Static Typing for Ruby on Rails °

Jong-hoon (David) An

Avik Chaudhuri

Jeffrey S. Foster

Department of Computer Science
University of Maryland
College Park, MD 20742
{davidan,avik,jfoster}@cs.umd.edu

ABSTRACT

Ruby on Rails (or just “Rails”) is a popular web application frame-
work built on top of Ruby, an object-oriented scripting language.
While Ruby’s powerful features help make Rails development ex-
tremely lightweight, this comes at a cost: Ruby is dynamically
typed, and so type errors in a Rails application can remain latent
until run time, making debugging and maintenance harder. In this
paper, we describe DRails, a novel tool that brings static typing to
Rails applications to detect a range of run time errors. DRails works
by translating Rails programs into pure Ruby code in which Rails’s
numerous implicit conventions are made explicit. We then discover
type errors by applying DRuby, a previously developed static type
inference system, to the translated program. We ran DRails on a
suite of applications and found that it was able to detect several
previously unknown errors.

1. INTRODUCTION

Web application frameworks have become indispensable for rapid
web development. One very popular framework is Ruby on Rails
(or just “Rails”), which is built on top of Ruby, an object-oriented
scripting language. While Ruby allows Rails development to be
extremely lightweight, it also introduces a significant challenge.
Ruby is dynamically typed, and that means that type errors in Ruby
programs, and hence Rails programs, can remain latent until run
time. Our main observation in this paper is that many common
programming bugs in Rails programs are essentially due to such
type errors. To give some Rails-specific examples, the program-
mer could make a typo when referring to a database table, could
call a non-existing field accessor method, or could make type er-
rors in Ruby code embedded inside HTML. Anecdotally, the lack
of static types can also impede maintainability, and means that pro-
grammers miss out on the automatically enforced documentation
that types can provide.

Recently, we have been developing Diamondback Ruby (DRuby),
a new static type inference system for ordinary Ruby code [6, 5].
We would like to bring the same type inference to Rails to catch
common programming bugs in Rails programs. Unfortunately, by
itself, DRuby would be essentially useless on Rails code, for two
reasons.

The first problem is that Rails favors “convention over config-
uration” [19], so that analyzing only the application code would
be insufficient. For example, suppose that an application uses a
database table called students. Rails will automatically abstract
rows of this table as instances of a Ruby class Student, and Rails
will create accessor methods in Student to get and set fields ac-

*Technical Report CS-TR-4950. Department of Computer Sci-
ence, University of Maryland, College Park, May 2010.

®0o Companies: info

@ http://localhost/companies finfo?name ~ Q- O »
[1] Ruby on Rails guides Rails with HTTPS »
Shoppers

Products

Fudge Delight (cake)
Chill Bill (beer)

Figure 1: Screenshot from catalog

cording to the database schema. While such a design leads to very
concise code, it makes Rails programs unanalyzable with DRuby,
or indeed with most other static analyses—there are too many im-
plicitly created methods, which DRuby would think are missing;
too many conventions relating names in different parts of the ap-
plication, which DRuby would fail to check; and too many implicit
method calls, which DRuby would not see, and hence would not
type check. (More examples of this problem appear in Section 2.)

The second problem is that even if we included the framework
code (which implements the conventions) in our analysis, the re-
sulting code would still be unanalyzable by DRuby. Indeed, this
code uses highly dynamic, low-level class and method manipula-
tions that are typically hard to analyze statically.

In this paper, we address these problems with DRails, a novel
tool that brings DRuby’s type inference to Rails. The key insight
behind DRails is that we can make implicit Rails conventions ex-
plicit through a Rails-to-Ruby transformation, and then analyze the
resulting programs with DRuby. Type errors in the transformed
programs indicate type errors in the original Rails applications. As
far as we are aware, DRails is the first tool to bring static typing
to Rails. Furthermore, we expect that DRails’s transformation can
serve as a front-end for other static analyses on Rails programs, and
the idea of analyzing programs by transformation can be applied to
other code development frameworks as well.

DRails’s transformation itself is fairly complicated, because Rails
has many moving parts. The major steps include parsing a Ruby
file containing the database schema; transforming HTML files with
embedded Ruby into pure Ruby code that renders the same web
page; using a dynamic “load-time” analysis to discover how the
Rails application calls the Rails API; and finally inserting the im-
plied method definitions and calls into the source code. Some of
our implementation details are interesting in their own right, as they
allow us to optimize our transformation code and provide more as-
surance of the faithfulness of the transformed code (Section 3).

We evaluated DRails by running it on a suite of 11 Rails pro-

Request —® Controller || Model
—
Response <— View

Figure 2: Rails MVC architecture

grams gathered from a variety of sources. DRails found 12 pre-
viously unknown errors that can cause crashes or unintended be-
havior at run time. DRails also identified 2 examples of question-
able coding practice. The fact that DRails could find these errors is
particularly surprising since such applications are often thoroughly
tested during development using Rails’s in-built testing infrastruc-
ture. Furthermore, DRails reported 57 false positives; about half of
them were due to known incompleteness issues in DRuby, and we
expect most of the others to be eliminated with minor extensions to
DRails (Section 4).

We believe these results suggest that DRails is a promising new
tool for preventing errors in Rails applications, and we think that
our transformation-based approach will prove very useful for many
other future static analyses for Ruby on Rails.

2. REASONING ABOUT RUBY ON RAILS

Rails is built on top of Ruby, an object-oriented scripting lan-
guage [4]. To illustrate how Rails works and the challenges of
reasoning about Rails applications, we will develop a small pro-
gram called catalog that maintains an online product catalog. As
we will see in the following sections, the small size of the program
is somewhat illusory; there is a lot of implicit code run by Rails
even for this program, and such code typically blows up the size of
programs by a factor of around 2.7 in our experiments.

The database for catalog tracks a set of companies, each of which
has a set of products. In turn, each product has a name plus a
longer textual description. The capabilities provided by catalog
are illustrated with the screenshot in Figure 1. This page is gen-
erated when the user visits “<server>/companies/info?
name=Shoppers”, and it shows the products belonging to com-
pany “Shoppers.” In this case, there are two products, “Fudge De-
light” with description “cake,” and “Chill Bill” with description
“beer.” The catalog application also allows the user to update prod-
uct descriptions, and it displays the product listing screen for the
owning company afterward. For example, assuming ‘“Fudge De-
light” has id 4 in the database, then if the user visits “<server>
/products/change/4?description=cake”, the descrip-
tion for “Fudge Delight” will be updated to “cake,” and the screen-
shot in Figure 1 will be displayed.

Rails applications use a model-view-controller (MVC) architec-
ture [7], in which any web request by the client is translated into
a call to some method in a controller, which in turn uses a model
to perform database accesses and eventually returns a view, i.e.,
the text of a web page, as the response. Figure 2 shows how var-
ious components of catalog interact. A request to catalog eventu-
ally produces a response after possible interactions with a database.
Internally, catalog has two models (Company and Product), two
controllers (CompaniesController and ProductsController), and one
view (“companies/view/info.html.erb”). Arequest gen-
erates a call to one of the controller actions, which possibly inter-

O - T

db/schema.rb

create_table “companies” do |[t|
t.string “name”
end

create_table “products” do [t|
t.integer “company_id”
t.string “name”
t.string “description”

end

models/company.rb

class Company < ActiveRecord::Base
has_many :products
validates_uniqueness_of :name
end

models/product.rb

class Product < ActiveRecord::Base
belongs_to :company
validate :unique_name_in_company

def unique_name_in_company?(x)
x.company != company ||
Xx.name != name

end

def unique_name_in_company
Product.all.forall do |p|
p.unigue_name_in_company?(self)
end
end
end

Figure 3: catalog schema and models

acts with the database through the models, and eventually calls the
view action to generate a response. We next discuss the code for
these various components.

2.1 Models

Recall that the catalog application includes two database tables,
one for the companies and one for their products. The first listing
in Figure 3 shows
db/schema.rb, which is a Ruby file that is auto-generated from the
database table. (The code for a Rails application is split across sev-
eral subdirectories, including db/ for the database, and models/,
views/, and controllers/ for the correspondingly named compo-
nents.) This file records the names of the tables and the fields of
each row: the companies table has a name field, and the products
table has fields company_id, name, and description. (A few other,
minor details of this file are omitted for simplicity.)

In Rails, each row in a table is mirrored as an instance of a model
class (henceforth, just “model”), which must be defined by a file in
the models/ directory. The bottom two listings in Figure 3 show
the Company class, corresponding to the companies table, and the
Product class, corresponding to the products table. Note the singu-
lar/plural relationship between model and table names.

Rails uses the information from schema.rb to automatically add
field setter and getter methods to the models, among other things.
For example, it creates methods name() (called on line 20) and
name=() to get and set the corresponding field of a Product object.

Models not only have methods added to them based on the database ~_Controllers/companies_controller.rb

schema, but they also inherit from the Rails class ActiveRecord::Base | class CompaniesController < ActionController::Base

(as shown on lines 10 and 14; < indicates inheritance). This class 30| def info

defines a variety of useful methods, including several that tell Rails 31 @company = Company.find_by_name (params[:name])
about relationships between tables. In our example, each Productis | end

owned by some Company, and this is indicated on line 15 by call- 3 end

ing the (inherited) belongs_to method with the argument :company
(a symbol). When Rails sees this call, it adds methods company()
and company=() to Product. Analogously, each company can have 3| <h2><%= @company.name %></h2>

many products, indicated by the call on line 11, which adds meth- 35| <h3>Products</h3>

ods products() and products=() (note the pluralization) to Company. 3| <table>

For these methods to function, Rails requires that the company_id 3| <% @company.products.each do |product| %>

field declared on line 6 exist; this field maps each product to acom- 38 <tr><td> o
pany. 39 <%= product.name %> (<%= product.description %>)

views/companies/info.html.erb

S

Next, if a model instance is updated or created, the save() method ~ ® o</ td><{3tr>
(inherited from ActiveRecord::Base) is called to commit it to the *|< /{; &:d /0>
2| < >

database. This method will reject objects whose validation meth-
ods fail. For example, line 12 calls validates_uniqueness_of :name
to create a validation method that requires the name field of a com- controllers/products_controller.rb
pany is unique across all companies.

Programmers can also define custom validation methods that in-
clude arbitrary Ruby code. For example, line 16 registers the vali-

43| class ProductsController < ActionController::Base
«| before_filter :authorize, :only = :change

dation method defined in lines 23-27. This method iterates through (| def info
all Products in the database (line 24) and, for each one, calls its ; company = Product.find(params[:id]).company
unique_name_in_company? method with argument self. (Note this redirect_to :controller = “companies”, :action = “info”,
method’s name differs from the previous one only in the trailing ?.) 4 ‘name = company.name
This method, defined on lines 18-21, returns false if the argument 50| end
has the same company and name as the receiver. 51
) _ 52| def change
Possible Errors Caught by DRails 53 @product.description = params[:description]
Models already provide a rich source of errors that DRails can > %gmdum'save
K 55
catch: « end
e Pluralization of model names is implicit in Rails, and misun- :; private

derstandings of this convention can lead to hard-to-understand | def authorize

bugs. Even worse, having a model with a singular name foo and @product = Product.find(params][:id])
a model with its plural foos (or however it is inflected) can cause if @product.company.name == session[:user] then nil
a lot of confusion, because Rails will map both to the table foos 4 else info
(as the plural of foos is foos). DRails checks for these kinds of & end
bugs, and makes sure all the models exist as database tables. | end
o end

e Various methods for accessing database columns are created im-
plicitly by Rails, and since Ruby has no static type checking, itis
easy to make a mistake in calling such a method and not realize Figure 4: catalog controllers and views
it during development. Worse, there are some idiosyncrasies in
Rails’s method generation that programmers might not be aware

of, leading to mistakes. For example, Rails names join tables 2.2 Controllers and Views
using a combination of the names of the associated tables, and Moving on with our examp]e’ now that we have created our mod-
the exact combination is sometimes difficult to predict. DRails els, we can construct the actual web application. In Rails, the ac-
helps ameliorate such problems by explicitly generating Ruby tions available in a web application are defined as methods of con-
code corresponding to auto-generated methods and then using troller classes. The first listing in Figure 4 shows CompaniesController,
DRuby to check that method calls are type correct. which, as do other controllers, inherits from ActionController::Base.
This controller defines an action info that allows clients to list the
¢ DRails makes sure the bodies of all programmer-defined meth- products belonging to a particular company. This action is invoked
ods are type safe. For example, if on line 25 the programmer for- whenever the client requests a URL beginning with “<server>
gets to pass an argument to unique_name_in_company?, or calls /companies/info”, and it expects a parameter name to be
unique_name_in_company instead, DRails reports that it cannot passed as part of the POST or GET request. When info is called,
find an instance method in class Product with the required signa- it finds the Company row whose name matches params[:name],
ture. As another example, if the programmer moves the || from the requested name, and stores it in field @company (line 31).
the end of line 19 to the beginning of line 20 (a common mis- The find_by_name method called here is implicitly added to the
take in Ruby, due to line breaks acting as statement delimiters), Company model by Rails. The last step of an action is often a call
DRails reports that while || is expected to take 2 arguments, it to render, which displays a view. In this case, info includes no such
only takes 1 argument here. call, so Rails automatically calls render :info to display the view

with the same name as the controller.

That view, which corresponds to the screenshot in Figure 1, is
shown as the second listing in Figure 4. As is typical, the view is
written as an .html.erb file, which contains HTML with embedded
Ruby code. Here, text between <% and %> is interpreted verbatim
as Ruby code, and text between <%= and %> is interpreted as a
Ruby expression that produces a string to be output in the result-
ing web page. For example, line 34 shows a second-level heading
whose content is the value of @company.name; recall @company
was set by the controller, so it is an interesting design decision that
Rails allows it to be accessed here. Similarly, lines 37-43 contain
Ruby code to iterate through the company’s products (line 37) and
render each one (line 39).

The third listing in Figure 4 defines a more complex controller,
ProductsController, with several actions. The first one, info (lines 46—
50), computes the company of the product given by the parame-
ter id and then uses redirect_to to pass control to the info action
of CompaniesController (lines 30-32), specifying the company’s

name. As we discussed above, this in turn calls render :info (lines 34—

42). It is possible to call redirect_to several times before eventu-
ally calling render, and it allows control to flow through several
controllers before eventually displaying a view.

The change action (lines 52-56) allows a product description to
be updated. However, we only want to allow authorized users to
make such changes. Thus, on line 44 we call before_filter to spec-
ify that the authorize action should always be run before change.
Note that authorize is declared private (line 59), so it cannot be
called directly as an action.

When authorize is called, it looks up the product to be modi-
fied (line 60) and checks whether the user logged into the current
session (stored in session[:user]; this is established elsewhere (not
shown)) matches the name of the company of that product (line 61).
If so, then authorize evaluates to nil (line 61), and control passes to
change, which updates the product description (line 53), commits
the change to the database (line 54), and then calls info to show
the product listing screen (line 55). Otherwise, authorize calls info
(line 62), and since that ends in a redirect_to, the action change
will never be rendered.

More Possible Errors Caught by DRails

Again, DRails can prevent several potential pitfalls in writing con-
trollers and views.

e View file names could have the wrong extension, in which case
Rails may be unable to find them, causing crashes or unintended
behavior. A (perhaps implicit) call to render could go to a
non-existent view. Furthermore, as control flows get complex,
with actions inserted before other actions with filters, and ac-
tions in one controller calling actions in another, it is easy to
make a typo in the method name for a filter (say, by writing
:authorized instead of :authorize on line 44), or make a mis-
take in a redirect_to call (say, by writing “company” instead of

“companies” on line 48, or @company = ... rather than company = ...

on line 47). DRails catches such bugs by trying to explicitly in-
sert the intended method calls and type checking the resulting
code.

e Embedded code in views might make type errors when access-
ing fields (like @company) set in controllers. DRails checks for
such errors plus other type errors in controller and view code.

Summing up, even an application as simple as catalog contains
many opportunities for inadvertent mistakes, and Ruby’s dynamic

Rails source program DRails
models/ |’_ _________________ \
views/ I Combined ; Instrumented :
controllers/ /IW Program Program |
helpers/ I |
db/schema.rb | + + |
config/environment.rb : Transformed Rails API |
Program ¢ Usage Info |
|
J
e — =

base.rb I

+Stubs | |

)

Figure 5: DRails architecture

typing means that such errors can remaining latent until run time.
In addition to the problems we have already seen, DRails can de-
tect several other issues, such as type-incorrect calls to Rails API
methods, using Rails features that are deprecated, and in general
catching type errors in Ruby code. Next, we explore how DRails
transforms Rails source code into Ruby, to allow us to use type
inference to find these problems.

3. DRAILS: FROM RAILS TO RUBY

Figure 5 shows the basic architecture of DRails, which com-
prises approximately 1,700 lines of OCaml and 2,000 lines of Ruby.
To run DRails, the user executes the command “drails dirname,”
where dirname is the root directory containing the Rails program.
In addition to the application subdirectories we have already seen,
Rails programs also include several other directories, parts of which
are analyzed by DRails. The helpers/ directory contains Ruby
code that may be shared across several models or controllers, and
the file config/environment.rb has global configuration informa-
tion such as external library imports and global constants.

As illustrated in Figure 5, DRails begins by combining all the
separate files of the Rails application into one large program. Then
DRails instruments this program to capture arguments passed to
Rails API calls. The program is loaded with Ruby, and the re-
sulting instrumentation output is fed back into DRails and used to
transform the combined program, making uses of Rails’s conven-
tions explicit. This transformed program is passed to DRuby along
with base.rb, a file that gives type signatures to remaining Rails
API methods, and stub files containing type signatures for any li-
braries used by the application. DRuby performs type inference
and emits warnings for any errors it finds.

The most unusual feature of our approach is instrumenting the
source code and then loading it into Ruby. Originally we used a
purely static approach that found methods called and their argu-
ment values via pattern matching on the parsed Ruby source code.
However, we found the pattern matching code to be ad hoc and te-
dious to write, since it needed to be specialized for all Rails API
functions. Moreover, since in the dynamic approach we record
method calls using a simple string-based encoding, it made it very
easy to discover how a Rails application was calling the API, and
DRuby uses a related dynamic analysis technique to good effect on
regular Ruby code [5].

We next describe the steps that DRails uses to produce the vari-
ous program representations in Figure 5.

66

68

70
7

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

Defining Models

Recall from the example in Figure 3 that Rails creates getter and
setter methods in models based on the fields listed in db/schema.rb.
This kind of low-level class manipulation is not typable in DRuby
(or in any standard type system), so DRails makes the effect explicit
by transforming the models to include getter and setter method def-
initions. For example, the Company model in Figure 3 is modified
as follows:

class Company < ActiveRecord::Base
attr_accessor :id, :name # inserted by DRails

The call to attr_accessor creates methods to read and write fields
@id and @name.

There are also a few other implicit model conventions that DRails
makes explicit. One important case is find_by_z(y), which, if called,
returns the first occurrence of a record whose x field has value y.
(For an example, recall line 31 of Figure 4.) There is one such
method, plus one find_by_all_z method, for each possible field.
DRails adds type annotations for these methods to the model, e.g.,
since Company has a field name, DRails adds type annotations for
find_by_name and find_all_by_name to class Company.

“Rubifying” Views

To fully reason about a Rails application, we need to be able to
analyze the Ruby code embedded in views, and we wanted to do
this without changing DRuby’s rather complex parser. Our solution
was to use Markaby for Rails [16] to parse the views and produce
regular Ruby classes that generate the same web page. We call this
process Rubifying the view. Note that while Markaby worked as-is
initially on small examples, we needed to make major changes to
apply it to our suite of programs in Section 4.

As an example, here is the Rubified views/companies/info.html.erb
of Figure 4, slightly simplified for discussion purposes:

module CompaniesView
include ActionView::Base
def info
Rubify.h2 do Rubify.text(@company.name) end
Rubify.h3 do Rubify.text(*“Products”) end
Rubify.table do
@company.products.each do |product|
Rubify.tr do
Rubify.td do
Rubify.text(product.name)
Rubify.text(“(”)
Rubify.text(product.description)
Rubify.text(*)”)
end
end
end
end
end
end

Here we created a method info (based on the view name info). The
calls to class methods of Rubify output strings containing the ap-
propriate HTML text, and notice that the calls are intermixed with
regular Ruby code. For example, line 72 creates the second-level
heading on line 34 of Figure 4.

We created this method as part of module CompaniesView, where
the module name was derived from the file’s location under views/.
Rails does approximately the same thing, creating a CompaniesView

88
89

© o
S

1
92

class from the view in the background. We make the view a module
rather than a class for reasons we will discuss later in this section.

This step not only produces Ruby code we can analyze with
DRuby, but DRails also does two other checks: It makes sure that
the HTML is well-formed (in the sense that closing and opening
tags are balanced), and it also ensures that the views’ filename ex-
tensions match what Rails expects.

Combining a Rails Application and Gathering API Us-
age Data

DRails parses the application’s source code (including the Rubi-
fied views) into the Ruby Intermediate Language (RIL), a subset of
Ruby that is designed to be easy to analyze and transform [6]. RIL
is DRuby’s internal representation, and it can be unparsed into code
that is semantically identical to the original source. DRails con-
catenates the RIL representation of each application component,
creating a single, “combined” program that contains the whole ap-
plication.

The next step is to discover what calls the program makes to the
Rails API, so that we can make the effects of hard-to-statically ana-
lyze calls explicit in the source code. For example, in Section 2 we
saw that calling has_many created methods to get and set database
table relationships, and calling before_filter modified the sequenc-
ing of actions. To type programs that use these, then, DRails needs
to add the actual method definitions and the implied calls to the
program.

As mentioned earlier, we record information about these Rails
API calls dynamically. We observed that essentially all of the calls
we need to process are invoked as the model and controller source
files are loaded. For example, the call to before_filter on line 44
in Figure 4 is actually invoked as the ProductsController class is
loaded. Hence we use a “load time” analysis: At each API call
of interest, we add instrumentation that records the location of the
call in a global variable. We also created a file with mock defini-
tions of has_many, before_filter, and all the other necessary Rails
methods. Our mock functions simply record the method called, its
arguments, and any additional information that is helpful in mod-
eling the call. We then load the file with Ruby, which triggers the
instrumentation calls, and the information we gather is stored in a
data file that is then loaded by OCaml and used in the next step.

There are four groups of Rails API calls that DRails records: fil-
ters, such as before_filter and after_filter, which create chains of
filters before and after actions; associations, such as belongs_to
and has_many, which create methods to access database model re-
lationships; callbacks, such as validate, which insert method calls
whenever particular events happen (e.g., a model is saved to the
database); and layouts, which specify a “template” view that is al-
ways invoked first in a controller and then calls out to other views.

Transforming Rails Programs for Analysis

Next, we use the Rails API call information to transform the origi-
nal source program and make the behavior of the calls explicit. The
particular transformation varies with the category of call.

Filters are eliminated but the appropriate calls are inserted in the
controllers. For example, before_filter on line 44 of Figure 4 is
removed, and the change method is modified to have an explicit
call to authorize:

def change
authorize() # inserted by DRails
@product.description = params[:description]
@product.save
info

end

94

95

G

96
97
98
99

101

102
103
104
105
106

107
108
109
110
111
112
113
114

115

116
117
118
119
120
121
122

123

Association calls are also removed, and the methods implied by
them are added. One subtlety is that if there is a has_many rela-
tionship, then accessor methods return something that is actually
a “monkey-patched” instance of Ruby’s Array class. (“Monkey
patching” means the object’s methods are changed at run time.)
We model this using a class HasManyCollection that we created to
mimic the special return type of these methods. For example, the
has_many call on line 11 of Figure 3 produces the following set of
type annotations (and more):

class Company < ActiveRecord::Base
##% products : () — HasManyCollection<Product>

##% products= : |
##% (Array<Product>) — HasManyCollection<Product>

end

Line 96 annotates the getter method, which takes no arguments and
returns an instance of HasManyCollection whose contents has type
Product. Similarly, lines 98-99 annotate the setter method, which
takes an Array and returns a HasManyCollection. More details on
DRuby’s type annotation language can be found elsewhere [6].
Callbacks are inserted into the appropriate positions in the code,
similarly to filters. To illustrate some of the complexities, suppose
we modified the Product model to also call before_validation :foo,
which indicates method foo should be called before validation:

class Product < ActiveRecord::Base
belongs_to :company
validate :unique_name_in_company
before_validation :foo # added

Then DRails transforms Product as follows:

class Company < ActiveRecord::Base

def validate()
before_validation() # inserted by DRails
unique_name_in_company()

end

def before_validation() # inserted by DRails
foo()

end

Here DRails rewrote line 104 as the method on lines 108-111, and
it rewrote line 105 as the method on lines 112—114. The key is that
on line 109, our validate method calls the transformed code for
before_validation. Then in base.rb, we define ActiveRecord::Base
(which is inherited on line 107) so that save calls validate:

class ActiveRecord::Base
def save()
...validate()...
end
def validate()
...before_validation()...
end

Notice that lines 120-122 also define a validate method, which is
overridden in our transformed Company class. This lets us han-
dle the case when before_validation is used with a non-custom

124
125
126
127
128
129
130
131
132
133
134
13

S

136
137
138
139

validator (e.g., the call to validates_uniqueness_of on line 12 in
Figure 3).

Lastly, layouts are modeled simply as regular view classes, ex-
cept we ensure that if a layout is specified, it is always called first
whenever a view is rendered.

Further Transformations

Our transformation phase also makes a few other changes. The
most substantial is to support render and redirect_to. Recall from
Section 2 that these methods invoke either views or actions accord-
ing to their arguments. DRails makes these calls explicit so that
DRuby can “see” them.

To do this, we modify the structure of controller and view classes
in several ways. First, we duplicate each controller method—one
copy stays as-is (in case it is called directly in the Ruby code; af-
ter all, it is an ordinary method), and the second copy is modi-
fied so the view it renders or controller it redirects to is called ex-
plicitly. For example, DRails modifies CompaniesController and
CompaniesView as follows:

class CompaniesController < ApplicationController
include CompaniesView
def info
@company = Company.find_by_name(params[:name])
end
def _ ctrl_info
@company = Company.find_by_name(params[:name])
__view_info()
end
end
module CompaniesView
include ActionView::Base
def view_info
...Rubify.h2 do Rubify.text(@company.name) end...
end
end

Notice that the copy of info on lines 126—128 is as before, but a
duplicate copy of it on lines 129-132 has been made with name
__ctrl_info. That version, instead of returning directly, ends with
a call to __view_info(), the renamed version of the Rubified info
method. Recall the view’s method was called implicitly before.
Also notice that on line 137, the view is able to access a field set
by the controller on line 130, even though they come from differ-
ent classes. We model this in DRails by making CompaniesView
a module (line 134) and then including it in CompaniesController
(line 125). (We use a module because while a Ruby class can only
have one superclass, it can inherit from many modules.) This inher-
itance is why we renamed the info method of the view to __view_info(),
to avoid clashes with the info method of the controller.

Running DRuby

Finally, the last step is to apply DRuby to the transformed program.
At this point, the Rails-specific analysis is complete, and we have
replaced all the hard-to-analyze Rails API methods with equivalent
code that we can check for type errors—and type errors in that code
indicate problems in the original, untransformed Rails application.
We model the remainder of the Rails API with code and type
annotations in base.rb. For example, here are signatures for two
methods of ActiveRecord::Base, which is inherited by models:

40| module ActiveRecord

141

42
143

él.ass Base
##% attributes<t> : () — Hash<Symbol, t>

145
146

##% attributes=<t> : |
##% (Hash<Symbol, t>, ?Boolean) — Hash<Symbol, t

The method attributes returns a hash mapping attribute names to
their values. The method attributes= allows programmers to set
multiple attributes at once by passing in a hash and, optionally, a
boolean flag (indicating whether certain attributes may be changed
by the call), and it returns the new attributes hash. In general, we
give these API methods the most precise type signatures possible
in DRuby. We should note that sometimes our type annotations are
less precise than we would like, however, because some Rails API
methods are extremely polymorphic or would require a dependent
type system for full precision.

We include base.rb when we run DRuby on the transformed pro-
gram. We also include stub files with annotations for portions of the
Ruby standard library and other external libraries used by the Rails
applications in our experiments.

4. EXPERIMENTS

We evaluated DRails by running it on 11 Rails applications from
various sources including RubyForge, OpenSourceRails, and our
colleagues. The first group of columns in Figure 6 gives the size of
each application, in terms of source code lines (counted with wc);
the size in kilobytes of the RIL control-flow graph after parsing
the model, controllers, and similar files and Rubifying the views;
and the size in kilobytes of the RIL control-flow graph after full
transformation. Note that the last step of DRails’s transformation
increases the code size significantly, by a factor of 2.7 on average.
This increase shows that there is a significant amount of code that
Rails produces by convention.

We made four kinds of changes to applications to make them
“DRails-compatible,” summarized in the second group of columns
in Figure 6. First, DRails cannot complete its translation if the
.html.erb files in the application contain unbalanced tags, if tags
are opened in HTML code and closed in Ruby code, or if embedded
Ruby code contains syntax that DRuby cannot parse. We count the
number of changes to correct these issues under (R).

Second, DRails requires that the directory structure of the appli-
cation match the documented specification for Rails exactly, whereas
Rails itself is slightly more forgiving. We needed to do minor reor-
ganizations in the directory structure of diamondlist and onyx. We
also needed to flatten some class names that had nested scope and
move the class files accordingly. We count these cases under (H).

Third, sometimes render and redirect_to are called with non-
constant arguments, or an application uses “RESTful routing” [20]
instead, which DRails does not currently support. For these cases
we manually specified the targets of render and redirect_to, and
we count the number of times we needed to do this as (I).

Finally, since DRails does not automatically detect library im-
ports, we had to add several require statements (which load another
file) to config/environment.rb. In the same file, we also removed
a call require "boot.rb", which loads the Rails framework, as this is
unnecessary for DRails. These changes are listed as (B).

4.1 Results

The results of running DRails on these programs are tabulated in
the last two groups of columns in Figure 6. We ran DRails on an
AMD Athlon 4600 processor with 4GB of memory.

The second-to-last group of columns shows the running times
of DRails. We break this down into the DRails-only time on the
left, and the DRuby time in the middle; the total time is the sum of

these two columns. The reported running times are the average of
three runs. The DRails-only step is typically fairly fast across all
the applications, and most of the running time is due to DRuby.
We manually categorized DRuby’s error reports into four cate-
gories: errors (E), reports that correspond to bugs that may crash
the program at run time or cause unintentional behavior; warn-
ings (W), reports for code that behaves correctly at run time, but
uses suspicious programming practice; deprecated (D), reports of
uses of Rails features that are no longer available in Rails 2.x; and

false positives (F) that do not correspond to actual bugs. Recall

from Section 3 that Rails duplicates code for actions in controllers.
This may cause duplicate warnings, which we do not include in the
counts.

Errors

We found 12 errors in the applications. Eight of the errors, six in
lohimedia and two in onyx, are due to programmer misunderstand-
ings of Ruby’s syntax. For example, lohimedia contains the code:

flash[:notice] = “You do not have...”

+ ..

Here the programmer intends for the string on the second line to be
concatenated with the first line. In Ruby, however, line breaks af-
fect parsing, so the string on the first line is assigned to flash[:notice].
Then the second line results in a call to the unary method + with
a string argument, which is a type error. Because Ruby is dy-
namically typed, errors like this can remain latent until run-time,
whereas DRuby (and DRails) can find such bugs statically.

As another example of this kind of error, onyx contains the code:

@count, @next, @last = 1

We contacted the developer and confirmed that he expected this to
assign 1 to all three fields. However, this code only assigns 1 to
@count, and sets @next and @last to nil. DRails catches this error
as a type mismatch between Fixnum (the type of integers) and Array
(the type expected at a parallel assignment in DRuby).

The other two errors in onyx are due to the following embedded
Ruby code:

<% @any_more =
Post.find(:first, :offset => (@offset.to_i +
@posts_per_page.to_i) + 1, :limit => 1) %>

Here DRuby reports that Post, which the programmer seems to be
treating as a model, is undefined, as indeed it is.

One error in diamondlist is due to invoking the nonexistent method
<< on a Hash. (A method with that name does exist in Array, per-
haps explaining the error.) The other error in diamondlist occurs in
call to render in which the specified view, top_bar, does not exist.

Finally, boxroom has an interesting error in one of its models
due to a call to an undefined method password_confirmation. This
method name is commonly used by convention in Rails applica-
tions, but it is only available if the user declares both password
and password_confirmation fields, usually by calling attr_accessor.
However, in this case the programmer instead calls attr_accessible
on these fields, which has completely different semantics.

Warnings

We found 2 warnings across our applications.
chuckslist occurs in the code

The warning in

@ad = Category.find(params[:category]).ads.new

CFG sizes (kb) Patches (#) Running times (s) Errors (#)

LoC Before | After R | H| I | B || DRails | DRuby | Total E|{W|[D]|F
depot 997 139 358 . . 1 2.30 9.74 12.04 . 1 1 1
moo 838 143 402 4 3 2.45 18.76 21.21 . . . 3
pubmgr 943 196 548 . 1 3.00 26.41 29.41 . .
rtplan 1,480 273 697 2 3.47 26.65 30.12 6 1
amethyst 1,183 264 729 . . 4 3.53 39.03 42.56 . . 1
diamondlist 1,415 265 786 41 2 1 4.10 23.81 2791 || 2 . . 2
chuckslist 1,447 329 883 1 19| 4 4.08 52.23 56.31 . 1 2| 14
boxroom 2,330 376 959 6 1|2 4.16 87.23 91.39 || 1 - 27 6
onyx 2,228 484 | 1,190 6| 1| - -]1 5.62 79.75 8537 || 3 . 1
mystic 2,822 639 | 1,525 || 13 511 6.38 | 146.40 | 152.78 . - 11
lohimedia || 11,106 1,290 | 3,331 9 213 14.01 | 66295 | 676.96 || 6 36 | 17

R-erbfix H - directory reorganization I - routing info B - environment.rb

E-errors W - warnings D - deprecated F - false positives

Figure 6: Experimental results

Here ads returns a collection (a HasManyCollection in DRails). Ac-
cording to the Rails documentation, the programmer should there-
fore call create to make a new instance. However, although the
new method is not mentioned in the documentation for this case, it
appears to work. (This is a very confusing usage, because new is
typically called only on instances of Class.)

The other warning occurs in depot, in which Hash’s map method
is used without an explicit tuple type for the block argument:

validates_inclusion_of :pay_type,
;in => PAYMENT_TYPES.map {|disp, value| value}

The correct syntax for the block argument is |(disp,value)|, because
map expects a single argument (a tuple) rather than two arguments.
Ruby is fairly lenient in this particular case and pairs the two values
before binding them to map’s formal parameter. However, we con-
sider this a bad programming practice because such pairing does
not always happen automatically in Ruby [6].

Deprecated

We found 72 uses of deprecated constructs across five benchmarks.
All of these cases cause run-time errors on Rails 2.x, though they
operate correctly on older versions of Rails. Our applications often
do not document what version of Rails they are intended to work
with, so these may or may not be errors depending on the program-
mer’s intention.

False positives

DRails reported 57 false positives. Twenty-nine of these (across
eight benchmarks) are due to limitations in DRuby’s annotation
language; we sometimes had to assign overly general types to Rails
API methods, and this could conflate types during inference and
trigger false warnings.

Twenty-four of the false positives (across four benchmarks) are
because DRails does not handle some Rails features, namely the
ActionMailer, ActionController, and Configuration modules. We ex-
pect these could be addressed with more engineering effort.

Three false positives are due to DRails’s Rubification step. Re-
call that DRails converts HTML tags to Ruby method calls with
an optional block. The introduction of these block scopes means
local variables in different blocks are different, but in the original
view file they referred to the same variable. Again, this could be
addressed with more engineering effort.

The last false positive is due to a run-time type test. DRuby

does not realize that if the test passes, then the tested value has the
given type. This could be solved by extending DRuby to include
occurrence typing [24].

4.2 Threats to Validity

We should emphasize that DRails by no means checks for all
possible errors in Rails programs, e.g., clearly Rails programs can
have errors that are unrelated to types. Beyond that, there are sev-
eral potential threats to the validity of our experimental results.

First, as we saw in Section 3, our type signatures for Rails API
methods are sometimes overly general, statically allowing calls that
might fail at run time. Nevertheless, our experiments show that
DRails is still quite useful in finding errors in Rails programs.

Second, DRails’s modeling of the Rails API is incomplete and
could be slightly inaccurate. Indeed, the Rails API is enormous,
and many features of its API are poorly or not at all documented.
In such cases, we had to examine Rails’s source and use trial and
error to understand the feature, and thus there could be mistakes
in our interpretation. However, as we have applied DRails across
a range of programs and produced sensible results, we believe we
have correctly modeled the essential core of Rails.

Third, our categorization of some of DRails’s errors might be in-
correct, e.g., we may have classified code as erroneous that actually
behaves correctly at run time. We addressed this concern by con-
ferring among ourselves about the errors and getting the opinion of
the developers for some of the problems we found.

Finally, there could be bugs in DRuby that cause it to unsoundly
miss type errors. However, DRuby has been run on a significant
amount of code at this point [6, 5], and so we believe any remaining
unsoundness is likely minor.

S. RELATED WORK

Static Analysis for Web Applications

Most existing work on static analysis of web applications focuses
on verification of security properties. Lam et al. [13] combine static
analysis with model checking to verify that information-flow pat-
terns are satisfied in Java-like programs. Huang et al. [11] use a
lattice-based static analysis algorithm derived from type systems
and typestate to ensure similar information-flow properties. The
tool TAJ [25] performs taint analysis of web applications written in
Java, and uses novel program slicing techniques to handle reflec-
tive calls and flows through containers. On the other hand, the tool

Pixy [12] performs alias analysis for PHP and finds security vul-
nerabilities in web applications written in PHP. Xie and Aiken [28]
address the same problem, and present a static analysis algorithm
based on symbolic evaluation to handle dynamic features of PHP.
While the above papers focus on server-side code, Guha et al. [10]
present a static control-flow analysis for client-side JavaScript code
to handle dynamic code generation. Maffeis and Taly [15] study
methods for filtering and rewriting JavaScript code to address sim-
ilar problems.

The key differences between these systems and DRails is our
focus on static typing and Ruby on Rails, a combination we believe
we are the first to study.

Static Typing in Dynamically Typed Languages

Other related work focuses on the elimination of common program-
ming mistakes in scripting languages through compiler support.
WASH [22] is a Haskell-embedded language for server-side web
scripting that provides extensive guarantees due to its pervasive use
of type information. Thorn [27] is another scripting language, tar-
geting the JVM, that allows optional constraint annotations to drive
lightweight static type inference, and provides safety guarantees
for the typed parts of a program while ensuring smooth integration
with the untyped parts of the program [26]. Recently Gorbovitski et
al. [8] implement an abstract interpretation framework for Python
to provide a basis for program analysis. Maffeis et al. [14] provide
an operational semantics for JavaScript to provide a similar basis
for program analysis.

Finally, there is a lot of theoretical work on integrating static
and dynamic typing in object-oriented languages, including grad-
ual types [21] and hybrid types [3]. Some of these ideas have
been implemented in (extensions of) JavaScript [2, 23], Python [1],
Smalltalk [9], Scheme [24], and Ruby [6]. We build on top of the
latter system, DRuby, in this work. A related but less powerful type
inference algorithm appears in RadRails, an IDE for Rails [17, 18],
to suggest methods during method completion in the IDE.

6. CONCLUSION

In this paper, we present DRails, a novel static analysis tool for
Rails applications. DRails works by translating Rails applications
into pure Ruby code in which the automation provided by Rails’s
sophisticated internal machinery is made explicit. We then apply
DRuby, a previously developed static type inference system for
Ruby, to the result. We show that static typing can catch a variety
of bugs in Rails applications that may cause exceptions or other-
wise unintended behaviors at run time. We believe we are the first
to bring static typing to Ruby on Rails.

There are several interesting directions for future work. We plan
to continue extending DRails’s analysis to more features of Rails,
to increase its comprehensiveness. We also plan to consider ways
to check correctness properties that are deeper than simple typing.
Verifying such properties on Rails programs might require some
interesting new techniques. Lastly, we intend to explore how far
our approach can be applied to web applications written in related
scripting languages such as Perl, Python, and PHP.

7. REFERENCES

[1] D. Ancona, M. Ancona, A. Cuni, and N. Matsakis. RPython:
Reconciling Dynamically and Statically Typed OO
Languages. In DLS, 2007.

[2] C. Anderson, P. Giannini, and S. Drossopoulou. Towards
Type Inference for JavaScript. In ECOOP, pages 428452,
2005.

[3] C.Flanagan, S. N. Freund, and A. Tomb. Hybrid types,
invariants, and refinements for imperative objects. In FOOL,
2006.

[4] D. Flanagan and Y. Matsumoto. The Ruby Programming
Language. O’Reilly Media, Inc, 2008.

[5] M. Furr, J. An, and J. S. Foster. Profile-guided static typing
for dynamic scripting languages. In OOPSLA, 2009. To
appear.

[6] M. Furr, J. An, J. S. Foster, and M. Hicks. Static Type
Inference for Ruby. In OOPS Track, SAC, 2009.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, 1995.

[8] M. Gorbovitski, K. T. Tekle, and Y. A. Liu. Assessing alias
analysis for object-oriented and dynamic languages, 2009.
IBM PL Day Talk.

[9] J. O. Graver and R. E. Johnson. A type system for Smalltalk.
In PLDI, pages 136-150, 1990.

[10] A. Guha, S. Krishnamurthi, and T. Jim. Using static analysis
for Ajax intrusion detection. In WWW, 2009.

[11] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and
S.-Y. Kuo. Securing web application code by static analysis
and runtime protection. In WWW, pages 40-52, 2004.

[12] N. Jovanovic, C. Kruegel, and E. Kirda. Precise alias
analysis for static detection of web application
vulnerabilities. In PLAS, pages 27-36, 2006.

[13] M. S. Lam, M. Martin, B. Livshits, and J. Whaley. Securing
web applications with static and dynamic information flow
tracking. In PEPM, pages 3-12, 2008.

[14] S. Maffeis, J. Mitchell, and A. Taly. An operational
semantics for JavaScript. In APLAS, pages 307-325, 2008.

[15] S. Maffeis and A. Taly. Language-based isolation of
untrusted Javascript. In CSF, 2009.

[16] Markaby for Rails, 2006. http://redhanded.hobix.
com/inspect/MarkabyforRails.html.

[17] J. Morrison. Type Inference in Ruby. Google Summer of
Code Project, 2006.

[18] Radrails, 2008. http://www.aptana.com/rails.

[19] Ruby on Rails, 2009. http://rubyonrails.org.

[20] S. Ruby, D. Thomas, and D. H. Hansson. Agile Web
Development with Rails, Third Edition. The Pragmatic
Bookshelf, 2009.

[21] J. Siek and W. Taha. Gradual typing for objects. In ECOOP,
pages 2-27, 2007.

[22] P. Thiemann. An embedded domain-specific language for
type-safe server-side web-scripting. ACM Transactions on
Internet Technology, 2003.

[23] P. Thiemann. Towards a type system for analyzing javascript
programs. In ESOP, pages 408—422, 2005.

[24] S. Tobin-Hochstadt and M. Felleisen. The Design and
Implementation of Typed Scheme. In POPL, pages 395406,
2008.

[25] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and
O. Weisman. TAJ: Effective taint analysis for Java. In PLDI,
2009. To appear.

[26] T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Ostlund, and
J. Vitek. Integration of typed and untyped code in Thorn,
2009. Submitted.

[27] T. Wrigstad, J. Ostlund, G. Richards, J. Vitek, B. Bloom,

J. Field, N. Nystrom, and R. Strnisa. Thorn—Robust,
concurrent, extensible scripting on the JVM. In OOPSLA,
2009. To appear.

[28] Y. Xie and A. Aiken. Static detection of security
vulnerabilities in scripting languages. In USENIX Security,
pages 179-192, 2006.

10

