
Cost Models for Query Processing Strategies in the Active Data
Repository �
Chialin Chang

Institute for Advanced Computer Studies and
Department of Computer Science

University of Maryland, College Park 20742

chialin@cs.umd.edu

Abstract

Exploring and analyzing large volumes of data plays an increasingly important role in many domains
of scientific research. We have been developing the Active Data Repository (ADR), an infrastructure that
integrates storage, retrieval, and processing of large multi-dimensional scientific datasets on distributed
memory parallel machines with multiple disks attached to each node. In earlier work, we proposed three
strategies for processing range queries within the ADR framework. Our experimental results show that
the relative performance of the strategies changes under varying application characteristics and machine
configurations. In this work we describe analytical models to predict the average computation, I/O and
communication operation counts of the strategies when input data elements are uniformly distributed in
the attribute space of the output dataset, restricting the output dataset to be a regular d-dimensional array.
We validate these models for various synthetic datasets and for several driving applications.

1 Introduction

The exploration and analysis of large datasets is playing an increasingly central role in many areas of
scientific research. Over the past several years we have been actively working on data intensive applications
that employ large-scale scientific datasets, including applications that explore, compare, and visualize
results generated by large scale simulations [8], visualize and generate data products from global coverage
satellite data [4], and visualize and analyze digitized microscopy images [1]. Such applications often use
only a subset of all the data available in both the input and output datasets. References to data items are
described by a range query, namely a multi-dimensional bounding box in the underlying multi-dimensional
attribute space of the dataset(s). Only the data items whose associated coordinates fall within the multi-
dimensional box are retrieved and processed. The processing structures of these applications also share
common characteristics. Figure 1 shows high-level pseudo-code for the basic processing loop in these
applications. The processing steps consist of retrieving input and output data items that intersect the range
query (steps 1–2 and 4–5), mapping the coordinates of the retrieved input items to the corresponding output
items (step 6), and aggregating, in some way, all the retrieved input items mapped to the same output data
items (steps 7–8). Correctness of the output data values usually does not depend on the order input data items
are aggregated. The mapping function, Map(ie), maps an input item to a set of output items. We extend
the computational model to allow for an intermediate data structure, referred to as an accumulator, that can�This research was supported by the National Science Foundation under Grant #ACI-9619020 (UC Subcontract # 10152408)
and the Office of Naval Research under Grant #N6600197C8534.
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O Output Dataset, I  Input Dataset
(* Initialization *)

1. foreach oe in O do
2. read oe
3. ae  Initialize(oe)

(* Reduction *)
4. foreach ie in I do
5. read ie
6. SA  Map(ie)
7. foreach ae in SA do
8. ae  Aggregate(ie; ae)

(* Output *)
9. foreach ae do
10. oe  Output(ae)
11. write oe

Figure 1: The basic processing loop in the target applications.

be used to hold intermediate results during processing. For example, an accumulator can be used to keep a
running sum for an averaging operation. The aggregation function, Aggregate(ie; ae), aggregates the value
of an input item with the intermediate result stored in the accumulator element (ae). The output dataset
from a query is usually much smaller than the input dataset, hence steps 4–8 are called the reduction phase
of the processing. Accumulator elements are allocated and initialized (step 3) before the reduction phase.
The intermediate results stored in the accumulator are post-processed to produce final results (steps 9–11).

We have been developing the Active Data Repository (ADR) [2], a software system that efficiently
supports the processing loop shown in Figure 1, integrating storage, retrieval, and processing of large
multi-dimensional scientific datasets on distributed memory parallel machines with multiple disks attached
to each node. ADR is designed as a set of modular services implemented in C++. Through use of
these services, ADR allows customization for application specific processing (i.e. the Initialize, Map,Aggregate, and Output functions described above), while providing support for common operations such
as memory management, data retrieval, and scheduling of processing across a parallel machine. The system
architecture of ADR consists of a front-end and a parallel back-end. The front-end interacts with clients,
and forwards range queries with references to user-defined processing functions to the parallel back-end.
During query execution, back-end nodes retrieve input data and perform user-defined operations over the
data items retrieved to generate the output products. Output products can be returned from the back-end
nodes to the requesting client, or stored in ADR.

In earlier work [3, 7], we described three potential processing strategies, and evaluated the relative per-
formance of these strategies for several application scenarios and machine configurations. Our experimental
results showed that the relative performance of the strategies changes under varying application charac-
teristics and machine configurations. In this paper we describe analytical models to predict the average
operation counts of the strategies when input data elements are uniformly distributed in the attribute space
of the output dataset, restricting the output dataset to be a regular d-dimensional array. We validate these
cost models with queries for synthetic datasets and for several driving applications [1, 4, 8].
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2 Overview of ADR

In this section we briefly describe three strategies for processing range queries in ADR. First we briefly
describe how datasets are stored in ADR, and outline the main phases of query execution in ADR. More
detailed descriptions of these strategies and of ADR in general can be found in [2, 3, 7].

2.1 Storing Datasets in ADR

A dataset is partitioned into a set of chunks to achieve high bandwidth data retrieval. A chunk consists
of one or more data items, and is the unit of I/O and communication in ADR. That is, a chunk is always
retrieved, communicated and computed on as a whole during query processing. Every data item is associated
with a point in a multi-dimensional attribute space, so every chunk is associated with a minimum bounding
rectangle (MBR) that encompasses the coordinates (in the associated attribute space) of all the data items
in the chunk. In the remaining of this paper, we use the MBR of a chunk to determine the extent, the
volume, the mid-point, and the top-right corner of the chunk. Since data is accessed through range queries,
it is desirable to have data items that are close to each other in the multi-dimensional space placed in the
same chunk. Chunks are distributed across the disks attached to ADR back-end nodes using a declustering
algorithm [5, 9] to achieve I/O parallelism during query processing. Each chunk is assigned to a single disk,
and is read and/or written during query processing only by the local processor to which the disk is attached.
If a chunk is required for processing by one or more remote processors, it is sent to those processors by the
local processor via interprocessor communication. After all data chunks are stored into the desired locations
in the disk farm, an index (e.g., an R-tree [6]) is constructed using the MBRs of the chunks. The index is
used by the back-end nodes to find the local chunks with MBRs that intersect the range query.

2.2 Query Processing in ADR

Processing of a query in ADR is accomplished in two steps; query planning and query execution.
A plan specifies how parts of the final output are computed and the order the input data chunks are

retrieved for processing. Planning is carried out in two steps; tiling and workload partitioning. In the tiling
step, if the output dataset is too large to fit entirely into the memory, it is partitioned into output tiles. Each
output tile contains a distinct subset of the output chunks, so that the total size of the chunks in an output
tile is less than the amount of memory available for output data. Tiling of the output implicitly results in
a tiling of the input dataset. Each input tile contains the input chunks that map to the output chunks in the
output tile. Similar to data chunks, an output tile is associated with a MBR that encompasses the MBRs (in
the associated attribute space) of all the output chunks in the tile. During query processing, each output tile
is cached in main memory, and input chunks from the required input tile are retrieved. Since a mapping
function may map an input element to multiple output elements, an input chunk may appear in more than
one input tile if the corresponding output chunks are assigned to different tiles. Hence, an input chunk may
be retrieved multiple times during execution of the processing loop. In the workload partitioning step, the
workload associated with each tile (i.e. aggregation of input items into accumulator chunks) is partitioned
across processors. This is accomplished by assigning each processor the responsibility for processing a
subset of the input and/or accumulator chunks.

The execution of a query on a back-end processor progresses through four phases for each tile:

1. Initialization. Accumulator chunks in the current tile are allocated space in memory and initialized.
If an existing output dataset is required to initialize accumulator elements, an output chunk is retrieved
by the processor that has the chunk on its local disk, and the chunk is forwarded to the processors that
require it.
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2. Local Reduction. Input data chunks on the local disks of each back-end node are retrieved and
aggregated into the accumulator chunks allocated in each processor’s memory in phase 1.

3. Global Combine. If necessary, results computed in each processor in phase 2 are combined across
all processors to compute final results for the accumulator chunks.

4. Output Handling. The final output chunks for the current tile are computed from the corresponding
accumulator chunks computed in phase 3.

A query iterates through these phases repeatedly until all tiles have been processed and the entire output
dataset has been computed. To reduce query execution time, ADR overlaps disk operations, network
operations and processing as much as possible during query processing. Overlap is achieved by maintaining
explicit queues for each kind of operation (data retrieval, message sends and receives, data processing) and
switching between queued operations as required. Pending asynchronous I/O and communication operations
in the queues are polled and, upon their completion, new asynchronous operations are initiated when there
is more work to be done and memory buffer space is available. Data chunks are therefore retrieved and
processed in a pipelined fashion.

2.3 Query Processing Strategies

In the following discussion, we refer to an input/output data chunk stored on one of the disks attached to a
processor as a local chunk on that processor. Otherwise, it is a remote chunk. A processor owns an input
or output chunk if it is a local input or output chunk. A ghost chunk is a copy of an accumulator chunk
allocated in the memory of a processor that does not own the corresponding output chunk.

In the tiling phase of all the strategies described in this section, we use a Hilbert space-filling curve [5]
to create the tiles. The goal is to minimize the total length of the boundaries of the tiles, by assigning
chunks that are spatially close in the multi-dimensional attribute space to the same tile, to reduce the number
of input chunks crossing tile boundaries. The advantage of using Hilbert curves is that they have good
clustering properties [9], since they preserve locality. In our implementation, the mid-point of the bounding
box of each output chunk is used to generate a Hilbert curve index. The chunks are sorted with respect to
this index, and selected in this order for tiling.

Fully Replicated Accumulator (FRA) Strategy. In this scheme each processor performs processing as-
sociated with its local input chunks. The output chunks are partitioned into tiles, each of which fits into the
available local memory of a single back-end processor. When an output chunk is assigned to a tile, the cor-
responding accumulator chunk is put into the set of local accumulator chunks in the processor that owns the
output chunk, and is assigned as a ghost chunk on all other processors. This scheme effectively replicates all
of the accumulator chunks in a tile on each processor, and during the local reduction phase, each processor
generates partial results for the accumulator chunks using only its local input chunks. Ghost chunks with
partial results are then forwarded to the processors that own the corresponding output (accumulator) chunks
during the global combine phase to produce the complete intermediate result, and eventually the final output
product.

Sparsely Replicated Accumulator (SRA) Strategy. The FRA strategy replicates each accumulator chunk
in every processor, even if no input chunks will be aggregated into the accumulator chunks in some proces-
sors. This results in unnecessary initialization overhead in the initialization phase of query execution, and
extra communication and computation in the global combine phase. The available memory in the system
also is not efficiently employed, because of unnecessary replication. Such replication may result in more
tiles being created than necessary, which may cause a large number of input chunks to be retrieved from
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Figure 2: FRA strategy (left) and DA strategy (right).

disk more than once. In SRA strategy, a ghost chunk is allocated only on processors owning at least one
input chunk that maps to the corresponding accumulator chunk.

Distributed Accumulator (DA) Strategy. In this scheme, every processor is responsible for all processing
associated with its local output chunks. Tiling is done by selecting, for each processor, local output chunks
from that processor until the memory space allocated for the corresponding accumulator chunks in the
processor is filled. As in the other schemes, output chunks are selected in Hilbert curve order.

Since no accumulator chunks are replicated by the DA strategy, no ghost chunks are allocated. This
allows DA to make more effective use of memory and produce fewer tiles than the other two schemes.
As a result, fewer input chunks are likely to be retrieved for multiple tiles. Furthermore, DA avoids
interprocessor communication for accumulator chunks during the initialization phase and for ghost chunks
during the global combine phase, and also requires no computation in the global combine phase. On the
other hand, it introduces communication in the local reduction phase for input chunks; all the remote input
chunks that map to the same output chunk must be forwarded to the processor that owns the output chunk.
Since a projection function may map an input chunk to multiple output chunks, an input chunk may be
forwarded to multiple processors.

Figure 2 illustrates the FRA and DA strategies for an example application. One possible distribution
of input and output chunks to the processors is illustrated at the top. Input chunks are denoted by triangles
while output chunks are denoted by rectangles. The final result to be computed by reduction (aggregation)
operations is also shown.
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3 Assumptions and Definitions

In this section, we describe assumptions about our cost models and the definitions of parameters to be
used in the models. We also define how the MBR of an output tile is partitioned into regions for analysis
purpose. As to be seen later, the regions will be used to estimate the expected number of output tiles an
input chunk maps to and the expected number of messages that DA generates for an input chunk during the
local reduction phase.

3.1 Assumptions

The cost models presented in this paper make the following assumptions.� A shared-nothing architecture with local disks is employed.� All processors are assumed to have the same amount of memory.� All input chunks are of the same number of bytes, and have the same extent when mapped into the
output attribute space.� All output chunks are of the same number of bytes, and their extents form a regular multi-dimensional
grid.� All input chunks map to the same number of output chunks, and all output chunks are mapped to by
the same number of input chunks.� An accumulator chunk is assumed to have the same number of bytes as that of its corresponding
output chunk.� Input chunks and output chunks are assumed to be distributed among processors by a declustering
algorithm that achieves perfect declustering; that is, all the input (output) chunks whose MBRs
intersect a given range query are distributed to as many processors as possible.

3.2 Definitions

We define the parameters to be used in the rest of this paper.I : the total number of input chunks required by the given query.U : the total number of output chunks to be computed by the given query.i : the size of an input chunk.u : the size of an output chunk.P : the number of processors.M : the available memory size of a processor.� : the number of output chunks an input chunk maps to.� : the number of input chunks an output chunk is mapped to.d : the number of dimensions for the output attribute space.
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Figure 3: (a) An example of a 2-dimensional output dataset partitioned into 3 � 3 output tiles, and input
chunk i1, i2 and i3, whose mid-points fall inside output tile t. Input chunk i1, i2 and i3 map to one, two and
four output tiles, respectively. (b) An alternative way to partition an output tile, based on the mid-points
of the input chunks. xj and yj , for j 2 f0; 1g, are the extents of an output tile and an input chunk along
dimension j, respectively.xj where j = 0; 1; : : : ; d� 1: the extent of an output tile along dimension j of the output attribute space.yj where j = 0; 1; : : : ; d� 1: the extent of an input chunk along dimension j of the output attribute space.zj where j = 0; 1; : : : ; d� 1: the extent of an output chunk along dimension j of the output attribute space.As : the average number of input chunks that map to an output tile under strategy s.Bs : the average number of output chunks assigned to an output tile under strategy s.Ts : the total number of output tiles under strategy s.

The values of many parameters can be obtained by accessing the index of the input and output datasets. In
practice, averages are used when single values cannot be assumed for i, u, �, �, yj and zj .
3.3 Partitioning MBR of An Output Tile Into Regions

For analysis purpose, the MBR of an output tile is partitioned into several regions. Figure 3(a) shows an
example of a 2-dimensional output dataset partitioned into 3� 3 output tiles with three input chunks. The
MBRs of the output tiles are shown as white rectangles, while the MBRs of the input chunks are shown as
the shaded rectangles. In this example, input chunk i1 maps to one output tile, i2 maps to two output tiles,
and i3 maps to four output tiles. Let’s consider all the input chunks in I whose mid-points fall inside an
output tile, such as i1, i2 and i3 of Figure 3(a) falling inside output tile t, and group those input chunks by
the number of output tiles they map to. Assuming that an input chunk has a smaller extent than that of an
output tile, the grouping of the input chunks implies a partitioning of the MBR of output tile t into three
regions, R1, R2 and R4, such that all input chunks whose mid-points fall inside region Rj map to exactly j
output tiles.

An alternative way to partition the MBR of output tile t is by considering all the input chunks in I
whose top-right corners fall inside t. Figure 4(a) shows an example of a 2-dimensional output dataset
partitioned into 3 � 3 output tiles, with three input chunks whose MBRs are shown as shaded rectangles.
In this example, input chunk i1 maps to one output tile, i2 maps to two output tiles, with two along the first
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Figure 4: (a) An example of a 2-dimensional output dataset partitioned into 3 � 3 output tiles, and input
chunk i1, i2 and i3, whose top-right corners fall inside output tile t. Input chunk i1, i2 and i3 map to one,
two and four output tiles, respectively. (b) Partitioning of output tile t into four regions when the extents of
input chunks are smaller than that of an output tile.

dimension (ie the horizontal dimension) and one along the second dimension (ie the vertical dimension),
and i3 maps to four output tiles, with two along each of the two dimensions. Let’s consider all the input
chunks in I whose top-right corners fall inside an output tile, such as i1, i2 and i3 of Figure 4(a) falling
inside output tile t, and group those input chunks by the number of output tiles they map to along each
dimension. Assuming that an input chunk has a smaller extent than that of an output tile, the grouping of the
input chunks implies a partitioning of output tile t into four regions,R<1;1>,R<1;2>,R<2;1> andR<2;2>,
such that all input chunks whose top-right corners fall inside region R<j;k> map to exactly j � k output
tiles: j output tiles along dimension 0 and k output tiles along dimension 1. These regions are shown in
Figure 4(b). For example, in Figure 4(a), input chunk i2 belongs to region R<2;1>, while i3 belongs to
region R<2;2>. In general, a d-dimensional output tile can be partitioned into 2d regions, each of which
labeled as R<v0;v1;:::;vd�1>, and an input chunk whose top-right corner falls inside region Rv maps to vj
output tiles along dimension j, for j = 0; 1; : : : ; d� 1. Since we assume that the input chunks are randomly
distributed in the output space, the ratio between the volume of regionR<v0;v1;:::;vd�1> and the total volume
of an output tile can be used as an estimate for the probability that an input chunk would map to vj output
tiles along dimension j, for j = 0; 1; : : : ; d� 1. In the rest of this subsection, we derive the volumes for
these regions.

Note that region R<1;1> in Figure 4(b) corresponds to region R1 in Figure 3, R<1;2> and R<2;1>
together correspond to R2, andR<2;2> corresponds to R4. Although the two approaches of partitioning an
output tile generate different regions, each pair of corresponding regions from the two approaches have the
same volume. Since the approach based on the top-right corners of input chunks extends more naturally
to the scenario where input chunks have larger extents than that of an output tile, we will refer to regions
generated by this approach during discussion in the remaining of this paper.

Assume that the d-dimensional output grid is partitioned regularly into rectangular output tiles and there
are B output chunks per output tile. Let each output chunk have a minimum bounding rectangle (MBR)
of size zj along dimension j = 0; 1; : : : ; d � 1. Then, the extent of the MBR for an output tile in each
dimension can be computed as xj = zjnj for j = 0; 1; : : : ; d� 1, where nj is the number of output chunks
along dimension j of the output tile. In our analysis, we will assume that n0 = n1 = � � � = nd�1, and
therefore we have nj = dpB. We now derive the volumes of the regions described earlier. We first consider
the scenario where the input chunks have smaller extent than that of an output tile, and later consider the
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scenario where the input chunks have larger extent than that of an output tile.

Small Input Chunks: (ie xj � yj , 8j = 0; 1; : : : ; d� 1)d = 2: (see Figure 4(b))

vol(R<1;1>) = (x0 � y0)(x1 � y1)
vol(R<1;2>) = (x0 � y0)y1

vol(R<2;1>) = y0(x1 � y1)
vol(R<2;2>) = y0y1d = 3:

vol(R<1;1;1>) = (x0 � y0)(x1 � y1)(x2 � y2)
vol(R<1;1;2>) = (x0 � y0)(x1 � y1)y2

vol(R<1;2;1>) = (x0 � y0)y1(x2 � y2)
vol(R<1;2;2>) = (x0 � y0)y1y2

vol(R<2;1;1>) = y0(x1 � y1)(x2 � y2)
vol(R<2;1;2>) = y0(x1 � y1)y2

vol(R<2;2;1>) = y0y1(x2 � y2)
vol(R<2;2;2>) = y0y1y2

Let function Γ(s; t; j; S) be defined as follows.

Γ(s; t; j; S) = ( s if j 2 St otherwise

where s and t are scalars, j is an integer and S is a set of integers. That is, for a given set of integers S,
Γ(s; t; j; S) returns s if j belongs to set S; otherwise, it returns t. In general, region R<v0;v1;:::;vd�1> is ad-dimensional hyper-box. Since the input chunks are assumed to have smaller extents than that of an output
tile, an input chunk can only map to one or two output tiles along any particular dimension. Hence, we havevj 2 f1; 2g. As suggested by Figure 4(a) when d = 2, the extent of regionR<v0;v1;:::;vd�1> along dimensionj is either xj � yj when vj = 1, or yj when vj = 2. Therefore, the volume of region R<v0;v1;:::;vd�1> can
be computed as follows.

vol(R<v0;v1;:::;vd�1>) = d�1Yj=0

Γ(xj � yj ; yj ; vj ; f1g) (1)

Note that there are 2d regions in total.

Large Input Chunks: (ie 9j 2 [0; d� 1], such that xj � yj )
Let rj be the smallest number of output tiles along dimension j in the output attribute space that can entirely
contain the MBR of an input chunk along that dimension. That is,rj = d yjxj e for j = 0; 1; 2; : : : ; d� 1

Note that this implies the following, for j = 0; 1; 2; : : : ; d� 1.(rj � 1)xj < yj � rjxj
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Figure 5: (a) An example of an output dataset partitioned into 6 � 4 output tiles, and input chunks i1 and
i2, whose extents map to six and eight output tiles, respectively. (b) Partitioning of output tile t into four
regions when the extents of input chunks are larger than that of an output tile.rj � 1

Figure 5(a) shows the output dataset partitioned into 6 � 4 output tiles, and two input chunks with extents
larger than that of an output tile mapping to six and eight output tiles, respectively. In this example, we
have r0 = 3 and r1 = 2. Figure 5(b) shows how output tile t is partitioned into four regions according to
the same way of grouping input tiles whose top-right corners fall inside tile t that was used earlier.

We now compute the volume for region R<v0;v1;:::;vd�1>, Let’s first consider the case where the output
space is 2-dimensional.

vol(R<r0;r1>) = (r0x0 � y0)(r1x1 � y1)
vol(R<r0+1;r1>) = [y0 � (r0 � 1)x0](r1x1 � y1)
vol(R<r0;r1+1>) = (r0x0 � y0)[y1 � (r1 � 1)x1]

vol(R<r0+1;r1+1>) = [y0 � (r0 � 1)x0][y1 � (r1 � 1)x1]
Extending the analysis carried out for a 2-dimensional attribute space to a d-dimensional output space, we
have the following.

vol(R<r0;r1;:::;rd�1>) = (r0x0 � y0)(r1x1 � y1) � � �(rd�1xd�1 � yd�1)
vol(R<r0+1;r1;:::;rd�1>) = [y0 � (r0 � 1)x0](r1x1 � y1) � � �(rd�1xd�1 � yd�1)

vol(R<r0;r1;:::;rk�1;rk+1;rk+1;:::;rd�1>) = (r0x0 � y0)(r1x1 � y1) � � �(rk�1xk�1 � yk�1)[yk � (rk � 1)xk](rk+1xk+1 � yk+1) � � �(rd�1xd�1 � yd�1)
...

vol(R<r0;r1;:::;rk�1;rk+1;rk+1;:::;rj�1;rj+1;rj�1;���;rd�1>) = (r0x0 � y0)(r1x1 � y1) � � �(rk�1xk�1 � yk�1)[yk � (rk � 1)xk](rk+1xk+1 � yk+1) � � �(rj�1xj�1 � yj�1)[yj � (rj � 1)xj ](rj+1xj+1 � yj+1) � � �(rd�1xd�1 � yd�1)
...
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vol(R<r0+1;r1+1;:::;rd�1+1>) = [y0 � (r0 � 1)x0][y1 � (r1 � 1)x1] � � �[yd�1 � (rd�1 � 1)xd�1]
Note that an input chunk can only map to rj or rj + 1 output tiles along a particular dimension. Therefore,
we have vj 2 frj ; rj + 1g, and there are 2d regions in total. Let Ψ be the set of regions from partitioning
output tile t.

In general, the extent of regionR<v0;v1;:::;vd�1> along dimension j is either rjxj � yj when vj = rj , oryj � (rj � 1)xj when vj = rj + 1. The volume of region R<v0;v1;:::;vd�1>, can therefore be computed as
follows.

vol(R<v0;v1;:::;vd�1 >) = d�1Yj=0

Γ(rjxj � yj ; yj � (rj � 1)xj ; vj ; frjg) (2)

Note that with r0 = r1 = � � �= rd�1 = 1, Equation (2) becomes Equation (1). Therefore, in the rest of this
paper, we will use Equation (2) to compute the volume of a region for both scenarios.

As discussed earlier, the ratio between the volume of regionR<v0;v1;:::;vd�1> and the total volume of an
output tile can be used as an estimate for the probability that an input chunk would map to vj output tiles along
dimension j. By the definition of R<v0;v1;:::;vd�1>, an input chunk that belongs to region R<v0;v1;:::;vd�1>
maps to

Qd�1j=0 vj output tiles, Therefore, the expected number of output tiles that an input chunk maps to,�, can be computed as follows.� = XR<v0;v1;:::;vd�1>2Ψ

"
vol(R<v0;v1;:::;vd�1>)

vol(an output tile)
(v0v1 � � �vd�1)#= 1

vol(an output tile)

XRv2Ψ

�
vol(R<v0;v1;:::;vd�1>) v0v1 � � �vd�1

�= 1x0x1 � � �xd�1

XRv2Ψ

8<:v0v1 � � �vd�1

d�1Yj=0

Γ(rjxj � yj ; yj � (rj � 1)xj ; vj; frjg)9=; (3)

4 Analytical Cost Models

In this section we present analytical models to predict the average operation counts of the three query
processing strategies. In particular, our models estimate the number of I/O, communication, and computation
operations that must be performed by an processor for an output tile in each of the query processing phases
(initialization, local reduction, global combine and output handling).

Table 1 shows the expected average number of operations per processor for a tile in each phase. In the
remaining of this section, we describe the methods used to compute the expected number of operations. The
main assumption of the analytical models described in this paper is that the distribution of the input chunks
in the output attribute space must be uniform, and the output dataset must be a regular d-dimensional dense
array.

4.1 Computing Operation Counts for FRA

The number of output tiles and the average number of output chunks in an output tile depend on the aggregate
system memory that can be effectively utilized by a query processing strategy. Since an output chunk is
replicated across all processors for FRA, the effective system memory for FRA is the size of memory on a
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Query Query Processing Strategy
Execution FRA SRA DA

Phase I/O Comm. Comp. I/O Comm. Comp. I/O Comm. Comp.
Initialization BfraP BfraP (P � 1) Bfra BsraP g BsraP + g BdaP 0 BdaP

Local
Reduction

AfraP 0 BfraP � AsraP 0 BsraP � AdaP Imsg BdaP �
Global

Combine
0 BfraP (P � 1) BfraP (P � 1) 0 g g 0 0 0

Output
Handling

BfraP 0 BfraP BsraP 0 BsraP BdaP 0 BdaP
Table 1: The expected average number of I/O, communication, and computation operations per processor
for a tile in each phase. Bfra, Bsra, and Bda denote the expected average number of output chunks per
tile for the FRA, SRA, and DA strategies, respectively. Similarly, Afra, Asra, and Ada are the expected
average number of input chunks retrieved per tile for the FRA, SRA, and DA strategies. g is the expected
average number of ghost chunks per processor for a tile in SRA, and Imsg is the expected average number
of messages per processor for input chunks in a tile for DA. The average number of output chunks that an
input chunk maps to is denoted by �, and � represents the average number of input chunks that map to an
output chunk. P is the number of processors executing the query.

single processor, M . Hence, the average number of output chunks per output tile, Bfra, and the number of
output tiles, Tfra, can be computed as follows.Bfra = MuTfra = UBfra = UuM
The expected extent of an output tile along dimension j is computed as xj = dpBfra zj , for j = 0; 1; : : : ; d�
1. Equation (3) (see Section 3.3) computes the expected number of output tiles that an input chunk intersects.
Therefore, the expected number of input chunks out of I input chunks that map to a given output tile can be
computed as follows. Afra = �ITfra

Assuming perfect declustering, each processor reads BfraP output chunks during the initialization phase,

and AfraP input chunks during the local reduction phase. Each output chunk is sent to P � 1 processors,

therefore each processor sends out BfraP (P�1) output chunks during the initialization phase and BfraP (P�1)
output chunks during the global combine phase. Since each output chunk is mapped to by � input chunks,Bfra� computation operations are carried out in total for an output tile of Bfra output chunks. Assuming

perfect declustering of the input chunks across all processors, each processor is responsible for Bfra�P
computation operations per output tile.

12



4.2 Computing Operation Counts for SRA

Let e be the average percent of system memory used for local output chunks in an output tile. That is, if g
is the average number of ghost chunks per processor per output tile, we havee = bsrabsra + g
where bsra is the average number of local output chunks per processor per output tile. Note that we have
1p � e � 1. When e is equal to 1p , SRA is equivalent to FRA and g = bsra(P � 1). Given the value of e,
we have the following. Bsra = ePMubsra = BsraP = eMuTsra = UBsra = UuePM

We compute g and e as follows. The goal of the declustering algorithms used in ADR [5, 9] is to
achieve good I/O parallelism when retrieving input and output chunks from disks. To achieve this goal,
the algorithms distribute spatially close chunks evenly across as many processors as possible. Therefore, �
input chunks that map to an output chunk on processor p can be expected to be distributed across as many
processors as possible. Let g0 be the average number of ghost chunks that are created for an output chunk.
Then, with bsra local output chunks per processor in an output tile, on average a processor creates a total ofg = bsrag0 ghost chunks per output tile, and P processors create Pbsrag0 ghost chunks per output tile.

Under the assumption that input chunks that map to the same output chunk are distributed across as
many processors as possible, SRA becomes FRA if � � P . When � < P , we haveg0 = probfp is one of � procsg(� � 1) + probfp is not one of � procsg�= �P (� � 1) + (1� �P )�= P � 1P �
And hence, e = bsrabsra + g = bsrabsra + bsrag0 = 1

1 + g0 = PP + �(P � 1)g = bsrag0 = bsraP � 1P �
Similar to FRA, the expected extent of an output tile along the dimension j is computed as xj = dpBsra zj ,
for j = 0; 1; : : : ; d� 1, and � is computed by Equation (3). The expected number of input chunks out of I
input chunks that intersect with a given output tile therefore can be computed as follows.Asra = �ITsra

Assuming perfect declustering, each processor reads bsra = BsraP output chunks during the initialization
phase, and AsraP input chunks during the local reduction phase. Each processor sends g messages for output
chunks during the initialization phase, and g messages for output chunks during the global combine phase.

13



Similar to FRA, since each output chunk is mapped to by � input chunks, Bsra� computation operations
are carried out in total for an output tile of Bsra output chunks. Assuming perfect declustering of the input
chunks across all processors, each processor is responsible for Bsra�P computation operations per output
tile.

4.3 Computing Operation Counts for DA

For DA, the output chunks are not replicated, so the effective overall system memory is P �M . Therefore,
the average number of output chunks and the number of output tiles can be computed as follows.Bda = PMuTda = UBda = UuPM
Similar to FRA, the expected extent of an output tile along dimension j, xj for j = 0; 1; : : : ; d � 1, and
the expected number of input chunks out of I input chunks that map to a given output tile, Ada, can be
computed as follows. xj = dpBda zj for j = 0; 1; : : : ; d� 1Ada = �ITda

During the local reduction phase for DA, local input chunks that map to output chunks on other processors
must be sent to those processors. As a result, DA requires interprocessor communication for input chunks.
We estimate the number of messages for input chunks for each processor, Imsg, as follows.

1. Compute for each regionRv 2 Ψ of an output tile (see Section 3.3) the expected number of messages
generated for an input chunk that belongs toRv. This is denoted as Iv .

2. Compute Imsg as the sum of all Iv’s, weighted by the volumes of the regions that correspond to theIv’s. Imsg = XRv2Ψ

vol(Rv)
vol(an output tile)

Iv
Equation (2) in Section 3.3 computes the volume of regionRv. We now compute Iv , the expected number
of messages for an input chunk in regionRv 2 Ψ. First, let C be defined as follows.C(k; P ) = ( P � 1 if k � P(k � 1) kP + k(1� kP ) otherwise= ( P � 1 if k � PP�1P k otherwise

For an input chunk that maps to k output chunks in an output tile, under perfect declustering, those k output
chunks are expected to be distributed to as many processors as possible. That is, if k � P , then the k
mapped output chunks are stored on P processors; otherwise, they are stored on k processors. C(k; P )
therefore gives the expected number of remote processors that own at least one of the k mapped output
chunks. Note that this is also the expected number of messages that are generated in DA for an input chunk
that maps to k output chunks in an output tile.

14



We now continue the computation of Iv for regionRv. First, consider the scenario where input chunks
have extents smaller than that of an output tile. See Figure 4(b) for the four regions of an output tile in
this scenario. To simplify the analysis, for each of the four regions, we designate an input chunk as a
representative input chunk for all input chunks in the same region, and use the expected number of messages
that are generated by DA for the representative input chunk as the expected number of messages generated
for each input chunk in that region.

First consider region R<1;1> in Figure 4(b). Since all input chunks in region R<1;1> map to only one
output tile, they are all expected to generate the same number of messages. With each input chunk mapping
to � output chunks, we have I<1;1> = C(�; P )

Now let’s consider an input chunk c in region R<1;2>, where c maps to two output tiles, say t and s.
Under the assumption that the output dataset is a regular 2-dimensional dense array, the number of output
chunks that input chunk c maps to in output tile t is proportional to the volume (or area when d = 2) of the
portion of c that falls inside output tile t. Suppose that the volume of the portion of input chunk c contained
in output tile t is !1, and the volume of the portion of c contained in output tile s is !2, and vol(c) = !1 +!2.
Then the expected number of messages generated for input chunk c can be computed as the sum of the
expected number of messages for c in output tile t and the expected number of messages for c in output tiles, which is equal to C( !1!1+!2

�; P ) + C( !2!1+!2
�; P ).

Imagine the top-right corner of input chunk c slides from the top towards the bottom of regionR<1;2> in
output tile t. Initially, most of the� output chunks that cmaps to belong to t. As c slides towards the bottom
of regionR<1;2> in t, c overlaps with s, and therefore some of the � output chunks now belong to t. When
its top-right corner is located at the mid-point of regionR<1;2>, input chunk c is evenly split between t ands. As a result, half of the � output chunks that c maps to belong to output tile t, and half of them belong
to output tile s. As its top-right corner moves passed the mid-point of region R<1;2> towards the bottom
of the region in t, more and more of the � output chunks that c maps to belong to output tile s. One can
obviously see that as c slides from the top towards the bottom of regionR<1;2> in t, the expected number of
messages for c first increases, maxs out at the mid-point ofR<1;2>, and then decreases. To pick a reasonable
representative input chunk for regionR<1;2>, we choose the input chunk whose top-right corner is located
at one-quarter below the top of region R<1;2> and one-quarter to the left of the right-boundary of regionR<1;2>, though the input chunk whose top-right corner is located at one-quarter above the bottom of regionR<1;2> is equally desired. Figure 6 shows the top-right corners of the four representative input chunks for
the four regions of an output tile. As discussed earlier, all input chunks in regionR<1;1> generate the same
number of messages, and hence any input chunk in that region can be chosen as the representative input
chunk. For convenience, we choose the one with its top-right corner located at one-quarter from the top and
one-quarter from the right boundaries of region R<1;1>. The top-right corners of the representative input
chunks for the other two regions,R<2;1> andR<2;2>, are chosen in a similar way as for regionR<1;2>. The
number of messages that these four representative input chunks generate are used for the expected numbers
of messages for input chunks in the four regions, and they are computed as follows.I<1;1> = C(�; P )I<1;2> = C(y0

3
4y1y0y1

�; P ) + C(y0
1
4y1y0y1

�; P ) = C(3
4
�; P ) + C(1

4
�; P )I<2;1> = C( 3

4y0y1y0y1
�; P ) + C( 1

4y0y1y0y1
�; P ) = C(3

4
�; P ) + C(1

4
�; P )I<2;2> = C( 1

4y0
1
4y1y0y1

�; P ) + C( 3
4y0

1
4y1y0y1

�; P ) + C( 1
4y0

3
4y1y0y1

�; P ) + C( 3
4y0

3
4y1y0y1

�; P )
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<1,2>

Figure 6: The top-right corners, shown as shaded triangles, of the four representative input chunks for the
four regions of an output tile, under the assumption that input chunk extents are smaller than that of an
output tile. = C( 1

16
�; P ) + 2 C( 3

16
�; P ) + C( 9

16
�; P )

Note that the representative chunks in region R<1;1>, R<1;2>, R<2;1> and R<2;2> map to one, two, two
and four output tiles, respectively. That is why I<1;1>, I<1;2>, I<2;1> and I<2;2> are computed as sums of
one, two, two and four terms, respectively.

Now consider the scenario where input chunks have extents larger than that of an output tile. Let’s start
with the 2-dimensional case. Similar to the analysis in the scenario where input chunks have small extents,
we choose a representative input chunk for each of the four regions shown in Figure 5(b). The top-right
corners of those representative input chunks are chosen the same way they were chosen for the smaller
input chunk scenario, and Figure 7 shows the four representative input chunks for an example where r0 = 3
and r1 = 1. The expected number of messages for the four representative input chunks for the example in
Figure 7 are given below.I<r0;r1> = (r0 � 2)C(x0y1y0y1

; P ) + C( y0�(r0�4)x0
4 y1y0y1

�; P ) + C( 3y0�(3r0�4)x0
4 y1y0y1

�; P )I<r0+1;r1> = (r0 � 1)C(x0y1y0y1
; P ) + C( 3

4 [y0 � (r0 � 1)x0]y1y0y1
�; P ) + C( 1

4 [y0 � (r0 � 1)x0]y1y0y1
�; P )I<r0;r1+1> = (r0 � 2)C(x0

3
4y1y0y1

; P ) + (r0 � 2)C(x0
1
4y1y0y1

; P )+ C( y0�(r0�4)x0
4

3
4y1y0y1

�; P ) + C( y0�(r0�4)x0
4

1
4y1y0y1

�; P )+ C( 3y0�(3r0�4)x0
4

3
4y1y0y1

�; P ) + C( 3y0�(3r0�4)x0
4

1
4y1y0y1

�; P )I<r0+1;r1+1> = (r0 � 1)C(x0
3
4y1y0y1

; P ) + (r0 � 1)C(x0
1
4y1y0y1

; P )+ C( 3
4 [y0 � (r0 � 1)x0]3

4y1y0y1
�; P ) + C( 3

4 [y0 � (r0 � 1)x0]1
4y1y0y1

�; P )
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Figure 7: The representative input chunks, shown as the shaded rectangles, for region R<2;1> (top-left),R<1;1> (top-right),R<2;2> (bottom-left) and R<1;2> (bottom-right), with r0 = 3 and r1 = 1.+ C( 1
4 [y0 � (r0 � 1)x0]3

4y1y0y1
�; P ) + C( 1

4 [y0 � (r0 � 1)x0]1
4y1y0y1

�; P )
For the d-dimensional case, one could apply the same analysis for the 2-dimensional case to each of the d
dimensions separately, and combine the results from the d dimensions into the final result as follows. All
representative input chunks of an output tile, when projected onto dimension j, becomes two segments: one
corresponds to representative input chunks in regionsR<:::;rj;:::>, and the other corresponds to representative
input chunks in regions R<:::;rj+1;:::>. We refer to these two segments as Srj and Srj+1. Depending on
the value of rj, each of the two segments would intersect one or many output tiles along dimension j, and
for each intersection, the length of the overlap between a segment and an output tile determines in part how
many messages DA generates for a representative input chunk when processing that output tile. As one
will see, for each segment, there are at most three different lengths. Define ej(k; l), where k 2 frj; rj + 1g
and l 2 f0; 1; 2g, as the three possible lengths of the overlap between Sk and the output tiles Sk intersects,
and let cj(k; l) be the number of output tiles that Sk intersects at the length of ej(k; l). We now look at two
different cases, rj = 1 and rj � 2, and for each case, compute cj(k; l) and ej(k; l).
Case 1 rj = 1 (ie yj � xj). Figure 8 shows the two segments obtained by projecting MBRs of the

representative input chunks onto dimension j when the extents of input chunks are smaller than that
of an output tile.� Segment Srj is entirely contained within one output tile, and hence the length of the overlapping
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<..., rj, ...>R

<..., rj+1, ...>R

yj/4

xj-yj

(xj-yj)/4

yj/4

xj
yj

Figure 8: Two segments, Srj on top and Srj+1 at bottom, obtained by projecting the MBRs of all represen-
tative input chunks onto dimension j, when the input chunk extents are smaller than that of an output tile.
The solid line in the middle represents the extents of two output tiles projected onto dimension j. SegmentSrj is entirely contained within one output tile, while segment Srj+1 intersects two output tiles.

segment between Srj and the output tile is yj . Therefore, we havecj(rj; l) = (
1 if l = 0
0 otherwiseej(rj; l) = ( yj if l = 0
0 otherwise� Segment Srj+1 intersects one output tile at length 3

4yj and another at length 1
4yj . Therefore, we

have cj(rj + 1; l) = (
1 if l = 0; 1
0 otherwiseej(rj + 1; l) = 8><>: 3

4yj if l = 0
1
4yj if l = 1
0 otherwise

Case 2: rj � 2 (ie yj > xj). Figure 9 shows the two segments obtained by projecting the MBRs of the
representative input chunks onto dimension j when the extents of input chunks are larger than that of
an output tile.� Segment Srj intersects one tile at length yj�(rj�4)xj

4 , rj � 2 output tiles at length xj , and one

output tile at length 3yj�(3rj�4)xj
4 . Therefore, we havecj(rj; l) = 8><>: 1 if l = 0; 2rj � 2 if l = 1

0 otherwiseej(k; l) = 8>>><>>>: yj�(rj�4)xj
4 if l = 0xj if l = 1

3yj�(3rj�4)xj
4 if l = 2

0 otherwise
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Figure 9: Two segments, Srj on top and Srj+1 at bottom, obtained by projecting the MBRs of all represen-
tative input chunks onto dimension j, when the input chunk extent is larger than that of an output tile. The
solid line in the middle represents the extents of rj + 1 output tiles projected onto dimension j. SegmentSrj intersects rj output tiles, while segment Srj+1 intersects rj + 1 output tiles.rj cj ; ej l = 0 l = 1 l = 2rj = 1 cj(rj; l) 1 0 0ej(rj ; l) yj 0 0cj(rj + 1; l) 1 1 0ej(rj + 1; l) 3

4yj 1
4yjrj � 2 cj(rj; l) 1 rj � 2 1ej(rj ; l) yj�(rj�4)xj

4 xj 3yj�(3rj�4)xj
4cj(rj + 1; l) 1 rj � 1 1ej(rj + 1; l) 3

4 [yj � (rj � 1)xj ] xj 1
4 [yj � (rj � 1)xj ]

Table 2: Summary of the values for cj(k; l) and ej(k; l) where k = rj ; rj + 1 and l = 0; 1; 2.� Segment Srj+1 intersects one tile at length 3
4 [y0 � (rj � 1)xj ], rj � 1 output tiles at length xj ,

and one output tile at length 1
4 [yj � (rj � 1)x1]. Therefore, we havecj(rj + 1; l) = 8><>: 1 if l = 0; 2rj � 1 if l = 1

0 otherwiseej(rj + 1; l) = 8>>><>>>: 3
4 [yj � (rj � 1)xj] if l = 0xj if l = 1
1
4 [yj � (rj � 1)xj] if l = 2
0 otherwise

Table 2 summarizes the values of cj(k; l) and ej(k; l). Define Θd as the set of all possible d-dimensional
vectors where the domain of each element of these vectors is f0; 1; 2g. That is,

Θd = f< n0; n1; : : : ; nd�1 > jnj 2 f0; 1; 2g for j = 0; 1; : : : ; d� 1g
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For given r0; r1; : : : ; rd�1, I<v0;v1;:::;vd�1> can be computed as follows.I<v0 ;v1;:::;vd�1> = X<�0;�1;:::;�d�1>2Θd8<:24d�1Yj=0

cj(vj ; �j)35 C(�[d�1Yj=0

ej(vj ; �j)]; P )9=;
where vj 2 frj; rj + 1g for j = 0; 1; 2; : : : ; d� 1. Now that we can compute Iv for each of the 2d regions
of an output tile, the expected number of messages for an input chunk, m, can be computed as follows.m = XRv2Ψ

�
vol(Rv)x0x1 � � �xd�1

Iv�
where vol(Rv) is computed by Equation (2) in Section 3.3. WithAda input chunks per output tile, Imsg, the
expected number of input chunk messages for a processor per tile, can be computed as follows.Imsg = AdaP m= AdaP XRv2Ψ

�
vol(Rv)x0x1 � � �xd�1

Iv�
Assuming perfect declustering, each processor reads BdaP output chunks during the initialization phase,

and AdaP input chunks during the local reduction phase. Each processor sends Imsg messages for input
chunks during the the local reduction phase. Similar to FRA, since each output chunk is mapped to by �
input chunks, Bda� computation operations are carried out in total for an output tile of Bda output chunks.
Assuming perfect declustering of the input chunks across all processors, each processor is responsible forBda�P computation operations per output tile.

5 Cost Model Validation

In this section we validate our cost models with queries for synthetic datasets and for several driving
applications.

We first use synthetic datasets to evaluate the cost models under controlled scenarios. The output
dataset is a 2-dimensional rectangular array. The entire output attribute space is regularly partitioned into
non-overlapping rectangles, with each rectangle representing an output chunk in the output dataset. The
input dataset has a 3-dimensional attribute space, and input chunks were placed in the input space randomly
with a uniform distribution. The assignment of input and output chunks to the disks was done using a Hilbert
curve-based declustering algorithm [5]. In these experiments the size of the input and output datasets were
fixed. The output dataset size is set at 400MB, with 1600 output chunks. The input dataset size is set at
1.6GBytes. We varied the number and extent of input chunks to produce two sets of queries: one set with� = �, and the other with 8� = �, where � is the number of output chunks that an input chunk maps
to, and � is the number of input chunks that an output chunk is mapped to. For each set of queries, �
is set to 1.5, 4, 9, and 16. We set the computation time to 1 millisecond for processing an output chunk
in the initialization, global combine, and output handling phases, and to 5 milliseconds for processing
each intersecting (input,output) chunk pair in the local reduction phase. The number of ADR back-end
processors is varied from 8, 16, 32, 64 to 128. For a given number of processors, a query plan is generated
for each query under each of the three strategies. Actual operation counts for a given query are obtained
by scanning through the query plan and selecting the maximum counts among all the processors, while
estimated operation counts per processor are computed from the cost models. These actual and estimated
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Figure 10: Actual (left) and estimated (right) I/O volume, computation time and communication volume
for the synthetic query with � = � = 1:5.

counts are turned into I/O volume, computation time and communication volume, and compared against
each other. Figure 10– 17 show the actual and estimated values for I/O volume, computation time and
communication volume for the two sets of synthetic queries. As is seen from the figures, the cost models
are able to accurately estimate the I/O volume, computation time and communication volume for the query
processing strategies for different � and � values for varying number of processors.

Figure 10– 17 show that both FRA and SRA read more data than DA does, and this is because FRA and
SRA use part of the system memory for ghost chunks and therefore generates more output tiles than DA
does. As a result, input chunks are retrieved from disks more times in FRA and SRA than they are in DA.
The figures also show that the computation time decreases for all strategies as the number of processors
increases. This is because the computation operations are distributed among all processors and therefore
as the number of processors increases, each processor is responsible for less computation. Due to the
computation overhead for initializing the ghost chunks during the initialization phase and for combining
the ghost chunks during the global combine phase, both FRA and SRA perform more computation than
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Figure 11: Actual (left) and estimated (right) I/O volume, computation time and communication volume
for the synthetic query with � = � = 4.
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Figure 12: Actual (left) and estimated (right) I/O volume, computation time and communication volume
for the synthetic query with � = � = 9.
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Figure 13: Actual (left) and estimated (right) I/O volume, computation time and communication volume
for the synthetic query with � = � = 16.
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Figure 14: Actual (left) and estimated (right) I/O volume, computation time and communication volume
for the synthetic query with � = 1:5, � = 12.

25



0

50

100

150

200

250

300

350

400

8 16 32 64 128

Number of Processors

I/O
 V

ol
um

e 
(M

B
)

FRA
DA
SRA

0

50

100

150

200

250

300

350

400

8 16 32 64 128

Number of Processors

I/O
 V

ol
um

e 
(M

B
)

FRA
DA
SRA

0

5

10

15

20

25

30

35

40

8 16 32 64 128

Number of Processors

C
om

pu
ta

tio
n 

T
im

e 
(s

ec
)

FRA
DA
SRA

0

5

10

15

20

25

30

35

40

8 16 32 64 128

Number of Processors

C
om

pu
ta

tio
n 

T
im

e 
(s

ec
)

FRA
DA
SRA

0

200

400

600

800

1000

1200

1400

1600

1800

8 16 32 64 128

Number of Processors

C
om

m
un

ic
at

io
n 

V
ol

um
e 

(M
B

)

FRA
DA
SRA

0

200

400

600

800

1000

1200

1400

1600

1800

8 16 32 64 128

Number of Processors 

C
om

m
un

ic
at

io
n 

V
ol

um
e 

(M
B

)

FRA
DA
SRA

Figure 15: Actual (left) and estimated (right) I/O volume, computation time and communication volume
for the synthetic query with � = 4, � = 32.

26



0

50

100

150

200

250

300

350

400

450

8 16 32 64 128

Number of Processors

I/O
 V

ol
um

e 
(M

B
)

FRA
DA
SRA

0

50

100

150

200

250

300

350

400

450

8 16 32 64 128

Number of Processors 

I/O
 V

ol
um

e 
(M

B
)

FRA
DA
SRA

0

10

20

30

40

50

60

70

80

8 16 32 64 128

Number of Processors

C
om

pu
ta

tio
n 

T
im

e 
(s

ec
)

FRA
DA
SRA

0

10

20

30

40

50

60

70

80

8 16 32 64 128

Number of Processors 

C
om

pu
ta

tio
n 

T
im

e 
(s

ec
)

FRA
DA
SRA

0

500

1000

1500

2000

2500

3000

8 16 32 64 128

Number of Processors

C
om

m
un

ic
at

io
n 

V
ol

um
e 

(M
B

)

FRA
DA
SRA

0

500

1000

1500

2000

2500

3000

8 16 32 64 128

Number of Processors 

C
om

m
un

ic
at

io
n 

V
ol

um
e 

(M
B

)

FRA
DA
SRA

Figure 16: Actual (left) and estimated (right) I/O volume, computation time and communication volume
for the synthetic query with � = 9, � = 72.
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Figure 17: Actual (left) and estimated (right) I/O volume, computation time and communication volume
for the synthetic query with � = 16, � = 128.
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DA. SRA often performs less computation than FRA because SRA may replicate fewer ghost chunks and
therefore incur less computation overhead. This is confirmed by the observation that whenever SRA incurs
less computation overhead than FRA , SRA also generates less communication volume. In fact, the cost
model predicts that SRA behaves exactly the same as FRA until the point where � = P , after which an
output chunk is only mapped to by � input chunks, and therefore is only replicated by SRA on at most �
processors. FRA, on the other hand, always replicates an output chunk on all P processors, and therefore
generates more communication volume as the number of processors increases. The predicted relationship
between FRA and SRA is most clearly displayed by the estimated communication volume in Figure 15.
The actual communication volume shown in Figure 15, however, indicates that the actual behaviour of
SRA tends to depart from that of FRA even with � < P . This is because the cost model assumes perfect
declustering of the input chunks that map to an output chunk, which in practice is not achieved. As a result,
SRA replicates an output chunk on fewer than � processors, and therefore generates less communication
volume that what the cost model predicts. Note that due to the same reason, the cost model for DA does not
accurately estimate the communication volume for 16 processors for the query with � = 16 and � = 128,
as seen in Figure 17. The cost model assumes perfect declustering of the output chunks that an input
chunk maps to. Thus, with � = 16, an input chunk on one processor is expected to be sent to fifteen other
processors. In practice, however, perfect declustering is not achieved, and an input chunk is sent to fewer
than fifteen processors. As a result, the actual communication volume is less than what the cost model
predicts.

We have also evaluated the cost models for different application scenarios, varying the number of
processors and the input dataset size. We used application emulators [11] to generate various application
scenarios for the applications classes that motivated the design of ADR (see Section 1). An application
emulator provides a parameterized model of an application class; adjusting the parameter values makes it
possible to generate different application scenarios within the application class and scale applications in a
controlled way. The assignment of both input and output chunks to the disks was done using a Hilbert curve
based declustering algorithm [5].

Table 3 summarizes dataset sizes and application characteristics for three application classes; satellite
data processing (SAT) [4], analysis of microscopy data with the Virtual Microscope (VM) [1], and water
contamination studies (WCS) [8]. The output dataset size was a fixed size for each application. The last
column shows the computation time per chunk for the different phases of query execution (see Section 2);
I-LR-GC-OH represents the Initialization-Local Reduction-Global Combine-Output Handling phases. The
computation times shown represent the relative computation cost of the different phases within and across
the different applications. The LR value denotes the computation cost for each intersecting (input chunk,
accumulator chunk) pair. Thus, an input chunk that maps to a larger number of accumulator chunks takes
longer to process. In all of these applications the output datasets are regular arrays, hence each output
dataset is divided into regular multi-dimensional rectangular regions. The distribution of the individual data
items and the data chunks in the input dataset for SAT is irregular. This is because of the polar orbit of the
satellite [10]; the data chunks near the poles are more elongated on the surface of the earth than those near
the equator and there are more overlapping chunks near the poles. The input datasets for WCS and VM
are regular dense arrays that are partitioned into equal-sized rectangular chunks. We selected the values
for the various parameters to represent some typical scenarios for these application classes, based on our
experience with the complete applications.

Figures 18–20 show the measured and estimated values for I/O volume, computation time and commu-
nication volume for each application. As is seen from the figures, the cost models are able to estimate the
volumes of I/O and communication in most application scenarios. However, the cost models fail to estimate
the computation times of the strategies for the SAT and WCS applications. Our experiments show that
in these two applications there is a load imbalance in the computation assigned to the various processors.
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Input Dataset Output Dataset Computation
Num. of Total Num. of Total Average Average (in milliseconds)

App. Chunks Size Chunks Size � � I–LR–GC–OH
SAT 9K 1.6GB 256 25MB 161 4.6 1–40–20–1
WCS 7.5K 1.7GB 150 17MB 60 1.2 1–20–1–1
VM 16K 1.5GB 256 192MB 64 1.0 1–5–1–1

Table 3: Application characteristics.

There are two main reasons for the load imbalance in these applications. First, the distribution of data
elements in the output attribute space is not uniform for SAT. Second, the Hilbert curve-based declustering
algorithms do not achieve optimal distribution of the input and output chunks across the processors, causing
load imbalance in some cases. Since the cost models assume perfect declustering and a uniform distribution
of the computations across the processors, the models may fail to predict the relative computation times of
the strategies in those cases.

6 Conclusion

We have presented cost models to estimate the average operation counts for three query processing strategies,
FRA, SRA and DA, in ADR. These cost models allow us to estimate the average I/O volume, computation
time and communication volume for each processor. We have also validated our cost models with queries
for synthetic datasets and queries for three driving applications. Our experiments show that our cost models
are able to accurately estimate I/O volume, the computation time and communication volume for each of
the three query processing strategies.

However, the ultimate goal of our research is to predict the relative query execution time for each query
processing strategy so that for a given query and machine configuration, the ADR planning service is able
to choose the query processing strategy that would process the query in the least amount of time. The
cost models presented in this paper are able to accurately predict the I/O volume, computation time and
communication volume for the three query processing strategies, but stop short of estimating the actual
execution time. One solution is use the I/O and communication bandwidths of the machine that ADR runs
on to turn I/O and communication volumes into I/O and communication times, and the average computation
time for the data processing functions specified by the given query to turn computation operation counts
into computation time. The sum can then be used as the estimated execution time. I/O and communication
bandwidths can be measured by running a set of sample queries and use the average bandwidths observed
by those queries. Computation time of the data processing functions can be obtained from statistics gathered
either during ADR startup time or from earlier queries that invoke the same query processing functions.
We are currently working on a machine model that when combined with the cost models presented in this
paper, can be used to estimate the relative query executing times of the three strategies.

Note that the cost models that we have presented in this paper assume that the input data chunks
are uniformly distributed in the output attribute space, and that the output chunks form a regular multi-
dimensional grid. In scenarios where these assumptions do not hold, such as the SAT application described
in Section 5, an inspector code can be used to generate a partial query plan for each of the three strategies
and estimate the relative query execution times of the strategies based on information gathered from the
partial query plans. The full query plan for the strategy that is predicted with the smallest execution time is
then generated, and the query can be processed as planned. We are currently evaluating the effectiveness of
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Figure 18: Measured (left) and estimated (right) I/O volume, computation time and communication volume
for SAT application.
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Figure 19: Measured (left) and estimated (right) I/O volume, computation time and communication volume
for WCS application.
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Figure 20: Measured (left) and estimated (right) I/O volume, computation time and communication volume
for VM application.
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