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ABSTRACT

In this paper we propose a variant of the Rayleigh quotient method to com-
pute an eigenvalue and corresponding eigenvectors of a matrix. It is based
on the observation that eigenvectors of a matrix with eigenvalue zero are also
singular vectors corresponding to zero singular values. Instead of computing
eigenvector approximations by the inverse power method, we take them to
be the singular vectors corresponding to the smallest singular value of the
shifted matrix. If these singular vectors are computed exactly the method is
quadratically convergent. However, exact singular vectors are not required
for convergence, and the resulting method combined with Golub—Kahan—
Krylov bidiagonalization looks promising for enhancement /refinement meth-
ods for large eigenvalue problems.
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Abstract

In this paper we propose a variant of the Rayleigh quotient method to compute an
eigenvalue and corresponding eigenvectors of a matrix. It is based on the obser-
vation that eigenvectors of a matrix with eigenvalue zero are also singular vectors
corresponding to zero singular values. Instead of computing eigenvector approx-
imations by the inverse power method, we take them to be the singular vectors
corresponding to the smallest singular value of the shifted matrix. If these singu-
lar vectors are computed exactly the method is quadratically convergent. How-
ever, exact singular vectors are not required for convergence, and the resulting
method combined with Golub-Kahan—-Krylov bidiagonalization looks promising for
enhancement /refinement methods for large eigenvalue problems.

1. Introduction

The starting point for the algorithm analyzed in this paper is the following variant of
the Rayleigh quotient method. Let A be of order n, and let A be a simple eigenvalue
of A with right and left eigenvectors = and y'. Let & and @™ be approximations to z
and y", and let 7 be an approximation to A\. Then new approximations ¢, @', and 7
are generated as follows:

L b=(A-1rD)""o

2. o = ot (A-71)"! (1.1)

3. 7 =aw"A40/0Mp
This procedure can, of course be iterated. The quantity 7 is called the generalized
Rayleigh quotient of A at ¢ and @w'. Ostrowski [4] showed that under weak conditions
on & and @ the shift 7 converges cubically to A provided that the initial shift is
sufficiently near A. There are two reasons for the fast convergence. First, steps 1 and 2
in (1.1) improve earlier approximations to the right and left eigenvectors. Second, this
improvement is magnified by the generalized Rayleigh quotient, which is more accurate
than an ordinary Rayleigh quotient formed from a single vector.

In this paper we will be concerned with a variant of this method in which the

approximations @ and @' are determined in a different way. We begin by noting that

*Computer Science Department and Institute for Advanced Computer Studies, University of Mary-
land, College Park, MD 20742. This work was supported by the National Science Foundation under
grant CCR-95-03126.



2 The Singular Value Rayleigh Quotient Method

if 7 = A then A — 71 has a zero singular value, with right and left singular vectors
z and yH. Consequently, if 7 is near A, the right and left singular vectors » and w
corresponding to the smallest singular value ¢ of A — 71 should approximate z and
y. (We will make this statement more precise in Theorem 2.1.) For brevity we will
call these singular vectors the inferior singular vectors of A — 71. In practice, we do
not compute the inferior singular vectors exactly but instead approximate them. This

suggests the following procedure, which can also be iterated.

1. Let # and @" be approximations to the right and left inferior
singular vectors of A—71 (1.2)
2. 7 =wMAs /oM
Because we do not improve on previous vectors in step one, the scheme is slower than
(1.1). But, as we will show, it converges quadratically if the singular vectors are exact,
and otherwise it can still be fast. We will call the method the singular vector Rayleigh
quotient (SVRQ) method.

At first glance the SVRQ method does not seem to have much to recommend it. It is
more difficult to compute singular vectors than to solve linear systems, and consequently
a SVRQ step (1.2) requires more work than a step of the original algorithm (1.1). And
as we have noted, the new method is slower. Nonetheless, the method may be useful in
finding eigenpairs of large matrices.

Specifically, over the past decade new algorithms have been developed to solve large
eigenvalue problems by building up approximations to the eigenspaces of eigenvalues
lying in a neighborhood of the complex plane. These algorithms (e.g., see [3, 5, 1])
generally begin with subspaces ¥V and W. The space V approximates a right eigenspace
of A (the space W usually does not approximate a corresponding left eigenspace). In
an enhancement step, the spaces ¥V and W are expanded in such a way as to improve
the approximations they contain. Since storage considerations limit the dimensions of
the spaces, enhancement is followed by a refinement step in which unwanted vectors are
purged from the spaces.

The enhancement step generally requires the solution of equations involving A — 71,
where 7 is a shift chosen during the refinement step.! If A is large, these systems cannot
be solved directly, and iterative methods such as GMRES must be employed. Unfor-
tunately, these iterative methods are computationally expensive and consume valuable
storage. Moreover, although potentially useful information is generated in the course of
the iteration, it is not easy to fold it into the algorithm. Consequently, the information
is usually discarded and only the approximate solution is retained.

If we regard steps 1 and 2 in the algorithm (1.1) as enhancement steps, and step 3
as a refinement step (the analogies are not at all far-fetched), then the advantage of
the new algorithm (1.2) becomes evident. It is true that (1.2) replaces the iterative

!The Jacobi-Davidson method works with a projected version of A — 71.
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solution of a large nonsymmetric system with the iterative determination of inferior
singular vectors. But there are effective, well-understood Krylov sequence methods for
the singular value decomposition. In the present application the Golub—Kahan—Lanczos
(GKL) bidiagonalization method is a natural.? This method generates two sequences
of orthogonal vectors spanning Krylov subspaces defined by

o, [(A—TDHH(A - 71)]5, [(A—TDHH(A-7D))%, ...
(A—71Dd, (A—=rD[(A—7DH(A - 7D]p, (A—7D[(A— DA - 7D)]%, ...

The vectors in the first sequence contain approximations to the right singular vectors,
while the vectors in the second contain approximations to the left singular vectors,
which makes them natural candidates to add to V and W. Moreover, since the singu-
lar subspaces also contain approximations to eigenvectors corresponding to eigenvalues
near A (see Theorem 2.1), the refinement step will benefit from the fact that we have
approximations to both right and left eigenspaces.

As a first step in applying this idea to Krylov subspace methods, we give a con-
vergence analysis of algorithm (1.2). To anticipate our results, we will show that if
the singular vectors are computed exactly, then the method converges quadratically
whenever the initial value of 7 is sufficiently near A and that the size of the convergence
region is controlled by the condition numbers of A and z. If the singular vectors are only
approximated, then we give conditions under which convergence rate can be maintained.

This paper is organized as follows. In the next section we establish the relationship
between the inferior singular vectors and the eigenvectors corresponding to small eigen-
values. Then we introduce a decomposition associated with a simple eigenvalue and
establish a result on the accuracy of generalized Rayleigh quotients. In §3 we study the
convergence of algorithm (1.2). In the final sections we discuss the results and draw
conclusions. Throughout this paper || - || denotes the Euclidean vector norm and the
subordinate spectral matrix norm.

2. Singular Subspaces, Eigenspaces, and Generalized Rayleigh Quotients

In this section we first study the relation between certain eigenspaces and singular
spaces.

Theorem 2.1. Let A be of order n. Let X € C"*? have orthonormal columns and
satisfy
AX = XFE, (2.1)

2We use the appellation Golub-Kahan-Lanczos bidiagonalization to stress the fact that the method
is based on Krylov sequences and to distinguish it from the Golub—Kahan reduction to bidiagonal form
by orthogonal transformations. Actually both methods are due to Golub and Kahan [2].
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where E = XHAX . Let A have the singular value decomposition

wit (10
(Wzl—l) A(Vl VQ) - ( 0 22 9
where Y.y is nonsingular of order p and the singular values are in descending order. If we

denote by O(V1, X) the diagonal matrix of canonical angles between the column spaces

of Vo and X, then
|| sin ©(Va, X )| U (2.2)

Op

Proof. The sines of the canonical angles between X and V; are the singular values of
VHX (see [7, §1.5.2]). Multiplying (2.1) by Wl and using the fact that WA = ¥, Vi,
we find that

WHEXE =wlAX = ¥, viExX.

The inequality (2.2) now follows on multiplying by 21_1 and taking norms. m

A related result holds in which the spectral norm in (2.2)is replaced by the Frobenius
norm. In plain words, the theorem says that if an invariant subspace of A has a small
spectrum and the rest of the spectrum is well behaved in the sense that o, is larger than
||E|, then as E approaches zero the invariant subspace and the corresponding singular
subspace approach one another. This is the foundation of our algorithm, although we
will use the result only for p = 1 [see (3.4)].

Next we introduce a decomposition associated with a simple eigenvalue and use it
to assess the accuracy of the generalized Rayleigh quotient in algorithm (1.2). First the
decomposition.

Theorem 2.2. Let A be of order n. Let A be a simple eigenvalue of A with right
eigenvector ¥ normalized so that ||z|| = 1 and left eigenvector yt normalized so that
yHa = 1. Then there are nx(n—1) matrices X and Y such that

(o) 0= (63)

and "

Y (A0
where

L=vY"4x = vyHay.
Moreover

=l = YH =1 and [y = | X = & (2.3)
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For a proof see [6]. The theorem states that the eigenvalue A can be uncoupled from the
rest of A by a similarity transformation and that the transformation has certain special
properties, which we will use in the sequel. Note that there are block versions of this
theorem in which 2 and yH are replaced by matrices spanning left and right eigenspaces
of A (see [7, §V.1]).

The number x in (2.3) is a condition number for the eigenvalue A [7, §IV.2.2].
Specifically, for sufficiently small F there is a unique eigenvalue A of A+ E such that

A=A+ ylEz + O(||E)?).
It follows on taking norms that
A=Al < wIE[+O(1E]?).

In other words x plays the traditional role of a condition number by bounding the effects
on the eigenvalue A of errors in A.

We now consider the accuracy of the generalized Rayleigh quotient wH A%/wH 5. We
begin with the observation that in the notation of Theorem 2.2 any vector © can be
expressed in the form vz 4+ Xg, where v = yH% and ¢ = YH5. There is an analogous
expression for @, These expansions allow us to state the following theorem.

Theorem 2.3. In the notation of Theorem 2.2, let

?=~x+ Xg and ﬁ]H:nyH—l—hHYH.

Then . !
oA A+ RHL
= (2.4)
R
Moreover if ||| = ||@"|| = 1, then as h and g approach zero, we have
[y|—1 and |y — 7" (2.5)
It follows that
Wl Ap . " ;
s = AT (B Lg = AhRg) + olgl[|M]))- (2.6)

Proof. The expression (2.4) follows immediately from the relations in Theorem 2.2.
The limits in (2.5) follow from the fact that when g and Al are zero we have & = vz
and @ = nytl. Finally, (2.6) follows on factoring v7 from numerator and denominator
in (2.4) and expanding the denominator in a Neumann series. m

If we take norms in (2.6) and note that |[A[,||L]| < ||A4]|, we get an asymptotic error
bound for the generalized Rayleigh quotient

wH A

= A< 26l Allllg AT+ o(llgl[1AM]). (2.7)
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Thus the accuracy in the generalized Rayleigh quotient is proportional to the product
of the errors ||g|| and [|A™]| in the right and left vectors.

3. Convergence of the SVRQ iteration

In this section we will consider the convergence of the SVRQ) iteration. A single step of
algorithm (1.2) ideally consists of computing the right and left inferior singular vectors
v and wH of A—71 and then computing the Rayleigh quotient 7+ = wH Av/wHv to give a
new shift. In practice, though, we do not compute the singular vectors exactly. Instead
we obtain ¥ = v+ 6, and " = wH + 65, where v and w are the inferior singular vectors
and &, and 6!l are the unknown errors. To study the convergence rate of algorithm
(1.2), we study the relation between |7 — A| and |7 — A|. From (2.7) it is seen that the
crux of the matter is to derive expressions for the vectors ¢ and h'l.
We begin by writing the singular value decomposition of A — 71 in the form

(ZS(A—ﬂxvm:(igy

Here (V' v) and (W w) are unitary. The quantity o is the inferior singular value of
A —7I,and v and w" are the right and left inferior singular vectors. Although we do
not indicate it explicitly, the components of this decomposition are functions of 7.

We will need a lower bound on the smallest singular value of ¥. Since A is simple,
this singular value is nonzero when 7 = A. Hence it is bounded below by a positive
constant when 7 is restricted to a sufficiently small neighborhood A. Thus we can let

a positive lower bound for the smallest singular

= Jalue of ¥ in some neighborhood of A.

We now turn to bounding ¢ = YH4. We begin by expanding z in terms of the right
singular vectors:

z = (WMa)o + Viiz (3.1)

Multiplying this relation by Y™ and using the relation YHz = 0, we find after a little
manipulation that

yHy vHg

g=Y"5=yHo 4 yHs, = ———
v

+vls,. (3.2)
The next step is to derive an expression for VHz. To do this we first exploit the
eigendecomposition of A and then the singular value decomposition, as in Theorem 2.1.

Specifically, we have
(A—=7lz =(A—T)a.
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Multiplying this expression by WH and using the relation WH(A —7l)= YVH we get
YVHz = (A - 7)WHz or

Vg = (A =) twhe, (3.3)
We can now derive a bound on g. Taking norms in (3.3), we get
€
IViz|| < m (3.4)
where we have set
e=|A—r1|.
Since (3.1) is a decomposition of z into orthogonal components and ||z|| = 1, it follows

that

[ofa] > /1= (e/p)2.

Hence from (3.2)

e/ e/

V1= (e/p)? V1= (e/p)?

The derivation of a bound for A" = wHX is similar, and we only reproduce the
result:

lgll < + YT < +1[0u]]-

K€
A Tl

V6= (e/p)?

The additional factor x comes from the fact that we work with the eigenvector ' and
the matrix X, whose norms are k, instead of x and Y.
If we now substitute these bounds in (2.7) we obtain

- 2 e/p e/
|A =7 <267 A] (W + HM’) (W + HégH) + o([lgl| 12M]]).

If we gather higher order terms, we obtain the expression in the following theorem.

Theorem 3.1. In the notation of algorithm (1.2) and Theorem 2.2, if € = |\ — 7| is
sufficiently small, there is a a constant p such that

€= |A = 7| < pe+ o(pe), (3.5)
where u
€ H5UH+H5wH)
p=2:2A| |5 4 12l M%) 3.6
1A (M2 . (3.6)

It follows that if the starting value of 7 is sufficiently close to A, we can obtain a
superlinear convergence rate from the SVRQ iteration:



8 The Singular Value Rayleigh Quotient Method

e If the singular vectors v and w are determined exactly, then 6, = 0 and 6l = 0
and the convergence rate is quadratic.

¢ If we compute the approximate singular vectors accurately enough that ||6,| =
O(e) and ||6!|| = O(e), then the quadratic rate of convergence is preserved.

o If ||6,]] = O(¢*) and ||61]| = O(€”), where a + 3 > 1, then the convergence rate is
superlinear.

4. Discussion

We have shown that the convergence order for the eigenvalue is quadratic if the singular
vectors are computed exactly. In this case, the bound (3.4) also establishes the quadratic
convergence of the sequence of vectors @ to x. Specifically, the quantity ||VHz|| is the
sine of the angle between 2 and @ [7, §1.5], which therefore goes to zero as fast as €. A
similar result holds for the convergence of the vectors wH.

We have established the local superlinear convergence of the SVRQ iteration to a
simple eigenvalue, as long as the approximate singular vectors are accurate enough. In
this case, the vectors ¥ still converge to z, and we have a lower bound on the cosine of

the angle between ¢ and z, namely
[5%] > /1= (e/n)? |6,

with a similar expression for the convergence of wH.

The multiplier pin (3.5) depends on x and . We have already seen that the quantity
k is the condition number of the eigenvalue A. The quantity p is related to the condition
of the eigenvectors. For it can be shown that when 7 = A

poh =BT <L = AD T

The quantity ||(L — AI)~Y|~! is written sep(A, L), and its reciprocal governs the sensi-
tivity of the eigenvectors corresponding to A [7, §V.2].

If A is a nondefective multiple eigenvalue of A, then A — Al has a zero singular value
of multiplicity at least two. It this case, X must have a zero singular value, and our
analysis fails because the required positive lower bound p does not exist. The common
sense of this situation is that perturbations of A — Al may cause the right and left
singular vectors to move independently in subspaces of dimension at least two. This
raises the possibility of generating orthogonal right and left inferior vectors, for which
the Rayleigh quotient does not exist.> Fortunately, this problem should not affect our

Except for the case of Hermitian A, the generalized Rayleigh quotient algorithm (1.1) has an
analogous problem.
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intended application to subspace methods for large eigenvalue problems, provided the
subspaces V and W mentioned in the introduction are large enough to accommodate
the multiplicity of the eigenvalue.

5. Conclusions

We have proved a result relating an eigenspace of a matrix to its inferior singular
subspace, and we have analyzed a variant of a Raleigh quotient algorithm.

In our intended application to large eigenvalue problems where approximate singular
vectors are computed by GKI bidiagonalization, the bound on the convergence ratio
says that asymptotically we need only have 2x2|| A||(]|6,]| + ||6w|])/1t < 1 to improve the
approximation to the target eigenvalue. This does not mean that we can dispense with
the GKL bidiagonalization, since the shift changes after each refinement step. However,
the bound does suggest that we can get adequate convergence with a constant number
of bidiagonalization steps during the enhancement process. This will be the subject of
a future investigation.
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