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In recent decades the invasive plant Phragmites australis (common reed) has spread 

throughout Chesapeake Bay marshes, lowering plant community biodiversity. Excess 

nutrient loading and salinity intrusion due to sea-level rise make these marshes 

vulnerable to invasions. This study examined the interaction between Phragmites 

australis and the native Spartina cynosuroides (big cordgrass) to determine whether 

dominance of one species was detected across a range of salinity and nitrogen 

treatments. Aboveground biomass production of P. australis was greater than S. 

cynosuroides at lower salinities; however, S. cynosuroides maintained biomass 

production as salinity increased. Fv/Fm ratios were measured as an indirect 

measurement of plant tissue physiological health; only Spartina maintained the ratio 

at higher salinities. Nitrogen addition increased Phragmites biomass and Fv/Fm ratio 

at higher salinities. Results suggest salinity and nitrogen interactively affect 

Phragmites biomass production, and that the negative effect of increased salinity on 

Phragmites spread can be mitigated by nitrogen runoff. 
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Chapter 1: Introduction 

 

Background 

Over the past century, invasive genotypes of the species Phragmites australis 

(Cav.) Trin. ex Steud. (common reed, hereafter referred to as Phragmites) have 

rapidly spread throughout coastal wetlands of North America including within the 

Chesapeake Bay region, due to factors such as human disturbance and increased 

nutrient runoff (Chambers et al. 1999). Phragmites is viewed as a threat to wetlands 

in North America including in the Chesapeake Bay because it reduces plant 

community species diversity wherever it establishes itself, displacing other plant 

species and producing tall, dense stands with extensive rhizomes (Rice et al. 2000). 

The global phenomenon of eutrophication from increased nitrogen inputs could 

continue to alter plant species composition and diversity of coastal marshes by 

facilitating the spread of Phragmites to the exclusion of other plant species (Crain 

2007). 

Increasing salinity due to sea-level rise may also affect the presence and 

spread of Phragmites in coastal wetlands. Increasing salinity will convert freshwater 

habitats to more brackish salinity regimes that will kill freshwater species and open 

niches for Phragmites to colonize (Chambers et al. 1999). However, whether this will 

facilitate Phragmites invasions is uncertain because it has not evolved salt-tolerant 

adaptations and therefore typically grows in lower salinity environments (such as 

freshwater and oligohaline wetlands), although it has been observed in brackish and 
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even salt marshes (Roman et al. 1984; Rice et al. 2000; Meyerson et al. 2009). As 

shown by my experiment, the future success of Phragmites in coastal marshes of the 

Chesapeake Bay as sea-level rise occurs may highly dependent on multiple factors, 

including the ability of Phragmites to continue to produce large amounts of biomass 

in increasingly saline environments, the amount of nitrogen that flows into 

Chesapeake Bay waters from agricultural and urban runoff, and on Phragmites’ 

ability to utilize this nitrogen for biomass production and interspecies competition. 

Rates of relative sea-level rise in the Chesapeake Bay are 3-6 mm/yr (NOAA 

2013), and are higher than any other area along the U.S. Atlantic coast. Several 

studies predict that a significant portion of Chesapeake Bay coastal wetlands will be 

inundated, further fragmented, or eroded by future sea-level rise (Rice et al. 2000; 

Crain et al. 2004; Pathikonda et al. 2009). This phenomenon has the potential to shift 

marsh plant community structures in favor of species that are more tolerant of 

increased inundation and salinity that result from sea-level rise. But as sea-level rise 

displaces currently growing plants, niches will open that may be filled by typical 

colonizers such as Phragmites. This species is able to rapidly produce large amounts 

of biomass, precluding other species from establishing in the area (Chambers et al. 

1999; Rice et al. 2000). 

Several studies have explored the concept of niches with respect to habitat 

zonation, the hypothesis that a tradeoff exists between stress tolerance and 

competitive ability (Bertness 1991; Levine et al. 1998; Liancourt et al. 2005; 

Lubchenco 1980; Pennings and Callaway 1992). This hypothesis presumes that the 

competitive ability of a species is generally inverse to its ability to tolerate abiotic 
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stress (Liancourt et al. 2005). Disturbances may displace plants and provide an 

opportunity for new species to colonize the area, as Phragmites has been found to 

commonly do (Chambers et al. 2003).  However, this may only applicable to 

disturbances such as nutrient addition that favor Phragmites, a species that tends to be 

found in low salinity habitats. The large amount of biomass that Phragmites produces 

is able to shade and crowd out other species in competition for sunlight and space 

(Rice et al. 2000) which, by this hypothesis, would make it an effective competitor 

but less able to tolerate physical stress. In contrast, Spartina is generally found in 

higher salinity zones due to its salt tolerance mechanisms. Spartina’s salt tolerance 

mechanisms favor  its growth in higher salinity marshes where the ability to tolerate 

harsh physical conditions, as opposed to interspecific competition, is the determining 

factor for plant zonation (Pennings and Callaway 1992). These two species exemplify 

the tradeoff between interspecies competitive ability and the ability to inhabit 

stressful environments. 

Nutrient input from both agricultural and urban sources is facilitating species 

invasions in coastal wetlands throughout the world (Zhao et al. 2009). The U.S. 

human population has grown in all regions of the country over the past decade (U.S. 

Census Bureau 2012), and nitrogen runoff from anthropogenic sources such as 

agriculture, sewage, and atmospheric deposition are increasingly affecting natural 

nitrogen cycles (Galloway 2004; Crain 2007). Greater nitrogen inputs to N-limited 

coastal wetlands could cause important shifts in plant community structure by 

promoting the invasion of plant species that rapidly establish monotypic stands and 

drastically reduce community species diversity (Crain 2007). Disturbance in the form 
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of increased nutrient availability has been shown to promote the spread of Phragmites 

(Minchinton and Bertness 2003). Its occurrence in New England marshes is closely 

tied to increased nitrogen (Meyerson et al. 2009). The invasive Phragmites has also 

been found to have a higher demand for N compared to the native Phragmites and 

Spartina alterniflora and Spartina patens (Meyerson et al. 2000). The nitrogen 

demand of the introduced Phragmites is approximately four times that of the native in 

mid-Atlantic tidal marshes, but anthropogenic N input has doubled along the North 

American Atlantic coast since pre-industrial times (Mozdzer and Zieman 2010). 

Phragmites may be a more efficient competitor for other limiting resources when 

nutrients such as nitrogen occur in surplus (Chambers et al. 1999). This characteristic 

could contribute to its continued success despite increased physiological stress from 

higher salinity due to sea-level rise. However, it is unclear how increased salinity and 

continued nitrogen runoff into coastal marshes will ultimately interact to alter coastal 

marsh plant communities by affecting the growth of invasives such as Phragmites. 

This question is crucial to predicting the future spread of Phragmites throughout 

Chesapeake Bay wetlands. Understanding the distribution of native and invasive plant 

species along gradually changing salinity gradients will increase the ability to 

accurately predict how coastal wetland plant communities will respond to continued 

salinity increase and a possible further increase in nutrient loading (Crain et al. 2004). 

This study examined the biomass production and tissue health of Phragmites 

and the native species Spartina cynosuroides (L.) Roth (big cordgrass, hereafter 

referred to as Spartina) grown in mixture under conditions of varying salinity and 

nitrogen levels. Spartina was chosen for this study because it is a native that is 
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phenotypically similar to Phragmites. Furthermore, the two species grow together 

throughout the Chesapeake Bay region in oligohaline and brackish coastal marshes. 

Their similar structure and overlapping habitat make it likely that the two species 

compete for the same resources and space. Finally, Spartina was chosen because it 

has evolved salt tolerance mechanisms that may allow it to continue to produce 

biomass that does not show evidence of physiological stress as salinity increases due 

to sea-level rise. 

Spartina and Phragmites Morphologies and Life Histories 

From a management and policy perspective, Spartina is classified as a native 

species in the U.S. Atlantic and Gulf of Mexico coasts; Phragmites on the other hand 

is classified as an invasive and is therefore subject to eradication and control methods. 

Spartina is a grass native to wetlands along the U.S. Atlantic and Gulf Coasts that 

reproduces primarily through rhizome production, similar to Phragmites.  It has been 

found in oligohaline marshes (0.5-5 ppt), but it typically occupies habitats with 

slightly higher salinities than the 0-5 ppt range where Phragmites is commonly found 

(Rice et al. 2000). Spartina is additionally described as being found in the muck of 

brackish coastal marshes (Godfrey and Wooten 1979) and “often in water” (Brown 

and Brown 1984). Phragmites is described as being most common in salinities less 

than 5 ppt, but its presence has been noted to some extent in salinities up to 18 ppt, 

and it has been documented in even higher salinities (Chambers et al. 1999, 2003). 

One study found that mortality did not occur in a greenhouse setting until 35 ppt 

(Hartzendorf and Rolletschek 2001). Upper limits of 45, 50 and 65 ppt have been 

reported for Phragmites in greenhouses (Hellings and Gallagher 1992). Phragmites is 
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most abundant in high marshes in the Northern Atlantic Coastal Region (Chambers et 

al. 1999). 

Spartina has evolved several salinity adaptations such as the water-efficient 

C4 photosynthesis pathway, and specialized leaf glands that excrete salt that was 

absorbed in the soil porewater by its rhizomes (Maricle et al. 2007). These 

adaptations may enhance its competitive ability against Phragmites as sea-level rise 

creates an increasingly saline environment for both species.  

All plant nomenclature and descriptions, except where specifically cited, are 

according to the USDA Plants database, http://plants.usda.gov, accessed 05/20/11. 

Objectives and Hypotheses 

Enhancing our understanding of how nitrogen and salinity interact to 

influence plant community distribution will improve our ability to anticipate the 

extent and location of the spread of Phragmites in the region as nitrogen input and 

sea-level rise continue. It will also increase our ability to successfully construct 

created and restored wetlands that incorporate a high diversity of native species with 

the highest chance of long-term survival, by preferentially including species that have 

evolved salt tolerance mechanisms and that have been shown to effectively compete 

against Phragmites, reducing the likelihood of the establishment of monoculture 

Phragmites stands throughout coastal wetlands. 

The objectives of this study were to determine through biomass and 

fluorescence measurements the effects of salinity and nitrogen addition on the growth 

and physiological health of Phragmites and Spartina, and to determine whether 

dominance of one species over the other existed across a range of treatment 
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combinations. I hypothesized that Spartina would comprise the majority of relative 

biomass at high salinity levels, because of its salt tolerance adaptations. I further 

hypothesized that at high nitrogen levels Phragmites would comprise the majority of 

relative biomass, because of its high production of biomass in response to nitrogen. 
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Chapter 2: Methods 
 

 

Plant Collection and Greenhouse Setup 

Live rhizomes of Spartina cynosuroides and Phragmites australis were 

collected from the same location of the Clyde Watson Boating Area in Brandywine, 

Maryland (38°38’N, 76°41’W), where they were found growing together (Figure 

A1.1). The boating area is located on the Upper Patuxent River (Figure A1.2). The 

wetland is microtidal (<1 m difference between high tide and low tide) and 

semidiurnal (2 high and 2 low tides per day) system. It is categorized as a marsh, i.e. 

dominated by herbaceous plants, and is located on the Upper Patuxent River, a 

tributary of Chesapeake Bay in southeastern Maryland, USA. On July 27, 2011, 

salinity measurements of 1.7-2.2 ppt were taken during a site visit, indicating that the 

marsh is oligohaline.  Rhizomes were transported to the University of Maryland 

Research Greenhouse and placed in standing fresh water until new shoots emerged. 

Spartina stems were removed from rhizomes by clipping, and the rhizomes were 

then cultivated standing upright in freshwater in a constructed wooden trough (2.6 m 

x 0.79 m, 0.41 m depth) lined with 45mm-thick Firestone Pond liners (Nashville 

TN). To cultivate new Phragmites shoots, rhizome masses of Phragmites were 

placed horizontally in a second similar trough with the stems attached, until new 

shoots emerged at the stem nodes (Figure A1.3). Both troughs were filled with fresh 
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water to a depth of 20 cm, submerging the rhizome masses approximately 80%. A 

photograph of cultivation in the troughs is included in Appendix 1 as Figure A1.4. 

The new growth was separated into clumps of 3-4 live stems of similar total 

stem length and rhizome mass dimensions. Similar dimensions (rhizome mass and 

total stem length) of plants of both species were potted together in a 25/75 (v/v) 

sand/soil mixture in cylindrical plastic buckets (14.5 cm x 34 cm, radius x height). 

During the experiment both species were grown in mixture in all mesocosms. Sand 

and “Sunshine LC1 professional growing mix” soil were provided by the greenhouse 

facility. 

Each bucket was placed on two 0.61x0.61-meter wood blocks and nested 

inside a rectangular plastic tank (39 cm x 32.5 cm x 47 cm, length x width x height) 

that contained standing water maintained at 10 cm below the soil surface of the inner 

bucket (Figure A1.5). Approximately 35 0.6-cm holes were drilled into the bottom 

of each bucket for drainage (Figure A1.6). To simulate the natural shaded stands that 

both species grow in, a 60.96-cm-tall 40% white shade cloth was attached with 

bamboo stakes to the upper rim of each inner bucket. Treatments began 14 days after 

planting. The water level was raised to 10 cm above the soil surface for 2 days per 

week and then lowered to 10 cm below the soil surface for the rest of the week, 

creating a 30% duration of inundation similar to that of high marsh communities 

(Mitsch and Gosselink 2007). To simulate tidal fluctuations in salt marshes, McKee 

and Rooth similarly established a flooding regime, manually raising the water level 

7-10 cm at regular intervals (2008). Although flooding is a major component of sea-

level rise along with salinity, differing periods of inundation were not chosen as a 
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treatment variable for several reasons. It is challenging to simulate realistic daily, 

weekly, and seasonal flooding cycles in a greenhouse without automated equipment 

or a significant commitment of time and labor. Additionally, for simplicity the 

experiment was limited to two treatment variables, salinity and nitrogen. 

Within the greenhouse chamber, daytime temperature was set to 26.6º C (80º 

F) and nighttime temperature was set to 21.1º C (70º F). Daytime relative humidity 

was set to 80% and nighttime relative humidity was set to 55%. Conditions were 

maintained by automated controls. Figures 2.1 and 2.2 show the daily average 

minimum and maximum of the temperature and light intensity that were recorded in 

half-hour increments throughout the experiment. 

Salinity and Nitrogen Treatments 

Six salinity levels were created using dissolved Instant Ocean: 0, 4, 10, 18, 28, 

40 ppt. Two nitrogen levels were also created using dissolved urea 46-0-0 fertilizer: 

a “Low” treatment level of 0.09 g/m2/wk nitrogen (equivalent to 30 g/m2/yr), and 

“High” treatment level of 0.9 g/m2/wk nitrogen (equivalent to 300 g/m2/yr). 

Treatments were distributed randomly in 3 blocks, totaling 36 mesocosms (Figure 

A1.7). Each salinity level was chosen in order to represent a scenario currently 

existing in or around the Chesapeake Bay, and to represent scenarios that may occur 

in the Clyde Watson Boating Area wetland and other oligohaline wetlands as sea 

level rises. 

At the beginning of the experiment, salinity levels were gradually raised every 

other day by one treatment level until all levels were achieved, e.g. from 0 to 4 ppt, 

and then from 4 to 10 ppt. Salinity levels were then maintained using a weekly 



 

 11 
 

application of dissolved Instant Ocean. Treatments were maintained for 14 weeks. 

Porewater salinity measurements were taken during the experiment to ensure that 

salinity levels were achieved. Dissolved nitrogen was added weekly to the inner 

bucket standing surface water. The “high” rate of 300 g/m2/yr is lower than the rate 

used in previous related field studies including Levine et al. (1998) (450 g N/m2/yr), 

and Pennings et al. (2002) (452 g N/m2/yr), and resulted in no obvious signs of plant 

burning in this study. This is a typical rate found in natural salt marshes (Mitsch and 

Gosselink 2007). The “low” loading rate of 30 g/m2/yr is equivalent to the average 

annual nitrogen loading rate in natural freshwater inland marshes (Mitsch and 

Gosselink 2007). Similarly, the current estimated average annual nitrogen loading 

rate for tidal fresh marshes is 50 g/m2/yr, and for salt marshes is 90 g/m2/yr (Mitsch 

and Gosselink 2007). A survey performed 1973-1980 at the Rhode River, a 

subestuary of the Chesapeake Bay, calculated approximately 1.065 g/m2/yr average 

annual total N area loading into the subestuary due to bulk precipitation (Correll and 

Ford 1982). A more comprehensive modeling study a decade later estimated that the 

total N input into the Chesapeake Bay was 20.54 g/m2/yr into the upper main stem of 

the bay and 29.33 g/m2/yr into the Potomac River alone (Boynton et al. 1995). These 

1995 estimates represent an 8-fold increase in total N inputs from colonial times 

(Boesch et al. 2001). The calculations by Correll and Ford are smaller than the 

estimates made by Boynton et al. because of the smaller forested area of the Rhode 

River subestuary and because of the time difference of more than a decade between 

the two studies. 
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Vegetation and Soil Measurements 

The lengths of all stems in each experimental unit (bucket) were measured and 

added to calculate total stem length. Total stem length per species per mesocosm was 

measured weekly while treatments were applied and recorded as Weekly Total Stem 

Length. Change in Total Stem Length was calculated as the final week’s total stem 

length minus the initial week’s total stem length. Weekly average stem length was 

calculated by averaging each week’s Weekly Total Stem Length. Weekly total stem 

number was calculated by adding the number of stems counted during each week’s 

measurements. Analyses for the week of April 5 were not performed and data was not 

included in any data sets, due to missing data. 

The maximum chlorophyll fluorescence (Fv/Fm ratio) of leaves of both species 

was measured in order to indirectly estimate the physiological health of the live 

aboveground biomass. A Walz PAM-2100 Chlorophyll Fluorometer (Heinz Walz 

GmbH, Effeltrich, Germany) was used on two different dates during the experiment: 

Thursday, April 19, 2012 (58 days after treatments began), and Tuesday, May 14, 

2012 (83 days after treatments began). Readings were taken at night to eliminate 

introduced variability from time of day and angle of sunlight. Three live leaves per 

species per mesocosm were measured. For standardization, chosen leaves were the 

newest growth that was wide enough to fill the 1-cm2 measurement area of the 

instrument. Measurement of changes in Fv/Fm ratios was chosen because it is a rapid 

and widely used method of measuring chlorophyll fluorescence, so that it is well 

documented in previous literature (Maxwell and Johnson 2000). 
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Explanations of the theory behind the Fv/Fm ratio can be found in Maxwell 

and Johnson (2000) and Mateos-Naranjo et al. (2007). The basic process begins with 

dark adaptation of the measured leaf for at least 15 minutes, to “empty” electrons 

from all PSII reaction centers and reduce photochemical quenching (PQ) and non-

photochemical quenching (NPQ) and fluorescence. Next, to establish a baseline 

fluorescence, a light source is directed onto the leaf with a light that is not of a 

wavelength that drives photosynthesis, to obtain the value of minimum fluorescence 

(F0). Then, a light pulse of a defined wavelength is directed at the leaf, and the light 

energy is absorbed by the leaf’s chlorophyll molecules. Light energy can take one of 

three paths: the energy can enter a Photosystem II reaction center to drive 

photosynthesis by the creation of ATP, or be re-emitted as heat (NPQ) or light of a 

longer wavelength (chlorophyll fluorescence). These second two processes act to 

protect the plant from damage from excess light energy. An instantaneous reading of 

maximum fluorescence (known as Fm or Fmax) is taken before NPQ occurs and when 

all Photosystem II reaction centers have accepted an electron but before they have 

time to pass on the electron to Photosystem I. The relative proportions of each of the 

three possible pathways provide information about the leaf’s health, since a greater 

proportion of fluorescence and NPQ indicate that fewer Photosystem II reaction 

centers are available to perform photosynthesis. At this instantaneous reading, NPQ is 

eliminated as a potential electron pathway. The proportion of light that is fluoresced 

back to the instrument indicates the proportion that has been absorbed by the reaction 

centers; a larger amount of fluorescence indicates that fewer photosystems are 
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available to accept electrons, attributable to abiotic stress. A greater proportion of 

fluorescence creates a smaller Fv/Fm ratio in the following equation: 

 

Fv/Fm = (Fm- F0)/ Fm 

 

Ultimately, Fv/Fm ratios measure the maximum intrinsic efficiency of 

photosystem 2 (PSII) (Maricle et al. 2007). A physiologically “optimal” range for 

most plant species has been found to be near 0.83 (Bjorkman and Demmig 1987; 

Johnson et al. 1993; Maxwell and Johnson 2000). 

At the end of the experiment the aboveground biomass was separated by 

clipping all live plants at the soil surface. Belowground biomass was rinsed from the 

soil through a 1-mm x 2-mm filter. After harvest, all biomass was dried in an 

environmental chamber at 35˚ C and 12% humidity until the samples reached a 

constant mass, approximately two weeks. The biomass was then weighed to the 

nearest 0.1 g. Collection, transplant and treatment application methods were adapted 

from Crain (2004). During treatment applications, nitrate nitrogen (NO3-N) and 

ammonium nitrogen (NH4-N) were measured twice in porewater samples with a Hach 

Model DR 2400 portable spectrometer (Hach Company, Loveland, Colorado, USA). 

Additional detailed methods descriptions are included in Appendix 3. 

Data Analysis 

The arrangement of treatments was a 6×2 factorial. All data were analyzed 

using two-way analysis of variance (ANOVA) except weekly change in stem height 

results, which were analyzed using repeated measures analysis of variance 
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(RMANOVA). The Tukey’s procedure was used to separate treatment means for all 

analyses except for weekly change in stem height results. All weekly change in stem 

height results, including weekly total stem height, weekly average stem height, and 

weekly totally number of stems, were log-transformed to meet the assumption of 

homogeneity of variance. Analyses were conducted using SAS 9.2 (SAS Institute, 

Cary, North Carolina) and SigmaPlot 10 (Systat Software, San Jose, California). An 

example of the SAS code is included in Appendix 2. 
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Figure 2.1: Greenhouse Temperature: Daily Maximum and Minimum. Daily 

maximums and minimums are based on continuous automated half-hour 

measurements.  

 

Figure 2.2: Greenhouse Light Intensity: Daily Maximum and Minimum. Daily 

maximums and minimums are based on continuous automated half-hour 

measurements. 
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Chapter 3: Results 

 

Change in Total Stem Length 

For both species, as salinity increased, the effect of N addition on the change 

in total stem length (difference between final and initial weekly measurements of 

combined length of all stems within mesocosms) decreased, resulting in a significant 

salinity*nitrogen interaction (Figure 3.1, Table 1). At lower salinities, addition of N 

resulted in a significant increase in Phragmites change in total stem length (almost 

400% increase at 0 ppt, more than 500% at 10 ppt) but there was no significant effect 

of N addition at 18 ppt or above in Phragmites. In contrast, N addition only increased 

Spartina total stem length at 0 ppt, where it increased by a similar proportion to the 

increase seen in Phragmites biomass at 10 ppt. 

Figure A1.9 shows a photo example of the Block 2 mesocosms arranged from 

40-0 ppt salinity with High nitrogen during the final week of treatment, just prior to 

harvest. Figure A1.10 shows a photo example of Block 2 mesocosms arranged from 

40-0 ppt salinity with Low nitrogen. 

Weekly total stem length 

At 0 ppt, the final week’s Phragmites total stem length at high nitrogen was 

triple the total stem length under low nitrogen, and double the final Spartina total 

stem length at high nitrogen. 

At low salinities (0 & 4 ppt) a significant difference between nitrogen 

treatment levels appeared in Phragmites weekly total stem length after 4-5 weeks of 
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treatment application. For Spartina, at 0 ppt this significant difference did not form 

until the final weeks of the experiment, and above 0 ppt no significant difference 

existed at any time during the experiment. 

Similar to its weekly stem lengths at 0 and 4 ppt, at salnity 10 ppt a significant 

difference between nitrogen treatment levels appears in Phragmites after 4-5 weeks 

of treatment applications. This indicates that nitrogen addition still enhanced 

Phragmites biomass growth despite increased salinity. At 18 ppt, a significant 

difference in Phragmites weekly stem lengths existed between nitrogen levels and the 

difference in total stem lengths per nitrogen treatment level became increasingly large 

after 4 weeks. However, at 28 and 40 ppt, no significant difference existed at any time 

during treatment application. 

For Spartina, as salinity increased, differences in weekly total stem length 

over time became minimal and growth rate appeared to level off. At 28 and 40 ppt 

there was no significant increase or decrease in weekly total stem length for either 

species between the first and final measurement weeks. 

These results suggest that at lower salinities, N addition helped both species to 

increase stem growth, but the effect of additional N decreased as salinity increased, 

and sooner for Spartina; Phragmites was able to benefit from N addition to increase 

stem growth rate at higher salinity levels than Spartina. At the lowest salinities, 

Phragmites stem growth rates resembled exponential curves, highlighting its ability 

to utilize nitrogen to produce additional biomass over time. 
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Weekly average stem length 

 
For both species, there was no significant difference in the weekly average 

stem lengths at any time at all salinity and nitrogen levels, with the exception of 

Phragmites at 18 ppt with high N addition. In this instance, average stem length 

actually decreased over time. 

The average Spartina weekly average stem length was similar to Phragmites 

at lower salinities but became increasingly taller than Phragmites at 10, 18, and 28 

ppt. At these higher salinities the negative effect of increasing salinity was possibly 

reducing Phragmites stem growth. 

At all salinity levels there was much greater variation in each mesocosm 

between the tallest and the shortest Spartina stems, e.g. at 0, 18, and 28 ppt. Spartina 

continued to increase the stem length of existing individuals to very tall heights 

relative to Phragmites. But at 40 ppt salinity, there was less of a height difference 

between the two species. 

 

Weekly total stem number 

At 4, 10, and 18 ppt, the number of Phragmites stems increased over time at 

high N. Phragmites stem production slowed as salinity increased but addition N 

boosted production. At 0 ppt, a significant difference in the number of Phragmites 

stems did not occur between N levels until the final week; until then, the number of 

Phragmites stems rapidly increased significantly at both N levels, possibly because of 

lack of salinity stress. At 4, 10, and 18 ppt, the number of Phragmites stems did not 
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increase at low N. At these increased salinity levels, salinity stress appeared to reduce 

stem production. 

There was little or no increase in number of Spartina stems over time at any 

salinity level, with a few exceptions, and N level never had a significant effect on the 

number of Spartina stems. At 0 and 10 ppt, there was a significant difference between 

number of Spartina stems between the first week and the final week at high N, but 

this was because the differences in stem number were small, e.g. an increase from 2 

initial stems to 4 final stems. In general, Spartina simply did not produce a large 

number of stems in comparison to Phragmites during the experiment. At the highest 

salinities 28 & 40 ppt, there was no increase in the number of Spartina or Phragmites 

stems over time at either N level. Where significant differences between stem 

numbers occur due to N level, the number of Phragmites stems increased more 

slowly than the 4-5 weeks that were observed for Phragmites average stem length: it 

was not until the final weeks of the experiment at 0, 10 and 18 ppt, and not until 6 

weeks into the experiment at 4 ppt. 

At all salinity and N levels, the initial number of stems was similar between 

the two species (intentionally created during the experimental setup) but by the end of 

the experiment at 0, 4, and 10 ppt the number of Phragmites stems at the high N level 

was 30-40 times the number of Spartina stems at either N level. The difference 

between the two species was smaller as salinity increased. 

In these graphs and in the graphs of weekly average stem height, it appeared 

that Spartina was allocating resources to stem length as opposed to increasing number 

of stems. Wheares Phragmites seemed to allocate resources to producing a large 
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number of shorter stems, Spartina seemed to allocate resources to producing a small 

number of taller stems. 

Biomass 

Similar to change in total stem length, the effect of N addition on the 

aboveground biomass of both Phragmites and Spartina decreased as salinity 

increased, but only resulted in a significant salinity*nitrogen interaction for 

Phragmites (Figure 3.5a-b, Table 1). At 0, 4 and 10 ppt, N addition increased 

Phragmites aboveground biomass by about 60-75%, although N had no significant 

effect above 10 ppt. Nitrogen addition increased Spartina aboveground biomass by 

nearly 300% at 0 ppt and by about 100% at 4 ppt, but above these salinities there was 

no significant effect. 

Salinity and nitrogen addition did not significantly change the belowground 

biomass of Phragmites or Spartina (Figure 3.5c-d, Table 1) or the total (aboveground 

plus belowground) biomass of Spartina (Figure 3.6b, Table 1), or the total biomass of 

both species combined (Figure 3.6c). At high nitrogen, salinity did significantly 

decrease the total biomass of Phragmites from approximately 360 grams at 4 ppt to 

135 grams at 40 ppt (p<0.05) (Figure 3.6a, Table 1). The lack of significant effects in 

belowground biomass data caused the majority of total biomass data to also have few 

significant effects. 

Phragmites and Spartina produced similar proportions of relative 

aboveground biomass at lower salinity levels but Spartina produced the majority of 

biomass at the highest salinities (Figure 3.7, Table 1). At 40 ppt, Spartina produced 

more than 80% of the aboveground biomass with high N addition and nearly 70% 



 

 22 
 

with low N addition. At 40 ppt, N addition doubled Phragmites relative aboveground 

biomass from about 15% to more than 30%. 

Nitrogen addition did not significantly affect relative aboveground biomass 

for either species at other salinities, and did not affect relative belowground biomass 

for either species or in combination (Figure 3.8, Table 1). 

For both species combined and for each species individually, N addition did 

not significantly increase the root-to-shoot ratio (Figure 3.9, Table 1). 

Fv/Fm Ratio 

In April, salinity addition had no effect on the Phragmites Fv/Fm ratio except 

at 40 ppt. At this salinity level there was a significant salinity*nitrogen interaction; 

the high nitogen treatment reduced the ratio by 25% and the low nitrogen treatment 

reduced it to a ratio of almost 0 (p<0.05) (Figure 3.10a, Table 1). Wwhen N addition 

was low the Phragmites ratio at this highest salinity level was 20% the ratio of 0.83 

cited by multiple papers as “optimal” but N addition significantly increased the ratio 

by a factor of 6 (p<0.05) although the increased ratio was still below the optimal 

range. In April, there was a significant difference in the Spartina Fv/Fm ratio at 4 ppt 

under high nitrogen compared to both high N and low N ratios at 40 ppt, but the 

actual change was relatively small, from 0.80 to 0.77 for both high and low N (Figure 

3.10b). 

In May, the highest salinity level and low N addition each decreased the 

Phragmites Fv/Fm ratio, similar to the April results (Figure 3.10c). With high N 

addition, the Phragmites ratio at 40 ppt was approximately 55% of the ratio at 18 ppt. 

On this date greater variation was measured at all salinities in both Phragmites and 
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Spartina ratios and there was a significant salinity*nitrogen interaction for both 

species (Figure 3.10c-d, Table 1). As in April, N addition did not significantly affect 

the Spartina Fv/Fm ratio. 

The difference in variation between the measurements taken on each date 

could possibly partly be explained by the different day of the week on which each 

measurement was taken. The water level was raised and lowered during the week, 

and increased inundation could have increased the physiological stress that the leaves 

experienced, leading to greater variation and lower measured ratios.  Through this 

explanation, more variation due to stress would be expected during a high water level 

on Thursday, April 19, but additional variation was actually measured on Tuesday, 

May 14. This indicates that the greater variation is more likely due to the negative 

effects of raised salinity  over time. 

Soil Porewater Nitrate and Ammonium 

At high nitrogen, porewater nitrate increased as salinity increased because of 

the measured decrease in aboveground biomass production that Figures 3.5a-b 

demonstrate (Figure 3.11, Figure 3.13a).  Both these results correlate with 

aboveground biomass production results – Figures 3.11-3.13 can be viewed as 

inverses of Figures 3.5a-b. As salinity levels increased, reduced biomass of both 

species caused a decrease in the amount of soil nitrate absorbed by rhizomes so that it 

accumulated in the soil instead. At low nitrogen, nitrate did not accumulate in the soil 

because only a small amount of nitrogen was being added to the soil. 

Later in the experiment there was less difference among porewater nitrate 

concentrations measured across salinities at high nitrogen. On May 12 there was no 
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significant difference in porewater nitrate at any salinity or nitrate level, and on May 

23 a difference only existed between the highest salinity level at the high nitrogen 

level, and the lowest salinity levels (0, 4, and 10 ppt). This may be because of the 

strictness of the Tukey-Kramer test – the ANOVA indicates that there was a 

significant difference as salinity increased, but it may not have been indicated by the 

Tukey-Kramer test because the test is the most conservative analysis method. 

However, when averaged across all dates the same trend seen in Figure 3.11 was also 

reflected in Figure 3.13a. 

This increase in concentration as salinity increased was also observed for 

porewater ammonium from 4 ppt to 40 ppt (Figure 3.12). Decreased aboveground 

biomass can explain these results, as well. At high nitrogen at 0 ppt, ammonium 

porewater concentrations were higher than at 4 ppt possibly because in general plants 

preferentially absorb nitrate, as opposed to ammonium, so that there was less 

ammonium absorbed at this salinity level.
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Table 1 ANOVA results for total stem length, biomass, and fluorescence. The Randomized Complete Block Design included three 
blocks with a total of 36 mesocosms. Treatments were applied using a factorial arrangement of 6 salinity levels and 2 nitrogen levels. 
Both species were grown in mixture in all mesocosms. Significant effects (p<0.05) are indicated in bold. 
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Table 2 ANOVA results for weekly stem measurements. Measurements were taken weekly while treatments were applied. 
Significant effects (p<0.05) are indicated in bold. 
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Figure 3.1: Change in total stem length of Phragmites (a) and Spartina (b) across 
salinity levels and nitrogen addition levels. 
Change in total stem length was calculated as the difference between final and initial 
weekly measurements of combined length of all stems, and stem lengths were 
measured weekly during treatment application. 
Error bars represent standard error of the least squares mean. Within each species, 
means with different letters are significantly different (Tukey test, p<0.05). 
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Figure 3.2: Weekly total stem length of Phragmites (a, c) and Spartina (b, d) across 
salinity levels and nitrogen addition levels. 
Weekly total stem length was calculated as the sum of the combined length of all 
stems per week. 
Error bars represent standard error of the arithmetic mean. All data was log-
transformed to meet the assumption of homogeneity of variance. 
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Figure 3.2: Weekly total stem length of Phragmites (e, g) and Spartina (f, h) across 
salinity levels and nitrogen addition levels. 
Weekly total stem length was calculated as the sum of the combined length of all 
stems per week. 
Error bars represent standard error of the arithmetic mean. All data was log-
transformed to meet the assumption of homogeneity of variance. 
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Figure 3.2: Weekly total stem length of Phragmites (i, k) and Spartina (j, l) across 
salinity levels and nitrogen addition levels. 
Weekly total stem length was calculated as the sum of the combined length of all 
stems per week. 
Error bars represent standard error of the arithmetic mean. All data was log-
transformed to meet the assumption of homogeneity of variance. 
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Figure 3.3: Weekly average stem length of Phragmites (a, c) and Spartina (b, d) 
across salinity levels and nitrogen addition levels. 
Weekly average stem length was calculated as the average of the sum of the 
combined length of all stems per week. 
Error bars represent standard error of the arithmetic mean. All data was log-
transformed to meet the assumption of homogeneity of variance. 
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Figure 3.3: Weekly average stem length of Phragmites (e, g) and Spartina (f, h) across 
salinity levels and nitrogen addition levels. 
Weekly average stem length was calculated as the average of the sum of the 
combined length of all stems per week. 
Error bars represent standard error of the arithmetic mean. All data was log-
transformed to meet the assumption of homogeneity of variance. 
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Figure 3.3: Weekly average stem length of Phragmites (i, k) and Spartina (j, l) across 
salinity levels and nitrogen addition levels. 
Weekly average stem length was calculated as the average of the sum of the 
combined length of all stems per week. 
Error bars represent standard error of the arithmetic mean. All data was log-
transformed to meet the assumption of homogeneity of variance. 
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Figure 3.4: Weekly total stem number of Phragmites (a, c) and Spartina (b, d) across 
salinity levels and nitrogen addition levels. 
Weekly total stem number was calculated as the sum of the number of stems per 
week. 
Error bars represent standard error of the arithmetic mean. All data was log-
transformed to meet the assumption of homogeneity of variance. 
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Figure 3.4: Weekly total stem number of Phragmites (e, g) and Spartina (f, h) across 
salinity levels and nitrogen addition levels. 
Weekly total stem number was calculated as the sum of the number of stems per 
week. 
Error bars represent standard error of the arithmetic mean. All data was log-
transformed to meet the assumption of homogeneity of variance. 
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Figure 3.4: Weekly total stem number of Phragmites (i, k) and Spartina (j, l) across 
salinity levels and nitrogen addition levels. 
Weekly total stem number was calculated as the sum of the number of stems per 
week. 
Error bars represent standard error of the arithmetic mean. All data was log-
transformed to meet the assumption of homogeneity of variance. 
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Figure 3.5: Aboveground biomass of Phragmites (a) and Spartina (b) across salinity 
levels and nitrogen addition levels. 
Belowground biomass of Phragmites (c) and Spartina (d) across salinity levels and 
nitrogen addition levels. 
Biomass was separated, dried and weighed at the end of the experiment. 
Error bars represent standard error of the arithmetic mean. Within each species, 
means with different letters are significantly different (Tukey test, p<0.05). 
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Figure 3.6: Total biomass of Phragmites (a), Spartina (b), and both species together 
(c) across salinity levels and nitrogen addition levels. 
Total biomass represents the sum of aboveground and belowground biomass for a 
single species or for both species combined. 
Error bars represent standard error of the least squares mean. Within each species, 
means with different letters are significantly different (Tukey test, p<0.05). 
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Figure 3.7: Relative aboveground biomass of Phragmites (a) and Spartina (b) across 
salinity levels and nitrogen addition levels. 
Relative aboveground biomass was calculated by dividing the proportion of one 
species’ aboveground biomass by the total aboveground biomass of both species. 
Error bars represent standard error of the least squares mean. Within each species, 
means with different letters are significantly different (Tukey test, p<0.05). 
 

 
Figure 3.8: Relative belowground biomass of Phragmites (a) and Spartina (b) across 
salinity levels and nitrogen addition levels. 
Relative belowground biomass was calculated by dividing the proportion of one 
species’ belowground biomass by the total belowground biomass of both species. 
Error bars represent standard error of the least squares mean. Within each species, 
means with different letters are significantly different (Tukey test, p<0.05). 
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Figure 3.9: Root-to-shoot ratio of Phragmites (a), Spartina (b), and both species 
together (c) across salinity levels and nitrogen addition levels. 
Root-to-shoot ratios were calculated by dividing the ratio of belowground biomass to 
aboveground biomass per species and for both species combined. 
Error bars represent standard error of the least squares mean. Within each species, 
means with different letters are significantly different (Tukey test, p<0.05). 
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Figure 3.10: Fv:Fm ratio across salinity levels and nitrogen addition levels of 
Phragmites (a) and Spartina (b) measured on April 19, 2012, and of Phragmites (c) 
and Spartina (d) measured on May 14, 2012. 
Ratios were measured using a Walz PAM-2100 Chlorophyll Fluorometer. Optimal 
Fv:Fm ratio range is between 0.79 and 0.85; lower ratios indicate poor physiological 
health of leaf tissue. 
Error bars represent standard error of the least squares mean. Within each species, 
means with different letters are significantly different (Tukey test, p<0.05).
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Figure 3.11: Soil porewater nitrate measured on April 27, 2012 (a), May 12, 2012 (b), and May 23, 2012 (c) across salinity levels and 
nitrogen addition levels. Error bars represent standard error of the least squares mean. Means with different letters are significantly 
different (Tukey test, p<0.05).
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Figure 3.12: Soil porewater ammonium measured on May 11, 2012 (a) and May 23, 
2012 (b) across salinity levels and nitrogen addition levels. Error bars represent 
standard error of the least squares mean. Means with different letters are significantly 
different (Tukey test, p<0.05). 
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Figure 3.13: Soil porewater nitrate (a) and soil porewater ammonium (b) averaged 
across salinity levels and nitrogen addition levels, and averaged over all measurement 
dates. Error bars represent standard error of the least squares mean. Means with 
different letters are significantly different (Tukey test, p<0.05).  
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Chapter 4: Discussion 

 

Changes in Biomass Production 

Both the change in total stem length and aboveground biomass production of 

Phragmites increased more than those of Spartina when treated with high nitrogen 

addition at lower salinity levels; these results are partly explainable by the different 

growth strategies of the two species. Although they reach a similar mature height, 

Phragmites tends to produce dense monotypic stands. Schubauer and Hopkinson 

(1984) measured lower S. cynosuroides stem density in comparison to the similar 

species S. alterniflora, whereas Phragmites consistently produces densely spaced 

culms and high aboveground biomass that enhance its interspecific competitive 

ability (Farnsworth and Meyerson 1999; Meadows and Saltonstall 2007; Meyerson et 

al. 2009).  However, even considering this explanation, Phragmites had 

proportionally higher growth rate and aboveground biomass production with high N 

addition when salinity was low. This supports the findings of other studies that have 

shown that increased nitrogen correlates highly with the presence and spread of 

Phragmites (Chambers et al. 1999, 2003; Meyerson et al. 2000, 2009; Minchinton 

and Bertness 2003; Mozdzer et al. 2010; Mozdzer and Megonigal 2012). As 

mentioned earlier, it has been hypothesized that Phragmites is a more efficient 

competitor for other limiting resources when nitrogen occurs in surplus (Chambers et 

al. 1999). One study compared rates of assimilation of dissolved organic nitrogen 

(DON) and found higher rates in introduced Phragmites compared to S. alternflora, 
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citing direct assimilation of DON as a potential mechanism facilitating its expansion 

into temperate salt marshes. (Mozdzer et al. 2010). Another study found that the 

biomass of invasive Phragmites was stimulated by 136% with N addition, and further 

found that the introduced variety was more plastic than the native in its response to N 

addition that was equivalent to 25 g/m2/yr, by producing more total biomass 

(Mozdzer & Megonigal 2012). The study found that introduced Phragmites had 

significantly higher DON-assimilation rates and a higher affinity for dissolved 

inorganic nitrogen (DIN) than S. alterniflora. 

In my study, in contrast to Phragmites, Spartina was able to maintain 

comparable growth rate and aboveground biomass production under increasingly 

saline conditions. This was presumably because of Spartina’s salinity adaptations. 

This species has evolved the ability to uptake saltwater through its rhizomes, 

translocate it to aboveground biomass, and excrete concentrated salt crystals through 

specialized salt glands in its leaves; this salt excretion has been observed in several 

studies in both S. cynosuroides and other species in the Spartina genus including 

Spartina patens and Spartina alterniflora (Morris 1995; Weis and Weis 2003; 

Maricle et al. 2007; Eid 2011; Subudhi and Baisakh 2011). Excretion of salt crystals 

from Spartina leaves was observed during my experiment in mesocosms that 

contained at least 10 ppt salinity treatments, and a greater density of salt crystals on 

leaves was observed at higher salinities (Figure A1.8). Although S. cynosuroides is 

typically found in oligohaline and brackish marshes, S. alterniflora has been 

documented in soils with salinities up to 103 ppt, and S. patens in salinities up to 52 

ppt (Madrid et al. 2012). Spartina cynosuroides is typically documented in less saline 
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environments although its habitat overlaps with other Spartina species (Hackney and 

De La Cruz 1978; Stribling 1997; McHugh and Dighton 2004; White and Alber 

2009). Parrondo et al. (1978) measured the greatest S. cynosuroides biomass 

production at 8 ppt and below, all other factors being equal. 

Spartina cynosuroides additionally performs the more water-efficient C4 

photosynthesis pathway, which enhances its ability to continue to produce biomass at 

similar rates in higher salinity environments (Maricle et al. 2007). By using additional 

light energy, the C4 pathway elevates internal CO2 concentration for photosynthesis 

with the use of a biochemical pump, reducing loss of water via photorespiration and 

providing an advantage in salt marshes where physiological drought can occur due to 

high solute concentration (Furbank and Taylor 2005). Phragmites performs the C3 

photosynthesis pathway and does not possess salt glands (Burke et al. 2000). 

With respect to weekly average stem height and weekly number of stems, it 

appeared that Spartina was allocating resources to stem length as opposed to 

increasing number of stems. Wheares Phragmites seemed to allocate resources to 

producing a large number of shorter stems, Spartina seemed to allocate resources to 

producing a small number of taller stems. The average Spartina weekly average stem 

length was similar to Phragmites at lower salinities but became increasingly taller 

than Phragmites at 10, 18, and 28 ppt. Spartina continued to increase the stem length 

of existing individuals to very tall heights relative to Phragmites. This could possibly 

have given Spartina a competitive advantage over Phragmites because Spartina’s C4 

photosynthesis uses more ATP and therefore requires more sunlight energy, making 

its taller height possibly advantageous. Taller stems are able to reach sunlight more 
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easily when growing in stands and are less likely to be shaded out by other species, 

which is a common mechanism by which Phragmites outcompetes other species 

(Rice et al. 2000). Reduced light penetration into stands of Phragmites lowers air and 

soil temperatures and in some cases delays by several weeks the “spring melt” at the 

soil surface of these stands (Meyerson et al. 2009). 

At lower salinities, high nitrogen addition significantly increased Phragmites 

aboveground biomass production. Nitrogen addition may facilitate Phragmites 

survival by increasing its ability to outcompete other species at low salinities. Where 

nitrogen input from anthropogenic sources is elevated, it is possible that a shift will 

occur in the wetland plant community towards low diversity communities dominated 

by Phragmites. It has been found that when nutrients occur in surplus (i.e. when 

nitrogen is no longer the limiting factor), competition for light instead dictates 

competitive outcomes (Chambers et al. 1999); in environments that are high in 

nitrogen, the tall, dense stands that Phragmites produces could hold an edge over 

other species in the competition for light. Alternatively, the species may more directly 

benefit from added nitrogen in producing additional biomass, supported by evidence 

that higher nitrogen content has been found in the leaves of Phragmites growing near 

developed areas receiving nutrient runoff (Meyerson et al. 2009). Instead of 

outcompeting other species for light, increased nitrogen may simply increase 

Phragmites biomass production that would allow it to more rapidly occupy available 

growing space. 

Although there were clear trends for aboveground biomass, there were few 

clear trends for belowground biomass. Nitrogen addition did not significantly 



 

 49 
 

increase belowground biomass for either species or in total, although higher salinity 

levels did reduce total (aboveground plus belowground) biomass under the low 

nitrogen treatment level. Mateos-Naranjo et al. (2007) similarly found that Spartina 

densiflora aboveground biomass was reduced by increased flooding treatment but that 

there was no treatment effect on belowground biomass. Previous studies have found 

that the addition of nutrients shifts the majority of plant biomass production allocation 

from belowground to aboveground, and that increased nitrogen may cause slower 

belowground biomass growth in comparison to aboveground biomass growth (Tilman 

and Wedin 1991; Twolan-Strutt and Keddy 1996; Darby and Turner 2007; Zhang et 

al. 2007; Graham and Mendelssohn 2010). By this reasoning, the majority of growth 

and species competition in the current study would have occurred in aboveground 

measurements. At high nitrogen, biomass should have been allocated preferentially to 

shoots so that all high nitrogen treatment levels would have correlated with a smaller 

root:shoot ratio. This occurred at the highest and lowest salinity levels for total 

biomass of both species combined, and at the lowest salinity level for each species. 

However, this trend did not occur across all salinity levels. Another possible 

explanation is that the rhizomes may have required more time to become necrotic 

compared to the shoots, so that total belowground biomass death was not observable 

in the timespan for which this experiment ran. 

Changes in Plant Community Composition 

Similar to the total aboveground biomass and growth rate results, the relative 

aboveground biomass data supported the findings that Phragmites allocated 

additional nitrogen to increased biomass production and that Spartina allocated 
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resources to salinity tolerance adaptations. At 40 ppt, relative aboveground biomass 

was comprised mainly of Spartina. This proportion is explainable partly because in 

some higher salinity mesocosms all Phragmites biomass was necrotic by the end of 

the experiment, and because biomass was greatly reduced for both species. 

Additionally, where Phragmites continued to produce biomass at 40 ppt, Spartina 

produced similar or greater final aboveground biomass and growth rate. Although N 

increased Phragmites aboveground biomass, nitrogen did not significantly increase 

Phragmites relative aboveground biomass except at 40 ppt. This indicates that 

although additional N may be advantageous to Phragmites aboveground biomass 

production in high-salinity environments, this advantage appears to be limited 

because of the greater negative effect that higher salinity has on its biomass 

production. Furthermore, this suggests that the persistence of salt-tolerant species 

such as Spartina in low-salinity environments may depend heavily on continued low 

nitrogen input because of the possibility of displacement by Phragmites when N load 

is increased. Previous studies have found that increases in nitrogen load correlate with 

lowered wetland species diversity and shifts in community structure towards invasive 

species such as Phragmites (Dukes and Mooney 1999; Bart and Hartman 2000; Green 

and Galatowitsch 2002; Tyler et al. 2007). However, both nitrogen and salinity 

played roles in the current study in altering the relative biomass of the two species, 

and the balance of stressors (salinity) to resources (N) may be critical in determining 

relative species abundance in coastal wetlands as sea-level rise continues (Brose and 

Tielborger 1995; Crain 2007). My study indicates that even small differences in this 
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balance may have a significant impact on the competitive interactions among species 

and the plant community structure. 

Plant Tissue Measurements 

Multiple studies have linked lowered photosynthetic performance with 

increased abiotic stress, and have found that a sustained lowered Fv/Fm ratio is 

indicative of plant tissue damage in response to environmental stress (Maxwell and 

Johnson 2000; Mateos-Naranjo et al. 2007). Reduced Fv/Fm ratios have been 

measured in Phragmites that was exposed to elevated salinity (Deng et al. 2011; 

Zhang and Deng, 2012). In one study, an Fv/Fm ratio of 0.16 was recorded for 

Phragmites exposed to 200 mM NaCl (Zhang and Deng 2012). 

Maximum photosynthetic rate (Pmax), a similar measurement obtained by 

using a chlorophyll fluorometer, was also found to decrease in S. alterniflora and S. 

patens as soil salinity increased; the standardized coefficient of interaction between 

soil salinity and Pmax was found to be -0.32 for S. alterniflora and -0.41 for S. patens 

(Madrid et al. 2012). However, although one study found a decrease in maximum 

quantum efficiency of CO2 fixation (a related measurement) in S. alterniflora and S. 

patens under elevated salinity, Fv/Fm did not also decrease, suggesting that salinity 

had no effect on the photosynthesis of these species by inactivation of PSII reaction 

centers (Maricle et al. 2007). The salinity adaptations evolved by members of the 

Spartina genus may explain these complex findings, which demonstrate that not all 

photosynthetic performance characteristics of plants in this genus are negatively 

affected by increased salinity. 



 

 52 
 

It is important to note that some studies have found differences in the 

sensitivity of various types of stress indicators when comparing among more 

traditional biomass assessment methods such as growth rate and leaf expansion rates, 

and physiological methods such as Fv/Fm ratio and adenylate energy charge ratio. In a 

comparison of indicators of sublethal stress due to cadmium addition, it was found 

that decreased leaf expansion rates and photosynthesis rates correlated with stressors 

earlier in the experiment than other indicators, Fv/Fm ratio did not decrease until much 

later in the experiment, leaf spectral reflectance variables were not affected by 

cadmium addition, and regrowth rate after harvest depended heavily on species 

(Mendelssohn et al. 2001). Other studies have found that increase in proline 

concentration was more responsive as a short-term indicator to small changes in 

salinity in S. patens (Ewing et al. 1995) and that biomass was a more sensitive 

indicator as the species’ salt-tolerance decreased (1988). These findings demonstrate 

the need to rely on multiple indicators when attempting to characterize the effects of 

stressors on the health of a plant species. 

In my experiment, lowered Fv/Fm ratios appear to be attributable to elevated 

salinity levels, but may also have been lowered by possible heat stress from additional 

increasing greenhouse temperatures as the experiment progressed from February to 

May. Temperature and humidity were controlled by automated mechanics, but 

greenhouse mechanical setups are limited in their ability to regulate temperature 

during warmer months. 

Figure 2.1 shows that there was more variation in the maximum temperature 

later in the experiment that could possibly have lowered Fv/Fm ratios, but overall there 
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was no apparent increase in average temperature compared to earlier months. Figure 

2.2 shows that there was also no apparent increase in average light intensity over the 

duration of the experiment. 

Although Phragmites biomass production and growth rate were greater under 

many treatment combinations, only Spartina maintained high Fv/Fm ratios at the 

highest salinity levels with low N addition. At the highest salinity level several 

Phragmites leaves became necrotic whereas Spartina continued to produce tissue 

with Fv/Fm ratios similar to lower salinity levels. These results support the conclusion 

that instead of competing with other species primarily by producing large amounts of 

biomass at a high rate, Spartina channeled its resources into salinity tolerance 

mechanisms that maintained physiologically healthy tissue in the biomass that was 

produced. Where live Phragmites leaves existed to measure photosynthetic activity, 

Fv/Fm ratio was significantly reduced, although with high N addition its Fv/Fm ratio 

was higher at 40 ppt. This is further evidence that N addition can play a role in the 

ability of Phragmites to continue to produce photosynthesizing biomass under 

increasingly saline conditions. However, it is interesting to note that despite high N 

addition, the Phragmites ratio at 40 ppt was approximately 55% of the ratio at 18 ppt. 

This further suggests that N addition may have a limited positive effect on 

Phragmites physiological health. The study was concluded before rhizomes became 

pot-bound; it is unclear whether the species would have continued to benefit from the 

high nitrogen input as oceanic salinity persisted. A follow-up field study would 

provide additional information by allowing a longer running experiment without pot-

bound belowground biomass developing and possibly altering the results. 
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These findings are in accordance with studies concerning habitat zonation, the 

hypothesis that a tradeoff exists between stress tolerance and competitive ability, and 

that the competitive ability of a species is inverse to its stress tolerance ability 

(Liancourt et al. 2005). Along stress gradients, superior competitors such as 

Phragmites have been found to dominate the least stressful regions, whereas species 

that are competitively inferior such as Spartina occupy more stressful zones where 

tolerance mechanisms provide a survival advantage (Lubchenco 1980; Levine et al. 

1998). In my experiment, Phragmites Fv/Fm ratios were highest when stress from 

salinity was lowest, whereas Spartina Fv/Fm ratios were greater than those of 

Phragmites in the treatment levels representing the most stressful environments with 

the lowest resource inputs. 

Previous studies have found that competitive outcomes are reversed when 

nutrient input is increased (Levine et al. 1998; Emery et al. 2001; Greiner La Peyre et 

al. 2001). However, in my study Spartina’s relative aboveground abundance was 

greatest at the highest salinity level when N addition was low. As pointed out earlier, 

this may be partly explainable due to the fact that all Phragmites biomass was 

necrotic at 40 ppt in several mesocosms. However, at 18 ppt and 28 ppt live 

Phragmites aboveground biomass continued to grow in all mesocosms until the 

conclusion of the experiment. At these salinities, additional nitrogen may have 

allowed it to continue to produce large amounts of biomass even as stress increased. 

The limited significant effects of N addition on biomass production and Fv/Fm 

ratios in my study demonstrates that salinity and nitrogen both contribute to quantity 

and physiological health of biomass in a complex and interactive way. Further study 
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is needed to determine to what extent each factor alone, and their interaction, 

influence community composition and the facilitation of invasive species spread. 

Conclusions 

Summary 

The major findings of this experiment were: 

 Phragmites had proportionally aboveground biomass production with high N 

addition when salinity was low.  

 Spartina maintained comparable biomass production under increasingly saline 

conditions. 

 Phragmites allocated resources to producing a larger number of shorter stems; 

Spartina allocated resources to producing a small number of taller stems.  

 At higher salinities, high nitrogen addition continued to significantly increase 

Phragmites biomass production in comparison to the low nitrogen treatment 

level, but overall results indicate that N addition may have a limited positive 

effect on Phragmites growth and physiological health. 

 Nitrogen addition did not significantly increase belowground biomass for 

either species or in total.  

 Spartina relative aboveground biomass increased as salinity increased.  

 At the highest salinity level several Phragmites leaves became necrotic 

whereas Spartina continued to produce tissue with Fv/Fm ratios similar to 

lower salinity levels.  
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 Salinity and nitrogen both contributed to quantity and quality of biomass 

production in a complex and interactive way.  

 
By comparing the growth and physiological health of Phragmites 

with a species of the same family and with similar morphology and habitat, 

this study has demonstrated that the effects of nitrogen addition are 

moderated by salinity and vice versa. These results are consistent with other 

studies (Meyerson et al. 2000; Rice et al. 2000; Burdick and Konisky 2003; 

Crain 2007; Martina et al. 2010; Mozdzer et al. 2010) that have found that 

nitrogen addition is able to contribute to both the successful expansion of 

invasives such as  Phragmites into coastal marsh areas of the Chesapeake 

Bay, and to the reduction of biodiversity in these habitats through the 

increased abundance of invasive species (Farnsworth and Meyerson 1999; 

Findlay et al. 2003; Havens et al. 2003; Greenwood and MacFarlane 2006; 

Baldwin et al. 2011;). Previous studies have documented the expansion of 

Phragmites into vast areas of freshwater and, increasingly, brackish marshes 

(Burdick and Konisky 2003; Havens et al. 2003), and have also noted the 

high correlation of the expansion of Phragmites’ range with the development 

of urban areas that are able to provide large amounts of both nitrogen and 

disturbed spaces (Farnsworth and Meyerson 1999; Silliman and Bertness 

2004). 

Increased salinity from sea-level rise disturbs the salinity regime and 

may open niches for invasive colonizers to fill (Chambers et al. 2003). In 

wetlands where current plants are not eradicated by a change in salinity 
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regime, the primary productivity of vascular plants is reduced, and plants are 

forced to invest additional energy to exclude salt and sulfides (Odum et al. 

1995). However, this study has shown that the salinity intrusion associated 

with sea-level rise may reduce the effect of excess N in promoting the 

expansion of Phragmites and other invasives, while species with adaptations 

to salinity may continue to produce sufficient biomass to effectively compete 

despite increased saltwater intrusion. In response to increased salinity, 

Phragmites may migrate upstream to lower salinity levels but development 

of major seaports and transportation corridors that restrict tidal water flow 

may prevent this (Chambers 1999). Ultimately, community scale effects will 

greatly depend on the amounts of nitrogen runoff from agricultural and urban 

sources into coastal wetlands. 

 

Applications 

This study has several applications for urban development, 

management of invasives, and wetland creation and restoration. As 

urbanization continues, low-impact development techniques such as 

permeable surfaces and advanced stormwater management technology must 

be incorporated into planning and policy to minimize the runoff of nutrients 

that can dramatically shift neighboring wetland plant communities. 

Alternative pavers that allow more groundwater infiltration would reduce the 

rapid movement of large volumes of runoff into streams and rivers. Further 

reduction in the amount of nitrogen that flows into coastal marshes of the 

Chesapeake Bay is possible through the incorporation of designs that catch 
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and filter urban runoff such as grass swales, vegetative roof systems, rain 

gardens, and constructed wetlands (Dietz and Clausen 2008; Bedan and 

Clausen 2009). 

Regional organizations may more efficiently utilize their funds to 

control and eradicate Phragmites by incorporating efforts that target the 

reduction of nutrient runoff into surface waters, instead of exclusively 

funding the physical removal of Phragmites through common methods such 

as burning, mowing and pesticide application. This study demonstrated that 

although it is possible that Phragmites may outcompete other species at low 

salinities regardless of level of nitrogen input, nitrogen does play a role in 

further enhancing the interspecies competitive ability of Phragmites. Current 

invasive control methods may be simpler and provide more directly evident 

results, but they are time intensive and require a large staff to be effective. 

Typical management programs use conventional herbicide applications by 

either helicopter or truck sprayers, and may be combined with the burning of 

aboveground biomass during winter months (Meyerson et al. 2009). The U.S. 

Army Corps of Engineers also lists mowing and the use of tidal gates as 

common methods to contain stands (Saltonstall 2003). Alternatively, the 

availability of suitable invasion locations may be decreased by reducing the 

volume of runoff from developed areas and also by rerouting runoff away 

from coastal marshes (Burdick and Konisky 2003). Planned hydrology is a 

key aspect of successful wetland management programs and is critical in 
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promoting the growth of native species in restored marshes (Weinstein et al. 

1997). 

Additionally, created and restored wetlands must incorporate a diverse 

number of species that are able to produce a large amount of salt-tolerant 

biomass, in order to ensure the highest chance of long-term survival as sea-

level rise and the invasion of Phragmites continue in the region (Chambers et 

al. 2003). Plants should include species such as Spartina that have evolved 

physiological adaptations to elevated salinity. The most efficient use of funds 

includes the planting of species that have been shown to continue producing 

physiologically healthy biomass under increasingly stressful conditions. It is 

also essential that the selected species produce low density stands in 

comparison to Phragmites, which instead creates stands that increase 

community vulnerability for further invasions, decrease biodiversity, and 

increase susceptibility to fire (Windham and Meyerson 2003). Finally, 

planted species must be able to produce biomass at a rate that effectively 

competes with the high rates of invasive species such as Phragmites. 

Although it requires more planning to identify species that both have evolved 

salinity adaptations and the ability to quickly produce large amounts of 

biomass, this study has shown that these characteristics are important to the 

ability of planted wetland species to effectively compete with invasives. 

These findings must be incorporated into our understanding and management 

of coastal marshes to ensure the continued existence of diverse wetlands as 

environmental conditions change, and to increase the likelihood that these 
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wetlands continue to provide us with the essential ecosystem services that we 

rely on, such as flood control, wildlife habitat, erosion prevention and water 

filtration. 
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Appendices 
 

 

Appendix 1: Additional Photos and Site Map 

 

 

Figure A1.1: Marsh at Clyde Watson Boating Area facing away from shore. S. 
cynosuroides visible in foreground, P. australis stand visible in middle ground. 
Photograph taken October 25, 2010. 
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Figure A1.2: Aerial map of Clyde Watson Boating Area in relation to Washington, 
D.C. Boating Area indicated with arrow. 
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Figure A1.3: New Phragmites shoot emerged at an adult stem node placed 
horizontally in trough. After root development, the new growth was detached and 
used in the experiment. 
 

 
Figure A1.4: Cultivation of new stems in two constructed wooden troughs (2.6 m x 
0.79 m, 0.41 m depth) lined with 45mm-thick Firestone Pond liner. Pool liner has 
been lifted to photograph the wooden trough. 
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Figure A1.5: Example of mesocosm setup, with shadecloth raised for easier viewing 
of inner bucket. This photo was taken at the low water level. 
 
 

 

Figure A1.6: Example of mesocosm drainage tube at bottom of outer bucket. 
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Figure A1.7 Mesocosm arrangement in greenhouse. 
 
 

 

Figure A1.8: Salt excretion on S. cynosuroides leaves during experiment. Photograph 

taken April 26, 2012. 
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Figure A1.9: Block 2 mesocosms 40-0 ppt salinity with High nitrogen, arranged for 
photograph after treatments were concluded. 
 
 

 

Figure A1.10: Block 2 mesocosms 40-0 ppt salinity with Low nitrogen, arranged for 
photograph after treatments were concluded. 



 

 67 
 

Appendix 2: Sample SAS code 

(Example: Initial - Final Change in Height) 

proc mixed data=work.marthur; 
class salinity fert block; 
model height = salinity|fert /ddfm=satterth outp=resids; 
Random block; 
lsmeans salinity|fert/ adjust=tukey diff=all cl; 
ods output lsmeans=lsmean1; 
ods listing exclude diffs; ods output diffs=diff1; 
ods output tests3=stat1; 
quit; 
proc plot data=resids vpercent=50; 
plot resid*pred/vref=0; 
quit; 
data resids; 
set resids; 
aresid=ABS(resid); 
run; 
%include 'c:pdmix800.sas'; 
%pdmix800(diff1,lsmean1,alpha=.05,sort=yes); 
proc corr spearman data=resids; 
var aresid pred; 
quit; 
proc univariate data=resids plot normal; 
var resid; 
quit; 
proc print data=lsmean1; 
quit; 
*proc print data=diff1; 
quit; 
proc print data=stat1; 
quit; 
ods graphics off; 
quit; 
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Appendix 3: Additional Methods Description 

Raising porewater salinity 
 
Plants were potted in soil in “inner” buckets that had 4-5 holes per square centimeter 
drilled on the bottom with a ¼-inch drill. Each bucket was placed on 2 cut 2x2 wood 
planks inside a larger “outer” bucket to allow water flow under and around the inner 
bucket. Notches were cut in the 2x2 wood planks so that they could be fitted onto the 
rim of the outer bucket. Standing water was controlled by raising the level of the 
water in the outer bucket. The outer bucket was fitted with a drainage tube on one 
side near the bottom of the bucket. A removable rubber stopper was fitted in the tube. 
 
When the water level was raised for high tide, Instant Ocean was mixed in a separate 
mixing bucket until the desired salinity was verified with a multimeter. The water was 
poured into the inner bucket and the outer bucket until the desired water level was 
achieved. When the water level was lowered, the wood planks were fitted onto the 
rim of the outer bucket. The inner bucket was placed on the planks so that space was 
left for water to drain through the bucket’s holes. The inner bucket’s standing water 
was allowed to drain into the outer bucket (if applying dissolved fertilizer, it was 
applied to the inner bucket’s standing water at this time to infiltrate the soil as the 
water drained). At the same time, the rubber stopper was removed to drain the water 
from the outer bucket. The planks and inner bucket were replaced inside the outer 
bucket. 

 
 
Nitrate/ammonium standard creation 
 
Solid NH4Cl and solid KNO3 were dried in an oven at 110˚ C for two hours. NH4 
standard concentrations were 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5. NO3 standard 
concentrations were 0.0, 2.5, 5.0, 7.5 and 10.0.  
 
Solid NH4Cl was dissolved in deionized water to create the highest concentration, 2.5 
mg/L. 2.0 mg/L concentration was created by further diluting part of the 2.5 mg/L 
concentration in deionized water. This was repeated until all concentrations were 
made. Standards were tested on two instruments in the lab and compared to a 
regularly standardized Hach DR 5000 UV-Vis spectrophotometer borrowed from a 
neighboring University of Maryland laboratory. 
 
25 mL of porewater was extracted from each mesocosm, suction filtered with a 55m 
paper filter, and analyzed with a Hach Model DR 2400 portable spectrometer. 
 
 
Harvesting aboveground & belowground biomass 
 
Intact plants and attached rhizomes/soil were removed from buckets. Species were 
separated from each other by loosening the soil by hand but keeping the belowground 
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biomass intact and attached to the aboveground biomass. After this, aboveground 
biomass were clipped from belowground biomass and soil was rinsed from 
belowground biomass using a 1-mm x 2-mm filter. All biomass was dried in a 
chamber at a temperature of 35˚ C (95˚ F) and 15% relative humidity level for one to 
two weeks until the samples reached a constant mass. The biomass was then weighed 
to the nearest 0.1 g. 

 
 

PAM measurement 
 
To dark-adapt the plants, readings were taken beginning at 10 PM. Ambient PAR was 
checked using a PAR sensor to ensure no ambient light was interfering with 
measurements; all PAR readings taken around the perimeter of the mesocosm 
arrangement were 0 µm/m2/s. A green light provided visibility. In each bucket, three 
leaves per species were chosen for fluorescence measurement. Leaves chosen were 
the newest growth (i.e. highest position on stem) that were wide enough to fill the 1-
cm2 area for the instrument. Live leaves were preferentially chosen. When no live 
leaves were present, dead leaves were measured. If no leaves were present for a 
species in a mesocosm, no measurements were taken. Fv:Fm ratio was recorded. 
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