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Chapter 2: Household Location Decisions and the Value of Climate Amenities 

 
I value climate amenities by estimating a discrete location choice model for U.S. 

households. The utility of each metropolitan statistical area (MSA) depends on location-

specific amenities, earnings opportunities, housing costs, and the cost of moving to the 

MSA from the household head’s birthplace. I use the estimated trade-off among wages, 

housing costs, and climate amenities to value changes in mean winter and summer 

temperatures. I find that households sort among MSAs as a result of heterogeneous tastes 

for winter and summer temperatures. Preferences for winter and summer temperatures are 

negatively correlated: households that prefer milder winters, on average, prefer cooler 

summers, and households that prefer colder winters prefer warmer summers. Households 

in the Midwest region, on average, have lower marginal willingness to pay to increase 

winter and reduce summer temperatures than households in the Pacific and South Atlantic 

census divisions. I use my results to value changes in winter and summer temperatures for 



 

the period 2020 to 2050 under the B1 (climate-friendly) and A2 (more extreme) climate 

scenarios. On average, households are willing to pay 1 percent of income to avoid the B1 

scenario and 2.4 percent of income to avoid the A2 scenario. 

 

Chapter 3: Do Discrete Choice and Hedonic Models Yield Different Results?  A 

Comparison of Approaches in the Context of Urban Amenities 

 
I examine differences between the two principal approaches used to estimate the value of 

urban amenities: the hedonic model, in which amenities are capitalized into wages and 

housing prices, and the discrete model of household location choices, which is derived 

from a random utility framework. Several empirical studies have noted that the discrete 

choice approach can yield much larger estimates of amenity values than the hedonic 

approach. Using 2000 PUMS census data, I investigate these differences and their possible 

causes by estimating how U.S. households value various aspects of climate. I estimate both 

hedonic and discrete choice models, allowing for heterogeneity in tastes for mean winter 

and summer temperature. In line with the previous literature, I find that discrete choice 

models consistently yield mean marginal willingness to pay estimates for climate amenities 

that significantly exceed those implied by hedonic estimates. Additionally, I find that the 

household sorting patterns implied by the two models are very different. For example, the 

discrete choice model suggests that households with the greatest preference for warmer 

winter temperature tend to locate in cities with the mildest winters, while the hedonic 

models do not.  I show that explanations for these differences advanced by the previous 

literature, such as differences in mobility assumptions between the two approaches, cannot 

fully explain my findings, and I suggest an alternative theory that deserve further 

investigation.   
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Chapter 1: Introduction 

 

 Climate change associated with the accumulation of greenhouse gases in the 

atmosphere is projected to have serious impacts on human and natural ecosystems, and it 

will necessitate significant adaptation and mitigation through climate policy to allay its 

effects (IPCC Synthesis Report, 2014).  Determining the benefit of potential climate 

policies requires an estimate of the damages associated with climate change, one 

component of which is the amenity value of climate – for example, a household’s 

willingness-to-pay (WTP) to experience warmer winters or cooler summers.   Despite this, 

climate damage assessments do not typically incorporate amenity values, and with the 

exception of Fan. et. al. (2016) and Albouy et. al. (2016), recent estimates for the value of 

climate amenities in the United States are sparse.  Measuring these amenity values poses 

an econometric challenge because, unlike goods traded in formal markets, there is no 

explicit price defining WTP for climate amenities. Consequently, implicit prices must be 

estimated by the researcher.  While there are two generally accepted revealed preference 

approaches to valuing amenities that vary spatially – the continuous hedonic and discrete 

choice random utility models – the literature has paid relatively little attention to whether 

these models produce similar empirical results.  This dissertation attempts to address these 

gaps in the literature through two studies aimed at estimating the value of climate amenities 

and exploring its dependence on modelling approach. 
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 In the second chapter of this dissertation, I estimate a discrete choice model of 

household location decisions, recovering the WTP for mean winter and summer 

temperatures and using those values to estimate the associated welfare impacts of projected 

climate change scenarios to U.S. households. In my model, a household chooses the 

location that maximizes utility, with utility a function of climate amenities, as well as 

earnings, housing costs, psychological costs from living away from birthplace, and other 

location-specific attributes.  Variation along these dimensions identifies the parameters of 

household utility functions, which then constitute the value placed on local amenities: the 

marginal rate of substitution between amenities and income is equivalent to a household’s 

marginal willingness-to-pay (MWTP).  Hypothesizing that households have significant 

taste variation over average seasonal temperatures, I estimate a mixed (or random 

parameters) logit model, allowing the coefficients on winter and summer temperature to be 

random and correlated.  Indeed, I find that while on average, households favor warmer 

winters and cooler summers, MWTP varies greatly across households.  Furthermore, 

preferences for winter and summer temperature are negatively correlated, so that 

households with the strongest preference for mild winters also tend to have the strongest 

preference for mild summers.  I compute MWTP for winter and summer temperature for 

each household by conditioning on the information inherent in their location decision and 

then use these conditional (household-specific) MWTP figures to value future climate 

scenarios.  Specifically, I compute each household’s expected compensating variation for 

the temperature changes projected by the B1 and A2 climate scenarios from the IPCC’s 

(Intergovernmental Panel on Climate Change) 2000 Special Report on Emissions 

Scenarios.    
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 I find that households in the South Atlantic and Pacific states have the highest 

MWTP for warmer winters and cooler summers, while households in the Midwest have 

relatively weaker preferences for temperature.   Failure to account for this preference 

heterogeneity and associated geographic sorting impacts welfare measures of the projected 

climate change scenarios.  To illustrate, cities in the New England and Middle Atlantic 

states will experience larger increases in winter temperature than in summer temperature 

with the B1 scenario, although the reverse is true for the East South Central and West South 

Central census divisions. Ignoring sorting overstates the WTP of households in the New 

England and Middle Atlantic states for the B1 scenario and greatly understates the value 

of avoiding it to households in the Midwest. On net, allowing for taste sorting increases 

the average household WTP to avoid the B1 scenario by 29 percent compared with a world 

in which sorting is ignored. While much less pronounced, incorporating sorting actually 

decreases the WTP to avoid the A2 scenario. 

 Taking sorting into account, I find that households in are willing to pay 1 to 2 

percent of income to avoid the 1° to 2° increases in average winter and summer 

temperatures associated with the B1 and A2 projections, respectively.  Estimates for the 

United States of market-based damages associated with climate change have typically been 

in the range of 1 percent of gross domestic product for an increase in mean temperature of 

2°C (NRC 2010). My results suggest that the amenity value of climate could significantly 

increase estimates of climate damages, even for moderate temperature increases. 

  While Chapter 2 employs a discrete choice model to value climate amenities, the 

Roback (1982) hedonic model provides an alternative approach, and studies interested in 

valuing urban amenities like climate typically follow one of these two methodologies.  
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Unlike the discrete choice approach which recovers MWTP by estimating the parameters 

of household utility functions, the hedonic model assumes that amenities are capitalized 

into local wages and property values via the equilibrium sorting of households across 

locations.  This approach involves modelling local wages and property values as a function 

of local amenities, where the weighted sum of these hedonic regression coefficients yields 

the implicit amenity prices, or MWTP.  Previous research has noted the hedonic and 

discrete choice approaches to amenity valuation may yield different MWTP estimates, 

though no careful comparison of the two methodologies exists in the current literature.  

Furthermore, there has been no systematic attempt to investigate or characterize the root 

cause of these differences.  In the third chapter of this dissertation, I delve into the question 

of how amenity value estimates depend on the modelling approach used, carefully 

comparing the estimates produced by hedonic and discrete choice models that have been 

applied to a common dataset and an identical research question.  Given the important role 

of amenity valuation to comprehensive policy cost-benefit analysis, this provides a relevant 

and critical step towards obtaining accurate estimates of the demand for local amenities. 

 In Chapter 3, I examine differences between the continuous hedonic and discrete 

choice approaches in the context of valuing climate amenities.  Specifically, I use the 2000 

census Public Use Microdata Sample (PUMS) to estimate hedonic and discrete choice 

models that value winter and summer temperature. My hedonic models regress the 

weighted sum of wage and housing price indices on mean winter and summer temperature, 

other climate amenities, and various city characteristics using metropolitan statistical areas 

(MSAs) as the geographic unit.  Wage and housing price indices are estimated from 

national labor and housing markets and their weighted sum is constructed according to two 
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sets of weights, one following the adjustments developed by Albouy (2012) and the other 

following the previous hedonic literature (Roback, 1982; Blomquist, Berger and Hoehn, 

1988).  I allow the marginal price of winter and summer temperature to vary by city using 

local linear regressions and find substantial variation across metropolitan areas.  My 

discrete choice model mimics that of the one described in Chapter 2, though I focus on a 

different sample of households, namely prime-aged households between the ages of 25 and 

55, to provide cleaner comparison with the hedonic models. 

 I find that the discrete choice and hedonic approaches produce very different 

estimates for the value of local amenities.  Specifically, the continuous hedonic approach 

yields much lower values than the discrete choice approach for both marginal increases in 

winter temperature and marginal decreases in summer temperature.  I also find that the two 

approaches imply very different patterns of taste-based sorting across metropolitan areas, 

which is especially pertinent in this context given the expectations for varying geographic 

impacts of climate change.  One possible reason for these differences centers on mobility 

assumptions: the hedonic model assumes perfect mobility, whereas the discrete choice 

model can directly incorporate frictions through household utility functions and 

psychological moving costs.  However, while moving costs are an important component of 

my discrete choice model (both for identification and the value of MWTP figures), 

eliminating them from the model does not align discrete choice and hedonic estimates.  

Thus, though likely a factor, the theoretical assumptions regarding mobility cannot fully 

explain differences in empirical results.   

 Another, perhaps more telling, difference involves the way each model handles 

population shares.  The hedonic model relies on the geographic price variation that makes 
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households indifferent between locations of different amenity profiles, allowing for labor 

and housing markets to clear.  City populations are a consequence of equilibrium in the 

hedonic model, but are not explicitly modeled or utilized.  In extreme contrast, the discrete 

choice model is identified on population shares: the discrete choice model predicts the 

probability a city is chosen using variation in prices and amenities across locations (where, 

when summed over households, the probability a city is chosen is simply the population 

share).  The results implied by a simple share model, where I regress log population shares 

on wage and housing price indices in addition to local amenities, support this hypothesis 

regarding population shares.  The share model is essentially a simplified version of the 

discrete choice model, yet it strips away discrepancies with the hedonic model related to 

mobility assumptions and how labor and housing markets are defined – the major 

difference that remains is the use of population shares.   I find marginal amenity values 

from the share model generally agree with those from the discrete choice model and remain 

much larger than hedonic estimates.  This could suggest that differences regarding the 

treatment of population shares is driving the wedge between MWTP estimates from 

hedonic and discrete choice models of urban amenity valuation. 

 

    

   



7 

 

Chapter 2:  Household Location Decisions and the Value of 

Climate Amenities 

 

2.1 Introduction 

 The amenity value of climate – what people are willing to pay to experience warmer 

winters or avoid hotter summers – is an important component of the benefits of greenhouse 

gas mitigation policies. Yet, with the exception of Fan et. al. (2016) and Albouy et al. 

(2016), the recent literature contains few estimates of the value of climate amenities for the 

United States. Estimating these values poses an econometric challenge: climate, by 

definition, changes slowly, so researchers must rely on cross-sectional variation in climate 

to measure its impact on household location decisions. This paper helps fill this gap by 

estimating a discrete location choice model in which a household’s choice of the city in 

which to live depends on climate amenities as well as earnings, housing costs, and other 

location-specific amenities. I use the model to estimate household willingness to pay 

(WTP) for changes in mean winter and summer temperatures and use these values to assess 

the welfare effects of temperature changes in cities throughout the United States.  

 Traditionally, economists have used hedonic wage and property value functions to 

value climate amenities (Cragg and Kahn, 1999; Gyourko and Tracy, 1991; Blomquist et 

al., 1988; Smith, 1983). In a world in which households can migrate costlessly across cities, 

location-specific amenities should be capitalized into wages and property values. In 
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equilibrium, each household will select a city (i.e., a vector of amenities) so that the 

marginal cost of obtaining each amenity, measured in terms of wages and housing costs, 

just equals the value it places on the amenity (Roback 1982).1 This approach has been 

followed most recently by Albouy et al. (2016), who regress a quality of life (QOL) index 

– a weighted sum of wage and price indices – for each public-use microdata area (PUMA) 

on a vector of location-specific amenities, including climate amenities.  

 An alternate approach to valuing amenities that vary by location is to estimate a 

discrete choice model of household location decisions (Bayer et al., 2004; Bayer and 

Timmins, 2007; Bayer et al., 2009; Cragg and Kahn, 1997; Fan, Klaiber and Fisher-

Vanden, 2016, Klaiber and Phaneuf, 2010). Households choose among locations based on 

the utility they receive from each location, which depends on wages, housing costs, and 

location-specific amenities. Variations in wages, housing costs, and amenities across 

locations permit identification of the parameters of household utility functions.  

 The discrete choice approach, which I follow here, offers several advantages over 

the traditional hedonic approach. Most important, it allows the researcher to more easily 

incorporate market frictions, including the psychological and informational costs of 

moving.2 The hedonic approach assumes that consumers are perfectly mobile and hence 

that the weighted sum of wage and housing price gradients will equal the consumer’s 

                                                 

1 Formally, marginal WTP for an amenity equals the sum of the slope of the hedonic wage function with 
respect to the amenity plus the slope of the hedonic property value function, weighted by the share of 
income spent on housing, evaluated at the chosen amenity vector (Roback, 1982). 
2  Barriers to mobility prevent the sum of wage and housing price gradients from equaling marginal 
willingness to pay, and they imply that the assumption of national labor and housing markets, which underlies 
the hedonic approach, may not accurately capture wage and housing costs in different cities. 
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marginal willingness to pay (MWTP) for an amenity. Bayer et al. (2009) demonstrate that 

this equality fails to hold in the presence of moving costs, and they incorporate the 

psychological and informational costs of leaving one’s birthplace into an equilibrium 

model of household location choice. I also incorporate moving costs from birthplace in my 

model of location choice and demonstrate that their omission significantly understates the 

value consumers place on temperature and precipitation. 

 The discrete choice approach more readily incorporates heterogeneity in consumer 

preferences than the hedonic approach.  This can be done by interacting household 

characteristics with amenities (Fan, Klaiber and Fisher-Vanden, 2016) or by estimating a 

random coefficients logit model.  In the case of climate, the distribution of winter and 

summer temperature coefficients from a random coefficients logit model can be used to 

examine how MWTP for winter and summer temperature varies with residential location.   

 The discrete choice approach also allows me to obtain exact welfare measures for 

changes in temperature throughout the United States. These welfare measures incorporate 

both taste sorting based on climate and the opportunity for households to move in response 

to changes in temperature.  

 

2.1.1 My Approach 

 In this paper, I value climate amenities by estimating a model of residential location 

choice among metropolitan statistical areas (MSAs) for U.S. households in 2000. I model 

the choice among MSAs based on potential earnings, housing costs, moving costs, climate 

amenities, and other location-specific amenities. The model is estimated as a mixed logit 
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model, which allows the coefficients on climate amenities to vary among households. I 

compute the means of these coefficients for each household, conditional on choice of MSA, 

and then examine how the average conditional mean MWTP for climate amenities varies 

across MSAs to describe taste sorting.  

 I value future changes in temperature in two ways. I use the conditional mean 

MWTPs to compute the value of changes in temperature assuming that each household 

does not move. This is analogous to the value of temperature changes computed by Albouy 

et al. (2016) based on local linear estimates of the hedonic price function. I also compute 

exact welfare measures (i.e., expected compensating variation) using each household’s 

conditional distribution of taste coefficients. These measures implicitly allow households 

to move in response to temperature changes. 

 My paper builds on the work of Cragg and Kahn (1997), who were the first to use 

a discrete choice approach to value climate amenities.3 I extend their work, following 

Bayer et al. (2009), by including moving costs and modeling choices across MSAs. Unlike 

Bayer et al., however, I cannot use multiple cross sections to difference out unobserved 

amenities within cities. Historical data indicate that climate changes slowly, forcing me to 

rely on a single cross section of data rather than data over consecutive decades.4 I attempt 

to allay concerns about omitted variable bias by controlling for a wide variety of location-

                                                 

3 Cragg and Kahn (1997) value climate amenities by estimating a model of the choice of state in which to 
live for households that moved between 1985 and 1990.  

4 This is also true of the Ricardian literature that examines the impact of climate on agriculture (e.g., 
Schlenker, Hanemann, and Fisher, 2006). 
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specific amenities other than temperature, especially those that are correlated with 

temperature. 

 

2.1.2 My Findings 

 My results indicate that households are willing to pay to avoid cold winter 

temperatures and hot summer temperatures; however, these values vary significantly by 

residential location. I find a strong positive correlation between MWTP for winter 

temperature and the temperature of the city in which the household lives: households with 

the highest MWTP for warmer winters live in Florida, while those with the lowest MWTP 

live in the Midwest. Preferences for summer temperature and winter temperature are, 

however, negatively correlated (ρ = -0.83). This implies that households that prefer milder 

winters, on average, also prefer milder summers, while households that prefer colder 

winters have a lower MWTP to reduce summer temperatures. MWTP to avoid hotter 

summers is, on average, higher for households who live in the South than for those in the 

Midwest. At the level of census regions, households who live in the Midwest and Northeast 

are less climate sensitive – they have lower MWTPs to increase winter and reduce summer 

temperatures than households who live in the South and West. 

 I use these estimates to value changes in mean summer and winter temperatures 

over the period 2020 to 2050 for 284 U.S. cities that contained over 80 percent of the U.S. 

population in 2000. The Hadley model projects that, under the B1 climate scenario from 
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the Special Report on Emissions Scenarios (SRES), 5  mean summer temperature 

(population weighted) will increase, on average, by 3.3°F in these cities and mean winter 

temperature by 3.4°F. Cities in the New England and Middle Atlantic states will experience 

larger increases in winter temperature than in summer temperature, although the reverse is 

true for the East South Central and West South Central census divisions, and also the 

Pacific and Mountain states. Ignoring sorting overstates the WTP of households in the New 

England and Middle Atlantic states for the B1 scenario and greatly understates the value 

of avoiding the B1 scenario to households in the Midwest. On net, allowing for taste sorting 

increases the average household WTP to avoid the B1 scenario by 29 percent compared 

with a world in which sorting is ignored.  

 Allowing for sorting actually decreases the average household WTP to avoid the 

more severe A2 scenario. The A2 scenario results in very large increases in summer 

temperature in the East and West South Central divisions and the Midwest region. Ignoring 

sorting overstates the disamenity value of the A2 scenario in the Midwest and South census 

regions.  

 Taking sorting into account, the mean household WTP to avoid the B1 scenario in 

the 2020-2050 timeframe is about 1 percent of income; it is about 2.4 percent of income 

for avoiding the A2 scenario. I note that the latter value is within the range reported by 

                                                 
5 To represent a range of driving forces for emissions, such as demographic development, socioeconomic 
development, and technological change, the Intergovernmental Panel on Climate Change (IPCC) developed 
a set of emissions scenarios. In the SRES, IPCC (2000) describes these scenarios in more detail. I use 
projections from a climate-friendly scenario (B1) and a more extreme scenario (A2). 
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Albouy et al. (2016) for a much more drastic climate scenario in the period 2070-2099.6 

One possible reason for the difference in estimates is that I base my estimates on all 

households, whereas Albouy et al. (2016) focus on prime-aged households. My results 

suggest that the value attached to climate amenities varies with the age of the household 

head: on average, households with heads over the age of 55 have a MWTP for higher winter 

temperature and a MWTP to avoid increased summer temperature that is about twice as 

high as households with heads between 25 and 55 years old. For policy purposes, I focus 

on results based on all households.  

 The paper is organized as follows. Section 2.2 presents the household’s location 

decision and the econometric models I estimate. Section 2.3 describes the data used in my 

analysis. Estimation results are presented in Section 2.4. Section 2.5 uses these results to 

evaluate the value of temperature changes projected by the B1 and A2 SRES scenarios, 

and Section 2.6 concludes the paper. 

 

2.2 Household Residential Location Model 

 I model household location in 2000 assuming that each household selected its 

preferred MSA from the set of MSAs in the United States in 2000.7 Household utility 

depends on income less the cost of housing, location-specific amenities, and moving costs 

                                                 
6 Albouy et al. (2016) focus on the A2 scenario in the period 2070-2099, when it is expected to raise mean 
temperature in the United States by 7.3˚F compared with the 1970-1999 period. 

7 Because I focus on the choice of MSA, I am estimating the climate preferences of people who live in 
urban areas.   
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from the birthplace of the household head. Specifically, I assume the utility that household 

i receives from city j is given by  

 𝑈𝑈𝑖𝑖𝑖𝑖 = 𝛼𝛼�𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑖𝑖𝑖𝑖� + 𝑨𝑨𝑗𝑗𝜷𝜷𝑖𝑖 + 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 (1) 

where 𝑌𝑌𝑖𝑖𝑖𝑖 is household i’s income and 𝑃𝑃𝑖𝑖𝑖𝑖 its housing expenditure in city j. 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 represents 

the costs – psychological and other – of a household residing in a location different from 

the head of household’s birthplace.  Put another way, 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 captures the cost of moving to 

MSA j from the household head’s birthplace, and going forward, I refer to these as “moving 

costs.”  𝑨𝑨𝑗𝑗 is a vector of location-specific amenities. Equation (1) assumes that household 

utility is linear in the Hicksian bundle (i.e., 𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑖𝑖𝑖𝑖 ).  I relax this assumption below; 

however, linearity in the Hicksian bundle simplifies the computation of welfare measures.   

 Household income is the sum of the wages of all workers in the household, 𝑊𝑊𝑖𝑖𝑖𝑖, 

plus nonwage income, which is assumed not to vary by residential location. To predict the 

earnings of household workers in locations not chosen, I estimate hedonic wage and 

housing price equations for each MSA, as described below. 

I allow the coefficients on temperature amenities to vary across households.  I 

hypothesize that households vary in their tastes for climate, and sort across MSAs based 

on taste differences. In my base case, summer and winter temperature enter the utility 

function linearly: I assume a constant marginal utility of temperature and estimate a 

household’s willingness to pay for small changes in temperature at their chosen location.  

As a sensitivity analysis, I allow utility to vary non-linearly with temperature.   Specifically, 



15 

I add the squares of winter and summer temperature to the utility function, restricting their 

coefficients to be identical across households.8  

 I choose to estimate a random coefficients model rather than using household 

characteristics to explain heterogeneous preferences across households. Estimating a 

random coefficients model allows me to compute the distribution of marginal utility of 

summer and winter temperature (and hence, marginal willingness to pay), conditional on a 

household’s chosen location. I believe that this is more relevant for evaluating climate 

policy than computing marginal willingness to pay as a function of household 

characteristics.  While it is true that I could calculate preferences conditional on both 

location and household characteristics, understanding how preferences for climate vary by 

(e.g.) education is not the aim of this paper.9    

 Moving costs capture the psychological, search, and out-of-pocket costs of leaving 

a household’s place of origin. Seventy-three percent of households in my sample (see Table 

2.1, full sample) live in the census region in which the head was born; 67 percent live in 

the same census division. Although households have been moving to warmer weather since 

the Second World War (Rappaport, 2007), family ties and informational constraints may 

have prevented this from occurring more completely. As shown below, failure to account 

for these costs significantly alters the value attached to winter and summer temperatures.  

                                                 
8 Estimation results for this sensitivity are quite similar to the base model and are presented in the Model 11 
of Appendix Table C.1. 

9 Fan, Klaiber and Fisher-Vanden (2016) use a model of location choice to examine how preferences to 
avoid temperature extremes vary by education and birthplace.  They find that the college-educated have 
higher willingness to pay to avoid extremely hot and extremely cold days than people without a college 
education.   
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 In my base case, following Bayer et al. (2009), I represent moving costs as a series 

of dummy variables that reflect whether city j is outside of the state, census division, or 

census region in which household i’s head was born. Formally, 

 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 = 𝜋𝜋0𝑑𝑑𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝜋𝜋1𝑑𝑑𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝜋𝜋2𝑑𝑑𝑖𝑖𝑖𝑖
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (2) 

where 𝑑𝑑𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  denotes a dummy variable that equals one if j is in a state that is different 

from the one in which household head i was born, 𝑑𝑑𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 equals 1 if location j is outside 

of the census division in which the household head was born, and 𝑑𝑑𝑖𝑖𝑖𝑖
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  equals 1 if 

location j lies outside of the census region in which the household head was born.   

          I also allow for two alternate specifications of moving costs. In one specification, I 

replace the dummy variables in equation (2) with the log of the distance from the 

population-weighted centroid of the household head’s birthplace state to the population-

weighted centroid of the state, division, and region where the household resides. In the 

other specification, I allow moving costs to vary with the presence of children (following 

Hamilton and Phaneuf, 2015) and marital status. This controls for the idea that households 

may have different moving costs; for example, married households may be constrained by 

finding a city that can accommodate two workers, and households with children may be 

resistant to relocate their children while school-aged. Specifically, I interact the geographic 

dummies in equation (2) with variables indicating whether the household contains any 

children and whether the household head is married.   
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2.2.1 Estimation of the Model 

 Estimating the location choice model requires information on the wages that a 

household would earn and the cost of housing in all MSAs. Because wages are observed 

only in the household’s chosen location, I estimate a hedonic wage equation for each MSA 

and use it to predict 𝑊𝑊𝑖𝑖𝑖𝑖.  The hedonic wage equation for MSA j regresses the logarithm of 

the hourly wage rate for worker m in MSA j on variables (𝑿𝑿𝑚𝑚𝑚𝑚𝑤𝑤 ) measuring the demographic 

characteristics – education, experience, and industry and occupation – of worker m: 

 ln𝑤𝑤𝑚𝑚𝑚𝑚 = 𝛾𝛾𝑗𝑗𝑤𝑤 + 𝑿𝑿𝑚𝑚𝑚𝑚𝑤𝑤 𝜞𝜞𝑤𝑤 + 𝜈𝜈𝑚𝑚𝑚𝑚𝑤𝑤    ∀ 𝑗𝑗 = 1, … , 𝐽𝐽 (3) 

Equation (3) is estimated using data on full-time workers in the Public Use Microdata 

Sample (PUMS). 10  The coefficients of equation (3) are used to calculate the annual 

earnings of each worker in the sample used to estimate the discrete choice model, under 

the assumption that individuals work the same number of hours and weeks in all locations. 

Summing earnings over all individuals in each household, I obtain predicted annual 

household wages for household i in location j (𝑊𝑊�𝑖𝑖𝑖𝑖). Predicted income in city j, 𝑌𝑌�𝑖𝑖𝑖𝑖, equals 

                                                 
10 The equation is estimated using data on all persons working at least 40 weeks per year and between 30 
and 60 hours per week. Persons who are self-employed, in the military, or in farming, fishing, or forestry 
are excluded from the sample. I have also estimated equation (3) allowing for non-random sorting (Dahl, 
2002). Specifically, I compute the probability of moving from each birthplace to current location (in terms 
of census divisions) conditional on each education group listed in Table 2.1 by taking the appropriate cell 
counts in my sample of workers (close to 3 million individuals).  Including this probability correction term 
(in quadratic form) in equation (3) has minimal impact on my wage regression results, possibly due to the 
inclusion of industry and occupation indicators in the equation. The Dahl correction terms are significantly 
different from zero in only 26 percent of the 284 MSA wage regressions. Further, very few coefficients are 
affected by the inclusion of the correction terms – the most affected coefficients are “High School” and 
“Some College” but these change only by 5-6 percent on average. Because the correction terms are rarely 
significant and have little qualitative impact, I elect to use equation (3) without Dahl corrections to predict 
wages for my discrete choice model. 
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the predicted wage income of household i plus its non-wage income, which is assumed not 

to vary by MSA. 

 The cost of housing in each location is estimated based on hedonic property value 

equations for each MSA as given by equation (4) below.  𝑃𝑃𝑖𝑖𝑖𝑖 is the annual cost of owning 

 ln𝑃𝑃𝑖𝑖𝑖𝑖 = 𝛾𝛾𝑗𝑗𝑃𝑃 + 𝑿𝑿𝑖𝑖𝑖𝑖𝑃𝑃 𝜞𝜞
𝑃𝑃 + 𝜈𝜈𝑖𝑖𝑖𝑖𝑃𝑃     ∀ 𝑗𝑗 = 1, … , 𝐽𝐽 (4) 

house i in city j, computed as the sum of the imputed monthly mortgage payment or rent 

and the cost of utilities, property taxes, and property insurance.11 𝑿𝑿𝑖𝑖𝑖𝑖𝑃𝑃  contains a dummy 

variable indicating whether the house was owned or rented, as well as a vector of dwelling 

characteristics, which indicate size, age, and composition of the structure. Utility costs are 

added both to the costs of owning a home and to rents because heating and cooling 

requirements vary with climate. I wish to separate these costs from climate amenities. 

Equation (4) is estimated separately for each MSA in my dataset.  

 I predict housing expenditures for household i in city j (𝑃𝑃�𝑖𝑖𝑖𝑖) assuming that the 

household purchases the same bundle of housing characteristics in city j as it purchases in 

its chosen city. This is clearly a strong assumption. To test its validity, I examine the mean 

value of key housing characteristics (number of bedrooms and number of rooms) and their 

standard deviation across MSAs, for different household groups, characterized by income 

group and household size. The coefficient of variation for number of bedrooms and number 

                                                 
11 The monthly mortgage payment for each house represents the opportunity cost of owning the house. It is 
imputed, based on the owner-assessed value of the house and average mortgage interest rates in 2000. It 
does not represent the actual payment made by the owner of the house. 
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of rooms within income and household size groups averages only 0.07-0.08, suggesting 

that households of similar size and income tend to live in dwellings of similar 

characteristics, thus supporting my methodology for predicting housing expenditures.12,13   

 The results of estimating the individual MSA hedonic wage and housing market 

equations for my base case are summarized in the last two columns of Table A.1 and Table 

A.2 of Appendix A. I find, as do Cragg and Kahn (1997), that the coefficients in both sets 

of hedonic equations vary significantly across MSAs, suggesting that the assumption of 

national labor and housing markets made in hedonic studies is inappropriate.  

 I estimate the discrete location choice model in two stages. The first is a mixed logit 

model in which the indirect utility function incorporates unobserved heterogeneity in 

preferences for winter and summer temperature, and MSA fixed effects (𝛿𝛿𝑗𝑗) according to 

Equation (5). I assume that the temperature coefficients (𝛽𝛽𝑖𝑖𝑊𝑊𝑊𝑊,𝛽𝛽𝑖𝑖𝑆𝑆𝑆𝑆) are jointly normally 

 𝑉𝑉𝑖𝑖𝑖𝑖 = 𝛼𝛼�𝑌𝑌�𝑖𝑖𝑖𝑖 − 𝑃𝑃�𝑖𝑖𝑖𝑖� + 𝑊𝑊𝑊𝑊𝑗𝑗𝛽𝛽𝑖𝑖𝑊𝑊𝑊𝑊 + 𝑆𝑆𝑆𝑆𝑗𝑗𝛽𝛽𝑖𝑖𝑆𝑆𝑆𝑆 + 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑗𝑗  + 𝜀𝜀𝑖𝑖𝑖𝑖 (5) 

                                                 
12 Table A.3 in Appendix A summarizes the variation of key dwelling characteristics across MSAs.  
Variation across number of rooms and number of bedrooms is very small.  Variation in the age of structure 
and number of units is somewhat larger, though given that these variables specify ranges for age and units, 
households are still likely to fall within the same range and have the same values for these indicator 
variables in the hedonic housing regressions.  Home ownership is the variable with the most variation, and I 
suspect that for households in the two lowest income quintiles (where the proportion of ownership is 
roughly 50%), I may be incorrectly predicting ownership status to remain unchanged across alternative 
MSAs.  Ownership is higher for households in the three highest income quintiles, and the coefficient of 
variation across MSAs averages only 10%. 

13 As a sensitivity analysis I estimate a location choice model that uses a housing price index, following 
Bayer et al. (2009), rather than predicting housing expenditures in each MSA. In Bayer et al. (2009), utility 
is assumed to be of the Cobb Douglas form, implying that indirect utility is a function of a housing price 
index that varies across cities, not households. The housing price index for each MSA is the estimated 
MSA fixed effect in a national hedonic housing price equation. (See Appendix D for further details.) 
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distributed, with mean vector 𝝁𝝁 and variance-covariance matrix Σ. The elements of Σ are 

estimated in the first stage.  Following Murdock (2006), in estimating equation (5), the 

means of 𝛽𝛽𝑖𝑖𝑊𝑊𝑊𝑊
 and 𝛽𝛽𝑖𝑖𝑆𝑆𝑆𝑆 are effectively constrained to be zero.  Since the MSA fixed effects 

encompass all local attributes that do not vary across households, the mean vector 𝝁𝝁 is 

contained in 𝛿𝛿𝑗𝑗 , and thus, is estimated in the second stage.  The MSA fixed effects will also 

capture cost of living differences across locations that are common among households, 

whereas 𝑌𝑌𝑖𝑖𝑖𝑖 and 𝑃𝑃𝑖𝑖𝑖𝑖 account for household-specific price differences across locations. The 

error term in the household’s utility function 𝜀𝜀𝑖𝑖𝑖𝑖 combines the error in predicting household 

i’s wages and housing expenditures in city j with household i’s unmeasured preferences 

for city j. Assuming that the idiosyncratic errors are independently and identically 

distributed Type I extreme value, the probability of household i selecting city j is given by 

the mixed logit model. The parameters of equation (5) are estimated via simulated 

maximum likelihood, using a choice set equal to the household’s chosen alternative and a 

random sample of 59 alternatives from the full set of 284 MSAs.14   

                                                 
14 The validity of the McFadden sampling procedure (McFadden 1978) hinges on the independence of 
irrelevant alternatives, which does not hold in the mixed logit model.  Guevara and Ben-Akiva (2013) 
prove that the sampling of alternatives in the mixed logit model produces consistent parameter estimates as 
the number of alternatives sampled approaches the universal choice set. Given the computational trade-offs 
I face between estimating the mixed logit model using all 284 elements of the universal choice set and a 
sample large enough to estimate 284 fixed effects with precision, I must use a sub-sample of the universal 
choice set.  Experiments with the size of the sampled choice set indicated that increasing the size of the 
choice set beyond 60 MSAs did not significantly alter parameter estimates.  This is supported by simulation 
results from Nerella and Bhat (2004), which finds small sample bias when 50 or more alternatives are 
sampled from a choice set of 200.  While beyond the scope of this paper, another option is to pursue a 
latent class model as suggested in von Haefen and Domanski (2016). 
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 In the second stage, city-specific fixed effects are regressed on the vector of 

amenities to estimate the means of the temperature coefficients and the coefficients on the 

other location-specific amenities according to equation (6) below. The ratio of the second  

 𝛿𝛿𝑗𝑗 = 𝑨𝑨𝒋𝒋Γ + 𝑢𝑢𝑗𝑗  (6) 

stage amenity coefficient over the Hicksian bundle coefficient from the first stage yields 

the marginal rate of substitution between the amenity and income, thus defining MWTP 

for that local amenity.  Because this is a static model, where households are implicitly re-

optimizing each period, MWTP values should be interpreted as the annual amount (here, 

year 2000) that households are willing to pay for local amenities.15 

 

2.3 Data 

 The data used to estimate my location model and hedonic wage and housing 

equations come from the 5 percent PUMS of the 2000 U.S. census as well as other publicly 

available data sources. 

 

2.3.1 Sample Households 

 To select the sample used to estimate my location choice models, I focus on 

households residing in one of the 284 MSAs for which I have complete amenity data. These 

                                                 
15 To reiterate, MWTP values in this paper should not be interpreted as the present discounted value of 
forward-looking agents for local amenities resulting from a dynamic model of household location decisions 
like the one presented in Bayer, McMillan, Murphy, and Timmins (2016). 
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MSAs contained 80 percent of the total U.S. population in 2000. To be included, a 

household must be headed by a person 16 years of age or older who was born in the 

continental United States. I exclude households with heads in the military or in certain 

occupations (e.g., logging, mining) that would restrict locational choices. I also eliminate 

households with members who are self-employed, due to difficulty in predicting their 

wages, and households with negative Hicksian bundles at their chosen locations.16  

  Table 2.1 describes the characteristics of my sample households and of subsets of 

these households. I estimate the discrete choice model for the full sample of households 

and also for two subsamples described in Table 2.1: households with prime-aged heads 

(i.e., heads between 25 and 55) and households with heads over age 55.  I also estimate the 

discrete choice model on a sample of households that have moved MSAs between 1995 

and 2000 (“movers”) following some examples in the previous literature (Cragg and Kahn, 

1997; Sinha and Cropper, 2013).  Amenity values presented in this paper focus on the full 

sample. Estimates in the hedonics literature, which use wage and housing cost differentials 

to value amenities, are usually based on prime-aged adults. The reason for this is clear: 98 

percent of households with prime-aged heads have some labor income, and on average, 93 

percent of the income of these households comes from wages. Forty-seven percent of older 

households have no wage income. 

                                                 
16 Households with negative Hicksian bundles may have substantial accumulated wealth (e.g., in real 
property) that I cannot measure. There are 2,162,570 households in the PUMS that satisfy my criteria for 
sample inclusion. 
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 A striking fact in Table 2.1 is that a large percentage of households continue to live 

in the area where the household head was born. Fifty-seven percent of all households live 

in the state where the head was born, 66 percent in the same census division, and 73 percent 

in the same census region. This foreshadows the importance of moving costs (from 

birthplace location) in explaining residential location choice. 

 

2.3.2 Climate Variables  

 The climate variables in my model are summarized in Table 2.2. All variables are 

climate normals: the arithmetic mean of a climate variable computed for a 30-year period.17 

 I focus on mean temperature, measured for the winter (December-February) and 

summer (June-August) seasons. Previous studies of climate amenities have used primarily 

mean winter and summer temperatures or annual heating and cooling degree days.18 In 

studying the impact of climate on agriculture, health, and electricity usage, temperature has 

been measured by the number of days in various temperature bins (Schlenker and Roberts, 

2009; Deschenes and Greenstone, 2011; Albouy et al., 2016). The advantage of mean 

winter and summer temperatures is that they capture seasonality, which annual heating and 

                                                 
17 The temperature and summer precipitation data are for the period 1970 to 2000. July relative humidity, 
annual snowfall, and percentage possible sunshine are measured for the period 1960 to 1990. 

18 Heating and cooling degree days are computed by the National Climatic Data Center using the average 
of the high and low temperatures for a day. If this is greater than 65°F, it results in (average temperature - 
65) cooling degree days. If the average temperature is less than 65°, it results in (65 - average temperature) 
heating degree days. Graves and Mueser (1993) and Kahn (2009) use mean January and mean July 
temperatures; Cragg and Kahn (1997, 1999) use mean February and mean July temperatures. Roback 
(1982), Blomquist et al. (1988), and Gyourko and Tracy (1991) use annual heating and cooling degree 
days, as does Albouy (2012). 
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cooling degree days and temperature bins do not. At the same time, correlation between 

winter and summer temperatures and temperatures during other seasons of the year means 

that winter and summer temperatures will pick up other temperature impacts: the 

correlation between mean winter temperature and mean March temperature is 0.97, as is 

the correlation between mean winter temperature and mean November temperature. 

Collinearity among mean winter, summer, fall, and spring temperatures, however, makes 

it impossible to include all four measures in my models.  

 The precision with which the impact of temperature on location decisions can be 

estimated depends on temperature variation. Mean winter temperature across the 284 

MSAs in my data averages 37°F, with a standard deviation (s.d.) of 12°; summer 

temperature averages 73°, with an s.d. of 6°. Winter and summer temperatures are highly 

correlated (r = 0.76).  

 The models presented in the next section include annual snowfall, mean summer 

precipitation, and July relative humidity. Mean winter precipitation, which averages 9.4 

inches (s.d. = 5 inches), is highest in the Pacific Northwest and the Southeast, where winter 

precipitation comes in the form of rain. In preliminary analyses, winter precipitation 

appeared to be a disamenity, but this effect was statistically significant only at low levels 

of precipitation. This suggested that snowfall should replace winter precipitation: cities 

with significant snowfall have lower levels of winter precipitation (the correlation between 

annual snowfall and winter precipitation is -0.36), and snow is likely to be more of a 

disamenity than rain.  
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 Summer precipitation, which averages 11 inches (s.d. = 5 inches), is heaviest in the 

Southeast United States. Surprisingly, the correlation between summer precipitation and 

winter precipitation is very low (r = 0.03), as is the correlation between summer 

precipitation and annual snow (r = -0.02). Mean July relative humidity is 69 percent (s.d. 

= 7 percent) and is not highly correlated with either winter temperature (r = 0.06) or 

summer temperature (r = 0.14). 

 Following the literature, I also include the percentage of possible sunshine, defined 

as the total time that sunshine reaches the surface of the earth, expressed as a percentage 

of the maximum amount possible from sunrise to sunset. 

 

2.3.3 Non-climate Amenities 

 The non-climate amenity variables used in the second stage of the model are also 

summarized in Table 2.2. These include amenity measures typically used in quality-of-life 

studies, as well as variables that are likely to be correlated with climate, such as elevation, 

visibility, and measures of parks and recreation opportunities. My desire is to be as 

inclusive as possible. Because climate changes slowly, I cannot use panel data to value 

climate amenities. I therefore strive to avoid problems of omitted variable bias by including 

a variety of location-specific amenities in my models. 

 Many quality-of-life studies include population density as an amenity variable 

(Roback, 1982; Albouy, 2012) or city population (Gyourko and Tracy, 1991). Population 

should be used with caution in a discrete choice model, since the model is constructed to 

predict the share of population in each city (i.e., summing the predicted probability of 
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moving to city j across households yields the predicted share of population in city j). I 

therefore do not include population as an amenity, but I do include population density, 

which may proxy amenities the higher population density supports but which are not 

adequately captured by other amenities (better public transportation, restaurants, and live 

sporting events). I also estimate models with population density omitted.  

 Cragg and Kahn (1997), in estimating a model of choice of state to live in, include 

the number of cities within each state as a measure of the number of location choices 

available to residents. I follow their lead by including the number of counties in each MSA. 

I also estimate models in which population density is replaced by land area, after Bartik 

(1985), who uses land area as a proxy for abundance of location choices. Other amenities 

and disamenities for which I control include air pollution (fine particulate matter, or 

PM2.5), an index of violent crime, visibility (percentage of hours with visibility greater 

than 10 miles), square miles of parks within the MSA, elevation measured at the 

population-weighted centroid of the MSA, and distance from the population-weighted 

centroid of each MSA to the nearest coast. I also include indices from the Places Rated 

Almanac (Savageau and D’Agostino, 2000) that measure how well each city functions in 

terms of transportation, education, health, and recreation opportunities.  
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2.4 Estimation Results 

2.4.1 Discrete Location Choice Models 

 Table 2.3 describes my base model (Model 1) results for all households, prime-

aged households, households with heads older than 55, and movers. The base model is a 

mixed logit model that allows the coefficients on winter and summer temperatures to be 

jointly normally distributed and controls for the first 18 attributes in Table 2.2, as well as 

the Hicksian bundle and the moving costs as specified in equation (2). Coefficients on the 

climate variables have been converted to MWTP by dividing by the coefficient on the 

Hicksian bundle.  For winter and summer temperatures, I report the mean and standard 

deviation of the distribution of MWTP, as well as the correlation coefficient between the 

winter and summer temperature coefficients.19   

 The most striking result in the table is that the mean MWTP for winter and summer 

temperatures differ significantly across samples. While all groups, on average, view higher 

winter temperature as an amenity and higher summer temperature as a disamenity, the 

absolute magnitudes of MWTP are much greater for older households than for prime-aged 

households. Mean MWTP for a 1° increase in winter temperature is about twice as high 

for older households as for prime-aged households ($1,035 vs. $518).20 At the same time, 

                                                 
19 Table 2.3 through Table 2.5 report MWTP only for climate variables. MWTPs for all base model 
coefficients are reported in Appendix Table B.1 and Table B.2. Although I focus on the impacts of summer 
and winter temperatures, I note that all other amenities except particulate matter and sunshine have 
expected signs and are statistically significant. 
20 In interpreting MWTP, it should be remembered that this represents the value of a 1° increase in 
temperature each day over three winter months and also captures milder temperatures in adjacent months.  
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older households are, on average, willing to pay much more to decrease summer 

temperature than prime-aged households ($1,424 vs. $627). Mean MWTP to increase 

winter or decrease summer temperature by 1° is about 40 percent higher using the full 

sample than prime-aged households. These results underscore the importance of 

considering all households when evaluating climate impacts for policy purposes. 

 The models for all three age cohorts indicate considerable variation in tastes for 

winter and summer temperatures. The standard deviations of the coefficients for winter and 

summer temperatures are large. For the all-household and older-household samples, there 

is greater variation in the coefficient on winter than the coefficient on summer temperature. 

The temperature coefficients in all cases are negatively correlated: most households that 

prefer milder winters also prefer milder summers, while those that favor colder winters like 

hotter summers.21 

 The last model in Table 2.3 is estimated using households that moved between 1995 

and 2000. Cragg and Kahn (1997) focus on recent movers to value climate change using 

the 1990 PUMS, as do Sinha and Cropper (2013) with 2000 PUMS data. Table 2.3 

confirms that movers indeed have different preferences for climate amenities than 

households in the full sample, which includes households that stayed in the same location. 

The mean MWTP of movers for winter temperature is, on average, 39 percent higher than 

the mean MWTP of households in the full sample and 90 percent higher than prime-aged 

                                                 
21 The negative correlation implies that there are some people who are very sensitive to outdoor 
temperature – if someone values warmer winters more than the average person then they also value milder 
summers more than the average person – and those people who are not very sensitive: they are willing to 
pay less for warm winters and also don't mind hotter summers.  
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households, who more closely resemble movers in terms of demographic characteristics.22  

Calculating the benefits of policies to avoid climate change should be based on the location 

decisions of all households. I therefore focus on the full sample of households for the 

remainder of the paper. 

 Table 2.4 shows the sensitivity of results for the full sample to the specification of 

moving costs. It is variation in moving costs across households (as well as variation in 

wages and housing expenditures) that allows me to identify the parameters of my model; 

hence, it is important to see how my results vary with changes in moving costs. In Model 

2, where moving costs are modeled as the log of distance between birthplace and residence, 

MWTP is qualitatively the same, though there are some small differences in magnitude. 

For example, weighting moving costs by log(distance) increases the amenity value of 

winter temperature from $709 to $790 and lowers the amenity value of summer 

precipitation from $376 to $254. Interacting the moving cost terms with dummy variables 

for the presence of children and marital status (Model 3) has little impact on results – 

MWTP for climate amenities change by less than $10.   

 I note that if moving costs are removed from the model entirely (Model 4), the 

marginal value of climate amenities falls and households no longer appear to differ in their 

preferences for winter temperature; that is, the standard deviation on winter temperature 

becomes statistically insignificant. As discussed more fully below, it is moving costs that 

help me to identify taste sorting; omitting them leads to spurious estimates of sorting 

                                                 
22 The MWTP of movers for a 1° decrease in summer temperature is 27 percent higher than in the full 
sample and 77 percent higher than in the prime-aged sample. 
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patterns.  Omitting moving costs also reduces (in absolute value) MWTP for winter 

temperature and for summer temperature, especially, as well as for precipitation, snowfall, 

and humidity. These results support Bayer et al.’s (2009) assertion that ignoring moving 

costs may significantly alter WTP for location-specific amenities.23  

  Table 2.5 shows the impact on the coefficients for winter and summer temperatures 

of alternate specifications of amenities for the full sample: dropping population density 

(Model 5); replacing population density with land area (Model 6); adding the number of 

counties in the MSA to the model (Model 7); and removing other climate variables (Model 

8).  As noted in Section 2.3, MSA population is not included as an amenity because the 

discrete choice model is a share model – aggregating the probability that city j is chosen 

across all households yields the share of population predicted to live in that city. Population 

density is included as a proxy for amenities that are made possible by higher population 

density but that are not captured by the Places Rated Almanac. Nonetheless, population 

density is correlated with population. Dropping population density leaves the mean MWTP 

for a 1° change in winter and summer temperatures virtually unchanged. They are $709 

and -$873 in Model 1 and $748 and -$849 in Model 5. Similarly, replacing population 

density with land area has little impact on the base model: MWTP for winter temperature 

and summer temperature are $725 and -$890, respectively, in Model 6. Adding the number 

of counties to the base specification affects MWTP estimates a bit more, but results remain 

                                                 

23 The power of this model for predictive purposes is also significantly impacted by the removal of moving 
costs.  The base model correctly predicts a household’s chosen location at a rate over 40% (as compared 
with choosing at random, which given 284 alternatives, would pick the chosen location less than 1% of the 
time).  In contrast, the model without moving costs obtains correct predictions in about 10% of cases.  
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qualitatively the same. Specifically, MWTP for winter temperature increases to $815 while 

summer temperature falls to -$848. Model 8 shows the importance of controlling for other 

climate variables when valuing temperature. When July humidity, summer precipitation, 

sunshine, and snowfall are omitted, mean MWTP for winter temperature rises by over 70 

percent (to $1,237), while mean MWTP for summer temperature falls slightly (to -$820).24  

Further sensitivity analyses suggest that when snowfall is omitted, winter temperature 

picks up its effects, whereas summer temperature is sensitive to July humidity.25   

 Appendix Table C.1 shows the impact of alternate specifications of the Hicksian 

bundle. In Model 9, I include a quadratic term for the Hicksian bundle in the first stage of 

the model. When evaluated at the mean Hicksian bundle, MWTPs for all climate amenities 

fall in absolute value, by about 15 percent for winter and summer temperature and by about 

20 percent for the other climate variables. In contrast, I obtain larger MWTP estimates in 

Model 10, where I follow the Bayer et. al. (2009) housing price index approach (described 

in detail in Appendix D). Here, the log of total income replaces the Hicksian bundle in the 

first stage, while the second stage dependent variable is now the MSA fixed effect from 

the first stage adjusted by the city-level housing price index. MWTPs for all climate 

                                                 
24 I also considered a model where summer temperature is interacted with July humidity; however, given 
that climate change scenarios do not produce information on humidity projections, this would greatly 
complicate the computation of welfare estimates.  I do not estimate the interacted model for these reasons, 
but I do allow the preferences for humidity to be random and correlated with the preferences for summer 
temperature in a sensitivity.  While I do find a strong and significant negative correlation between the 
preferences for summer temperature and humidity (i.e., households who don’t mind hot summers have a 
strong preference for less humidity), I find that both the mean and conditional MWTP results for winter and 
summer temperature are quantitatively and qualitatively unchanged.  These results are summarized in Table 
C.2 of Appendix C.   

25 These sensitivity analyses are available upon request from the author. 
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variables are higher in this sensitivity analysis – about 20 percent higher for the temperature 

terms and approximately 50 percent higher for the other climate variables. Specifically, 

MWTP for winter temperature rises from $709 in the base case to $885 in Model 10, while 

the MWTP for avoiding summer temperature increases in magnitude from -$873 to -

$1,004. 

 

2.4.2 Taste-Based Sorting 

 To examine how households sort across locations in relation to their taste for winter 

and summer temperature, I use Model 1 to calculate the joint distributions of the 

coefficients of winter and summer temperature for each household, conditional on the 

household’s choice of location. The means of these conditional distributions are averaged 

across all sample households in each MSA, divided by the coefficient on the Hicksian 

bundle, and plotted against MSA temperature in Figure 2.1 and Figure 2.2.26  

 To compute conditional household-level parameters, I follow the procedure of 

Revelt and Train (1999), who uses Bayes’ Rule to derive the conditional distribution of the 

temperature coefficients (i.e., conditional on chosen location, 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 ; observable 

household attributes, 𝑍𝑍𝑖𝑖 , which include the Hicksian bundle and moving costs; and the 

                                                 
26 When preferences for winter and summer temperatures are forced to be uncorrelated, there is a strong 
association between MSA mean MWTP for higher temperature and temperature itself – the correlation is 
0.96 between MSA winter temperature and MSA mean MWTP for winter temperature and 0.97 between 
summer temperature and mean MWTP for summer temperature. It appears (incorrectly) that households in 
warmer cities place higher values on both summer and winter temperatures. 
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overall distribution of temperature parameters, 𝑓𝑓(𝛽𝛽|𝜇𝜇,𝛴𝛴)).  This conditional distribution is 

described by equation (7) below, and taking its expectation reveals an expression for 

 ℎ(𝛽𝛽|𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,𝑍𝑍𝑖𝑖 , 𝜇𝜇,𝛴𝛴) =
Pr(𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖|𝑍𝑍𝑖𝑖 ,𝛽𝛽)𝑓𝑓(𝛽𝛽|𝜇𝜇,𝛴𝛴) 

Pr (𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖|𝑍𝑍𝑖𝑖 , 𝜇𝜇,𝛴𝛴)  (7) 

household-level parameters, or the mean taste parameters, 𝜇𝜇𝑖𝑖, of households of type 𝑍𝑍𝑖𝑖, 

according to equation (8).  These household-level parameters are estimated via simulation. 

 𝜇𝜇𝑖𝑖 = 𝐸𝐸(𝛽𝛽𝑖𝑖|𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 ,𝑍𝑍𝑖𝑖, 𝜇𝜇,𝛴𝛴) = �𝛽𝛽𝑖𝑖 ℎ(𝛽𝛽|𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 ,𝑍𝑍𝑖𝑖 , 𝜇𝜇,𝛴𝛴)𝑑𝑑𝑑𝑑 (8) 

Taking the average over all households in each MSA and dividing by the coefficient on the 

Hicksian bundle yields average MWTP for all households in a given MSA. Formally, the 

MWTP for winter temperature in MSA j is given by equation (9), where 𝑁𝑁𝑗𝑗 is the number 

of households in MSA j. 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗𝑊𝑊𝑊𝑊 =
1
𝑁𝑁𝑗𝑗
� 𝟏𝟏�𝑖𝑖 resides in 𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗�

𝑖𝑖
(𝛽𝛽𝑖𝑖𝑊𝑊𝑊𝑊 𝛼𝛼⁄ ) (9) 

 As seen in Figure 2.1, there is a strong correlation between MWTP for warmer 

winters and MSA temperature (the correlation coefficient between MSA winter 

temperature and mean MWTP is 0.93), indicating that, other things equal, households sort 

across cities based on preferences for milder winters. Specifically, households with higher 

than average MWTP for winter temperature have located in warmer cities, and households 

with lower than average MWTP for winter temperature have located in colder cities.  The 

median WTP for a 1° increase in winter temperature in the coldest 142 cities (those with 

mean winter temperature below 35°) is $223; in the warmest 142 cities, it is $1,184. The 
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city with the lowest MWTP for warmer winters is Fargo, North Dakota; Palm Beach and 

Naples, Florida, have the highest MWTP.  

 There is, however, some variation in mean MWTP across cities holding 

temperature constant. For example, at a mean winter temperature of 40°, households in 

Oregon and Washington states have a willingness to pay for a warmer winter that is over 

four times as high as the MWTP of households in Texas. At a mean winter temperature of 

50°, households in San Francisco and San Jose, California, are willing to pay 

approximately $700 more for a 1° increase in warmer winter temperature than households 

in Charleston, South Carolina.  

 Preferences for warmer winters vary, on average, by census division, as indicated 

in Figure 2.1 and Panel B of Figure 2.4, and as confirmed by Table 2.6, which shows mean 

MWTP averaged across the MSAs in each census division, weighted by MSA population.27 

MWTP for warmer winters is, on average, negative in the West North Central division; it 

is also below the mean for the country in the East North Central division and the Middle 

Atlantic and New England states. MWTP for warmer winters is highest in the Pacific and 

South Atlantic census divisions. There is, however, considerable variation within divisions. 

MWTP is higher in California (especially in San Francisco, San Jose, Santa Barbara, and 

                                                 
27 The average MWTP for winter temperature and summer temperature in Table 2.6 ($819 for winter and -
$940 for summer temperature), conditional on location, differ from the unconditional values in Table 2.3 
($709 for winter and -$873 for summer temperature) because the former are weighted by MSA population. 
There is a positive correlation between MWTP for winter temperature and city population (0.11) and 
between MWTP for lower summer temperature and city population (0.10). Weighting by city population 
thus raises average MWTP. When conditional mean MWTP for winter temperature and summer 
temperature are averaged across all sample households rather than by city population, the results are $703 
and -$875, respectively, which are very close to the unconditional values reported in Table 2.3.  
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Orange County) than in Oregon and Washington states. It is much higher in Florida, 

especially in southern Florida, than in the other South Atlantic states; for example, MWTP 

in Savannah, Georgia, is half that of Miami. 

 The relationship between MWTP for a 1° increase in summer temperature (Figure 

2.2) and summer temperature is an inverted U. While MWTP for an increase in summer 

temperature is negative in all cities except Fargo, North Dakota, households in the South 

Atlantic divisions have the greatest MWTP to reduce mean summer temperature by 1°.28 

The disamenity value of a 1° increase in mean summer temperature is greatest in absolute 

value in Palm Beach and Naples, Florida (-$2,194).  This result may at first be mis-

interpreted.  The higher MWTP for cooler summers in Florida as compared to North 

Dakota does not reflect the fact that summer temperature is higher in Florida than North 

Dakota: MWTP is the value of a small change in temperature from current temperature 

levels.  The higher MWTP to reduce summer temperature reflects the fact that people living 

in Florida are in the tails of the taste distribution for both winter and summer temperature 

– they have a higher than average MWTP to increase winter temperature and a higher 

MWTP than average to reduce summer temperature – they are climate-sensitive.  People 

living in North Dakota, in contrast, are not very climate-sensitive and have small MWTP 

for both winter and summer temperatures.  

                                                 
28 The correlation between mean summer temperature and MWTP for summer temperature in Figure 2.2 is 
-0.38. If I restrict preferences over winter and summer temperatures to be uncorrelated, I find a strong 
positive correlation between MWTP for summer temperature and the temperature of the city in which the 
household lives – see footnote 26.  
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 I note that the sorting patterns displayed in Figure 2.1 and Figure 2.2 are identified 

by virtue of including moving costs from birthplace in the model.  When moving costs are 

excluded, MWTP for winter temperature does not vary significantly across households, 

while MWTP for summer temperature increases with the temperature of the city in which 

the household lives, as pictured in Figure 2.3 and in contrast to Figure 2.2, where moving 

costs are included.  When moving costs are dropped, it appears that people in warmer areas 

actually like the heat – i.e., that people who live in Florida and Texas have a lower than 

average MWTP to reduce summer temperature.  The fact is that approximately 80% of the 

people who lived in the South Atlantic and West South Central census divisions in 2000 

were born there.  But, part of the reason that they live there is that the costs of moving from 

their birthplace are high.  When I ignore moving costs it appears that people in the South 

actually like warmer summers.    

 Figure 2.1, Figure 2.2, and Panel A of  Table 2.6 suggest that, holding temperature 

constant, MWTP for winter and summer temperatures varies by geographic region: 

households in the East North Central census division appear to find hotter summers less of 

a disamenity than households on the Pacific coast. Households in the Mountain states 

appear to favor colder winters more than households in the Pacific division. Some of this 

might appear to reflect differences in other climate variables besides temperature, such as 

summer humidity, precipitation, and snowfall. My base model, however, controls for 

summer humidity, precipitation, snowfall, and sunshine. Indeed, Model 8 indicates the 

importance of controlling for other climate variables: when they are omitted from the 

model, the mean of the coefficient distribution on winter temperature increases by 75 

percent.   
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 I have also performed several sensitivity analyses to ensure that the random 

coefficients for winter and summer temperature are not picking up preference 

heterogeneity for other amenities.  In Model 12, I allow the Hicksian bundle parameter to 

be random, but uncorrelated with the temperature variables.   Likewise, Model 13 allows 

for randomness in the dummy variable indicating whether the household lives in a different 

census division from the one in which the household head was born.  I also allow for the 

coefficients on humidity and snowfall to be random and correlated with the temperature 

terms in Models 14 and 15, respectively.  Unlike seasonal temperatures, there is very little 

taste variation across households for humidity and snowfall.  Throughout all these models, 

the spread and correlation coefficients for winter and summer temperature are remarkably 

similar, and consequently, the associated sorting patterns mimic the base model.  The 

estimation results for Models 12-15 are reported in Appendix Table C.2, with the 

associated sorting plots in Figure C.1 to Figure C.4. 

 In summary, although there is considerable variation within census regions, 

households who have located in the Midwest and the Northeast appear less sensitive to 

changes in temperature than households who live in the South and West. This suggests that 

when valuing changes in climate, ignoring taste sorting may cause warmer winters in the 

Northeast and Midwest to be overvalued and the value of lowering summer temperature in 

the South and West to be underestimated.  
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2.5 Willingness to Pay for Future Projected Temperature Changes  

 I use the results of the location choice model to estimate what households would 

pay for temperature changes that are projected to occur over the period 2020 to 2050 under 

two SRES climate scenarios. Specifically, I use the results of the Hadley III model to 

project mean winter and summer temperatures over the 2020 to 2050 period in my 284 

MSAs under the B1 and A2 SRES scenarios.29,30 I estimate WTP for these temperature 

changes, compared with climate averages over the period 1970 to 2000. I first compute 

WTP by multiplying the conditional mean MWTP for summer and winter temperatures in 

each MSA by the size of the temperature change. This assumes that households do not 

move in response to changes in temperature and provides valuations comparable with those 

produced by hedonic models. I also compute expected compensating variation for 

temperature changes using the distribution of (𝛽𝛽𝑊𝑊𝑊𝑊 ,𝛽𝛽𝑆𝑆𝑆𝑆) for each household, conditional 

on its location choice.31  

 

                                                 
29 Data from the Hadley III model were generously provided by Wolfram Schlenker. 

30 While the SRES projections have been superseded by the RPCs (Representative Concentration 
Pathways) adopted by the IPCC in 2014, the SRES projections are grounded in climate science and are 
used here as illustrative temperature changes. 

31 In these scenarios, I ignore the possibility that utility costs may change with climate change scenarios.  
Households may need to spend less to heat their homes in the winter and more to cool their homes in the 
summer, though technology and adaptation may also change the nature of utility costs.  I avoid modeling 
this and hold housing expenditures constant when considering the temperature changes. 
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2.5.1 The B1 and A2 SRES Scenarios 

 The B1 SRES scenario, a more climate-friendly scenario than A2, leads to an 

atmospheric carbon dioxide (CO2) concentration of 550 parts per million (ppm) in the year 

2100, whereas the A2 scenario results in an atmospheric CO2 concentration of 850 ppm by 

2100 (Karl et al., 2009). Over the period 2020 to 2050, however, the temperature 

projections for the United States do not differ dramatically between the two scenarios.32 

Both scenarios project warmer winters and warmer summers; however, the B1 scenario 

projects, on average, warmer winters than the A2 scenario for the 284 MSAs – an average 

increase in winter temperature of 3.4°F under B1 and 2.1°F under A2.33 Projections of 

increases in summer temperature are slightly higher under the A2 scenario (on average, 

3.6°F) than under the B2 scenario (3.3°F). 

 The variation in temperature changes across regions is, however, considerable. 

Figure 2.5 and Panel B of Table 2.6 show the population-weighted average winter and 

summer temperature changes for each scenario by census division. Panel B of Table 2.7 

shows temperature changes by census region. The Northeast and Midwest regions and the 

South Atlantic division experience larger increases in winter temperature than increases in 

summer temperature under the B1 scenario. Cities in the New England and Middle Atlantic 

                                                 
32 Other authors have focused on the damages associated with climate change at the end of this century, 
rather than midcentury (Albouy et al. 2016; Deschenes and Greenstone 2011). I focus on smaller, 
midcentury temperature changes for two reasons. First, changes of the magnitude examined by Albouy et 
al. (2016) would call for general equilibrium responses that I cannot model. They would result in major 
changes in wages and housing prices across cities. Second, my model is designed to value marginal 
temperature changes, rather than non-marginal changes.  

33 These are population-weighted average temperature changes.  
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states experience the largest increases in winter temperature (4.5°F and 5.1°F, 

respectively), followed by the Midwest region (East North Central, 3.7°F; West North 

Central, 3.6°F). The South Atlantic states experience winter temperature increases of about 

3.1°F.  

 The remainder of the South (the West South Central [WSC] and East South Central 

[ESC] divisions) and the Mountain and Pacific divisions are hurt by the B1 scenario: 

households in these areas, on average, experience larger increases in summer than in winter 

temperature. The ESC and WSC divisions (which include Texas, Louisiana, Mississippi, 

and Alabama) suffer the greatest increases in summer temperature (an average of 5.5°F in 

the WSC), followed by states in the Mountain and Pacific census divisions. Summer 

temperatures increase by an average of 3.7°F in the Mountain and 3.1°F in the Pacific 

census divisions.  

 All census divisions experience greater increases in summer than in winter 

temperature under the A2 scenario; however, the areas that suffer the least are the Northeast 

and the South Atlantic states. Increases in winter temperature under A2, which average 

2.1°F, are fairly uniform geographically. Summer temperature increases are below the 

national average of 3.6°F in the Northeast and South Atlantic states, approximately equal 

to the average in the West and Midwest, and highest in the ESC and WSC states.  

 

2.5.2 WTP Conditional on Current Location 

 Table 2.6 and Figure 2.6 display household WTP for each SRES scenario, 

conditional on the household’s current location. For each scenario, I multiply the summer 
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and winter temperature changes in each MSA by the average conditional mean MWTP for 

that MSA (i.e., by the values shown in Figure 2.1 and Figure 2.2). WTP is averaged across 

MSAs within each census division (weighted by MSA population) and is also computed 

(population-weighted) for all 284 MSAs. Table 2.7 displays the corresponding averages, 

by census region. Positive values indicate a positive WTP for the climate scenario, while 

negative values, indicating WTP to avoid the climate scenario, appear in parentheses. To 

see how taste sorting affects WTP for temperature changes, I also compute WTP using 

average household MWTP for summer and winter temperatures (displayed in the last 

column of Panel A of the table). These values are labeled WTP ignoring sorting.  

 Averaged across all MSAs, household WTP for the B1 scenario is negative and 

equal to about 1 percent of average household income; under the A2 scenario, it is also 

negative and is equal to about 2.4 percent of income; however, the distribution of WTP 

differs greatly across regions. Households in the Middle Atlantic and South Atlantic states 

are willing to pay a positive amount for the B1 scenario; households in the New England 

division have the smallest negative WTP for this scenario. This reflects the magnitude of 

increases in winter temperature in these areas, relative to increases in summer temperature. 

On the other hand, households in other parts of the South (the West South Central census 

division) have the highest negative WTP to avoid the B1 scenario, reflecting the much 

higher average increases in summer than in winter temperature in these states. Households 

in the East and West South Central divisions also have the highest WTP to avoid the A2 

scenario – about 60 percent more than the MSA average. In general, WTP to avoid the A2 

scenario differs less across regions than under the B1 scenario; however, households in the 

South Atlantic have a WTP to avoid A2 that is less than half the MSA average. 
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 How would estimates of the value of climate change be altered if sorting were 

ignored and WTP imputed based on mean MWTP for summer and winter temperatures? 

Sorting, which implies that MWTP for winter and summer temperatures differ by region, 

has the biggest impact on the aggregate WTP for climate amenities when temperature 

changes are unevenly distributed across geographic regions, and areas experiencing 

extreme temperature changes value them very differently from the mean household. 

Aggregate climate damages will be understated if temperature changes are negatively 

correlated with MWTP to increase winter temperature or reduce summer temperature. This 

is indeed the case in the B1 scenario: the New England, Middle Atlantic, and East North 

Central divisions are all expected to experience above-average increases in winter 

temperature, but households in these regions value these changes much less than the mean 

household. Because the benefits of warmer winters are overstated when sorting is ignored, 

the resulting aggregate WTP to avoid the B1 scenario is understated – by about 30 

percent.34  

 The impact of sorting on aggregate WTP is less pronounced under the A2 scenario 

because winter temperature changes are more evenly distributed geographically, and 

households in the areas that are expected to experience the biggest increases in summer 

temperatures (the East South Central and West South Central divisions) value these 

temperature changes about the same as the mean household. Ignoring sorting when valuing 

the A2 scenario overstates aggregate damages only slightly (by 7 percent) primarily 

                                                 
34 This is due primarily to impacts on winter temperature. The areas of the country that experience the 
greatest increases in summer temperature value them at a rate close to mean MWTP. 
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because ignoring sorting overstates the damages of the A2 scenario in the South Atlantic 

states.  

 

2.5.3 Exact Welfare Calculations 

 The WTP estimates in Table 2.6, Table 2.7, and Figure 2.6 assume that households 

must remain in their current MSA when temperatures change. This should, on average, 

overstate the amount households would pay to avoid the two climate scenarios, given that 

households can move in response to changes in temperature. I would not, a priori, expect 

these adjustments to be large, given that I am evaluating small temperature changes and 

given the importance of moving costs in the discrete choice model. I do, however, calculate 

exact welfare measures, which allow for the possibility of migration.  

 A household’s compensating variation for a change in summer and winter 

temperatures (𝐶𝐶𝐶𝐶𝑖𝑖) is implicitly defined by the amount that can be taken away from the 

household when 𝑆𝑆𝑆𝑆 and 𝑊𝑊𝑊𝑊 change, as shown in equation (10).  I compute the expected  

max
𝑗𝑗

 �𝛼𝛼(𝑌𝑌�𝑖𝑖𝑖𝑖 − 𝑃𝑃�𝑖𝑖𝑖𝑖) + 𝑊𝑊𝑊𝑊𝑗𝑗0𝛽𝛽𝑖𝑖𝑊𝑊𝑊𝑊 + 𝑆𝑆𝑆𝑆𝑗𝑗0𝛽𝛽𝑖𝑖𝑆𝑆𝑆𝑆 + 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑗𝑗  + 𝜀𝜀𝑖𝑖𝑖𝑖�  

=  max
𝑗𝑗

 �𝛼𝛼�𝑌𝑌�𝑖𝑖𝑖𝑖 − 𝑃𝑃�𝑖𝑖𝑖𝑖 − 𝐶𝐶𝐶𝐶𝑖𝑖� + 𝑊𝑊𝑊𝑊𝑗𝑗1𝛽𝛽𝑖𝑖𝑊𝑊𝑊𝑊 + 𝑆𝑆𝑆𝑆𝑗𝑗1𝛽𝛽𝑖𝑖𝑆𝑆𝑆𝑆 + 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑗𝑗  + 𝜀𝜀𝑖𝑖𝑖𝑖� 
(10) 

value of 𝐶𝐶𝐶𝐶𝑖𝑖 conditional on the household’s choice of MSA – that is, using the distributions 

of (𝛽𝛽𝑊𝑊𝑊𝑊,𝛽𝛽𝑆𝑆𝑆𝑆) and {𝜀𝜀𝑖𝑖𝑖𝑖} that are conditional on the household’s observed choice of MSA 

(von Haefen 2003). The expected value of 𝐶𝐶𝐶𝐶𝑖𝑖 is given by equation (11), and is simulated 

 𝐸𝐸(𝐶𝐶𝐶𝐶𝑖𝑖|𝑘𝑘 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) = �𝐶𝐶𝐶𝐶𝑖𝑖𝑓𝑓(𝛽𝛽𝑖𝑖, 𝜀𝜀𝑖𝑖|𝑘𝑘 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 𝑑𝑑𝛽𝛽𝑖𝑖 𝑑𝑑𝑑𝑑𝑖𝑖 (11) 
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following von Haefen (2003).  Specifically, I take a draw from the conditional distributions 

of random coefficients and the vector of error terms 𝜀𝜀𝑖𝑖𝑖𝑖 and compute 𝐶𝐶𝐶𝐶𝑖𝑖 using equation 

(10) for each draw. I average these values across 100 draws to compute the household’s 

expected compensating variation. 

 Table 2.8 and Figure 2.7 display 𝐸𝐸(𝐶𝐶𝐶𝐶𝑖𝑖)  for the B1 and A2 scenarios by census 

division. As in Table 2.6, average 𝐸𝐸(𝐶𝐶𝐶𝐶𝑖𝑖) is averaged over all households in each MSA; 

MSA values are then weighted by population to yield census division averages. WTP 

estimates from Table 2.6, which are computed assuming that each household cannot 

change location, are presented for comparison. In all cases, 𝐸𝐸(𝐶𝐶𝐶𝐶) is less than WTP:35 

households, on average, require less compensation to endure an adverse climate scenario 

or – as is the case of households in the South Atlantic and Middle Atlantic states under B1 

– are willing to pay more for a climate scenario that they view as an improvement when 

they can change locations to adjust to the scenario.  

 The difference between expected compensating variation and WTP conditional on 

location is, however, small: allowing households to change location lowers the value of 

avoiding the B1 scenario by about 16 percent and the value of avoiding the A2 scenario by 

about 3 percent compared with Table 2.6. Averaged across all households, the value of 

avoiding the climate scenarios using exact welfare measures is $574 for the B1 scenario 

(0.91 percent of average household income) and $1,492 for the A2 scenario (2.36 percent 

of average household income). 

                                                 
35 McFadden (1999) proves that this result must hold in random utility models employing the generalized 
extreme value distribution. 
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2.5.4 WTP Comparison with the Literature 

 As do Cragg and Kahn (1997), Fan, Klaiber and Fisher-Vanden (2016) and Sinha 

and Cropper (2013), I find that households value warmer winters, cooler summers, and 

less humidity. Cragg and Kahn (1997) model the choice of state in which to reside, while 

Fan et al. (2016) and Sinha and Cropper (2013) model location choice at the MSA level.  

Fan et al. (2016) focus on willingness to pay to reduce temperature extremes rather than 

mean winter and summer temperature. In agreement with Cragg and Kahn (1997), I find 

that MWTP for warmer winters and cooler summers increases with age.  My population 

mean estimate of willingness to pay to reduce July humidity ($764) agrees closely with 

Fan et al.’s ($729).  Overall, the results of my models agree qualitatively with previous 

studies using the discrete choice approach to valuing climate amenities.   

 In contrast, my estimates of the welfare losses associated with climate change are 

larger than those reported by Albouy et al. (2016) using a hedonic approach. Albouy et al. 

(2016) regress a weighted average of wages (net of taxes) and housing prices on local 

amenities using data from the 2000 PUMS. They find that households are willing to pay 

more to avoid excess heat than to avoid excess cold and that the marginal disutility to 

reduce severe heat is not statistically different from the marginal disutility to reduce 

moderate heat. When these results are used to value temperature changes associated with 

the A2 scenario in 2070 to 2099 – changes that average 7.3°F – welfare losses are 2.28 

percent of household income assuming homogeneous preferences and 2.79 percent 

allowing for heterogeneous preferences. I find comparable values for much milder 

temperature changes, on the order of 3.5°F. 
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 There are several possible reasons for the difference in magnitude of my results. 

The hedonic approach uses the capitalization of amenities into wages and housing prices 

to value amenities. This may be appropriate for prime-aged households that receive most 

of their income from wages, but it needs to be applied with caution in the case of older 

households that do not. The discrete choice approach allows for the fact that income may 

not vary much across MSAs for retirees, who may nevertheless sort across MSAs in 

response to differences in climate. It is the number of households that have located in each 

MSA, holding MSA characteristics constant, which identifies the parameters of household 

utility functions in the discrete choice approach. My results indicate that it is important to 

take the preferences of older households (those with heads over 55 years of age) into 

account when evaluating temperature changes. If I were to base my estimates of the value 

of avoiding the B1 and A2 scenarios solely on prime-aged households, my estimates would 

fall by over 37 percent in the case of the B1 scenario and 34 percent in the case of the A2 

scenario. 

 A second reason for the difference between the two sets of estimates derives from 

differences in assumptions about household mobility. Bayer et al. (2009) note that adding 

moving costs to a hedonic model destroys the equivalence between a household’s MWTP 

for a local amenity and the capitalization of that amenity into wages and housing prices. 

Whether the capitalization of an amenity into wages and housing prices over- or understates 

MWTP is an empirical question. I note that removing moving costs from my location 

choice model causes the absolute value of MWTP for climate amenities to fall, suggesting 

that moving costs may have prevented climate amenities from being fully capitalized into 
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wages and housing costs. Removing moving costs from my model causes the value of 

reducing summer temperature to fall by almost 50 percent. 

 

2.6 Conclusions 

 The discrete location choice model that I have estimated indicates that climate 

amenities play an important role in household location decisions in the United States. The 

rate of substitution between household income net of housing costs and winter and summer 

temperatures is statistically significant, holding constant summer precipitation, snowfall, 

and July humidity. But there is considerable variation in MWTP for winter and summer 

temperatures across households. In general, households with a higher MWTP for warmer 

winters have located in MSAs with higher mean winter temperatures, such as MSAs in 

Florida or California, while those with the lowest MWTP live in the Midwest. Preferences 

for summer temperature and winter temperature are, however, negatively correlated (ρ = -

0.83). This implies that households that prefer milder winters, on average, also prefer 

milder summers, while households that prefer colder winters have a lower MWTP to 

reduce summer temperatures. MWTP to avoid hotter summers is, on average, higher in the 

South Atlantic and Pacific regions than in the Midwest. At the level of census regions, 

households in the Midwest and Northeast have lower MWTPs to increase winter and 

reduce summer temperatures than households in the South and West. 

 These sorting patterns have important implications for valuing avoided climate 

change. Under future warming scenarios, winter temperature is likely to increase the most 

at northern latitudes, specifically in the Midwest and Northeast. Since these regions have 
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lower-than-average MWTP for warmer winters when allowing for sorting, using average 

MWTP for warmer winters for the entire United States is likely to overstate the value of 

warmer winters under most climate scenarios. At the same time, households’ WTP to avoid 

hotter summers is greatest in the areas that are expected to experience about average 

increases in summer temperature – the South and parts of Southern California. Thus, using 

average MWTP for cooler summers will understate the value of avoiding hotter summers 

implied by the A2 and B1 scenarios. Together these results suggest that ignoring taste 

sorting could understate the value of avoiding climate change. 

 Taking sorting into account, I estimate the value of avoiding two climate scenarios 

in the near term (2020-2050). I find that, aggregated over the entire United States, WTP to 

avoid the more climate-friendly B1 scenario is approximately 1 percent of household 

income, while it is approximately 2.4 percent of household income for the A2 scenario. 

The A2 scenario I consider would result in an average increase of 3.6°F in summer 

temperature and of 2.1°F in winter temperature. Estimates for the United States of market-

based damages associated with climate change have typically been in the range of 1 percent 

of gross domestic product for an increase in mean temperature of 2°C (NRC, 2010). My 

results suggest that the amenity value of climate could significantly increase estimates of 

climate damages, even for moderate temperature increases. 
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Figure 2.1 Taste-Sorting for Winter Temperature by Metropolitan Area  
(Base Discrete Choice Model: Model 1) 
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Figure 2.2 Taste-Sorting for Summer Temperature by Metropolitan Area  
(Base Discrete Choice Model: Model 1) 
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Figure 2.3 Taste-Sorting for Summer Temperature by Metropolitan Area  
(Discrete Choice Model, Moving Costs Omitted: Model 4) 
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Figure 2.4 Marginal Willingness to Pay Conditional on Current Location,  
by Census Division 
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Figure 2.5 Projected Temperature Changes by Census Division,  
for SRES Scenarios (2020 to 2050) 
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Figure 2.6 Willingness to Pay Conditional on Current Location by Census Division,  
for Scenarios A2 and B1 
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Figure 2.7 Expected Compensating Variation and Willingness to Pay, 
Holding Location Constant, for Scenarios A2 and B1 
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Table 2.1 Descriptive Statistics for Household Characteristics 

    Full sample 
(N = 54,008) 

  Prime-aged 
(N = 33,180) 

  Greater than 55 
(N = 17,643) 

  Movers 
(N = 22,759)           

Variable Description Mean Std. dev.  Mean Std. dev.  Mean Std. dev.  Mean Std. dev. 
Age of household head 
(mean) 

Age 49.11 17.03  40.79 8.20  69.50 9.41  39.89 15.19 

Gender of household head Male (%) 63.93   67.02   60.60   64.21  

Marital status of household 
head  

Married (%) 52.22   55.43   50.99   46.81  

Race of household head  White (%) 82.70   81.13   87.03   83.86  
Black (%) 13.11   13.97   10.98   9.97  
Other (%) 4.20   4.91   1.99   6.16  

Education of household 
head 

No high school (%)  12.86   7.56   23.09   5.77  
High school (%)  25.96   24.06   29.71   15.22  
Some college (%) 30.89   33.73   23.65   31.11  
College graduate (%) 19.33   22.67   12.95   31.12  
Postgraduate education (%) 10.96   11.99   10.62   16.78  

Household head 
Movement from place of 
birth 

Left state of birth (%) 42.65   40.99   47.32   66.69  
Left census division of birth (%) 32.78   31.28   36.86   53.86  
Left census region of birth (%) 26.55   24.98   30.85   43.68  

Household wage earnings 
(mean) 

Sum of the wage earnings of all 
household members $49,960 $54,508  $64,098 $55,106  $26,307 $47,544  $58,208 $60,898 

Household wage earnings  Households with zero wage 
earnings (%) 16.75   2.23   46.94   8.83  

Total household income 
(mean) 

Sum of wage, business, and farm 
incomes and income from other 
sourcesa of all household 
members 

$63,312 $58,671  $69,161 $59,723  $57,294 $58,615  $67,532 $65,438 

Household annual housing 
expenditures (mean) 

Sum of monthly mortgage 
payment or rent, cost of utilities, 
insurance, and property taxes 

$15,556 $9,082  $16,193 $9,437  $15,481 $8,560  $14,693 $9,711 

Size of household  1 member (%) 26.16   21.05   36.03   29.75  
2 members (%) 34.69   27.35   47.68   34.87  
3 or more members (%) 39.15   51.59   16.28   35.38  

a Income from other sources would include Social Security income; welfare (public assistance) income; Supplementary Security income; interest, dividend, and rental income; 
retirement income; and other income. 
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Table 2.2  Descriptive Statistics of Amenity Variables 

Variable N Mean Std. Dev. Minimum Maximum Median 

Avg Winter Temperature (°F) 284 37.339 12.158 9.442 67.922 34.996 
Avg Summer Temperature (°F) 284 73.309 5.817 60.848 89.733 72.517 
Annual Snowfall (inches) 284 20.360 21.366 0.000 84.050 18.050 
Summer Precipitation (inches) 284 10.966 5.057 0.440 23.300 11.932 
July Relative Humidity (%) 284 66.246 10.891 22.500 78.000 70.500 
Annual Sunshine (% of possible sunshine in 24 hours)  284 60.764 8.323 43.000 78.000 58.000 
Avg Elevation (miles) 284 0.197 0.273 0.000 1.620 0.130 
Distance to Coast (miles) 284 141.096 169.592 0.009 824.451 91.025 
Visibility > 10 Miles (% of hours) 284 46.053 19.541 5.000 85.500 45.500 
Mean PM2.5 (micrograms/cubic meter) 284 12.829 2.884 5.382 19.535 12.818 
Population Density (persons per square mile) 284 471.767 983.041 5.400 13,043.600 259.050 
Violent Crime Rate (number of violent crimes per 1000 persons) 284 4.560 2.214 0.069 12.330 4.349 
Park Area (square miles) 284 192.908 584.303 0.000 5,477.564 24.893 
Transportation Score 284 50.370 29.181 0.000 100.000 50.280 
Education Score 284 51.230 29.322 0.000 100.000 51.130 
Arts Score 284 51.137 29.055 0.000 100.000 51.140 
Healthcare Score 284 49.201 28.657 0.000 98.300 49.430 
Recreation Score 284 53.342 28.386 0.000 100.000 54.245 
Land Area (square miles) 284 2,277.136 3,406.116 46.688 39,377.380 1,559.118 
Number of Counties 284 2.845 2.906 1.000 25.000 2.000 
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Table 2.3 Marginal Willingness to Pay for Climate Amenities (Base Discrete Choice Models) 

  Model 1 (Full)   Model 1 (Prime)   Model 1 (>55)   Model 1 (Movers) 
Sample All Ages 

(Base Model) 
  

Prime-Aged   Over 55 Years 

  

Changed MSA between  
1995 and 2000 

PANEL A:   1st Stage Estimates                       

Variable Coef 
(Std Err)     Coef 

(Std Err)     Coef 
(Std Err)     Coef 

(Std Err)   

Std. Dev: Avg Winter Temperature 0.0666     0.0588     0.0742     0.0781   
  (0.0020)     (0.0026)     (0.0039)     (0.0038)   
Std. Dev: Avg Summer Temperature 0.0522     0.0592     0.0331     0.0698   
  (0.0060)     (0.0068)     (0.0091)     (0.0079)   
Correlation Coefficient -0.8332     -0.6893     -0.9936     -0.8245   
 (0.0731)   (0.0827)   (0.1077)   (0.0686)  
                        
PANEL B:   2nd Stage Estimates                       

Variable Coef 
(Std Err) 

MWTP 
(Std Err)   Coef 

(Std Err) 
MWTP 

(Std Err)   Coef 
(Std Err) 

MWTP 
(Std Err)   Coef 

(Std Err) 
MWTP 

(Std Err) 

Mean: Avg Winter Temperature 0.0249 $709   0.0209 $518   0.0375 $1,035   0.0424 $983 
  (0.0056) ($160)   (0.0058) ($144)   (0.0070) ($199)   (0.0078) ($184) 
Mean: Avg Summer Temperature -0.0307 -$873   -0.0253 -$627   -0.0516 -$1,424   -0.0478 -$1,109 
  (0.0091) ($260)   (0.0100) ($249)   (0.0106) ($301)   (0.0121) ($283) 

July Humidity -0.0269 -$764   -0.0208 -$514   -0.0325 -$896   -0.0316 -$734 
  (0.0049) ($142)   (0.0054) ($135)   (0.0054) ($155)   (0.0059) ($139) 
Annual Snowfall -0.0166 -$471   -0.0170 -$422   -0.0154 -$425   -0.0215 -$499 
  (0.0024) ($70)   (0.0026) ($66)   (0.0026) ($75)   (0.0029) ($69) 
Ln(Summer Precipitation) 0.1408 $376   0.1708 $403   0.0926 $232   0.3279 $741 
  (0.0720) ($192)   (0.0768) ($181)   (0.0823) ($206)   (0.0890) ($202) 
Annual Sunshine -0.0155 -$441   -0.0149 -$368   -0.0111 -$307   -0.0127 -$296 
  (0.0057) ($162)   (0.0060) ($149)   (0.0067) ($185)   (0.0076) ($177) 
Note: When entering the regressions non-linearly, amenity variables are evaluated at population-weighted means in order to compute MWTP.  Non-linear covariates are the 
following: population density, summer precipitation, and elevation enter in log form while distance to the coast enters the model quadratically. 
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Table 2.4 Marginal Willingness to Pay for Climate Amenities (Sensitivity to Moving Costs) 

  

  Model 1   Model 2   Model 3   Model 4 
Sensitivity Base Model 

  

Moving Costs: 
Ln(Distance) 

  

Moving Costs: 
Married and Children 

Interactions 
  

Moving Costs: 
Omitted 

PANEL A:   1st Stage Estimates                       

Variable Coef 
(Std Err)     Coef 

(Std Err)     Coef 
(Std Err)     Coef 

(Std Err)   

Std. Dev: Avg Winter Temperature 0.0666     0.0758     0.0664     0.0022   
  (0.0020)     (0.0020)     (0.0020)     (0.0148)   
Std. Dev: Avg Summer Temperature 0.0522     0.0717     0.0525     0.0210   
  (0.0060)     (0.0049)     (0.0059)     (0.0278)   
Correlation Coefficient -0.8332     -0.8263     -0.8295     -0.9975   
 (0.0731)   (0.0416)   (0.0726)   (0.0621)  
                        
PANEL B:   2nd Stage Estimates                       

Variable Coef 
(Std Err) 

MWTP 
(Std Err)   Coef 

(Std Err) 
MWTP 

(Std Err)   Coef 
(Std Err) 

MWTP 
(Std Err)   Coef 

(Std Err) 
MWTP 

(Std Err) 

Mean: Avg Winter Temperature 0.0249 $709   0.0278 $790   0.0248 $704   0.0232 $659 
  (0.0056) ($160)   (0.0056) ($162)   (0.0056) ($159)   (0.0054) ($154) 
Mean: Avg Summer Temperature -0.0307 -$873   -0.0319 -$907   -0.0308 -$872   -0.0169 -$478 
  (0.0091) ($260)   (0.0095) ($269)   (0.0091) ($259)   (0.0090) ($255) 

July Humidity -0.0269 -$764   -0.0285 -$809   -0.0268 -$758   -0.0189 -$535 
  (0.0049) ($142)   (0.0050) ($145)   (0.0049) ($141)   (0.0044) ($125) 
Annual Snowfall -0.0166 -$471   -0.0165 -$468   -0.0165 -$467   -0.0038 -$109 
  (0.0024) ($70)   (0.0024) ($70)   (0.0024) ($69)   (0.0023) ($66) 
Ln(Summer Precipitation) 0.1408 $376   0.0953 $254   0.1426 $379   0.0922 $245 
  (0.0720) ($192)   (0.0739) ($197)   (0.0720) ($192)   (0.0666) ($177) 
Annual Sunshine -0.0155 -$441   -0.0170 -$482   -0.0153 -$434   -0.0100 -$284 
  (0.0057) ($162)   (0.0059) ($168)   (0.0057) ($162)   (0.0057) ($161) 

Note: When entering the regressions non-linearly, amenity variables are evaluated at population-weighted means in order to compute MWTP.  Non-linear covariates are the 
following: population density, summer precipitation, and elevation enter in log form while distance to the coast enters the model quadratically. 
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Table 2.5 Marginal Willingness to Pay for Climate Amenities (Sensitivity to Second Stage Specifications) 

  Model 1   Model 5   Model 6   Model 7   Model 8 

Sensitivity Base Model 

  

Omit Ln(Population 
Density) 

  

Ln(land area) 
replaces 

Ln(population 
density)   

Include number of 
counties 

  

Omit Other Climate 
Variables 

2nd Stage Estimates                             

Variable Coef 
(Std Err) 

MWTP 
(Std Err)   Coef 

(Std Err) 
MWTP 

(Std Err)   Coef 
(Std Err) 

MWTP 
(Std Err)   Coef 

(Std Err) 
MWTP 

(Std Err)   Coef 
(Std Err) 

MWTP 
(Std Err) 

Mean: Avg Winter Temperature 0.0249 $709   0.0263 $748   0.0255 $725   0.0287 $815   0.0435 $1,237 
  (0.0056) ($160)   (0.0059) ($169)   (0.0060) ($171)   (0.0050) ($142)   (0.0047) ($139) 
Mean: Avg Summer Temperature -0.0307 -$873   -0.0299 -$849   -0.0313 -$890   -0.0298 -$848   -0.0288 -$820 
  (0.0091) ($260)   (0.0100) ($285)   (0.0103) ($293)   (0.0091) ($259)   (0.0110) ($313) 

July Humidity -0.0269 -$764 
  

-0.0247 -$702   -0.0219 -$623   -0.0246 -$700       
  (0.0049) ($142)   (0.0055) ($157)   (0.0058) ($166)   (0.0047) ($135)       
Annual Snowfall -0.0166 -$471   -0.0152 -$434   -0.0142 -$404   -0.0134 -$381       
  (0.0024) ($70)   (0.0026) ($75)   (0.0027) ($77)   (0.0023) ($65)       
Ln(Summer Precipitation) 0.1408 $376   0.0969 $258   0.0925 $247   0.0751 $200       
  (0.0720) ($192)   (0.0769) ($205)   (0.0792) ($211)   (0.0710) ($189)       
Annual Sunshine -0.0155 -$441   -0.0190 -$540   -0.0184 -$524   -0.0147 -$417       

  (0.0057) ($162)   (0.0059) ($168)   (0.0060) ($170)   (0.0057) ($163)       

Notes:  
(1) As these sensitivities only involve changing 2nd stage variables, only estimates from stage 2 are reported.  

(2) When entering the regressions non-linearly, amenity variables are evaluated at population-weighted means in order to compute MWTP.  Non-linear covariates are the 
following: population density, summer precipitation, and elevation enter in log form while distance to the coast enters the model quadratically. 
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Table 2.6 Temperature, Temperature Changes, and Willingness to Pay  
Conditional on Current Location, by Census Division 

 Census region Northeast South Midwest West All 

 Census division NE MA SA WSC ESC ENC WNC M P All 

PANEL A: Baseline Values (1970 to 2000)                   

Share of population 5% 15% 19% 11% 3% 17% 4% 6% 19% 46% 
ST 69 71 78 81 77 71 71 74 71 74 

WT 28 30 48 49 43 27 22 37 47 39 

MWTP for ST (711) (737) (1215) (989) (910) (617) (363) (820) (1343) (940) 

MWTP for WT 388 466 1324 1017 813 279 (93) 661 1288 819 

                      

PANEL B: Projected Values under SRES Scenarios (2020 to 2050)               

Change in ST (A2) 3.1 3.1 3.0 5.2 4.7 3.6 4.1 3.7 3.4 3.6 

Change in WT (A2) 1.9 2.2 2.1 2.2 2.2 2.0 1.9 2.7 1.9 2.1 

Change in ST (B1) 2.8 2.5 2.7 5.5 4.3 3.3 3.9 3.7 3.1 3.3 

Change in WT (B1) 4.5 5.1 3.1 3.0 3.0 3.7 3.6 2.9 2.0 3.4 
           

WTP (A2): based on sorting (1435) (1259) (637) (2610) (2421) (1652) (1770) (1534) (1750) (1541) 

WTP (B1): based on sorting (202) 552 485 (2281) (1547) (936) (1713) (1203) (1231) (682) 

WTP (A2): ignoring sorting (1318) (1196) (1172) (2941) (2531) (1737) (2201) (1348) (1611) (1662) 

WTP (B1): ignoring sorting 802 1385 (173) (2630) (1667) (251) (868) (1196) (1315) (529) 

Notes: MWTP for ST and WT are calculated for each household using coefficient distributions from Model 1, conditional on MSA choice. Values are averaged across all 
households in an MSA to obtain the average MSA MWTP. WTP is calculated by multiplying MSA MWTP by the relevant temperature change. All division level variables are 
MSA values weighted by MSA population. NE = New England; MA = Middle Atlantic; SA = South Atlantic; WSC = West South Central; ESC = East South Central; ENC = 
East North Central; WNC = West North Central; M = Mountain; P = Pacific 
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Table 2.7 Temperature, Temperature Changes, and Willingness to Pay  
Conditional on Current Location, by Census Region 

  Northeast South Midwest West All 

PANEL A: Baseline Values (1970 to 2000)         

Share of population 20% 33% 22% 25% 100% 

ST 70 79 71 72 74 

WT 30 48 26 45 39 

MWTP for ST (730) (1108) (567) (1213) (940) 

MWTP for WT 447 1170 206 1192 819 

            

PANEL B: Projected Values under SRES Scenarios (2020 to 2050)     

Change in ST (A2) 3.1 3.9 3.7 3.5 3.6 

Change in WT (A2) 2.1 2.1 1.9 2.1 2.1 

Change in ST (B1) 2.6 3.8 3.4 3.3 3.3 

Change in WT (B1) 4.9 3.1 3.7 2.2 3.4 

      
WTP (A2): based on sorting (1302) (1485) (1675) (1697) (1541) 

WTP (B1): based on sorting 368 (660) (1089) (1224) (682) 

WTP (A2): ignoring sorting (1226) (1910) (1828) (1546) (1662) 

WTP (B1): ignoring sorting 1243 (1161) (372) (1285) (529) 
Notes: MWTP for ST and WT are calculated for each household using coefficient distributions from Model 1, conditional on MSA choice. Values are averaged across all 
households in an MSA to obtain the average MSA MWTP. WTP is calculated by multiplying MSA MWTP by the relevant temperature change. All region-level variables are 
MSA values weighted by MSA population.  
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Table 2.8 Expected Compensating Variation and Willingness to Pay, Holding Location Constant,  
for Scenarios A2 and B1 

 Census region Northeast South Midwest West All 

 Census division NE MA SA WSC ESC ENC WNC M P All 

E(CV) scenario A2 (1423) (1245) (613) (2485) (2338) (1623) (1705) (1491) (1673) (1492) 

E(CV) scenario B1 (171) 602 589 (2083) (1447) (904) (1665) (1098) (1020) (574) 

           

WTP scenario A2 (1435) (1259) (637) (2610) (2421) (1652) (1770) (1534) (1750) (1541) 

WTP scenario B1 (202) 552 485 (2281) (1547) (936) (1713) (1203) (1231) (682) 
Notes: E(CV) is calculated as described in the text for each household. Values are averaged over all households in an MSA, and MSA averages are weighted by population to 
yield division averages. MWTP for ST and WT are calculated for each household using coefficient distributions from Model 1, conditional on MSA choice. Values are 
averaged across all households in an MSA to obtain the average MSA MWTP. WTP is calculated by multiplying MSA MWTP by the relevant temperature change. All 
division-level variables are MSA values weighted by MSA population. NE = New England; MA = Middle Atlantic; SA = South Atlantic; WSC = West South Central; ESC = 
East South Central; ENC = East North Central; WNC = West North Central; M = Mountain; P = Pacific 
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Chapter 3: Do Discrete Choice and Hedonic Models Yield 

Different Results?  A Comparison in the Context of Urban 

Amenities 

 

3.1 Introduction 

 Estimates of the value of urban amenities have typically followed one of two 

approaches: they have either used hedonic models of wages and housing prices to value 

marginal amenity changes (Roback, 1982; Blomquist, Berger and Hoehn, 1988; Albouy et 

al., 2016) or they have used discrete models of location choice (Cragg and Kahn, 1997; 

Bayer, Keohane and Timmins, 2009).  The former approach infers marginal willingness to 

pay by estimating hedonic price functions for wages and housing costs as a function of 

location-specific attributes; the latter, by estimating the probability that consumers choose 

a location in which to live as a function of wages, housing prices and location-specific 

attributes.  

 Cragg and Kahn (1997), Bayer, Keohane and Timmins (2009), and Sinha and 

Cropper (2013) note that the discrete choice approach typically produces estimates of 

amenity values that are much larger than estimates implied by the continuous hedonic 

approach.  In a discrete choice model where households choose in which U.S. state to 

reside, Cragg and Kahn (1997) find the MWTP for July and February temperature exceeds 

the marginal prices implied by hedonic price functions.  Bayer, Keohane and Timmins 
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(2009) estimate marginal willingness to pay (MWTP) to reduce air pollution using a 

discrete choice approach and find these figures are three times greater than values 

capitalized into per capita incomes and property values.  Sinha and Cropper’s (2013) 

discrete choice model estimates higher damages associated with predicted changes to 

climate in U.S. cities than comparable estimates from Albouy et al.’s (2016) hedonic 

model.   

 While previous research has noted the two approaches to amenity valuation may 

yield different MWTP estimates, with the exception of Klaiber and Phaneuf (2009), few 

careful comparisons of the two methodologies exists in the current literature. 36  

Furthermore, there has been no systematic attempt to investigate or characterize the root 

cause of these differences.  Given the important role of amenity valuation to comprehensive 

policy cost-benefit analysis, this paper provides a relevant and critical step towards 

obtaining accurate estimates of the demand for local amenities. 

 In this paper, I examine differences between the continuous hedonic and discrete 

choice approaches in the context of valuing climate amenities.  Specifically, I use the 2000 

census Public Use Microdata Sample (PUMS) to estimate hedonic and discrete choice 

models that value winter and summer temperature. My hedonic models regress the 

weighted sum of wage and housing price indices on mean winter and summer temperature, 

                                                 
36 Klaiber and Phaneuf (2009) estimate the MWTP for open space using both a discrete choice random 
utility model and the traditional hedonic approach.  They too find that the MWTP implied by the discrete 
choice model is generally greater than MWTP estimates from the hedonic model.  Their study examines 
residential housing decisions across neighborhoods within the Minneapolis-St. Paul metropolitan area, 
whereas my analysis focuses on the choice over metropolitan areas across the United States and implicitly 
incorporates both labor and housing market decisions.   
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other climate amenities, and various city characteristics using metropolitan statistical areas 

(MSAs) as the geographic unit. Wage and housing price indices are estimated following 

the methodology of Albouy (2012), assuming national labor and housing markets:  I 

construct a weighted sum of wage and housing price indices for each MSA using the same 

weights as in Albouy (2012) and, alternately, using a traditional set of weights in line with 

previous hedonic literature (Roback, 1982; Blomquist, Berger and Hoehn, 1988).  I allow 

the marginal price of winter and summer temperature to vary by city using local linear 

regressions (Bajari and Benkard, 2005; Bajari and Kahn, 2005) and find substantial 

variation across MSAs. 

 In my discrete location choice model, consumers choose among MSAs based on 

predicted wages and housing costs, moving costs from birthplace, and the same set of 

location-specific amenities as are used in the hedonic models.  These discrete choice 

models are estimated for a sample of all households in the 2000 PUMS and for samples of 

households with prime-aged heads (25-55 years old), older heads (over 55 years old), and 

movers (households who have moved MSAs between 1995 and 2000).  I estimate a random 

parameter logit model to capture heterogeneity in preferences for winter and summer 

temperature. The distributions of MWTP for winter and summer temperature differ 

significantly by location.  Households with higher MWTP for winter temperature tend to 

locate in cities with warmer winters.  I find, however, that preferences for summer and 

winter temperature are negatively correlated.  On average, households with preferences for 

warmer winters also prefer milder summers. 

 How do estimates of MWTP for winter and summer temperature from the discrete 

choice model compare with estimates based on the hedonic model?  The answer depends 
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on the weights placed on wage and housing price indices in the hedonic approach and on 

the households whose preferences are being measured.  Mean MWTP estimates from the 

hedonic and discrete choice approaches (not conditional on location) are closest when I 

compare the hedonic estimates to the preferences of prime-aged households estimated 

using the discrete choice model.  When the discrete choice model is estimated using prime-

aged households the mean MWTP for a one degree increase in winter temperature is $518, 

while it is $627 for a one degree decrease in summer temperature.  When traditional 

weights are used, the hedonic approach yields mean MWTP for winter and summer 

temperature of approximately $210 and $230, respectively.  The comparable numbers 

when Albouy weights are used is about $100 and $350.  For other samples of households 

(older heads, movers) the results further diverge.   

 The pattern of MWTP conditional on household location differs, as well, between 

the two approaches.  The hedonic estimates do not show the positive correlation between 

winter temperature and MWTP for winter temperature that is indicated by the discrete 

choice model.  Patterns for summer temperature preferences by MSA also differ, but less 

systematically.   

 Why should estimates using the two approaches differ from each other?  First, the 

hedonic and discrete choice models differ in their underlying assumptions about market 

integration and consumer mobility.  The hedonic model assumes national labor and housing 

markets, while discrete choice models, beginning with Cragg and Kahn (1997), do not.  

The hedonic approach also assumes perfect mobility, whereas moving costs are more easily 

incorporated in discrete models of location choice.  Bayer, Keohane, and Timmins (2009) 

argue that if psychological (or informational) moving costs prevent people from moving to 



68 

what is their most preferred location, the gradients of the hedonic wage and price functions 

may understate consumers’ true marginal amenity values.  They attribute the differences 

they observe between their discrete choice and hedonic estimates to this concept but do not 

test this hypothesis directly.  Second, the two models use fundamentally different 

econometric approaches to capture heterogeneity in tastes.  Third, the hedonic approach 

uses price functions to infer the marginal value placed on amenities, whereas the discrete 

choice approach, which estimates the probability that consumers purchase commodity 

bundles, directly accounts for both price variation and quantities purchased.   

 The question of mobility assumptions can be tested directly in the discrete choice 

model.  When I estimate the discrete choice model without moving costs, the value of 

cooler summers falls significantly, and the positive correlation between higher MWTP for 

warmer winters and the temperature of the chosen city is substantially reduced.  However, 

mean MWTP for warmer winters is mostly unaffected, and even the reduced value placed 

on cooler summers is not enough to bring results in line with the hedonic estimates.  Thus, 

moving costs do not completely explain differences in mean preferences or taste sorting 

patterns implied by the two sets of models.   

 More telling is the examination of a simple share model, which emphasizes the 

important role populations (i.e., quantities purchased) play in location sorting models. To 

elaborate, first note that the discrete choice model seeks to predict the proportion of the 

population residing in each location.  When this model is simplified to include only 

variables that differ across MSAs, the discrete choice model reduces to a simple share 

model where MSA population shares are regressed on city level prices and amenities.  This 

highlights how differently hedonic models treat population shares: specifically, hedonic 
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models regress city level prices on local amenities and don’t explicitly account for 

population shares anywhere.  In this paper, I estimate a simple share model and find 

marginal amenity values that generally agree with those from the discrete choice model.  

Because the share model avoids discrepancies related to mobility costs and how labor and 

housing markets are defined, these results suggest that how population shares are 

incorporated in these models may have important implications for the different results 

produced by the hedonic and discrete choice approaches to amenity valuation. 

 The paper is organized as follows.  Section 3.2 describes the hedonic model of 

amenity valuation as originally developed by Roback (1982) and modified by Albouy 

(2012). I present the discrete location choice model in Section 3.3 and describe the data in 

Section 3.4.  Section 3.5 presents the results of both modeling approaches and provides 

comparison. This includes estimates of mean MWTP for winter and summer temperature 

and the implications of both models for taste-based locational sorting.  Section 3.6 

concludes. 

 

3.2 Hedonic Models of Amenity Valuation 

 The hedonic approach to valuing location-specific amenities dates from Jennifer 

Roback’s (1982) seminal article “Wages, Rents and the Quality of Life,” which built on 

the model of product differentiation and implicit prices introduced by Rosen (1974).  

Roback posited that, in a world of perfectly mobile individuals, wages and land prices 

would adjust to equalize utility in all locations.  Differentiation of her equilibrium condition  
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yields an expression for the MWTP for locational amenities, given by equation (1) and 

 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎
𝑊𝑊

≡
𝑉𝑉𝑎𝑎
𝑉𝑉𝑊𝑊

1
𝑊𝑊

= 𝑠𝑠𝐻𝐻
𝑑𝑑 log 𝑟𝑟
𝑑𝑑𝑑𝑑

−
𝑑𝑑 log𝑊𝑊
𝑑𝑑𝑑𝑑

 (1) 

where 𝑎𝑎 is a local amenity, 𝑊𝑊 is income, 𝑉𝑉 is the consumer’s indirect utility, 𝑠𝑠𝐻𝐻  is the 

share of income spent on housing, and 𝑟𝑟 is the rental price of housing.37   

 The literature following Roback (1982) has inferred MWTP for local amenities by 

estimating hedonic wage and property value equations.  For example, Blomquist et al. 

(1988) use census data on individuals residing in different counties to estimate hourly wage 

(𝑤𝑤) and housing expenditure (𝑃𝑃) equations like those described in equations (2) and (3) 

below.  The hourly wage earned by worker m in location j is denoted by 𝑤𝑤𝑚𝑚𝑚𝑚, 𝑿𝑿𝑚𝑚𝑚𝑚𝑤𝑤  is a 

 𝑤𝑤𝑚𝑚𝑚𝑚 = 𝛾𝛾0 + 𝑿𝑿𝑚𝑚𝑚𝑚𝑤𝑤 𝜞𝜞𝑋𝑋,0 + 𝑨𝑨𝑗𝑗𝛤𝛤
𝐴𝐴,0 + 𝜈𝜈𝑚𝑚𝑚𝑚0  (2) 

 𝑃𝑃𝑖𝑖𝑖𝑖 = 𝛿𝛿0 + 𝑿𝑿𝑖𝑖𝑖𝑖𝑃𝑃 𝜟𝜟
𝑋𝑋,0 + 𝑨𝑨𝑗𝑗𝜟𝜟

𝐴𝐴,0 + 𝜔𝜔𝑚𝑚𝑚𝑚
0  (3) 

vector measuring the education, experience, demographic characteristics, and industry and 

occupation of worker m, 𝑃𝑃𝑖𝑖𝑖𝑖 is housing expenditure by household i in location j,  𝑿𝑿𝑖𝑖𝑖𝑖𝑃𝑃  is a 

vector of dwelling characteristics, and 𝑨𝑨𝒋𝒋 is a vector of attributes characterizing location j.  

In using equations (2) and (3) to infer the value of location-specific amenities, Blomquist 

et al. (1988) multiply the hourly wage differential by the average number of workers per 

household, the average number of hours worked per week, and the number of weeks 

                                                 
37 Roback’s model deals with land, not housing. In the subsequent literature, r is treated as the rental rate 
on housing.   
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worked per year and subtract this from the monthly housing differential multiplied by 12.  

Implicitly, wage differentials across counties are weighted approximately 3.6 times as 

much as housing price differentials. 

 

3.2.1 The Albouy Hedonic Model 

 Albouy (2012) makes significant modifications to Roback’s approach.  First, he 

argues that the weight placed on the cost of non-traded goods is too low relative to wage 

income in the Roback model.  Non-traded goods, as Albouy points out, include more than 

housing, and hence occupy a larger fraction of the household’s budget.  At the same time, 

it is after-tax income that matters; this further raises the weight placed on non-traded goods 

(proxied by housing) relative to wages.  Second, Albouy suggests an alternate two-stage 

approach to estimating the value of local amenities: he first estimates wage and housing 

price indices for each geographic area and combines them into a quality of life (QOL) index 

using his adjusted weights; next, his QOL index is regressed on location-specific amenities 

to estimate marginal amenity values.     

 To see how this yields MWTP for an amenity, consider the utility maximization 

problem faced by households where indirect utility depends on income (both wage and 

non-wage), the prices of non-traded goods, taxes, and the quality of life (Q) in each 

location.  Assume that Q is some function of location-specific amenities.  Then by applying 

Roback’s equilibrium condition, differentiating, and making various substitutions and 

rearrangements, the MWTP for Q as a percentage of average total income (𝑚𝑚� ) can be  
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shown to be equal to the QOL index described by equation (4), and where 𝑠𝑠𝐻𝐻 is the share  

 𝑄𝑄𝑄𝑄𝑄𝑄𝑗𝑗 ≡
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑄𝑄

𝑚𝑚�
= (𝑠𝑠𝐻𝐻 + 𝛾𝛾𝑠𝑠𝑂𝑂)

𝑑𝑑𝑝𝑝𝑗𝑗,𝐻𝐻

𝑝̅𝑝
− (1 − 𝜏𝜏)𝑠𝑠𝑤𝑤

𝑑𝑑𝑤𝑤𝑗𝑗
𝑤𝑤�

 (4) 

of income spent on housing, 𝑠𝑠𝑂𝑂 is the share of income spent on other non-traded goods, 𝑠𝑠𝑤𝑤 

is the share of income that comes from wages, and 𝜏𝜏  is the marginal tax rate.  The 

expressions 𝑑𝑑𝑝𝑝𝑗𝑗,𝐻𝐻 𝑝̅𝑝⁄  and 𝑑𝑑𝑤𝑤𝑗𝑗 𝑤𝑤�⁄  represent the ceteris paribus impact of city j on housing 

prices and wages in city j.  Finally, 𝛾𝛾 is the ratio of the housing price to the price of non-

traded goods.38  The QOL index can be viewed as the consumption a household is willing 

to forgo to live in city j as compared to living in the average city – it measures how high 

cost of living is relative to wages in city j as compared to the average city.  Recalling that 

𝑄𝑄 is a function of location-specific attributes, differentiation of 𝑄𝑄𝑄𝑄𝑄𝑄𝑗𝑗 with respect to each 

amenity will yield the MWTP for that amenity.  To see how this is related to Roback’s 

MWTP formulation, differentiate equation (4) with respect to amenity a as follows and 

assume that housing is the only local non-traded good (𝑠𝑠𝑂𝑂 = 0), that all income comes from 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎
𝑚𝑚�

≡
𝜕𝜕𝑄𝑄𝑄𝑄𝑄𝑄𝑗𝑗
𝜕𝜕𝜕𝜕

= (𝑠𝑠𝐻𝐻 + 𝛾𝛾𝑠𝑠𝑂𝑂)
𝑑𝑑ln(𝑝𝑝𝑗𝑗,𝐻𝐻)

𝑑𝑑𝑑𝑑
− (1 − 𝜏𝜏)𝑠𝑠𝑤𝑤

𝑑𝑑ln(𝑤𝑤𝑗𝑗)
𝑑𝑑𝑑𝑑

 (5) 

wages (𝑠𝑠𝑤𝑤 = 1), and that there are no income taxes (𝜏𝜏 = 0).  Under these assumptions, 

equation (5) just reduces to Roback’s MWTP expression in equation (1).    

 Albouy’s approach implicitly estimates equations (2) and (3) in two stages.  

Including location-specific fixed effects in the hourly wage and housing rent equations in 

                                                 
38 Albouy uses ACCRA cost-of-living index data to estimate 𝛾𝛾. 
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the first stage yields wage and housing price indices, 𝜆𝜆𝑗𝑗𝑤𝑤 and 𝜆𝜆𝑗𝑗𝑃𝑃.39,40  These indices are then 

used to construct the QOL index using equation (4), where 𝜆𝜆𝑗𝑗𝑤𝑤 and 𝜆𝜆𝑗𝑗𝑃𝑃 from equations (2′)  

 ln𝑤𝑤𝑚𝑚𝑚𝑚 = 𝑿𝑿𝑚𝑚𝑚𝑚𝑤𝑤 𝜞𝜞𝑋𝑋,1 + 𝜆𝜆𝑗𝑗𝑤𝑤 + 𝜈𝜈𝑚𝑚𝑚𝑚1  (2′) 

 ln𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑿𝑿𝑖𝑖𝑖𝑖𝑃𝑃 𝜟𝜟
𝑋𝑋,1 + 𝜆𝜆𝑗𝑗𝑃𝑃 + 𝜔𝜔𝑚𝑚𝑚𝑚

1  (3′) 

and (3′) replace 𝑑𝑑𝑝𝑝𝑗𝑗,𝐻𝐻 𝑝̅𝑝⁄  and 𝑑𝑑𝑤𝑤𝑗𝑗 𝑤𝑤�⁄ .  Using the weights computed by Albouy (2012) 

yields the QOL index in equation (6), which is then regressed on location-specific 

amenities. 

 𝑄𝑄𝑄𝑄𝑄𝑄𝑗𝑗 ≡ 0.33𝜆𝜆𝑗𝑗𝑃𝑃 − 0.51𝜆𝜆𝑗𝑗𝑤𝑤 = 𝑨𝑨𝒋𝒋𝜽𝜽 + 𝜉𝜉𝑗𝑗 (6) 

 Albouy and co-authors (2016) apply this approach to PUMA-level data from the 

2000 census to estimate the value of changes in temperature in the United States.  They use 

flexible functional forms to relate binned temperature data to the QOL index while also 

controlling for other amenities.  To allow for taste sorting, they apply a variant of Bajari 

and Benkard’s (2005) local linear regression to estimate separate temperature coefficients 

for each PUMA.   

 To motivate taste sorting in the hedonic model, consider the case where households 

have heterogeneous preferences over a local amenity k.  Households sort across locations 

                                                 
39 This is similar to the approach followed by Bieri et al. (2013), who argue that estimation in two stages 
ensures that the implicit price of the amenity is not conflated with the implicit price of unobserved worker 
and housing attributes. 

40 Coefficients for the individual and dwelling characteristics controlled for in equations (2′) and (3′) are 
reported in the first columns of Appendix Table A.1 and Table A.2. 
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according to these heterogeneous preferences, and locational equilibrium implies that each 

household’s MWTP for amenity k is equal to the implicit price of amenity k, which is just 

the slope of the hedonic price function with respect to k.  If the true hedonic price function 

is non-linear, the slope will vary with the level of amenity k, which reflects the fact that 

households who live in different locations have different underlying MWTPs.   As Roback 

(1982) pointed out, MWTP estimates from the hedonic model (as traditionally estimated) 

will be an average of the true MWTP across the different households.  Estimating a local 

linear model like that in Bajari and Benkard (2005) provides a way of recovering the 

gradient of the hedonic price function for each level of amenity k. This yields location-

specific MWTP for amenity k, which reflects a kind of mean MWTP over the households 

that have sorted into that location.   

 

3.2.2 Estimation of the Hedonic Models 

 I estimate two sets of hedonic models – one using traditional weights on the wage 

and housing price indices generated by equations (2ꞌ) and (3ꞌ) (i.e., the weights from 

equation (1)) and the other applying the weights proposed by Albouy (2012) to the same 

wage and housing price indices (i.e., the adjusted weights in equation (6)).  The national 

wage and property value equations are estimated using the same set of explanatory 

variables that are used for predicting wages and housing expenditures (for each household 

in each alternative MSA) in the discrete choice model.41  These equations also use the same 

                                                 
41 See the first column of Appendix Table A.1 and Table A.2 for estimation results from the national wage 
and housing expenditure regressions. 
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samples of workers and housing units and are described in more detail in the following 

section.   

 I regress each set of QOL indices (traditional- and Albouy-weighted) on the same 

set of amenity variables used in estimating the discrete choice model.  The estimates of 

equations (2ꞌ) and (3ꞌ) yield price indices for 284 MSAs; hence, I have 284 observations 

for the second stage QOL regressions.42  The results of the second stage regressions yield 

mean MWTP for local amenities according to the hedonic model. 

 To allow the coefficients on temperature variables to vary by MSA, I use a modified 

local linear regression in the spirit of Bajari and Benkard (2005) and Bajari and Kahn 

(2005).  Specifically, I regress the QOL index on all amenities except for winter and 

summer temperature and then use the residuals (𝑒̂𝑒𝑗𝑗) from this equation in a kernel-weighted 

least squares regression for each location j.  Locations with similar temperature profiles to 

location j are weighted more heavily, which follows intuitively from the idea of taste-

sorting on temperature: households sort geographically according to heterogeneous 

temperature preferences, with households residing in similar climates having likewise 

similar MWTP.  This local linear approach allows me to recover a different hedonic price 

function gradient for each MSA (i.e., each possible bundle of winter and summer 

temperatures).  

                                                 
42 I estimate these models using OLS and compute robust standard errors.  Albouy et al. (2016) indicate 
that they weight observations by population in their QOL models.  I have also estimated Albouy QOL 
models using population weights.  The results are not significantly different from the unweighted results 
reported here.    
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 This approach is described in equation (7) below, which is estimated for each MSA 

and where 𝒆𝒆� = �𝑒̂𝑒𝑗𝑗�, 𝑻𝑻 = �[𝑤𝑤𝑡𝑡𝑗𝑗] [𝑠𝑠𝑠𝑠𝑗𝑗]�, and  𝑾𝑾 = [𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝐾𝐾ℎ(𝑻𝑻𝑗𝑗 − 𝑻𝑻𝑗𝑗∗)�].  Kernel weights  

 𝞥𝞥𝑗𝑗∗ = argmin
𝞥𝞥

(𝒆𝒆� − 𝑻𝑻𝑻𝑻)′𝑾𝑾(𝒆𝒆� − 𝑻𝑻𝑻𝑻) (7) 

are described by 𝐾𝐾(𝑍𝑍) = ∏ 𝑁𝑁�(𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑗𝑗∗) 𝜎𝜎�𝑧𝑧⁄ �𝑧𝑧=𝑤𝑤𝑤𝑤,𝑠𝑠𝑠𝑠  with 𝐾𝐾ℎ(𝑍𝑍) = 𝐾𝐾(𝑍𝑍 ℎ⁄ ) ℎ⁄  and where 

𝑁𝑁( )  denotes the normal distribution, ℎ  is bandwidth, and 𝜎𝜎�𝑧𝑧  is the sample standard 

deviation of characteristic 𝑧𝑧. This approach yields coefficients for each MSA for summer 

and winter temperature, where the notation 𝑗𝑗∗ in equation (7) emphasizes this.      

 

3.3 A Discrete Choice Approach to Valuing Climate Amenities 

 The discrete choice approach to amenity valuation assumes that households choose 

among geographic locations based on the utility they receive from each location, where 

that utility depends on wages, housing costs and location-specific amenities. Variation in 

wages, housing costs, and amenities across locations permits identification of the 

parameters of the household’s indirect utility function.   

 One advantage of the discrete choice approach is that it allows the researcher to 

more easily incorporate market frictions, including the psychological and informational 

costs of moving. The hedonic approach assumes that consumers are perfectly mobile and, 

hence, that the weighted sum of wage and housing price gradients will equal the 

consumer’s MWTP for an amenity (equation (1)).  Bayer, Keohane and Timmins (2009) 

demonstrate that this equality fails to hold in the presence of moving costs. In their 

empirical model they incorporate the psychological and informational costs of leaving 
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one’s birthplace into an equilibrium model of household location choice. Barriers to 

mobility also imply that the assumption of national labor and housing markets, which 

underlies the hedonic approach, may not accurately capture wage and housing costs in 

different cities (Cragg and Kahn, 1997). 

 

3.3.1 The Discrete Choice Model 

 My discrete choice model builds on the work of Bayer, Keohane and Timmins 

(2009) and Cragg and Kahn (1997).  I model household location for the year 2000 assuming 

that each household selected its preferred MSA from the set of MSAs in the United States 

in 2000. Household utility depends on income minus the cost of housing, location-specific 

amenities, and moving costs from the birthplace of the household head.  Specifically, I 

assume that the utility that household i receives from city j is given by equation (8), where  

 𝑈𝑈𝑖𝑖𝑖𝑖 = 𝛼𝛼�𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑖𝑖𝑖𝑖� + 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑊𝑊𝑗𝑗𝛽𝛽𝑖𝑖𝑊𝑊𝑊𝑊 + 𝑆𝑆𝑆𝑆𝑗𝑗𝛽𝛽𝑖𝑖𝑆𝑆𝑆𝑆 + 𝑨𝑨𝑗𝑗′Г (8) 

𝑌𝑌𝑖𝑖𝑖𝑖 is household i’s income and 𝑃𝑃𝑖𝑖𝑖𝑖 its housing expenditure in city j.  I refer to this after-

housing consumption �𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑖𝑖𝑖𝑖� as the “Hicksian bundle.”43  𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 represents the costs – 

psychological and other – of moving from the head of household’s birthplace to city j.  𝑊𝑊𝑊𝑊𝑗𝑗 

and 𝑆𝑆𝑆𝑆𝑗𝑗 are mean winter and summer temperatures in city j, and 𝑨𝑨𝑗𝑗′ is a vector of all the 

location-specific amenities of my model, excluding winter and summer temperature.     

                                                 
43 In the specifications presented in this paper, I allow income to enter the utility function linearly which 
facilitates computation of MWTP for temperature changes. Estimates of mean MWTP for climate 
amenities are similar when the Hicksian bundle enters the utility function in log and quadratic forms.  
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 Household income, 𝑌𝑌𝑖𝑖𝑖𝑖, is the sum of the wages of all workers in the household, 

𝑊𝑊𝑖𝑖𝑖𝑖 , plus any non-wage income which is assumed not to vary by residential location.  

Housing costs, 𝑃𝑃𝑖𝑖𝑖𝑖, are the annual expenditures on housing, including mortgage payments 

or rent, as well as utilities and taxes.  Because household income and housing expenditures 

are observed only at the chosen location, they are predicted using MSA-specific hedonic 

wage and housing price equations.  These are described in more detail below.  

 Moving costs capture the psychological, search, and out-of-pocket costs of leaving 

a household’s place of origin. Seventy-four percent of households in my sample (see Table 

3.1, full sample) live in the census region in which the head was born; 67% live in same 

the census division.  Although households have been moving to warmer weather since the 

Second World War (Rappaport, 2007), family ties and informational constraints may have 

prevented this from occurring more completely.  As shown below, failure to account for 

these costs significantly alters the value attached to winter and summer temperature.   

 Following Bayer et al. (2009), I model moving costs as a series of dummy variables 

that reflect whether city j is outside of the state, census division, and/or census region in 

which household i’s head was born. Formally, 

 𝑀𝑀𝐶𝐶𝑖𝑖𝑖𝑖 = 𝜋𝜋0𝑑𝑑𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜋𝜋1𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜋𝜋2𝑑𝑑𝑖𝑖𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (9) 

where  𝑑𝑑𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  denotes a dummy variable that equals one if j is in a state that is different 

from the one in which the head of household i was born, 𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 if location j is 
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outside of the census division in which the household head was born, and 𝑑𝑑𝑖𝑖𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1 if 

location j lies outside of the census region in which the household head was born.44  

 The i subscripts on the coefficients for winter and summer temperature denote the 

fact that this model allows for heterogeneity in taste for seasonal temperature across 

households, though in principle, this model could allow all utility parameters to vary across 

households. 45   I assume that (𝛽𝛽𝑊𝑊𝑊𝑊 ,𝛽𝛽𝑆𝑆𝑆𝑆)~𝑁𝑁(𝝁𝝁,𝜮𝜮) , where 𝜮𝜮  may have non-diagonal 

elements, allowing for correlation in the preferences for seasonal temperatures. 

 MWTP in this model is given by the marginal rate of substitution between income 

and any given amenity.  Thus, MWTP is a function of the parameters of utility such that 

the MWTP for a one degree increase in winter temperature, for example, is given by the 

ratio of the income and winter temperature coefficients: 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊𝑊𝑊 ≡
𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕𝜕𝜕⁄
𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ =

𝛽𝛽𝑊𝑊𝑊𝑊

𝛼𝛼
  (10) 

 

3.3.2 Estimation of the Discrete Choice Model  

 Estimating the location choice model requires information on the wages that a 

household would earn in each MSA as well as the housing costs incurred. Because wages 

                                                 
44 Other specifications for moving costs have been analyzed with little change to estimation results.  See 
Chapter 2. 

45 I have relaxed this assumption in previous work and find the temperature parameters to be robust to 
several sensitivity specifications where I allow other arguments of household utility (Hicksian bundle, 
moving costs, humidity, and snowfall) to be random in addition to winter and summer temperature.  See 
Chapter 2 and Appendix C for details. 
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and housing expenditures are observed only in the household’s chosen location, these must 

be estimated for all other possible locations.   

 In order to predict 𝑊𝑊𝑖𝑖𝑖𝑖 for all alternate MSAs, I estimate a hedonic wage equation 

for each MSA.   The hedonic wage equation for MSA j, given by equation (11) regresses 

the logarithm of the hourly wage rate for worker m in MSA j on variables (𝑿𝑿𝑚𝑚𝑚𝑚𝑤𝑤 ) measuring 

the demographic characteristics – education, experience, industry, and occupation, among  

 ln𝑤𝑤𝑚𝑚𝑚𝑚 = 𝛾𝛾𝑗𝑗2 + 𝑿𝑿𝑚𝑚𝑚𝑚𝑤𝑤 𝜞𝜞𝑋𝑋,2 + 𝜈𝜈𝑚𝑚𝑚𝑚2     ∀ 𝑗𝑗 = 1, … , 𝐽𝐽  (11) 

others – of worker m. Equation (11) is estimated using data on full-time workers in the 

PUMS.46  The coefficients of (11) are used to predict the annual earnings of each worker 

in any household included in the sample used to estimate the discrete choice model.  A key 

assumption here is that individuals work the same number of hours and weeks in all 

locations. Summing earnings over all individuals in each household, I obtain predicted 

household wages (𝑊𝑊�𝑖𝑖𝑖𝑖) for household i in location j.47  

 In a similar fashion, the cost of housing in each location is estimated based on 

hedonic property value equations for each MSA according to equation (12), where 𝑃𝑃𝑖𝑖𝑖𝑖 is 

                                                 
46 The equation is estimated using data on all persons working at least 40 weeks per year and between 30 
and 60 hours per week.  Persons who are self-employed, in the military, or in farming, fishing or forestry 
are excluded from the sample.  The same data are used to estimate Equation (2′). 

47 Household income is composed of the predicted household wages that vary across MSAs as well as an 
MSA-independent non-wage income.  I model household income gross of income taxes, which makes my 
MWTP results more comparable with the hedonic MWTP estimates: while Albouy’s hedonic model does 
incorporate an income tax when forming the quality-of-life indices, amenity value estimates represent 
MWTP as a percentage of gross income, and the hedonic coefficient estimates are multiplied by gross 
income to obtain dollar amounts. 
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the annual housing expenditure for household i in city j, computed as the sum of the 

monthly mortgage payment or rent and the cost of utilities, property taxes, and property 

insurance.  . 𝑿𝑿𝑖𝑖𝑖𝑖𝑃𝑃  contains a dummy variable indicating whether the house was owned or 

 ln𝑃𝑃𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑗𝑗2 + 𝑿𝑿𝑖𝑖𝑖𝑖𝑃𝑃 𝜟𝜟
𝑋𝑋,2 + 𝜔𝜔𝑚𝑚𝑚𝑚

2     ∀ 𝑗𝑗 = 1, … , 𝐽𝐽 (12) 

rented, as well as dwelling characteristics like age of structure and number of rooms. Utility 

costs are added to both the costs of owning a home and to rents because heating and cooling 

requirements vary with climate, and I wish to separate these costs from climate amenities. 

Equation (12) is estimated separately for each of the MSAs in my dataset. I predict housing 

expenditures for household i in city j assuming that the household purchases the same 

bundle of housing characteristics in city j as it purchases in its chosen city.48    

 The results of estimating the hedonic wage and housing market equations for each 

city separately are summarized in the last two columns of Appendix Table A.1 and Table 

A.2.  I find, as do Cragg and Kahn (1997), that the coefficients in both sets of hedonic 

equations vary significantly across MSAs, suggesting that the assumption of national labor 

and housing markets, made in hedonic studies, is inappropriate.  

                                                 
48 This is clearly a strong assumption.  In previous work, I tested its validity by examining the mean value 
of key housing characteristics (number of bedrooms and number of rooms) and their standard deviation 
across MSAs, for different household groups, characterized by income group and household size. The 
coefficient of variation across these attributes is small suggesting households of similar size and income 
tend to live in dwellings of similar characteristics.  Furthermore, I have performed a sensitivity analysis 
where a housing price index enters the second stage as in Bayer, Keohane, and Timmins, 2009, preempting 
the need to predict housing costs, and find results similar to those reported below.  See Chapter 2 for 
details. 
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 Given predicted wages and housing expenditures for each household in all possible 

locations, estimation of the discrete location choice model follows in two stages.  The first 

stage models indirect utility, portrayed in equation (13) below, as a function of all 

components of utility that vary by household – the Hicksian bundle, moving costs, and 

unobserved heterogeneity in the preferences for winter and summer temperature – as well 

as an MSA fixed effect (𝛿𝛿𝑗𝑗), which captures the mean effect of  all the attributes that vary  

 𝑉𝑉𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑗𝑗  +  𝛼𝛼�𝑌𝑌�𝑖𝑖𝑖𝑖 − 𝑃𝑃�𝑖𝑖𝑖𝑖� +  𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑗𝑗 + 𝛽𝛽𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗+ 𝜀𝜀𝑖𝑖𝑖𝑖 (13) 

by location.49  In this first stage, I constrain the mean vector of the distribution of winter 

and summer temperature coefficients to be zero according to  (𝛽𝛽𝑊𝑊𝑊𝑊 ,𝛽𝛽𝑆𝑆𝑆𝑆)~𝑁𝑁(𝟎𝟎,𝜮𝜮)  so that 

only the components of 𝜮𝜮 are estimated in the first stage.  The mean vector 𝝁𝝁 is contained 

in the fixed effects component of utility, 𝛿𝛿𝑗𝑗, and will be estimated in the second stage along 

with the parameters for all other location-specific attributes.   

 The household’s utility function is known to the researcher only up to an error term 

𝜀𝜀𝑖𝑖𝑖𝑖; i.e., 𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑈𝑈𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖. The error term 𝜀𝜀𝑖𝑖𝑖𝑖 combines the error in predicting household i’s 

wages and housing expenditures in city j with household i’s unmeasured preferences for 

city j. Assuming that the idiosyncratic errors are independently and identically distributed 

Type I Extreme Value, the probability of household i selecting city j is given by the mixed  

  

                                                 
49 The MSA fixed effects, 𝛿𝛿𝑗𝑗, will capture cost of living differences across locations that are common 
among households, whereas 𝑌𝑌𝑖𝑖𝑖𝑖  and 𝑃𝑃𝑖𝑖𝑖𝑖  account for household-specific price differences across locations. 



83 

logit formulation in equation (14). The parameters of equation (14) are estimated via 

 𝑃𝑃(𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑗𝑗) = �
𝑒𝑒𝑒𝑒𝑒𝑒(𝑉𝑉𝑖𝑖𝑖𝑖(𝛿𝛿𝑗𝑗,𝛼𝛼,𝜷𝜷𝑖𝑖,𝝅𝝅))

∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑉𝑉𝑖𝑖𝑖𝑖(𝛿𝛿𝑘𝑘,𝛼𝛼,𝜷𝜷𝑖𝑖,𝝅𝝅))𝑘𝑘
𝑓𝑓(𝜷𝜷|𝝁𝝁,𝜮𝜮)𝑑𝑑𝑑𝑑

∞

−∞
 (14) 

simulated maximum likelihood, using a choice set equal to the household’s chosen 

alternative and a sample of 59 alternatives from the full set of 284 MSAs.50  

 Equation (15) describes the second stage of my model where the estimated city-

specific fixed effects are regressed on the vector of amenities that do not vary across  

 𝛿𝛿𝑗𝑗 = 𝜇𝜇𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑗𝑗 + 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 +  𝑨𝑨𝑗𝑗′ Г + 𝑢𝑢𝒋𝒋 (15) 

households. The results of this second stage estimation yield the mean utility parameters 

associated with winter and summer temperature, as well as the fixed (non-random) utility 

parameters for all other location-specific attributes.   

 

                                                 
50 The validity of the McFadden sampling procedure (McFadden 1978) hinges on the independence of 
irrelevant alternatives, which does not hold in the mixed logit model.  Guevara and Ben-Akiva (2013) 
prove that the sampling of alternatives in the mixed logit model produces consistent parameter estimates as 
the number of alternatives sampled approaches the universal choice set. Given the computational trade-offs 
I face between estimating the mixed logit model using all 284 elements of the universal choice set and a 
sample large enough to estimate 284 fixed effects with precision, I must use a sub-sample of the universal 
choice set.  Experiments with the size of the sampled choice set indicated that increasing the size of the 
choice set beyond 60 MSAs did not significantly alter parameter estimates.  This is supported by simulation 
result from Nerella and Bhat (2004), which finds small sample bias when 50 or more alternatives are 
sampled from a choice set of 200.  While beyond the scope of this paper, another option is to pursue a 
latent class model as suggested in von Haefen and Domanski (2016). 
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3.3.3 MWTP Conditional on Location 

 In order to examine how taste heterogeneity affects where people choose to locate, 

I compute household-level temperature parameters.  By conditioning on where a household 

has chosen to locate, it is possible to pin down where their particular preferences fit into 

the larger population distribution.  I follow a procedure by Revelt and Train (1999) which 

uses Bayes’ Rule to show that the conditional distribution of the temperature parameters 

(i.e., conditional on chosen location, household attributes, and the overall distribution of 

temperature parameters) is given by equation (16).  As shown in equation (17), taking the 

 ℎ(𝛽𝛽|𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 ,𝑋𝑋𝑖𝑖,𝝁𝝁,𝜮𝜮) =
Pr(𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖|𝑋𝑋𝑖𝑖,𝛽𝛽)𝑓𝑓(𝛽𝛽|𝝁𝝁,𝜮𝜮) 

Pr (𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖|𝑋𝑋𝑖𝑖,𝝁𝝁,𝜮𝜮)  (16) 

expectation of this conditional distribution reveals an expression for household-level 

parameters, or the mean taste parameters, 𝝁𝝁𝒊𝒊, of households of type 𝑋𝑋𝑖𝑖.  A similar method  

 𝜇𝜇𝑖𝑖 = 𝐸𝐸(𝛽𝛽𝑖𝑖|𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 ,𝑋𝑋𝑖𝑖,𝝁𝝁,𝜮𝜮) = �𝛽𝛽𝑖𝑖 ℎ(𝛽𝛽|𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 ,𝑋𝑋𝑖𝑖,𝝁𝝁,𝜮𝜮)𝑑𝑑𝑑𝑑 (17) 

can be used to derive the conditional variance-covariance matrix 𝜮𝜮𝒊𝒊.  These household level 

parameters are estimated via simulation.  I then average the conditional mean coefficients 

over all households living in each MSA.  The ratio of these MSA-level coefficients over 

the coefficient on the Hicksian bundle yields mean MWTP for temperature in each MSA.  

I plot the MSA-level MWTPs against MSA average temperatures to examine patterns of 

taste sorting. 
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3.4 Data        

 The data used to estimate both the discrete choice and hedonic models come from 

the 5% PUMS of the 2000 census, as well as other publicly available data sources 

containing information on location-specific attributes.  The census PUMS data provides 

information at the household-level (for example, property values and rent payments, 

migration information, and physical dwelling characteristics) as well as individual-level 

data for all household members, such as age, sex, race, education, and earnings. 

 

3.4.1 Households Used to Estimate the Discrete Choice Model 

 The 2000 PUMS contains information on more than 5.6 million households.  In 

estimating the discrete choice model, I focus on households residing in one of the 284 

MSAs for which I have complete amenity data.  These MSAs contained 80% of the total 

U.S. population in 2000.  In order to be included in my sample, a household must be headed 

by a person 16 years of age or older who was born in the continental US.  I exclude 

households whose heads are in the military, or who are in certain occupations (e.g., logging, 

mining) which would restrict locational choices.  I also eliminate households whose 

members are self-employed due to difficulty in predicting the wages of the self-employed, 

and I drop households with negative Hicksian bundles at their chosen locations.51 This 

leaves over 2 million households.  A 2.5% sample of these households yields the 54,008 

                                                 
51 These households may have substantial accumulated wealth (e.g., in real property) which I cannot 
measure. 
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households described in Table 2.1.52  I also examine a sample of “movers,” or households 

who changed MSAs between 1995 and 2000.  As there are fewer of these households, I 

obtain all the movers from a 10% sample of all the PUMS households that fit my criteria 

yielding almost 23,000 households. 

 I have estimated the discrete choice model for the full sample of households and 

also for the three sub-samples described in Table 2.1: households with prime-aged heads 

(i.e., heads between 25 and 55), households with heads over age 55, and movers 

(households with heads who have moved MSAs between 1995 and 2000).  The results 

presented in this paper focus on households with prime-aged heads.  As Table 2.1 indicates, 

98% of these households have some labor income, and, on average, 93% of the income of 

these households comes from wages.  The hedonic approach, which uses wage and housing 

cost differentials to value amenities, is most appropriately applied to prime-aged 

households given their strong labor force attachment. 53   My results also suggest that 

preferences for winter and summer temperature differ significantly between prime-aged 

households and households with older heads; hence, focusing on a single demographic 

group makes for a cleaner comparison with the hedonic approach.  Furthermore, the sample 

of prime-aged households is closely aligned to the sample used by Albouy (2012) and 

Albouy et. al. (2016) in their hedonic computations. 

 

                                                 
52 Computational difficulties lead me to use such a small sample of households.  However, I have estimated 
the mixed logit model on larger samples and find the results to be stable. 

53 Hedonic wage equations in Albouy et al. (2016) are based on prime-aged workers. 
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3.4.2 Households Used to Estimate the Hedonic Model 

 The first stage of the hedonic model involves estimating MSA fixed effects from 

wage and housing expenditure regressions based on individual and household-level data 

from the 2000 census 5% PUMS.  Wage regressions are estimated with individuals 

working full-time (30-60 hours per week, at least 40 weeks per year), and excludes those 

who are self-employed or in farming, fishing, forestry, military, or mining industries.  This 

yields just under 3 million individuals for the wage regressions.  Housing expenditure 

regressions are estimated using household-level data and exclude households residing on 

farms or in mobile homes or boats.  About 3.3 million households are included in the 

property value regressions. 

 

3.4.3 Location-Specific Attributes 

 I control for a variety of location-specific attributes in my models.  In presenting 

results, I focus on variables related to climate, which feature more variation across MSAs 

than within.  The climate variables that I control for are mean winter (December – 

February) and mean summer (June – August) temperature, July humidity, annual snowfall, 

mean summer precipitation, and annual sunshine.  All variables are climate normals, the 

arithmetic mean computed for a 30-year period, sourced from the NOAA.54  I refer the 

reader to Section 2.3.2 of Chapter 2 for a more complete description of the climate variables 

used in this analysis.  Descriptive statistics are presented in Table 2.2. 

                                                 
54 The temperature and summer precipitation data are for the period 1970 to 2000. July relative humidity, 
annual snowfall, and percentage of possible sunshine are measured for the period 1960 to 1990. 
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 Table 2.2 also summarizes the non-climate amenities included in the second stage 

regressions.  In an effort to mitigate omitted variable bias, I control for amenities that may 

be correlated with climate, such as elevation, visibility, and measures of parks and 

recreation opportunities.  I also control for population density, hoping to capture amenities 

associated with bigger cities that may not be adequately captured by other variables.  Other 

(dis)amenities I control for include air pollution (U.S. EPA measure for fine particulate 

matter) and an index of violent crime from the FBI’s Uniform Crime Reporting Program.  

Also included are several indices from the Places Rated Almanac (Savageau and 

D’Agostino, 2000) that measure how well each city functions in terms of transportation, 

education, health, and recreation opportunities. Section 2.3.3 of Chapter 2 contains a more 

comprehensive discussion of these non-climate variables. 

 

3.5 Estimation Results 

 In the spirit of Cragg and Kahn (1997) and Bayer, Keohane and Timmins (2009) I 

compare estimates of mean MWTP from the discrete choice and hedonic models to see 

whether the discrete choice approach indeed yields larger estimates of amenity values.55 I 

am, however, also interested in taste sorting.  From the perspective of valuing climate, it 

matters how MWTP for temperature changes varies geographically – are households living 

                                                 
55 Both the discrete choice and hedonic models estimated in this paper are static models, which assumes 
that households are not forward looking and that they re-optimize their location decisions every period.  
Consequently, MWTP should be interpreted as annual values.  See Bayer, McMillan, Murphy, and 
Timmins (2016) and Bishop and Murphy (2011) for examples of dynamic location choice models emerging 
in the discrete choice and hedonic literatures. 
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in areas where temperatures are likely to increase under future climate scenarios willing to 

pay more (or less) than the mean for warmer winters or cooler summers?  I approach this 

by measuring MWTP for temperature changes conditional a household’s current location. 

 

3.5.1 Discrete Choice Results 

 As noted above, I estimate discrete location choice models for various population 

groups – households headed by persons between 25 and 55 (prime-aged households), 

households whose heads are over 55, households headed by persons 16 years of age and 

older (full sample), and movers (households who have moved MSAs between 1995 and 

2000).  In comparing the discrete choice and continuous hedonic approaches, I focus on 

prime-aged households because of their strong labor-force attachment (see Table 2.1).  It 

is, however, important to note that prime-aged households have different preferences for 

climate amenities than households headed by persons over age 55 and different preferences 

from the full sample of households.  I am also interested in comparing the sample of movers 

with the hedonic results.  Intrinsically, hedonic models capture the preferences of the 

marginal consumer, so to the extent that movers may better embody the set of marginal 

households, it is useful to see if their preferences better align with those implied by hedonic 

estimates.  

 Table 3.1 describes the results of my base model for four samples: all households, 

prime-aged households, households with heads older than 55, and movers.  The base model 

is a mixed logit model that allows the coefficients on winter and summer temperature to be 

jointly normally distributed and controls for the first 18 attributes in Table 2.2, as well as 
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the Hicksian bundle and moving costs.56  Amenity coefficients have been converted to 

MWTP by dividing by the coefficient on the Hicksian bundle.  For winter and summer 

temperature, I report the mean and standard deviation of the distribution of MWTP, as well 

as the correlation coefficient between the winter and summer temperature coefficients.57  

Standard errors are reported for all MWTP estimates.58   

 The most striking result in Table 3.1 is that the mean MWTP for winter and summer 

temperature differs significantly across samples.  While all groups, on average, view higher 

winter temperature as an amenity and higher summer temperature as a disamenity, the 

magnitudes of MWTP are much greater for older households than for prime aged 

households. Mean MWTP for winter temperature is about twice as high for older 

households as for prime-aged households ($1,035 v. $518).  Similarly, older households 

are, on average, willing to pay much more to decrease summer temperature than prime-

aged households ($1,424 v. $627).  This suggests the importance of considering all 

households when evaluating climate impacts for policy purposes.        

                                                 
56 The second stage regressions for both the discrete choice and hedonic models use estimated dependent 
variables, which introduces heteroskedasticity into the second stage error.  My base results are reported 
with robust standard errors, which Lewis and Linzer (2005) suggest may work well compared with the 
standard weighted least squares (WLS) approach, which likely underestimates standard errors.   As a 
sensitivity, I present discrete choice and hedonic second stage results using weighted least squares, as well 
as two feasible generalized least squares (FGLS) approaches following Lewis and Linzer (2005), which 
yield consistent and efficient standard error estimates.  Second stage coefficients and standard errors are 
robust across these specifications and are reported in Appendix F. 

57 Table 2.3 through Table 2.5 in the text report MWTP only for climate variables.  MWTP for all model 
coefficients are reported in Appendix B. 

58 MWTP figures are computed using both first and second stage parameter estimates.  Standard errors are 
computed using the delta method, where the covariance terms between first and second stage parameters 
are assumed to be zero.  Due to computational burden from the first stage, bootstrapping standard errors is 
infeasible. 
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 Households who have moved MSAs between 1995 and 2000 also have different 

preferences from the population as a whole.  Their mean MWTP for winter and summer 

temperature is $983 and $1,109, respectively – almost double the estimates for the prime-

aged households who are similar to movers in most of the demographic characteristics like 

age, education, and earnings.   

 I focus henceforth on prime-aged households. Table 3.2 presents estimates of 

MWTP for winter and summer temperature and other climate amenities based on three 

mixed logit models.  The base model (Model M.1) controls for the first 18 amenities in 

Table 2.2, as well as moving costs, and allows the coefficients on winter and summer 

temperature to be jointly normally distributed.  Model M.2 is identical, except that I have 

included a quadratic term for the temperature variables in the second stage, which by 

construction is restricted to be identical across households (unlike the linear term which is 

permitted to vary across households).  The second stage results from Model M.2 are 

extremely similar to those of the base model, Model M.1.   

 Model M.1 suggests that, on average, higher winter temperature is an amenity and 

warmer summer temperature a disamenity.  Mean MWTP to decrease summer temperature 

by one degree is higher than mean MWTP to increase winter temperature ($627 v. $518).  

There is, however, considerable variation in tastes as seen by the standard deviation 

coefficients in Panel A and exhibited in Figure 3.1 and Figure 3.2, which show how 

households sort across locations in relation to their taste for winter and summer 

temperature, respectively.  In order to produce these plots of taste-based sorting, I calculate 

the joint distribution of the coefficients of winter and summer temperature for each 

household conditional on the household’s choice of location.  The means of these 
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conditional distributions are averaged across all households in each city, divided by the 

coefficient on the Hicksian bundle, and plotted against city temperature.   

 As seen in Figure 3.1, households with high MWTP for warmer winters tend to 

locate in cities with warmer winters.  For example, households in the South Atlantic and 

Pacific census divisions, regions with mild winters, have the highest MWTP for warmer 

winters, whereas West North Central households have the lowest MWTP for winter 

temperature and have located in cities with the harshest winters.  As supported by the 

negative correlation coefficient between the parameters on winter and summer 

temperature, Figure 3.2 shows that households in the South Atlantic and Pacific also have 

the highest MWTP for cooler summers, while households in the West North Central 

division have relatively low MWTP to avoid summer heat.   

 Failure to control for moving costs has a significant impact on the estimated value 

of climate amenities, as well as on the spatial distribution of MWTP for winter and summer 

temperature. Model M.3 in Table 3.2 shows the impact of dropping moving costs from the 

discrete choice model.  While the mean of the distribution of MWTP for winter temperature 

remains positive, its magnitude drops by more than 10%.  The mean of the distribution on 

the coefficient of summer temperature is even more sensitive: its magnitude drops by about 

43% when moving costs are omitted. The magnitude of the coefficients on other climate 

variables is also altered – snowfall becomes less of a disamenity and summer precipitation 

less of an amenity.    

 Figure 3.3 shows the impact of removing moving costs on taste sorting.  Removing 

moving costs causes the sorting on winter temperature to all but disappear: the variation is 
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very small, and all MSAs have a mean MWTP within about $20 of each other.  

Furthermore, the standard deviation coefficient for winter temperature is no longer 

statistically significant.  Figure 3.3 suggests that MWTP for warmer summers is positively 

associated with summer temperature, but the standard deviation coefficient isn’t 

significant.  I present these results to show the importance of controlling for moving costs.  

Moving costs are highly significant for all the samples of households I examine and clearly 

belong in the discrete choice model.  They also may be crucial to identifying the random 

parameters.59 

 Finally, while the sample of movers had different mean MWTP from prime-aged 

households, the sorting patterns of these two sets of households are very similar.  The plots 

in Figure 3.4 are almost identical to those in Figure 3.1 and Figure 3.2 with the obvious 

exception of scale – the magnitudes of MWTP for the mover households are higher across 

the board as expected from Table 3.1. 

 

3.5.2 Hedonic Results 

 The value placed on winter and summer temperature using the hedonic approach 

varies significantly with the weights used to construct the quality of life (QOL) indices 

described in Section 3.2.  There is no systematic pattern as to which set of hedonic results 

– traditional (Roback) weights or adjusted (Albouy) weights – lead to results that are closer 

                                                 
59 Identification of the random parameters comes from the variables that vary across both households and 
locations, i.e., the Hicksian bundle and moving costs.  These variables subtly create multiple markets which 
is what drives identification in the typical random parameter models of the industrial organization 
literature. 
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to estimates produced by the discrete choice model: summer temperature is closer under 

the Albouy weights, but winter temperature is closer under traditional weights.  The taste 

sorting implied by the two hedonic models is also quite different from the taste sorting 

implied by the discrete choice model. 

 Table 3.3 displays MWTP for climate amenities implied by the QOL models using, 

alternately, adjusted and traditional weights. 60   Each model controls for the first 18 

amenities listed in Table 2.2.  Models H.1a (adjusted weights) and H1.t (traditionally 

weights) allow winter and summer temperature to enter linearly, while Models H.2a and 

H.2t include the temperature terms in quadratic form.  In each model, MWTP is computed 

at the mean of each climate variable.61  Several points are worth noting.  All models imply 

that warmer winter temperature is an amenity and warmer summer temperature a 

disamenity; however, the models with Albouy weights indicate that when evaluated at 

temperature means, summer temperature is more of a disamenity than winter temperature 

is an amenity.  Specifically, MWTP to avoid an increase in summer temperature is, on 

average, over three times as great as MWTP for an increase in winter temperature 

(approximately $100 for winter temperature and $350 for summer temperature).  In 

                                                 
60 The results of Table 3.3 are produced by simple OLS models and represent the mean MWTP for local 
amenities across all households.  Figure 3.5 through Figure 3.8, discussed below, portray the results of the 
local linear regressions that show how households sort on temperature in the hedonic specification.   

61 MWTP in Table 3.3 is calculated by multiplying the relevant coefficient by the mean gross income of 
prime-aged households. 
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contrast, the two values are approximately equal in magnitude when traditional weights are 

used (e.g., about $200 for winter temperature and $230 for summer temperature).62      

 Table 3.3 suggests that the mean MWTP for winter and summer temperature 

produced by the hedonic and discrete models cannot be reconciled using either set of 

weights.  In relative terms, the hedonic model with traditional weights produces estimates 

that are closer to the discrete choice model: summer temperature is just slightly more of a 

disamenity than winter temperature is an amenity.  However, the magnitudes are much 

lower for this model.  In the hedonic model with Albouy weights, the magnitude of MWTP 

for summer temperature is closer to the discrete choice approach; however, the mean 

MWTP for winter temperature in the hedonic model with Albouy weights is even further 

away from discrete choice estimates as compared with the estimates when traditional 

weights are used.  It is also important to note that the discrete choice results for the sample 

of households that moved between 1995 and 2000 also cannot explain differences between 

the two models: the MWTP for movers is even higher than that of prime-aged households, 

thus further diverging from the hedonic estimates.63 

 I have also used the QOL indices from the two hedonic models to estimate flexible 

local linear regressions that allow the coefficients on summer and winter temperature to 

vary by MSA.  Specifically, I regress the QOL index on all amenities except for winter and 

                                                 
62 There are other differences in the value attached to climate amenities by the two sets of hedonic models.  
Snowfall is a disamenity using adjusted weights, but an amenity using traditional weights.  Summer 
precipitation is an amenity when traditional weights are used but a disamenity with adjusted weights.   

63 It may be that households who have recently moved are not a good proxy for the marginal consumer, but 
this result still suggests the differences between these two models isn’t strictly a question of whose 
preferences are being estimated. 
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summer temperature and then use the residuals from this equation in a local linear 

regression with kernel weights described in equation (7).  With only 284 observations, 

results are extremely sensitive to the bandwidth chosen for the kernel weights.  In general, 

the smaller the bandwidth, the greater the range of estimated MWTP values across cities.64  

The marginal hedonic prices for winter and summer temperature are plotted in Figure 3.5 

and Figure 3.6 for the Albouy weight models using a bandwidth of 1.  The comparable 

plots for the models estimated using traditional weights are shown in Figure 3.7 and Figure 

3.8.65   

 The results of the local linear regressions are interesting, although I believe they 

should be interpreted with caution given the small number of observations involved.  As 

shown in Figure 3.7 and Figure 3.8, when traditional weights are used, marginal hedonic 

prices for winter temperature generally decline with winter temperature, while marginal 

prices for summer temperature generally increase with summer temperature. In contrast, 

the pattern of marginal hedonic prices using the adjusted weights in Figure 3.5 and Figure 

3.6 is quite different: marginal hedonic prices for winter temperature exhibit a U-shape 

                                                 
64 Choosing too small a bandwidth will essentially result in data interpolation, while choosing too large a 
bandwidth will over-smooth the data and won’t allow for any sorting behavior.  I follow the lead of Bajari 
and Benkard (2005) and Albouy et. al. (2016) in choosing a bandwidth that looks reasonable given my 
data.  Albouy et. al. (2016) computed the optimal bandwidth in their analysis and found it far too small to 
yield meaningful results, thus I have not pursued the optimal bandwidth in this setting. 

65 I have also estimated each model using bandwidths of 0.5, 2 and 4.  For bandwidths of 2 and 4, there is 
little variation in marginal hedonic prices.  To illustrate, marginal prices for winter temperature using 
Albouy weights vary across cities between $47 and $60 when the bandwidth equals 2, and between $50 and 
$52 when the bandwidth equals 4.   For a bandwidth of 0.5, the data becomes noisy and the spread of 
MWTP vastly increases.  Appendix E contains scatter plots showing these bandwidth sensitivities. 
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with winter temperature, while the marginal prices for summer temperature decrease with 

summer temperature.      

 How do the local linear results compare with the sorting patterns implied by the 

discrete choice model?  Mostly, these two sets of results are very different.  For winter 

temperature, the discrete choice and traditionally-weighted local linear hedonic plots are 

almost perfectly opposite of one another.  The Albouy-weighted hedonic plots are a 

mixture: while the Albouy-weighted plots do show the South Atlantic households having 

high MWTP for winter temperature (as is also seen in Figure 3.1 from the discrete choice 

results), they also show this for West North Central households who have the lowest 

MWTP for winter temperature in the discrete choice plots.  The plots for summer 

temperature tell a very similar story.  The traditionally-weighted hedonic plots are mostly 

in opposition to those of the discrete choice plots, while the Albouy-weighted plots 

coincide for some households (households in the South Atlantic have high distaste for 

summer temperature in both models), but not for others (e.g., Pacific households have 

strong preferences for cooler summers in the discrete choice model, while they have the 

weakest preference in the Albouy-weighted hedonic model.)  

 

3.5.3 The Role of Market Share 

 As previously discussed, the discrete choice and hedonic models have some 

differences that can make the two models hard to compare.  One alternative is to consider 

a simple share model where a location’s market share (i.e., proportion of overall 

population) is regressed on local prices and local attributes.  This closely relates to the 

discrete choice model which aims to predict market share; specifically, the predicted 
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probabilities of moving to each MSA, summed over all households, yields the market share 

of that MSA.   

 To motivate the simple share regression, consider the following model: without loss 

of generality, suppose households face a decision between two different locations, 1 and 2, 

where household i chooses location 1 if  𝑍𝑍𝑖𝑖′𝜑𝜑 + 𝑢𝑢𝑖𝑖 > 0 and chooses location 2 otherwise.  

Then under the assumption of logit error, the probability household i chooses location 1 is 

given by 𝑃𝑃𝑖𝑖1 = 𝑒𝑒𝑍𝑍𝑖𝑖
′𝜑𝜑

1+𝑒𝑒𝑍𝑍𝑖𝑖
′𝜑𝜑
≡ 𝛲𝛲(𝑍𝑍𝑖𝑖′𝜑𝜑) and the probability household i chooses location 2 is 

𝑃𝑃𝑖𝑖2 = 1 − 𝛲𝛲(𝑍𝑍𝑖𝑖′𝜑𝜑).  The first order condition of the log-likelihood implied by this formula 

is 1
𝑁𝑁
∑ [𝑠𝑠𝑖𝑖 − 𝛲𝛲(𝑍𝑍𝑖𝑖′𝜑𝜑)]𝑖𝑖 𝑍𝑍𝑖𝑖 = 0 where 𝑠𝑠𝑖𝑖 = 1 if household i chooses location 1 and is zero 

otherwise.  Now consider the case where 𝑍𝑍𝑖𝑖 consists only of a constant (implicitly location-

specific), so that 𝛲𝛲(𝑍𝑍𝑖𝑖′𝜑𝜑) = 𝛲𝛲(𝜑𝜑) and the first order condition becomes 1
𝑁𝑁
∑ [𝑠𝑠𝑖𝑖 − 𝛲𝛲(𝜑𝜑)]𝑖𝑖 =

0 . Solving this equation for 𝜑𝜑  we have 𝜑𝜑 = ln � 𝑠̅𝑠
1−𝑠̅𝑠

� , where 𝑠̅𝑠 = 1
𝑁𝑁
∑ 𝑠𝑠𝑖𝑖  is just the 

proportion of households choosing location 1.  Likewise, 1 − 𝜑𝜑 produces the proportion 

of households choosing location 2.66   

 This simple example shows how dependent the discrete choice model is on MSA 

populations.  At the extreme, when only location specific constants are included in the 

model, the estimated parameters will exactly reflect the share of households choosing each 

                                                 
66 Full derivations are omitted for brevity, but are relatively simple and available upon request. 
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location.67  In the random utility model framework, these alternative-specific constants can 

be interpreted as the mean utility provided by each location.  Consequently, if one thinks 

about location-specific constants as a function of local prices and local amenities according 

to 𝜑𝜑𝑗𝑗 = 𝜑𝜑��𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗,𝐴𝐴𝑗𝑗;𝜃𝜃��, then a regression of log population shares on local wages, 

housing prices, and amenities will yield their respective contributions to location mean 

utility levels so that (a function of) 𝜃𝜃� will represent the marginal utility of these location 

attributes.  Taking the ratio between the coefficients on the amenities and wages will yield 

MWTP for the local amenities. 

 To estimate the share model, I replace the income and housing expenditure 

components of utility in the discrete choice model with the wage and housing price indices 

from national labor and housing markets (𝜆𝜆𝑗𝑗𝑤𝑤 and 𝜆𝜆𝑗𝑗𝑃𝑃, respectively, from the hedonic model) 

and drop the moving cost variables.  Per the derivation above, the discrete choice model 

reduces to the following share model described by equation (18), where s𝑗𝑗 denotes the  

 ln(s𝑗𝑗) = 𝜃𝜃�𝑃𝑃𝜆𝜆𝑗𝑗𝑃𝑃 + 𝜃𝜃�𝑤𝑤𝜆𝜆𝑗𝑗𝑤𝑤 + 𝑨𝑨𝒋𝒋𝜽𝜽� + 𝜖𝜖𝑗𝑗 (18) 

share of population in city j.  From this formulation, it is striking how differently the 

discrete choice and hedonic methods use the data.  Recall the hedonic formulation from 

equation (6), reproduced below. Here the price indices are on the left-hand side and 

 𝑄𝑄𝑄𝑄𝑄𝑄𝑗𝑗 ≡ 0.33𝜆𝜆𝑗𝑗𝑃𝑃 − 0.51𝜆𝜆𝑗𝑗𝑤𝑤 = 𝑨𝑨𝒋𝒋𝜽𝜽 + 𝜉𝜉𝑗𝑗 (6) 

                                                 
67 To be precise, the location specific constants will equal the log odds ratio, ln(𝑠̅𝑠/(1 − 𝑠̅𝑠).  For simplicity, 
I use ln(𝑠̅𝑠) as the dependent variable in my share model; however, I have estimated the model with the log 
odds ratio as the dependent variable and the estimates are almost identical. 
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quantities (or market shares) do not enter the equation at all.   

 I estimate equation (18) using the same price indices as used in the hedonic models 

and compute the implied mean MWTP, which is just mean income multiplied by the ratio 

of the amenity coefficient over the wage coefficient.  Those results are presented in Table 

3.4, where for purposes of comparison, I also report the estimates from the base discrete 

choice and hedonic models.  Mean MWTP for winter and summer temperature in the share 

model is $514 and $518, respectively.  These are quite close to the corresponding estimates 

from the discrete choice model of $518 and $627.  In contrast, the hedonic results are much 

lower in magnitude: $104 to $207 for winter temperature and $228 to $358 for summer.68   

  The results of this share equation may very well be biased – a thorough analysis 

would attempt to instrument for wage and housing prices which appear on the right-hand 

side – however, they are still useful in explaining how and why the discrete choice and 

hedonic models might produce different MWTP estimates.  In this comparison between the 

share equation and the hedonic model, there is no discrepancy in how labor and housing 

markets are treated (the same price indices are used), nor is there a discrepancy in mobility 

assumptions as the share model does not incorporate any moving costs.  The key difference 

                                                 
68 The similarity of results between the discrete choice and share models is suggested by the strong 
correlation (0.86) between the discrete choice MSA fixed effects and the MSA log populations shares 
(which are the dependent variables in the local amenity regressions).  In contrast, the discrete choice fixed 
effects are not strongly correlated with the QOL measures, only 0.21 for the Albouy-weighted QOL and -
0.25 for QOL with traditional weights.  Interestingly, the correlation between the two QOL measures is 
only 0.20, supporting the very different MWTP implied by each.  My findings also support Albouy’s 
(2012) conclusion that hedonic models using traditional weights appear to suggest that big cities have lower 
quality of life, while his adjusted weights correct this (correlation between log population shares and the 
traditional-weights QOL is -0.44; for the Albouy-weighted QOL, correlation is just 0.11). 
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between these models is how market share is incorporated: market share is the dependent 

variable in the share equation but does not enter the hedonic model explicitly at all.   

 

3.6 Conclusions     

 The goal of this paper is to compare the continuous hedonic and discrete choice 

approaches to valuing climate amenities – in particular, summer and winter temperature.  

Though researchers have observed that the two approaches can yield different willingness-

to-pay estimates, no previous studies in amenity valuation have established this in a careful 

or systematic way, nor have they adequately explored the important question of “Why?”  

Furthermore, this literature has only noted the differences in mean MWTP (Cragg and 

Kahn, 1997; Bayer, Keohane and Timmins, 2009), whereas I have expanded the analysis 

to compare how conditional (on location) MWTP varies across the two approaches.  

Preferences for temperature represent a classic case of taste sorting, and for the purposes 

of valuing climate policies, it is essential to measure how MWTP for temperature varies 

with geographic location.69  . 

 Simply put, the pattern of taste sorting produced by the two approaches is quite 

different.  The discrete location choice model suggests that households who place a higher 

value on warmer winters tend to live in warmer cities, although there is variation across 

                                                 
69 I interpret both the mean of the coefficient on winter and summer temperature conditional on location 
(where conditional means are aggregated to the city level in the discrete choice model) and the marginal 
hedonic prices in the local linear regressions as measuring MWTP for small changes in temperature at a 
location by people currently living there. 
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cities in MWTP holding temperature constant.  The continuous hedonic approach using 

traditional weights and local linear regression suggests the opposite: it suggests the MWTP 

for an increase in winter temperature of people living in North Dakota is higher than it is 

for those in Florida.  The hedonic results with Albouy weights are a U-shaped function of 

temperature: MWTP is highest for people living in the West North Central (where it is very 

cold) and in Florida (where winters are mild) and is lowest in locations where mean winter 

temperature is between 40 and 50 degrees.     

 In terms of summer temperature, the hedonic local linear regressions with Albouy 

weights suggest that MWTP to avoid warmer summers is negatively correlated with 

temperature at current location: people on the Pacific coast and in the mountain states 

consider warmer summers to be a disamenity, but less so than people living in the South 

Atlantic, West South Central and East South Central census divisions, who will bear the 

brunt of climate change under the A2 and B1 SRES scenarios.70 In contrast, the hedonic 

local linear regressions with traditional weights suggests that people living in these census 

divisions are actually willing to pay less to avoid an increase in mean summer temperature 

than people in other parts of the country.   Finally, the discrete choice model estimates that 

MWTP to avoid warmer summers is highest in the Pacific and South Atlantic census 

divisions, which only partly agrees with some of the hedonic plots.   

                                                 
70 To represent a range of driving forces for emissions, such as demographic development, socioeconomic 
development, and technological change, the Intergovernmental Panel on Climate Change (IPCC) developed 
a Special Report on Emissions Scenarios (SRES).  Among these scenarios is a climate-friendly scenario 
(B1) and a more extreme scenario (A2). 
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 There is also a difference in the mean MWTP across models: MWTP for warmer 

winters is lower, on average, in both sets of hedonic models than in the discrete choice 

case: it is approximately $200 in the hedonic model with traditional weights and $100 in 

the hedonic model with Albouy weights, but over $500 in the discrete choice model.  Mean 

MWTP to avoid warmer summers is also lower in the hedonic models (approximately $230 

and $350 for the traditional- and Albouy-weighted models, respectively) than in the 

discrete choice model, where MWTP is approximately $630.71 

 These findings raise the obvious question: why do results differ across models? 

Bayer, Keohane and Timmins (2009) suggest that it is the inclusion of moving costs in the 

discrete choice model that causes their hedonic and discrete choice results to differ.  When 

I omit moving costs from the discrete choice model, I find that mean MWTP for winter 

and summer temperature drops, but not enough to agree with hedonic estimates.  

Furthermore, these results don’t match in terms of sorting patterns.  When moving costs 

are omitted, the sorting on winter temperature disappears and the sorting on summer 

temperature becomes positive, but with weak significance at best.  This positive correlation 

between MWTP for summer temperature and summer temperature somewhat resembles 

the traditionally-weighted local linear hedonic model (though there are regional 

differences), but is in clear opposition to the Albouy-weighted model.  So, while moving 

costs do appear to be an important contributing factor explaining differences between 

hedonic and discrete choice model estimates, they are certainly not the only one.  

                                                 
71 The mean estimates for the hedonic models vary with the functional form of winter and summer 
temperature in Table 3.3. 
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 Do the results differ because the two approaches are measuring the preferences of 

different populations?  The hedonic model relies on indifference across locations, and thus 

inherently captures the preferences of marginal households, i.e. households just indifferent 

between their chosen location and its alternatives.  In contrast, the discrete choice model 

can capture the preferences of marginal and infra-marginal households alike.  To test 

whether this explains the difference in MWTP estimates between the two models, I 

attempted to identify the preferences of marginal households by estimating the discrete 

choice model for households who had recently moved cities.  The MWTP for the sample 

of movers is over double that of the regular sample of households from my base discrete 

choice model, further increasing the gap between discrete choice and hedonic estimates, as 

opposed to closing it.  This may simply suggest that movers do not embody marginal 

households.  However, it could suggest that the distinction between the preferences of 

marginal and infra-marginal households is not materially significant to why hedonic and 

discrete choice results diverge. 

 The hedonic and discrete choice approaches differ in other ways. First, the 

econometric models underlying the two approaches make different distributional 

assumptions, and it is difficult to judge the impact of these factors. Second, the construction 

of hedonic quality of life indices is based on national labor and housing market equations 

which assume that the returns to human capital and the marginal cost of a bedroom are 

everywhere equal. The discrete choice approach, in contrast, relies on variation in the 

returns to human capital across geographic areas and allows the marginal price of dwelling 

characteristics to vary across cities.  Because identification of the discrete choice model’s 

random parameters rests on meaningful household-location specific variation, I must 
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preserve variation in wages and housing costs across alternative locations within a 

household.  Thus, it is not feasible to estimate a random parameters discrete choice model 

where wages and housing expenditures are estimated based on national labor and housing 

markets.   

 Perhaps most importantly, the two models make use of different information: the 

hedonic model relies strictly on price variation, while the discrete choice model exploits 

price variation but also incorporates data on quantity purchased, or market share.  This 

market share information is only in the background of the hedonic model through the 

imposition of market equilibrium, whereas the discrete choice model incorporates it 

directly.  When I estimate the share model, which can be viewed as a simplified aggregate 

version of the discrete choice model, I find that the implied MWTP estimates are much 

closer to the discrete choice estimates based on individual household data and are still 

substantially larger than hedonic estimates.  Interestingly, these share model results omit 

two possible sources of difference between the discrete choice and hedonic models: 

moving costs are absent in the share model and wages and housing costs are measured 

identically.   

 What I have not answered in this paper is the question that is most important to 

policymakers: which of the approaches yields the most reliable estimates of the value of 

climate amenities for use in evaluating climate policy?  Given how different the estimates 

are, this is a question that clearly deserves more research.
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Table 3.1 Marginal Willingness To Pay for Climate Amenities (Base Discrete Choice Models) 

  Model M.1 (Full)   Model M.1 (Prime)   Model M.1 (>55)   Model M.1 (Movers) 
Sample All Ages 

  

Prime-Aged 
(Base Model) 

  Over 55 Years 

  

Changed MSA between  
1995 and 2000 

PANEL A:   1st Stage Estimates                       

Variable Coef 
(Std Err)     Coef 

(Std Err)     Coef 
(Std Err)     Coef 

(Std Err)   

Std. Dev: Avg Winter Temperature 0.0666     0.0588     0.0742     0.0781   
  (0.0020)     (0.0026)     (0.0039)     (0.0038)   
Std. Dev: Avg Summer Temperature 0.0522     0.0592     0.0331     0.0698   
  (0.0060)     (0.0068)     (0.0091)     (0.0079)   
Correlation Coefficient -0.8332     -0.6893     -0.9936     -0.8245   
 (0.0731)   (0.0416)   (0.0726)   (0.0621)  
                        
PANEL B:   2nd Stage Estimates                       

Variable Coef 
(Std Err) 

MWTP 
(Std Err)   Coef 

(Std Err) 
MWTP 

(Std Err)   Coef 
(Std Err) 

MWTP 
(Std Err)   Coef 

(Std Err) 
MWTP 

(Std Err) 

Mean: Avg Winter Temperature 0.0249 $709   0.0209 $518   0.0375 $1,035   0.0424 $983 
  (0.0056) ($160)   (0.0058) ($144)   (0.0070) ($199)   (0.0078) ($184) 
Mean: Avg Summer Temperature -0.0307 -$873   -0.0253 -$627   -0.0516 -$1,424   -0.0478 -$1,109 
  (0.0091) ($260)   (0.0100) ($249)   (0.0106) ($301)   (0.0121) ($283) 

July Humidity -0.0269 -$764   -0.0208 -$514   -0.0325 -$896   -0.0316 -$734 
  (0.0049) ($142)   (0.0054) ($135)   (0.0054) ($155)   (0.0059) ($139) 
Annual Snowfall -0.0166 -$471   -0.0170 -$422   -0.0154 -$425   -0.0215 -$499 
  (0.0024) ($70)   (0.0026) ($66)   (0.0026) ($75)   (0.0029) ($69) 
Ln(Summer Precipitation) 0.1408 $376   0.1708 $403   0.0926 $232   0.3279 $741 
  (0.0720) ($192)   (0.0768) ($181)   (0.0823) ($206)   (0.0890) ($202) 
Annual Sunshine -0.0155 -$441   -0.0149 -$368   -0.0111 -$307   -0.0127 -$296 
  (0.0057) ($162)   (0.0060) ($149)   (0.0067) ($185)   (0.0076) ($177) 

Note: When entering the regressions non-linearly, amenity variables are evaluated at population-weighted means in order to compute MWTP.  Non-linear covariates are the 
following: population density, summer precipitation, and elevation enter in log form while distance to the coast enters the model quadratically. 
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Table 3.2 Marginal Willingness To Pay for Climate Amenities (Discrete Choice Model Sensitivities) 

  Model M.1   Model M.2   Model M.3 
  Base Model 

  

Quadratic Temperature 
Specification 

  

Omit Moving Costs 

PANEL A:   1st Stage Estimates                 

Variable Coef 
(Std Err)           Coef 

(Std Err)   

Std. Dev: Avg Winter Temperature 0.0588     Same 1st Stage   0.0011   
  (0.0026)     Estimates as   (0.0128)   
Std. Dev: Avg Summer Temperature 0.0592     Model M.1   0.0352   
  (0.0068)           (0.0215)   
Correlation Coefficient -0.6893           0.8614   
  (0.0827)           (0.2756)   
                  
PANEL B:   2nd Stage Estimates                 

Variable Coef 
(Std Err) 

MWTP 
(Std Err)   Coef 

(Std Err) 
MWTP 

(Std Err)   Coef 
(Std Err) 

MWTP 
(Std Err) 

Mean: Avg Winter Temperature 0.0209 $518   0.0559 $489   0.0184 $491 
  (0.0058) ($144)   (0.0169) ($162)   (0.0055) ($146) 
Mean: Avg Summer Temperature -0.0253 -$627   -0.1547 -$608   -0.0145 -$386 
  (0.0100) ($249)   (0.1764) ($258)   (0.0108) ($288) 

July Humidity -0.0208 -$514   -0.0207 -$512   -0.0165 -$440 
  (0.0054) ($135)   (0.0055) ($136)   (0.0046) ($124) 
Annual Snowfall -0.0170 -$422   -0.0154 -$380   -0.0047 -$126 
  (0.0026) ($66)   (0.0028) ($69)   (0.0025) ($67) 
Ln(Summer Precipitation) 0.1708 $403   0.2158 $509   0.0678 $172 
  (0.0768) ($181)   (0.0808) ($191)   (0.0732) ($186) 
Annual Sunshine -0.0149 -$368   -0.0075 -$185   -0.0082 -$219 
  (0.0060) ($149)   (0.0077) ($192)   (0.0060) ($159) 

Note: When entering the regressions non-linearly, amenity variables are evaluated at population-weighted means in order to compute MWTP.  Non-linear covariates are the 
following: population density, summer precipitation, and elevation enter in log form while distance to the coast enters the model quadratically. 
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Table 3.3 Marginal Willingness To Pay for Climate Amenities (Base Hedonic Models) 

    Ajusted Hedonic Weights   Tradtional Hedonic Weights 

    Model H1.a   Model H2.a   Model H1.t   Model H2.t 
Temperature Specification   Linear   Quadratic   Linear   Quadratic 

    (Base Model)       (Base Model)     
                  

Variable   Coef. MWTP   Coef. MWTP   Coef. MWTP   Coef. MWTP 

    (Std Err) (Std Err)   (Std Err) (Std Err)   (Std Err) (Std Err)   (Std Err) (Std Err) 

Avg Winter Temperature 
  

0.0015 $104   0.0031 $110   0.0030 $207   0.0043 $186 

    (0.0005) ($33)   (0.0014) ($41)   (0.0006) ($42)   (0.0019) ($46) 

Avg Summer Temperature   -0.0052 -$358   -0.0048 -$355   -0.0033 -$228   -0.0228 -$228 

    (0.0009) ($64)   (0.0158) ($65)   (0.0010) ($68)   (0.0131) ($68) 

July Humidity 
  

0.0010 $71   0.0010 $71   0.0012 $84   0.0012 $84 

    (0.0003) ($24)   (0.0003) ($23)   (0.0005) ($35)   (0.0005) ($35) 

Annual Snowfall   -0.0002 -$16   -0.0001 -$10   0.0004 $29   0.0005 $33 

    (0.0002) ($11)   (0.0002) ($11)   (0.0002) ($16)   (0.0002) ($16) 

Ln(Summer Precipitation)   -0.0031 -$19   -0.0014 -$9   0.0128 $81   0.0157 $99 

    (0.0067) ($42)   (0.0069) ($44)   (0.0080) ($50)   (0.0087) ($55) 

Annual Sunshine   0.0028 $191   0.0030 $205   0.0019 $129   0.0025 $172 

    (0.0005) ($35)   (0.0007) ($45)   (0.0006) ($44)   (0.0008) ($57) 

Num. of Obs. (MSAs)   284     284     284     284   

Adjusted R-squared   0.59     0.59     0.50     0.50   

Note: MWTP is computed at mean household income for the prime-aged sample ($69,188).  When entering the regressions non-linearly, amenity variables are evaluated at 
population-weighted means in order to compute MWTP.  Non-linear covariates are the following: population density, summer precipitation, and elevation enter in log form 
while distance to the coast enters the model quadratically. 
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Table 3.4 Marginal Willingness to Pay Compared Across Base Models and Share Model 

    Share   Discrete Choice   Hedonic   Hedonic 
            Adjusted Weights   Traditional Weights 
        Base Model   Base Model   Base Model 

Variable   MWTP   MWTP   MWTP   MWTP 
    (Std Err)   (Std Err)   (Std Err)   (Std Err) 

Avg Winter Temperature   $514   $518   $104   $207 

    ($100)   ($144)   ($33)   ($42) 
Avg Summer Temperature   -$518   -$627   -$358   -$228 
    ($164)   ($249)   ($64)   ($68) 

July Humidity   -$300   -$514   $71   $84 
    ($90)   ($135)   ($24)   ($35) 
Annual Snowfall   -$61   -$422   -$16   $29 
    ($39)   ($66)   ($11)   ($16) 
Ln(Summer Precipitation)   $199   $403   -$19   $81 
    ($96)   ($181)   ($42)   ($50) 
Annual Sunshine   -$47   -$368   $191   $129 
    ($102)   ($149)   ($35)   ($44) 
Note: For the share and hedonic models, MWTP is computed at mean household income for the prime-aged sample ($69,188).  When entering the regressions non-linearly, 
amenity variables are evaluated at population-weighted means in order to compute MWTP.  Non-linear covariates are the following: population density, summer precipitation, 
and elevation enter in log form while distance to the coast enters the model quadratically. 
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Figure 3.1 Taste-Sorting for Winter Temperature by Metropolitan Area  
(Base Discrete Choice Model – Model M.1) 
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Figure 3.2 Taste-Sorting for Summer Temperature by Metropolitan Area  
(Base Discrete Choice Model – Model M.1) 
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Figure 3.3 Taste-Sorting by Metropolitan Area  
(Discrete Choice Model with No Moving Costs – Model M.3) 
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Figure 3.4 Taste-Sorting by Metropolitan Area  
(Base Discrete Choice Model for Movers) 
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Figure 3.5 Taste-Sorting for Winter Temperature by Metropolitan Area  
(Local Linear Hedonic Model, Adjusted Weights, Bandwidth = 1.0) 
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Figure 3.6 Taste-Sorting for Summer Temperature by Metropolitan Area  
(Local Linear Hedonic Model, Adjusted Weights, Bandwidth = 1.0) 
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Figure 3.7 Taste-Sorting for Winter Temperature by Metropolitan Area  
(Local Linear Hedonic Model, Traditional Weights, Bandwidth = 1.0) 
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Figure 3.8 Taste-Sorting for Summer Temperature by Metropolitan Area  
(Local Linear Hedonic Model, Traditional Weights, Bandwidth = 1.0) 
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Appendix A – Hedonic Wage and Housing Equations 

Table A.1 Summary of Hedonic Wage Coefficients 

Variables National 
Equation   MSA-Specific Equations 

(284) 
  Coef   Mean(Coef) StdDev(Coef) 
(Dependent Variable: log(wage rate))         
High School (left out category is no high school) 0.117   0.098 0.038 
Some College 0.212   0.180 0.045 
College Graduate 0.418   0.382 0.069 
Higher Education 0.577   0.546 0.074 
Age 0.049   0.048 0.007 
Age squared (divided by 100) 0.000   0.000 0.000 
Married 0.093   0.092 0.021 
Male 0.197   0.215 0.040 
Black (left out category is white) -0.082   -0.070 0.070 
Other Race -0.086   -0.055 0.054 
Speaks English Well 0.213   0.126 0.103 
Hispanic -0.075   -0.057 0.074 
Business Operations Occupation  
(left out category is Management Occupation) 

-0.120   -0.122 0.067 

Financial Specialists Occupation -0.139   -0.116 0.072 
Computer and Math Occupation 0.010   0.004 0.089 
Engineering Occupation -0.088   -0.073 0.083 
Life, Physical, & Social Sciences Occupation -0.206   -0.180 0.100 
Social Services Occupation -0.354   -0.328 0.078 
Legal Occupation -0.023   -0.039 0.127 
Teachers Occupation -0.221   -0.190 0.093 
Other Educational Occupation -0.502   -0.473 0.129 
Arts, Sports & Media Occupation -0.220   -0.243 0.094 
Healthcare Practitioners Occupation 0.025   0.062 0.078 
Healthcare Support Occupation -0.351   -0.330 0.078 
Protective Services Occupation -0.257   -0.240 0.106 
Food and Serving Occupation -0.453   -0.428 0.077 
Maintenance Occupation -0.485   -0.472 0.074 
Personal Care Service Occupation -0.435   -0.423 0.114 
High Skill Sales Occupation -0.154   -0.136 0.067 
Low Skill Sales Occupation -0.227   -0.228 0.062 
Office Support Occupation -0.316   -0.298 0.049 
Construction Trades & Extraction Workers Occupation -0.248   -0.246 0.090 
Maintenance Workers Occupation -0.206   -0.192 0.065 
Production Occupation -0.346   -0.317 0.084 
Transportation Occupation -0.375   -0.357 0.075 
Construction Industry (left out category is Mining and Utilities)a -0.179   -0.180 0.095 
Manufacturing Industry -0.127   -0.120 0.107 
Wholesale Industry -0.190   -0.185 0.097 
Retail Industry -0.344   -0.339 0.094 
Transportation Industry -0.111   -0.084 0.107 
Information & Communications Industry -0.111   -0.134 0.109 
Finance Industry -0.151   -0.175 0.105 
Professional and Scientific Management Services Industry -0.197   -0.220 0.101 
Educational and Health Social Services Industry -0.280   -0.267 0.092 
Recreation and Food Services Industry -0.352   -0.370 0.110 
Other Services Industry -0.348   -0.343 0.101 
Public Administration Industry -0.123   -0.126 0.095 
a Since these two industries have a very low number of observations, we bundled them together as the omitted 
category 
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Table A.2 Summary of Hedonic Housing Coefficients 

  National Equation   MSA-Specific Equations (284) 
(Dependent Variable: log(user costs including 
insurance and utility costs)) Coef   Mean(Coef) StdDev(Coef) 

House is Owned 0.504   0.464 0.144 
3 Bedrooms (left out category is less than three 
bedrooms) 

0.128   0.160 0.061 

4 Bedrooms 0.152   0.208 0.082 
5 Bedrooms 0.283   0.324 0.110 
Greater than 5 Bedrooms 0.485   0.500 0.163 
2 Rooms (left out category is less than two rooms) 0.137   0.080 0.133 
3 Rooms 0.137   0.053 0.140 
4 Rooms 0.166   0.075 0.146 
5 Rooms 0.230   0.126 0.154 
6 Rooms 0.327   0.218 0.156 
Greater than 6 Rooms 0.531   0.413 0.176 
Complete Kitchen -0.033   -0.104 0.261 
Complete Plumbing 0.219   0.221 0.212 
1 to 10 Acres 0.214   0.246 0.140 
0 to 1 years old (left out category is over 61 years 
old) 

0.391   0.428 0.157 

2 to 5 years old 0.371   0.404 0.158 
6 to 10 years old 0.316   0.358 0.150 
11 to 20 years old 0.218   0.247 0.127 
21 to 30 years old 0.110   0.150 0.122 
31 to 40 years old 0.059   0.093 0.113 
41 to 50 years old 0.020   0.039 0.089 
51 to 60 years old -0.026   -0.011 0.075 
Number of Units in Structure: Single-Attached (left 
out category is single family detached) 

-0.158   -0.082 0.105 

2 Units in Structure -0.055   -0.089 0.107 
3 to 4 Units in Structure -0.112   -0.135 0.095 
5 to 9 Units in Structure -0.139   -0.167 0.106 
10 to 19 Units in Structure -0.114   -0.132 0.127 
20 to 49 Units in Structure -0.169   -0.154 0.151 
Over 50 Units in Structure -0.152   -0.190 0.207 
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Table A.3 Variation in Key Dwelling Characteristics, Controlling for Household Size and Income 

                                  
Income Quintile Household Size   No. of Bedrooms   No. of Rooms   Owns Home   Age of Structure   No. of Units 
      Mean Std Dev   Mean Std Dev   Mean Std Dev   Mean Std Dev   Mean Std Dev 

1 

1 Person   1.92 0.18   4.13 0.38   0.43 0.09   33.21 5.73   9.02 3.55 
2 Persons   2.26 0.18   4.65 0.39   0.48 0.12   32.43 6.60   5.28 2.99 

3-4 Persons   2.45 0.21   4.77 0.43   0.30 0.09   30.85 7.10   4.74 2.68 
5+ Persons   2.81 0.34   5.17 0.57   0.32 0.12   31.94 7.76   3.35 2.49 

2 

1 Person   2.15 0.18   4.57 0.35   0.55 0.09   31.05 6.96   6.05 3.02 
2 Persons   2.50 0.16   5.11 0.34   0.66 0.10   31.67 6.95   3.32 2.27 

3-4 Persons   2.64 0.20   5.17 0.43   0.52 0.11   30.59 7.46   3.06 2.20 
5+ Persons   2.96 0.33   5.46 0.57   0.51 0.13   31.70 7.64   2.15 1.97 

3 

1 Person   2.34 0.21   4.93 0.37   0.65 0.08   28.37 6.95   4.92 2.96 
2 Persons   2.67 0.15   5.44 0.29   0.75 0.08   29.49 7.07   2.40 1.90 

3-4 Persons   2.86 0.16   5.59 0.37   0.71 0.09   28.61 7.39   1.70 1.53 
5+ Persons   3.16 0.28   5.81 0.49   0.69 0.11   29.64 7.48   1.26 1.42 

4 

1 Person   2.50 0.22   5.19 0.39   0.70 0.09   26.41 6.94   4.50 3.06 
2 Persons   2.86 0.16   5.79 0.30   0.84 0.08   26.54 6.75   1.72 1.76 

3-4 Persons   3.09 0.14   6.01 0.29   0.85 0.07   25.28 7.03   0.87 1.01 
5+ Persons   3.40 0.24   6.16 0.40   0.82 0.08   26.66 7.19   0.66 0.90 

5 

1 Person   2.64 0.24   5.42 0.38   0.75 0.09   26.90 6.34   5.04 3.70 
2 Persons   3.15 0.17   6.22 0.26   0.91 0.05   23.91 5.91   1.28 1.88 

3-4 Persons   3.41 0.16   6.42 0.21   0.93 0.04   22.12 6.13   0.49 0.79 
5+ Persons   3.72 0.22   6.48 0.29   0.90 0.05   23.08 6.28   0.41 0.56 

Note: The breakpoints for the household income quintiles are $20k, $36.4k, $56k, and $86.25k.             
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Appendix B – Estimation Results for All Covariates 

Table B.1 Estimation Results, All Stage 1 Covariates, Discrete Choice Base Models 

  Discrete Choice   Discrete Choice 
  Full (All Ages) Sample   Prime-Aged Sample 
  Base Model   Base Model 

Variable Coef 
(Std Err)   Coef 

(Std Err) 
Hicksian Bundle 0.0352   0.0404 
  (0.0009)   (0.0011) 

Moved from State of Birth -3.1189   -3.1080 
  (0.0185)   (0.0237) 
Moved from Division of Birth -0.9162   -0.8543 
  (0.0240)   (0.0305) 
Moved from Region of Birth -0.4569   -0.5362 
  (0.0220)   (0.0279) 

Std. Dev: Avg Winter Temperature 0.0666   0.0588 
  (0.0020)   (0.0026) 
Std. Dev: Avg Summer Temperature 0.0522   0.0592 
  (0.0060)   (0.0068) 
Correlation Coefficient -0.8332   -0.6893 
  (0.0731)   (0.0827) 
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Table B.2 Estimation Results, All Stage 2 Covariates, Discrete Choice and Hedonic Base Model 
    Discrete Choice   Discrete Choice   Hedonic   Hedonic 
    Full (All Ages) Sample   Prime-Aged Sample   Albouy Weights   Traditional Weights 
    Base Model   Base Model   Base Model   Base Model 
Variable   Coef. MWTP   Coef. MWTP   Coef. MWTP   Coef. MWTP 
    (Std Err) (Std Err)   (Std Err) (Std Err)   (Std Err) (Std Err)   (Std Err) (Std Err) 
Avg Winter Temperature   0.0249 $709   0.0209 $518   0.0015 $104   0.0030 $207 
    (0.0056) ($160)   (0.0058) ($144)   (0.0005) ($33)   (0.0006) ($42) 
Avg Summer Temperature   -0.0307 -$873   -0.0253 -$627   -0.0052 -$358   -0.0033 -$228 
    (0.0091) ($260)   (0.0100) ($249)   (0.0009) ($64)   (0.0010) ($68) 
July Humidity   -0.0269 -$764   -0.0208 -$514   0.0010 $71   0.0012 $84 
    (0.0049) ($142)   (0.0054) ($135)   (0.0003) ($24)   (0.0005) ($35) 
Annual Snowfall   -0.0166 -$471   -0.0170 -$422   -0.0002 -$16   0.0004 $29 
    (0.0024) ($70)   (0.0026) ($66)   (0.0002) ($11)   (0.0002) ($16) 
Ln(Summer Precipitation)   0.1408 $376   0.1708 $403   -0.0031 -$19   0.0128 $81 
    (0.0720) ($192)   (0.0768) ($181)   (0.0067) ($42)   (0.0080) ($50) 
Annual Sunshine   -0.0155 -$441   -0.0149 -$368   0.0028 $191   0.0019 $129 
    (0.0057) ($162)   (0.0060) ($149)   (0.0005) ($35)   (0.0006) ($44) 
Ln(Population Density)   0.2283 $7   0.2094 $6   0.0173 $2   -0.0179 -$3 
    (0.0452) ($1)   (0.0494) ($1)   (0.0039) ($1)   (0.0049) ($1) 
Mean PM2.5   0.0708 $2,014   0.0572 $1,416   -0.0044 -$303   -0.0056 -$384 
    (0.0159) ($455)   (0.0164) ($408)   (0.0011) ($75)   (0.0014) ($95) 
Violent Crime Rate   0.0045 $129   0.0006 $15   -0.0042 -$288   -0.0043 -$301 
    (0.0136) ($386)   (0.0142) ($352)   (0.0013) ($87)   (0.0017) ($116) 
Transportation Score   0.0093 $263   0.0105 $259   -0.0001 -$9   0.0003 $23 
    (0.0015) ($42)   (0.0015) ($39)   (0.0001) ($8)   (0.0001) ($10) 
Education Score   0.0034 $97   0.0043 $106   0.0000 $1   0.0000 $2 
    (0.0015) ($44)   (0.0016) ($41)   (0.0001) ($9)   (0.0001) ($10) 
Arts Score   0.0048 $136   0.0043 $106   0.0001 $5   -0.0004 -$26 
    (0.0017) ($49)   (0.0018) ($46)   (0.0001) ($9)   (0.0002) ($12) 
Healthcare Score   0.0005 $13   0.0002 $4   0.0003 $24   0.0002 $11 
    (0.0012) ($33)   (0.0012) ($31)   (0.0001) ($7)   (0.0001) ($8) 
Recreation Score   0.0131 $374   0.0124 $307   0.0001 $4   -0.0002 -$17 
    (0.0015) ($44)   (0.0016) ($41)   (0.0001) ($9)   (0.0002) ($12) 
Park Area   0.0002 $4   0.0001 $4   0.0000 $0   0.0000 -$1 
    (0.0001) ($2)   (0.0001) ($1)   (0.0000) ($0)   (0.0000) ($0) 
Visibility > 10 Miles   0.0078 $222   0.0073 $180   0.0000 -$1   -0.0010 -$68 
    (0.0032) ($92)   (0.0033) ($82)   (0.0002) ($16)   (0.0003) ($21) 
Ln(Elevation)   0.0810 $13,069   0.0895 $12,450   0.0021 $740   0.0027 $965 
    (0.0441) ($7,126)   (0.0481) ($6,706)   (0.0032) ($1,126)   (0.0043) ($1,531) 
Distance to Coast   -0.0025 -$45   -0.0020 -$25   -0.0001 -$3   0.0003 $16 
    (0.0007) ($15)   (0.0007) ($14)   (0.0001) ($3)   (0.0001) ($3) 
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Appendix C – Discrete Choice Model Sensitivities 

Table C.1 Marginal Willingness to Pay for Climate Amenities (Hicksian Bundle and Temperature Specifications) 

  Model 1   Model 9   Model 10   Model 11 
  Base Model   Quadratic HB 

  

Log(Wage) in 1st stage 
with housing price index 

in 2nd stage   

Quadratic Temperature 

PANEL A:   1st Stage Estimates                       

Variable Coef 
(Std Err)     Coef 

(Std Err)     Coef 
(Std Err)         

Std. Dev: Avg Winter Temperature 0.0666     0.0664     0.0673     Same 1st Stage 
  (0.0020)     (0.0020)     (0.0020)     Estimates as 
Std. Dev: Avg Summer Temperature 0.0522     0.0536     0.0527     Model 1 
  (0.0060)     (0.0059)     (0.0059)         
Correlation Coefficient -0.8332     -0.8273     -0.8257         
  (0.0731)     (0.0699)     (0.0723)         
                        
PANEL B:   2nd Stage Estimates                       

Variable Coef 
(Std Err) 

MWTP 
(Std Err)   Coef 

(Std Err) 
MWTP 

(Std Err)   Coef 
(Std Err) 

MWTP 
(Std Err)   Coef 

(Std Err) 
MWTP 

(Std Err) 
Mean: Avg Winter Temperature 0.0249 $709   0.0253 $588   0.0226 $885   0.0581 $711 
  (0.0056) ($160)   (0.0055) ($135)   (0.0057) ($247)   (0.0162) ($174) 
Mean: Avg Summer Temperature -0.0307 -$873   -0.0319 -$740   -0.0256 -$1,004   -0.0856 -$849 
  (0.0091) ($260)   (0.0091) ($220)   (0.0093) ($402)   (0.1449) ($246) 
July Humidity -0.0269 -$764   -0.0264 -$614   -0.0296 -$1,160   -0.0268 -$763 
  (0.0049) ($142)   (0.0049) ($120)   (0.0050) ($224)   (0.0050) ($142) 
Annual Snowfall -0.0166 -$471   -0.0166 -$385   -0.0169 -$662   -0.0149 -$425 
  (0.0024) ($70)   (0.0024) ($60)   (0.0024) ($110)   (0.0025) ($72) 
Ln(Summer Precipitation) 0.1408 $376   0.1433 $312   0.1495 $550   0.1784 $476 
  (0.0720) ($192)   (0.0716) ($161)   (0.0737) ($297)   (0.0768) ($205) 
Annual Sunshine -0.0155 -$441   -0.0143 -$331   -0.0183 -$716   -0.0101 -$286 
  (0.0057) ($162)   (0.0056) ($135)   (0.0059) ($253)   (0.0074) ($210) 
Note: When entering the regressions non-linearly, amenity variables are evaluated at population-weighted means in order to compute MWTP.  Non-linear covariates are the 
following: population density, summer precipitation, and elevation enter in log form while distance to the coast enters the model quadratically. 
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Table C.2 Marginal Willingness to Pay for Climate Amenities (Random Parameter Sensitivities) 

  Model 1 a   Model 12 b   Model 13 c   Model 14 d   Model 15 e 
  (Base Model)                         
  RP: WT, ST 

(WT, ST correlated)   
RP: HB, WT, ST 

(HB uncorrelated)   
RP: MC Div, WT, ST 
(MC uncorrelated)   

RP: Humidity, WT, ST 
(all correlated)   

RP: Snowfall, WT, ST 
(all correlated) 

PANEL A:   1st Stage Estimates                             

Variable Coef 
(Std Err)     Coef 

(Std Err)     Coef 
(Std Err)     Coef 

(Std Err)     Coef 
(Std Err)   

Hicksian Bundle 0.0352           0.0357     0.0351     0.0352   
  (0.0009)           (0.0009)     (0.0009)     (0.0009)   
           Mean: Hicksian Bundle       0.0358                     
        (0.0009)                     
           Std. Dev: Hicksian Bundle       0.0220                     
        (0.0025)                     

Moved from State of Birth -3.1189     -3.1260     -3.1910     -3.1159     -3.1189   

  (0.0185)     (0.0186)     (0.0202)     (0.0184)     (0.0185)   
Moved from Division of Birth -0.9162     -0.9162           -0.9167     -0.9162   
  (0.0240)     (0.0240)           (0.0241)     (0.0240)   
           Mean: Moved Division             -0.9654               
              (0.0259)               
           Std. Dev: Moved Division             0.9716               
              (0.0482)               
Moved from Region of Birth -0.4569     -0.4589     -0.4551     -0.4513     -0.4564   
  (0.0220)     (0.0220)     (0.0219)     (0.0220)     (0.0220)   
Std. Dev: Avg Winter Temperature 0.0666     0.0661     0.0620     0.0664     0.0671   
  (0.0020)     (0.0020)     (0.0022)     (0.0020)     (0.0028)   
Std. Dev: Avg Summer Temperature 0.0522     0.0505     0.0337     0.0463     0.0525   
  (0.0060)     (0.0061)     (0.0049)     (0.0061)     (0.0059)   
Correlation Coefficient (WT, ST) -0.8332     -0.8383     -0.9966     -0.9134     -0.8033   
  (0.0731)     (0.0773)     (0.0345)     (0.0822)     (0.0745)   
Std. Dev: July Humidity                   0.0038         
                    (0.0051)         
Std. Dev: Annual Snowfall                         0.0023   
                          (0.0055)   
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Table C.2 Marginal Willingness to Pay for Climate Amenities (Random Parameter Sensitivities) 

  Model 1 a   Model 12 b   Model 13 c   Model 14 d   Model 15 e 
  (Base Model)                         
  RP: WT, ST 

(WT, ST correlated)   
RP: HB, WT, ST 

(HB uncorrelated)   
RP: MC Div, WT, ST 
(MC uncorrelated)   

RP: Humidity, WT, ST 
(all correlated)   

RP: Snowfall, WT, ST 
(all correlated) 

                              
PANEL B:   2nd Stage Estimates                             

Variable Coef 
(Std Err) 

MWTP 
(Std Err)   Coef 

(Std Err) 
MWTP 

(Std Err)   Coef 
(Std Err) 

MWTP 
(Std Err)   Coef 

(Std Err) 
MWTP 

(Std Err)   Coef 
(Std Err) 

MWTP 
(Std Err) 

Mean: Avg Winter Temperature 0.0249 $709   0.0251 $703   0.0285 $797   0.0251 $714   0.0249 $709 
  (0.0056) ($160)   (0.0056) ($158)   (0.0057) ($160)   (0.0056) ($160)   (0.0056) ($160) 
Mean: Avg Summer Temperature -0.0307 -$873   -0.0311 -$870   -0.0362 -$1,014   -0.0309 -$879   -0.0305 -$867 
  (0.0091) ($260)   (0.0092) ($257)   (0.0092) ($260)   (0.0092) ($262)   (0.0091) ($261) 

July Humidity (Mean: Model 14) -0.0269 -$764   -0.0270 -$756   -0.0283 -$792   -0.0266 -$758   -0.0267 -$761 
  (0.0049) ($142)   (0.0050) ($141)   (0.0050) ($142)   (0.0050) ($143)   (0.0049) ($142) 
Annual Snowfall (Mean: Model 15) -0.0166 -$471   -0.0166 -$465   -0.0169 -$474   -0.0166 -$473   -0.0164 -$467 
  (0.0024) ($70)   (0.0024) ($69)   (0.0025) ($70)   (0.0024) ($70)   (0.0024) ($70) 
Ln(Summer Precipitation) 0.1408 $376   0.1408 $369   0.1467 $385   0.1367 $365   0.1384 $369 
  (0.0720) ($192)   (0.0725) ($190)   (0.0733) ($193)   (0.0718) ($192)   (0.0721) ($192) 
Annual Sunshine -0.0155 -$441   -0.0157 -$440   -0.0148 -$416   -0.0160 -$455   -0.0155 -$441 
  (0.0057) ($162)   (0.0057) ($161)   (0.0058) ($162)   (0.0057) ($162)   (0.0057) ($162) 

Notes:  
a Random parameters: winter and summer temperature; winter and summer temperature correlated 
b Random parameters: Hicksian bundle, winter, and summer temperature; winter and summer temperature correlated 
c Random parameters: moving cost (from Census division of birthplace), winter, and summer temperature; winter and summer temperature correlated 
d Random parameters: relative July humidity, winter temperature, and summer temperature; humidity, winter temperature, and summer temperature all correlated 
e Random parameters: annual snowfall, winter temperature, and summer temperature; snowfall, winter temperature, and summer temperature all correlated 

 

  

(Cont’d) 
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Figure C.1 Taste-Sorting, Impact of Adding Uncorrelated Hicksian Bundle as a Random Parameter  
(Model 1 vs. Model 12) 
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Figure C.2 Taste-Sorting, Impact of Adding Uncorrelated Moving Cost (Division Dummy) as a Random Parameter  
(Model 1 vs. Model 13) 
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Figure C.3 Taste-Sorting, Impact of Adding Correlated Relative July Humidity as a Random Parameter  
(Model 1 vs. Model 14) 
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Figure C.4 Taste-Sorting, Impact of Adding Correlated Annual Snowfall as a Random Parameter  
(Model 1 vs. Model 15) 
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Appendix D – Notes on Model 10 (Housing Price Index in 
Stage 2 Regression) 

 

 Suppose household i maximizes a Cobb-Douglas utility function subject to a budget 

 𝑈𝑈𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖
𝛼𝛼𝐶𝐶𝐻𝐻𝑖𝑖𝑖𝑖

𝛼𝛼𝐻𝐻𝑒𝑒𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑒𝑒𝑨𝑨𝑗𝑗𝜷𝜷𝑖𝑖  

constraint 𝐶𝐶𝑖𝑖𝑖𝑖 + 𝜌𝜌𝑗𝑗𝐻𝐻𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖 where 𝐶𝐶𝑖𝑖𝑖𝑖 is consumption of a composite good in city j, 𝐻𝐻𝑖𝑖𝑖𝑖 is 

housing, 𝜌𝜌𝑗𝑗 is a city-specific housing price index, and all other variables are as previously 

defined. Substituting optimal values for 𝐶𝐶𝑖𝑖𝑖𝑖 and 𝐻𝐻𝑖𝑖𝑖𝑖 and taking logs yields the following 

specification for indirect utility for household i living in city j, where 𝛼𝛼𝑌𝑌 = 𝛼𝛼𝐶𝐶 + 𝛼𝛼𝐻𝐻:72   

 ln𝑉𝑉𝑖𝑖𝑖𝑖 = 𝛼𝛼0 + 𝛼𝛼𝑌𝑌ln𝑌𝑌𝑖𝑖𝑖𝑖 + 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 − 𝛼𝛼𝐻𝐻ln𝜌𝜌𝑗𝑗 + 𝑨𝑨𝑗𝑗𝜷𝜷𝑖𝑖  

Combining terms that vary only by MSA gives an alternative expression of indirect utility, 

 ln𝑉𝑉𝑖𝑖𝑖𝑖 = 𝛼𝛼0 + 𝛼𝛼𝑌𝑌ln𝑌𝑌𝑖𝑖𝑖𝑖 + 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑗𝑗′  

where 𝛿𝛿𝑗𝑗′ = −𝛼𝛼𝐻𝐻ln𝜌𝜌𝑗𝑗 + 𝑨𝑨𝑗𝑗𝜷𝜷𝑖𝑖 .  First stage estimation proceeds via simulated maximum 

likelihood as in my base case. 

 In the second stage, I would like to regress the estimated MSA fixed effects (𝛿𝛿𝑗𝑗′) on 

the housing price index and local amenities according to the following regression: 

                                                 
72 𝛼𝛼0 = 𝛼𝛼𝐶𝐶 �

𝛼𝛼𝐶𝐶
𝛼𝛼𝐶𝐶+𝛼𝛼𝐻𝐻

� + 𝛼𝛼𝐻𝐻 �
𝛼𝛼𝐻𝐻

𝛼𝛼𝐶𝐶+𝛼𝛼𝐻𝐻
� 
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 𝛿𝛿𝑗𝑗′ = −𝛼𝛼𝐻𝐻ln𝜌𝜌𝑗𝑗 + 𝑨𝑨𝑗𝑗𝜷𝜷𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑖𝑖  

However, 𝜌𝜌𝑗𝑗  is likely to be correlated with the error term 𝜂𝜂𝑖𝑖𝑖𝑖 . Thus, I rearrange and 

estimate the equation below, recalling that 𝜌𝜌𝑗𝑗 is the estimated fixed effect from a national 

 𝛿𝛿𝑗𝑗′ + 𝛼𝛼𝐻𝐻ln𝜌𝜌𝑗𝑗 = 𝑨𝑨𝑗𝑗𝜷𝜷𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑖𝑖   

hedonic regression of housing expenditures on housing characteristics and that, by the 

properties of Cobb-Douglas utility, I have that 𝛼𝛼𝐻𝐻 𝛼𝛼𝑌𝑌⁄  is the proportion of income spent on 

housing. Thus, multiplying the median share of income spent on housing from my sample 

of households (0.25) by 𝛼𝛼�𝑌𝑌 (estimated in the first stage) gives me an estimate for 𝛼𝛼𝐻𝐻.
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Appendix E – Bandwidth Sensitivities for Local Linear Hedonic Model 

Figure E.1 Winter Temperature Bandwidth Sensitivities, Adjusted Weights 
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Figure E.2 Summer Temperature Bandwidth Sensitivities, Adjusted Weights 
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Figure E.3 Winter Temperature Bandwidth Sensitivities, Traditional Weights 
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Figure E.4 Summer Temperature Bandwidth Sensitivities, Traditional Weights 
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Appendix F – Estimated Dependent Variable (EDV) Model and 
Stage 2 Standard Error Corrections 

 

Table F.1 Standard Error Sensitivities, Stage 2 Regressions, Discrete Choice Model 

  Base Model 
(OLS, Robust 

SEs)   

WLSa 

  

FGLS 
(Version 1)b 

  

FGLS 
(Version 2)c 

2nd Stage Estimates               

Variable Coef 
(Std Err)   Coef 

(Std Err)   Coef 
(Std Err)   Coef 

(Std Err) 

Mean: Avg Winter Temperature 0.0209   0.0196   0.0204   0.0212 
  (0.0058)   (0.0059)   (0.0058)   (0.0058) 
Mean: Avg Summer Temperature -0.0253   -0.0225   -0.0240   -0.0257 
  (0.0100)   (0.0100)   (0.0100)   (0.0100) 

July Humidity -0.0208   -0.0208   -0.0208   -0.0206 
  (0.0054)   (0.0054)   (0.0054)   (0.0054) 
Annual Snowfall -0.0170   -0.0173   -0.0171   -0.0170 
  (0.0026)   (0.0027)   (0.0026)   (0.0026) 
Ln(Summer Precipitation) 0.1708   0.1562   0.1632   0.1710 
  (0.0768)   (0.0751)   (0.0759)   (0.0770) 
Annual Sunshine -0.0149   -0.0151   -0.0150   -0.0149 
  (0.0060)   (0.0059)   (0.0060)   (0.0060) 
a  Weights are the inverse of the estimated dependent variable's standard error 
b  Weights incorporate both estimated dependent variable's standard error, as well as variance of stage 2 random 
shock component.  The estimated dependent variable's standard errors are assumed to be known. 
c  Weights incorporate both estimated dependent variable's standard error, as well as variance of stage 2 random 
shock component.  The estimated dependent variable's standard errors are assumed known up to a proportion. 
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Table F.2 Standard Error Sensitivities, Stage 2 Regressions, Hedonic Model 

  QOL (Adjusted-Weights)   QOL (Traditional Weights) 
  Base Model 

(OLS, Robust 
SEs)   

FGLS 
(Version 2)c 

  

Base Model 
(OLS, Robust 

SEs)   

FGLS 
(Version 2)c 

2nd Stage Estimates               

Variable Coef 
(Std Err)   Coef 

(Std Err)   Coef 
(Std Err)   Coef 

(Std Err) 

Avg Winter Temperature 0.0015   0.0015   0.0030   0.0030 
  (0.0005)   (0.0005)   (0.0006)   (0.0006) 
Avg Summer Temperature -0.0052   -0.0052   -0.0033   -0.0033 
  (0.0009)   (0.0009)   (0.0010)   (0.0010) 

July Humidity 0.0010   0.0010   0.0012   0.0012 
  (0.0003)   (0.0003)   (0.0005)   (0.0005) 
Annual Snowfall -0.0002   -0.0002   0.0004   0.0004 
  (0.0002)   (0.0002)   (0.0002)   (0.0002) 
Ln(Summer Precipitation) -0.0031   -0.0032   0.0128   0.0122 
  (0.0067)   (0.0067)   (0.0080)   (0.0080) 
Annual Sunshine 0.0028   0.0028   0.0019   0.0018 
  (0.0005)   (0.0005)   (0.0006)   (0.0006) 
 
c  Weights incorporate both estimated dependent variable's standard error, as well as variance of stage 2 random 
shock component.  The estimated dependent variable's standard errors are assumed known up to a proportion. 
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