The DSPCAD Integrative Command Line Environment:
Introduction to DICE Version 1.1

Shuvra S. Bhattacharyya, William Plishker, Chung-Ching Shen,
Nimish Sane, and George Zaki
Department of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies
University of Maryland at College Park, USA

{ssb, plishker, ccshen,

Abstract—DICE (the DSPCAD Integrative Command
Line Environment) is a package of utilities that facilitates
efficient management of software projects. Key areas of
emphasis in DICE are cross-platform operation, support
for projects that integrate heterogeneous programming
languages, and support for applying and integrating
different kinds of design and testing methodologies. The
package is being developed at the University of Maryland
to facilitate the research and teaching of methods for
implementation, testing, evolution, and revision of engi-
neering software. The package is also being developed as
a foundation for developing experimental research soft-
ware for techniques and tools in the area of computer-
aided design (CAD) of digital signal processing (DSP)
systems. The package is intended for cross-platform
operation, and is currently being developed and used
actively on the Linux, Mac OS, Solaris, and Windows
(equipped with Cygwin) platforms.

This report provides an introduction to DICE, and
provides background on some of the key features in
DICE Version 1.1. This report also gives a brief introduc-
tion to di cel ang, which is a plug-in package for DICE
that provides additional utilities, libraries, and tools
for managing software projects in specific programming
languages.

I. INTRODUCTION

This report provides an introduction to DICE, which
stands for the DSPCAD Integrative Command Line
Environment, and accompanies the latest release of
DICE, which is Version 1.1. The objective of DICE
is to provide a flexible, lightweight environment for
the research, development, testing, and integration
of software projects, particularly those that employ

Technical Report UMIACS-TR-2011-10, Institute for Advanced
Computer Studies, University of Maryland at College Park, 2011.

nsane,

gzaki @nd. edu

heterogeneous programming languages or models of
computation. DICE is being developed by the Mary-
land DSPCAD Research Group, which focuses on
computer-aided design (CAD) techniques for digital
signal processing (DSP) systems. However, the features
provided in DICE are generally not specific to DSP or
CAD-for-DSP applications, and can be applied in other
domains.

For clarity, we should note what DICE is not. DICE
is not meant to replace existing software development
tools. DICE is not a shell nor is it a compiler or synthe-
sizer. It is not a debugger nor does it provide simulation
capabilities. It does not provide automatic transcoding
for porting between platforms and languages. DICE is
instead a command line solution to utilize all of these
existing kinds of tools more effectively, especially for
cross-platform design.

Il. SETTING UP DICE

DICE is implemented as a collection of utilities that
are in the form of Bash scripts, C programs, and Python
scripts. Therefore, facilities for interpreting/compiling
these languages must be available to use all of the
capabilities in DICE. DICE is developed with signif-
icant attention to cross-platform operation. Platforms
on which DICE is used actively include Linux, Mac
0S, Solaris, and Windows (equipped with Cygwin).

DICE can be downloaded from the DICE Project
Website [1]. Details on setting up, using, and trou-
bleshooting DICE can also be found through this
website.

I1l. INTRODUCTION TO DICE UTILITIES

DICE includes a variety of utilities to help improve
productivity while working in a command-line or shell-

based project development environment. This section
provides a brief introduction to some of the basic
utilities available in DICE. These utilities help improve
the convenience with which one can do some common
and fundamental tasks.

A. DIRECTORY NAVIGATION

For users of command line based development en-
vironments, directory navigation can be cumbersome
and time consuming when done many times a day. To
alleviate this, DICE provides a number of utilities for
efficient navigation through directories. This group of
utilities allows one to label directories with arbitrary,
user-defined identifiers, and to move to (i.e., cd to)
directories by simply referencing these identifiers. This
is @ much more convenient way of “jumping” from
one directory to another compared to typing the com-
plete directory path or explicitly changing directories
through the relative path of the desired destination
directory.

The primary DICE utility related to directory navi-
gation is dlk, which stands for the “directory linking
utility”. The following is the general usage format for
the dlk command.

dlk <label>

Here, <label> is the string that is to be associated
as the label for the current working directory. Such a
label can be of arbitrary length, but should contain only
alphanumeric characters (e.g., no spaces).

Once one runs the dlk command in a specific
directory, the user can return to same directory at
any future time (during the same shell session or a
subsequent session) by running the DICE g command.

The command name g is derived from the word
“go”. The general usage format for the g command
is as follows.

g <label>

Here, <label> is a label that has been associated with
a directory through prior use of the dlk command.
Running the g command allows one to cd (change
directory) to the directory that is currently associated
with the given label.

As a simple example, consider the following se-
guence of commands, and assume that the directory
paths referenced in the commands are valid.

cd “/projects/projl

dik p1
cd ~/documents/docl
g pl

After the above sequence of commands, the user will
end up in “/projects/projl.

If the dlk command is called with a label that is
already associated with a different directory, then the
previous association is silently overwritten, and the
association is changed so that the label is linked to
the current working directory.

The associations used by DICE between directory
labels and absolute paths are maintained in a subdi-
rectory called g in the dice_user directory. The
dice_user directory is a directory in which user-
specific files related to DICE are maintained. Infor-
mation about setting up the dice_user directory is
provided as part of the instructions for installing and
setting up DICE.

After using the DICE navigation utilities for several
weeks, it is natural to build up a large collection
of directory labels, and such a collection can eas-
ily be backed up, along with other relevant, user-
specific DICE settings and files, by backing up one’s
dice_user directory.

To remove a label-directory association, one can
use the DICE rl1k command. The name rlIk is short
for “remove (directory) link”. The usage format is as
follows.

rik <label>

Assuming that the given label is currently associated
with a specific directory from a prior call to dlk, the
r Ik command removes the association between the la-
bel and directory. This has the side effect of removing a
small text file, since each label-directory association is
stored as a separate text file in dice_user/g, as de-
scribed earlier. Thus, especially when large collections
of labels are involved, rlk can be useful to conserve
disk space or reduce clutter in the dice_user/g
directory.

The set of DICE directory navigation commands
includes two simple wrappers around the common
UNIX commands pushd and popd, which
manipulate the directory stack as they change
the current working directory. The wrappers are called
dxpushd and dxpopd, respectively. The dxpushd
and dxpopd commands perform the same functions

as their standard UNIX counterparts, except that they
do not produce any text to standard output. Instead,
their standard output is redirected to the DICE user
files dice_user/tmp/dxpushd_discard. txt
and dice_user/tmp/dxpopd_discard. txt,
respectively. By redirecting the output in this way, the
output is available for diagnostic reference as needed
without cluttering standard output. This is useful, for
example, when “pushing” and “popping” directories
in scripts as it helps to keep the output from the
scripts more relevant to the direct functionality of the
scripts (rather than their internal use of pushd and
popd operations).

The usage formats for dxpushd and dxpopd are
the same as their standard UNIX counterparts: any ar-
guments provided to these wrapper versions are passed
on directly to pushd and popd, respectively.

The naming of the dxpushd and dxpopd com-
mands illustrates a naming convention that is used
often (but not everywhere) in DICE: that of prefixing
the name of a DICE utility with “dx.” DICE plug-in
packages, such as the dicelang package, which is
discussed in Section V, will in general have similar
utility-name prefix conventions (e.g., the core part of
dicelang uses the prefix dIx, while sub-packages
within dicelang in general have their own specific
prefixes, with each sub-package-specific prefix starting
with the two letters “dl” to indicate that they are sub-
packages of dicelang.

The DICE command plk (“push directory to link)
works like the g command, except that the new
directory is pushed onto the directory stack (using
dxpushd) so that one can return to the original
directory with a dxpopd or popd command.

The usage format for plk is as follows.

plk <label>

Here, as in the usage format specification for the g
command, <label> is a label that has been associ-
ated with a directory through prior use of the dlik
command.

B. MOVING THINGS AROUND

Relocating files and directories inside or across
complex project directory structures can be tedious and
prone to errors. DICE provides a collection of utilities
that help move and copy files and subdirectories across

different directories. We refer to these utilities infor-
mally as the DICE utilities for MTA (“moving things
around”). These utilities can be especially convenient
when used in conjunction with the directory navigation
utilities described in Section Il11-A, but they can also
be used independently of any other utilities.

Users who are upgrading from the previous version
of DICE should take note that the names of several
MTA utilities have changed in the latest version. This
section provides the updated names of the utilities.

The DICE MTA utilities reference a standard user
subdirectory in DICE that we called the DICE user
clipboard. The DICE user clipboard resides within
another standard user directory called the DICE tempo-
rary directory or simply, the temporary directory when
the DICE qualification is understood from context.
The paths of the DICE user clipboard and temporary
directory are stored in the DICE environment vari-
ables UXCLIPBOARD and UXTMP, respectively. The
value of the UXTMP variable (i.e., the location of the
temporary directory) is set by default upon startup of
DICE to be the path to a subdirectory called tmp
in the DICE user directory. So, for example, if the
DICE user directory is located at ~/dice_user,
then the DICE temporary directory is located at
~/dice_user/tmp, and the DICE user clipboard is
located at ~/dice_user/tmp/clipboard.

The DICE temporary directory and DICE user clip-
board can be labeled for fast navigation by running the
following command sequence.

cd $UXTMP

dik tmp

cd $UXCLIPBOARD
dik clip

Of course, it is not necessary to label the dlk
directory codes with tmp and clip — any other
alphanumeric strings can be used instead at the user’s
choosing.

The core set of MTA utilities is as follows.

« dxcu: cut a specified file or directory by moving

it to the DICE user clipboard.

« dxco: copy a specified file or directory to the

DICE user clipboard.

« dxpa: paste (copy) a specified file or directory

from the DICE user clipboard.

« dxpar: paste (copy) and remove a file or direc-

tory from the DICE user clipboard.

« dxparl: paste (copy) and remove the last file or
directory transferred (LFDT) from the DICE user
clipboard.

o dxpal: paste the LFDT from the DICE user
clipboard.

The usage format for dxcu is as follows.
dxcu <arg>

where <arg> is the name of a file or directory. The
command moves the specified file or directory to the
DICE user clipboard.

Such a file can be retrieved subsequently from any
directory by running the dxpar command, which
moves the specified file or directory from the DICE
user clipboard to the current working directory. More
precisely, the usage format for dxpar is as follows.

dxpar <arg>

where <arg> is the name of a file or directory. The
command moves the file or subdirectory named <arg>
from the DICE user clipboard, assuming that such a file
or subdirectory exists. The utilities dxcu and dxpar
are often used in conjunction with one another, but
this is not a requirement: a file or subdirectory moved
using dxpar need not have been placed originally in
the DICE user clipboard using dxcu.

The utilities dxco and dxpa work like their
cousins, dxcu and dxpar, except that they copy
rather than move the specified files or directories. Their
usage formats are analogous to those for dxcu and
dxpar —i.e., they each take a single argument, which
gives the name of a file or directory.

The dxparl and dxpal utilities are variations of
dxpar and dxpa, respectively, that implicitly refer-
ence the last file or directory transferred (LFDT) by
dxcu or dxco. Each call to dxcu or dxco has the
side-effect of updating a DICE internal variable that
stores the name of the LFDT.

Neither dxparl nor dxpal takes any arguments.
These commands transfer the LFDT from the DICE
user clipboard to the current working directory. They
differ in that the LFDT is moved out of the DICE
user clipboard with dxparl, whereas it is copied with
dxpal.

As described earlier, the DICE MTA utilities can be
especially convenient to use in conjunction with the
directory navigation utilities described in Section I11-A.
As an example of this kind of convenience, suppose

that proj1 and proj2 are project directories that
have previously been labeled as prl and pr2, re-
spectively, using dlk. Suppose also that there is a
file called utilities.c in the projl directory
that one wants to use a copy of or expand on in the
proj2 directory. This file can be copied to the proj2
directory using the following sequence of commands.

g prl
dxco utilities.c

g pr2
dxparl

This is equivalent to a copy-and-paste using basic
mouse-based file operations, but this kind of command-
based sequence can be much more convenient and
efficient once one gets used to it. It is even more
convenient when used in conjunction with standard file
name auto-completion features in the Bash shell (e.g.,
see [2]).

Note that there are better ways to reuse code than
copying code files, so this example should not be taken
as a model for project development practices, but rather
as an illustration of the combined use of navigation-
related and MTA utilities in DICE.

Another, perhaps more common, scenario in which
this kind of MTA functionality can be useful is when
selecting a template from a repository of document
templates (e.g., templates for business letters, personal
letters, project reports, oral presentations, etc.). One
can quickly make a copy of and starting working with
the appropriate template with just a few commands —
for example:

plk templates

dxco letter-from-home.tex
popd

dxparl

As suggested earlier, the MTA utilities need not
be used in pairs — e.g., a dxco command need not
be coupled with a corresponding dxpar or dxparl
command. The MTA utilities can be used for any
pattern of moving and copying files to and from the
DICE user clipboard. For example, moving or copying
a file to the DICE user clipboard can be useful if one
wants to move a file or directory out of the way from
the current working directory, but is not completely
sure yet whether or not the file or directory will be
needed again in the future.

Such forms of usage of the MTA utilities can gener-
ally be useful to help fine-tune directory organization.
However, after a while, they can lead to excessive disk
space requirements for the DICE temporary directory
(which contains the DICE user clipboard). Thus, the
temporary directory should periodically be cleaned out
or “reset”. A good time to do this is when there are no
pending dxpal or dxparl commands, and just after
one has backed up the temporary directory (perhaps
as part of a general user space backup routine). That
way, in case one needs to refer back to a file or
directory that was “semi-confidently” discarded into
the temporary directory, there is a means to recover
the file or directory.

Recall that the DICE user clipboard is contained
within the DICE temporary directory. In addition to
the DICE user clipboard, the temporary directory
serves as a repository for miscellaneous intermediate
files that are generated by various DICE utilities.
Because of the importance, in terms of disk space
usage, of periodically emptying-out the DICE tem-
porary directory, DICE is equipped with a simple
utility called dxclntmp to perform this task. The
dxcIntmp utility removes all of the files and sub-
directories within the DICE temporary directory, and
resets the directory so that it contains just a single
file. This file is a small, single-line log file called
dxcIntmp-log.txt, which contains a record of the
time stamp — as returned by the UNIX date com-
mand — of the most recent invocation of dxclIntmp.

The name dxclntmp is derived from “clean
temporary (directory)”. The dx prefix used here is
based on the selectively-applied DICE utility naming
convention described in Section I111-A.

There is also a DICE convenience utility, called
dxrmcl, for removing individually-specified files or
directories from the DICE user clipboard. The name
stands for “remove from clipboard.” The usage format
for dxrmcl is as follows.

dxrmcl <arg>

where <arg> is the name of a file or directory in
the DICE user clipboard. If <arg> represents a file,
then the file is removed from the DICE user clipboard.
Conversely, if <arg> represents a subdirectory in
the DICE user clipboard, then the entire subdirectory
(i.e., the entire subdirectory along with all directories
that are nested within it) is removed. Caution should

be exercised before using dxrmcl since files and
directories in the DICE user clipboard that are removed
by this command are removed permanently.

It is useful to be aware of the dxrmcl utility when
working with the MTA utilities — specifically, when
working with dxcu and dxco. This is because by
default, the dxcu and dxco commands are safe in
the sense that the specified file or directory will not be
moved if a file or directory with the same name already
exists in the DICE user clipboard. In other words, one
cannot accidentally overwrite a file or directory using
dxco or dxcu. Thus, for example, if one is trying to
move a file to the DICE user clipboard using dxcu
but finds (through the error message reported from
dxcu) that a file with the same name already exists in
the DICE user clipboard, one must somehow get rid
of the identically-named DICE user clipboard file. A
convenient way to do this, assuming that the DICE user
clipboard file is no longer needed, is with dxrmcl.

The default “safe” configuration of dxco and dxcu
can be changed through the environment variable
DX_MTA_AGGRESSIVE. This environment variable
controls what happens when the file or directory spec-
ified to dxco or dxcu conflicts with an identically-
named file or directory in the DICE user clipboard.
If DX_MTA_AGGRESSIVE is set to a non-null value,
then the identically-named file or directory in the DICE
user clipboard is silently overwritten. Conversely, if
DX_MTA_AGGRESSIVE is not defined or is set to a
null (empty string) value, then an error message is
displayed and the copy or move request is denied.

Note that some DICE utilities create or manipulate
files in the DICE temporary directory. For example,
some utilities place diagnostic output in the temporary
directory that can be examined for debugging user-
defined command sequences or scripts that invoke
DICE utilities. Thus, if one browses the contents of
the temporary directory, it is not unusual to find files
there that one has not explicitly placed.

C. OTHER UTILITIES

The discussion of utilities in this section provides
a brief illustration of some of the features available
in DICE. Many more utilities are available in DICE.
Documentation for these utilities is being systemati-
cally integrated into an online documentation system
that is under development for DICE, and is planned
for inclusion in a future release.

IV. UNIT TESTING

DICE includes a framework for implementation and
execution of tests for software projects. Although the
emphasis in this framework is on unit tests, and
therefore, it is often referred to as the DICE unit
testing framework, the framework can also be applied
to testing at higher levels of abstraction, including
subsystem- and system-level testing.

A major goal of the testing capabilities in DICE is
to provide a lightweight and flexible unit testing envi-
ronment. It is lightweight in that it requires minimal
learning of new syntax or specialized languages, and
flexible in that it can be used to test source code in any
language, including C, Java, Verilog, and VHDL. This
is useful in heterogeneous development environments
so that a common framework can be used to test
across all of the relevant platforms. It is also useful
in instructional settings so that students can focus on
the core principles and practices of unit testing while
spending minimal effort learning framework-specific
conventions and syntax.

Each specific test in a DICE-based test suite
is implemented in a separate directory, which
is referred to as an individual test subdirectory
(ITS). To be processed by the DICE facilities for
automated test suite execution, the name of an ITS
must begin with “test” (e.g., test0l, test02,
test-A, test-B, test _square_matrix_1,
test_square_matrix_2). To exclude a test from
test suite evaluation, one can simply change its name
so that it does not begin with “test”.

A. Required components of an ITS

The following are required components of an ITS.
Each of these components takes the form of a separate
file.

o A README. txt file that provides a brief expla-
nation of what is being tested by the test — that
is, what is distinguishing about this test compared
to the other tests in the test suite. Technically,
a README .txt file is not required within an
ITS, but we list it here among all of the actual
requirements because it is of foremost importance
to have tests properly documented in a place that
is easy to find.

« An executable file (e.g., some sort of script) called
makeme that performs all necessary compilation
steps (e.g., compilation steps that are used to

build a driver program) that are needed for the
test. In DICE, we use the convention that files
that do not have file name extensions are Bash
scripts. Thus, tests that are developed as part
of DICE have their makeme files implemented
as Bash scripts. Note that the compilation steps
performed in the makeme file for a test typically
do not include compilation of the source code that
is being tested. It is assumed that source code
for a project under test is compiled separately
before a test suite associated with the project is
exercised. Thus, compilation functionality within
the test suite specifies only compilation steps that
are specific to the tests.

Note also that for some kinds of tests, no
compilation steps are needed apart from the com-
pilation that is performed on the source code that
is being tested. For example, if a test is invoked
by running an executable program that is part of
the project being tested, then it is likely that no
test-specific compilation needs to be performed.
In such a case, a makeme file should still be
present in the ITS directory; however, its contents
can be empty or can consist only of comments
(e.g., comments that indicate that nothing needs
to be done to build the test).

An executable file called runme that runs the
test associated with the enclosing ITS, and directs
the normal output associated with the test to
standard output, and the error output associated
with the test to standard error. As with makeme
files, runme files are typically scripts, and within
DICE test suites, runme scripts are Bash scripts.
If the test takes input from standard input, then
the runme script should generally redirect that
input to come from a file that is stored within the
ITS.

A file called correct-output.txt that con-
tains the standard output text that should result
from the test — i.e., the text that should appear
if runme is executed, and the project function-
ality that is being tested has been implemented
correctly. If the correct operation of the test does
not produce any standard output text, then the
correct-output. txt file should exist within
the ITS as an empty file (i.e., a file that contains
no characters).

o A file called expected-errors._txt that

contains the standard error text that should result
from the test — i.e., the text that should appear
on standard error if runme is executed, and the
project error handling capability (if any) that is
being tested has been implemented correctly. If
the test does not exercise any error handling
capability, then the expected-errors.txt
file should exist within the ITS as an empty file.

B. Examples

As a supplement to the DICE User’s Guide [3],
one can find two simple project examples that involve
program and function versions of vector inner product
computation. These examples illustrate construction
of ITSs and basic use of DICE project testing fea-
tures. These examples are in the form of simple C-
language projects with test suites that are implemented
according to the DICE ITS conventions described in
this section. These examples can easily be adapted to
provide basic demonstrations of, and starting points for
experimenting with DICE testing capabilities in other
programming languages.

To try out these testing examples, it is recommended
that users start with the program version rather than
the function version, as this version is a little easier
to understand. To try either version, one should first
cd to the project src directory, and run ./makeme,
which compiles the project. Then one can cd to the
project test directory, and run the DICE command
dxtest to exercise all of the tests in the test suite.

C. The DICE dxtest command

The DICE dxtest command is the core utility
available in DICE for exercising test suites. The usage
format of this command is as follows.

dxtest [-V]

The dxtest utility recursively traverses the direc-
tory subtree located in the current working directory
(the directory from which dxtest is called). During
this traversal, only directories whose hames begin with
“test” are actually visited; all other directories are
ignored. For any directory that is encountered with
a name that does not begin with “test”, the entire
directory subtree rooted at that directory is ignored
(even if the subtree contains subdirectories whose
names start with “test”).

Each time dxtest visits a new directory, the script
checks whether or not the directory contains a file
called runme. If a runme file is found, then the
directory is treated as an ITS, and all of the re-
quired ITS files listed above are expected to exist,
and are processed based on the descriptions given
above. Specifically, the makeme file of the ITS is first
executed to perform any necessary steps required to
build the test. Then the runme file is executed to
exercise the test. The output generated by runme is
then compared with the correct-output.txtand
expected-errors. txt files to determine whether
or not the test succeeded.

After the entire recursive directory traversal is com-
plete, dxtest produces a summary of how many
tests (ITSs) were exercised, how many of these tests
succeeded, and how many failed. Furthermore, if any
test failures were encountered, a listing of the directory
paths corresponding to the failed ITSs is provided in
autotest-output/test_summary.txt.

Thus, with a high degree of automation, one can
assess the overall success rate of a test suite and
identify any specific tests that are failing.

D. Running tests in verbose mode

The —v option can be used with dxtest to provide
verbose output as the test suite is exercised. This can
be useful if the test suite is exhibiting some sort of
unexpected behavior. For example, if the test suite is
taking longer than expected to finish execution because
one of the tests is “hanging” (e.g., due to an infinite
loop), then verbose output can be enabled to locate the
offending test.

It is useful, however, to run tests with verbose
output “off” (i.e., by leaving out the —v option) before
any sort of finalization of a testing pass (e.g., before
committing changes to a shared code repository). This
is because some errors that occur when running a test
suite (e.g., problems executing a makeme or runme
script) can be hard to notice amidst the normal verbose
output. On the other hand, these kinds of problems are
exposed clearly when verbose output is turned off.

E. More about runme files

As described earlier, the success or failure of
an individual DICE test (ITS evaluation) is deter-
mined by comparing the standard output and stan-
dard error text generated from the associated runme

script with the given correct-output.txt and
expected-errors.txt files, respectively.

This convention provides significant flexibility
in how test output is actually defined and man-
aged. In particular, it is not necessary for all
of the output produced by the project code un-
der test to be treated directly as test output (i.e.,
to be compared with correct-output.txt and
expected-errors.txt) during each test evalua-
tion. Instead, the runme file can serve as a wrapper
to filter or reorganize the output generated by a test in
a form that the user finds most efficient or convenient
for test management.

For example, suppose that the project under test is
a hardware description language (HDL) implementa-
tion in a language such as Verilog or VHDL, and
the relevant output for one of the tests consists of
three simulator output files siml.txt, sim2_txt
and sim3.txt. The “brute force” way to develop
a runme script for this test would be to invoke
the HDL simulator in the runme script, and then
concatenate the files siml.txt, sim2.txt, and
sim3.txt to standard output (e.g., by using the
UNIX cat command). The correct-output.txt
file for such a test configuration would contain the
concatenated contents of siml.txt, sim2.txt, and
sim3.txt that should result from a correct project
implementation — i.e., the concatenated result of the
three, pre-verified, “golden” simulation output files.

An alternative approach for this testing scenario,
which may be preferable in many contexts to such
a brute force approach, is to maintain the golden
simulation output files in separate files — e.g.,
correct-siml.txt, correct-sim2.txt, and
correct-sim3.txt within the ITS. The runme
script could then use the UNIX diff command
to compare the files siml.txt, sim2.txt, and
sim3.txt produced from a test run with the cor-
responding golden output files — the trailing code in
the runme script would then look something like:

diff siml.txt correct-siml.txt
diff sim2.txt correct-sim2.txt
diff sim3.txt correct-sim3.txt

The exact operation of the UNIX difF utility is
not completely standardized across different platforms.
However, a typical convention used in implementa-
tions of diff is to produce output to standard out-

put if and only if the files being compared differ
in at least one character. Under such a convention,
the correct-output.txt file for our hardware
description language test would simply be an empty
file. This empty correct-output.txt file to-
gether with the three files correct-siml.txt,
correct-sim2.txt, and correct-sim3.txt
comprise the normal (error-free) output verification
files associated with this ITS.

In summary, it is the standard output produced from
runme that is used by dxtest to validate an ITS
against the associated correct-output. txt file.
Through appropriate programming of the runme file,
the standard output of runme is in general highly
configurable by the person who develops the test.
Creative design of runme files can help to make more
powerful and convenient test organizations within the
DICE testing framework.

V. DICELANG

The dicelang package, which can be viewed as
a companion package of DICE, provides a collection
of language-specific plug-ins that extend the features
of DICE, and provide new features to facilitate ef-
ficient software project development, implementation
management, and testing for selected programming
languages. In contrast, the features in DICE emphasize
generality, and applicability across different kinds of
programming languages and development tools.

There is a benign, but possibly confusing (at
first) circular dependence between DICE and
dicelang-C, which is the C language plug-in
within dicelang. This dependency arises because
C, along with Bash and Python, is one of the
languages in which DICE is implemented. Unlike
programs in Bash and Python, C programs need to
be compiled before they can be executed, and for
the purpose of compiling the C-based components
in DICE, we use some features in dicelang-C
for building projects that are developed in C. Thus,
dicelang must be installed and built before DICE
can be built. However, DICE must be started up
(without building the C-based components in DICE)
before dicelang-C can be built. This is where the
“circular dependency” described above arises.

The DICE User’s Guide [3] includes instructions for
handling this circular dependency, and getting started

using both DICE, including all of its C-based compo-
nents, and dicelang-C.

More information about the dicelang package is
available from the DICE User’s Guide [3].

VI. RELATIONSHIP TO DIF

The dataflow interchange format (DIF), which in-
cludes The DIF Language (TDL) and The DIF Package
(TDP), is another tool developed by the Maryland
DSPCAD Research Group [4], [5]. TDL and TDP pro-
vide tools for model-based design and implementation
of signal processing systems using dataflow graphs.
DIF is orthogonal to DICE, so that one can use DICE
without DIF and vice versa.

Even with best practices in industry, embedded
software development involves an initial application
description in a design environment, which is then
manually transcoded and tuned to target the final de-
sign platform. Often separated by languages, tools, and
even different teams, going from an initial application
description to a final implementation tends to be a man-
ual, error-prone, time-consuming problem. To improve
quality and performance while reducing development
time, a cross platform design environment is needed
that accommodates both early design exploration and
final implementation tuning.

DIF and DICE are complementary tools, which
when used in tandem, enhance software development
processes for dataflow-based design and implementa-
tion of signal processing systems. A designer starts
with a platform-independent description of the ap-
plication in DIF. This structured, formal application
description is an effective starting point for capturing
concurrency and optimizing and analyzing the applica-
tion. After settling on the DIF description, a designer
can refine this description to an optimized implemen-
tation by employing platform specific tools including
compilers, debuggers, and simulators. Any transcoding
or platform specific enhancements are accommodated
by DICE via its flexible but standardized build and
test framework. This allows designers to utilize the
same design framework at inception as they do at final
implementation.

Software developed jointly with DIF and DICE
enjoys a single, cross platform software management
framework, where verification of modules is handled
consistently throughout each phase of development. By
leveraging the reference DIF description, transcoding

effort is saved by having a formal, unambiguous ap-
plication description to base the implementation on.
Quality is controlled with a high degree of automation
through the direct reuse of unit tests in DICE.

VII. RELATIONSHIP TO OTHER UNIT
TESTING FRAMEWORKS

Typically when software designers employ unit test-
ing, they use frameworks that are language specific [6],
[7]. More than just a syntactic customization, such
frameworks are often tied to fundamental constructs
of the language. For example, in CppUnit a unit test
inherits from a base class defined by CppUnit [8].
A test writer then overloads various methods of the
base class to put the specific unit test in this frame-
work. Tests requiring the specific features that lever-
age the constructs of a language (e.g., in an object
oriented language, checking that the method exhibits
the proper form of polymorphism) are well served by
these approaches. Furthermore, these language-specific
approaches work well when designers are using only
a single language or a single platform for their fi-
nal implementation. But when designers must move
between languages with different constructs (such as
between C++ and Verilog), the existing tests must be
rewritten. This creates extra design effort and creates
a new verification challenge to ensure that unit tests
between the two languages are in fact performing the
same test.

Embedded and high performance software must
often utilize multiple languages and multiple plat-
forms, and transcoding between an initial application
specification and software for the final implementa-
tion. DICE is language-agnostic to support this design
need. By simplifying and streamlining the processes
of test bench design and implementation, the same
test fixture can be used in a variety of scenarios.
DICE encourages that tests be written in a language-
agnostic way, prompting designers to provide input and
expected output streams using primitive data types.
DICE tests are simpler to write (even non-language-
experts can write them), easier to maintain, and much
more portable.

Probably the most related framework to DICE is the
Test Anything Protocol (TAP) [9]. TAP is language-
agnostic by defining the protocol that manages the
communication between unit tests and a testing har-
ness. Individual tests (TAP producers) communicate

test results to the testing harness (TAP consumers).
TAP enables multi-platform, multi-language design,
but only at the communication boundary. Unit tests
need only adhere to the communication design, leav-
ing test writers with no specific language-agnostic
mechanism for writing the tests themselves. Indeed,
many language specific unit tests have TAP compatible
outputs so they may be hooked into a larger multi-
language testing environment.

DICE provides a language-agnostic approach to unit
test writing by leveraging common dataflow constructs.
Some unit test frameworks have data generators, but
DICE encourages designers to think of module in-
terfaces in terms of streaming data primitives into
and out of them. DICE captures these input/output
sequences in files and then ensures that the output
files match with a structured build-and-run framework.
These assumptions allow test writers in DICE to build
more complete language-agnostic solutions than a test
communication protocol alone.

Note that the testing features provided in DICE
are oriented towards test implementation, test exe-
cution, and general practices of test-driven project
development — they are not developed as a framework
oriented towards any particular methodology for test
design or test generation, such as those discussed in the
extensive survey by Hierons et al. [10]. DICE allows
one to apply different methods for test suite design,
while providing features of cross-platform operation;
cross-language testing; efficient test retargetability; au-
tomated test suite execution and test status reporting;
and seamless integration as part of the overall feature
set of DICE (e.g., use of dxco, and dxparl to copy
test directory templates from one place to another,
and use of navigation utilities to jump back and forth
between test directories and project source code). Ex-
ploring ways to integrate DICE-based project and test
development with systematic approaches to test design
and generation is a useful direction for further study.

Vill. SUMMARY

This report has provided a motivation and overview
of DICE, the DSPCAD integrative command-line en-
vironment. DICE is geared towards promoting produc-
tivity and efficiency in the management of software
implementations. Significant emphasis has been placed
in DICE on features that can be used directly or easily
adapted across different programming languages. This

10

report has also provided brief introductions to some
of the general utility commands in DICE; the unit
testing features in DICE; and the companion package,
dicelang, which provides programming-language-
specific plug-ins that extend the capabilities of DICE
in ways that are customized to specific languages.
For detailed information on DICE, including more
comprehensive documentation, as well as information
on downloading and setting up DICE, we refer the
reader to the DICE Project Website [1], and the DICE
User’s Guide [3]. More detailed discussions are also
available on applications of DICE to specific kinds of
design problems. For example, the application of DICE
to design and implementation of high performance
field-programmable gate array systems is discussed
in [11], and applications to analysis and optimization
of precision in signal processors are discussed in [12].

IX. ACKNOWLEDGMENTS

This work is sponsored in part by the U. S. National
Science Foundation under grant NSF-ECCS0823989,
the Laboratory for Telecommunication Science, and the
US Air Force Research Laboratory.

We are grateful also to the following people
who have made valuable contributions to DICE and
dicelang, and to earlier software components that
have evolved into parts of DICE and dicelang: Bish-
nupriya Bhattacharya, Nitin Chandrachoodan, Sou-
janya Kedilaya, and Robert Ricketts.

REFERENCES

[1] “DICE project website,” http://www.ece.umd.edu/
DSPCAD/projects/dice/dice.htm.

[2] C. Newham and B. Rosenblatt, Learning the Bash
shell, O’Reilly & Associates, Inc., third edition, 2005.

[3] S.S. Bhattacharyya, C. Shen, W. Plishker, N. Sane, and
G. Zaki, “Using the DSPCAD integrative command-
line environment; User’s guide for DICE version 1.1,
Tech. Rep. DSPCAD-TR-2011-13, Institute for Ad-
vanced Computer Studies, University of Maryland at
College Park, 2011.

[4] C. Hsu, M. Ko, and S. S. Bhattacharyya, “Software

synthesis from the dataflow interchange format,” in

Proceedings of the Inter national Workshop on Software

and Compilers for Embedded Systems, Dallas, Texas,

September 2005, pp. 37-49.

[5]

[6]

[7]

[8]

9]

[10]

[11]

[12]

W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S.
Bhattacharyya, “Functional DIF for rapid prototyping,”
in Proceedings of the International Symposium on
Rapid System Prototyping, Monterey, California, June
2008, pp. 17-23.

Paul Hamill, Unit Test Frameworks, O’Reilly &
Associates, Inc., 2004.

H. Gollee T. Dohmke, “Test-driven development of
a PID controller,” IEEE Software, vol. 24, no. 3, pp.
44-50, 2007.

P. Hamill, Unit test frameworks, chapter 7, O’Reilly
& Associates, Inc., 2004.

S. Cozens, Advanced perl programming, O’Reilly &
Associates, Inc., second edition, 2005.

R. M. Hierons et al., “Using formal specifications to
support testing,” ACM Computing Surveys, vol. 41, no.
2, February 2009.

W. Plishker, C. Shen, S. S. Bhattacharyya, G. Zaki,
S. Kedilaya, N. Sane, K. Sudusinghe, T. Gregerson,
J. Liu, and M. Schulte, “Model-based DSP imple-
mentation on FPGAs,” in Proceedings of the In-
ternational Symposium on Rapid System Prototyping,
Fairfax, Virginia, June 2010, Invited paper, DOI
10.1109/RSP_2010.SS4, 7 pages.

S. Kedilaya, W. Plishker, A. Purkovic, B. Johnson,
and S. S. Bhattacharyya, “Model-based precision
analysis and optimization for digital signal processors,”
in Proceedings of the European Sgnal Processing
Conference, Barcelona, Spain, August 2011, To appear.

11

