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On the Convergence of aNew Rayleigh Quotient Method withApplications to Large EigenproblemsD. P. O'Leary�G. W. Stewart�AbstractIn this paper we propose a variant of the Rayleigh quotient method to compute aneigenvalue and corresponding eigenvectors of a matrix. It is based on the obser-vation that eigenvectors of a matrix with eigenvalue zero are also singular vectorscorresponding to zero singular values. Instead of computing eigenvector approx-imations by the inverse power method, we take them to be the singular vectorscorresponding to the smallest singular value of the shifted matrix. If these singu-lar vectors are computed exactly the method is quadratically convergent. How-ever, exact singular vectors are not required for convergence, and the resultingmethod combined with Golub{Kahan{Krylov bidiagonalization looks promising forenhancement/re�nement methods for large eigenvalue problems.1. IntroductionThe starting point for the algorithm analyzed in this paper is the following variant ofthe Rayleigh quotient method. Let A be of order n, and let � be a simple eigenvalueof A with right and left eigenvectors x and yH. Let ~v and ~wH be approximations to xand yH, and let � be an approximation to �. Then new approximations v̂, ŵH, and �̂are generated as follows:1. v̂ = (A��I)�1~v2. ŵH = ~wH(A��I)�13. �̂ = ŵHAv̂=ŵHv̂ (1.1)This procedure can, of course be iterated. The quantity �̂ is called the generalizedRayleigh quotient of A at v̂ and ŵH. Ostrowski [4] showed that under weak conditionson v̂ and ŵH the shift � converges cubically to � provided that the initial shift issu�ciently near �. There are two reasons for the fast convergence. First, steps 1 and 2in (1.1) improve earlier approximations to the right and left eigenvectors. Second, thisimprovement is magni�ed by the generalized Rayleigh quotient, which is more accuratethan an ordinary Rayleigh quotient formed from a single vector.In this paper we will be concerned with a variant of this method in which theapproximations ~v and ~wH are determined in a di�erent way. We begin by noting that�Computer Science Department and Institute for Advanced Computer Studies, University of Mary-land, College Park, MD 20742. This work was supported by the National Science Foundation undergrant CCR-95-03126. 1



2 The Singular Value Rayleigh Quotient Methodif � = � then A � �I has a zero singular value, with right and left singular vectorsx and yH. Consequently, if � is near �, the right and left singular vectors v and wcorresponding to the smallest singular value � of A � �I should approximate x andyH. (We will make this statement more precise in Theorem 2.1.) For brevity we willcall these singular vectors the inferior singular vectors of A � �I . In practice, we donot compute the inferior singular vectors exactly but instead approximate them. Thissuggests the following procedure, which can also be iterated.1. Let ~v and ~wH be approximations to the right and left inferiorsingular vectors of A��I2. �̂ = ~wHA~v= ~wH~v (1.2)Because we do not improve on previous vectors in step one, the scheme is slower than(1.1). But, as we will show, it converges quadratically if the singular vectors are exact,and otherwise it can still be fast. We will call the method the singular vector Rayleighquotient (SVRQ) method.At �rst glance the SVRQ method does not seem to have much to recommend it. It ismore di�cult to compute singular vectors than to solve linear systems, and consequentlya SVRQ step (1.2) requires more work than a step of the original algorithm (1.1). Andas we have noted, the new method is slower. Nonetheless, the method may be useful in�nding eigenpairs of large matrices.Speci�cally, over the past decade new algorithms have been developed to solve largeeigenvalue problems by building up approximations to the eigenspaces of eigenvalueslying in a neighborhood of the complex plane. These algorithms (e.g., see [3, 5, 1])generally begin with subspaces V and W . The space V approximates a right eigenspaceof A (the space W usually does not approximate a corresponding left eigenspace). Inan enhancement step, the spaces V and W are expanded in such a way as to improvethe approximations they contain. Since storage considerations limit the dimensions ofthe spaces, enhancement is followed by a re�nement step in which unwanted vectors arepurged from the spaces.The enhancement step generally requires the solution of equations involving A� �I ,where � is a shift chosen during the re�nement step.1 If A is large, these systems cannotbe solved directly, and iterative methods such as GMRES must be employed. Unfor-tunately, these iterative methods are computationally expensive and consume valuablestorage. Moreover, although potentially useful information is generated in the course ofthe iteration, it is not easy to fold it into the algorithm. Consequently, the informationis usually discarded and only the approximate solution is retained.If we regard steps 1 and 2 in the algorithm (1.1) as enhancement steps, and step 3as a re�nement step (the analogies are not at all far-fetched), then the advantage ofthe new algorithm (1.2) becomes evident. It is true that (1.2) replaces the iterative1The Jacobi{Davidson method works with a projected version of A� �I.



The Singular Value Rayleigh Quotient Method 3solution of a large nonsymmetric system with the iterative determination of inferiorsingular vectors. But there are e�ective, well-understood Krylov sequence methods forthe singular value decomposition. In the present application the Golub{Kahan{Lanczos(GKL) bidiagonalization method is a natural.2 This method generates two sequencesof orthogonal vectors spanning Krylov subspaces de�ned byv̂; [(A� �I)H(A� �I)]v̂; [(A� �I)H(A� �I)]2v̂; : : :(A� �I)v̂; (A� �I)[(A� �I)H(A� �I)]v̂; (A� �I)[(A� �I)H(A� �I)]2v̂; : : :The vectors in the �rst sequence contain approximations to the right singular vectors,while the vectors in the second contain approximations to the left singular vectors,which makes them natural candidates to add to V and W . Moreover, since the singu-lar subspaces also contain approximations to eigenvectors corresponding to eigenvaluesnear � (see Theorem 2.1), the re�nement step will bene�t from the fact that we haveapproximations to both right and left eigenspaces.As a �rst step in applying this idea to Krylov subspace methods, we give a con-vergence analysis of algorithm (1.2). To anticipate our results, we will show that ifthe singular vectors are computed exactly, then the method converges quadraticallywhenever the initial value of � is su�ciently near � and that the size of the convergenceregion is controlled by the condition numbers of � and x. If the singular vectors are onlyapproximated, then we give conditions under which convergence rate can be maintained.This paper is organized as follows. In the next section we establish the relationshipbetween the inferior singular vectors and the eigenvectors corresponding to small eigen-values. Then we introduce a decomposition associated with a simple eigenvalue andestablish a result on the accuracy of generalized Rayleigh quotients. In x3 we study theconvergence of algorithm (1.2). In the �nal sections we discuss the results and drawconclusions. Throughout this paper k � k denotes the Euclidean vector norm and thesubordinate spectral matrix norm.2. Singular Subspaces, Eigenspaces, and Generalized Rayleigh QuotientsIn this section we �rst study the relation between certain eigenspaces and singularspaces.Theorem 2.1. Let A be of order n. Let X 2 Cn�p have orthonormal columns andsatisfy AX = XE; (2.1)2We use the appellation Golub{Kahan{Lanczos bidiagonalization to stress the fact that the methodis based on Krylov sequences and to distinguish it from the Golub{Kahan reduction to bidiagonal formby orthogonal transformations. Actually both methods are due to Golub and Kahan [2].



4 The Singular Value Rayleigh Quotient Methodwhere E = XHAX . Let A have the singular value decomposition WH1WH2 !A(V1 V2) =  �1 00 �2! ;where �1 is nonsingular of order p and the singular values are in descending order. If wedenote by �(V1; X) the diagonal matrix of canonical angles between the column spacesof V2 and X , then k sin�(V2; X)k � kEk�p : (2.2)Proof. The sines of the canonical angles between X and V2 are the singular values ofV H1 X (see [7, xI.5.2]). Multiplying (2.1) by WH1 and using the fact that WH1 A = �1V H1 ,we �nd that WH1 XE = WH1 AX = �1V H1 X:The inequality (2.2) now follows on multiplying by ��11 and taking norms.A related result holds in which the spectral norm in (2:2) is replaced by the Frobeniusnorm. In plain words, the theorem says that if an invariant subspace of A has a smallspectrum and the rest of the spectrum is well behaved in the sense that �p is larger thankEk, then as E approaches zero the invariant subspace and the corresponding singularsubspace approach one another. This is the foundation of our algorithm, although wewill use the result only for p = 1 [see (3.4)].Next we introduce a decomposition associated with a simple eigenvalue and use itto assess the accuracy of the generalized Rayleigh quotient in algorithm (1.2). First thedecomposition.Theorem 2.2. Let A be of order n. Let � be a simple eigenvalue of A with righteigenvector x normalized so that kxk = 1 and left eigenvector yH normalized so thatyHx = 1. Then there are n�(n�1) matrices X and Y such that yHY H! (x X) =  1 00 I!and  yHY H!A(x X) =  � 00 L! ;where L = Y HAX = Y HAY:Moreover kxk = kY Hk = 1 and kyHk = kXk � �: (2.3)



The Singular Value Rayleigh Quotient Method 5For a proof see [6]. The theorem states that the eigenvalue � can be uncoupled from therest of A by a similarity transformation and that the transformation has certain specialproperties, which we will use in the sequel. Note that there are block versions of thistheorem in which x and yH are replaced by matrices spanning left and right eigenspacesof A (see [7, xV.1]).The number � in (2.3) is a condition number for the eigenvalue � [7, xIV.2.2].Speci�cally, for su�ciently small E there is a unique eigenvalue ~� of A+ E such that~� = �+ yHEx+O(kEk2):It follows on taking norms thatj~�� �j � �kEk+O(kEk2):In other words � plays the traditional role of a condition number by bounding the e�ectson the eigenvalue � of errors in A.We now consider the accuracy of the generalized Rayleigh quotient ~wHA~v= ~wH~v. Webegin with the observation that in the notation of Theorem 2.2 any vector ~v can beexpressed in the form 
x +Xg, where 
 = yH~v and g = Y H~v. There is an analogousexpression for ~wH. These expansions allow us to state the following theorem.Theorem 2.3. In the notation of Theorem 2.2, let~v = 
x+Xg and ~wH = �yH + hHY H:Then ~wHA~v~wH~v = 
��+ hHLg
�+ hHg : (2.4)Moreover if k~vk = k ~wHk = 1, then as h and g approach zero, we havej
j ! 1 and j�j ! ��1: (2.5)It follows that ~wHA~v~wH~v = �+ ��1(hHLg � �hHg) + o(kgkkhHk): (2.6)Proof. The expression (2.4) follows immediately from the relations in Theorem 2.2.The limits in (2.5) follow from the fact that when g and hH are zero we have ~v = 
xand ~wH = �yH. Finally, (2.6) follows on factoring 
� from numerator and denominatorin (2.4) and expanding the denominator in a Neumann series.If we take norms in (2.6) and note that j�j; kLk � kAk, we get an asymptotic errorbound for the generalized Rayleigh quotient����� ~wHA~v~wH~v � ������ � 2�kAkkgkkhHk+ o(kgkkhHk): (2.7)



6 The Singular Value Rayleigh Quotient MethodThus the accuracy in the generalized Rayleigh quotient is proportional to the productof the errors kgk and khHk in the right and left vectors.3. Convergence of the SVRQ iterationIn this section we will consider the convergence of the SVRQ iteration. A single step ofalgorithm (1.2) ideally consists of computing the right and left inferior singular vectorsv and wH of A��I and then computing the Rayleigh quotient �̂ = wHAv=wHv to give anew shift. In practice, though, we do not compute the singular vectors exactly. Insteadwe obtain ~v = v+�v and ~wH = wH+�Hw , where v and w are the inferior singular vectorsand �v and �Hw are the unknown errors. To study the convergence rate of algorithm(1.2), we study the relation between j�̂ � �j and j� � �j. From (2.7) it is seen that thecrux of the matter is to derive expressions for the vectors g and hH.We begin by writing the singular value decomposition of A� �I in the form WHwH ! (A� �I)(V v) =  � 00 �! :Here (V v) and (W w) are unitary. The quantity � is the inferior singular value ofA � �I , and v and wH are the right and left inferior singular vectors. Although we donot indicate it explicitly, the components of this decomposition are functions of � .We will need a lower bound on the smallest singular value of �. Since � is simple,this singular value is nonzero when � = �. Hence it is bounded below by a positiveconstant when � is restricted to a su�ciently small neighborhood �. Thus we can let� = a positive lower bound for the smallest singularvalue of � in some neighborhood of �.We now turn to bounding g = Y H~v. We begin by expanding x in terms of the rightsingular vectors: x = (vHx)v + V V Hx: (3.1)Multiplying this relation by Y H and using the relation Y Hx = 0, we �nd after a littlemanipulation that g = Y H~v = Y Hv + Y H�v = �Y HV V HxvHx + Y H�v : (3.2)The next step is to derive an expression for V Hx. To do this we �rst exploit theeigendecomposition of A and then the singular value decomposition, as in Theorem 2.1.Speci�cally, we have (A� �I)x = (�� �)x:



The Singular Value Rayleigh Quotient Method 7Multiplying this expression by WH and using the relation WH(A� �I) = �V H we get�V Hx = (�� �)WHx or V Hx = (�� �)��1WHx: (3.3)We can now derive a bound on g. Taking norms in (3:3), we getkV Hxk � ��; (3.4)where we have set � = j�� � j:Since (3.1) is a decomposition of x into orthogonal components and kxk = 1, it followsthat jvHxj � q1� (�=�)2:Hence from (3.2)kgk � �=�p1� (�=�)2 + kY H�vk � �=�p1� (�=�)2 + k�vk:The derivation of a bound for hH = wHX is similar, and we only reproduce theresult: khHk � ��=�p1� (�=�)2 + �k�Hwk:The additional factor � comes from the fact that we work with the eigenvector yH andthe matrix X , whose norms are �, instead of x and Y .If we now substitute these bounds in (2.7) we obtainj�� �̂ j � 2�2kAk �=�p1� (�=�)2 + k�vk! �=�p1� (�=�)2 + k�Hwk!+ o(kgk khHk):If we gather higher order terms, we obtain the expression in the following theorem.Theorem 3.1. In the notation of algorithm (1.2) and Theorem 2.2, if � = j� � � j issu�ciently small, there is a a constant � such that�̂ � j�� �̂ j � ��+ o(��); (3.5)where � = 2�2kAk ��2 + k�vk+ k�Hwk� ! : (3.6)It follows that if the starting value of � is su�ciently close to �, we can obtain asuperlinear convergence rate from the SVRQ iteration:



8 The Singular Value Rayleigh Quotient Method� If the singular vectors v and w are determined exactly, then �v = 0 and �Hw = 0and the convergence rate is quadratic.� If we compute the approximate singular vectors accurately enough that k�vk =O(�) and k�Hwk = O(�), then the quadratic rate of convergence is preserved.� If k�vk = O(��) and k�Hwk = O(��), where �+ � > 1, then the convergence rate issuperlinear.4. DiscussionWe have shown that the convergence order for the eigenvalue is quadratic if the singularvectors are computed exactly. In this case, the bound (3.4) also establishes the quadraticconvergence of the sequence of vectors ~v to x. Speci�cally, the quantity kV Hxk is thesine of the angle between x and ~v [7, xI.5], which therefore goes to zero as fast as �. Asimilar result holds for the convergence of the vectors ~wH.We have established the local superlinear convergence of the SVRQ iteration to asimple eigenvalue, as long as the approximate singular vectors are accurate enough. Inthis case, the vectors ~v still converge to x, and we have a lower bound on the cosine ofthe angle between ~v and x, namelyj~vHxj � q1� (�=�)2 � k�vk;with a similar expression for the convergence of ~wH.The multiplier � in (3.5) depends on � and �. We have already seen that the quantity� is the condition number of the eigenvalue �. The quantity � is related to the conditionof the eigenvectors. For it can be shown that when � = ���1 = k��1k � k(L� �I)�1k:The quantity k(L� �I)�1k�1 is written sep(�; L), and its reciprocal governs the sensi-tivity of the eigenvectors corresponding to � [7, xV.2].If � is a nondefective multiple eigenvalue of A, then A��I has a zero singular valueof multiplicity at least two. It this case, � must have a zero singular value, and ouranalysis fails because the required positive lower bound � does not exist. The commonsense of this situation is that perturbations of A � �I may cause the right and leftsingular vectors to move independently in subspaces of dimension at least two. Thisraises the possibility of generating orthogonal right and left inferior vectors, for whichthe Rayleigh quotient does not exist.3 Fortunately, this problem should not a�ect our3Except for the case of Hermitian A, the generalized Rayleigh quotient algorithm (1.1) has ananalogous problem.



The Singular Value Rayleigh Quotient Method 9intended application to subspace methods for large eigenvalue problems, provided thesubspaces V and W mentioned in the introduction are large enough to accommodatethe multiplicity of the eigenvalue.5. ConclusionsWe have proved a result relating an eigenspace of a matrix to its inferior singularsubspace, and we have analyzed a variant of a Raleigh quotient algorithm.In our intended application to large eigenvalue problems where approximate singularvectors are computed by GKL bidiagonalization, the bound on the convergence ratiosays that asymptotically we need only have 2�2kAk(k�vk+ k�wk)=� < 1 to improve theapproximation to the target eigenvalue. This does not mean that we can dispense withthe GKL bidiagonalization, since the shift changes after each re�nement step. However,the bound does suggest that we can get adequate convergence with a constant numberof bidiagonalization steps during the enhancement process. This will be the subject ofa future investigation.References[1] D. R. Fokkema, G. L. G. Sleijpen, and H. A. Van der Vorst. Jacobi{Davidson styleQR and QZ algorithms for the reduction of matrix pencils. Preprint 941, Departmentof Mathematics, Universiteit Utrech, 1996.[2] G. H. Golub and W. Kahan. Calculating the singular values and pseudo-inverse ofa matrix. SIAM Journal on Numerical Analysis, 2:205{224, 1965.[3] R. B. Morgan. On restarting the Arnoldi method for large nonsymmetric eigenvalueproblems. Mathematics of Computation, 65:1213{1230, 1996.[4] A. M. Ostrowski. On the convergence of the Rayleigh quotient iteration for thecomputation of the characteristic roots and vectors. III (generalizd Rayleigh quo-tient and characteristic roots with linear elementary divisors). Arch. Rational Mech.Anal., 3:325{240, 1959.[5] D. C. Sorensen. Implicit application of polynomial �lters in a k-step arnoldi method.SIAM Journal on Matrix Analysis and Applications, 13:357{385, 1992.[6] G. W. Stewart. Computable error bounds for aggregated Markov chains. Journalof the ACM, 30:271{285, 1983.[7] G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, Boston,1990.


