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PCR-based recombination technique, which is applied to representatives of the 
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recombinants highlights the potential impact of multiple mutations in stabilizing the 

selected domains and improving albumin binding through gains in hydrophilic 

surface area, direct modifications to the binding interface, and subtle changes in the 
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albumin binding constants compared to the wild type streptococcal domain (G148-



GA3). This study serves to validate further the application of in vitro recombination 

and phage display in the analysis of sequence polymorphisms. The recombination 
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over traditional DNA shuffling techniques. 
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Chapter 1: Motivations for Developing and Applying a 
Novel Recombinogenic Technique to a Family of Albumin 
Binding Domains 

Exploring Natural Sequence Space 

Many families of homologous proteins describe rich sequence spaces, which 

encode biologically significant variations in protein structure and function. While 

many of the sequence polymorphisms defined by families of homologous proteins are 

likely to represent functionally neutral mutations, some encode significant 

biochemical changes that support the specific lifestyle of the host organism. Efforts to 

identify and understand functional polymorphisms could support predictions about 

the biochemical properties of uncharacterized domains and guide molecular biologists 

in engineering mutants with desirable traits. 

The GA albumin binding module (de Chateau and Bjorck 1994), which is found 

on the surface of several bacterial pathogens, provides an excellent example of a 

protein family with polymorphisms that encode a broad spectrum of protein behavior. 

The three helix 46 amino acid albumin binding module has been associated with 16 

different domains found in six proteins and four bacterial species (Johansson, de 

Chateau et al. 1995; Johansson, de Chateau et al. 1997). Experiments suggests that 

the domain supports bacterial growth in vitro, possibly by scavenging albumin-bound 

nutrients (de Chateau, Holst et al. 1996). As a result, the various affinities for albumin 

species that have been identified in native GA domains (Johansson, Frick et al. 2002) 

may play a role in supporting bacterial tropisms. 



2

Structural and competitive binding studies of two albumin binding domains reveal 

significant differences in the backbone dynamics and albumin binding capabilities of 

these homologs. Specifically, hydrogen-deuterium (H-D) exchange data for the third 

albumin binding domain (G148-GA3) of streptococcal protein G and the single 

albumin binding domain (ALB8-GA) found in the Finegoldia magna (formerly 

Peptostreptococcus magnus) PAB protein suggest that the former has a more 

dynamic structure than the latter (Johansson, Nilsson et al. 2002). Competitive 

binding experiments reveal that G148-GA3 can efficiently bind a much broader range 

of albumins than ALB8-GA and have lead the researchers to propose that the flexible 

G148-GA3 domain may somehow contribute to its wide affinity for albumins from 

different species (Johansson, Nilsson et al. 2002).  

And yet, despite the availability of NMR structural data for both domains 

(Johansson, de Chateau et al. 1995; Johansson, de Chateau et al. 1997; Johansson, 

Frick et al. 2002) and a recently obtained crystal structure of ALB8-GA complexed 

with HSA (Lejon, Frick et al. 2004), little is known about the impact of sequence 

polymorphisms on the abilities of these two domains to bind different species of 

albumins. Even less is known about the manners in which sequence polymorphisms 

encode novel functionality within the remaining fourteen domains of the GA module. 

Recombinogenic Analysis of Sequence Polymorphisms 

One appealing strategy for unraveling the phenotypic impact of polymorphisms 

found among members of the GA module and other protein families involves 

shuffling family homologs to produce a library of randomly recombined constructs. 
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These recombinant sequences can be probed by panning for functional mutants 

displayed on the surfaces of filamentous phage. Specifically, Zhao and Arnold used 

DNA shuffling and phage selection to determine which residues in an engineered 

subtilisin contributed to enhanced thermostability when compared with the wild-type 

protein (Zhao and Arnold 1997). The team showed that positive functional mutations 

occurred in a high percentage of the selected recombinant population whereas neutral 

mutations occurred in about half the selected samples and deleterious mutations were 

largely absent from screened sequences. However, Zhao and Arnold’s initial attempt 

at using recombinogenics to unravel the associations between sequence 

polymorphisms and protein function was narrowly focused on two DNA species with 

a high degree of homology. Similar analysis of the polymorphisms defined by the 16 

members of the GA module presents a far greater challenge, largely because existing 

recombinogenic techniques are ill equipped to promote efficient recombination of the 

compact three-helix domains. 

Cumulative evidence suggests that the shuffling technique developed by Stemmer 

(1994) and employed by Zhao and Arnold in the above experiment is likely to 

encounter difficulties when applied to compact heterologous stretches of DNA similar 

to those contained in the GA module and other protein families. These troubles arise 

from a dramatic increase in the likelihood of homoduplex formation and improper 

fragment assembly as the complexity of the shuffled sequence space grows. 
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DNA Shuffling and Related Strategies 

DNA shuffling involves a two step process in which homologous genes are 

randomly fragmented with DNase I and reassembled via primerless PCR to form a 

library of shuffled genes with novel assortments of genetic markers. As researchers 

used Stemmer’s original technique (Stemmer, 1994) to shuffle increasingly 

heterologous sets of genes, they became aware of a propensity for fragments to form 

homoduplexes with their own kind rather than annealing to fragments from the other 

species to form novel constructs. This process, which leads to the reassembly of 

native parental genes, has been termed parental recombination. After experiencing an 

overwhelming preference for parental recombination when DNA shuffling was 

applied to genes encoding two proteins with 84% sequence identity (Kikuchi, Ohnishi 

et al. 1999), Kikuchi successfully experimented with protocols involving restriction 

enzyme digests (Kikuchi, Ohnishi et al. 1999) and fragmentation of single stranded 

phagemid DNA (Kikuchi, Ohnishi et al. 2000) to reduce the likelihood of 

homoduplex formation during PCR assembly. In the first protocol, Kikuchi cut and 

religated mixed homologs at internal restriction sites to reduce the chance of parental 

recombination by avoiding the use of DNase I and PCR. Kikuchi’s second technique 

succeeded by fragmenting complementary single stranded DNA from two homologs 

to ensure that primerless PCR progressed by assembling the complementary 

homologs. Others were similarly driven by parental recombination to create 

Incremental Truncation for the Creation of Hybrid enzYmes (ITCHY) (Ostermeier, 

Nixon et al. 1999), a DNase I enhanced version of ITCHY, known as SCRATCHY 

(Lutz, Ostermeier et al. 2001), and Degenerate Oligonucleotide Gene Shuffling 
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(DOGS) (Gibbs, Nevalainen et al. 2001) as alternatives to Stemmer’s shuffling 

strategy. ITCHY relies on an exonuclease to create nested blunt-end fragments, which 

can be ligated to form recombinant genes with single crossover events. SCRATCHY 

applies Stemmer’s DNA shuffling protocol to ITCHY products in an effort to 

increase the number of crossover events. DOGS uses pairs of degenerate primers to 

amplify homologous gene segments. These overlapping amplification products are 

then reassembled into a full length gene with primerless PCR.  

Experimentally validated computer models suggest that Stemmer’s DNA 

shuffling technique is also limited in its ability to create multiple crossover events in 

compact heterologous domains. Independent attempts to model shuffling reactions 

revealed a strong propensity for DNA fragments under 20 nt in length to produce out-

of-order assemblies that encoded dysfunctional proteins and interfere with subsequent 

amplification and cloning efforts (Moore, Maranas et al. 2001; Moore and Maranas 

2002; Maheshri and Schaffer 2003). One model predicted that half of all 15 nt 

fragments formed out-of-order assemblies when annealing took place at 55°C and 

that these results were largely independent of sequence homology (Moore, Maranas et 

al. 2001). Another model suggests that out-of-order assembly further increases when 

annealing temperatures were reduced to avoid parental recombination described 

above (Maheshri and Schaffer 2003). 

In addition to promoting misassembly, computer models predict that gene 

fragments of the size required to promote multiple crossover events in small domains 

significantly reduced the fraction of full-length products generated during primerless 

PCR. Only 0.01% of all DNA fragments with an average fragment size of 100 nt and 
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minimum fragment size of 50 nt contributed to the production of full-length genes 

(Maheshri and Schaffer 2003). No reassembly is expected when the average fragment 

size falls below 50 bp for a 2.2 kb gene that encodes a protein with 80% sequence 

identity (Maheshri and Schaffer 2003). 

Given these limitations, Maheshri’s model predicts that a mix of 20-50 bp 

fragments will generate no more than 2.7 observable crossover events per kb 

(Maheshri and Schaffer 2003)—a value that is in close agreement with the 2.3 non-

silent crossover events per kb observed in vitro under identical conditions (Zhao and 

Arnold 1997) and is ill-suited for efforts to effectively recombine members of the GA 

module and other small globular proteins.  

Although ITCHY, SCRATCHY, DOGS, and the other techniques mentioned 

above successfully overcome the problems of parental recombination, they do little to 

promote high-densities of crossover events or avoid the limitations associated with 

accurate assembly of recombinant genes. ITCHY is incapable of creating more than 

one crossover event per sequence. SCRATCHY, which was developed to exceed the 

single crossover event produced by ITCHY through the application of Stemmer’s 

DNA shuffling technique to ITCHY products (Lutz, Ostermeier et al. 2001), probably 

suffers from similar fragment size constraints as Stemmers original approach. Both 

DOGS and Kikuchi’s restriction digest protocol rely on predefined crossover points, 

which are unable to produce a random assortment of high density crossover events 

(Kikuchi, Ohnishi et al. 1999; Gibbs, Nevalainen et al. 2001). Even Kikuchi’s more 

flexible phagemid strategy is subject to the same primerless PCR dynamics that 

severely limit the fraction of full-length gene assemblies from small DNA fragments 
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(Kikuchi, Ohnishi et al. 2000). Another approach, referred to here as recombinant 

PCR, may offer solutions to many of the difficulties encountered by related DNA 

shuffling strategies. 

Recombinant PCR 

Recombinant PCR is an alternative strategy that offers an appealing option for in 

vitro recombination of heterologous sequences because it does not require DNA 

fragmentation prior to PCR assembly. Rather, these related PCR-based techniques 

exploit the premature termination of polymerization reactions to produce nested 

oligonucleotides that can be extended on homologous templates during subsequent 

rounds of PCR.  

The natural recombinogenic nature of PCR was first recognized soon after the 

advent of the amplification technology and has been documented on multiple 

occasions since then (Saiki, Gelfand et al. 1988; Meyerhans, Vartanian et al. 1990; 

Yang, Wang et al. 1996; Bradley and Hillis 1997). However, the relatively low 

fraction of recombinant fragments produced during the PCR amplification of mixed 

alleles made the technique ill suited for DNA recombination applications. 

The ability of PCR to generate recombinant fragments is limited by the extent to 

which partially extended primers are (a) terminated within the recombinant region 

and (b) complexed with heterologous templates during subsequent elongation rounds. 

Standard PCR amplification protocols limit the likelihood of heterologous 

recombination by employing long extension phases and high concentrations of 

unextended primers, which compete with fewer partially extended primers to bind the 
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templates. Researchers have shown that when reactions are modified to reduce each 

of these effects they produce significantly elevated levels of recombinant DNA.  

For example, the Staggered Extension Process (StEP) achieved a 39% chimeric 

recombination rate between markers separated by 113 nt by using a 5 second 

combined annealing-elongation phase to increase the likelihood that polymerization 

will be halted multiple times within the recombinant region (Zhao, Giver et al. 1998). 

StEP also increased the chance that partially extended primers will anneal to 

templates during subsequent rounds by significantly reducing the initial primer 

concentration. 

Taking a somewhat different approach, Judo achieved a 21% chimeric 

recombination frequency between markers separated by 287 nt when he added an 

additional high temperature annealing phase that would favor template interactions 

with the longer partially extended primers over shorter unextended primers (Judo, 

Wedel et al. 1998). While Zhao and Judo independently achieved high recombination 

rates for recombinant PCR without resorting to the additional fragmentation step that 

can prove problematic for DNA shuffling, they did not probe the extent to which their 

technologies can be successfully applied to sequences of decreasing size and 

homogeneity. 

Research Overview 

This dissertation describes my efforts to develop a novel PCR-based strategy, 

which is capable of generating multiple recombination events among compact 

heterologous domains, and apply it to a functional analysis of the GA sequence space. 
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In an effort to devise a recombination technique that is robust enough to handle 

recombination among multiple heterologous domains of the type described by the GA 

module I conceived of and tested a recombinant strategy that produces unparalleled 

results by placing the recombinant region near one end of the amplicon in a typical 

polymerase chain reaction. This approach, which is further described and 

characterized in Chapter 2, has a number of advantages over previously reported 

recombination techniques. Specifically, by locating the recombination region near 

one end of the amplicon I was able to: 

− Achieve a high recombination rate without resorting to the highly abbreviated 

elongation phases or lower primer concentrations applied by StEP. 

− Take advantage of long stretches of identical template to significantly reduce the 

preference for homoduplex formation and avoid the chance of out-of-sequence 

assembly. 

− Exploit the accumulation of recombinant template populations during the PCR 

amplification process to increase the overall recombination rate and generate 

multiple crossover events within a compact recombinant region. 

Using a lacZ reporter system, I show that in a typical amplification reaction Pfu 

polymerase generated chimeric crossover events in 13% of the population when 

markers were separated by only 70 nt. The fraction of recombinant sequences reached 

42% after six consecutive rounds of PCR, a value close to the 50% expected from a 

fully shuffled population. When homology within the compact recombinant region 

was reduced to 82%, the recombination frequency dropped by nearly half for a single 
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amplification reaction and crossover events were clustered towards one end of the 

domain. Surprisingly, recombination frequencies for template populations with high 

and low sequence homologies converged after just four rounds of PCR, suggesting 

that the exponential accumulation of chimeric molecules in the PCR mix serves to 

promote recombination within heterologous domains. 

Chapter 3 describes the calorimetric analysis of wild-type G148-GA3 folding and 

albumin binding reactions to obtain the most complete set of thermodynamic state 

functions for any of the native GA domains. These thermodynamic data were needed 

to understand the impact of subsequent recombinogenic studies on the domain. 

Calorimetry shows that when buffered at pH 7.0 the 46-amino acid three helix 

domain melts at 72°C and exhibits marginal stability (-15 kJ/mol) at 37°C. G148-

GA3 unfolding is characterized by small contributions to entropy from non-

hydrophobic forces and a low ∆Cp (1.1 kJ/(deg·mol)). Isothermal titration calorimetry 

reveals that the domain has evolved to optimally bind human serum albumin near 

37°C with a binding constant of 1.4 x 107 M-1. Analysis of G148-GA3 

thermodynamics suggests that the domain experiences atypically small per residue 

changes in structural dynamics and heat capacity while transiting between folded and 

unfolded states. 

Finally, in Chapter 4 I demonstrate the application of OR-PCR to the 

recombinogenic analysis of GA module polymorphisms by using the technique to 

shuffle seven synthetic homologs that represent much of the natural GA sequence 

space. Phage display is used to probe the resulting library for members that show 

simultaneous improvements to human and guinea pig serum albumin binding. 
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Analyses of selected mutants suggest that domain stabilizing mutations 

indiscriminately improved GA binding for both species of albumin. 

Based on the experiments described in this dissertation, it is possible to conclude 

that recombinogenic analysis of protein family polymorphisms is a valuable 

technique for identifying and understanding the functional impact of natural 

mutations. However, this approach is possible only with the advent of a robust 

recombinogenic technique such as OR-PCR introduced in the following chapter. 
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Chapter 2: Offset Recombinant PCR Provides a Simple but 
Effective Method for Shuffling Compact Heterologous 
Domains∗∗∗∗

Introduction 

The intrinsic ability of PCR to generate recombinant products from mixed 

homologous template populations was recognized as early as 1988 when researchers 

observed the appearance of chimeric products during the amplification of two alleles 

with the Klenow fragment of DNA polymerase I (Saiki, Gelfand et al. 1988). Similar 

results were later described for amplification reactions involving Taq and Vent 

polymerases (Meyerhans, Vartanian et al. 1990; Yang, Wang et al. 1996; Bradley and 

Hillis 1997). In each of these cases recombination occurred at a relatively low 

frequency, making the phenomenon more of an inconvenience for researchers 

interested in amplifying allelic DNA than an effective mechanism for in vitro 

recombination. Despite the frequent reliance of DNA shuffling strategies on in vitro 

polymerization reactions as part of a multi-step process, researchers have yet to 

embrace PCR itself as an effective recombination technique. 

PCR-based recombination is thought to occur when a primer is extended first on 

one template and then another to form a chimeric molecule with a distribution of 

genetic markers that differs from either of the parent templates. In order for this 

process to play an appreciable role in the amplification reaction, primers must 
 
∗ The contents of this chapter were largely derived from a paper by the author and 
advisor that appeared in Nucleic Acids Research (Rozak and Bryan 2005).
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regularly be terminated between template polymorphisms during one PCR cycle and 

reanneal to a template with a different assortment of genetic markers during a later 

cycle. A successful in vitro recombination technique known as the staggered 

extension process (StEP) uses a highly abbreviated annealing/elongation phase to 

generate nested primers and promote crossover events along the full length of the 

template (Zhao, Giver et al. 1998). However, because the process requires many 

cycles to fully extend a single primer, StEP fails to achieve the exponential product 

growth that is characteristic of PCR. 

The efficient reannealing of partially extended primers to new templates is 

another important factor in the formation of chimeric PCR products. During each 

annealing phase unextended primers, partially extended primers, and full-length 

templates compete with one another to form DNA duplexes. PCR amplification mixes 

are generally saturated with excess amounts of unextended primers to efficiently 

prime the exponentially growing template populations. In contrast, partially extended 

primers, which are needed to promote recombination, are relatively few—especially 

in the early stages of PCR—and unable to effectively compete with unextended 

primers for a limited number of templates. Given these unfavorable conditions, 

partially extended primers are more likely to accumulate in the reaction mix than 

contribute to the formation of chimeric products. By adding a separate high-

temperature annealing phase, which presumably favors complexes involving the 

elongated primers over unextended primers, Judo was able to achieve a noticeable 

increase in the recombination frequency for Vent and Taq polymerases respectively 

(Judo, Wedel et al. 1998). Significantly, Judo’s modified PCR protocol used a 45 s 
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elongation phase as opposed to the highly abbreviated one employed by StEP. While 

Judo’s longer extension time supported exponential growth it is unclear how it 

affected the distribution of crossover points within the amplicon. 

Judo relied on altered polymerase cycling conditions to promote PCR 

recombination. However, it should be possible to achieve similar results by simply 

positioning the recombinant region towards one end of the amplicon. Careful 

consideration of PCR chemistry suggests that primers extended significantly beyond 

the amplicon’s midpoint should be unaffected by competition from large 

concentrations of unextended primers. Rather, nearly extended forward and reverse 

primers can freely anneal to one-another without competing with unextended primers 

for full-length templates (Figure 1). Furthermore, by locating the recombinant region 

on one end of the amplicon, it may be possible to generate an adequate distribution of 

crossover events in the targeted region without resorting to highly abbreviated 

elongation times. In short, standard PCR could be used as an effective in vitro 

recombination technique for offset regions. 

This chapter describes the use of a lacZ reporter system to characterize PCR-

induced recombination between markers that are located at one end of the amplicon. 

By varying reaction conditions I was able to explore the effects of cycle number, 

extension time, and sequence homology on recombination frequencies near product 

ends. These results suggest that this strategy—referred to here as offset recombinant 

PCR (OR-PCR)—offers a simple but effective approach for generating recombinant 

libraries of compact heterologous domains.  



15 
 

Figure 1. Anticipated Impact of DNA Duplex Formation on PCR-Mediated Recombination. 

Primers and templates are depicted as half-arrows pointing towards their 3’ ends. The complexes 

favored by high primer and template concentrations are rendered in bold. Assuming incomplete 

elongation during earlier PCR cycles, an annealing phase can result in the formation of DNA duplexes 

between unextended primers, partially extended primers, and completed templates. Due to competition 

for full-length templates from excess amounts of unextended primers, duplexes are less likely to 

involve template-template pairs and templates paired with partially extended primers. However, those 

primers that have been sufficiently extended beyond the product’s midpoint during an earlier 

elongation cycle (indicated by asterisks) are more likely to form duplexes with their counterparts in the 

reverse direction. This suggests that primers terminated between markers near the product end (Region 

A) are more likely to reanneal and extend to form chimeras than primers terminated at or before the 

product’s center (Region B). 
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Experimental Results 

The lacZ Reporter System 

I first sought to create a simple reporter system in which phenotype rescue 

frequencies could be used to monitor recombination among lacZ alleles with 

knockout mutations. Site directed mutagenesis was used to eliminate the β-

galactosidase phenotype by placing pairs of adjacent ochre stop codons at two 

different points within the lacZ open reading frame (ORF). As expected, cells 

transformed with the pUC19-03 (ochre mutations at β-galactosidase positions 35 and 

36) and pUC19-05 (ochre mutations at positions 9 and 11) mutants failed to produce  

blue colonies. These pUC19 constructs are diagrammed in Figure 2A and 

collectively referred to as set A mutants. 

Two variants of pUC19-03 and pUC19-05, which contain a total of 8 silent point 

mutations in the 82 nt region, were also created to explore PCR recombination among 

heterologous stretches of DNA. These variants, which were designated pUC19-06 

and pUC19-07 and are collectively referred to as set B mutants, exhibit an 82% DNA 

sequence homology to one another within the recombinant region (Figure 2A). 

Three primers were designed to amplify mixed populations of the pUC19 

mutants. Per Figure 2B, when the pUC19 mutants are amplified with P1 and P2, the 

82 nt recombinant region is located towards one end of a 329 bp product. However, 

when pUC19 populations are amplified using P1 and P3, the recombinant region is 

centered on a 511 bp product. These two primer combination were used in this study 

to compare recombination frequencies between offset and centered markers. 
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Paired stop codons were designed into each of the pUC19 mutants to reduce the 

chance of phenotype recovery by random point mutations. To validate this approach 

pUC19-03 and pUC19-05 constructs were amplified separately using P1 and P2 

primers and one-minute elongation times. The PCR products were then ligated back 

into a pUC19 LacZ - construct and used to transform TG-1 E. coli strains via heat 

shock. Fewer than one in 1,000 colonies transformed with pUC19-03 or pUC19-05 

PCR products recovered the blue lacZ+ phenotype through simultaneous point 

mutations in both of the paired stop codons.  

Phenotype Rescue as a Function of OR-PCR Cycle 

Equal mixtures of set A mutants were amplified with P1 and P2 to observe 

phenotype rescue via the recombination of offset markers as function of OR-PCR 

cycle number. Reaction mixtures and cycling conditions were selected to reproduce a 

typical amplification reaction. These cycling conditions included a one-minute 

elongation phase to promote complete extension of the 329 bp PCR products based 

on a previously reported Pfu elongation rate of 25 bases/s (Takagi, Nishioka et al. 

1997). Identical amounts of PCR product, as determined by OD260, were taken from 

the thermocycler on odd cycles and ligated into pUC19 for transformation and 

screening. Absorbance readings confirmed an exponential growth in PCR products. 

As shown in Figure 3, phenotype rescue was undetected in sampled colonies until the 

11th cycle and reached a frequency of 0.11 ± 0.02 blue colonies per sampled 

population after 30 cycles. The higher ratios of blue colonies generated during the 

second half of the cycling reaction are consistent with observations of PCR-induced 
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recombination reported elsewhere (Meyerhans, Vartanian et al. 1990; Judo, Wedel et 

al. 1998). 

Phenotype Rescue as a Function of Elongation Time 

Amplification reactions were run with elongation times ranging from one to 120 s 

in order to observe the effect on OR-PCR. After 30 cycles, equal concentrations of 

each PCR product were ligated into pUC19 lacZ- vectors and transformed into E. coli 

to observe phenotype rescue. The results, which are plotted in Figure 4, suggest that 

Figure 3. Effect of OR-PCR Cycle Number on Phenotype Rescue. Phenotype rescue 

frequencies observed after different numbers of cycles (c) in a typical amplification reaction (30s 

at 95°C; (30 s at 95°C; 30 s at 55°C, 60 s at 75°C) x c). Error bars represent the statistical error 

inherent in sampled population sizes. 
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elongation times of less than 40 s dramatically increase the frequency of phenotype 

rescue to as much as 18%. Within the limits of experimental error, no significant 

difference was observed in phenotype rescue frequencies for elongation times 

between one and 40 s. This broad range of effective polymerase extension times 

suggests that the hyper-attenuated 5 s 55°C annealing/elongation phase employed by 

StEP (Zhao, Giver et al. 1998) is not necessary to promote distributed recombination 

events among offset markers. Unless otherwise stated, reactions described in the rest 

of this chapter were conducted with 15 s elongation times. 

Figure 4. Effect of OR-PCR Elongation Time on Phenotype Rescue. Phenotype rescue 

frequencies observed for different elongation times (t) in a typical amplification reaction (30s 

at 95°C; (30 s at 95°C; 30 s at 55°C, t s at 75°C) x 30). Error bars represent the statistical 

error inherent in sampled population sizes. 
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Comparing Phenotype Rescue Frequencies for Centered and Offset Markers 

In order to compare phenotype rescue frequencies for centered and offset markers, 

the amplification reaction described above was run with 15 s elongation times using 

P1 and P3 primers to generate a 511 bp product with the 82 nt recombinant region 

centered approximately 255 bp from each end (Figure 2B). 

Because P1 and P3 are equidistant from the recombinant region, the 15 s 

elongation phase should be equally effective in terminating both primers within the 

82 nt region to promote observable crossover events. However, primers terminated 

within this region will also be within 40 nt of the amplicon’s center, reducing the 

chance they can avoid competition from unextended primers by annealing to one 

another. These less favorable reannealing conditions should have an observable effect 

on the phenotype rescue frequency. 

Indeed, when PCR products were ligated into the pUC19 lacZ- vector and 

expressed in E. coli they exhibited a phenotype rescue frequency of 0.14 ± 0.1 

compared to the frequency of 0.17 ± 0.1 observed for the P1- and P2-primed 

templates with an offset recombinant region. Because elongation times have not 

changed and P1 is just as likely to be terminated within the 82 nt recombinant region 

as in previous experiments, the drop in phenotype rescue frequency is likely 

attributable to the reduced ability of center-terminated P1 and P3 primers to form 

extendable complexes. 

The negative impact of the centered markers on primer-mediated recombination is 

even more pronounced when one considers that both P1 and P3 are equally likely to 

be terminated in the centered recombinant region. Therefore, the phenotype rescue 
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frequency observed for centered markers is twice that attributable to the reannealing 

and extension of P1 or P3 alone. This should be compared to experiments involving 

offset markers where elongation conditions made it highly unlikely that P2 would be 

terminated within the neighboring recombinant region and phenotype rescue 

frequencies were almost exclusively attributable to the action of P1. This analysis 

suggest that P1 is nearly two and a half times as effective at generating recombinants 

among offset markers than centered markers. 

Similar results were observed when this experiment was repeated with one-minute 

elongation times. Under these more typical amplification conditions centered markers 

generated a phenotype rescue frequency of 0.11 ± 0.02, which fails to surpass 

frequencies generated by offset markers under identical reaction conditions, despite 

the advantage of both forward and reverse primers having equal chances of 

terminating between centered markers and contributing to recombination. 

OR-PCR Recombination of Heterologous DNA 

A major goal of this study was to probe the extent to which OR-PCR can promote 

recombination among heterologous stretches of DNA. I explored these limits by 

amplifying equal quantities of set B mutants (Figure 2A), which exhibit 82% 

homology within the 82 nt recombinant region, with P1 and P2 primers and 15 s 

elongation times. Cells transformed with set B-derived OR-PCR products produced 

phenotype rescue frequencies of 0.11 ± 0.01 compared to 0.17 ± 0.01 observed when 

set A mutants were amplified under identical conditions. 
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In order to study the distribution of crossover events between the closely spaced 

nucleotide polymorphisms found among set B constructs, plasmid DNA was purified 

and sequenced from sixteen colonies exhibiting the blue lacZ + phenotype. The 

distribution of sequence polymorphisms (Figure 5) suggests that crossovers occurred 

primarily in the half of the recombinant region closest to the P1 primer. Per these 

results, Pfu polymerase is able to elongate partially extended P1 primers that reanneal 

to their homolog in this region despite the presence of mismatched bases within as 

few as 4 nucleotides from the 3’ terminal. A similar tolerance for 3’ mismatches in 

heteroduplexed DNA has been reported elsewhere for Taq polymerase (Kwok, Chang 

et al. 1995). However, Pfu polymerase appeared to be incapable of extending 

oligonucleotides that traversed more than half of the 82 nt heterologous region, 

possibly due to a decrease in local annealing temperature that results from an 

accumulation of 3’ mismatches. If this is the case, the adverse effects of 3’ 

heteroduplex instability on annealing and elongation might be mitigated by the use of 

lower annealing temperatures. 

A careful review of DNA chromatographs revealed that half the samples 

represented in Figure 5 were derived from colonies containing two alleles of the lacZ 

gene. The mixed alleles most likely resulted from heteroduplex formation during 

PCR. In each of these cases, one allele represented the lacZ+ gene with its dominant 

blue phenotype, as depicted in Figure 5, while the other appeared to be a non-

recombinant lacZ- gene identical to that of the parental pUC19-07 construct. pUC19-

06 derivatives were conspicuously absent from all of the sequenced samples. 
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Heteroduplex formation is to be expected from PCR amplification of mixed 

templates. However, the presence of mixed alleles in only half of the sequenced 

samples and complete absence of stop codons at β-galactosidase positions 9 and 11 

Figure 5. Recombinant lacZ Sequences After One Round of OR-PCR. Assortment of single 

nucleotide polymorphisms in 16 DNA sequences derived from blue colonies transformed with 

set B recombinants. pUC19-06 derived markers are indicated by upward ticks while pUC19-07 

derived markers are depicted with downward ticks. Crossover events (shaded boxes) are 

concentrated in the half of the recombinant region closest to the P1 primer. Asterisks indicate 

those sequences derived from colonies that also appeared to contain the non-recombinant 

pUC19-07 construct. 
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was unforeseen. Random assortment suggests that nearly all of the sequenced samples 

should show the less common recombinant lacZ+ gene paired with one of the more 

abundant lacZ- mutants. Furthermore, the lacZ- mutants should represent an equal 

distribution of the stop codon mutations found in both pUC19-06 and pUC19-07. 

The low incidence of mixed alleles and complete absence of pUC19-06 derived 

N-terminal stop codons in the sequenced samples can be explained by the possibility 

that plasmids containing N-terminal stop codons are not well maintained in 

transformants. In this manner, the propagation of cells containing lacZ+ genes paired 

with lacZ- genes possessing N-terminal stop codons would lead to the eventual loss of 

the unstable lacZ- variant—whose truncated products may serve to exhaust cell 

resources and significantly impede growth—leaving only lacZ+ plasmids in the 

sampled population. Because cellular dynamics appear to alter the distribution of 

pUC19 mutants, observed phenotype rescue frequencies probably differ from actual 

OR-PCR recombination frequencies. 

Estimating OR-PCR Recombination Frequencies Via Serial Amplification Reactions 

Equal mixtures of set A mutants were subjected to consecutive rounds of OR-

PCR in order to assess the degree to which observed phenotype rescue frequencies 

differ from OR-PCR recombination frequencies. I hoped that serial amplification 

reactions would lead to an accumulation of recombinant products and reveal an 

asymptotic approach to a maximum phenotype rescue frequency that could be used to 

estimate the recombination frequency. 
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Serial reactions were performed by taking a 2 µL aliquot from a completed 30-

cycle OR-PCR and transferring it to a fresh reaction buffer for another round of 

thermocycling. A 75 ng sample of the product from each serial reaction was ligated 

into the pUC19 vector and transformed into E. coli to measure phenotype rescue 

frequency. The results of these experiments, which are reported as solid squares in 

Figure 6, show that more than half of the colonies exhibit the blue lacZ+ phenotype 

after being transformed with DNA derived from six consecutive reactions. This is 

significantly above the maximum phenotype rescue frequency of 43.75% expected 

from random duplexes of recessive lacZ- and dominant lacZ+ alleles if the latter can 

not exceed one quarter of a fully shuffled set A population.* The higher than expected 

phenotype rescue frequency may be due to sequence-specific biases introduced 

during DNA recovery or post-transformational processing in E. coli. The absence of 

N-terminal stop codons observed above suggests that some sequence-specific 

selection is taking place. However, further efforts to explore the mechanisms behind 

these phenomena would exceed the scope of this study and have little impact on the 

conclusions presented here. 

Even in the absence of a clearly articulated mechanism for the post-recombinant 

fate of lacZ DNA it is possible to arrive at an initial estimate of the rescue frequency 

by fitting experimental data with a statistical model that allows for the observed bias. 

 
* No more than 25% of the DNA in a fully shuffled population of pUC19-03 and 
pUC19-05 constructs is expected encode a functional lacZ+ gene. Assuming the 
dominant lacZ+ allele only needs to be present in one strand of the heteroduplexed 
DNA used to transform E. coli, the chance of finding a blue colony can be computed 
from Equation 3 below by setting E1 and E2 to 0.25.
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The recombination frequency for a 30-cycle amplification reaction can be expressed 

as the probability p that a single-stranded DNA product contains an assortment of  

genetic markers different from those found in the initial population. When p is small, 

it provides a reasonable estimate of the probability that a DNA strand will have 

undergone a single chimeric recombination event during the 30-cycle reaction to form 

Figure 6. Phenotype Rescue During Consecutive Rounds of OR-PCR. Frequencies are 

derived from reactions involving set A (solid boxes) and set B (solid triangles) template mixes. 

Error bars express the statistical error inherent in the sample size. Phenotype rescue frequencies 

predicted by Equation 6 are shown for c = 1.36, p = 0.13 (open boxes), and p = 0.08 (open 

triangles). These values were selected to produce the best fit to experimental data. 
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a sequence that differs from either of the molecules that contributed to its formation. 

Taking p as a good approximation of the chimeric recombination frequency for a 

single DNA polymer during a 30-cycle amplification reaction, one can use the 

binomial expansion to compute the chance a sequence undergoes k chimeric 

recombination events during n serial OR-PCR amplifications: 

 (1) 

Only those sequences that have undergone an odd number of chimeric 

recombination events (k = 1, 3, 5, ...) during n consecutive rounds of PCR will 

contain an assortment of stop codons different than those found in the original 

population. This subset of recombinant sequences will either contain knockout 

mutations from both constructs or none at all. Since these two species should be 

relatively uniform in number, only half of the sequences that have undergone an odd 

number of chimeric recombination events will lack both sets of knockout mutations 

and represent functional lacZ genes. Therefore, the chance of a DNA strand encoding 

a functional β-galactosidase protein after n serial rounds of PCR can be expressed as 

Z(p,n) where: 

 (2) 

Assuming the largely homologous PCR products randomly anneal to one another 

at the end of the amplification reaction, it is likely that each cell will be transformed 

with heteroduplexed pUC19 mutants representing two distinct alleles. The dominant 

blue phenotype will be observed in colonies if at least one of the two pUC19 strands 
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from the original cell codes for a functional lacZ gene. If events E1 and E2 represent 

the incorporation of lacZ+ sense and antisense strands into a pUC19 heteroduplex, the 

probability B of finding a blue colony on the plate can be expressed as 

 (3) 

where P is the probability of a given event or set of events occurring. Assuming 

 (4) 

this expression simplifies to 

 (5) 

Finally, Equation 5 is multiplied by the constant c to reflect the observed bias 

towards lacZ-encoding heteroduplexes. In the absence of further data on the cellular 

fate of recombinant DNA, c provides a reasonable approximation of the impact post-

recombinant factors have on the fraction of blue colonies, provided these factors act 

in a manner that is largely independent of n and p.

(6)  

By setting B(c,p,n) equal to the experimentally determined fraction of blue 

colonies for n serial offset recombination reactions, it is possible to fit the equation to 

the experimental data in Figure 6 by varying c and p, which respectively impact the 

asymptotic height and rate of ascent for the curve. Figure 6 shows a reasonably tight 
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fit to experimental data from the serial recombination of pUC19-03 and pUC19-05 

for p = 0.13 and c = 1.36. Since the error bars in Figure 6 are based solely on 

statistical uncertainty inherent in the sample size, it is understandable that some 

values for B(c,p,n) fall slightly outside of these ranges, possibly due to procedural 

errors, which are not reflected in the error estimates. 

While p represents the fraction of the population containing a reassortment of 

terminal markers after one 30-cycle OR-PCR, the recombinant fraction is as high as 

0.42 after 6 consecutive rounds of OR-PCR as computed by 2Z(p = 0.13, n = 6). 

Effects of Serial Amplification Reactions on Heterologous Recombination 

In order to observe the effects of serial OR-PCR on heterologous recombination I 

repeated the preceding experiment using the set B constructs. The results, which are 

plotted as solid triangles in Figure 6, show a distinct convergence of phenotype 

rescue frequencies for set A and B recombinants after only four rounds of PCR. 

Although one would expect phenotype rescue frequencies for each set to 

asymptotically approach a common maximum as the markers become evenly 

distributed among members of the population, the plots converge well before either 

show signs of leveling off at the maximum phenotype rescue rate of 0.6 predicted by 

Equation 6 when c = 1.36. When I attempt to fit Equation 6 to the data obtained 

from set B recombinants, experimentally derived rescue frequencies appear to 

undergo a clear transition during PCR rounds 3 and 4 between the data sets described 

by B(c = 1.36, p = 0.08, n) and B(c = 1.36, p = 0.13, n). One possible explanation for 

this phenomena lies in the growing fraction of recombinant templates and partially 

extended primers carried over from one round to the next. During consecutive rounds 
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of OR-PCR, set B-derived templates and primers increasingly represent a more 

homologous mix of pUC19-06 and pUC19-07 markers. This may serve to increase 

the average homology of heteroduplexed pairs and make it more likely that a partially 

extended P1 primer will form an extendable heteroduplex with other members of the 

population.  

Plasmid DNA was sequenced from 14 blue and 11 white colonies that had 

resulted from the six consecutive rounds of PCR performed on set B plasmids. To 

avoid sequencing mixed alleles, plasmid samples obtained from the original colonies 

were transformed back into E. coli and purified from individual plated colonies prior 

to sequencing. As a result, all of the sequences depicted in Figure 7 appear to have 

been derived from monoallelic samples. 

As expected, sequences isolated entirely from blue colonies (Figure 7A) lacked 

the stop codons associated with pUC19-06 and pUC19-07 mutants and showed 

evidence of at least one crossover event. Two of the sequences revealed three distinct 

crossover events. Consistent with the limitations placed on k in Equation 2, even 

numbers of crossover events were not observed among these sequences. 

Only half of the sequences isolated from white colonies showed signs of 

recombination (Figure 7B). Each of these appeared to have undergone two 

recombination events. Furthermore, none of the twelve sequences had a stop codon at 

the position 11 of the lacZ gene and only two had stop codons at position 9. The low 

incidence of N-terminal stop codons among white colonies reinforces the earlier 

hypothesis that pUC19 mutants with the N-terminal stop codons are poorly retained 

in the bacteria. 



32 
 

Figure 7. Recombinant Sequences Obtained From Six Rounds of OR-PCR. Assortments of single 

nucleotide polymorphisms in set B recombinants derived from blue (A) and white (B) colonies after 

six consecutive rounds of OR-PCR. Purified plasmid samples were retransformed into E. coli before 

being prepared for sequencing in order to avoid multiple alleles in a single sample. pUC19-06 derived 

markers are indicated by upward ticks while pUC19-07 derived markers are depicted with downward 

ticks. Nucleotide mutations that lead to the creation of ochre stop codons and loss of the lacZ 

phenotype are represented with gray ticks. The locations of crossover events are marked by shaded 

boxes. 
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Even after six rounds of PCR, crossover events continue to show a distinct 

preference for the end of the recombinant region closest to P1. However, crossover 

events do occur further into the heterologous region and are found as far as the 4 bp 

region between the two lacZ N-terminal stop codons. As a testimony to the Pfu 

fidelity, none of the sequences exhibited point or frame shift mutations within the 

recombinant region, even after six consecutive rounds of OR-PCR. 

Discussion 

These results indicate that the location of markers on an amplification product, 

polymerase elongation time, and number of PCR cycles have a discernable impact on 

recombination frequencies in amplifications reactions. When each of these conditions 

were optimized for the lacZ assay, recombination frequencies obtained for OR-PCR 

were competitive with those achieved by more complex cycling reactions (Judo, 

Wedel et al. 1998; Zhao, Giver et al. 1998; Ninkovic, Dietrich et al. 2001), especially 

when one considers that the 82 nt recombinant region studied in this chapter is only a 

fraction of the size of the recombinant regions studied elsewhere (Table 1). Using a 

standard PCR protocol, the offset recombination strategy explored here represents a 

simple but effective technique for generating high recombination rates among DNA 

homologs. 

In contrast to other studies reported in Table 1, this chapter probed the limits of 

recombination within a compact heterologous region. DNA sequence data reveals that 

the optimized OR-PCR described in this chapter is capable of generating cross-over 

events among closely-spaced nucleotide polymorphisms found in the 40 nt stretch of  
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DNA closest to the P1 primer. However, cross-over events drop off precipitously 

after this, possibly due to an accumulation of point mutations at the primer’s 3’ end 

and a corresponding drop in the local melting temperature of the DNA heteroduplex. 

This result is mitigated by serial passage of the recombinant library through multiple 

OR-PCR amplifications. Given the low incidence of point mutations and other signs 

Table 1. Recombination Frequencies for Several PCR-Based Techniques. 

Strategy 

Size of 
Recombinant 
Region (nt) a

Homology 
Within 

Region a
Chimeric 

Recombination 
Frequency b Polymerase 

Thermo-
cycles 

Special Cycling 
Conditions 

OR-PCR 82 91% 0.42 Pfu 30 x 6 Serial reactions with 
optimized elongation time. 

82 82% 0.42 Pfu 30 x 6 Serial reactions with 
optimized elongation time. 

 82 91% 0.13 Pfu 30 Optimized elongation 
time. 

 82 82% 0.08 Pfu 30 Optimized elongation 
time. 

 82 91% 0.08 Pfu 30 None. 
Centered 

PCR 
287 99% 0.21 Taq 30 High-temperature 

annealing phase (Judo, 
Wedel et al. 1998). 

287 99% 0.19 Vent 25 High-temperature 
annealing phase (Judo, 
Wedel et al. 1998).  

 287 99% 0.14 Taq 25 High-temperature 
annealing phase (Judo, 
Wedel et al. 1998). 

 287 99% 0.07 Vent 25 None (Judo, Wedel et al. 
1998).  

 287 99% 0.01 Taq 25 None (Judo, Wedel et al. 
1998).  

StEP 113 96% 0.39 Taq 80 Highly abbreviated 
elongation phase (Zhao, 
Giver et al. 1998). 

260 95% 0.18 Vent 95 Highly abbreviated 
elongation phase 
(Ninkovic, Dietrich et al. 
2001).  

a This region is inclusive of the two observable genetic markers at either end. 
b The chance that a product will contain an assortment of genetic markers at the ends of the 
recombinant region different from those found in the original population. 
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of template degradation after six consecutive rounds of amplification, serial OR-PCR 

may be an effective means of enhancing recombination among heterologous alleles. 

Perhaps the most intriguing observation to come out of this study is the apparent 

shift in recombination frequencies that resulted from serial amplifications of the 

heterologous pUC19-06 and pUC19-07 constructs. Sequence data suggests that this 

phenomena may result from modest increases in the overall homogeneity of the 

template populations and highlights an underlying advantage of PCR-based 

recombination over competing techniques. The chain reaction phenomena permits the 

rapid accumulation of recombinant templates in the mix, which provide a diverse 

supply of substrates to support the binding and extension heterologous primers. In 

fact, under the exponential amplification conditions, even the primer pool grows more 

diverse as primers are partially elongated on recombinant templates generated during 

earlier cycles. The net result is a homogenized population of heterologues, which 

have a better chance of forming extendable duplexes with one another from one cycle 

to the next. 

Materials and Methods 

pUC19 Mutants 

The QuickChangeTM Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA) 

was used to insert ochre codons and silent point mutations into the N-terminal region 

of the lacZ ORF on the pUC19 plasmid (GenBank Accession Number L09137 

X02514). Where necessary, we followed the protocol outlined by Wang and Malcolm 

(Wang and Malcolm 1999) for QuickChangeTM mutagenesis reactions involving 
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primers that exceeded the 40 nt limit recommended by Stratagene. XL-10 Gold Super 

Competent Cells (Stratagene, La Jolla, CA) were transformed with pUC19 mutants 

and spread along with 1.2 mg X-Gal and 5 µmol IPTG on LB agar plates containing 

100 µg/mL ampicillin to confirm the absence of blue colonies containing lacZ+ genes. 

pUC19 mutagenesis was also confirmed by DNA sequencing. 

Polymerase Chain Reaction 

All PCR recombination experiments were performed under the same general 

reaction conditions with variations noted in the Results section. Reaction mixes 

consisted of 2.5 units cloned Pfu polymerase (Stratagene, La Jolla, CA), 200 µM each 

dNTP, 0.5 µmol each primer, and a 100 ng equal mix of pUC19 mutants in 50 µL of

the recommended reaction buffer. Each of the amplification reactions used the P1 

primer combined with either P2 or P3 to create 329 bp or 511 bp products 

respectively (P1: 5’-TAA CTA TGC GGC ATC AGA GC-3’; P2: 5’-GAC CAT GAT 

TAC GCC AAG C-3’; P3: 5’-GCG TTG GCC GAT TCA TTA-3’). Thermocycling 

began with 30 s at 95°C followed by 30 cycles of 30 s at 95°C, 30 s at 55°C, and 1 

min at 75°C. PCR products were purified using the QIAquick® PCR Purification Kit 

(Qiagen, Valencia, CA) and concentrations were determined via UV absorption at 

260 nm. 

Transformation and Screening 

Escherichia coli transformation and screening began with the restriction digest of 

recovered PCR products and subsequent ligation back into the pUC19 vector. 75 ng 

of the purified PCR product was cut with NdeI and HindIII before being repurified 



37 
 

with the QIAquick® PCR Kit or QIAquick® Gel Extraction Kit (Qiagen, Valencia, 

CA). When the pUC19 mutants had been amplified using P1 and P2 the QIAquick® 

PCR Kit was used to efficiently remove the short terminal fragments cleaved from the 

PCR product during the digest reaction. However, when pUC19 mutants had been 

amplified using the P1 and P3 primers, an agarose gel was used to isolate the 264 bp 

recombinant restriction fragment for ligation into pUC19. In this case, the 

corresponding band was excised from the gel and cleaned up with the QIAquick® 

Gel Extraction Kit. 

A 50 ng sample of a pUC19 lacZ- mutant was cut with NdeI and HindIII and 

treated with CIP prior to purification with the QIAquick® PCR Kit. A pUC19 lacZ-

mutant was used as a cloning vector to avoid the possibility that small amounts of 

undigested plasmids could contribute to an inflated estimate of the phenotype rescue 

frequency. Digested plasmids were viewed on agarose gel and transformed into E. 

coli to confirm that the large majority of vectors were being digested and were 

therefore unlikely to significantly contribute to the numbers of white colonies 

observed in phenotype rescue titers. Digested PCR products and pUC19 vectors were 

mixed and incubated for 2 h at 25°C with T4 DNA ligase before a 1 µL aliquot was 

used to transform 20 µL XL-10 Gold Super Competent Cells with a 30 s heat shock at 

42°C. After one hour at 37°C, the cells were spread along with X-Gal and IPTG on 

LB plates containing ampicillin and grown overnight at 37°C to observe the fraction 

of blue colonies on the plate—described throughout this paper as the phenotype 

rescue frequency. A minimum of 1,000 colonies were sampled for each data point. 

Experimental errors reported throughout this paper represent the statistical 
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uncertainty inherent in the size of the sampled population. These errors, which 

represent a 95.45% statistical confidence in the fraction of blue colonies (b) derived 

from a sampled population of n plated colonies, were computed using the equation: 

 (7)  

DNA Sequencing 

DNA samples were prepared for sequencing by growing selected colonies 

overnight at 37°C in LB with 100 µg/mL ampicillin. Plasmid DNA was extracted 

from the cell cultures using the Wizard® Plus SV Minipreps (Promega Corporation, 

Madison, WI). The P2 primer was used to amplify target DNA using Perkin-

Elmer/Applied Biosystem’s AmpliTaq-FS DNA polymerase and Big Dye terminators 

with dITP. Dye-terminated products were then run on an Applied Biosystems model 

3100 DNA sequencer to produce sequence chromatographs. 

n
bb )1(2 −±=σ
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Chapter 3: The Third Albumin Binding Domain of 
Streptococcal Protein G Exhibits Atypical 
Thermodynamics of Folding ∗∗∗∗

Introduction 

Many gram-positive bacterial pathogens display surface receptors that bind 

common host proteins to support infection (Navarre and Schneewind 1999; Ingham, 

Brew et al. 2004). As one of the more common plasma proteins, serum albumin is 

bound to the surface of human group C and G streptococci (Myhre and Kronvall 

1980) and some strains of F. magna (Myhre 1984), presumably in support of bacterial 

pathogenesis. In vitro studies have shown that albumin-binding bacterial strains 

exhibit increased growth rates in the presence of human serum albumin compared to 

those which were grown in the absence the ligand (de Chateau, Holst et al. 1996)—

possibly benefiting from access to nutrients bound by the albumin. Furthermore, 

although only a fraction of F. magna strains bind albumin, the phenotype is 

predominantly associated with those isolated from deep wounds (de Chateau and 

Bjorck 1994). 

Albumin binding has been localized to three N-terminal domains of 

streptococcal protein G (Akerstrom, Nielsen et al. 1987) and a two domains in the F. 

magna protein, PAB (de Chateau, Holst et al. 1996). The high degree of homology 

between the protein G and PAB albumin binding domains lead to the first 
 
∗ The contents of this chapter were largely derived from a paper by the author and his 
colleagues, which has been accepted for publication in Biochimica et Biophysica 
Acta.
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documented case of module shuffling in prokaryotes (de Chateau and Bjorck 1994). 

As a phenomenon that was until recently exclusively associated with eukaryotic 

exons, shuffled modules are identifiable as distinct functional and structural units of 

at least 25 amino acids that display a high degree of homology amidst a 

heterogeneous background. The prokaryotic protein G-related albumin binding (GA) 

module is a three-helix domain that spans about 46 amino acids and exhibits high 

interspecies homology against a heterogeneous protein scaffolding. As many as 16 

GA modules have been identified in six proteins and four bacterial species 

(Johansson, de Chateau et al. 1995). 

Cloned from the opportunistic streptococcal bacteria strain G148, the GA 

module G148-GA3 exhibits a broader range of affinities for non-primate albumins 

than ALB8-GA, which was isolated from pathogenic strains of the human commensal 

bacteria F. magna (Johansson, Frick et al. 2002). Johansson suggested the more 

dynamic G148-GA3 backbone, as observed by comparing nuclear magnetic 

resonance (NMR) hydrogen-deuterium (H-D) exchange data for both domains, may 

be responsible for the relaxed species specificity of the protein G albumin binding 

domain (Johansson, Nilsson et al. 2002). 

Although data exists on the absolute and relative albumin binding affinities of 

protein G and several GA modules (Sjobring, Bjorck et al. 1991; Falkenberg, Bjorck 

et al. 1992; Johansson, Frick et al. 2002; Linhult, Binz et al. 2002) the full set of 

thermodynamic state functions for folding and albumin binding have not been defined 

for any members of this medically significant bacterial module. In this chapter I use 

differential scanning calorimetry and isothermal titration calorimetry to study the 
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thermodynamics of folding and human and guinea pig serum albumin binding for a 

histidine tagged G148-GA3 domain referred to as A002HC. 

Experimental Results 

A002HC Protein Design 

The A002HC protein construct used in this study consists of a 46 amino acid 

albumin binding domain G148-GA3 flanked by a total of 16 additional amino acids 

on either end. The N-terminal flanking sequence contains a methionine and seven 

amino acids from the cloning artifact described elsewhere (Kraulis, Jonasson et al. 

1996; Johansson, Frick et al. 2002). We included the cloning artifact to remain 

consistent with the version of the GA module used for NMR structural studies (PDB 

# 1GJT). The C-terminal flanking sequence consists of a two amino acid linker and 

six histidines to permit affinity purification on a nickel column. The complete 62 

amino acid A002HC sequence reads: MEAVDANSLA EAKVLANREL 

DKYGVSDYYK NLINNAKTVE GVKALIDEIL AALPTEHHHH HH.  

Differential Scanning Calorimetry 

DSC was used to measure the heat capacity of A002HC as a function of 

temperature. When the temperature-dependent heat capacity of the buffer is 

subtracted from that of the protein in buffer, one is left with the total heat capacity 

contribution of the protein. Both calorimetric and van’t Hoff enthalpies for unfolding 

can be computed from this data. A protein’s calorimetric enthalpy is equal to the 

excess heat generated by the protein during the transition from folded to unfolded 
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states (Privalov and Potekhin 1986). Van’t Hoff enthalpy assumes a two-state 

unfolding reaction and is obtained by computing the equilibrium constant from 

transition data and solving the van’t Hoff equation for ∆H. If the calorimetric and 

van’t Hoff enthalpies are in agreement the unfolding reaction represents a two-state 

process. In order to accurately determine the enthalpy of unfolding for A002HC we 

measured the temperature dependent heat capacity for A002HC and subtracted the 

buffer contributions. The Exam computer program developed by Schwarz and 

Kirchhoff (Schwarz and Kirchhoff 1988) was used to fit the baseline-subtracted data 

to a two-state model for which the calorimetric and van’t Hoff enthalpies were 

required to be equal. These measurements and computations were repeated for 

A002HC under a range of buffer conditions as reported in Table 2. As appropriate,  

 glycine or acetate buffers were used to cancel the heat of ionization produced by 

buried carboxylate groups as the protein unfolded at extremes of pH. Analysis using a 

two-state thermodynamic model produced tight fits to the calorimetric data and 

consistent results across a range of buffers. Figure 8 provides an example of the 

Exam output for one set of calorimetric data. 

Table 2. Thermodynamic Data for A002HC (G148-GA3) Unfolding. 

pH 

No. of 

Independent 

Measurements 

Tm

[°C] 

∆H

[kJ/mol] 

∆S

[J/(deg·mol)] 

∆Cp

[kJ/(deg·mol)] 

11.0 1 55.3 149 454 

2.7 3 71.6 ± 0.4 168 ± 1 488 

7.0 1 72.1 170 493 

4.0 3 80.0 ± 0.5 177 ± 2 501 

1.1 ± 0.1 
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Figure 8. Analysis of A002HC (G148-GA3) Unfolding at pH 4.0. After subtracting out 

buffer contributions, DSC data (solid line) was fit using a two-state model (dotted lines for fit 

and baseline). Values for ∆Cp obtained from the baseline displacement in this and other 

exemplary calorimetric runs (data not shown) are within 0.1 kJ/(deg·mol) of the ∆Cp value 

derived by measuring ∆H over a range of buffer-induced melting temperatures (see Figure 

10A). 

Two-State Model for A002HC Unfolding 

CD measurements were used to support the assumption that the A002HC reaction 

conforms to the two-state model by demonstrating that the protein does not adopt an 

intermediate conformation. CD spectra obtained from 42 µM A002HC in 100 mM 

KHPO4 pH 7.0 as it was heated from 25°C to 100°C show the presence of a single 

isodichroic point at 204 nm which is indicative of a two-state reaction (Figure 9A). 
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CD spectra obtained near room temperature exhibited alpha-helical profiles consistent 

with similar data obtained elsewhere (Kraulis, Jonasson et al. 1996; Gulich, Linhult et 

al. 2000) Furthermore, the midpoint of the 222 nm ellipticity curve as the protein 

undergoes the transition from its folded to unfolded state places the melting point at 

72°C (Figure 9B), which is consistent with the melting point derived from DSC 

measurements under the same buffer conditions but at much higher protein 

concentrations. The fact that Tm remains unaffected by significant changes in protein  

A B

Figure 9. CD Analysis of A002HC (G148-GA3) Melting. Spectra were obtained by melting 

A002HC in 100 mM KHPO4 pH 7.0 at 0.5 deg/min in a 1.0 cm cell. (A) Spectral scans of 42 

µM A002HC taken every 5 minutes show the protein’s secondary structure transition from 

alpha helix (lowest curve) to random coil (highest curve) as the temperature rises from 25°C to 

95°C. The single isodichroic point at 204 nm is indicative of a two-state reaction. (B) A plot of 

the ellipticity for 840 pM A002HC at 222 nm as a function of temperature has a midpoint near 

72°C, which is in close agreement with calorimetric data for 534 µM A002HC folding in the 

same buffer with the temperature increasing at a rate of 1.0 deg/min. 
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concentration supports the conclusion that A002HC melting involves a monomer to 

monomer transition. A002HC was also confirmed to be monomeric at 25°C by gel 

filtration. 

Thermodynamic State Functions for A002HC Unfolding 

Changes in enthalpy, entropy, and Gibbs free energy during protein unfolding can 

be related to the difference in heat capacities between the folded and unfolded states 

by the equations:  

 ∆H = ∆H0 + ∆Cp ( T - T0 ) (8) 

 ∆S = ∆S0 + ∆Cp ln( T / T0 ) (9) 

 ∆G = ∆H0 – T ∆S0 + ∆Cp [ T – T0 – T ln( T / T0 ) ] (10) 

 where ∆H0 and ∆S0 are values obtained at a reference temperature T0 (Brandts 1964; 

Pace and Tanford 1968; Privalov and Khechinashvili 1974; Privalov 1979; Becktel 

and Schellman 1987). According to Equation 8, the change in enthalpy of a two-state 

reaction at equilibrium is proportionally related to temperature by ∆Cp, which is 

assumed to remain constant within the temperature range of this experiment. The 

temperature-dependent values of ∆H reported in Table 2 were fit to a linear function 

in which the slope of 1.1 ± 0.1 kJ/mol is equal to ∆Cp per Equation 8. Experimentally 

derived values for ∆H and ∆Cp were used to calculate the remaining state functions 



46 
 

for the unfolding reaction and plot the temperature dependence of free energy in 

Figure 10.

These results were verified by comparing DSC-derived values for ∆G to the free 

energies of transient opening (∆Gop) computed from previously reported G148-GA3 

H-D exchange data (Johansson, Nilsson et al. 2002). H-D exchange in unbound 

G148-GA3 can be described by the reaction path 

 (11) 

where ku, kf, and kc are the respective unfolding, folding, and intrinsic exchange rates, 

F is the folded state, and U is the unfolded state (Hvidt and Nielsen 1966). Because 

A B

Figure 10. Thermodynamic Analysis of A002HC (G148-GA3) Unfolding. (A) Linear fit of 

A002HC enthalpies of unfolding plotted from data in Table 2. ∆Cp corresponds to the slope 

(1.1 ± 0.1 kJ/(deg·mol)) of the linear fit. (B) Thermodynamic profile for A002HC unfolding 

in 50 mM NaAc, pH 5.7. Temperature dependent energies are shown for ∆G (solid line), ∆H

(dotted line), and T∆S (dashed line). 

ku

kf ku

kfkc
D2O

F(H) U(H) U(D) F(D)
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the H-D exchange experiment was conducted at temperatures well below Tm (kf >> 

ku) with an intrinsic exchange rate significantly less than the rate of protein folding (kf

>> kc), the measured exchange rate kex can be given by 

 
copfcuex kKkkkk == /

(12) 

The free energy required for transient opening can then be expressed as 

 
opop KRTG ln−=∆

(13) 

where Kop is the equilibrium constant for transient opening and ∆Gop is the free 

energy difference between locally or globally folded and unfolded states. Applying 

this analysis to H-D exchange data for G148-GA3 (Johansson, Nilsson et al. 2002) 

produces a histogram in which most amides have values for ∆Gop clustered near 5 or 

20 kJ/mol (Figure 11). Amides exhibiting small and large ∆Gop represent those 

respectively involved in local and global unfolding reactions. As expected, the large 

free energies of transient opening, which represent global unfolding events, are 

comparable to the DSC-derived free energy value of 19 kJ/mol for A002HC 

unfolding under similar conditions. 
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Albumin Binding Constants and Associated Thermodynamic State Functions 

ITC was used to determine binding constants and thermodynamic state functions 

for A002HC interactions with HSA and GPSA. ITC measures the heat produced 

when small amounts of protein bind to an excess of ligand. As with DSC 

measurements, the enthalpy involved in each binding reaction is equal to the area 

under the calorimetric curve. The enthalpies of successive binding reactions can be 

plotted as a function of the protein-ligand molar ratios to produce a transition curve 

and compute the binding constant K. An example of the calorimetric data obtained for 

A002HC/HSA binding at 25°C is given in Figure 12. The midpoint for each of the 

binding reactions occurred when equal amounts of protein and ligand were present,  

Figure 11. Distribution of ∆∆∆∆Gop

Values for Folded G148-GA3. 
Values were derived from H-D 

exchange data collected by 

Johansson (Johansson, Nilsson et 

al. 2002) for unbound G148-GA3 

at 27°C. Higher ∆Gop values, which 

correspond to global unfolding 

events, are comparable to the ∆G

value for A002HC unfolding at 

27°C (19 kJ/mol), which was 

computed from DSC data. 
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A

B

Figure 12. ITC Data for 

A002HC(G148-GA3)/HSA 

Binding. Measurements were 

made at 25°C in 100 mM 

KHPO4, pH 7.0. (A)

Instantaneous heat generated 

by adding 246 nM aliquots of 

A002HC to 25 µM HSA in 

three-minute intervals. (B)

Total heat generated per mole 

of injectant as a function of 

the molar ratio of protein to 

ligand. The transition curve 

yields a binding constant of 

1.2 (± 0.1) x 107 M-1, a van’t 

Hoff enthalpy of -31.89 ± 

0.13 kJ/mol , and entropy of 

28.61 J/(deg·mol). The 

midpoint of the transition 

curve occurs at equivalent 

concentrations of protein and 

ligand, indicating one-to-one 

stoichiometry. 
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indicating one-to-one stoichiometry. I observed A002HC as it bound to HSA at 25°C, 

30°C, and 35°C and determined ∆Cp from the slope of the linear fit to the binding 

enthalpies plotted against temperature. Experimental and computational results for 

ITC measurements are reported in Table 3 and describe a free energy profile with its  

minimum near the physiologically significant 37°C (Figure 13). Differences in 

Table 3. Thermodynamic Data for A002HC (G148-GA3) Binding to HSA and 
GPSA. 

Ligand 

Temp. 

[°C] 

K

[1/mol] 
∆G

[kJ/mol] 

∆H

[kJ/mol] 

∆S

[J/(deg·mol)] 

∆Cp

[kJ/(deg·mol)] 

25 1.2 (± 0.1) x 107 -40.4 -31.89 ± 0.13 28.61 

30 1.4 (± 0.1) x 107 -41.4 -40.53 ± 0.15 2.85 

HSA 

35 1.4 (± 0.1) x 107 -42.1 -49.41 ± 0.18 -23.41 

-1.75 ± 0.08 

GPSA 25 0.9 (± 0.8) x 107 -39.8 -3.69 ± 0.17 120.75 N/A 

Figure 13. Free Energy profile 

for A002HC (G148-GA3)/HSA 

Binding. Data is presented for 

100 mM KHPO4, pH 7.0. 

Temperature dependent energies 

are shown for ∆G (solid line), ∆H

(dashed line), and T∆S (dotted 

line). 
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experimental conditions may account for the fact that the binding constant obtained 

for HSA in solution is one twentieth that observed during surface plasmon resonance 

experiments involving a G148-GA3 fusion protein and immobilized ligand (Linhult, 

Binz et al.). 

ITC measurements were also obtained for GPSA binding at 25°C. Although the 

low enthalpy associated with GPSA binding made it difficult to accurately determine 

a binding constant, the values reported in Table 3 are consistent, within the range of 

experimental error, with the relative affinities of G148-GA3 for HSA and GPSA 

obtained from competitive binding experiments (Johansson, Frick et al. 2002). 

 Discussion 

Analysis of A002HC thermodynamics suggests that the three helix domain 

exhibits unusually low changes in protein mobility and heat capacity on a per residue 

basis during the transition between folded and unfolded states. According to Baldwin 

(Baldwin 1986), the hydrophobic (hφ) contribution to the Gibbs free energy can be 

approximated by the expression 

 ∆Ghφ = ∆Cp(T-Th) + ∆Cp T ln (Ts /T) (14) 

where Th = 22°C and Ts = 113°C are the experimentally determined temperatures at 

which ∆Hhφ and ∆Shφ are respectively equal to zero (Gill, Nichols et al. 1976; 

Sturtevant 1977). 

Baldwin’s liquid hydrocarbon model provides a convenient mechanism for 

comparing the impact of non-hydrophobic or residual (r) interactions on protein 
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folding and assessing their contributions to ∆H and ∆S. Since ∆Hhφ is negligible at 

22°C and the enthalpy is dominated by residual forces near this temperature, 

∆H/(mol·residue) at this temperature provides a measure of relative contributions by 

non-hydrophobic forces to enthalpy. Likewise, ∆Shφ disappears at 113°C making this 

temperature ideal for assessing the relative contribution of residual forces to entropy.  

As shown in Table 4, studies suggest that per residue values for ∆Sr and ∆Cp

remain remarkably constant for globular proteins ranging in size from 7-25 kDa. 

(Privalov and Gill 1988; Alexander, Fahnestock et al. 1992) When normalized values 

were computed for A002HC’s 46 amino acid structural core, they fell significantly 

below the mean. 

In the absence of hydrophobic contributions to entropy, which result from 

differences in the ordering of solvent molecules around the folded and unfolded 

protein, ∆Sr reflects the amount of order achieved by the folded protein relative to its 

unfolded state. A002HC’s low ∆Sr suggests that G148-GA3 is subject to fewer 

motion constraints as a result of folding than most globular proteins.  

A002HC also exhibits a ∆Cp/residue well below that of the other proteins. Since 

Cp is generally proportional to the non-polar surface area of the solute, changes in Cp

associated with protein folding are taken as an indication of how well the folded 

protein buries hydrophobic residues in its core. Indeed, when the hydrophobic surface 

areas for folded and unfolded proteins are computed, A002HC appears to bury a 

smaller fraction of hydrophobic residues (0.46) than the other globular proteins 

considered in Table 4 (0.68 ± 0.06) and its homologue ALB8-GA (0.57). 
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Table 4. Thermodynamic Parameters of Globular Proteins. a 

Residual Forces 
Hydrophobic 

Forces 
Pr

ote
in
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ole
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lar
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∆Hr (25°C) 

[kJ/(mol•res)]res)]

∆Sr (110°C) 

[J/(deg·mol·res)] 

∆Cp

[J/(deg·mol·res)] 

A002HC 6919 0.46 2.5 13.0 24 

protein G B1 7179 0.55 1.4 16.1 53 

parvalbumin 11500 0.68 1.4 16.8 46 

cytochrome c 12400 N/A 0.65 17.8 76 

ribonuculese A 13600 0.63 2.4 17.8 44 

hen lysozyme 14300 0.70 2.0 17.6 52 

staphylococcal 

nuclease 

16800 0.68 0.85 17.5 61 

myoglobin 17900 0.69 0.04 17.9 75 

papain 23400 0.75 0.93 17.0 60 

β-trypsin 23800 0.74 1.3 17.9 58 

α-chymotrypsin 25200 0.74 1.1 18.0 58 

mean ± std. dev.  0.68 ± 

0.06 

1.3 ± 0.7 17.0 ± 1.5 55 ± 14 

a Data for proteins other than A002HC was obtained from Privalov (Privalov and Gill 1988) and 
Alexander (Alexander, Fahnestock et al. 1992) 
b Fractions were determined by comparing the hydrophobic surface areas computed for random 
chains (Karplus 1997) and folded proteins (Fraczkiewicz and Braun 1998). 
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Materials and Methods 

A002HC Assembly 

An ORF encoding the 62 amino acid A002HC protein was constructed using two 

sequential polymerase chain reactions to assemble four overlapping oligonucleotides. 

The A002HC ORF was inserted into the pG5 vector as described by Alexander 

(Alexander, Fahnestock et al. 1992) via the NdeI and BamHI restriction sites, cloned 

in XL-10 Gold® Ultracompetent Cells (Stratagene, La Jolla, CA), and extracted with 

Wizard® Plus SV Minipreps (Promega Corporation, Madison, WI). Proper assembly 

and insertion of the A002HC ORF into pG5 was confirmed by DNA sequencing. 

A002HC Expression and Purification 

RosettaTM(DE3) Competent Cells (Novogen, Madison, WI) were transformed 

with the pG5/A002HC construct and grown to late log phase in 2 L phosphate 

buffered broth (10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl, 100 mM KHPO4

pH 7.0) with 100 µg/mL ampicillin. A002HC expression was induced by adding 1 

mM IPTG and incubating four hours at 37°C. Cells were pelleted, resuspended in 100 

mL 100 mM KHPO4 pH 7.0 and sonicated before being centrifuged at 12,000 xg for 

30 min. A column packed with 5 mL Ni-NTA Agarose (Qiagen, Valencia, CA) was 

used to purify A002HC from the supernatant. Purity of the A002HC protein was 

confirmed via SDS-PAGE and mass spectroscopy using the Voyager-DETM 

BioSpectometryTM Workstation (PerSeptive Biosystems, Framingham, MA). 
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Extinction Coefficients 

Since A002HC lacks tryptophan, it has a UV peak at 278 nm. The Edelhoch 

method, as described by Pace (Pace, Vajdos et al. 1995), was used to determine the 

A002HC extinction coefficients at 278 nm under a range of buffer conditions. Twice 

the absorbance at 331 nm was consistently subtracted from that obtained at 278 nm to 

account for the effects of light-scattering. This set of experimentally determined 

extinction coefficients was used to determine A002HC concentrations throughout the 

study. 

Albumin Preparations 

Dried HSA and GPSA samples were obtained from Sigma (St. Louis, MO). All 

albumin samples were dialyzed along side A002HC samples prior to ITC experiments 

in order to ensure ligands and proteins were suspended in the identical 100 mM 

KHPO4 pH 7.0 buffers. As with A002HC, final albumin concentrations were 

determined using UV spectroscopy. 

Circular Dichroism 

CD experiments were performed on a J-720 Spectropolarimeter (Jasco 

Spectroscopic Co., LTD., Tokyo, Japan). The melting temperature for 42 µM

A002HC in 100 mM KHPO4 pH 7.0 was determined by measuring the ellipticity of 

the sample at 222 nm as it was heated in a 1.0 cm cell from 25°C to 70°C at 0.5 

degrees per minute. The isodichroic point was observed for 840 pM A002HC in 100 

mM KHPO4 pH 7.0 by measuring the ellipticity of the sample in a 0.1 cm cell from 
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250 nm to 200 nm as the cell was heated from 25°C to 100°C at 0.5 degrees per 

minute. 

Differential Scanning Calorimetry 

DSC measurements were taken on a VP-DSC Micro Calorimeter (MicroCal 

Incorporated, Northampton, MA). During each run, the cell temperatures were 

increased from 15°C to 125°C at a rate of one degree per minute. Three buffers were 

used to observe unfolding at different pHs: 50 mM glycine at pH 2.7 and 11.0; 50 

mM NaOAc at pH 4.0; 100 mM KHPO4 at pH 7.0. Scans were run with the buffer in 

both the sample and reference cells. Then a quantity of A002HC, which had been 

dialyzed into the same buffer, was introduced into the sample cell and at least two 

more scans were performed. A002HC concentrations ranged from 50-350 µM as 

determined by UV spectra. Buffer effects were canceled by subtracting the melting 

curves of known protein concentrations to determine the heat contribution of their 

molar difference. 

Isothermal Titration Calorimetry 

ITC measurements were performed on the MicroCal VP-ITC Micro Calorimeter. 

For each experiment A002HC and the albumin were dialyzed side-by-side into 100 

mM KHPO4 pH 7.0 to ensure identical buffer conditions. Each run involved nineteen 

15 µL injections of approximately 250 µM A002HC into a sample cell containing 

around 25 µM HSA or GPSA. Injections lasted 30 s each and were spaced 180 s 

apart. Precise A002HC and albumin concentrations were determined by UV spectra. 
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Jacket temperatures of 25°C, 30°C, and 35°C were used with HSA. GPSA 

measurements were taken only at 25°C. 
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Chapter 4: Using OR-PCR to Identify Functional 
Determinants in a Family of Albumin Binding Domains∗∗∗∗

Introduction 

In vitro experiments suggest that the albumin binding domain may support 

bacterial growth by scavenging albumin-bound nutrients from the blood (de Chateau, 

Holst et al. 1996). Variations in the abilities of these domains to bind albumin from 

different species (Johansson, Frick et al. 2002) may help to define the host ranges for 

certain bacterial pathogens. Native or engineered versions of the module could be 

used to support affinity-purification of albumin and other fusion proteins 

(Hammarberg, Nygren et al. 1989), or increase vaccine serum stability (Nygren, 

Flodby et al. 1991; Makrides, Nygren et al. 1996) and immunogenicity (Sjolander, 

Nygren et al. 1997; Libon, Corvaia et al. 1999). However, the rich array of albumin 

binding domains also offers opportunities for structural biologists wishing to exploit 

the well defined sequence space to study the impact of select polymorphisms on 

protein function and structure. 

The functional and structural diversity exhibited by members of the module is 

evident in the F. magna ALB8-GA and streptococcal G148-GA3 albumin binding 

domains, which display variable affinities for different species of albumins and 

significantly different backbone dynamics. Researchers have observed that ALB8-GA 

demonstrates a distinct preference for primate serum albumins compared to the 
 
∗ The contents of this chapter were largely derived from a paper that the author and 
colleagues have submitted for publication in Biochemistry.
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broader range of affinities for albumin species exhibited by G148-GA3 (Johansson, 

Frick et al. 2002). Furthermore, comparative hydrogen-deuterium exchange data 

reveals that G148-GA3 maintains a more dynamic backbone than ALB8-GA, a 

feature that the researchers suggest may be associated with the former’s ability to 

bind a broader range of albumins (Johansson, Nilsson et al. 2002).  

Unfortunately, the identity and impact of functional determinants contained 

within the family of albumin binding domains remains largely unexplored. As is the 

case for many protein families, thermodynamic, kinetic, and structural data is 

unavailable for most members. Despite the availability of extensive biochemical data 

on two distinct members of the GA module (Sjobring 1992; Johansson, de Chateau et 

al. 1995; de Chateau, Holst et al. 1996; Kraulis, Jonasson et al. 1996; Johansson, de 

Chateau et al. 1997; Gulich, Linhult et al. 2000; Johansson, Frick et al. 2002; 

Johansson, Nilsson et al. 2002; Linhult, Binz et al. 2002), including a recently 

published crystal structure of ALB8-GA complexed with human serum albumin 

(Lejon, Frick et al. 2004), much remains unknown about the impact of module 

polymorphisms on domain structure and function. 

One promising technique for deciphering the manners in which the GA module 

and other protein families encode species-specific traits involves creating a library of 

recombinant homologs that can be probed with phage display for variants that 

accommodate specific selection criteria. Analysis of the phage-selected mutants could 

provide significant insights into the natural mechanisms behind phenotypic diversity, 

permit researchers to predict the behavior of unexamined homologs, and help guide 

subsequent research. 
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Zhao and Arnold initially demonstrated the value of phage-displayed recombinant 

libraries in evaluating the impact of specific polymorphisms on a pair of subtilisin E 

mutants (Zhao and Arnold 1997). However, an accumulation of experimental and 

computational data (Kikuchi, Ohnishi et al. 1999; Moore, Maranas et al. 2001; Moore 

and Maranas 2002; Maheshri and Schaffer 2003) suggests that the traditional DNA 

shuffling strategy developed by Stemmer (Stemmer 1994; Stemmer 1994) and used 

by Zhao and Arnold in their landmark study becomes ineffective when applied to 

coding regions of decreasing size and homology. Although other strategies have been 

developed specifically to promote recombination among heterologous sequences 

(Kikuchi, Ohnishi et al. 1999; Ostermeier, Nixon et al. 1999; Kikuchi, Ohnishi et al. 

2000; Gibbs, Nevalainen et al. 2001; Lutz, Ostermeier et al. 2001), few readily 

produce the density of crossover events needed to efficiently shuffle families of small 

globular proteins like that of the GA module. 

OR-PCR is a novel strategy that appears to be capable of creating recombinant 

libraries from compact heterologous domains. Chapter 2 characterization of the 

technique, which exploits elevated recombination frequencies near template ends and 

the exponential accumulation of recombinant templates during PCR, suggests that 

OR-PCR can generate multiple recombination events among compact heterologous 

domains similar in size and complexity to those defined by the GA module. 

This chapter describes the use of OR-PCR to create a library of recombinant GA 

modules, which is probed by phage display in an attempt to uncover differences 

between GA mutants required to bind one or two distinct albumin species. The two 

most prominent phage-selected domains were subjected to circular dichroic, 
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calorimetric, and limited structural analysis in order to identify structural and 

functional determinants within the GA module and possibly determine whether 

backbone dynamics do in fact contribute to the broad affinity for different albumins 

observed in G148-GA3. 

Experimental Results 

Reconstructing the Native GA Sequence Space. 

The 16 known members of the bacterial albumin binding module describe a finite 

sequence space, which encodes a range of three-helix domains with varied stabilities 

and albumin binding potentials. I sought to identify some of the biochemical 

determinants that specify phenotypic variation in these domains by shuffling 

representatives of the natural sequence space and selecting for broad or narrow 

albumin binding affinities. 

This effort began by assembling the 56 amino acid protein (A002), which 

contained the 46 amino acid streptococcal albumin binding domain, G148-GA3, 

surrounded by unstructured flanking sequences. For consistency, the complete A002 

amino acid sequence shown in Table 5 is largely identical to that described in the 

previous chapter and used in earlier structural studies of the streptococcal domain 

(Kraulis, Jonasson et al. 1996; Johansson, de Chateau et al. 1997). NotI and PstI 

restriction sites were used to insert A002 into pHEN1, an ampR-tagged phagemid 

whose multiple cloning site supports the display of protein or polypeptide libraries on  
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Table 5. Native, Template, and Phage-Selected Albumin Binding Domains. 
10        20        30        40        50 

A002 MEAVDANSLAEAKVLANRELDKYGV-SDYYKNLINNAKTVEGVKALIDEILAALPTE 
F. magna L3316-GA1 .KN..EE.IK..KEA.IT..L.FS...K.......E..KN...K. 
F. magna L3316-GA2 .KN..ED.IK..KEA.IS..I.FDA..K.......E..KN...K. 
F. magna L3316-GA3 .KN..EA.IK..KEA.ITAE.LF....K.......ES.KN...K. 
F. magna L3316-GA4 .KN..ED.IK..KEA.IT..I.FDA..K...I...E..KN...K. 
F. magna ALB1-GA .KN..ED.IA..K.A.IT..F.F.A..K......AN..KN...K. 
F. magna ALB8-GA .KN..ED.IA..K.A.IT..F.F.A..K.....E.N..KN...K. 
F. magna ALB1B-uGA .Q...DK.IQ.AKAN.LT.KLLLKN.E....P.SA.SFAE.LIKS 
F. magna ALB8-uGA .KLT.EE.EKA.K.L.IT.EFIL.Q.DK.TSR..LES.VQT.KQS
S. dysgalactiae MAG-GA1 ..KLAADTDLD..VAKIIN.-.TTKVE....A.D..KIFE.--SQ
S. dysgalactiae MAG-GA2 ..K..AD.IEI.K...I-G...IK....G..A...T..K.....S 
S. equi ZAG-GA  .L...EA.IN..KQ..I-....VT...K.......N..KA...S. 
S. canis DG12-GA2  .S...EM.I....AQ..-..F...K..........V..K.L..NS
S. canis DG12-GA1  .DQ..QA.LK.F.R...-.N.......K......IME.QAQVVES 
S. Streptococcus G148-GA1  ..K..AD.LK.FN....-..................D.QAQVVES 
S. Streptococcus G148-GA2  .................-...H..............D.QAQVVES 

Na
tiv

eD
om

ain
sa,

b

S. Streptococcus G148-GA3  .................-........................... 

TD-1 
 AA  LK                 G  A   T        
.........KN..EE.IR.......-.................N..KA......... 

TD-2 
 A L
.............ED.IEI.K...I-G...IK...........ES.KN...K..... 

TD-3 
 A LS Q
.............EA.IR..KK..I-....VT............D.QAQVVES....

TD-4 
 A N NFH               
.............EM.I....AQ..-......K...........D.QAQVVES....

TD-5 
 AQ  Q  LK LNR              G  A   T        
.........EK..EA.IR.F.K...-.................N..KA......... 

TD-6 
 SSE   S              
....................KEA.ITA...F....K........D.QAQVVES....

Te
mp

lat
eD

om
ain

sb,
c

TD-7 
 S L D
....................KEA.IT..T.F.A..K.......ES.KN...K..... 

PSD-1 (8, 10, 9, 9) ..........Q..EA.IK..KQ..I-G...IK...........ES.KN...K..... 
PSD-2 (0, 0, 1, 0) .........TQ..EA.IK..KQ..I-G...IK...........ES.KN...K..... 
PSD-3 (0, 0, 1, 0) .............AD.IEI.K...I-G...IK...........ES.KN...K..... 
PSD-4 (0, 0, 1, 0) .............ED.LEI.K...I-G...IK...........ES.KN......... 
PSD-5 (0, 0, 0, 1) .............ED.LEI.K...I-G...IK...........ES.KN......... 
PSD-6 (1, 0, 0, 0) .............EA.LS..KQ..I-....VT...........ES.KN...K..... 
PSD-7 (2, 0, 0, 1) .............EM..........-.................ES.KN...K..... 
PSD-8 (0, 1, 0, 0) ............-EM..........-.................ES.KN...K..... 
PSD-9 (0, 0, 0, 1) .............QM......R...-.................ES.KN...K..... Ph

ag
e-S

ele
cte

dD
om

ain
s

b,
d,

e

PSD-10 (1, 0, 0, 0) .............V......KEA.IT..L.FDA..K...A...N..KA......... 
 A002 MEAVDANSLAEAKVLANRELDKYGV-SDYYKNLINNAKTVEGVKALIDEILAALPTE 

10        20        30        40        50 
a Sequences of the native domain were previously compiled by Johansson (Johansson, de 
Chateau et al. 1997). 
b Gray characters are represented in only one of the three sequence sets defined by the native, 
template, or phage selected domains. 
c Underlines reveal the extent of primers used to construct the templates from A002 via site 
directed mutagenesis. Stacked characters represent degeneracies introduced by the use a 
randomized nucleotide in the corresponding codon. 
d Gray blocks describe the regions in which crossover events likely occurred during OR-PCR. 
e The values in parenthesis indicate the number of times each domain was identified in 
sequences obtained from phage-selected challenge sets A, B, C, and D. 
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the surface of M13 phage by fusing the cloned fragments to the N-terminal of the gIII 

capsid protein (Hoogenboom, Griffiths et al. 1991). 

Rather than reconstructing each of the sixteen homologs shown in Table 5, I used 

PCR site-directed mutagenesis to create seven variants of A002, which cumulatively 

represented much of the natural diversity found among members of the GA module. 

These variants have been labeled template domains (TD) one through seven in Table 

5. Randomized bases were used to further increase TD coverage for the naturally 

defined GA sequence space. Although there is a slight disparity between the sequence 

spaces represented by the seven templates and the native GA domains, the approach 

significantly reduced the number of primers and reactions required to produce a 

starting library. On average, each of the seven templates exhibits an 83% homology 

to one another within the 132 nt variable region subject to recombination.  

Shuffling Template Domains Via OR-PCR. 

Chapter 2 experiments suggest that OR-PCR offers an effective strategy for 

promoting recombination among compact heterologous domains similar in size and 

complexity to the members of the GA module studied here. The technique 

significantly elevates recombination frequency during standard PCR by locating the 

recombinant region near one end of the amplicon. Since the technique appears to 

benefit from the accumulation of shuffled templates in the reaction mix, 

recombination rates can be further increased by passing the products through multiple 

iterations of the OR-PCR process. 
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I applied OR-PCR to an equal mixture of the seven pHEN1/TD constructs by 

designing primers to produce a 766 bp amplicon with the start of the 177 nt GA 

coding region located only 24 nt from one end. The optimal elongation time for 

generating crossover events within the offset GA coding region was determined to be 

approximately one minute—a value obtained by creating a similarly-sized amplicon 

on the pUC19-03 and pUC19-05 constructs described in Chapter 2 and measuring the 

impact of elongation time on lacZ phenotype rescue rates. 

An equal mixture of the pHEN1/TD variants was shuffled via six consecutive 

rounds of OR-PCR. During this process, 2 µL samples from each 30-cycle reaction 

were transferred to fresh reaction mixes. After six rounds the final product was 

reintroduced into pHEN1 and cloned in E. coli for infection with M13KO7 phage. 

Sequence analysis (data not shown) revealed that twelve of fifteen pHEN1 samples 

obtained from phage-infected E. coli colonies had undergone recombination within 

the GA coding region with five of the sequences containing two to three crossover 

events. Eight of the fifteen sequences exhibited frame shift mutations that were likely 

to destroy the integrity of the albumin binding module. The presence of frame shift 

mutations contrasted sharply with Chapter 2 OR-PCR experiments, which showed no 

evidence of insertions, deletions, or point mutations after similar treatment. Although 

the frame shift mutations reduced the number of viable species in the recombinant 

library by as much as half, there was no evidence that any of the deleterious 

mutations were propagated through phage selection process described below. 



65 
 

Selecting Phage-Displayed Mutants. 

It has been proposed that the relatively dynamic G148-GA3 structure may 

contribute to the domain’s broad affinity for albumin from different species 

(Johansson, Nilsson et al. 2002). I sought to explore the notion that backbone 

dynamics were somehow tied to albumin specificity by designing a selection protocol 

in which phage displayed GA recombinants were required to bind HSA, GPSA, or 

both albumins. 

HSA and GPSA were chosen as target ligands because they appear to represent 

the diverse range of albumins bound by G148-GA3. Competitive binding assays show 

only a ten-fold difference in the abilities of the streptococcal domain to bind HSA and 

GPSA (Johansson, Frick et al. 2002). At the same time, the F. magna ALB8-GA 

albumin binding domain was found to be a thousand fold less capable at binding 

GPSA than HSA. Sequence analysis also recommended HSA and GPSA as ideal 

candidates for a study of GA binding specificities because the two albumins are on 

opposite ends of a phylogenetic tree depicting albumins from eleven different species 

(not shown here). 

Four identical aliquots (challenge sets A-D) of phage displaying the GA 

recombinant library were each subjected to four consecutive rounds of selection, 

amplification, and precipitation as depicted in Figure 14. Challenge sets A and D 

were passed respectively over only HSA or GPSA labeled beads during each of the 

four rounds. Sets B and C alternated between the two albumins after each round in an 

effort to select mutants that could efficiently bind both species of ligand. Sets B and  
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Challenge Set A Challenge Set B Challenge Set C Challenge Set D 

Round Ligand 
Output 

[pfu/mL] Ligand 
Output 

[pfu/mL] Ligand 
Output 

[pfu/mL] Ligand 
Output 

[pfu/mL] 
1 HSA 2.0 x 105 HSA 1.2 x 105 GPSA 7.6 x 105 GPSA 8.0 x 105

2 HSA 5.3 x 106 GPSA 2.3 x 107 HSA 2.0 x 106 GPSA 2.5 x 107

3 HSA 2.1 x 106 HSA 1.2 x 106 GPSA 1.4 x 107 GPSA 1.2 x 107

4 HSA 6.1 x 107 GPSA 7.4 x 107 HSA 3.4 x 107 GPSA 7.1 x 107

Isolates PSD-1 (x8), PSD-6, 
PSD-7 (x2), PSD-10 

PSD-1 (x10), PSD-8 PSD-1 (x9), PSD-2, 
PSD-3, PSD-4 

PSD-1 (x9), PSD-5, 
PSD-7, PSD-9 

Figure 14. Panning for HSA- and GPSA- Binding Mutants. Four rounds of selection, 

amplification, and purification were carried out on challenge sets A-D. During selection, purified 

phage (circle-P) displaying GA recombinants were incubated with biotinilated albumin (circle-

A), exposed to streptavidin-coated paramagnetic beads (circle-M), and washed repeatedly with a 

magnetic manifold to remove unbound phage. Infected E. coli were grown in the presence of 

helper phage to amplify selected phage and complete the cycle. Phage-infected E. coli were also 

plated to obtain the output titers reported in the accompanying table. Depending on the challenge 

set, albumins were either varied or maintained from one round to the next. Eleven to twelve 

phagemids were isolated from titer plates and sequenced at the end of round four to identify 

PSD-1-10 reported in Table 5.
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C differed only in their starting ligands in order to observe whether the initial 

selection criteria proved critical in determining which mutants were enriched. 

After four rounds of amplification and selection challenge sets A-D showed 

significant signs of enrichment based upon elevated titers of phage in the eluant 

(Figure 14). For each of the four sets, eleven to twelve colonies of E. coli infected 

with phage derived from the fourth elution were isolated and sequenced. Ten distinct 

phage-selected domains (PSD 1-10) were identified in the 47 sequences obtained 

from the challenge sets. More than half of these sequences, which are listed in Figure 

14 and displayed in Table 5, exhibited two distinct cross over events. Two point 

mutations and a single codon deletion were also found among the selected mutants. 

Each of the biopanned challenge sets revealed a clear preference for PSD-1, which 

was represented by 36 of the 47 samples. The second most common mutant, PSD-7, 

was identified in 3 of the sequenced samples. All other mutants were found only once 

and tended to be close variants of PSD-1 or PSD-7. 

Significantly, there was no discernable difference in the types or distributions of 

mutants appearing in each of the four challenge sets—suggesting that sequence 

polymorphisms in the human and guinea pig serum albumins had little effect on their 

respective abilities to enrich the dominant PSD-1 mutant. 

Circular Dichroic Analysis of Selected Mutants. 

Circular dichroism was used to assess the structural and thermodynamic 

properties of folded PSD-1 and PSD-7. Figure 15 presents normalized CD data for 

both mutants alongside similar data obtained for G148-GA3. Per Figure 15A, the  
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CD profiles for both mutants are similar in shape to those previously observed for 

G148-GA3 (Kraulis, Jonasson et al. 1996; Gulich, Linhult et al. 2000) and indicative 

of peptides with a predominantly alpha-helical content. The G148-GA3 sample 

studied in Chapter 3 uniquely contained a disordered six-histidine tag on its C-

terminal, which likely contributed to the molecule’s weaker signal in the Figure 15A 

normalized plot. 

When mutant and wild-type domains were heated from 25°C to 100°C, they 

showed clean transitions from folded to unfolded states as indicated by the ellipticity 

at 222 nm. These transition curves were fit with upper and lower baselines in Figure 

15B to determine the ratio of unfolded to folded proteins (K) and derive temperature 

dependent values of ∆G using the equation 

 )ln(KRTG ⋅−=∆ (15) 

where R is the gas constant. This transformation, which is plotted in Figure 15C,

reveals that PSD-1 is more stable than G148-GA3 in the measured temperature range 

with a Tm approximately 13°C above the 72°C value obtained for the wild-type 

domain. The opposite is the case for the less stable PSD-7, which reveals a Tm of 

65°C. The relative stabilities of the three domains are probably maintained as the 

solution reaches room temperature. However, the CD data does not permit us to 

accurately determine ∆CP and predict the behavior of the free energy curves at lower 

temperatures. 
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A

B

C

Figure 15. CD Analysis of Phage-

Selected Mutants. Values are given 

for PSD-1 (solid circles), PSD-7 

(open circles), and G148-GA3 (open 

triangles) in 50-100 mM KHPO4 pH 

7.0. G148-GA3 data were obtained 

from experiments described in the 

previous chapter. (A) Spectral scans 

normalized to 1.0 µM for each 

mutant at 25°C suggest that the 

folded proteins adopt alpha helical 

structures similar to those observed 

for the wild-type domain. (B) The 

temperature-dependent fraction of 

unfolded proteins was determined by 

fitting baselines to the normalized 

222 nm transition curves generated 

by heating PSD-1 and PSD-7 from 

25-100°C. The upper baseline for 

PSD-1 was approximated as being 

roughly equivalent to that of the 

normalized PSD-7 in its unfolded 

state. Baselines are fit to G148-GA3 

in Figure 9B. (C) ∆G unfolding was 

computed for each domain from the 

unfolded fraction. 
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Characterizing the Albumin Binding Reactions of Selected Mutants. 

ITC was used to determine thermodynamic state functions and binding constants 

for PSD-1 and PSD-7 interactions with both HSA and GPSA at 25°C. The 

calorimetric technique measures heat produced when small amounts of protein bind 

an excess of ligand. The enthalpy involved in each binding reaction is equal to the 

area under the calorimetric curve. Enthalpies from successive reactions can be plotted 

as a function of the protein-ligand molar ratios to produce a transition curve and 

compute the binding constant K. Values for ∆G, ∆H, and ∆S are easily derived form 

this analysis. An example of the calorimetric data obtained for PSD-1/HSA binding at 

25°C is given in Figure 16. The midpoints for each of the binding reactions occurred  

when equal molar concentrations of protein and ligand are present, indicating one-to-

one stoichiometry. 

According to the ITC data reported in Table 6, the PSD-1/HSA binding constant 

is nearly five times that of the native streptococcal domain. Furthermore, PSD-1’s 

GPSA binding constant is twice the value obtained for HSA. This is significant given 

the observation that competitive binding assays for G148-GA3 and ALB8-GA show 

ten and thousand fold decreases in their abilities to bind GPSA as compared to HSA 

(Johansson, Frick et al. 2002). Remarkably, PSD-7, which is less stable than G148-

GA3 at higher temperatures, yields modest gains over the native domain in binding 

HSA while maintaining an equivalent affinity for GPSA. 
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A

B

Figure 16. ITC Analysis 

of the PSD-1/HSA 

binding at 25°C. 
Measurements were made 

in 50 mM KHPO4 pH 7.0. 

(A) Instantaneous heat 

generated by adding 1.2 

nmol aliquots of PSD-1 to 

12.6 nmol HSA at three-

minute intervals. (B) Total 

heat produced per mole of 

injectant as a function of 

the molar ratio of protein to 

ligand. The binding 

constant and van’t Hoff 

enthalpy corresponding to 

the transition curve are 

reported in Table 6. The 

midpoint of the transition 

occurs at equivalent 

concentrations of protein 

and ligand, indicating one-

to-one stoichiometry. 
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Identifying Potential Functional Determinants in Selected Mutants. 

In an effort to associate phage-selected sequence polymorphisms with observed 

changes in protein thermodynamics for folding and binding, the spatial arrangements 

of PSD-1 and PSD-7 mutations were considered by aligning an unpublished NMR 

structure for PSD-1* with an NMR structure for G148-GA3 (Johansson, Frick et al. 

2002) (PDB #1GJS) and a crystal structure of the HSA-bound ALB8-GA (Lejon, 

Frick et al. 2004) (PDB #1TFO). The structural alignments shown in Figure 17 were 

made using the National Center for Biotechnology Information’s (NCBI) Vector 

Alignment Search Tool (VAST). 

 
* The NMR structure for PSD-1, which was recently obtained by Yanan He, Yihong 
Chen, and John Orban, will likely be the subject of a separate publication.

Table 6. Thermodynamic Data for G148-GA3 and Phage-Selected Mutants. a
G148-GA3b PSD-1 PSD-7 

K (mol-1) 1.2 (± 0.1) x 107 5.4 (± 0.6) x 107 3.5 (± 0.6) x 107

∆∆∆∆G (kJ/mol) -40.4 ± 0.2 -44.1 ± 0.3 -43.0 ± 0.4 
∆∆∆∆H (kJ/mol) -31.9 ± 0.1 -8.27 ± 0. 04 -11.5 ± 0.1 

HSA Binding 

∆∆∆∆S (J/mol) 29 ± 1 120 ± 1 106 ± 2 
K (mol-1) 0.9 (± 0.8) x 107 1.1 (± 0.2) x 108 0.7 (± 0.2) x 107

∆∆∆∆G (kJ/mol) -40 ± 2 -45.9 ± 0.4 -39.1 ± 0.6 
∆∆∆∆H (kJ/mol) -3.7 ± 0.2 -6.41 ± 0.05 -3.4 ± 0.1 

GPSA Binding 

∆∆∆∆S (J/mol) 121 ± 6 132 ± 2 129 ± 2 
a All thermodynamic state functions are reported at 25°C for samples in 50 mM KHPO4 pH 7.0. 
b Data obtained from Chapter 3 analysis of A002HC. 
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Figure 17. Structural Comparison of Mutant and Wild-Type Albumin Binding Domains. 

The recently-obtained, unpublished NMR structure for PSD-1 (purple) is aligned with the 

NMR structure for G148-GA3 (orange) and albumin-bound crystal structure of ALB8-GA 

(gray) using NCBI’s VAST algorithm. The C-termini for all three structures are at the top of 

the diagram. The HSA, which is bound to the ALB8-GA surface defined by the second and 

third helices is not shown. Side chains are displayed only for PSD-1/G148-GA3 

polymorphisms. The glutamic acid (position 19), which is located on all three domains and 

appears to interact with lysine (position 47) in PSD-1 and ALB8-GA, is rendered in blue. The 

PSD-1 structure obtained by Yanan He, Yihong Chen, and John Orban, will likely be the 

subject of a separate publication. 
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Although the PSD-1 and G148-GA3 NMR structures do not identify the albumin 

binding epitope, they share sufficient sequence identity and structural homology with 

ALB8-GA at the albumin interface to conclude that all three molecules encode a 

common binding epitope spanning the surface defined by the second and third helices 

of the module. Of the two wild-type albumin binding domains considered in this 

paper, PSD-1 and PSD-7 share the greatest sequence identity with G148-GA3  

ITC analysis indicates that PSD-7 exhibits elevated and equivalent affinities for 

HSA and GPSA respectively when compared to G148-GA3, despite the 

recombinant’s lower stability at high temperatures. Improvement to PSD-7 albumin 

binding is likely supported by A45S, which appears by comparison with the 

crystallized ALB8-GA/HSA complex to hydrogen bond with T260 on HSA 

(Accession No. P02768) and GPSA (Accession No. AY294645). This interaction is 

not supported by G148-GA3 and could give the less stable PSD-7 an added advantage 

in binding the two albumins. While the same mutation exists in PSD-1, its impact on 

albumin binding likely is mitigated by the simultaneous loss of a native G148-GA3 

interaction with HSA and GPSA N342 through S27G. 

Absent substantial enhancements to the binding epitope, PSD-1’s superior ability 

to bind HSA and GPSA compared to PSD-7 and G148-GA3 might be driven by the 

gains in the mutant’s stability observed during CD melts. The ten polymorphisms that 

differentiate PSD-1 from PSD-7 mostly are located on solvent-exposed surface 

residues of the first two helices. Being confined to the surface of the domain, these 

polymorphisms are unlikely to significantly destabilize PSD-7 through steric conflicts 

with other residues. Furthermore, these polymorphisms do not appear to encode the 
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changes in protein stability via discernable differences in their hydrophobic natures. 

In fact, the three PSD-1 mutations that do impact protein hydrophobicity (N17I, 

S27G, and K31I) collectively increase the hydrophobic surface area of PSD-1—

changes that are likely to reduce rather than enhance the overall stability of the 

domain by promoting thermodynamically unfavorable order in the surrounding 

solvent. 

Fortunately, the recently obtained PSD-1 NMR structure offers further insights 

into the domain’s enhanced stability and binding affinity. While all three domains in 

Figure 17 show a tight alignment of the first and second helices, the third helix of 

unbound G148-GA3 appears to reside further from the protein’s core than the bound 

ALB8-GA. This is not the case with the corresponding PSD-1 helix, which remains 

closely aligned with the ALB8-GA helix despite the fact that the former molecule is 

unassociated with its ligand. Provided experimental error does not contribute 

significantly to the structural variations found in the third helix, the unpublished 

NMR data obtained by Yanan He et. al. suggests that PSD-1 achieves further stability 

over G148-GA3 by more tightly associating the third helix with the domain’s core. 

Furthermore, observed improvements to PDS-1 HSA and GPSA binding may result 

from the closer conformational alignment the unbound PSD-1 helix shows with the 

bound ALB8-GA helix.  

Only two G148-GA3/PSD-1 polymorphisms appear to be capable of directly 

impacting the relative stabilities of these domains and position of the third helix, 

although other polymorphisms could have less obvious effects on the structures. The 

first of these mutations (V25I) may contribute to PSD-1 stability by replacing a valine 
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at the intersection of the first and second helices with a more bulky isoleucine, which 

could help to fill a solvent accessible gap observed in the G148-GA structure. The 

second mutation (I47K) appears to bring the third helix closer to the core by 

removing a bulky isoleucine from this position and causing the helix to rotate slightly 

relative to its neighbors. An ionic interaction between PSD-1’s E19 and K47, which 

is more accurately rendered in the ALB8-GA crystal structure may, further support 

the positioning of the third helix with respect the core of the domain and the albumin 

binding interface.  

Discussion 

Families of homologous proteins such as the GA albumin binding module provide 

opportunities for biologists to study the mechanisms underlying observed phenotypic 

variations. Unfortunately thermodynamic, kinetic, and structural data is rarely 

available for more than a few members of a family. Even when multiple homologs 

have been characterized, the diverse evolutionary pressures placed upon native 

proteins by their environments make it difficult to predict how polymorphisms 

support discrete biological functions. 

Phage display and selection of recombinant libraries offer a promising strategy for 

unraveling the complexities of natural sequence spaces by permitting researchers to 

efficiently pan for functional determinants under well-defined conditions. In this 

chapter I described the use of OR-PCR to shuffle a library of seven homologs defined 

by the natural sequence space of a medically significant family of small globular 

proteins. Despite the occurrence of frame shift mutations in some members of the 
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recombinant population, OR-PCR proved to be highly effective at generating double 

or triple crossover events in half the sequenced samples, probably due to the 

accumulation of recombinant templates and primers in the mix. 

Far from revealing a distinct set of determinants for recombinants required to bind 

either one or two species of albumin, each of the four challenge sets exhibited an 

overwhelming preference for the PSD-1 mutant. These results fail to support the 

possibility that G148-GA3’s dynamic backbone enhances its ability to efficiently bind 

phylogenetically diverse human and guinea pig serum albumins (Johansson, Nilsson 

et al. 2002) However, it is certainly possible that the streptococcal domain’s dynamic 

structure supports binding to albumins not considered here. 

The recently obtained NMR structure for PSD-1 suggests that the domain might 

achieve substantial increases in stability and albumin binding affinity over the wild-

type G148-GA3 by stabilizing the third helix against its core in a conformation that 

closely resembles that of the albumin-bound ALB8-GA domain. This transformation 

appears to be driven in part by the acquisition of a lysine at position 47, which 

extends from the mutant’s core in a manner that is reproduced in the ALB8-GA 

structure and may be maintained in more than half the known GA homologs based on 

sequence analysis. These results suggest a course for future research and underscore 

the value of OR-PCR and phage display in uncovering novel and potentially 

predictive insights from the complex array of natural polymorphisms found in many 

protein families. 
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Materials and Methods 

Primers 

P4: 5’ - CGA AGG TGT TGG CGA ACA GGG AGT TGG ACA AAT ACG 

GCG TGT CGG ATT ATT ACA AGA ATC TGA TCA ACA ACG CC - 3’; P5: 5’ - 

CGA TTA ACG CCT TCA CGC CTT CCA CGG TTT TGG CGT TGT TGA TCA 

GAT TCT TGT AAT AAT CCG - 3’; P6: 5’ - CAA GCG ATC CTG CAG CAT 

ATG GAG GCC GTG GAC GCC AAC AGC CTG GCG GAG GCG AAG GTG 

TTG GCG AAC AGG - 3’; P7: 5’ - GCT CAC GGC AGT CGC GGC CGC GAA 

TTC CGT CGG CAA GGC CGC CAA GAT CTC GTC GAT TAA CGC CTT CAC 

GCC - 3’; P8: 5’- TTT TTG TGA TGC TCG TCA GG -3’; P9: 5’- TTC TGA GAT 

GAG TTT TTG TTC TGC -3’; P10: 5’ - CCG CTG GAT TGT TAT TAC TCG - 3’; 

P11: 5’ - AAA AAG GAT CCG AGC GTC GCT TAC GTT GAA GAA GAC AAA 

GTA TTT AAA GCG ATG ATG GAG GCG GTG GAC GC - 3’; P12: 5’ - ACG 

TTC AAG CTT GGC CGC TTA TTC CGT CGG - 3’. 

A002 Assembly 

The A002 G148-GA3 construct used in this study was assembled in two 

consecutive polymerase chain reactions using the contiguous primers P4-P7. The 

final product was purified with QIAquick® PCR Purification Kit (Qiagen, Valencia, 

CA) before and after restriction digest with PstI and NotI for insertion into pHEN1. 

The pHEN1 phage display vector is described by Hoogenboom et al. (Hoogenboom, 

Griffiths et al. 1991). Correct assembly of pHEN1/A002 was confirmed by DNA 

sequencing as described below. 
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Template Construction 

Seven variants of A002 (TD-1 through TD-7) were produced by introducing point 

mutations into pHEN1/A002 using QuickChangeTM Site-Directed Mutagenesis Kit 

(Stratagene, La Jolla, CA) per the protocol described in Wang and Malcolm (Wang 

and Malcolm 1999). Each construct was generated from two consecutive 

QuickChangeTM mutagenesis reactions in which changes were made separately to the 

5’- and 3’- ends of the GA coding region. Stretches of amino acids that correspond to 

the complementary forward and reverse primers used during mutagenesis are 

underlined in Table 5. Where necessary, primers were constructed with randomized 

nucleotides to produce some of the amino acid polymorphisms shown in the table. 

Since these primers can be derived from the information presented here, they are not 

listed above. DNA sequencing of pHEN1 variants confirmed the accurate assembly of 

all seven templates. 

Offset Recombinant PCR 

OR-PCR was performed per the protocol described in Chapter 2. An equal 

mixture by mass of pHEN1 vectors containing TD-1 through TD-7 was subjected to 

six consecutive rounds of OR-PCR. The first of these reactions consisted of 2.5 U 

cloned Pfu polymerase (Stratagene, La Jolla, CA), 200 µM each dNTP, 0.5 µmol each 

of P8 and P9, and 100 ng of the mixed pHEN1 templates in 50 µL of the 

recommended reaction buffer. Subsequent reactions substituted a 2 µL aliquot from 

the previous reaction for the 100 ng template mix described above. Thermocycling 

began with 30 s at 95°C followed by 30 cycles of 30 s at 95°C, 30 s at 55°C, and 1 
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min at 75°C. PCR products were purified using the QIAquick® PCR Purification Kit 

and concentrations determined via ultra violet (UV) absorption at 260 nm. 

The purified product was further amplified using a standard PCR protocol to 

remove heteroduplexes formed during OR-PCR and generate a smaller amplicon that 

was conducive to cleavage and religation into pHEN1. During amplification, 100 ng 

of the recombinant product was added to a PCR mix similar to the one described 

above and thermocycled for only 8 cycles. P9 and P10 were used to generate a 

product with ends extending slightly beyond the indicated restriction sites. After 

purification with the QIAquick® PCR Purification Kit, the product was cut with PstI 

and NotI for ligation into pHEN1. The recombinant plasmids were transformed into 

XL-10 Gold Super Competent Cells (Stratagene, La Jolla, CA), plated on LB agar 

containing 100 µg/mL ampicillin, and incubated overnight at 37°C.  

Phage Production 

Transformed XL-10 Gold Super Competent Cells were grown in 20 mL YT with 

100 µg/mL ampicillin until mid log phase. A 1 mL aliquot of the culture was then 

transferred to a fresh stock of 20 mL YT containing ampicillin and 107 pfu M13KO7 

helper phage (New England Biolabs). After 1 h at 37°C, 80 µg/mL kanamycin was 

added to the culture. Incubation continued at 37°C with vigorous shaking for 16 h. 

Phage Precipitation 

Phage were precipitated by spinning the cell culture twice at 10k xg for 30 min 

and discarding the pelleted cells. 4 mL PEG/NaCl (20% PEG 8000, 2.5 M NaCl) was 

added to the supernatant and the solution was placed on ice for 20 min before being 
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centrifuged at 10k xg for 30 min. The supernatant was discarded and the pellet 

resuspended in 1 mL TE buffer (100 mM Tris pH 8.0, 0.1 mM EDTA). After adding 

200 µL PEG/NaCl the sample was returned to ice for 20 min and centrifuged at 14k 

xg for 15 min. The supernatant was discarded and the pellet resuspended in 1 mL TE 

buffer for storage. 

Biopanning 

A 50 µL solution of Dynabeads® M-280 Streptavidin paramagnetic beads (Dynal 

Biotech) was pelleted on a magnetic manifold and resuspended in TBS Tween (50 

mM Tris pH 7.4, 150 mM NaCl, 0.5% Tween 20) and 0.1% dried milk. This solution 

was rocked overnight at 4°C before repelleting the beads on a magnetic manifold. 

Meanwhile, 108 pfu pHEN1-containing phage were mixed with 1 µL 10 nM

biotinylated albumin and 1 mL TBS Tween before rocking at room temperature for 3 

h. The dried essentially fatty acid free HSA and GPSA samples used in this study 

were obtained from Sigma. The pelleted streptavidin beads were resuspended in the 1 

mL phage solution and rocked for 30 min. Afterwards, the beads were returned to the 

magnetic manifold to remove the supernatant before being washed seven times with 1 

mL TBS—rocking for five min at room temperature during each wash. Finally, the 

phage were eluted by resuspending the beads in 200 µL 0.1 M glycine pH 2.1 with 1 

mg/mL bovine serum albumin (Sigma) and rocked for 20 min. The beads were 

pelleted and discarded before 10 µL 2 M Tris base was added to the supernatant to 

neutralize the acid. Titers of the selected phage were obtained by creating serial 

dilutions of the neutralized solution, mixing 1 µL of each dilution with 100 µL

stationary phase TG-1 cells, and plating on LB agar laced with 100 µg/mL ampicillin. 
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Phagemid-containing colonies were counted after incubating the plates overnight at 

37°C. 

The remaining eluted phage were mixed with 20 mL YT, 100 µg/mL ampicillin, 

and 200 µL stationary phase TG-1 before shaking vigorously overnight at 37°C. 107

pfu M13KO7 helper phage were added to the culture 1 h into incubation to support 

production of GA-labeled phage. The resulting phage were precipitated as described 

above and the entire biopanning process repeated three more times before colonies 

were isolated from the titer plates for DNA sequencing and analysis. 

Protein Production and Purification 

Two of the phage-selected mutants (PSD-1 and PSD-7) were prepared for 

production, purification, and analysis by PCR amplification using P11 and P12. The 

PCR products were cut with BamHI and HindIII for ligation into the pG58 vector. 

P11 and P12 were used specifically to add restriction sites and an ochre stop codon to 

the ends of the GA coding region. The pG58 vector enables expression of a subtilisin 

pro domain fusion protein, which permits the fused protein to be purified and cut with 

subtilisin in a one-step reaction (Ruan, Fisher et al. 2004). XL-10 Gold Super 

Competent Cells were transform with the pG58/PSD construct and grown in 5 L LB 

with 100 µg/mL ampicillin. At log phase the cells were induced with 1 mM IPTG for 

3 h before harvesting. Cells were pelleted by spinning at 8k xg for 30 min and 

resuspended in 100 mL 100 mM KHPO4 pH 7.0, 30 µg/mL DNase I, and 0.1 mM 

PMSF for sonication on ice. Cellular debris was removed by centrifugation at 10k xg 

for 30 min and 100k xg for 1 h. Purification was carried out on a 5 mL S189 column 
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essentially as described by Ruan et al. (Ruan, Fisher et al. 2004) and confirmed by 

SDS-PAGE. 

Extinction Coefficients 

The Edelhoch method, as described by Pace (Pace, Vajdos et al. 1995), was used 

to precisely determine extinction coefficients at 278 nm for each of the 

thermodynamically characterized GA mutants and albumins. This set of empirically 

determined extinction coefficients was used to compute protein concentrations from 

UV spectra throughout the study. Twice the absorbance at 331 nm was consistently 

subtracted from that obtained at 278 nm to account for the effects of light-scattering. 

Circular Dichroism 

CD experiments were performed on a J-720 Spectropolarimeter (Jasco 

Spectroscopic Co., LTD.). Spectra for 2.96 µM PSD-1 and 2.67 µM PSD-7 in 50 mM 

KHPO4 pH 7.0 were obtained by measuring the ellipticity from 250 nm to 200 nm of 

the samples in a 1.0 cm cell at 25°C. Melting temperatures for the same protein 

solutions were determined by measuring the ellipticity of the sample at 222 nm as it 

was heated in a 1.0 cm cell from 25°C to 70°C at 0.5 degrees per minute.  

Isothermal Titration Calorimetry 

ITC measurements were performed on the VP-ITC Micro Calorimeter 

(MicroCal). For each experiment the selected GA mutant and albumin were dialyzed 

side-by-side into 50 mM KHPO4 pH 7.0 to ensure identical buffer conditions. Each 

run involved nineteen 15 µL injections of approximately 250 µM GA domain into a 

sample cell containing around 25 µM albumin. Injections lasted 30 s each and were 
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spaced 180 s apart. Precise protein concentrations were determined by UV spectra as 

described above. The jacket temperature was maintained at 25°C throughout. 

DNA Sequencing 

DNA samples were prepared for sequencing by growing selected colonies 

overnight at 37°C in LB with 100 µg/mL ampicillin. Plasmid DNA was extracted 

from the cell cultures using the Wizard® Plus SV Minipreps (Promega Corporation, 

Madison, WI). The P5 primer was used to amplify target DNA using Perkin-

Elmer/Applied Biosystem’s AmpliTaq-FS DNA polymerase and Big Dye terminators 

with dITP. Dye-terminated products were then run on an Applied Biosystems model 

3100 DNA sequencer to produce sequence chromatographs. 
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Chapter 5: Outlook for OR-PCR, the Albumin Binding 
Module, and the Recombinant Analysis of Compact 
Heterologous Domains 

OR-PCR Offers Substantial Advantages Over Existing 
Recombinogenic Techniques 

The preceding chapters have laid the groundwork for recombinant-based analysis 

of compact heterologous domains by developing and characterizing a simple but 

effective PCR-based recombination technique and successfully applying it to the 

identification and analysis of functional polymorphisms found among members of the 

GA albumin binding module. 

Experiments show that OR-PCR overcomes many of the problems associate with 

existing in vitro recombination techniques to efficiently shuffle compact heterologous 

domains of the complexity necessary for mutational analysis of entire protein 

families. By locating the recombinant region near one end of a largely homologous 

amplicon it is possible simultaneously promote premature termination of primer 

extensions within the recombinant region and subsequent reannealing of partially 

elongated primers to significantly elevate recombination frequencies during standard 

PCR. This simple mechanism appears to offer a number of advantages over 

competing techniques. 

First, homologous parental recombination and out-of-sequence assembly are 

significantly reduced or eliminated by the availability of long stretches of identical 

sequence, which permit different members of the population to anneal without 
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sequence bias and support the proper alignment of heterologous regions. These 

stretches of identical overlapping sequences do not guarantee that the polymerase will 

bind and extend from heterologous regions. This is apparent from the relative scarcity 

of crossover events near the N-terminal of lacZ recombinants shown in Figure 5. Nor 

do the common regions of the amplicons guarantee proper alignment of heterologous 

regions as revealed by the insertions and deletions observed after GA recombination 

in Chapter 4. However, these results are far better than the 0.001% of the DNA 

shuffling fragments predicted to form full length products by computer modeling 

(Maheshri and Schaffer 2003).  

OR-PCR also appears to benefit from the exponential accumulation of 

recombinant templates, which is not achieved by StEP, primerless PCR, or the other 

techniques described in Chapter 1, with the likely exception of Judo’s PCR-based 

strategy (Judo, Wedel et al. 1998). The accumulation of recombinant templates over 

multiple rounds of OR-PCR appears to be responsible for the high concentration of 

crossover sites produced by the technique and the convergence of recombination 

frequencies observed for high and low homology lacZ sequences in Figure 6. The 

frequent occurrence of two or more crossover events within the 82 nt recombinant 

lacZ region is far superior to the estimated 2-3 crossover events per 1 kb predicted by 

DNA shuffling models (Maheshri and Schaffer 2003) and observed in experiments 

(Zhao and Arnold 1997).  

Finally, OR-PCR offers a simplicity that many of the other techniques do not 

achieve. Figure 4 shows that the technique can be optimized for high recombination 

rates over a broad range of elongation times, reducing the need to tinker with 
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experimental parameters—a challenge faced by researchers attempting to achieve 

reasonable performance with DNA shuffling (Moore and Maranas 2000). 

Furthermore, OR-PCR eliminates the need for the distinct fragmentation, assembly, 

and agarose gel purification steps required for many existing techniques. 

Each of these factors combine to make OR-PCR an effective technique for 

generating a high density of recombination events among multiple members of 

homologous protein families. Without OR-PCR the creation, selection, and analysis 

of recombinant albumin binding domains addressed in the previous chapter would not 

have been possible. 

Recombination and Phage Selection Provides Insights into GA 
Polymorphisms 

Analysis of phage-selected recombinant domains proved to be a profitable 

strategy for analyzing GA sequence space and likely is generalizable to other protein 

families as well. Only one round of recombination and selection was required to 

generate clear and unambiguous preferences for a primary (PSD-1) and secondary 

(PSD-7) sequence that were distinct from any of the wild-type sequences and showed 

marked improvements in their abilities to bind both human and guinea pig serum 

albumins. By comparing the thermodynamic data obtained for each of these 

sequences with Chapter 3 analysis of the G148-GA3 domain and accumulated 

structural information for PSD-1, G148-GA3, and ALB8-GA (Johansson, de Chateau 

et al. 1995; Johansson, de Chateau et al. 1997; Johansson, Frick et al. 2002; Lejon, 
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Frick et al. 2004) it was possible to enhance our understanding of how sequence 

polymorphisms impact the performance of common albumin binding domains. 

Specifically, analysis of phage-selected mutants revealed that G148-GA3 

backbone flexibility is not required to support binding to the phylogeneticly diverse 

human and guinea pig albumins. Rather, domain stabilizing mutations serve to 

enhance binding to both albumins and, in the case of PSD-1, eliminate G148-GA3’s 

ten-fold preference for HSA (Table 6). It is certainly possible that the dynamic G148-

GA3 backbone structure reported by Johansson is instrumental in binding other 

species of albumin, such as horse albumin, which appears to share fewer of the polar 

interactions with G148-GA3 and ALB8-GA than GPSA based on analysis of the 

crystallized ALB8-GA/HSA complex (PDB #1TFO). Repetition of the phage-

selection protocol using horse rather than guinea pig serum albumin would be easy to 

accomplish and could offer further insights into the potential roles of backbone 

dynamics and other module polymorphism on ligand affinity and species specificity. 

Finally, comparative analysis of the available structures for phage-selected and 

wild-type domains suggest the possible impact of a partially buried lysine on 

enhancing GA stability and albumin binding. This observation and others like it may 

offer valuable insights into GA dynamics and help researchers understand the 

behavior of other members of the GA module, which appear to encode similar 

structural motifs. It is hoped that ongoing NMR studies of PSD-1 will provide more 

conclusive insights into how the lysine and other phage-selected mutations support 

the domain’s enhanced stability and binding. 
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Anticipating a Broader Role for OR-PCR in Recombinogenic Studies 

Finally, OR-PCR may provide an effective tool for tackling the more challenging 

problem of identifying a limited number of structural determinants in two similarly 

sized heteromorphs—proteins that adopt dramatically different structures. Inspired by 

a growing body of evidence to suggest radical changes in secondary and tertiary 

structure can be driven by a limited number of globally distributed mutations (Minor 

and Kim 1994; Mezei 1998; Cregut, Civera et al. 1999), researchers have been 

challenged to engineer heteromorphic domains that adopt different structures despite 

high sequence homology to one another (Rose and Creamer 1994). Small globular 

domains similar to the GA module are natural targets for this research because of 

their abilities to encode stable alpha and beta folds in a relatively small polypeptide. 

Two independent efforts used rational engineering in isolation (Dalal and Regan 

2000) or combined with randomized mutagenesis and phage display (Alexander, 

Rozak et al. 2005) to achieve 60% and 59% sequence identities between stable alpha 

helical and beta sheet forming derivatives of a streptococcal protein G IgG binding 

domain. Using a strategy similar to that applied in Chapter 4, OR-PCR could prove 

instrumental in shuffling heteromorphic sequences to achieve greater sequence 

identity and isolate structural determinants among the remaining sequence 

polymorphisms. 
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