoke the same query processing functions.
We are currently working on a machine model that when combined with the cost models presented in this
paper, can be used to estimate the relative query executing times of the three strategies.

Note that the cost models that we have presented in this paper assume that the input data chunks
are uniformly distributed in the output attribute space, and that the output chunks form a regular multi-
dimensional grid. In scenarios where these assumptionsdo not hold, such as the SAT application described
in Section 5, an inspector code can be used to generate a partial query plan for each of the three strategies
and estimate the relative query execution times of the strategies based on information gathered from the
partial query plans. Thefull query plan for the strategy that is predicted with the smallest execution timeis
then generated, and the query can be processed as planned. We are currently evaluating the effectiveness of

30

8 16 32 64 128
Number of Processors

o o
= =
< HOFRA by BFRA
|5 HDA |5 HDA
g OSRA g OSRA
Q Q
8 16 32 64 128 16 32 64 128
Number of Processors Number of Processors
o oy
g g
@ [
£ EFRA E EFRA
E mDA c mDA
=] O = u]
3 SRA 3 SRA
5 5
Qo Q
g g
o o
8 16 32 64 128 16 32 64 128
Number of Processors Number of Processors
o o
£ £
[[
£ £
=] =]
3 EIFRA g HFRA
c mDA c mDA
o o
2 OSRA 2 OSRA
< <
c c
=] =]
£ £
g g
o [§)

16 32 64 128
Number of Processors

Figure 18: Measured (left) and estimated (right) 1/0 volume, computation time and communication volume

for SAT application.

31

o

8 16 32 64 128
Number of Processors

o o
= =
< HOFRA by BFRA
|5 HDA |5 HDA
g OSRA g OSRA
Q Q
8 16 32 64 128 16 32 64 128
Number of Processors Number of Processors
o oy
8 8
@ [
£ EFRA E EFRA
E mDA c mDA
=] 0 = u]
3 SRA 3 SRA
5 5
Qo Q
g £
o o
8 16 32 64 128 16 32 64 128
Number of Processors Number of Processors
500 500
450 450
@ 400 @ 400
£ £
g 350 g 350
§ 800 BFRA § 800 BFRA
c 250 HDA c 250 mDA
S S
E 200 OSRA E 200 OSRA
5 150 5 150
£ 100 £ 100
o [§)
50 50

o

16 32 64 128
Number of Processors

Figure 19: Measured (left) and estimated (right) 1/0 volume, computation time and communication volume

for WCS application.

32

8 16 32 64 128
Number of Processors

300 300
250 250
o 200 o 200
= =
< HOFRA by BFRA
g 150 HDA g 150 mDA
g OSRA g OSRA
Q 100 Q 100
50 50
0 0
8 16 32 64 128 16 32 64 128
Number of Processors Number of Processors
o oy
g g
@ [
£ EFRA E EFRA
E mDA c mDA
=] O = u]
3 SRA 3 SRA
5 5
Qo Q
g g
o o
8 16 32 64 128 16 32 64 128
Number of Processors Number of Processors
o o
£ £
[[
£ £
=] =]
3 EIFRA g HFRA
c mDA c mDA
o o
2 OSRA 2 OSRA
L k]
c c
=] =]
£ £
g g
o [§)

16 32 64 128
Number of Processors

Figure 20: Measured (left) and estimated (right) 1/0 volume, computation time and communication volume

for VM application.

33

such an inspector.

References

(1]

(2]

(3]

[4]

(5]

(6]

(8]

(9]

[10]

[11]

A. Afework, M. D. Beynon, F. Bustamante, A. Demarzo, R. Ferreira, R. Miller, M. Silberman, J. Saltz, A. Suss-
man, and H. Tsang. Digita dynamic telepathology - the Virtual Microscope. In Proceedings of the 1998 AMIA
Annual Fall Symposium. American Medical Informatics Association, Nov. 1998.

C. Chang, R. Ferreira, A. Sussman, and J. Saltz. Infrastructure for building parallel database systems for multi-
dimensional data. In Proceedings of the Second Merged IPPS/SPDP (13th International Parallel Processing
Symposium & 10th Symposium on Parallel and Distributed Processing). |IEEE Computer Society Press, Apr.
1999.

C. Chang, T. Kurc, A. Sussman, and J. Saltz. Query planning for range queries with user-defined aggregation
on multi-dimensional scientific datasets. Technical Report CS-TR-3996 and UMIACS-TR-99-15, University of
Maryland, Department of Computer Science and UMIACS, Feb. 1999.

C. Chang, B. Moon, A. Acharya, C. Shock, A. Sussman, and J. Saltz. Titan: A high performance remote-sensing
database. In Proceedings of the 1997 International Conference on Data Engineering, pages 375-384. |IEEE
Computer Society Press, Apr. 1997.

C. Faoutsos and P. Bhagwat. Declustering using fractals. In Proccedings of the 2nd International Conference
on Parallel and Distributed | nformation Systems, pages 18-25, San Diego, CA, Jan. 1993.

A. Guttman. R-Trees: A dynamicindex structurefor spatia searching. In Proceedings of the 1984 ACM-S GMOD
Conference, pages 47-57, Boston, MA, June 1984.

T. Kurc, C. Chang, R. Ferreira, A. Sussman, and J. Saltz. Querying very large multi-dimensional datasets in
ADR. Technica Report CS-TR-4022 and UMIACS-TR-99-29, University of Maryland, Department of Computer
Science and UMIACS, May 1999. To appear in SC’ 99.

T. M. Kurc, A. Sussman, and J. Saltz. Coupling multiple simulations via a high performance customizable
database system. In Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing.
SIAM, Mar. 1999.

B. Moon and J. H. Saltz. Scalability analysis of declustering methods for multidimensional range queries. |EEE
Transactions on Knowledge and Data Engineering, 10(2):310-327, March/April 1998.

NASA Goddard Distributed Active Archive
Center (DAAC). Advanced Very High Resolution Radiometer Global Area Coverage (AVHRR GAC) data.
Available at http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/LAND_BIO/origins.html.

M. Uysd, T. M. Kurc, A. Sussman, and J. Satz. A performance prediction framework for data intensive
applicationson large scale parallel machines. In Proceedings of the Fourth Workshop on Languages, Compilers
and Run-time Systems for Scalable Computers, number 1511 in Lecture Notes in Computer Science, pages
243-258. Springer-Verlag, May 1998.

