
ABSTRACT

Title of dissertation: ADAPTIVE SENSING
AND PROCESSING FOR SOME
COMPUTER VISION PROBLEMS

Garrett Warnell, Doctor of Philosophy, 2014

Dissertation directed by: Professor Rama Chellappa
Department of Electrical
and Computer Engineering

This dissertation is concerned with adaptive sensing and processing in com-

puter vision, specifically through the application of computer vision techniques to

non-standard sensors.

In the first part, we adapt techniques designed to solve the classical computer

vision problem of gradient-based surface reconstruction to the problem of phase

unwrapping that presents itself in applications such as interferometric synthetic

aperture radar. Specifically, we propose a new formulation of and solution to the

classical two-dimensional phase unwrapping problem. As is usually done, we use

the wrapped principal phase gradient field as a measurement of the absolute phase

gradient field. Since this model rarely holds in practice, we explicitly enforce in-

tegrability of the gradient measurements through a sparse error-correction model.

Using a novel energy-minimization functional, we formulate the phase unwrapping

task as a generalized lasso problem. We then jointly estimate the absolute phase and

the sparse measurement errors using the alternating direction method of multipliers

(ADMM) algorithm. Using an interferometric synthetic aperture radar noise model,

we evaluate our technique for several synthetic surfaces and compare the results to

recently-proposed phase unwrapping techniques. Our method applies new ideas

from convex optimization and sparse regularization to this well-studied problem.

In the second part, we consider the problem of controlling and processing mea-

surements from a non-traditional, compressive sensing (CS) camera in real time. We

focus on how to control the number of measurements it acquires such that this num-

ber remains proportional to the amount of foreground information currently present

in the scene under observations. To this end, we provide two novel adaptive-rate CS

strategies for sparse, time-varying signals using side information. The first method

utilizes extra cross-validation measurements, and the second exploits extra low-

resolution measurements. Unlike the majority of current CS techniques, we do not

assume that we know an upper bound on the number of significant coefficients per-

taining to the images that comprise the video sequence. Instead, we use the side

information to predict this quantity for each upcoming image. Our techniques spec-

ify a fixed number of spatially-multiplexed CS measurements to acquire, and they

adjust this quantity from image to image. Our strategies are developed in the spe-

cific context of background subtraction for surveillance video, and we experimentally

validate the proposed methods on real video sequences.

Finally, we consider a problem motivated by the application of active pan-tilt-

zoom (PTZ) camera control in response to visual saliency. We extend the classical

notion of this concept to multi-image data collected using a stationary PTZ camera

by requiring consistency : the property that each saliency map in the set of those

that are generated should assign the same saliency value to distinct regions of the

environment that appear in more than one image. We show that processing each

image independently will often fail to provide a consistent measure of saliency, and

that using an image mosaic to quantify saliency suffers from several drawbacks. We

then propose ray saliency : a mosaic-free method for calculating a consistent measure

of bottom-up saliency. Experimental results demonstrating the effectiveness of the

proposed approach are presented.

ADAPTIVE SENSING AND PROCESSING
FOR SOME COMPUTER VISION PROBLEMS

by

Garrett Warnell

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2014

Advisory Committee:
Professor Rama Chellappa, Chair/Advisor
Professor Larry Davis
Professor Behtash Babadi
Professor Amitabh Varshney
Professor John Benedetto

c© Copyright by
Garrett Warnell

2014

Dedication

To my parents.

ii

Acknowledgments

The work presented in this dissertation would not have been possible without

the support of several individuals to whom I am truly indebted.

First, I would like to thank my advisor, Professor Rama Chellappa, for always

providing me with calm, steady guidance and a sense of humor. I am in awe of his

generosity, and I am truly honored to be among those who call him their mentor.

Second, I would like to thank Dr. Vishal Patel. He has been a second mentor, a

collaborator, and also a friend. I cannot imagine having completed this dissertation

without his involvement.

Next, I’d like to acknowledge my committee members, Professors Larry Davis,

Behtash Babadi, Amitabh Varshney, and John Benedetto. I am grateful for their

willingness to take interest in and read, evaluate, and provide feedback on the work

presented here.

I would also like to thank several collaborators for their significant involvement

in the work presented below, including Dr. Dikpal Reddy, Dr. Philip David, and

Professor Sourabh Bhattacharya.

During my studies, I was fortunate enough to be involved in two brilliant

research groups: one at the University of Maryland, and another at the U.S. Army

Research Laboratory. Both provided me an inspiring environment in which to work,

and I am grateful to everyone involved.

Of course, I would be remiss if I did not especially acknowledge the exceptional

sounding board I had in Lab 4438: Chris, Tho, Dave, Priyanka, Swami, Heng, and

iii

Pouya. I could not have asked for better office mates and friends.

Several other friends deserve my thanks for helping and encouraging me through-

out my studies. For continually reminding me of the outside world, thanks to all

the members of the graduate student ultimate frisbee club. And for distractions of

all other kinds, I’m grateful to Alex, Ross, Matt, Lauren, Sarah, Alex, Kevin, Mike,

Dani, Kara, and especially Kate. I could not have completed my studies without

their kindness and support.

Finally, I would like to thank my family for everything they have given me.

Most importantly, they have provided me with stability and perspective. The pages

of this dissertation would be blank without them.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Problems . 3
1.2 Contributions . 5
1.3 Organization . 6

2 Background 8
2.1 Compressive Sensing . 8
2.2 Visual Saliency . 10

3 Phase Unwrapping 14
3.1 Introduction . 14

3.1.1 Organization . 16
3.2 Related Work . 17
3.3 Problem Formulation . 19

3.3.1 Generalized Lasso Formulation 23
3.4 Optimization . 24

3.4.1 Update Step for x . 26
3.4.2 Update Step for z . 26
3.4.3 Update Step for u . 27
3.4.4 Stopping Criteria . 27

3.5 Experiments . 28
3.5.1 Noisy Observation Model . 28
3.5.2 Phase Data . 30
3.5.3 Evaluation . 31
3.5.4 Parameters and Error Correction 36
3.5.5 Computational Complexity . 37

3.6 Summary . 40

v

4 Adaptive-Rate Compressive Sensing 41
4.1 Introduction . 41

4.1.1 Related Work . 44
4.1.2 Organization . 46

4.2 Problem Statement . 47
4.3 Compressive Sensing for Background Subtraction 48
4.4 Sensing Matrix Design . 49

4.4.1 Theoretical Guarantees . 50
4.4.2 Practical Sensing Matrix Design Based on Phase Diagrams . . 51

4.5 Method I: Cross Validation . 54
4.5.1 Compressive Sensing with Cross Validation 54
4.5.2 Adaptive-Rate Compressive Sensing via Cross Validation . . . 55

4.6 Method II: Low-Resolution Tracking 60
4.6.1 Low-Resolution Measurements 60
4.6.2 Object Tracking and Foreground Sparsity 61
4.6.3 Sparsity Estimation . 62

4.7 Experiments . 65
4.7.1 Practical Considerations . 66

4.7.1.1 Foreground Model 66
4.7.1.2 ARCS-CV . 68
4.7.1.3 ARCS-LRT . 69

4.7.2 Comparitive Results . 70
4.7.3 Steady-State Behavior . 72
4.7.4 ARCS-LRT and Automatic Tracking 73

4.8 Summary . 73

5 Multi-Image Visual Saliency 77
5.1 Introduction . 78

5.1.1 Organization . 80
5.2 Problem Formulation . 81
5.3 Independent Processing . 83
5.4 Mosaicing . 86
5.5 Ray Saliency . 89

5.5.1 Pan-Tilt-Zoom Imaging Geometry 89
5.5.2 Graph-Based Visual Saliency 92
5.5.3 Ray Space, Distance, and Scale 93
5.5.4 Computation of Ray Saliency 94
5.5.5 Consistency . 95

5.6 Experiments . 96
5.6.1 Automatic Camera Calibration 97
5.6.2 Practical Implementation . 99

5.6.2.1 Superpixel Clustering 99
5.6.2.2 Locality Approximation 100
5.6.2.3 Approximate Ray Saliency 101
5.6.2.4 Approximation Efficiency 103

vi

5.6.2.5 Approximation Consistency 104
5.6.3 Single-Image Data . 104
5.6.4 Multi-Image Data . 108
5.6.5 Comparison of Algorithm Complexity 110

5.7 Summary . 111

6 Summary and Directions for Future Research 113
6.1 Directions for Future Research . 114

6.1.1 Phase Unwrapping . 114
6.1.2 Adaptive-Rate Compressive Sensing 115
6.1.3 Multi-Image Visual Saliency 116

Bibliography 118

vii

List of Tables

3.1 Surface Reconstruction MSE for Noisy Wrapped Phase Observations . 32
3.2 Surface Reconstruction MSE for NL-InSAR-Denoised [1] Wrapped

Phase Observations . 34
3.3 Unwrapping run time (sec.) for the Gaussian surface 37

4.1 Parameter values used in experiments 66
4.2 Experimental comparison of adaptive compressive sensing measure-

ment strategies (oracle, ARCS-CV, ARCS-LRT) 70

5.1 Worst-case algorithmic comparison for multi-image saliency approaches.
The listed complexities for the independent-processing and mosaic-
ing approaches were calculated assuming [2]’s method is used. K is
the total number of observed pixels, R is the number of pixels neces-
sary to represent the mosaic, and L is the total number of extracted
superpixels. 111

viii

List of Figures

2.1 Sample image (a) from the MSRA Salient Object Database [3] and a
bottom-up saliency map (b) generated by [2]. 12

3.1 Absolute phase reconstructions. Left to right: actual phase, noisy
wrapped phase generated using α = 0.85, PUGL estimate, PUMA
estimate, PhaseLa estimate. Top to bottom: Gaussian Surface, Trun-
cated Gaussian Surface, Shear Surface, and Longs Peak. 33

3.2 Absolute phase reconstructions. Left to right: actual phase, wrapped
phase generated using α = 1 (noise-free), PUGL estimate, PUMA es-
timate, PhaseLa estimate. Top to bottom: Gaussian Surface, Trun-
cated Gaussian Surface, Shear Surface, and Longs Peak. 35

3.3 Upper-left: Truncated Gaussian Surface. Upper-right: noise-free
wrapped phase. Lower-left: PUGL estimate. Lower-right: locations
of the significant components of the optimal e. 38

3.4 PUGL objective value per ADMM iteration for the Shear Surface. . . 39

4.1 Foreground reconstruction with varying measurement rates. (a) is
the true foreground, (b) is the foreground reconstruction when too
few measurements are used, (c) is the reconstruction when an optimal
number of measurements are used, and (d) is the reconstruction when
more than the optimal number of measurements are used. 44

4.2 Phase diagrams for Gaussian and Fourier measurement ensembles.
Color corresponds to probability of successful reconstruction (here,
normalized `2 error below 10−3). 53

4.3 Illustration of the downsampling and low-resolution tracking pro-
cess utilized by ARCS-LRT for a sample image from the PETS 2009

dataset. (a) corresponds to the high-resolution image for which we
seek to perform compressive foreground reconstruction. (b) corre-
sponds to the low-resolution obtained by the secondary, non-compressive
camera. The bounding box around the subject corresponds to the
output of a tracking algorithm. 63

ix

4.4 Example images from the marker cam, PETS2009 S2L1, and convoy2

(columns one, two, and three, respectively), video sequences. The
first row contains the background images, the second row contains
an image with both foreground and background components, and the
third image contains the corresponding foreground component. 67

4.5 Performance of adaptive CS strategies for the marker cam (column
one), PETS2009 S2L1 (column two), and convoy2 (column three)
video sequences. In the first row, ŝt is used to denote the sparsity
estimate used by each strategy. In row two, Mt is used to denote
the total number of measurements that must be acquired. The `2
reconstruction error is plotted in row three. 71

4.6 Steady-state behavior for both ARCS algorithms using a video se-
quence constructed by repeating a single image selected from the
convoy2 dataset. For each algorithm, two experimental paths are
shown: one generated by initializing the sparsity estimate such that
it is too small (s1 << s), and the other generated by initializing the
sparsity estimate such that it is too large (s1 >> s). 74

4.7 Effect of manual vs. automatic blob tracking on the behavior of the
ARCS-LRT method for the convoy2 dataset. 75

5.1 Overlapping imagery collected with a stationary PTZ camera: the
ventilation ducts and handle of the dark messenger bag are visible in
both (a) and (b). (c) and (d) were generated by zooming in on the
main body of the bag. 81

5.2 Sample image (a) from the MSRA Salient Object Database [3] and a
synthetically-generated, zoomed-in image of the same scene (b). The
corresponding, independently-generated saliency maps are given by
(c) and (d), respectively. The saliency maps were generated by the
technique proposed in [2]. 85

5.3 Graphical depiction of a mosaicing approach. The mosaic (a) was
formed using acquired images (c), (d), (e), and (f). The saliency
map (b) was computed using (a) and the approach developed by
[2]. Finally, saliency maps (g), (h), (i), and (j) were generated by
interpolating over (b) in the regions corresponding to each acquired
image. In order to retain the detail provided by images (e) and (f),
both (a) and (b) require approximately 26 times more pixels than
observed. 87

x

5.4 Geometry of the pan-tilt-zoom imaging process. Stars represent ray
coordinates. The green and red rectangular grids represent the cam-
era’s pixel array for focal lengths f1 and f2, respectively. The pro-
jection of each image pixel, x, on the surface of the sphere yields the
corresponding ray coordinate, X. With respect to the discussion in
Section 5.5.1, X̃ lies somewhere on the line that connects the cam-
era center, image pixel, and corresponding ray coordinate. For the
case depicted, the ray coordinates for the same pixel sensor zoomed
to a larger focal length (f2 > f1) are much more tightly packed. If
both images are collected, the overall set of observed rays is highly
nonuniform over the sphere. 91

5.5 Ray saliency produces competitive results when compared to methods
explicitly designed for single images. Depicted here is the precision-
recall curve for saliency maps generated using the MSRA Salient Ob-
ject Database [3] and the ground-truth data provided by [2]. IT

refers to the method of [4], BG to [5], IG to [2], SF to [6], and RS to
our method. See Section 5.6.3 for further discussion. 97

5.6 Ray saliency produces maps that appear similar to those generated
by methods explicitly designed for single images. Depicted here are
single-image saliency maps for a selected subset of the MSRA Salient
Object Database [3]. The leftmost column shows the original images,
and the second column shows the ground-truth saliency masks pro-
vided by [2]. The third through seventh columns show the saliency
map results from [4], [5], [2], [6], and our method, respectively. See
Section 5.6.3 for further discussion. 102

5.7 Ray saliency produces a consistent set of saliency maps where in-
dependent processing fails and mosaicing is not practical. Depicted
here are the results of multi-image saliency processing for the office

dataset. The leftmost column shows the acquired images, where the
two bottom images are zoomed-in shots of the dark messenger bag on
the windowsill. The second and third columns show the correspond-
ing saliency maps generated using independent processing (using [2]’s
method), and our method, respectively. Because of the wide variation
in PTZ settings used to acquire these images, the mosaicing method
failed due to lack of memory. See Section 5.6.4 for further discussion. 105

5.8 For certain datasets, all three methods (independent processing, mo-
saicing, and ray saliency) are able to produce approximately consis-
tent results. Depicted here are the results of multi-image saliency
processing for the orangecones dataset. The leftmost column shows
the acquired images. The second through fourth columns show the
corresponding saliency maps generated using independent processing
(using [2]’s method), mosaicing (using [2]’s method), and our method,
respectively. See Section 5.6.4 for further discussion. 106

xi

5.9 Ray saliency and mosaicing are able to produce a consistent set of
saliency maps where independent processing fails. Depicted here are
the results of multi-image saliency processing for the watertruck

dataset. The leftmost column shows the acquired images. The sec-
ond through fourth columns show the corresponding saliency maps
generated using independent processing (using [2]’s method), mosaic-
ing (using [2]’s method), and our method, respectively. See Section
5.6.4 for further discussion. 107

xii

Chapter 1: Introduction

Over the course of the last several decades, there has been an explosion in both

the availability and quality of traditional imaging systems. Billions of people have

the capability to capture high-resolution images and videos using cheap consumer

cameras and mobile phones. Organizations and individuals alike have access to high-

resolution, multi-camera systems. The common component in all these devices is

the traditional camera: a planar pixel array on which two dimensional projections of

visible light are measured. These cameras are usually static in nature, controllable

only through manual manipulation. Accordingly, much of contemporary computer

vision research has focused on data acquired with these types of sensors: datasets

that drive research in areas such as object recognition, visual saliency, and tracking

are usually comprised of imagery acquired with static, traditional imaging devices

[7] [3] [8]. While this type of data may be the most natural to consider for these

tasks, there are several scenarios under which using conventional imaging devices

may be undesirable or even impossible.

In this dissertation, we will consider three scenarios that employ unconven-

tional imaging devices. While the acquired data is not of the usual variety, it is still

visual in nature, and we will still seek to use it to accomplish tasks associated with

1

classical computer vision such as depth estimation, background subtraction, and

visual saliency estimation. Therefore, we will focus on adapting existing techniques

for such tasks to process the various types of visual data and, in some cases, to help

control the non-traditional sensing process.

The first type of data we consider is that of complex-valued radar measure-

ments. We are specifically concerned with the problem of interferometric synthetic

aperture radar (InSAR), in which we seek to recover underlying depth images en-

coded in the absolute phase of the acquired radar observations. This problem is

very similar to the classical computer vision problem of gradient-based surface re-

construction, and our work focuses on adapting techniques from that field in order

to solve the phase unwrapping problem.

The second data type considered comes from an imaging device designed to

help alleviate the modern problem of data deluge [9]: it is now so easy to collect

massive amounts of data that information systems are being overwhelmed by the

amount of data that they they are typically assigned to process. The research com-

munity has recently made progress in addressing this problem with the introduction

of compressive sensing (CS). By leveraging the fact that most information in visual

data is often of much lower dimension than that of the ambient signal space in which

traditional sensors operate, CS researchers have proposed a solution in the form of

new sensors. It is such a sensor we consider here, namely the single-pixel camera

(SPC) [10]. Compared to measurements acquired with a traditional camera, far

fewer SPC measurements are necessary in order to infer the image of the scene un-

der observation. Previous work [11] has adapted traditional background subtraction

2

techniques to work with SPC measurements. Here, we extend that work in order to

help optimally adjust the number of measurements the SPC collects.

Finally, we will also consider a precisely-controllable pan-tilt-zoom (PTZ) cam-

era. Leveraging their flexible field-of-view, PTZ cameras provide a means by which

an operator or autonomous system can limit the amount of image data collected

while retaining the freedom make observations over a large physical area. The data

acquired differs from that of a traditional static imaging system in that the obtained

images are related by a known geometric transformation. Here, we will focus on ex-

ploiting this relationship in order to adapt classical visual saliency techniques such

that a similar quantity can be computed using the acquired multi-image datasets.

1.1 Problems

The work presented in this dissertation provides adaptive sensing and process-

ing techniques in the context of the following problems:

1. Phase Unwrapping: Interferometric synthetic aperture radar is a problem

that requires visual information to be inferred from non-traditional measure-

ments. The task is to estimate a three-dimensional surface from complex-

valued radar measurements. The desired depth information can be easily

computed once the absolute phase of these measurements is known, but the

nature of the imaging system dictates that only the principal phase (absolute

phase modulo 2π) is observable. The inference of absolute phase from the

principal phase, called phase unwrapping, is an ill-posed problem. However,

3

there is a way in which principal phase measurements can be transformed

into measurements of the absolute phase gradient field. Starting from here,

we propose a technique that modifies traditional gradient-based surface recon-

struction techniques in computer vision such that they can be used for the

phase unwrapping problem.

2. Adaptive-Rate Compressive Sensing: CS addresses the data deluge prob-

lem by using new, non-traditional cameras. Here, we propose an adaptive

sensing algorithm to be used in a scenario in which a compressive imaging

device is used to sense a sparse, time-varying signal. We are specifically inter-

ested in background subtraction for visual surveillance. Classical CS theory

assumes prior knowledge of signal sparsity in order to determine the num-

ber of sensor measurements needed to ensure adequate signal reconstruction.

However, when dealing with dynamic signals such as video, prior information

regarding the exact sparsity may be difficult to obtain. Hence, classical CS

methods are forced to use wasteful upper bounds that result in the acquisition

of an unnecessarily high quantity of data. Assuming the system uses a sensor

that is able to adaptively adjust the number of compressive measurements

it collects, we propose algorithms based on various forms of side information

that quantitatively evaluate the current CS measurement rate and adjust it

as needed.

3. Multi-Image Visual Saliency: This problem is motivated by the desire

to use classical visual saliency to help guide optimal scene observation using

4

a PTZ camera. Here, the data of interest is a collection of multiple images

related by a known geometric transformation. We propose a technique by

which the concept of visual saliency can be adapted to these multi-image

datasets. Traditional computational saliency methods involve finding certain

portions of visual data that exhibit some notion of importance when compared

to others. While the problem of identifying such regions has been well-studied

for single images, these approaches are not designed for scenarios in which

visual data arrives via multiple, geometrically-related observations collected

using a manipulable sensor. Our proposed approach accounts for the known

geometric relationship between images, and provides an adapted notion of

saliency for visual data. Using a ray-based representation of the scene, we are

able to efficiently quantify this new notion of saliency.

1.2 Contributions

With respect to each problem described above, this dissertation makes the

following contributions:

1. Phase Unwrapping

• We incorporate recent ideas in sparse error correction for performing `2-

based phase unwrapping.

• We provide a generalized-lasso formulation to the phase unwrapping

problem.

5

• We use an efficient primal-dual algorithm, ADMM, to perform the un-

wrapping.

2. Adaptive-Rate Compressive Sensing

• We provide an explicit technique for generating rate-adaptive CS mea-

surement matrices.

• We adapt the compressive background subtraction technique proposed

by Cevher et al. [11] to a variable-measurement-rate scenario.

• We provide real-time techniques by which side information of various

types can be used in order to minimize the measurement rate of the

imaging system.

3. Multi-Image Visual Saliency

• We explicitly develop the notion of visual saliency for multi-image, geometrically-

related data.

• We explore several possible methods for quantifying visual saliency for

this data.

• We describe ray saliency, a novel and efficient means of quantifying visual

saliency for multi-image data.

1.3 Organization

This dissertation is organized as follows. In Chapter 2, we provide general

overviews of the areas of compressive sensing and visual saliency. Chapter 3 de-

6

scribes our work on the problem of phase unwrapping. Chapter 4 details the

adaptive-rate CS techniques we have developed. Chapter 5 lays out our research

efforts toward defining and computing multi-image visual saliency. We conclude

with a summary and description of future research directions in Chapter 6.

7

Chapter 2: Background

In this chapter, we shall provide background discussion of two broad areas in

which parts of our work reside. In Chapter 4, we will discuss an adaptive sensing

algorithm that is designed for a compressive sensing camera. Here, we shall introduce

the concept of CS, specifically in the context of the new imaging platforms it has

inspired, including the single-pixel camera. In Chapter 5, we detail our work that

extends classical visual saliency to multi-image data acquired using a PTZ camera.

Here, we shall introduce visual saliency in computer vision and discuss several ways

by which it can be computed.

2.1 Compressive Sensing

One of the primary tools with which the problem of data deluge can be ad-

dressed is compressive sensing : a relatively new theory in sensing which asserts that

a certain class of discrete signals can be adequately sensed by capturing far fewer

measurements than the dimension of the ambient space in which they reside. By

“adequately sensed,” it is meant that the signal of interest can be accurately inferred

using the measurements acquired by the sensor.

In this dissertation, we use CS in the context of imaging. Consider a grayscale

8

image F ∈ RN×N , vectorized in column-major order as f ∈ RN2
. A traditional

camera uses an N×N array of photodetectors in order to produce N2 measurements

of F : each detector records a single value that defines the corresponding component

of f . If we are instead able to gather measurements of a fundamentally different type,

CS theory suggests that we may be able to determine f from far fewer than N2 of

them. Specifically, these compressive measurements record linear combinations of

pixel values, i.e., ξ = Φf , where Φ ∈ CM×N2
is referred to as a measurement matrix

and M << N2.

CS theory presents three general conditions under which the above claim is

valid. First, f should be sparse or compressible. In general, a vector is said to be

sparse if very few of its components are nonzero. More precisely, vectors having no

more than s nonzero components are said to be s-sparse. A vector is said to be

compressible if it is well-approximated by a sparse signal, i.e., it has a small number

of components with a large magnitude and many with much smaller magnitudes.

Second, the measurement matrix (encoder) should exhibit the restricted isom-

etry property (RIP) of a certain order and constant. Specifically, Φ exhibits the

RIP of order s with constant δs if the following inequality holds for all s-sparse f :

(1− δs) ≤
‖Φf‖22
‖f‖22

≤ (1 + δs) . (2.1)

While we will discuss proposed construction methods for a Φ that exhibits the RIP

for specified s and δs in Section 4.4, they generally involve selecting M such that it

exceeds a lower bound that grows with increasing s and decreasing δs.

Finally, an appropriate decoding procedure, f̂ = ∆(ξ,Φ), should be used.

9

While many successful decoding schemes have been discussed in the literature, we

shall focus here on one in particular:

∆(ξ,Φ) = arg min
z∈RN2

‖z‖1 subject to Φz = ξ , (2.2)

where the `1 norm is given explicitly by ‖z‖1 =
∑

i |z(i)|.

With these three conditions in mind, CS theory provides us with the following

result: for an s-sparse f measured with a Φ that exhibits the RIP of order 2s with

δ2s ≤
√

2 − 1, ∆(ξ,Φ) will exactly recover f [12]. If f is compressible, a similar

result that bounds the reconstruction error is available. Thus, by modifying the

sensor and decoder to implement Φ and ∆, respectively, f can be adequately sensed

using only M << N2 measurements.

Sensors based on the above theory are still just beginning to emerge [13]. One

of the most notable is the single-pixel camera [14], where measurements specified

by each row of Φ are sequentially computed in the optical domain via a digital

micromirror device and a single photodiode. Throughout the remainder of this

dissertation, we shall assume that such a device is the primary sensor.

2.2 Visual Saliency

Broadly, visual saliency is a measure of how important visual data is in context.

Of course, in order to actually quantify this quality, one must provide more precise

definitions of both what is meant by importance and what comprises context. The

way in which a computational visual saliency technique defines these concepts places

it into one of two major categories: bottom-up or top-down.

10

Bottom-up saliency methods define the context as visual data belonging to a

spatially-localized neighborhood about the region of interest. Classically, the input

visual data consists of a single image, and regions of interest are pixels or groups of

pixels. Some researchers define context using spatially-limited neighborhoods over

image pixels [4] [15], while others consider the context to be all features present

in the image [16] [5] [17]. More recent approaches consider multiple definitions of

context as defined by scale [2] [18]. Regardless of the choice of context, bottom-

up methods equate the notion of saliency with that of anomaly. That is, greater

saliency is assigned to regions associated with data that is more anomalous with

respect to the given context. Methods from this category produce results that agree

with the “popout” phenomenon that is typically experienced in biological vision [19],

i.e., phenomena that are typically identified as salient in the bottom-up sense also

tend to draw the attention of human observers. Figure 2.1 depicts an example of

a bottom-up saliency map generated by the technique proposed in [2]. Here, a

saliency map is a spatial representation that reflects the importance assigned to

image regions: brightness values corresponding to each image region quantify its

importance with respect to others.

In contrast, top-down methods [20–22] use training data or other prior infor-

mation as the context, and the saliency of a datum is quantified according to how

similar it is to this context. For example, the well-studied task of object detection

can be interpreted as a top-down saliency method that uses a very specific prior,

namely a visual description of the object(s) of interest. While top-down methods

are of great interest to the vision community, the notion of saliency considered in

11

(a) (b)

Figure 2.1: Sample image (a) from the MSRA Salient Object Database [3] and a

bottom-up saliency map (b) generated by [2].

this dissertation belongs to the bottom-up family. We will therefore limit further

discussion to this category.

Classically, bottom-up visual saliency algorithms are evaluated with respect

to how well they agree with what humans think [23]. A given database of images is

usually presented to human subjects, and they are asked to view these images. In

some cases, researchers use an eye-tracking system and record the subjects’ eye fixa-

tion data for each image. In other cases, the subjects are asked to manually indicate

which regions of the image they feel are salient. Either way, this human-generated

information is taken to be the ground truth for bottom-up saliency algorithms.

Performance can be measured using classical classification metrics. For example,

if the human-generated ground-truth information is in the form of labeled salient

regions, an algorithm-generated saliency map can be used to generate a precision-

recall curve. This can be done by varying a threshold value that defines a binary

saliency decision at each pixel. One can then determine the number of true posi-

tives, false positives, etc. for this threshold. Points on the precision-recall curve are

generated by repeating the process for all possible threshold values. This technique

12

will be used as one way to evaluate the method we present in Chapter 5.

13

Chapter 3: Phase Unwrapping

In this chapter, we focus on the problem of adapting classical gradient-based

surface reconstruction algorithms to the unique measurement and inference problem

of phase unwrapping. Techniques for solving this problem must operate on unique

wrapped (modulo-2π) measurement data, which presents a unique set of challenges.

Here, we present our own phase unwrapping technique, phase unwrapping using the

generalized lasso (PUGL), which is based on contemporary ideas from sparsity-based

regularization and convex optimization.

3.1 Introduction

Phase unwrapping is a problem that arises in many applications, including

magnetic resonance imaging [24] [25], optical interferometry [26] [27], and interfer-

ometric synthetic aperture radar (InSAR) [28] [29]. The problem is to infer the

real-valued absolute phase from measurements of the principal phase. It is usually

the case that the absolute phase carries the information of interest, but the principal

phase is the only observable quantity. The two quantities are related as follows: if

φ ∈ R represents the absolute phase, then the corresponding principal phase value

14

is given by ψ =W (φ), where the wrapping operator W is defined as

W : R→ [−π, π)

W (φ) = [(φ+ π) mod2π]− π, (3.1)

and applied componentwise in the case of vector-valued φ.

In this chapter, we are primarily interested in the InSAR application. Specif-

ically, the InSAR problem is to recover a three-dimensional surface (i.e., depth)

from multiple radar measurements of that surface. Considering two distinct van-

tage points (e.g., airplane positions), the desired depth information can be easily

computed from two physical quantities: (1) the (known) distance between vantage

points and (2) the difference between the two point-to-ground path lengths. Since

the distance to the surface is encoded in the absolute phase of a radar measurement,

the latter quantity can theoretically be computed from the difference between the

absolute phase measurements obtained at each vantage point. Unfortunately, prac-

tical InSAR measurement systems can only observe the principal phase, from which

only the wrapped phase difference can be computed. Thus, in order to recover the

depth information, we must solve the unwrapping problem, i.e., inferring φ from ψ.

Due to the many-to-one nature of W , this problem is ill-posed. Therefore, in

order to find a unique solution, additional constraints must be imposed on φ. One

such constraint that is applied almost universally in the literature is derived from

the Itoh condition [30]. Assuming a two-dimensional φ that is comprised of phase

samples obtained on a uniformly-spaced discrete grid, the Itoh condition is said to

be satisfied if neighboring phase values do not differ by more than π. Whether or

15

not this condition is satisfied depends on both the spatial sampling rate and the

smoothness of the underlying physical quantity. However, if the Itoh condition is

satisfied, then it can be shown that

∇φ =W (∇ψ) , (3.2)

where ∇ computes differences between four-connected neighbors. Unfortunately,

even in the case of sufficiently smooth φ and sufficient spatial sampling, (3.2) may

fail to hold due to noise in the system that acquires ψ. Nevertheless, this gradi-

ent constraint is used in most unwrapping procedures, and the distinguishing trait

among these procedures is the way in which this issue is addressed.

In this chapter, we propose a novel phase unwrapping technique that explicitly

models the error in (3.2) as a sparse quantity, i.e., that significant inequality occurs

in a relatively small number of locations. We formulate the unwrapping problem as

one of jointly estimating both the absolute phase and the sparse errors, and cast it

as a generalized lasso [31] [32] problem. We then propose the use of the alternating

direction method of multipliers (ADMM) algorithm [31] to compute the estimates.

3.1.1 Organization

This chapter is organized as follows. In Section 3.2, we review related work

in the field of phase unwrapping. In Section 3.3 we develop our formulation of

sparse-error-corrected phase unwrapping, which culminates in an interpretation of

the problem in the generalized lasso framework. In Section 3.4, we detail the ADMM

algorithm we use to efficiently perform the absolute phase estimation. Finally, we

16

present the results of our technique in Section 3.5.

3.2 Related Work

Phase unwrapping is a problem that has received a great deal of attention

from the research community. While early efforts focused on estimating the ab-

solute phase directly from wrapped observations, more recent work has also dealt

with the more limited task of denoising the wrapped observations (see, e.g., [1,33]).

While these denoising methods do not explicitly perform the unwrapping, they of-

ten produce very good results when used to preprocess the input before applying

techniques that actually estimate the absolute phase.

The method we present here is one that computes an estimate of the absolute

phase directly from wrapped, possibly noisy, observations. Virtually all such tech-

niques rely on (3.2), which allows us to use ψ to generate measurements W(psi)

of the horizontal and vertical absolute phase differences. The unwrapping problem

then becomes one of estimating a two-dimensional image, φ from measurements of

its gradient field. This more general problem is one with a wide variety of applica-

tions beyond that of phase unwrapping. For a thorough treatment, see [34].

Early attempts at solving the phase unwrapping problem sought to generate

a solution through the use of path-following [28, 29, 35] techniques. Starting from

a point with known phase, these techniques generate a solution by sequentially

summing the phase difference measurements over a path that covers the spatial

domain. Ideally, any such path will generate the same solution. However, when the

17

measured differences have errors (due to, e.g., noise), the solution becomes path-

dependent due to residues : points around which a closed integration path does not

yield a value of zero. Path-following techniques attempt to first identify residue

locations and then select integration paths that avoid them in order to mitigate

their effects.

Instead of point-by-point unwrapping, a more popular class of phase unwrap-

ping techniques formulates the absolute phase estimation problem as one of energy

minimization. Mathematically, energy minimization techniques take the following

form:

φ∗ = arg min
φ
J (φ) (3.3)

where the distinguishing trait among these methods lies in how J is defined. The

technique proposed by Hunt [36] selects

J (φ) = ‖∇φ−W(∇ψ)‖22, (3.4)

where ∇φ =
[
∇xφ

T ∇yφ
T
]T

, and ∇xφ and ∇yφ denote the vectorized horizontal

and vertical components, respectively, of the forward-difference approximation of

the spatial gradient. Substituting (3.4) in (3.3), the optimal φ can be computed by

solving the standard Poisson equation.

Several improvements to the above have been made by modifying J . For

example, several researches have proposed the addition of regularizing terms. Mar-

roquin et al. [37] add regularizing terms ‖∇φ‖22 and ‖P2φ‖22, where components

of P2φ represent second-order differences of φ. Guerriero et al. [38] also include a

regularization term based on second-order differences of φ and replace the term in

18

(3.4) with one that explicitly enforces the integrability of W (∇ψ). A variety of

other regularizing terms have also been proposed, and we refer the reader to the

work of Nico et al. [39] for a comprehensive review.

Another way in which J has been modified from its original formulation in

(3.4) is with respect to the penalty function. Ghiglia and Romero [40] propose using

the more general `p norm:

J (φ) = ‖∇φ−W (∇ψ)‖pp

=
∑
i

|∇φi −W (∇ψi) |p, (3.5)

where the subscript i denotes the ith vector component. When p = 2, (3.5) reduces

to (3.4), and can be efficiently solved using techniques such as the one proposed

by Ghiglia and Romero [41]. However, other values of p can affect the convexity of

(3.3), and require more creative computational techniques, such as approaches from

network programming [42] [43] in order to compute a solution.

The method we propose here is an energy-minimization approach to phase

unwrapping. We select a J that enforces the gradient constraint as in (3.4) but

is able to robustly handle outliers in W (∇ψ) by simultaneously enforcing sparsity

in an error term that ensures integrability. This formulation allows us to use an

iterative primal-dual algorithm in order to efficiently compute a solution.

3.3 Problem Formulation

In more concrete terms, we consider the problem of estimating a two-dimensional

absolute phase image from a wrapped observation. Let φ ∈ Rmn represent the un-

19

known, vectorized, m × n absolute phase image. Similarly, let ψ ∈ [−π, π)mn rep-

resent the corresponding wrapped observation. We shall assume that ψ = W (φ),

where W is defined as in (3.1).

It will be useful to later discussion if we first define two sparse matrices, G

and C. The first of these is used to compute the forward-difference approximation

of the spatial gradient. Let Gx ∈ {−1, 0, 1}mn×mn compute the vectorized forward-

difference approximation to the horizontal component of the spatial gradient for

an input image vectorized in column-major order. Each row of Gx corresponds to

a pixel location (x, y) in the input image. For pixel locations where x = n, the

forward-difference approximation to the horizontal gradient cannot be computed,

and so we insert an all-zero row for this location in order to impose a gradient value

of zero. For illustration, the first two rows of Gx are given by−1 1 0 0 · · · 0

0 −1 1 0 · · · 0

 .
Let Gy ∈ {−1, 0, 1}mn×mn compute the vectorized forward-difference approximation

to the vertical component of the spatial gradient in a similar fashion. Gy will contain

all-zero rows for pixel locations where y = m. Note that Gx and Gy are sparse

matrices: each row is of length mn with at most two nonzero entries. From these

two matrices, we form G =
[
GT
x GT

y

]T
, a 2mn×mn sparse matrix that we can use

to computed the stacked, vectorized spatial gradient components,
[
∇xφ

T ∇yφ
T
]T

.

The second matrix we shall define is one that enables the computation of the

curl of a gradient field. This can be done by considering two-by-two loop integrals

over the underlying spatial domain. Let p,q ∈ Rmn define the horizontal and

20

vertical components, respectively, of an m × n gradient field. Then the curl for a

single two-by-two loop at spatial location (x, y) is defined as:

curl(y, x) =p(y + 1, x)− p(y, x)

+ q(y, x)− q(y, x+ 1), (3.6)

where x and y denote the vertical and horizontal pixel coordinates, respectively.

If we stack the gradient components to form a single vector, then we can

compute all mn curl values using the matrix-vector equation C
[
pTqT

]T
, where

we define C ∈ {−1, 0, 1}mn×2mn as follows. Each row of C corresponds to a pixel

location in the input image, with values of ±1 place in locations such that (3.6)

is computed. For pixel locations at which we cannot compute (3.6), we insert an

all-zero row in order to define a curl value of zero. For illustration, the first row of

C is given by [
−1 1 0 · · · 0 | 1 0 · · · 0 −1 0 · · · 0

]
,

where the vertical divider shown above separates coefficients corresponding to the

horizontal and vertical gradient components. Note that, like G, C is also sparse:

each row is of length 2mn with at most four nonzero entries.

With these matrices defined, we now focus on our formulation of the phase

unwrapping problem. We start by considering the gradient constraint (3.2). As we

discussed in Section 3.1, this equation can be violated in several locations due to

noise and other factors. We explicitly model this error using the modified equation

Gφ =W (Gψ)− e, (3.7)

21

where e ∈ R2mn represents the error and we have made the gradient computation

explicit by replacing ∇ with G. Even in the case of known e, (3.7) does not specify a

unique solution. This is due to the fact that the constraints are only in the gradient

domain, which allows for a single degree of freedom that corresponds to the unknown

constant of integration. Therefore, it is possible that an infinite number of φ will

satisfy (3.7) exactly. To resolve this ambiguity, we impose the constraint that the kth

pixel, k ∈ {1, . . . ,mn}, of φ has value zero, thereby explicitly specifying the constant

of integration. Therefore, we use the following energy function for unwrapping:

Ju (φ) =‖∇φ− (W (∇ψ)− e)‖22 + |aTkφ|2, (3.8)

where ak is an mn-dimensional column vector with a value of one in the kth com-

ponent and values of zero elsewhere.

While (3.8) enables the computation of an optimal φ, we have not yet ad-

dressed how to find e. To this end, we examine the integrability of the measured

gradient field. For noiseless gradient measurements, such as Gφ, (3.6) yields a value

of zero for each loop. That is, the gradient field is integrable (also known as irro-

tational in the phase unwrapping literature [29]), or CGφ = 0. Therefore, if we

left-multiply both sides of (3.7) by C,

CGφ = CW (Gψ)−Ce

0 = CW (Gψ)−Ce,

we arrive at the following set of constraints for e:

Ce = CW (Gψ) . (3.9)

22

Especially in noise-free conditions, it is often the case that (3.2) is violated over a

relatively small set of components, i.e., e is sparse. In a similar fashion to Reddy et

al. [44], we use the `1-norm as a proxy for sparsity and use the sparsity-promoting

term ‖e‖1 as a regularizer when seeking the optimal e. We can also cast this problem

as one of energy minimization with the functional

Je = λc‖Ce−CW (Gψ)‖22 + λs‖e‖1, (3.10)

where the values chosen for λc and λs specify the relative importance of satisfying

each criterion.

Combining (3.8) and (3.10) above, we propose to jointly estimate φ and e

using the following program:

(φ∗, e) = arg min
φ,e
Ju (φ) + Je (e)

= arg min
φ,e
‖Gφ− (W (Gψ)− e)‖22

+ λc‖Ce−CW (Gψ)‖22

+ λs‖e‖1 + |aTkφ|2. (3.11)

3.3.1 Generalized Lasso Formulation

Optimization problem (3.11) can be rewritten as

min
x

1

2
‖Ax− b‖22 + λ‖Fx‖1, (3.12)

23

where λ = λs controls the trade-off between satisfying the `2 and `1 constraints, and

x =

φ
e

 ,

A =

G I

aTk 0T

0 λcC

,

F =

[
0 I

]
,

b =

W (Gψ)

0

λcCW (Gψ)

. (3.13)

The optimization problem (3.12) can be viewed as the generalized lasso problem [31]

[32] which can be efficiently solved via the alternating direction method of multipliers

(ADMM) algorithm [31].

3.4 Optimization

In a more general form, (3.12) can be seen as an instance of the following

optimization problem

min f(x) + g(z) such that Dx + Hz = c, (3.14)

24

where f and g are convex functions. The augmented Lagrangian for (3.14) is

Fρ(x, z,u) = f(x) + g(z) + uT (Dx + Hz− c)

+
ρ

2
‖Dx + Hz− c‖22, (3.15)

where ρ > 0 and u is the Lagrange multiplier corresponding to the linear constraint.

The ADMM method consists of the following iterations

xk+1 = arg min
x
Fρ(x, zk,uk) (3.16)

zk+1 = arg min
z
Fρ(xk, z,uk) (3.17)

uk+1 = uk + ρ(Dxk+1 + Hzk+1 − c). (3.18)

We now apply the ADMM method to solve the optimization problem in (3.12).

In ADMM form, (3.12) can be written as

min
1

2
‖Ax− b‖22 + λ‖z‖1 such that Fx− z = 0, (3.19)

where f(x) = 1
2
‖Ax − b‖22, g(z) = λ‖z‖1, D = F, H = −I and c = 0. The

augmented Lagrangian for (3.19) is

Fρ(x, z,u) =
1

2
‖Ax− b‖22 + λ‖z‖1 + uT (Fx− z)

+
ρ

2
‖Fx− z‖2.2 (3.20)

In the ADMM method, variables are optimized one at a time while keeping the other

variables fixed. In what follows, we describe each of the sub-optimization problems

in detail.

25

3.4.1 Update Step for x

With fixed z and u, xk+1 is obtained by minimizing Fρ with respect to x.

Taking derivative of (3.20) with respect to x and setting it to zero, we obtain the

following update for x

xk+1 = (ATA + ρFTF)−1(ATb + ρFT (zk − uk)). (3.21)

In other words, xk+1 is obtained by solving an N × N system of linear equations.

In our case, with A defined as in (3.13), N = 3mn + 1. For large N , conjugate

gradient methods can be employed to solve for xk+1.

3.4.2 Update Step for z

To find zk+1, we fix xk, uk and minimize Fρ with respect to z. This results in

a soft-shrinkage problem whose solution is also of closed form

zk+1 = Sλ
ρ

(
Fxk+1 +

uk
ρ

)
, (3.22)

where the soft-shrinkage operator is defined as

Sα(x) =

(
1− α

‖x‖2

)
+

x (3.23)

and (·)+ returns its argument if it is non-negative and zero otherwise.

26

3.4.3 Update Step for u

Finally, having xk+1 and zk+1 fixed, a gradient ascent update with the step

size ρ is performed on the Lagrange multiplier as

uk+1 = uk + ρ(Fxk+1 − zk+1). (3.24)

These three steps are repeated until convergence is achieved or the number of iter-

ations exceeds some maximum amount.

3.4.4 Stopping Criteria

After each round of updates (3.21), (3.22), (3.24), we check to see if the current

objective value is sufficiently optimal. To do so, we define the primal and dual

residuals as

rk+1 = Fxk+1 − zk+1, (3.25)

sk+1 = −ρFT (zk+1 − zk) , (3.26)

respectively. Boyd et al. [31] suggest that the following are reasonable stopping

criteria:

‖rk+1‖2 ≤ εpri, (3.27)

‖sk+1‖2 ≤ εdual, (3.28)

where

εpri =
√
Pεabs + εrel max {‖Fxk+1‖2, ‖zk‖2} , (3.29)

εdual =
√
Nεabs + εrel‖FTzk+1‖2, (3.30)

27

and F is a P × N matrix (in our problem, P = 2mn). Above, εabs is chosen with

respect to the scale of the problem and εrel is chosen small, e.g., 10−3. Practically,

the algorithm can also be terminated if a maximum number of iterations has been

executed without residuals that satisfy (3.27) or (3.28).

The ADMM algorithm for solving (3.12) is summarized in Algorithm 1. When

we apply it to phase unwrapping using the formulation specified by (3.13), we refer

to the procedure as phase unwrapping using the generalized lasso, or PUGL.

3.5 Experiments

In order to validate the proposed unwrapping scheme, we performed several

experiments using both real and synthetic data. In this section, we shall describe

this data, outline our experimental setup, and discuss the results.

3.5.1 Noisy Observation Model

The data we use is noise-free. In order to evaluate algorithm performance

in the presence of noise, we adopt a synthetic observation observation model that

is commonly used in the InSAR phase unwrapping literature [45]. Let x1 and x2

denote the noisy, complex-valued radar measurements of the same two-dimensional

location as observed from two separate viewpoints, i.e.,

x1 = z1e
jφ1

x2 = z2e
jφ2 .

(3.31)

28

Algorithm 1: ADMM algorithm for solving (3.12)

Input: λ,b,A ∈ RM×N ,F ∈ RP×N ,ρ,εabs,εrel,maxIter

Initialization:

- Set Terminate ← False.

- Set z0 = 0,x0 = 0,u0 = 0.

while (Terminate == False) do

- Calculate xk+1 by solving the following system of equations

(ATA+ ρFTF)xk+1 = (ATb+ ρFT (zk − uk))

- Calculate zk+1 according to

zk+1 = Sλ
ρ

(
Fxk+1 +

uk

ρ

)
- Calculate uk+1 according to

uk+1 = uk + ρ(Fxk+1 − zk+1)

- Calculate rk+1 and sk+1 according to

rk+1 = Fxk+1 − zk+1

sk+1 = −ρFT (zk+1 − zk)

- Calculate εpri and εdual according to

εpri =
√
Pεabs + εrel max {‖Fxk+1‖2, ‖zk‖2}

εdual =
√
Nεabs + εrel‖FT zk+1‖2

- k ← k + 1

- if
(
‖rk+1‖2 ≤ εpri and ‖sk+1‖2 ≤ εdual

)
or (k ≥ maxIter)

then

Terminate ← True

end if

end while

Output: x̂ = xk.

29

Above, we assume that the complex amplitudes, zi, are circularly symmetric and

Gaussian. Ideally, z1 and z2 are identical, but due to factors such as scatterer

displacement, we only assume that E [|z1|2] = E [|z2|2] = θ2 and E [z1z
∗
2] = αθ2,

where α ∈ [0, 1] is referred to as the coherence. Given a known absolute phase φ,

we generate synthetic measurements as follows. We first select φ1 and φ2 such that

φ = φ1 − φ2. We then generate z1 and z2 such that the above assumptions are

satisfied. Finally, we calculate the wrapped phase difference value by extracting the

phase angle from the conjugate product of x1 and x2, i.e.,

ψ = arg (x1x
∗
2) . (3.32)

The level of noise in this observation model is determined by the value of α:

α = 1 indicates that there is no noise in ψ, while α = 0 corresponds to a ψ that is

comprised entirely of of noise. In order to evaluate unwrapping performance in the

presence of noise, we performed experiments and generated results for every value

of α in the set {0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99}.

3.5.2 Phase Data

We tested our algorithm using four surfaces. Three of these were constructed

synthetically:

• Gaussian Surface: A 128× 128 image, centered at (0, 0), of a two-dimensional

Gaussian with peak height 14π and σx = 10 and σy = 15.

• Truncated Gaussian Surface: the above-mentioned Gaussian Surface with the

upper-left-hand quadrant set to zero.

30

• Shear Surface: A 100×100 image where one half of the plane contains a linear

ramp with a maximum height of 79.

Additionally, we also used the Longs Peak surface distributed with [29]: a real

elevation map corresponding to a geographic area located in Colorado, USA. These

surfaces are displayed in the leftmost columns of Figures 3.1 and 3.2.

For each surface, we generated seven different noisy wrapped observations

according to the procedure outlined in Section 3.5.1, one for each value of α specified

above. We also generated the noise-free wrapped image. Further, we computed

denoised versions of each noisy wrapped observation using the recently-proposed

NL-InSAR [1] technique with ten iterations using the implementation made available

by the authors. To each unwrapping technique under evaluation, we supplied both

the noisy and denoised versions of the wrapped phase observations and recorded the

estimated phase.

3.5.3 Evaluation

The primary metric of evaluation we use is the mean-squared error between the

true surface, φ, and the estimate φ̂. In order to account for the unresolved degree

of freedom that results from using only gradient measurements, we first ensure that

each estimated surface has zero mean, i.e., we calculate the mean-squared error

according to

MSE
(
φ, φ̂

)
=

1

mn

∑
i

[(
φi − φ̄i

)
−
(
φ̂i − ¯̂

φi

)]2
, (3.33)

where φ̄ and
¯̂
φ denote the across-pixel mean values for φ and φ̂, respectively.

31

Table 3.1: Surface Reconstruction MSE for Noisy Wrapped Phase Observations

Gaussian Surface α = 0.70 α = 0.75 α = 0.80 α = 0.85 α = 0.90 α = 0.95 α = 0.99 α = 1

PhaseLa 72.18 24.62 29.69 16.84 2.00 0.02 0.01 1.30

PUMA 5.09 2.35 0.86 0.68 0.48 0.26 0.07 0.00

PUGL 6.58 3.26 1.79 0.62 0.44 0.25 0.07 0.00

Truncated Gaussian Surface α = 0.70 α = 0.75 α = 0.80 α = 0.85 α = 0.90 α = 0.95 α = 0.99 α = 1

PhaseLa 64.27 40.90 51.81 63.89 46.34 40.07 41.08 42.40

PUMA 17.83 12.48 10.54 13.56 15.82 9.77 9.92 11.71

PUGL 17.55 10.58 9.27 8.09 6.42 9.19 9.86 9.82

Shear Surface α = 0.70 α = 0.75 α = 0.80 α = 0.85 α = 0.90 α = 0.95 α = 0.99 α = 1

PhaseLa 524.62 431.29 461.34 507.24 546.87 555.08 560.36 529.53

PUMA 428.37 393.72 397.77 390.12 384.83 377.64 307.12 309.83

PUGL 311.61 388.03 274.58 311.40 249.41 233.83 211.36 210.34

Longs Peak α = 0.70 α = 0.75 α = 0.80 α = 0.85 α = 0.90 α = 0.95 α = 0.99 α = 1

PhaseLa 476.00 482.93 303.04 408.01 268.67 406.25 318.19 334.50

PUMA 151.03 137.20 138.33 117.95 103.84 99.98 100.10 100.23

PUGL 150.48 117.39 119.46 107.70 101.75 99.13 82.05 82.08

We compared our technique with two recent phase-unwrapping algorithms:

PhaseLa [46] and PUMA [43]. To generate results, we used the implementations

made available by the authors. For the PhaseLa algorithm, we used the ICI-adaptive

approach with H = [1, 2, 3, 4] and Γ = 2.0 (see [46] for definitions). For the PUMA

algorithm, we used the convex clique potential induced by selecting p = 2. We be-

lieve this to be a fair comparison over other values of p since the current formulation

of our problem uses the `2 norm for the terms corresponding to φ.

Table 3.1 shows the mean-squared errors that result from each unwrapping

procedure when using the noisy wrapped observations. Table 3.2 is similar, but

32

Figure 3.1: Absolute phase reconstructions. Left to right: actual phase, noisy

wrapped phase generated using α = 0.85, PUGL estimate, PUMA estimate,

PhaseLa estimate. Top to bottom: Gaussian Surface, Truncated Gaussian Surface,

Shear Surface, and Longs Peak.

33

Table 3.2: Surface Reconstruction MSE for NL-InSAR-Denoised [1] Wrapped Phase

Observations

Gaussian Surface α = 0.70 α = 0.75 α = 0.80 α = 0.85 α = 0.90 α = 0.95 α = 0.99

PhaseLa 23.36 9.15 52.00 1.44 0.21 0.02 0.01

PUMA 9.91 4.48 4.17 0.25 0.02 0.02 0.02

PUGL 4.43 4.44 3.04 0.24 0.02 0.02 0.02

Truncated Gaussian Surface α = 0.70 α = 0.75 α = 0.80 α = 0.85 α = 0.90 α = 0.95 α = 0.99

PhaseLa 41.83 38.70 45.84 42.38 39.12 41.92 45.08

PUMA 18.88 14.11 11.48 10.44 9.76 11.43 9.10

PUGL 9.65 7.86 6.49 8.72 8.29 9.12 8.47

Shear Surface α = 0.70 α = 0.75 α = 0.80 α = 0.85 α = 0.90 α = 0.95 α = 0.99

PhaseLa 561.07 567.81 569.38 565.92 567.18 574.41 571.13

PUMA 379.35 367.58 378.82 369.77 308.80 308.94 307.43

PUGL 214.44 212.97 221.90 217.28 212.78 213.36 211.73

Longs Peak α = 0.70 α = 0.75 α = 0.80 α = 0.85 α = 0.90 α = 0.95 α = 0.99

PhaseLa 395.22 340.24 301.88 357.23 282.63 260.16 300.30

PUMA 206.24 151.70 112.23 105.65 100.45 103.51 108.70

PUGL 175.99 110.49 77.07 78.41 70.82 100.58 91.65

34

Figure 3.2: Absolute phase reconstructions. Left to right: actual phase, wrapped

phase generated using α = 1 (noise-free), PUGL estimate, PUMA estimate, PhaseLa

estimate. Top to bottom: Gaussian Surface, Truncated Gaussian Surface, Shear

Surface, and Longs Peak.

35

corresponds to the case when the noisy wrapped observations are first denoised

by the NL-InSAR algorithm [1]. It can be seen that PUGL performs significantly

better than the other algorithms presented, especially for very difficult surfaces

like the Shear Surface and Longs Peak. To visualize the unwrapping results, we

show absolute phase estimates for all four surfaces under two conditions. The first,

depicted in Figure 3.1, shows the phase estimates when α = 0.85. Figure 3.2

depicts the estimates for noise-free wrapped observations. In all cases, the PUGL

reconstruction appears to be closer, or at least as close, to the true surface as the

reconstructions provided by the other algorithms.

3.5.4 Parameters and Error Correction

To generate the PUGL estimates, we tried several parameter values and ulti-

mately selected λc = 200 and λs = 1. We found that these values ensure that the

integrability criterion is enforced strongly while still encouraging e to be reasonably

sparse. Doing so is helpful because nonzero curl values corresponding to W(∇ψ)

are often indicators as to where the gradient measurements are incorrect due to

wrapping artifacts. To demonstrate that this is the case, we examine the PUGL

output when unwrapping the noise-free wrapped phase for the Truncated Gaussian

Surface. Even though there is no noise, the surface itself violates the Itoh condition

near the sharp discontinuity induced by masking the upper-left-hand quadrant: for

pixels on the border of this region, there are phase differences of magnitude larger

than π. Therefore, ∇φ 6= W(∇ψ) for these pixels due to the wrapping operation.

36

Table 3.3: Unwrapping run time (sec.) for the Gaussian surface

α = 0.70 α = 0.75 α = 0.80 α = 0.85 α = 0.90 α = 0.95

PhaseLa 95.28 88.15 80.16 74.22 67.25 61.12

PUMA 2.93 2.79 2.99 2.75 2.71 3.03

PUGL 48.64 48.34 48.82 48.65 48.96 48.72

It is exactly these types of errors that we wish to correct with e. In Figure 3.3, we

can see that the significant components of e do, in fact, cluster around this region

and that the PUGL output is a slightly-smoothed version of the true surface.

3.5.5 Computational Complexity

Table 3.3 displays the running time of each unwrapping algorithm for the

Gaussian Surface for various noise levels. It is important to note that the imple-

mentations of PhaseLa and PUGL are both in MATLAB, while the PUMA algo-

rithm is implemented in C. Therefore, it is difficult to compare the running times of

PhaseLa and PUGL with that of PUMA. However, it can be noted that PUGL is

faster than PhaseLa, and that its running time remains constant regardless of the

noise level. This is, in part, due to the fact that we set the maximum number of

ADMM iterations to 50. However, as Figure 3.4 shows, the algorithm seems to have

reasonably converged after about 20 iterations for each noise level.

37

Figure 3.3: Upper-left: Truncated Gaussian Surface. Upper-right: noise-free

wrapped phase. Lower-left: PUGL estimate. Lower-right: locations of the sig-

nificant components of the optimal e.

38

5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

Iteration Number

O
b
je
ct
iv
e

α = 0.70
α = 0.75
α = 0.80
α = 0.85
α = 0.90
α = 0.95
α = 0.99
α = 1.00

Figure 3.4: PUGL objective value per ADMM iteration for the Shear Surface.

39

3.6 Summary

In this chapter, we proposed a novel formulation of the phase unwrapping

problem, and provided a practical scheme by which to make the corresponding

absolute phase estimate. We posed the problem as one of sparse error correction

by explicitly modeling the error in gradient field measurements obtained from the

wrapped phase. We then estimated the error term as one that induced an integrable

gradient field while remaining as sparse as possible. We combined the above with

a classical `2-based unwrapping scheme in such a way that the joint absolute phase

and error estimation could be cast in the generalized lasso framework. We used the

ADMM algorithm to efficiently compute the optimal values. We termed the overall

algorithm phase unwrapping using the generalized lasso, or PUGL, and examined

its performance for a variety of surfaces and noise levels.

40

Chapter 4: Adaptive-Rate Compressive Sensing

Motivated by the modern problem of data deluge [9], researches in the field

of compressive sensing have devised unconventional imaging devices that collect

far fewer measurements than their traditional counterparts. Since most real-world

signal classes exhibit some type of sparsity (e.g., image wavelet coefficients), CS pro-

vides a data-efficient manner by which they can be sensed. In fact, the sparser the

signals are (i.e., the fewer significant coefficients they contain), the fewer measure-

ments CS theory requires in order to guarantee that they are recoverable. In this

chapter, we are concerned with using CS imaging devices to observe time-varying

signals. Specifically, we focus on sequences of foreground images that can be ob-

tained, e.g., via performing background subtraction on surveillance video. We shall

discuss our work that enables online, adaptive adjustment of the compressive imag-

ing device in response to the dynamic properties of the signal under observation.

4.1 Introduction

Visual surveillance is a task that often involves collecting a large amount of

data in search of information contained in relatively small segments of video. For

example, a surveillance system tasked with intruder detection will often spend most

41

of its time collecting observations of a scene in which no intruders are present. With-

out any such foreground objects, the corresponding surveillance video is useless: it is

only the portions of video that depict these unexpected objects in the environment

that are relevant to the surveillance task. However, because it is unknown when

such objects will appear, many systems gather the same amount of data regardless

of scene content. This static approach to sensing is wasteful in that resources are

spent collecting unimportant data. However, it is not immediately clear how to

efficiently acquire useful data since the periods of scene activity are unknown in

advance. If this information were available a priori, a better scheme would be to

collect data only during times when foreground objects are present.

In any attempt to do so, the system must make some sort of real-time decision

regarding scene activity. However, such a decision can be made only if real-time

data to that effect is available. We shall refer to such data as side information.

Broadly, this information can come from two sources: a secondary modality and/or

the primary video sensor itself. In this chapter, we develop two adaptive sensing

schemes that exploit side information that comes from an example of each. Our

first strategy employs a single video sensor to continuously make observations that

are simultaneously used to infer both the foreground and the scene activity. The

second adaptive method we present determines scene activity using observations that

come from a secondary visual sensor. Both methods utilize a compressive sensing

(CS) [47] [48] [49] [50] [51] camera as the primary modality. While many such sensors

are beginning to emerge [13], our methods are specifically developed for a fast variant

of a spatially multiplexing camera such as the single-pixel camera [14] [52].

42

We consider the following basic scenario: a CS camera is tasked with observing

a region for the purpose of obtaining the foreground video. Since the foreground

often occupies only a relatively small number of pixels, Cevher et al. [11] have shown

that a small number of compressive measurements provided by this camera are suffi-

cient to ensure that the foreground can be accurately inferred. However, the solution

provided in that work implicitly relies on an assumption that is pervasive in the CS

literature: that an upper bound on the sparsity (number of significant components)

of the signal(s) under observation is known. Such an assumption enables the use

of a static measurement process for each image in the video sequence. However,

foreground video is a dynamic entity: changes in the number and appearance of

foreground objects can cause large changes in sparsity with respect to time. Under-

estimating this quantity will lead to the use of a CS system that will provide too few

measurements to obtain an accurate reconstruction. Overestimating signal sparsity,

on the other hand, will lead to the collection of more measurements than neces-

sary to achieve a good foreground estimate. For example, consider Figure 4.1. The

true foreground’s (Figure 4.1(a)) reconstruction is poor when too few compressive

measurements are collected (Figure 4.1(b)), but looks virtually the same whether

or not an optimal or greater-than-optimal number of measurements are acquired

(Figures 4.1(c) and 4.1(d), respectively). Therefore, dependent on the number of

measurements acquired at each time instant, the static CS approach is insufficient

at worst and wasteful at best.

We provide adaptive-rate CS strategies that seek to address this problem.

The approaches we present utilize two different forms of side information: cross-

43

(a) (b) (c) (d)

Figure 4.1: Foreground reconstruction with varying measurement rates. (a) is the

true foreground, (b) is the foreground reconstruction when too few measurements are

used, (c) is the reconstruction when an optimal number of measurements are used,

and (d) is the reconstruction when more than the optimal number of measurements

are used.

validation measurements and low-resolution measurements. In each case, we use the

extra information in order to predict the number of foreground pixels (sparsity) in

the next frame.

4.1.1 Related Work

Adapting the standard CS framework to a dynamic, time-varying signal is

something that has been studied from various perspectives by several researchers.

Wakin et al. [53], Park and Wakin [54], Sankaranarayanan et al. [55], and

Reddy et al. [56] have each proposed video-specific versions of CS that leverage

video-specific signal dynamics such as temporal correlation and optical flow. For

measurement models that provide streaming CS measurements, Sankaranarayan et

al. [57], Asif and Romberg [58], and Angelosante et al. [59] have proposed adaptive

44

CS decoding procedures that are faster and more accurate than those that do not

explicitly model the video dynamics.

Vaswani et al. [60] [61] [62], Cossalter et al. [63], and Stankovic et al. [64] [65]

have proposed modifications to the CS decoding step that leverage extra signal sup-

port information in order to provide more accurate reconstructions from a fixed num-

ber of measurements. More generally, Scarlett et al. [66] provide generic information-

theoretic bounds for any support-adaptive decoding procedure. Malioutov et al. [67]

and Boufonous et al. [68] propose decoders with adaptive stopping criteria: sequen-

tial signal estimates are made until either a consistency or cross-validation criterion

is met.

Several researchers have also considered adaptive encoding techniques. These

techniques primarily focus on finding and using the “best” compressive measurement

vectors at each instant of time. Ashok et al. [69] propose an offline procedure in

order to design entire measurement matrices optimized for a specific task. Similarly,

Duarte-Carvajalino et al. [70] compute class-specific optimal measurements offline,

but decide which class to use using an online procedure with a fixed number of

measurements. Purely-online procedures include those developed by Averbuch et al.

[71], Ji et al. [72], Chou et al. [73], and Haupt et al. [74]: the next-best measurement

vectors are computed by optimizing criterion functions that penalize quantites such

as posterior entropy and expected reconstruction error. A few of these methods use

a fixed measurement rate, while others propose stopping criterion similar to several

of the adaptive decoding procedures.

Some of the above methods exhibit an adaptive measurement rate in that they

45

stop collecting measurements when certain criteria are met. However, due to the

dynamic nature of video signals, it may not be possible to evaluate these criteria (as

they often involve CS decoding) and collect a new measurement before the signal has

significantly changed. Recent adaptive-rate work by Yuan et al. [75] and Schaeffer

et al. [76] sidesteps this problem by using a static spatial measurement rate and

considering how to adaptively select the temporal compression rate through batch

analysis. In contrast, we propose here techniques that specify a fixed number of

spatially-multiplexed measurements to acquire before sensing the signal at a given

time instant and modify this quantity between each acquisition without assuming

that the signal remains static between acquisitions. That is, we consider a system

in which the decoding procedure is fixed and we are able to change the encoding

procedure. This is fundamentally different from the previously-discussed work on

adaptive decoding procedures (e.g., that of Vaswani et al. [60] [61] [62]).

4.1.2 Organization

This chapter is organized as follows. Sections 4.2 and 4.3 provide a precise

formulation of and context for our rate-adaptive CS algorithms. Our measurement

acquisition technique is described in Section 4.4. The proposed adaptive-rate CS

techniques are discussed in Sections 4.5 and 4.6, and they are experimentally vali-

dated in Section 4.7. We summarize our work in Section 4.8.

46

4.2 Problem Statement

We assume that we possess a CS camera that is capable of acquiring a variable

number of compressive measurements at discrete instants of time. We denote the

sensor’s measurement matrix at time t by Φt ∈ RMt×N2
, and we construct it via a

process that depends only on our choice for Mt (see Section 4.4). Prior to time t, we

will determine the value of Mt using an adaptive sensing strategy. We will assume

that the images under observation are of size N ×N , where Xt ∈ RN×N will denote

the specific image at time t. Vectorizing Xt using column-major order as xt ∈ RN2

allows us to write the compressive measurement process at time t as yt = Φtxt.

We will present two adaptive sensing strategies that will each exploit a different

type of side information. The first strategy uses a small set of cross-validation

measurements, χt ∈ Rr, obtained from a static linear measurement operator Ψ ∈

Cr×N2
, i.e., χt = Ψxt. We will refer to Ψ as a cross-validation matrix. The second

strategy we present relies on a set of low-resolution measurements, Zt ∈ RL×L, that

we obtain via a secondary sensor that collects lower-resolution measurements of Xt.

Such multi-camera systems are not uncommon in the surveillance literature (see,

e.g., [77] [78]).

Having established the above notation, the problem we address here is one of

how to use the observations, yt, and either of the sources of side information, χt or

Zt, to select a minimal value for Mt+1 that will ensure Φt+1 gathers enough infor-

mation to ensure accurate reconstruction of the foreground (dynamic) component

of the high-resolution Xt.

47

4.3 Compressive Sensing for Background Subtraction

We present our work in the context of the problem of background subtraction

for video sequences. Broadly, background subtraction is the process of decomposing

an image into foreground and background components, where the foreground usually

represents the objects of interest in the environment under observation. For our

purposes, we shall adopt the following model for images xt:

xt = ft + b , (4.1)

where b is an unknown but deterministic static component of each image in the

video sequence and ft is a random variable. At time t, we estimate the locations

of foreground pixels by computing the set of indices Ft = {i : |ft(i)| ≥ τ}, for

some pre-defined threshold τ . We further assume that the components of ft that

correspond to Ft are bounded in magnitude, i.e., |ft(i)| ≤ 1 for all i ∈ Ft.

Throughout this work, we shall assume that the components of ft are dis-

tributed as follows:

ft(i) ∼

U {[−1,−τ] ∪ [τ, 1]} , i ∈ Ft

N (0, σ2
b) , i 6∈ Ft

, (4.2)

where each component is assumed to be independent of the others, U denotes the

uniform distribution, and N denotes the Gaussian distribution. We have approxi-

mated the intensity distribution of those pixels not in Ft as a zero-mean Gaussian

under the assumption that σ2
b is much smaller than τ .

Following the work of Cevher et al. [11], we seek to perform background sub-

48

traction in the compressive domain. Often, it is the case that the foreground oc-

cupies only a very small portion of the image plane, i.e., |Ft| << N2. Given the

foreground model (4.2), this implies that ft is compressible in the spatial domain.

Therefore, if b is known, we can use it, the image model (4.1), and compressive

image measurements yt = Φtxt to generate the following estimate of ft:

f̂t = ∆(ξt,Φt) , (4.3)

where ξt = yt − βt, βt = Φtb, and ∆ is defined as in (2.2).

As we will discuss in Section 4.4, we construct Φt by taking a subset of rows

from a fixed N2 × N2 matrix, Φ, and rescaling the result. We can therefore cal-

culate βt from β = Φb by similarly dropping components and rescaling. Noting

(4.2), a maximum-likelihood estimate of β can be found by computing the mean of

compressive measurements of a background-only video sequence, i.e.,

β =
1

J

J∑
j=1

yj , (4.4)

where yj = Φxj and |Fj| = 0 for all j in the summation. As was proposed by

Cevher et al. [11], these measurements can be obtained in advance by using the full

sensing matrix, Φ, to observe the scene when it is known that there is no foreground

component.

4.4 Sensing Matrix Design

In this section, we will discuss our method for constructing adaptive rate

measurement matrices for the purpose of recovering sparse signals from a minimal

amount of measurements.

49

4.4.1 Theoretical Guarantees

In Section 2.1, we presented a theoretical result from CS literature that states

that ∆ will exactly recover an s-sparse f from ξ if Φ exhibits the RIP of order

2s with δ2s ≤
√

2 − 1. One of the most prevalent methods discussed in the lit-

erature for constructing such matrices involves drawing each matrix entry from a

Gaussian distribution with parameters that depend on the number of rows that the

matrix possesses. For Φ ∈ RM×N2
, this technique defines entries φij as independent

realizations of a Gaussian random variable with zero mean and variance 1/M , i.e.,

φij ∼ N (0, 1/M) . (4.5)

Baraniuk et al. [79] provide the following theoretical result for this construction

technique: for a given δ ∈ (0, 1) and positive integers M and s, Φ ∈ RM×N2
con-

structed according to (4.5) exhibits the RIP of order s with δs = δ with probability

exceeding

1− 2e−c0(δ/2)M+s(log(eN2/s)+log(12/δ)) , (4.6)

where c0(x) = x2/4− x3/6.

The scenarios discussed here require us to find the minimum M that will ensure

the constructed matrix can successfully recover s-sparse signals. Therefore, we now

consider the case where δ, s, and N2 are fixed. If we impose a lower bound, τg, on

the probability of success given by (4.6), rearranging terms reveals that the theory

50

requires

M ≥
s[1 + log(N

2

s
) + log(12

δ
)] + log(2

1−τg)

δ2

16
(1− δ

3
)

. (4.7)

For practical measurement matrices, we are only interested in the case where

N2 ≥ M (i.e., matrices for which compression actually occurs). Combining this

requirement with (4.7) yields the following lower bound for N2/s:

N2

s
≥

log(N
2

s
) + 1

s
log(2

1−τg)

δ2

16
(1− δ

3
)

+
1 + log(12

δ
)

δ2

16
(1− δ

3
)
. (4.8)

For s-sparse signals, the reconstruction guarantee that accompanies ∆ requires that

Φ exhibits the RIP of order 2s with δ2s ≤
√

2 − 1. Using only the second term of

the lower bound in (4.8) and noting that the first term is always positive, we see

that requiring such a δ2s means that s/N2 can be no greater than ∼ 0.0011.

In our system, s/N2 represents the percentage of foreground pixels in the

image, and it is unreasonable to expect that this quantity will never exceed 0.11%.

Therefore, if we wish to use CS for compression (i.e., with a measurement matrix

that has fewer rows than columns), we must design and use matrices without the

guarantee provided by the above result. However, that result is merely sufficient: in

the next part, we will experimentally show that similarly-constructed matrices with

far fewer rows are indeed still able to provide measurements that enable accurate

sparse signal reconstruction.

4.4.2 Practical Sensing Matrix Design Based on Phase Diagrams

Given a candidate sensing matrix construction technique, Donoho and Tan-

ner [80] discuss an associated phase diagram: a numerical representation of how

51

useful the generated matrices are for CS. Specifically, the ratios M/N2 (signal under-

sampling) and s/M (signal sparsity) are considered. A phase diagram is a function

defined over the phase space (M/N2, s/M) ∈ [0, 1]2. We discretize this space and

perform multiple sense-and-reconstruct experiments at each grid point in order to

approximate the phase diagram there: the value of M/N2 provides the information

necessary for matrix construction, and s/M provides the information necessary to

generate random sparse signals. We make the approximation using the percentage

of trials that result in successful signal recovery, which we define as a normalized `2

reconstruction error of 10−3 or less.

Even though we cannot use the theoretical guarantee discussed earlier in

this section, the first matrix construction technique we use is based on randomly-

generated matrices that rely on independent realizations of a Gaussian random

variable. Specifically, we use the following construction technique: we generate

Φ ∈ RN2×N2
by drawing each entry according to (4.5). Then, for a given value of

Mt, we form the corresponding Mt ×N2 matrix Φt via

Φt =

√
N2

Mt

Φ1:Mt , (4.9)

where Φ1:Mt denotes the submatrix of Φ corresponding to the first Mt rows. The

scaling factor ensures that the relationship between the variance and the number of

rows defined in (4.5) is preserved.

We also analyze a second matrix construction technique based on the dis-

crete Fourier transform (DFT). Specifically, we generate Φ ∈ CN2×N2
by randomly

permuting the rows of the DFT matrix and form Φt according to (4.9).

52

(a) Gaussian (b) Fourier

Figure 4.2: Phase diagrams for Gaussian and Fourier measurement ensembles. Color

corresponds to probability of successful reconstruction (here, normalized `2 error

below 10−3).

In this work, we will make predictions regarding the sparsity of the signals

we are about to observe. Given a prediction st, we will seek the minimum Mt such

that (4.9) generates a sensing matrix capable of providing enough measurements

to ensure accurate reconstruction of st-sparse signals. In order to determine the

mapping from st to Mt, we use the associated phase diagram. We construct this

diagram (see Figure 4.2) during a one-time, offline analysis. Then, given st and a

minimum probability of reconstruction success τd ∈ (0, 1), we use the phase diagram

as a lookup table to find the smallest value of Mt that yields at least a τd success

rate for st-sparse signals.

53

4.5 Method I: Cross Validation

In this section, we describe a rate-adaptive CS method that utilizes a set of

linear cross-validation measurements χt = Ψxt. An earlier version of this work was

presented by Warnell et al. [81].

4.5.1 Compressive Sensing with Cross Validation

Let ξt ∈ CMt be a set of compressive measurements of a sparse signal ft ∈ RN2

obtained using Φt, i.e., ξt = Φtft. In this section, we will use f̂
(s)
t to denote the

s-sparse point estimate of this signal obtained using ∆(ξt,Φt)
(s), where ∆ is defined

as in (2.2) and ·(s) denotes a truncation operation that sets all but the s largest-

magnitude components of the vector-valued argument to zero.

Ward [82] bounds the error of the above estimate using a cross-validation

technique that is based on the Johnson-Lindenstrauss lemma [83]. At the same

time ξt is collected, we use a static cross-validation matrix Ψ ∈ Cr×N2
to collect

cross-validation measurements γt = Ψft. We construct Ψ by drawing each of its

entries from an i.i.d. Bernoulli distribution with zero mean and variance 1/r. Such

a construction leads to the following statement: for given accuracy and confidence

parameters ε and ρ (respectively), r ≥ 8ε−2 log 1
2ρ

rows suffice to ensure that

(1− ε)2 ≤ ‖ft − f̂
(s)
t ‖22

‖γt −Ψf̂
(s)
t ‖22

≤ (1 + ε)2 (4.10)

with probability exceeding 1− ρ.

Let es(ft)p denote the optimal s-sparse approximation error measured with

54

respect to the `p norm, i.e.,

es(ft)p = arg min
‖z‖0≤s

‖ft − z‖p , (4.11)

where the `p-norm is given by ‖x‖p = (
∑

i |x(i)|p)1/p. Using the fact that f̂
(s)
t is

s-sparse, the upper bound in (4.10) can be extended to es(ft)
2
2 as follows:

es(ft)
2
2 ≤ ‖ft − f̂

(s)
t ‖22 ≤ (1 + ε)2‖γt −Ψf̂

(s)
t ‖22 . (4.12)

That is, the observable CV error can be used to upper bound the unobservable

optimal s-sparse approximation error.

4.5.2 Adaptive-Rate Compressive Sensing via Cross Validation

Let st denote the true value of the foreground sparsity at time t, i.e., st = |Ft|.

The method we present here relies on an estimate of this quantity, which we denote

as ŝt. Before sensing begins at time t, we assume ft to be ŝt-sparse, and select the

corresponding minimal Mt (and thus Φt) according to the phase diagram technique

described in Section 4.4. We then use Φt and Ψ to collect yt and χt. Using the

technique described in Section 4.3, we can find ξt and form the foreground estimate

f̂
(ŝt)
t . In a similar fashion, we can also find γt by subtracting a precalculated set

of cross-validation measurements of the static signal component, ζ = Ψb, from χt.

Finally, we select ŝt+1 based on the result of a multiple hypothesis test that uses γt

and f̂
(ŝt)
t .

We formulate the multiple hypothesis test by first assuming that we are able

to observe eŝt(ft)
2
2. Of course, this is not possible. Nevertheless, we define the

55

null hypothesis, H0, as the scenario under which ŝt exceeds st. If this hypothesis

is true, then f
(ŝt)
t (i.e., the optimal ŝt-sparse approximation to ft) captures all st

foreground components and (ŝt − st) background components while neglecting the

remaining (N2− ŝt) background components. Using (4.2) and ignoring the effect of

component ordering for the relatively narrow background component distribution,

it can be shown that eŝt(ft)
2
2 is a random variable with mean, µ0, and variance, σ2

0,

given by

µ0 = (N2 − ŝt)σ2
b

σ2
0 = 2(N2 − ŝt)σ4

b . (4.13)

We also define a set of hypotheses that are possible when H0 is not true.

Let Hk, k ∈ {ŝt + 1, . . . , N2}, describe the scenario under which st = k. Under

Hk, f
(ŝt)
t does not capture all k foreground components: it neglects the smallest

(k − ŝt) of them and the (N2 − k) background components. Let {Z1, . . . , Zk−ŝt}

denote the unordered set of random variables corresponding to the neglected fore-

ground components. Further, let W(ŝt) denote the ŝtht order statistic in a set of k

i.i.d. uniform random variables distributed over the interval [τ, 1] (i.e., the set of

random variables corresponding to the foreground components of ft under Hk. Then{
Z1|W(ŝt), Z2|W(ŝt), . . . , Zk−ŝt|W(ŝt)

}
are i.i.d. uniform over the interval

[
τ,W(ŝt)

]
.

56

Therefore, given W(ŝt) = w, the mean and variance of ek(ft)
2
2 under Hk are given by

µk|W(ŝt)
=w =

1

2
(k − ŝt)(τ + wτ + w2)

+ (N2 − k)σ2
b

σ2
k|W(ŝt)

=w =
1

9

[
(k − ŝt)2 − (k − ŝt)

]
(τ 2 + wτ + w2)2

+
1

5
(k − ŝt)(τ 4 + wτ 3 + w2τ 2 + w3τ + w4)

+
[
(N2 − k)2 + 2(N2 − k)

]
σ4
b

+ (k − ŝt)(N2 − k)(τ 2 + wτ + w2)σ2
b − µ2

k|W(ŝt)
=w (4.14)

To find µk and σ2
k, the mean and variance for the marginal distribution for

eŝt(ft)
2
2 under Hk, respectively, one can integrate over the distribution for W(ŝt), i.e.,

µk =

∫ 1

τ

µk|W(ŝt)
=w pW(ŝt)

(w)dw

σ2
k =

∫ 1

τ

σ2
k|W(ŝt)

=w pW(ŝt)
(w)dw, (4.15)

where the pdf for W(ŝt) is given explicitly by

pW(ŝt)
(w) =

1

1− τ
Beta

(
w − τ
1− τ

; ŝt, k − ŝt + 1

)
, (4.16)

and Beta(w;α, β) is the pdf for a random variable distributed as Beta(α, β) evalu-

ated at w.

Unfortunately, the integrals specified in (4.15) are very difficult to compute.

Therefore, we set

µk = µk|W(ŝt)
=1

σ2
k = σ2

k|W(ŝt)
=1, (4.17)

57

and this approximation is validated by the results presented in Section 4.7.

The multi-hypothesis test described above can be succintly written as

H0 : st < ŝt

Hk : st = k (4.18)

for k ∈ {ŝt + 1, . . . , N}. Let qk denote the probability density function for eŝt(ft)
2
2

under the assumption that Hk is true for k ∈ {0, ŝt + 1, . . . , N}. We will evaluate

explicit assumptions regarding the form of qk in Section 4.7. The optimal decision

rule for (4.18) under the minimum probability of error criterion with an equal prior

for each hypothesis is given by

k∗ = arg max
k∈{0,ŝt+1,...,N}

qk
(
eŝt(ft)

2
2

)
. (4.19)

Assuming that the sparsity of ft is a slowly-varying quantity, we choose to set

ŝt+1 equal to what we believe st to be. Note here that there is no assumption on

how the location of the support of ft changes, only on how its cardinality varies.

If k∗ = 0, it is our belief that ŝt > st, and we expect that the error in f̂
(ŝt)
t to

be very small. Therefore, we find the set of foreground entries for this signal,

F̂t = {i : |f̂ (ŝt)
t (i)| ≥ τ}, and set ŝt+1 = |F̂t|. For any other value of k∗, we set

ŝt+1 = k∗.

Unfortunately, it is impossible to directly observe eŝt(ft)
2
2. However, we can

upper bound this quantity using the cross-validation measurements as specified in

(4.12). Therefore, we propose the following modification to (4.19):

k∗ = arg max
k∈{0,ŝt+1,...,N}

qk

(
(1 + ε)2‖γt −Ψf̂

(ŝt)
t ‖22

)
. (4.20)

58

Note that using the upper bound in (4.20) will potentially yield a different

k∗ than that which would have been selected by (4.19). However, as we will show

in Section 4.7, the impact on system performance is minimal: using the cross-

validation bound still allows us to successfully achieve a minimal measurement rate

while maintaining reconstruction fidelity.

We term the strategy we have outlined above adaptive-rate compressive sensing

via cross validation (ARCS-CV) and summarize the procedure in Algorithm 2.

Algorithm 2: ARCS-CV for Background Subtraction

Require: Φ,Ψ, ŝt,β, ζ, σ
2
b , τ

Select Mt using ŝt and the phase diagram lookup table

Form Φt and βt

Obtain image measurements yt, χt

Compute foreground-only measurements ξt, γt

Estimate foreground: f̂
(ŝt)
t = ∆(ξt,Φt)

(ŝt)

Compute k∗ using (4.20)

if k∗ = 0 then

ŝt+1 = |F̂t|

else

ŝt+1 = k∗

end if

59

4.6 Method II: Low-Resolution Tracking

In this section, we propose an adaptive method that utilizes a much richer

form of side information than the random projections of the previous section: low-

resolution images, Zt, that have been captured using a traditional (i.e., non-compressive)

camera.

4.6.1 Low-Resolution Measurements

We assume that the low- and high-resolution images, Zt ∈ RL×L and Xt ∈

RN×N(L < N), repectively, are related by a simple downsampling operation. Let

tZ =

[
txZ tyZ

]T
denote the coordinates of a pixel in the image plane of the low-

resolution camera. If we use tX =

[
txX tyX

]T
to denote the corresponding coordi-

nate in the image plane of the compressive camera, the effect of the downsampling

operation on coordinates is given by

tX =

D 0 −D−1
2

0 D −D−1
2

tZ

1

 , (4.21)

where we assume the dowsampling factor, D = N/L, to be an integer. Using (4.21),

each pixel in Zt maps to the center of a unique D × D block of pixels in Xt. The

effect of the downsampling operation on image intensity is given by averaging the

intensities within this block, i.e.,

Zt(tZ) =
1

D2

∑
tX∈B(tZ)

Xt(tX) ,

60

where the coordinates of the pixels in the block are given explicitly as

B(tZ) = {(txZ − 1)D + 1, . . . , txZD}×

{(tyZ − 1)D + 1, . . . , tyZD} .

4.6.2 Object Tracking and Foreground Sparsity

We assume that we are able to track the foreground objects in the low-

resolution video. Specifically, we assume that at each time index, we are able to

estimate a zero-skew affine warp parameter pt =

[
pt(1) · · · pt(4)

]T
that maps

coordinates in an object template image, T , to their corresponding location in Zt.

Using tT to denote a pixel coordinate in T , pt specifies the corresponding coordinate

in Zt via

tZ =

pt(1) 0 pt(3)

0 pt(2) pt(4)

tT

1

 . (4.22)

We further assume that the time-evolution of pt is governed by a known Markov

dynamical system, i.e.,

pt = ut (pt−1,ηt) , (4.23)

for known ut and i.i.d. system noise ηt.

Let {ti : i ∈ Z/4Z} be the set of corner coordinates of T in any order that

traces its outline. Then, given pt, we can calculate the position of the tracked

object’s bounding box in the high-resolution Ft using (4.22) and (4.21). We shall

assume that the area of this bounding box specifies the number of foreground com-

ponents in ft, i.e., st. If this area is not integer-valued, we simply round up. Using

61

the well-known formula for the area of a polygon from its corner coordinates, st can

be written as st = h(pt), where

h(pt) =

∣∣∣∣∣∣D

2[pt(1)pt(4)− pt(2)pt(3)]
2

∑
i∈Z/4Z

T (i)

∣∣∣∣∣∣
 , (4.24)

and T (i) = txi t
y
i+1 − t

y
i t
x
i+1. Above, d·e represents the ceiling function.

From (4.24), it is clear that the distribution of the random variable st is a

function of the distribution of pt. For the remainder of this section, we will use

qt(st) = p(st|pt) to denote the corresponding probability mass function.

Figure 4.3 illustrates the relationship between a typical high- and low-resolution

image pair and shows an example bounding box found by a tracker operating on

the low-resolution image.

4.6.3 Sparsity Estimation

We now turn our attention to selecting a value to use for st, ŝt, on the basis

of the previous image’s track, pt−1. Once a value has been selected, we use the

method presented in Section 4.4 to select a minimal Mt and the corresponding Φt.

We then use Φt to collect compressive measurements of Xt and calculate ξt. Using

this procedure, the ∆-generated estimate f̂t will obey

‖ft − f̂t‖2 ≤
C0eŝt(ft)1√

ŝt
, (4.25)

where eŝt(·)1 represents the optimal ŝt-sparse `1 estimation error [12]. The value of

the constant in (4.25) is given explicitly by

C0 =
2− (2−

√
2)δ2ŝt

1− (1−
√

2)δ2ŝt
.

62

(a) (b)

Figure 4.3: Illustration of the downsampling and low-resolution tracking process uti-

lized by ARCS-LRT for a sample image from the PETS 2009 dataset. (a) corresponds

to the high-resolution image for which we seek to perform compressive foreground

reconstruction. (b) corresponds to the low-resolution obtained by the secondary,

non-compressive camera. The bounding box around the subject corresponds to the

output of a tracking algorithm.

63

One criterion we will consider when selecting ŝt is the expected value of the

`2 reconstruction error, i.e., we would like ŝt to minimize E
{
‖ft − f̂t‖2

}
. However,

since the nonlinearity of ∆ makes determining the statistics of that quantity very

difficult, we instead look to minimize the right-hand side of (4.25). It is easy to see

that this quantity can be minimized by selecting ŝt as high as possible, but such

a selection would provide no compression. Therefore, inspired by results from the

model-order selection literature [84] [85] [86], we penalize larger values of ŝt and

instead propose to select ŝt by solving

ŝt = arg min
ŝ

E
{
C0eŝ(ft)1√

ŝ

}
+ λŝ , (4.26)

where λ is an importance factor that specifies the tradeoff between low reconstruc-

tion error and a small sparsity estimate.

Using the law of total expectation, the foreground model (4.2), and techniques

and approximations similar to those used in Section 4.5, we can rewrite (4.26) as

ŝt = arg min
ŝ

C0√
ŝ

[J0(ŝ) + J1(ŝ)] + λŝ , (4.27)

where

J0 =
ŝ∑

k=1

√
2/π(N − ŝ)σbqt(k) (4.28)

J1 =
N∑

k=ŝ+1

[
(k − ŝ)(1 + τ)/2 +

√
2/π(N − k)σb

]
qt(k). (4.29)

We term the strategy outlined above as adaptive-rate compressive sensing via

low-resolution tracking (ARCS-LRT) and summarize the procedure in Algorithm 3.

64

Algorithm 3: ARCS-LRT for Background Subtraction

Require: Φ, ŝt,β, σ
2
b , τ, λ

Select Mt using ŝt and the phase diagram lookup table

Form Φt and βt

Obtain image measurements yt, zt

Compute foreground-only measurements ξt

Estimate foreground: f̂t = ∆(ξt,Φt)

Compute low-resolution object track pt

Compute qt+1 via (4.23) and (4.24)

Compute ŝt+1 by solving (4.27)

4.7 Experiments

We tested the proposed algorithms on real video sequences captured using

traditional cameras. The compressive, cross-validation, and low-resolution mea-

surements were simulated in software. The SPGL1 [87] [88] software package was

used to implement the decoding procedure (2.2). Three video sequences were used:

convoy2, marker cam, and PETS2009 S2L1. convoy2 is a video of vehicles driving

past a stationary camera. The vehicles comprise the foreground, and the foreground

sparsity varies as a result of these vehicles sequentially entering and exiting the cam-

era’s field of view. marker cam is a video sequence we captured using a surveillance

camera mounted to the side of our building at the University of Maryland, College

Park. The sequence begins with a single pedestrian walking in a parking lot, and

65

Table 4.1: Parameter values used in experiments

σ2
b τ Σ λ

convoy2 4
255

2
0.1 diag([1.0 1.0 3.0 3.0]) 0.045

marker cam 4
255

2
0.1 diag([1.0 1.0 3.0 3.0]) 1.5

PETS2009 S2L1 4
255

2
0.1 diag([1.0 1.0 3.0 3.0]) 0.15

a second pedestrian joins halfway through the sequence. The two pedestrians com-

prise the foreground, and the foreground sparsity varies due to appearance shifts and

the entrance of the second pedestrian. The PETS2009 S2L1 video sequence is a seg-

ment taken from the PETS 2009 benchmark data [8]. This sequence consists of four

pedestrians entering and exiting the camera’s field of view. The foreground spar-

sity changes as a function of the number and appearance of pedestrians. Example

images from each dataset are provided in Figure 4.4.

4.7.1 Practical Considerations

Implementation of the ARCS methods presented in Sections 4.5 and 4.6 re-

quires certain practical choices. In this part, we describe the choices we made that

generated the results presented later in this section. Specific choices for parameter

values for each video sequence are given in Table 4.1.

4.7.1.1 Foreground Model

The foreground model specified in (4.2) is parameterized by σ2
b and τ . The

value that should be used for σ2
b will depend on the quality of the background

66

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.4: Example images from the marker cam, PETS2009 S2L1, and convoy2

(columns one, two, and three, respectively), video sequences. The first row contains

the background images, the second row contains an image with both foreground and

background components, and the third image contains the corresponding foreground

component.

67

estimate, β: the better (4.1) describes images in the video sequence, the smaller

σ2
b can be. Since τ represents the foreground-background intensity threshold, its

value depends on that of σ2
b : τ should be set high enough to ensure that N (τ ; 0, σ2

b)

is sufficiently small, but low enough to ensure that it does not neglect intensities

belonging to the foreground.

4.7.1.2 ARCS-CV

The ARCS-CV algorithm developed in Section 4.5 relies on the hypothesis

test specified in (4.18). While we are able to calculate the first- and second-order

moments of st under the various hypotheses, the maximum-likelihood decision rule

(4.20) requires the entire probability density functions, qk, for each. In our imple-

mentation, we approximate these densities by a normal distribution with mean and

covariance specified by (4.13) and (4.14) under H0 and Hk, respectively. That is,

we make the approximation qk ≈ N (µk, σ
2
k). As a consequence of this approxima-

tion, we observed that (4.20) sometimes yielded a nonzero k∗ for sufficiently small

cross-validation error upper bounds. However, when this upper bound is low, it is

clear that we should select H0. Therefore, we explicitly impose a selection of H0 for

cross-validation error upper bounds that are less than µ0 by using

k∗∗ =

0, (1 + ε)2‖γt −Ψf̂

(ŝt)
t ‖22 < µ0

k∗, (1 + ε)2‖γt −Ψf̂
(ŝt)
t ‖22 ≥ µ0

(4.30)

in place of (4.20) in Algorithm 2, where k∗ represents the value obtained from (4.20).

68

4.7.1.3 ARCS-LRT

The ARCS-LRT method of Section 4.5 requires low-resolution object tracks

in order to reason about the sparsity of the high-resolution foreground. In order to

focus solely on the performance of the adaptive algorithm, we first determined these

tracks manually, i.e., by hand-marking bounding boxes around each low-resolution

foreground image. We only did this for images in which the object was fully visible.

We shall also consider automatically-obtained tracks later in this section.

We used ut(pt−1,ηt) = pt−1 +ηt to define the system dynamics in (4.23) with

ηt ∼ N (0,Σ) i.i.d. for each t, where the value of Σ should vary with the expected

type of object motion.

Given this selection for ut, p(pt|pt−1) = N (pt; pt−1,Σ) represents our belief

about the next track given the current one. Due to the complexity of h in (4.24),

it is difficult to obtain an exact form for p(st|pt−1). Therefore, we used the un-

scented transformation [89] to obtain the first- and second-order moments, µt+1 and

σ2
t+1, respectively. We then approximated p(st|pt−1) using the pdf for a discrete

approximation to the normal distribution with the computed mean and covariance.

The sparsity estimator (4.27) requires values for both C0 and λ. Since our

phase diagram lookup table returns an Mt for which ∆ recovers ŝt-sparse signals,

we selected δ = 1/4 <
√

2 − 1. We set λ for each video sequence by trying many

values and selecting one that resulted in low reconstruction error while maintaining

a sparsity estimate that was close to the actual value.

Finally, we must compute a solution to (4.27). To do so, we used MATLAB’s

69

Table 4.2: Experimental comparison of adaptive compressive sensing measurement

strategies (oracle, ARCS-CV, ARCS-LRT)

Average # of Measurements (M̄/N2) Average Reconstruction Error (`2)

Oracle ARCS-CV ARCS-LRT Oracle ARCS-CV ARCS-LRT

marker cam 0.0598 0.0939 0.3356 1.4388 1.7802 1.8229

PETS2009 S2L1 0.1209 0.1530 0.4238 1.2811 1.6181 1.4911

convoy2 0.0997 0.1251 0.3627 1.6573 2.0296 2.6137

fminbmd function, which is based on golden selection search and parabolic interpo-

lation [90].

4.7.2 Comparitive Results

In order to provide some context in which to interpret the results from our

ARCS methods, we present them alongside those from the best-case sensing strat-

egy: oracle CS. Oracle CS uses the true value of st as its sparsity estimate, which

is impossible to obtain in practice. We compare the average measurement rates

and foreground reconstruction errors for the three methods (oracle, ARCS-CV, and

ARCS-LRT) in Table 4.2, and show the more detailed dynamic behavior in Figure

4.5. Note that the measurement values reported for the ARCS algorithms include

the necessary overhead for the side information (i.e., the cross-validation and low-

resolution measurements).

We first observe that the ARCS-LRT algorithm uses a significantly larger

measurement rate than any of the others. This is due to the necessary overhead for

70

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.5: Performance of adaptive CS strategies for the marker cam (column one),

PETS2009 S2L1 (column two), and convoy2 (column three) video sequences. In the

first row, ŝt is used to denote the sparsity estimate used by each strategy. In row

two, Mt is used to denote the total number of measurements that must be acquired.

The `2 reconstruction error is plotted in row three.

71

the low-resolution side information. In our experiments, we used L = N/2, i.e. Mt is

at least 25% of N2. A smaller L could be selected at the risk of poorer low-resolution

tracking. The ARCS-CV algorithm performs much better in terms of measurement

rate since the side-information overhead is relatively small (for all datasets, r is less

than 2% of N2).

It can also be seen that the ARCS-LRT sparsity estimate lags behind the true

foreground sparsity for those images in which an object is entering or exiting the

camera’s field-of-view but not fully visible. The phenomenon is especially visible in

the third column (convoy2) of Figure 4.5. It is due to the fact that we have manually

imposed the condition that the object cannot be tracked unless it is fully visible.

This leads to the large spikes in foreground reconstruction error. However, when the

object becomes fully visible, the low-resolution tracks provide the algorithm with

enough information to monitor the high-resolution signal sparsity and the effect

subsides.

4.7.3 Steady-State Behavior

We analyzed the behavior of our ARCS methods when the signal under obser-

vation is static (i.e., ft = f for all t). To do so, we created a synthetic data sequence

by repeating a single image in the convoy2 data set for which s = 1233. Figure

4.6 shows the behavior of each algorithm when the initial sparsity estimate, ŝ1, is

wrong. For each method, we ran two experiments. For the first one, we initialized

the sparsity estimate using a value that was too low (ŝ1 = 0). For the second one,

72

we initialized with a value that was too high (ŝ1 = 2500). Note that both methods

are able to successfully adapt to the true value of s, and the ARCS-LRT method

adapts very quickly (requiring only a single image) due to the immediate availability

of the low-resolution track.

4.7.4 ARCS-LRT and Automatic Tracking

We also investigated the effect of using low-resolution tracks obtained via an

automatic method. To do so, we implemented a simple blob tracker in MATLAB for

the convoy2 sequence and used the resulting tracks in the ARCS-LRT framework.

A comparison of algorithm performance between using automatic tracks and our

manually-marked tracks is shown in Figure 4.7. Given the negligible effect of the

blob tracker on the behavior of ARCS-LRT, we would not expect more sophisticated

automatic tracking techniques to negatively affect performance.

4.8 Summary

In this chapter, we described two techniques for using side information to

adjust the measurement rate of a dynamic compressive sensing system. These tech-

niques were developed in the specific context of using this system for video back-

ground subtraction. The first technique involves collecting side information in the

form of a small number of extra cross-validation measurements and using an error

bound to infer underlying signal sparsity. The second method uses side information

from a secondary, low-resolution, traditional camera in order to infer the sparsity of

73

(a)

(b)

(c)

Figure 4.6: Steady-state behavior for both ARCS algorithms using a video sequence

constructed by repeating a single image selected from the convoy2 dataset. For

each algorithm, two experimental paths are shown: one generated by initializing

the sparsity estimate such that it is too small (s1 << s), and the other generated

by initializing the sparsity estimate such that it is too large (s1 >> s).

74

(a)

(b)

(c)

Figure 4.7: Effect of manual vs. automatic blob tracking on the behavior of the

ARCS-LRT method for the convoy2 dataset.

75

the high-resolution images. In either case, we used a pre-computed phase diagram

as a lookup table to map sparsity estimates to minimal compressive measurement

rates. We validated these techniques on real video sequences using practical approx-

imations for theoretical quantities.

76

Chapter 5: Multi-Image Visual Saliency

While closely related to traditional camera systems, pan-tilt-zoom cameras

differ in that they are able to provide multi-image datasets that have a precisely-

defined geometric relationship. The work we present in this chapter is motivated by

the goal of creating an efficient camera-control technique for monitoring an environ-

ment with a PTZ camera. Biological vision seems to have achieved a similar goal:

these systems operate in data-rich visual domains with limited sensing and pro-

cessing resources, yet they often find remarkable success in accomplishing complex

tasks such as visual search and object recognition. One of the primary mechanisms

that seems to enable this achievement is the ability to discern visual saliency : the

perceptual quality exhibited by certain portions of visual data that are, in some

sense, more important than others. Once such data has been identified, biological

systems employ adaptive sensing strategies: they focus their sensing and processing

resources on these salient portions of information. This is accomplished via mecha-

nisms such as gaze control, which provides high-quality information pertaining only

to a very narrow field of view. If the gaze is directed appropriately, the spatially-

limited amount of information it provides is often sufficient for the accomplishment

of a given task.

77

Since this strategy is so effective for biological systems, it is natural to wonder

if similar ideas can be used to aid artificial ones. In computational vision, it is

often the case that only a small portion of the available data is actually relevant, or

salient, to the end-goal (e.g., object recognition, tracking, etc.). In this chapter, we

present our work toward enabling the use of visual saliency in adaptive sensing algo-

rithms when the sensor of interest is a PTZ camera. We discuss existing computer

vision techniques designed to quantify visual saliency and identify a new constraint,

consistency, that should be enforced when the imagery of interest is collected using

a PTZ camera. Further, we develop a new computational method that is able to

efficiently quantify our modified notion of saliency.

5.1 Introduction

Visual saliency is a broad term used to describe some notion of importance in

visual data. In the vision community, this concept has been studied for a variety of

purposes, including attentional modeling in biological vision and the development

of efficient systems for visual search. For example, the limited extent of the high-

resolution fovea portion of the retina suggests that the human visual system may

exhibit intelligent gaze control [91] in order to efficiently obtain meaningful infor-

mation from its surroundings. This behavior has been characterized using saliency

maps over the field of view [19], which are spatial representations that reflect the

importance of image regions: brightness values corresponding to each image region

quantify its importance with respect to others (see, e.g., Figure 2.1). When char-

78

acterizing the behavior of the human visual system, eye tracking can be used to

generate saliency maps. However, the idea of visual saliency is also of great in-

terest in the computer vision community, where the focus is on the development

of computational algorithms that can automatically quantify visual saliency (see,

e.g., [92]). The computed saliency maps are useful for a variety of applications

such as automatic visual search, where they can help reduce the size of the search

space by identifying regions of the visual field in which an object of interest is likely

to be found [93]. Other applications include computer-assisted navigation of large

panorama images [94], and robotic navigation [95].

In this chapter, we are concerned with one piece of a much larger goal. The

larger goal is to use visual saliency to increase the efficiency of tasks in active vision,

i.e., scenarios in which a system can control the geometric parameters of the camera

(e.g., translation, rotation, zoom, etc.) [96]. Tasks in this field include automatic

navigation, surveillance, and exploration. Of particular interest to us is understand-

ing the role visual saliency might play in automatic scene exploration algorithms

that control a stationary pan-tilt-zoom (PTZ) camera. That is, we would like to

use saliency to determine appropriate camera manipulations such that informative

images of the environment can be quickly collected.

While the above discussion is concerned with the broad goal of using saliency in

active vision, the focus of this chapter is on a narrower, more fundamental issue that

arises in these scenarios. Active vision systems invariably collect multiple images

of their surroundings. If we wish to use such data to quantify the saliency of the

observed portions of the environment, we should do so in a manner that utilizes

79

the entire context that these images provide, and we must do so in an unambiguous

fashion.

Toward this end, we suggest a notion of visual saliency that can be used

when the data of interest consists of multiple images that are related by a known

imaging process. Computing saliency for this type of data is a different problem than

that considered by most existing works on computational visual saliency, which

seek to transform single images into saliency maps that best agree with human

annotation. We are instead concerned with extending the existing definition of

visual saliency such that it is appropriate for the multi-image data described above.

Once we have clearly defined what saliency means in this context, we will discuss

several approaches that might be used to quantify it, including the one that we have

developed called ray saliency.

5.1.1 Organization

This chapter is organized as follows. In Section 5.2, we formulate the problem

of calculating visual saliency using multi-image datasets and define our extended

notion of saliency. In Sections 5.3 and 5.4, we present the independent-processing-

and mosaic-based approaches, respectively, to calculating visual saliency for PTZ

imagery. In Section 5.5, we present our own technique for doing so. In Section 5.6,

we present a more practical version of the method developed in Section 5.5, and we

discuss experimental results for each technique described above. We summarize the

chapter in Section 5.7.

80

(a) (b) (c) (d)

Figure 5.1: Overlapping imagery collected with a stationary PTZ camera: the ven-

tilation ducts and handle of the dark messenger bag are visible in both (a) and (b).

(c) and (d) were generated by zooming in on the main body of the bag.

5.2 Problem Formulation

In this chapter, we assume that we possess imagery collected using a stationary

PTZ camera. Assuming we have a total of J images, we denote this data by I =

{(Ij, cj)}Jj=1, where Ij denotes the jth m × n image that was acquired using PTZ

setting cj ∈ R3. An example of this type of imagery is given in Figure 5.1.

The task we set out to accomplish is that of using this imagery to quantify the

visual saliency of the observed regions of the environment. Since each observed image

pixel corresponds to a region of the environment, a solution to this problem can be

represented in the form of J saliency maps, S = {Sj}Jj=1, where Sj ∈ Rm×n quantifies

the saliency of the regions visible in Ij. When J = 1, the problem is exactly that

which is considered by the existing computational visual saliency literature: S1 can

be obtained using one of several existing techniques, and the saliency of an observed

region is specified by the value assigned to the corresponding pixel.

However, when J > 1, there is an additional property that S should possess:

81

consistency. For example, suppose Figures 5.1b and 5.1c comprise an image set

{I1, I2}. Due to overlap, both images contain pixels that correspond to the same

observed region of the environment, namely, part of the dark messenger bag that

has been placed on the windowsill. Therefore, the saliency values in S1 and S2 that

correspond to this region should match: if they do not, it becomes ambiguous as to

how to quantify the saliency of the bag. In order to avoid this ambiguity, we want

to ensure that the individual maps are computed in such a way that these quantities

agree, i.e., that they are consistent. More generally, for a given dataset I, assume

xi1 and xi2 denote the pixel locations in images j1 and j2, respectively, of a single

region in the environment. Then the requirement for consistency can be explicitly

stated as

Sj1(xi1) = Sj2(xi2) , (5.1)

i.e., there should be no ambiguity in saliency due to the region appearing in more

than one image. This condition does not mean that saliency values cannot change

if more imagery becomes available (e.g., images containing previously-unobserved,

salient details), just that the saliency values computed for a fixed set of images

should exhibit consistency. Further, we understand that this is a theoretical and

stringent condition that may not always be achievable using real images and practical

techniques. However, we will see that even if (5.1) is met only in an approximate

sense, the result is still more desirable than if it were not taken into consideration.

In this chapter, we shall discuss several techniques that might be used to

generate a set of consistent saliency maps for multi-image data. We first examine

82

attempts at solving this problem that involve processing each image independently,

and show why these techniques violate the consistency criterion. We then consider

methods that apply existing techniques to pre-computed mosaics of the input im-

ages. While such methods produce consistent results, the necessity of mosaicing has

several drawbacks. Finally, we present our approach, ray saliency, which is capable

of producing a consistent set of saliency maps while mitigating the issues caused by

mosaicing.

5.3 Independent Processing

In this section, we discuss methods that generate S by independently process-

ing each image in I. That is, if g denotes a mapping from images to saliency maps,

then Sj0 = g(Ij0) is independent of Ij for j 6= j0. We will see that these approaches

do not necessarily provide a solution that satisfies (5.1). Intuitively, this is because

the saliency map computation for each image occurs without any knowledge of the

contextual information provided by the others.

Several researchers in the computer vision community have proposed indepen-

dently processing images with known geometric relationships in order to evaluate the

saliency of regions of the surrounding environment. This work has mostly focused on

using imagery collected by a stationary, robot-mounted, pan-tilt (fixed zoom) cam-

era to assign saliency values to points on a sphere surrounding the camera, which

they refer to as the sensory ego-sphere. Fleming et al. [97] collect these images using

a set of pan-tilt settings that uniformly sample the sphere. The settings generate

83

overlapping images from which a set of independently-computed saliency maps is

computed. Regions of the environment are represented using the vertices of a tessel-

lated sphere, and the overlap in imagery causes single vertices to be associated with

with sections of many different images. Therefore, each vertex is also associated

with portions of many different saliency maps. The authors explicitly note that the

different saliency maps can provide different values for the same vertex, i.e., that

S is inconsistent. In order to resolve this ambiguity, they choose to compute the

saliency value for each vertex using the sum of values given by each corresponding

map. Ruesch et al. [98] extended this work to operate on a more faithful repre-

sentation of the sphere, but also chose to resolve the visual saliency ambiguity via

summation.

While the authors of these works generally report good results using this

method, it is also the case that their camera systems do not collect images us-

ing widely-varying zoom parameters (i.e., focal lengths) or non-uniformly sampled

points on the sphere. If such data is present, it is not clear how to handle the possi-

ble inconsistencies present in S. Consider, for example, the synthetically-generated

image set shown in Figure 5.2. If we define saliency using a context of large-enough

spatial extent, the blue and black striped background should not be given a large

saliency value. However, with the limited context provided in Figure 5.2b, this re-

gion is assigned a large saliency value in the corresponding, independently-generated

map. Using the larger context provided by Figure 5.2a, the blue background is cor-

rectly assigned a low saliency value. Clearly, summing the two values will not result

in the correct (low) saliency value for the blue region.

84

(a) (b) (c) (d)

Figure 5.2: Sample image (a) from the MSRA Salient Object Database [3] and a

synthetically-generated, zoomed-in image of the same scene (b). The corresponding,

independently-generated saliency maps are given by (c) and (d), respectively. The

saliency maps were generated by the technique proposed in [2].

This issue is closely related to the concept of scale in bottom-up saliency, i.e.,

the spatial extent of the desired context. When considering only single images, one

must define scale in units of pixels. However, this definition of context fundamentally

depends on the imaging process since a single pixel represents more or less of the

environment depending on the focal length and position of the camera at the time of

acquisition. Thus, if multiple images of the same environment are available, defining

the context using units of pixels can result in using larger or smaller regions of the

environment depending on the specific image under consideration. That is, such a

definition of scale introduces ambiguity regarding what the context is with respect

to the surrounding environment. Therefore, we advocate that scale should not be

defined in terms of pixels in these scenarios.

In our case, where multiple images are generated using a stationary PTZ

camera, regions of the environment can be unambiguously associated with points

on a sphere surrounding the camera, or rays from the camera focal point to the

85

projections of scene points on this sphere. Our method for calculating saliency

for the observed regions of the environment uses the known geometric relationship

between images to enable a concept of scale with respect to rays rather than pixels.

Further, we simultaneously process the visual information provided by all images

and are thus able to generate a consistent set of saliency maps without the need for

heuristics (e.g., summation) to resolve ambiguity.

5.4 Mosaicing

Before describing our own approach for doing so, we shall first explore mosaic-

based approaches to consistent saliency map generation. Such approaches must first

generate an image mosaic, i.e., a single-image representation of all observed image

data. We denote this representation as M , which can be computed using any one

of a number of mosaicing methods, m, i.e., M = m(I) (see, e.g., the work of [99]

and [100]). Ideally, m acts in such a way that M appropriately reflects the known

geometric relationship between images, and therefore each observed region of the

environment corresponds to a single region within the mosaic. Once M has been

formed, mosaicing approaches to saliency computation apply traditional techniques

to generate a saliency map SM , i.e., SM = g(M). SM provides a single saliency

value for each region of the environment, and a set of consistent saliency maps can

be formed by interpolating over SM , i.e., S = m−1(SM). This general approach is

depicted in Figure 5.3. While mosaicing methods are able to generate a consistent

set of saliency maps, they also suffer from several drawbacks.

86

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 5.3: Graphical depiction of a mosaicing approach. The mosaic (a) was formed

using acquired images (c), (d), (e), and (f). The saliency map (b) was computed

using (a) and the approach developed by [2]. Finally, saliency maps (g), (h), (i),

and (j) were generated by interpolating over (b) in the regions corresponding to each

acquired image. In order to retain the detail provided by images (e) and (f), both

(a) and (b) require approximately 26 times more pixels than observed.

87

In addition to their independent-processing approach, Fleming et al. [97] also

explored using an image mosaic to calculate visual saliency over their sensory ego-

sphere. It is suggested that such methods are computationally expensive since the

entire mosaic must be recomputed each time a new image arrives. We further note

that these approaches can require the creation of a large amount of extra data

in order to represent each mosaic, especially when the images are acquired using

widely-varying focal lengths. Consider, for example, the mosaic shown in Figure

5.3a: in order to represent all observed visual data without sacrificing the resolution

of Figure 5.3f, it requires 26 times more pixels than were observed.

Bogdanova et al. [101,102], who are concerned with computing visual saliency

for images acquired using an omnidirectional camera, also note that traditional mo-

saicing approaches can cause distortion since it is impossible to accurately represent

a sphere using a planar image. This will again lead to a spatially-ambiguous concept

of scale: a fixed pixel neighborhood will correspond to more or less of the environ-

ment depending on how close it is to the optical center of the mosaic. To address

this issue, Bogdanove et al. [101] project the observed imagery onto the surface of

a sphere and use the spherical Fourier transform to compute visual saliency. While

this is an appropriate space for representing the visual data, their method can suffer

from the same interpolation issues as described above since it requires a regular

angular sampling of the sphere.

88

5.5 Ray Saliency

We will now present our method for generating a set of consistent saliency

maps for multi-image data collected by a stationary PTZ camera. We overcome the

problems inherent to independent processing and mosaicing distortion by associating

the pixel observations from each planar image with a coordinate in the spherical

ray space. We use all such observations together to simultaneously quantify an

adapted notion of bottom-up visual saliency. This approach allows us to resolve

ambiguity problem described in Section 5.3. Further, our method does not require

the generation of a mosaic, and therefore does not suffer from the representation

shortcomings discussed in Section 5.4.

5.5.1 Pan-Tilt-Zoom Imaging Geometry

Understanding the way in which three-dimensional points are imaged by a PTZ

camera is essential to our method. This projection from three to two dimensions

can be succinctly described via a coordinate mapping that is usually specified by a

camera projection matrix, C [103]. For a finite projective, stationary, PTZ camera

with center at the origin of a specific fixed world coordinate system, this matrix

may be expressed as C = C(θ, φ, z) ∈ R3×3. C(θ, φ, z) is dependent upon the values

of the camera’s pan and tilt angles (θ and φ, respectively) and its zoom (z) [104].

The camera matrix can be decomposed as C(θ, φ, z) = K(z)RX(φ)RY (θ), where

RX(φ) and RY (θ) are three-dimensional rotation matrices about the X and Y axes

(respectively) of the world coordinate system and K(z) is the camera calibration

89

(intrinsic) matrix for zoom z, i.e.,

K(z) =

fx(z) s(z) px(z)

0 fy(z) py(z)

0 0 1

. (5.2)

In (5.2), fx and fy represent the camera’s focal length in units of the corresponding

pixel dimensions, s represents the skew, and [px py]
T specifies the pixel coordinate

at which the optical axis intersects the image plane. While these parameters are

invariant to extrinsic manipulations of the camera (e.g., panning and tilting), they do

vary with respect to zoom. Given a set of collected images with sufficient overlap,

auto-calibration can be used to infer the parameter values for each view under

varying zoom settings (see Section 5.6.1 for details).

The camera images a three-dimensional point in the world coordinate system,

X̃ = [X̃ Ỹ Z̃]T , at a two-dimensional image plane coordinate x = [x y]T given by

x =

[[
C(θ, φ, z)X̃

]
1

[
C(θ, φ, z)X̃

]
2

]T
[
C(θ, φ, z)X̃

]
3

, (5.3)

where [·]i denotes the ith component of the vector-valued argument. A close ex-

amination of (5.3) reveals that all three-dimensional points that lie on the same

origin-inclusive ray project to the same point on the image plane. This represents

the loss of depth information that accompanies the imaging process. In this work,

we represent points belonging to the same (origin-inclusive) ray via a single ray

coordinate, X, which we define to be the point of intersection of the ray with the

unit sphere (see Figure 5.4). The ray coordinate of any three-dimensional point X̃

is given by X̃/‖X̃‖2, and the ray coordinate corresponding to imaged location x can

90

Figure 5.4: Geometry of the pan-tilt-zoom imaging process. Stars represent ray

coordinates. The green and red rectangular grids represent the camera’s pixel array

for focal lengths f1 and f2, respectively. The projection of each image pixel, x, on the

surface of the sphere yields the corresponding ray coordinate, X. With respect to the

discussion in Section 5.5.1, X̃ lies somewhere on the line that connects the camera

center, image pixel, and corresponding ray coordinate. For the case depicted, the ray

coordinates for the same pixel sensor zoomed to a larger focal length (f2 > f1) are

much more tightly packed. If both images are collected, the overall set of observed

rays is highly nonuniform over the sphere.

91

be calculated according to

X(x) =
C(θ, φ, z)−1[xT 1]T

‖C(θ, φ, z)−1[xT 1]T‖2
. (5.4)

5.5.2 Graph-Based Visual Saliency

The bottom-up saliency method we propose is most similar to the graph-based

technique of [5]. Designed to operate on single images, their method quantifies the

saliency of a specific pixel using its probability of occurrence under the stationary

distribution of an image-dependent, discrete Markov chain. This Markov chain is

related to a fully connected graph, G = (V , E), that is formed over pixels. The edge

weight between pixels i and i′ is defined as

ei,i′ = s(xi,xi′)d(fi, fi′) , (5.5)

where xi and fi correspond to the pixel coordinates and feature value associated

with the ith pixel, respectively, s produces a large value for arguments that are close

in the spatial sense, and d yields a large value when its arguments are dissimilar.

Using this construction, the saliency quantity assigned to each pixel (node) is taken

to be its probability of occurrence under the stationary distribution, µ ∈ R|V|, of

the corresponding Markov chain.

While Harel et al. [5] propose to calculate this quantity by repeatedly applying

the probability transition matrix to some initial distribution, we observe here that

µ can also be determined by simply summing the incident edge weight at each node

[105]. That is, the probability of being at node i under the stationary distribution

92

is proportional to

[µ]i ∝
∑
i′∈V

ei,i′ . (5.6)

Instead of defining a graph over the image pixels and using the geometry of the

image plane, we will form a graph over all observed rays and use modified versions

of (5.5) and (5.6) to calculate saliency for observations in this new space.

5.5.3 Ray Space, Distance, and Scale

In order to appropriately incorporate the relative geometry of pixel observa-

tions that have been made using different PTZ settings, we quantify visual saliency

by first projecting each observation into the ray space. We do so using (5.4), i.e.,

the kth ray coordinate is given by

Xk =
C−1j(k)

[
xTi(k) 1

]T
‖C−1j(k)

[
xTi(k) 1

]T
‖2

, (5.7)

where j(k) and i(k) give the image and pixel indices (respectively) associated with

the kth ray, Cj denotes the camera matrix used to generate the jth image, and xi

denotes the pixel coordinates for the ith image pixel.

Since spatial similarity plays a key role in determining the context over which

bottom-up saliency is defined, we require an appropriate way to define distance in

this space. Observing that all ray coordinates lie on the surface of the unit sphere,

this definition is given by the sphere geodesic (i.e., the great-circle distance). That

is, the distance between ray coordinates Xk and Xk′ is given by

q (Xk,Xk′) = cos−1(XT
kXk′) . (5.8)

93

We can now explicitly define a notion of scale to be used in our saliency

calculation. We propose to do so by specifying an angle, σ, that controls how

strongly a ray is connected to its neighbors. More precisely, we evaluate the spatial

similarity of ray coordinates with respect to scale σ using

sσ (Xk,Xk′) = e
− 1

2

(
q(Xk,Xk′)

σ

)2

. (5.9)

Note that larger values of σ will induce less drastic changes in similarity as the

angle between Xk and Xk′ grows, which will ultimately yield saliency values that

are calculated with respect to a larger context.

5.5.4 Computation of Ray Saliency

Equipped with an appropriate geometry, we can now turn our attention to

assigning saliency values to pixel observations made over multiple images. As a

space in which all observed data can be jointly considered, let X = {(Xk, fk)}Kk=1

denote the set of ray coordinates and features associated with all observed pixels

(i.e., if J N -pixel images have been observed, then K = JN). Inspired by the

graph-based technique discussed in Section 5.5.2, we first form a graph G = (V , E),

where each node in V corresponds to a single observed ray. We define the edge

weight between nodes k and k′ as

ek,k′ = sσ (Xk,Xk′) d (fk, fk′) , (5.10)

where σ is given in advance, sσ is defined as in (5.9), and d is a non-negative function

that yields larger values for features that are more dissimilar. Here, we concentrate

94

on CIELAB color features and therefore choose the simple Euclidean distance for d,

i.e.,

d (fk, fk′) = ‖fk − fk′‖2 . (5.11)

Depending on the specific PTZ settings used to acquire the set of images, the

observed rays are not guaranteed to be uniformly distributed over the surface of

the sphere (see Figure 5.4). Therefore, using the right-hand side of (5.6) alone to

quantify saliency for nodes in this graph will artificially increase values assigned to

nodes that appear in more densely-sampled regions (i.e., they have more neighbors).

To compensate for this effect, we add a node-specific normalization constant that

depends on the spatial structure of the graph, i.e., we use

[µ]k =

∑
k′∈V ek,k′∑

k′′∈V sσ(Xk,Xk′′)
(5.12)

to define the saliency at node k. This is similar to the normalization that is done in

bilateral filtering [106].

Given the graph specified above, we propose to quantify the saliency of each ray

according to (5.12). We call this quantity ray saliency, and summarize in Algorithm

4 the procedure by which it can be used to generate a set of saliency maps.

5.5.5 Consistency

For this work, we assume that the scene under observation is static and that

if the same ray is observed in two separate images, the associated features will be

identical. Under these assumptions, we will show that the saliency maps generated

by the ray saliency algorithm satisfy the consistency criterion.

95

Algorithm 4: Ray Saliency

Require: Dataset I, scale parameter σ

1: Determine camera matrices {Cj} using the PTZ settings specified by I

2: Determine X using (5.7)

3: Form G = (V , E) using (5.10)

4: Calculate µ using (5.12)

5: Form S according to Sj(k)(xi(k)) = [µ]k

Assume that the same point in the environment was observed in images j1

and j2 at pixel coordinates xi1 and xi2 , respectively. Since both observations are

of the same point in the environment, (5.7) will yield identical ray coordinates for

both, i.e., Xk1 = Xk2 , where k1 and k2 (respectively) are the associated ray indices.

From the assumptions stated above, this implies that the observed features will also

be identical, i.e., fk1 = fk2 . Therefore, irrespective of the rest of the graph, (5.12)

dictates that [µ]k1 = [µ]k2 . Thus, when S is generated, we will have Sj1 (xj1) =

Sj2 (xj2), i.e., the consistency criterion is satisfied.

5.6 Experiments

In this section, we discuss our implementation of ray saliency, including how

we obtain the camera matrices and what practical approximations we make. In

order to show that ray saliency quantifies bottom-up saliency in the usual sense, we

compare it to classical algorithms on a standard, single-image dataset. Finally, we

give comparitive results among independent processing, mosaicing, and ray saliency

96

Figure 5.5: Ray saliency produces competitive results when compared to methods

explicitly designed for single images. Depicted here is the precision-recall curve

for saliency maps generated using the MSRA Salient Object Database [3] and the

ground-truth data provided by [2]. IT refers to the method of [4], BG to [5], IG to [2],

SF to [6], and RS to our method. See Section 5.6.3 for further discussion.

on real, multi-image datasets that we collected.

5.6.1 Automatic Camera Calibration

Our method relies on the availability of an accurate camera matrix for each

image. We generate Cj, the camera matrix for the jth image, using the corresponding

camera-reported PTZ setting, [θj φj zj]
T , according to

Cj = K(zj)RX(φj)RY (θj) , (5.13)

where RX(φj) and RY (θj) are rotation matrices about the optical X and Y axes by

angles φj and θj, respectively, and K(zj) is given by (5.2). Since the rotations are

applied sequentially, the order of applying RY (pan) before RX (tilt) is especially

97

important for our camera systems: the pan angles are reported with respect to a

fixed Y axis that corresponds to its optical counterpart only when the camera uses

a tilt value of zero, i.e., the axis normal to the physical base of the camera.

In order to generate K(zj), the mappings between the zoom value and each

intrinsic parameter, fx(zj), fy(zj), s(zj), px(zj), and py(zj), must be specified. We

learn these functions using an automatic camera calibration method, i.e., one that

does not require a calibration object such as a checkered board. Specifically, we

collect a set of images using PTZ settings that adequately sample the set of allowable

zoom values and ensure that each image overlaps with several others.

Broadly, we then use the technique described by [107] to determine a set of

intrinsic parameters that corresponded to each used zoom value. To implement

this method, we first automatically match SIFT features [108] and use the criterion

from [100] to determine the image correspondence structure. Next, we compute

homographies for pairs of corresponding images using the direct linear transform

and RANSAC method described by [103] (we used [109]’s implementation) followed

by a nonlinear refinement. We then compute linear estimates of the calibration

matrices using the image-of-the-absolute-conic constraint described by [107]. From

these estimates, we initialize a set of intrinsic parameters corresponding to each used

zoom value, and then use nonlinear bundle adjustment [110] to refine them. This

involves the joint optimization of the intrinsic values, the pan and tilt angles for

every image, and the coordinates of the rays corresponding to feature matches. In

the end, we obtain a coarse sampling of each zoom-to-intrinsic-parameter mapping.

Using this calibration information, we linearly interpolate to determine intrinsic

98

parameter values for arbitrary zoom values.

5.6.2 Practical Implementation

Unfortunately, for even a small number of reasonably-sized images, Algorithm

4 is computationally intractable: once X has been determined, it exhibits O(K2)

computational complexity, where K is the total number of pixels in all images.

Therefore, we make two approximations in order to alleviate this complexity. First,

we reduce the number of nodes in the graph by grouping rays through a superpixel

clustering technique. Second, we enforce a locality constraint on the graph to reduce

the number of edge weights that must be computed.

5.6.2.1 Superpixel Clustering

To reduce the number of graph nodes, we first extract intra-image superpixels

(see, e.g., [111–114]) and use them to cluster rays from the same image. We then

assign a single representative ray coordinate and feature to each superpixel and

calculate a per-superpixel saliency value using the ray saliency method.

We specifically employ the SLIC superpixel algorithm developed by [115],

which exhibits linear computational complexity. In order to ensure that superpix-

els extracted from images acquired using different focal lengths occupy roughly the

same area on the surface of the sphere, we select the SLIC initial width parameter,

w, on a per-image basis. Specifically, we calculate this parameter according to

wj = 2fj tan (σsp) , (5.14)

99

where fj is the camera focal length used to acquire the jth image and σsp controls the

approximate angular radius of each superpixel. σsp should be chosen with respect

to the angular scale, σ, discussed in Section 5.5. For our experiments we used

σsp = σ/15.

Let P = {Pl}Ll=1 denote the set of all superpixels extracted from the available

images, where Pl denotes the set of image pixel indices associated with the lth

superpixel. We assign a single, representative ray coordinate and feature pair to

each superpixel using the mean in each space to form Xsp = {(Xl, fl)}Ll=1, where

Xl = Xjsp(l)

(
1

|Pl|
∑
i∈Pl

xi

)
,

fl =
1

|Pl|
∑
i∈Pl

fi , (5.15)

and jsp(l) gives the image index associated with the lth superpixel, Xj(·) maps pixel

coordinates in the jth image to ray coordinates according to (5.4), and xi and fi are

the pixel coordinate and feature (respectively) of the ith image pixel.

We will use Xsp to calculate saliency values for each superpixel using the tech-

nique described below.

5.6.2.2 Locality Approximation

Even for small numbers of reasonably-sized images, it is computationally in-

feasible to compute the edge weights (5.10) for each pair of rays. To alleviate this

issue, we approximate the edge weight function by enforcing a locality constraint

that decreases the number edge connections per ray.

Noting that the s specified by (5.9) dictates that edge weights become more

100

insignificant the further apart two rays are with respect to σ, we approximate it by

removing connections between rays that are sufficiently far apart, i.e.,

ŝσ(Xl,Xl′) =

e
− 1

2

(
q(Xl,Xl′)

σ

)2

, l′ ∈ Nσ (Xl)

0 , otherwise

. (5.16)

Above, Nσ (Xl) denotes the set of all rays in a certain local neighborhood of Xl.

Since determining Nσ for each ray can be computationally intensive, we use a k-d

tree [116] which exhibits a worst-case region search complexity of O(3L
2
3) [117] for

three-dimensional rays. In order to use this efficient data structure, we approxi-

mate the sphere geodesic with the Euclidean distance when calculating the local

neighborhood, i.e., we define Nσ (Xl) as

Nσ (Xl) =
{
l′
∣∣∣ ‖Xl −Xl′‖2 ≤ 2 sin

(cσ
2

)}
, (5.17)

where the right-hand side of the inequality is chosen to ensure that every l′ for which

q (Xl,Xl′) ≤ cσ is included in Nσ(Xl). For our experiments, we used c = 3.

Using (5.16) and (5.17), we define the approximate edge weighting function as

êl,l′ = ŝσ (Xl,Xl′) d (fl, fl′) . (5.18)

5.6.2.3 Approximate Ray Saliency

As in Section 5.5.4, we will use the approximate edge weight (5.18) to compute

saliency values for each node. However, we must modify the node-specific normal-

ization constant in (5.12) to account for the locality approximation introduced in

the previous section. That is, the approximate saliency for node l is calculated

101

Figure 5.6: Ray saliency produces maps that appear similar to those generated

by methods explicitly designed for single images. Depicted here are single-image

saliency maps for a selected subset of the MSRA Salient Object Database [3]. The

leftmost column shows the original images, and the second column shows the ground-

truth saliency masks provided by [2]. The third through seventh columns show the

saliency map results from [4], [5], [2], [6], and our method, respectively. See Section

5.6.3 for further discussion.

102

according to

[µ̂]l =

∑
l′∈Nσ(l) êl,l′∑

l′′∈Nσ(l) ŝσ(Xl,Xl′′)
. (5.19)

We summarize the modified procedure in Algorithm 5, where S(Pl) = [µ̂]l

refers to assigning the saliency value given by [µ̂]l to all pixels that are members of

Pl.

Algorithm 5: Approximate Ray Saliency

Require: Dataset I, scale parameter σ, approximation parameters σsp and c

1: Determine camera matrices {Cj} using the PTZ settings specified by I

2: Determine superpixels P across all images using the SLIC algorithm with

image-specific width parameters wj specified by (5.14)

3: Determine Xsp from (5.15)

4: Construct a k-d tree over the superpixels using the ray coordinates

specified by Xsp

5: Form Ĝ =
(
V , Ê

)
over superpixels using (5.18)

6: Calculate µ̂ for superpixels using (5.19)

7: Form S according to Sjsp(l)(Pl) = [µ̂]l

5.6.2.4 Approximation Efficiency

Our method of approximate ray saliency leverages the two approximation steps

to reduce the computational complexity of ray saliency. The superpixel grouping

step reduces the number of nodes in the graph from K to L� K, and the locality

approximation further reduces the amount of computation that must be done by

103

decreasing the number of edge weights that must be calculated. Assuming |Nσ| �

L, using the two together results in an approximate but practical algorithm that

requires just O(L) space and O(K + L
5
3) computation in the worst case, where the

addition of K in the complexity term comes from the SLIC algorithm.

5.6.2.5 Approximation Consistency

Because of the superpixel grouping step, we note that the saliency maps gen-

erated by ray saliency will only be approximately consistent. This is because cor-

responding pixels may be grouped into superpixels that cover a slightly different

regions of the environment. We will see that the results are not significantly altered

by this effect.

5.6.3 Single-Image Data

In order to demonstrate that the quantities computed by ray saliency agree

with classical notions of bottom-up visual saliency, we used our method to generate

saliency maps for single images. These maps allow us to compare our technique

with the current techniques that are not designed for multi-image data. Specifically,

we ran our algorithm on the MSRA Salient Object Database [3] with ground truth

data from [2] using φ = θ = 0, fx = fy = 1e3, px = n/2, and py = m/2 for the

(unknown) camera parameters, and a value for σ that measured 35% of the smallest

image dimension in pixels.

Our results for a selected subset of images are shown in Figure 5.6. We also

104

Figure 5.7: Ray saliency produces a consistent set of saliency maps where indepen-

dent processing fails and mosaicing is not practical. Depicted here are the results

of multi-image saliency processing for the office dataset. The leftmost column

shows the acquired images, where the two bottom images are zoomed-in shots of

the dark messenger bag on the windowsill. The second and third columns show the

corresponding saliency maps generated using independent processing (using [2]’s

method), and our method, respectively. Because of the wide variation in PTZ

settings used to acquire these images, the mosaicing method failed due to lack of

memory. See Section 5.6.4 for further discussion.

105

Figure 5.8: For certain datasets, all three methods (independent processing, mosaic-

ing, and ray saliency) are able to produce approximately consistent results. Depicted

here are the results of multi-image saliency processing for the orangecones dataset.

The leftmost column shows the acquired images. The second through fourth columns

show the corresponding saliency maps generated using independent processing (us-

ing [2]’s method), mosaicing (using [2]’s method), and our method, respectively. See

Section 5.6.4 for further discussion.

106

Figure 5.9: Ray saliency and mosaicing are able to produce a consistent set of

saliency maps where independent processing fails. Depicted here are the results

of multi-image saliency processing for the watertruck dataset. The leftmost col-

umn shows the acquired images. The second through fourth columns show the

corresponding saliency maps generated using independent processing (using [2]’s

method), mosaicing (using [2]’s method), and our method, respectively. See Section

5.6.4 for further discussion.

107

show the results of several popular saliency algorithms: the methods of [4], [5], [2],

and [6]. We used the saliency maps generated by each method to produce the

precision-recall curve shown in Figure 5.5. While ray saliency performs well here,

it is important to note that to be such was not the goal of this work: we set out

to design a method which is able to consistently process multi-image data, of which

none of the other methods in this comparison is capable. Nevertheless, for single-

image data, we see that ray saliency does produce results that agree with these other

widely-accepted, bottom-up methods.

5.6.4 Multi-Image Data

We collected three multi-image datasets using two different PTZ cameras. Two

of these datasets, orangecones and watertruck, were acquired using an outdoor-

mounted Sony SNC-RH164 camera attached to our building on the campus of the

University of Maryland, College Park. The third, office, was collected using an

Axis 214 camera in a generic, empty office in which we placed unique objects. All

datasets are composed of a set of images that result from changing the pan, tilt,

and zoom settings of the sensor while viewing a static environment.

We processed images from each dataset using the three multi-image methods

discussed in this chapter: independent processing, mosaicing, and (approximate) ray

saliency. The results are shown in Figures 5.7, 5.8, and 5.9. For the independent

processing and mosaicing approaches, we must also specify a single-image visual

saliency method to use. Due to its combination of good performance and ease of

108

implementation, we chose to use the method of [2].

The saliency maps generated by the mosaicing and ray saliency methods are

consistent, while those generated using independent processing are not necessarily

so. Consider, for example, the last two rows in Figure 5.7, which represent zoomed-

in views of the dark messenger bag on the windowsill. The saliency maps generated

by the independent processing method are not consistent with the saliency map cor-

responding to the zoomed-out view of bag. However, the saliency maps generated

by our method do agree with one another: the region of the environment corre-

sponding to the bag is assigned a high saliency value in all saliency maps in which

it appears. This phenomenon is also apparent when comparing the independently-

processed saliency maps for the watertruck sequence: the blue body of the truck is

given widely-varying saliency values depending on which independently-generated

saliency map is used.

The absence of mosaicing results in Figure 5.7 hints at the primary shortcom-

ing of using a mosaicing approach: the mosaic required to represent these images

without loss of resolution required an amount of storage that exceeded the amount

available in our experimental system with eight gigabytes of memory. As discussed

in Section 5.4, mosaicing methods can require large amounts of space depending on

the the specific pan-tilt-zoom settings used to acquire the images in the dataset. In

fact, the storage requirements depend more on these settings than the total number

of pixels observed, and can easily become prohibitively large. This effect was also

apparent when using mosaicing to process the dataset shown in Figure 5.8: the mo-

saic required approximately 26 times more pixels than were observed. Approximate

109

ray saliency, on the other hand, does not require the generation of a mosaic and

exhibits space complexity that is linear in the number of superpixels, L. Therefore,

we were able to efficiently generate a set of consistent saliency maps for both of

these datasets.

5.6.5 Comparison of Algorithm Complexity

In Table 5.1, we compare the worst-case storage and computational complexity

of the three approaches discussed in this work: independent processing (indepen-

dent), mosaicing, and ray saliency (approximate RS). We use R to denote the num-

ber of pixels required for the mosaic. Since R is a complicated function of K and the

pan-tilt-zoom settings, we simply state that R� K in the worst case, i.e., that it is

prohibitively large. The complexities reported for the independent-processing and

mosaicing approaches were determined using [2]’s method; using other approaches

may change these values.

While independent processing requires just constant storage, there is also no

guarantee that it will provide a set of consistent (or even approximately consistent)

saliency maps. Further, the necessity of mosaic generation in approaches that use

one can cause the storage requirements to become so large that they are no longer

practical. Ray saliency, on the other hand, is able to provide a consistent set of

saliency maps with practical storage and computational complexity.

110

Table 5.1: Worst-case algorithmic comparison for multi-image saliency approaches.

The listed complexities for the independent-processing and mosaicing approaches

were calculated assuming [2]’s method is used. K is the total number of observed

pixels, R is the number of pixels necessary to represent the mosaic, and L is the

total number of extracted superpixels.

Approach Storage Time

Independent O(1) O(K)

Mosaicing O(R� K) O(R)

Approximate RS O(L� K) O(K + L5/3)

5.7 Summary

In this chapter, we considered the problem of quantifying the bottom-up vi-

sual saliency of regions of an environment using multiple images acquired using a

stationary PTZ camera. To resolve the ambiguities that this type of data can cause,

we introduced the concept of consistency: that a given region of the environment

should be assigned the same saliency value by all maps in which it appears. We

then considered two existing approaches that could be used to generate saliency

maps from multi-image data: independent processing and mosaicing. We showed

that the independent-processing approaches can produce maps that violate the con-

sistency criterion. Our investigation of mosaicing methods concluded that they are

able to produce a consistent set of maps, but at the cost of geometric distortion and

large space requirements.

111

As an alternative, we presented our solution to this problem: ray saliency. By

associating pixel observations with points on the surface of a sphere and computing

bottom-up saliency using a graph defined over those points, we are able to generate

a set of consistent saliency maps in a way that does not require unnecessary inter-

polation while retaining the ability to accurately reflect the geometry of the imaging

system. We discussed a practical implementation of this algorithm that leverages

superpixel preprocessing and a graph approximation in order to achieve efficiency

in both computation time and space. By using this multi-image algorithm on clas-

sical single-image datasets used in the visual saliency community, we showed that

ray saliency measures a quantity that agrees with current definitions of bottom-up

visual saliency. We then used multi-image datasets that we collected in order to

present comparative results for our algorithm and the other multi-image processing

techniques that were discussed.

112

Chapter 6: Summary and Directions for Future Research

While much of computer vision research is focused on processing data acquired

using traditional cameras, there are several scenarios under which the sensor of

interest may not be such a device. When this is the case, it is still often of interest

to use ideas and techniques from classical computer vision to process the obtained

data. When applicable, the extracted information can also be used to help control

the sensor itself. This dissertation has focused on several problems for which it is

impossible or undesirable to use a traditional camera. The work we have presented

here has demonstrated modified computer vision processing techniques that are

useful for several examples of unconventional visual data.

In Chapter 3, we adapted gradient-based reconstruction techniques for the

specific problem of InSAR phase unwrapping, where the data arrives in the form

of complex-valued radar measurements. We developed a sparse error-correction

method in order to better accomplish this task. Specifically, we did so using a

sparsity-regularized energy minimization technique that takes the form of a gener-

alized lasso problem. Using this formulation, we were able to utilize the efficient

ADMM algorithm to compute a solution.

In Chapter 4, we developed adaptive sensing strategies for a compressive sens-

113

ing camera. Since we are only concerned with the spatially-sparse foreground of

the video, the compressive imaging device is sufficient for observation. Assuming

that the measurement rate of the device is controllable, we developed an adaptive

technique that adjusts the number of measurements collected in response to various

forms of side information. Ultimately, our technique provides us the ability to, in

an online fashion, adapt the amount of data collected in response to the complexity

of the foreground signal under observation.

In Chapter 5, we extended the classical notion of visual saliency to multi-image

data obtained using a stationary PTZ camera. We discovered that current saliency

methods are not well-suited for this task, and we proposed a modified definition of

visual saliency for this type of data. Using this definition, we developed an efficient

technique that can be used to quantify visual saliency for multi-image data.

6.1 Directions for Future Research

We believe that each part of the above work has the potential for future avenues

of research:

6.1.1 Phase Unwrapping

Currently, the phase-unwrapping technique presented in Chapter 3 contains

no regularizing term for φ. However, several researchers in this field have reported

improved results when including such a term in their formulation [37] [39]. Therefore,

one interesting direction for future research would involve investigating the effect of

114

adding a regularization term, e.g. one based on the total-variation norm [118], to

(3.11).

Another possible extension of this work involves trying to incorporate more

effective techniques in gradient-based reconstruction, such as those proposed by

Agrawal et al. [34]. We specifically think that the diffusion-tensor-based technique

might prove effective. One way in which it might be incorporated is by modifying

the `2-penalty term in (3.11), ‖Gφ −W(Gψ) + e‖22, such that an operator based

on an edge-preserving diffusion tensor replaces G in Gφ. Of course, this sort of

modification might affect the applicability of the ADMM algorithm, and therefore

it remains to be seen if the idea is feasible.

6.1.2 Adaptive-Rate Compressive Sensing

The adaptive-sensing algorithm presented in Chapter 4 could serve as a start-

ing point for several future extensions.

First, it may be possible to achieve even lower measurement rates. One way

that this might be accomplished is by using a modified decoding procedure. In our

current formulation, the decoder remains fixed even though the side sensors provide

extra information that might be used to improve it. For example, the low-resolution

sensor is able to provide both sparsity and support information, something that

Vaswani et al. [62] have shown to lead to better estimates using fewer measurements.

Another way in which the measurement rate might be lowered is by dynamically

adjusting the measurement matrix beyond simply selecting the number of rows.

115

A strategy that generates the measurement vectors in an online fashion would be

theoretically similar to the work of Duarte-Carvajalino [70] et al. and others [71]

[72] [73] [74], but would need to incorporate our constraint of a measurement budget

that changes between acquisitions.

Further, it may be possible to lift some of the assumptions regarding the

ARCS-LRT sensor architecture. In particular, we believe that it might prove inter-

esting to investigate allowing the position of the low-resolution traditional camera

to vary from that of the high-resolution compressive one. This might involve using a

more complicated mapping function instead of (4.24), i.e., one that also incorporates

knowledge of the geometric relationship between the sensors.

6.1.3 Multi-Image Visual Saliency

The multi-image visual saliency method we presented in Chapter 5 also pro-

vides several interesting future research avenues.

One of these involves extending the method to handle dynamic scenes, i.e.,

compute the saliency values in an online fashion as the images are acquired. Such an

approach would involve including the time of observation in the saliency calculation.

It may also provide a more dynamic approach to scale selection. For example, if

certain zoom levels are not used for an extended period of time, then it may be

deemed unreasonable to compute the saliency for several corresponding scales.

Further, as was mentioned in the motivation for this problem, the investigation

of camera-control strategies that respond to the computed saliency values is of great

116

interest. Specifically, we are interested in automatically selecting PTZ values such

that we can quickly acquire high-resolution imagery of regions deemed to be salient.

Another direction for future research is that of modifying our technique such

that camera translation is allowed. The sphere-based representation in our current

formulation is only valid for a stationary sensor. In order to allow for translational

motion, we imagine that we would need to obtain the three-dimensional structure

of the scene with which we could associate the visual features. In such a scenario,

we believe that the same graph-based formulation that drives our technique could

be used to compute the visual saliency.

One might also investigate more efficient ways in which the saliency values

might be computed, especially techniques that would allow us to avoid the super-

pixel pre-processing step we use in our implementation. Moreover, recently-modified

notions of saliency developed for single images (e.g., the work of [6]) might also be

incorporated in our formulation. This might involve modifying our edge weight

function or combining saliency values computed using multiple scales.

Finally, it may also be possible to extend our general formulation in order

to develop new top-down saliency techniques. Specifically, one might investigate

the effect that changing the zoom setting has on object detector confidence. This

quantity could be used to define a new notion of saliency that corresponds to detector

uncertainty, which might also be used to design camera-control strategies.

117

Bibliography

[1] C. Deledalle, L. Denis, and F. Tupin. NL-InSAR : Nonlocal Interferogram Es-
timation. IEEE Transactions on Geoscience and Remote Sensing, 49(4):1441–
1452, 2011.

[2] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned
Salient Region Detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2009.

[3] T. Liu, J. Sun, N. Zheng, X. Tang, and H. Shum. Learning to detect a
salient object. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2007.

[4] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention
for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(11):1254–1259, 1998.

[5] J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. In Neural
Information Processing Systems, 2006.

[6] F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung. Saliency Filters: Con-
trast Based Filtering for Salient Region Detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2012.

[7] M. Everingham, S. Ali Eslami, L. Van Gool, C. Williams, J. Winn, and A. Zis-
serman. The PASCAL Visual Object Classes Challenge - a Retrospective.
International Journal of Computer Vision, 2014.

[8] Pets 2009 benchmark data. http://www.cvg.rdg.ac.uk/PETS2009/a.html.

[9] R. Baraniuk. More is less: signal processing and the data deluge. Science,
331(6018):717–719, February 2011.

[10] M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly,
and R. Baraniuk. An Architecture for Compressive Imaging. In Proceedings
of the IEEE International Conference on Image Processing, 2006.

118

[11] V. Cevher, A. Sankaranarayanan, M. Duarte, D. Reddy, R. Baraniuk, and
R. Chellappa. Compressive sensing for background subtraction. In European
Conference on Computer Vision, 2008.

[12] R. Baraniuk, M. Davenport, M. Duarte, and C. Hegde. An introduction to
compressive sensing. Connexions, 2011.

[13] R. Willett, R. Marcia, and J. Nichols. Compressed sensing for practical optical
imaging systems: a tutorial. Optical Engineering, 50(7), 2011.

[14] M. Duarte, M. Davenport, D. Takhar, J. Laska, K. Kelly, and R. Baraniuk.
Single-Pixel Imaging via Compressive Sampling. IEEE Signal Processing Mag-
azine, 25(2):83–91, March 2008.

[15] D. Gao, V. Mahadevan, and N. Vasconcelos. The discriminant center-surround
hypothesis for bottom-up saliency. In Neural Information Processing Systems,
2007.

[16] N. Bruce and J. Tsotsos. Saliency based on information maximization. In
Neural Information Processing Systems, 2005.

[17] X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In
IEEE Conference on Computer Vision and Pattern Recognition, June 2007.

[18] J. Li, M. Levine, X. An, X. Xu, and H. He. Visual Saliency Based on Scale-
Space Analysis in the Frequency Domain. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(4):996–1010, 2013.

[19] C. Koch and S. Ullman. Shifts in selective visual attention: towards the
underlying neural circuitry. Human Neurobiology, 4:219–227, 1985.

[20] D. Gao, S. Han, and N. Vasconcelos. Discriminant saliency, the detection of
suspicious coincidences, and applications to visual recognition. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 31(6):989–1005, June
2009.

[21] A. Oliva, A. Torralba, M. Castelhano, and J. Henderson. Top-Down Control
of Visual Attention in Object Detection. In Proceedings of the IEEE Interna-
tional Conference on Image Processing, 2003.

[22] V. Mahadevan and N. Vasconcelos. Saliency-based Discriminant Tracking. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2009.

[23] A. Borji, D. Sihite, and L. Itti. Quantitative Analysis of Human-Model Agree-
ment in Visual Saliency Modeling: A Comparative Study. IEEE Transactions
on Image Processing, 22(1):55–69, 2013.

119

[24] S. Chavez, Q. Xiang, and L. An. Understanding Phase Maps in MRI: A New
Cutline Phase Unwrapping Method. IEEE Transactions on Medical Imaging,
21(8):966–977, 2002.

[25] M. Jenkinson. Fast, Automated, N-dimensional Phase-Unwrapping Algo-
rithm. Magnetic Resonance in Medicine, 49(1):193–197, January 2003.

[26] S. Pandit, N. Jordache, and G. Joshi. Data-dependent systems methodology
for noise-insensitive phase unwrapping in laser interferometric surface char-
acterization. Journal of the Optical Society of America A, 11(10):2584–2592,
October 1994.

[27] J. Huntley and H. Saldner. Temporal phase-unwrapping algorithm for auto-
mated interferogram analysis. Applied Optics, 32(17):3047–3052, June 1993.

[28] R. Goldstein, H. Zebker, and C. Werner. Satellite radar interferometry: Two-
dimensional phase unwrapping. Radio Science, 23(4):713–720, July 1988.

[29] D. Ghiglia and M. Pritt. Two-Dimensional Phase Unwrapping. John Wiley
& Sons, New York, 1998.

[30] K Itoh. Analysis of the phase unwrapping algorithm. Applied Optics,
21(14):2470, July 1982.

[31] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed Op-
timization and Statistical Learning via the Alternating Direction Method of
Multipliers. Foundations and Trends in Machine Learning, 3(1):1–122, 2010.

[32] R. Tibshirani. The Solution Path of the Generalized Lasso. PhD thesis, 2011.

[33] H. Hongxing, J. Bioucas-Dias, V. Katkovnik, and L. Wu. Interferometric
Phase Image Estimation via Sparse Coding in the Complex Domain. 2013.

[34] A. Agrawal, R. Raskar, and R. Chellappa. What Is the Range of Surface
Reconstructions from a Gradient Field? In Proceedings of the European Con-
ference on Computer Vision, pages 578–591, 2006.

[35] S. Madsen, H. Zebker, and J. Martin. Topographic Mapping Using Radar
Interferometry: Processing Techniques. IEEE Transactions on Geoscience
and Remote Sensing, 31(1):246–256, 1993.

[36] B. Hunt. Matrix formulation of the reconstruction of phase values from phase
differences. Journal of the Optical Society of America, 69(3):393–399, March
1979.

[37] J. Marroquin and M. Rivera. Quadratic regularization functionals for phase
unwrapping. Journal of the Optical Society of America A, 12(11):2393, Novem-
ber 1995.

120

[38] L. Guerriero, G. Nico, G. Pasquariello, and S. Stramaglia. New regularization
scheme for phase unwrapping. Applied Optics, 37(14):3053–8, May 1998.

[39] G. Nico, G. Palubinskas, and M. Datcu. Bayesian Approaches to Phase
Unwrapping: Theoretical Study. IEEE Transactions on Signal Processing,
48(9):2545–2556, 2000.

[40] D. Ghiglia and L. Romero. Minimum Lp-norm two-dimensional phase un-
wrapping. Journal of the Optical Society of America, 13(10):1999–2013, 1999.

[41] D. Ghiglia and L. Romero. Robust two-dimensional weighted and unweighted
phase unwrapping that uses fast transforms and iterative methods. Journal
of the Optical Society of America A, 11(1):107, January 1994.

[42] J. Dias and J. Leitao. The ZpiM Algorithm: A Method for Interferometric
Image Reconstruction in SAR/SAS. IEEE Transactions on Image Processing,
11(4):408–22, January 2002.

[43] J. Bioucas-Dias and G. Valadão. Phase Unwrapping via Graph Cuts. IEEE
Transactions on Image Processing, 16(3):698–709, March 2007.

[44] D. Reddy, A. Agrawal, and R. Chellappa. Enforcing Integrability by Error
Correction using l1-minimization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2009.

[45] J. Dias, T. Silva, and J. Leitao. Absolute Phase Estimation with Discontinu-
ities: A Stochastic Nonlinear Filtering Approach. In Proceedings of the IEEE
International Geoscience and Remote Sensing Symposium, 1998.

[46] V. Katkovnik, J. Astola, and K. Egiazarian. Phase Local Approximation
(PhaseLa) Technique for Phase Unwrap From Noisy Data. IEEE Transactions
on Image Processing, 17(6):833–846, 2008.

[47] E. Candès. Compressive sampling. In International Congress of Mathemati-
cians, 2006.

[48] D. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, April 2006.

[49] E. Candes and T. Tao. Near-optimal signal recovery from random projections:
universal encoding strategies? IEEE Transactions on Information Theory,
52(12):5406–5425, December 2006.

[50] E.J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information. IEEE
Transactions on Information Theory, 52(2):489–509, February 2006.

[51] Richard G. Baraniuk. Compressive Sensing [Lecture Notes]. IEEE Signal
Processing Magazine, 24(4):118 –121, 2007.

121

[52] J. Romberg. Imaging via Compressive Sampling. IEEE Signal Processing
Magazine, 25(2):14–20, March 2008.

[53] M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly,
and R. Baraniuk. Compressive imaging for video representation and coding.
In Proceedings of the Picture Coding Symposium, 2006.

[54] J. Park and M. Wakin. A Multiscale Framework for Compressive Sensing of
Video. In Picture Coding Symposium, 2009.

[55] A. Sankaranarayanan, C. Studer, and R. Baraniuk. CS-MUVI: Video com-
pressive sensing for spatial-multiplexing cameras. In Proceedings of the Inter-
national Conference on Computational Photography, 2012.

[56] D. Reddy, A. Veeraraghavan, and R. Chellappa. P2C2: Programmable Pixel
Compressive Camera for High Speed Imaging. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2011.

[57] A. Sankaranarayanan, P. Turaga, R. Chellappa, and R. Baraniuk. Compressive
acquisition of linear dynamical systems. SIAM Journal on Imaging Sciences,
6(4):2109–2133, 2013.

[58] M. Asif and J. Romberg. Sparse recovery of streaming signals using l1 homo-
topy. arXiv, 2013.

[59] D. Angelosante, J. Bazerque, and G. Giannakis. Online adaptive estimation
of sparse signals: where RLS meets the l1 norm. IEEE Transactions on Signal
Processing, 58(7):3436–3447, 2010.

[60] N. Vaswani. Kalman filtered compressed sensing. In IEEE International Con-
ference on Image Processing, 2008.

[61] N. Vaswani and W. Lu. Modified-CS: Modifying Compressive Sensing for
Problems With Partially Known Support. IEEE Transactions on Signal Pro-
cessing, 58(9):4595–4607, September 2010.

[62] Namrata Vaswani. LS-CS-residual (LS-CS): compressive sensing on least
squares residual. IEEE Transactions on Signal Processing, 58(8):4108–4120,
August 2010.

[63] M. Cossalter, G. Valenzise, M. Tagliasacchi, and S. Tubaro. Joint Compressive
Video Coding and Analysis. IEEE Transactions on Multimedia, 12(3):168–183,
April 2010.

[64] V. Stankovic, L. Stankovic, and S. Cheng. Compressive image sampling with
side information. In Proceedings of the IEEE International Conference on
Image Processing, 2009.

122

[65] V. Stankovic, L. Stankovic, and S. Cheng. Sparse signal recovery with side
information. In Proceedings of the European Signal Processing Conference,
2009.

[66] J. Scarlett, J. Evans, and S. Dey. Compressed sensing with prior information:
information-theoretic limits and practical decoders. IEEE Transactions on
Signal Processing, 61(2):427–439, 2013.

[67] D. Malioutov, S. Sanghavi, and A. Willsky. Sequential Compressed Sensing.
IEEE Selected Topics in Signal Processing, 4(2):435–444, April 2010.

[68] P. Boufounos, M. Duarte, and R. Baraniuk. Sparse signal reconstruction from
noisy compressive measurements using cross validation. In IEEE Workshop
on Statistical Signal Processing, 2007.

[69] A. Ashok, P. Baheti, and M. Neifeld. Compressive imaging system design
using task-specific information. Applied Optics, 47(25):4457–71, September
2008.

[70] J. Duarte-Carvajalino, G. Yu, L. Carin, and G. Sapiro. Task-driven adaptive
statistical compressive sensing of gaussian mixture models. IEEE Transactions
on Signal Processing, 61(3):585–600, 2012.

[71] A. Averbuch, S. Dekel, and S. Deutsch. Adaptive compressed image sensing
using dictionaries. SIAM Journal on Imaging Sciences, 5(1):57–89, January
2012.

[72] Shihao Ji, Ya Xue, and Lawrence Carin. Bayesian Compressive Sensing. IEEE
Transactions on Signal Processing, 56(6):2346–2356, January 2008.

[73] C. Chou, R. Rana, and W. Hu. Energy efficient information collection in
wireless sensor networks using adaptive compressive sensing. In Proceedings
of the IEEE Conference on Local Computer Networks, 2009.

[74] J. Haupt, R. Baraniuk, R. Castro, and R. Nowak. Sequentially designed
compressed sensing. In Proceedings of the IEEE Statistical Signal Processing
Workshop, 2012.

[75] X. Yuan, J. Yang, P. Llull, X. Liao, G. Sapiro, D. Brady, and L. Carin.
Adaptive temporal compressive sensing for video. arXiv, 2013.

[76] H. Schaeffer, Y. Yang, and S. Osher. Real-time adaptive video compressive
sensing. Technical report, UCLA CAM, 2013.

[77] X. Clady, F. Collange, F. Jurie, and P. Martinet. Object tracking with a pan-
tilt-zoom camera: application to car driving assistance. In Proceedings of the
IEEE International Conference on Robotics and Automation, 2001.

123

[78] A. Senior, A. Hampapur, and M. Lu. Acquiring multi-scale images by pan-
tilt-zoom control and automatic multi-camera calibration. In Proceedings of
the IEEE Workshop on Applications of Computer Vision, 2005.

[79] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple proof of the
restricted isometry property for random matrices. Constructive Approxima-
tion, 28(3):253–263, January 2008.

[80] D. Donoho and J. Tanner. Precise undersampling theorems. Proceedings of
the IEEE, 98(6):913–924, June 2010.

[81] G. Warnell, D. Reddy, and R. Chellappa. Adaptive Rate Compressive Sensing
for Background Subtraction. In IEEE International Conference on Audio,
Speech, and Signal Processing, 2012.

[82] Rachel Ward. Compressed Sensing With Cross Validation. IEEE Transactions
on Information Theory, 55(12):5773–5782, 2009.

[83] W. Johnson and J. Lindenstrauss. Extensions of Lipschitz maps into a Hilbert
space. Contemporary Mathematics, 26:189–206, 1984.

[84] R. Kashyap. A Bayesian comparison of different classes of dynamic models
using empirical data. IEEE Transactions on Automatic Control, 22(5):715–
727, 1977.

[85] G. Schwarz. Estimating the dimension of a model. The Annals of Statistics,
6(2):461–464, 1978.

[86] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–
471, 1978.

[87] E. van den Berg and M. P. Friedlander. Probing the Pareto frontier for ba-
sis pursuit solutions. SIAM Journal on Scientific Computing, 31(2):890–912,
2008.

[88] E. van den Berg and M. P. Friedlander. SPGL1: A solver for large-scale sparse
reconstruction, June 2007. http://www.cs.ubc.ca/labs/scl/spgl1.

[89] S. Julier, J. Uhlmann, and H. Durrant-Whyte. A new approach for filtering
nonlinear systems. In Proceedings of the American Control Conference, 1985.

[90] MATLAB. version R2013a. The MathWorks Inc., Natick, Massachusetts,
2013.

[91] D. Ballard. Animate vision. Artificial Intelligence, 48(1):57–86, February
1991.

[92] A. Borji, D. Sihite, and L. Itti. Salient Object Detection: A Benchmark. In
Proceedings of the European Conference on Computer Vision, 2012.

124

[93] N. Bruce and J. Tsotsos. Saliency, attention, and visual search: An informa-
tion theoretic approach. Journal of Vision, 9(3):1–24, 2009.

[94] C. Ip and A. Varshney. Saliency-Assisted Navigation of Very Large Land-
scape Images. IEEE Transactions on Visualization and Computer Graphics,
17(12):1737–46, December 2011.

[95] Christian Siagian and Laurent Itti. Biologically-Inspired Robotics Vision
Monte-Carlo Localization in the Outdoor Environment. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems,
2007.

[96] J. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active Vision. International
Journal of Computer Vision, pages 333–356, 1988.

[97] K. Fleming, R. Peters, and R. Bodenheimer. Image mapping and visual at-
tention on a sensory ego-sphere. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2006.

[98] J. Ruesch, M. Lopes, A. Bernardino, J. Hornstein, J. Santos-Victor, and
R. Pfeifer. Multimodal saliency-based bottom-up attention a framework for
the humanoid robot iCub. In IEEE International Conference on Robotics and
Automation, 2008.

[99] R. Szeliski. Image Alignment and Stitching: A Tutorial. Technical Report
MSR-TR-2004-92, Microsoft, 2006.

[100] M. Brown and D. Lowe. Automatic Panoramic Image Stitching using Invariant
Features. International Journal of Computer Vision, 74(1):59–73, December
2007.

[101] I. Bogdanova, A. Bur, and H. Hugli. Visual Attention on the Sphere. IEEE
Transactions on Image Processing, 17(11), November 2008.

[102] I. Bogdanova, A. Bur, H. Hügli, and P. Farine. Dynamic visual attention
on the sphere. Computer Vision and Image Understanding, 114(1):100–110,
January 2010.

[103] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2nd edition, 2003.

[104] R. Hartley. Self-calibration of stationary cameras. International Journal of
Computer Vision, 22(1):5–23, 1997.

[105] T. Cover and J. Thomas. Elements of Information Theory. John Wiley &
Sons, 2nd edition, 2006.

[106] C. Tomasi and R. Manduchi. Bilateral Filtering for Gray and Color Images. In
Proceedings of the IEEE International Conference on Computer Vision, 1998.

125

[107] L. Agapito, E. Hayman, and I. Reid. Self-calibration of rotating and zooming
cameras. International Journal of Computer Vision, 45(2):107–127, 2001.

[108] D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Inter-
national Journal of Computer Vision, 60(2):91–110, November 2004.

[109] P. Kovesi. MATLAB and Octave functions for com-
puter vision and image processing, 2000. Available from:
<http://www.csse.uwa.edu.au/∼pk/research/matlabfns/>.

[110] S. Agarwal and K. Mierle. Ceres Solver: Tutorial & Reference. Google Inc.,
2014.

[111] X. Ren and J. Malik. Learning a Classification Model for Segmentation. In
Proceedings IEEE International Conference on Computer Vision, 2003.

[112] P. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image Segmen-
tation. International Journal of Computer Vision, 59(2):167–181, September
2004.

[113] A. Levinshtein, A. Stere, K. Kutulakos, D. Fleet, S. Dickinson, and K. Siddiqi.
TurboPixels: Fast Superpixels Using Geometric Flows. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 31(12):2290–2297, December 2009.

[114] M. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa. Entropy-Rate Clustering:
Cluster Analysis via Maximizing a Submodular Function Subject to a Matroid
Constraint. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(1):99–112, January 2014.

[115] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. SLIC
Superpixels. Technical Report 149300, EPFL, June 2010.

[116] J. Bentley. Multidimensional Binary Search Trees Use for Associative Search-
ing. Communications of the ACM, 18(9):509–517, September 1975.

[117] D. Lee and C. Wong. Worst-Case Analysis for Region and Partial Region
Searches in Multidimensional Binary Search Trees and Balanced Quad Trees.
Acta Informatica, 9(1):23–29, 1977.

[118] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D: Nonlinear Phenomena, 60:259–268, 1992.

126

