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      Growth stimulating effects of LYCH leaf hydrolysates on P. acidilactici IMT101 

cells were observed when MRS broth was supplemented with 20% (v/v) H1+H2, the 

mixture of hydrolysates prepared by a tea-making process.  Cells grown on MRS 

containing H1+H2 showed a shortened lag phase while yielding a cell concentration 

(Xs) significantly higher than other conditions.  The maximal specific growth rate 

(µmax) was also the highest among all.  Microwave-assisted extraction (MAE) at 80°C 

for 2 hrs (M802h) released more amino acids but less sugar (fructose, glucose, and 

sucrose) than in H1+H2.  No correlations between amino acids and cell growth were 

found.  In the absence of FOS, the high glucose concentration in the H1+H2 

hydrolysates was found responsible for the stimulatory effects on P. acidilactici 

growth.  These effects of LYCH leaf hydrolysates indicate the potential of developing 

new applications in promoting the growth of other probiotic cells using a simple 

process. 
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Chapter 1: Introduction 

      The leaf of Lycium chinense P. Mill. (LYCH), a.k.a. Chinese desert-thorn (USDA 

NRCS, 2006) or Chinese wolfberry (Zhang and Fritz, 1989), which is a plant 

belonging to the family Solanaceae, is regarded in traditional Chinese medicine as a 

medical herb for eternal youth and long life (Soga, 1985), a nourishing ingredient, 

and a tonic to reduce the risk of arteriosclerosis and essential arterial hypertension 

(Mizobuchi et al., 1969).  Used as tea in the Orient for more than 2,000 years due 

primarily to the stamina-improving, tranquillizing, and thirst-quenching activities, 

LYCH leaves are considered a healthful food (Kim et al., 1997).  Besides abundant 

betaine (Hansel et al., 1992), a phytochemical used to abate the risk of fatty liver 

(Mehta et al., 2002) or as a digestive aid for persons with insufficient production of 

acid in the stomach, LYCH leaves contain anti-aging vitamins ascorbic acid and 

tocopherols (Park, 1995), a group of antioxidative compounds such as rutin (Duke, 

1992) and chlorogenic acid (Terauchi et al., 1997a), and lyciumoside I, a methanol 

extract  showing antimicrobial activities against gram positive rods (Terauchi et al., 

1998).  Moreover, LYCH leaves reportedly increased the amino acids content of 

broiler meat while improving its flavor, taste, and tenderness (Na et al., 1997), 

indicating their potential application as feed supplement.   

      Nishiyama (1965) demonstrated the growth stimulating effects of LYCH leaves 

on Lactobacillus acidophilus cells, the most commonly used probiotic in today’s food 

industry.  His article (in Japanese) remained the only study on the subject in the 

literature until Bae and coworkers (2005) reported (in Korean) that addition of 
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methanol extract of LYCH leaves enhanced the antioxidative activity in yogurt.  The 

lack of research activities in this area could be attributed in part to limited circulation 

of literature published in non-English languages or to the void in Western literature 

on applications of herbal ingredients.  Nonetheless, such growth stimulating effects 

are intriguing and might be valuable for promoting the growth of other probiotic 

strains that are of commercial importance. 

      Pediococci, gram-positive, facultatively anaerobic cocci belonging to the group of 

lactic acid bacteria, carry a GRAS (generally recognized as safe) status (Simpson et 

al., 2002).  Pediococcus acidilactici has been widely used in the fermentation of dairy 

products (Bhowmik and Marth, 1990; Litopoulou-Tzanetaki et al., 1989), meats 

(Luchansky et al., 1992; Mattila-Sandholm et al., 1993), vegetables (Knorr, 1998), 

dough (Nigatu et al., 1998), fruit juices (Knorr, 1998), and silage (Cai et al., 1999; 

Fitzgerald, 2000).  Pediocins, inhibitory to a range of food pathogens, have been 

isolated from P. acidilactici (Nielsen et al., 1990; Nettles and Barefoot, 1993; Kang 

and Fung, 1999; Cheun et al., 2000), which has been shown to present in the natural 

micro biota in the gastrointestinal tracts of animals, poultry, and duck (Juven et al., 

1991; Kurzak et al., 1998; Hudson et al., 2000; Rekiel et al., 2005).  Additionally, P. 

acidilactici showed preservative effects against yeast and mold spoilage when applied 

to alfalfa feed (Sindou and Szucs, 2005).  To date, P. acidilactici has become a 

favorable ingredient in commercial probiotic feeds (Vanbelle et al., 1990; Tannock, 

1997; Geary et al., 1999) and a promising probiotic for fish larvae as a growth 

promoter (Gatesoupe, 2002).  There is a pressing need to identify a cost effective 

approach to produce sufficient cells in a timely manner in order to meet such a 
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demand.  However, the growth kinetics of P. acidilactici available in the literature has 

been geared towards pediocin production, which often requires conditions less 

favorable for cell mass accumulation (Biswas et al., 1991; Cho et al., 1996; Guerra 

and Pastrana, 2003; Vázquez et al., 2003), leaving considerable discrepancy with 

reference to producing P. acidilactici cells at the industrial scale. 

      In the present study, the feasibility of using LYCH leaves to promote the growth 

of P. acidilactici and the variations among different leaf preparation methods with 

respect to chemical constituents and growth-promoting effects were addressed.  From 

a processing standpoint, if a simple operation could be established to release 

ingredients that stimulate the growth of probiotic cells, it would most likely be readily 

convertible for industrial applications and the process could be easily optimized to 

enhance cost effectiveness.  In respect of biomass utilization and efficacy, it is highly 

desirable if the LYCH leaves were able to provide dual functionalities—both as a 

growth promoter for probiotics in feed and as a feed themselves to enhance the amino 

acids content and to improve the flavor, texture, and taste of the end products.   
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Chapter 2: Literature Review 

2.1 LYCH leaves 

2.1.1Traditional Chinese Medicine Perspective  

      Herbs in Traditional Chinese Medicine (TCM) formulation fall into four different 

categories: (1) Imperial herb—the chief herb (main ingredient) in a formula (2) 

Ministerial herb—ancillary to the imperial her, it augments and promotes the action 

of chief herb (3) Assistant herb—reduces the side effects of the imperial herb (4) 

Servant herb—harmonizes or coordinates the actions of other herbs. Five thousand 

years ago in China, Shen Nung (a famous herbalist) grouped 365 herbs into three 

classes: upper, middle, and lower based on herbal toxicities. The nontoxic and 

rejuvenating upper class herbs can be taken continuously for a long period and form 

the main components of “Yao Shan”. Chinese people consume herb-based Chinese 

medicine dishes in their daily life for more than 5000 years.  Termed “Yao Shan” in 

Chinese, herb-based Chinese medicinal dishes are popular in various forms, including 

herbal foods, teas, wines, congees, and pills. Unlike western medicine, Chinese 

medicine uses processed crude multi-component natural products, in various 

combinations and formulations aimed at multiple targets, to treat entirety of different 

symptoms. LYCH is categorized as an imperial herb. The major use of LYCH is for 

kidney disease (Table 2.1.1). LYCH leaves belong to the upper class herbs and can be 

consumed in daily life.  
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Table 2.1.1. Function of LYCH leaves described in traditional Chinese medicine 

books. 

Book Name (Time) Description 
Chen Nan Pen Tsao 
(Anonymous, Warring 
States, 475 B.C. - 221 B.C.) 

LYCH leaves can be cooked with egg and cure the 
leucorrhea problem in women.  
 

Yin Shan Chen Yao (Hu 
Sihhusi, Yuan Dynasty, 
1279-1368) 

LYCH leaves make people strong, refresh the spirits 
and enhance sexuality. 

Ben Tsao Kang Mu (Li 
Shizhen, Ming Dynasty, 
1368-1644) 

“Tien Chin Tso”, the leaf of Lycim chinense, is 
consumed to improve human body health and prolong 
human life. The ripe fruit of this plant known as Lycii 
fructus and the leaves known as Lycii folium are used 
as foods, while the root, known as Lycii cortex radicis, 
is used as a Chinese herbal medicine. “Tien Chin Tso” 
nourishes the liver and kidney and is effective to treat 
people with yin and blood deficiency of vital essences 
manifested by aching of the loins and knees, nocturnal 
emission, impotence, dizziness and tinnitus. It can be 
decocted as tea for daily drinking.   

Yao Yao Fen Ji (Shen 
Jinbie, Qing Dynasty, 1644-
1911) 

LYCH leaves taste bitter and sweet. The property of 
the leaf is cold. The medical uses for the leaf are 
mainly for relieving the depression, nourishing the 
heart, and releasing the tiredness of joints.  

Herbal Pharmacology in the 
People’s Republic of China 
(American Herbal 
Pharmacology Delegation, 
contemporary, 1975) 

LYCH can be used for curing impotence and backache 
with decoction of Rehmannia glutinosa and Viscum 
coloratum. For dizziness, it can be decocted with 
Chrysanthemum morifolium, Cornus officinalis, 
Dioscorea batatas, and Rehmannia glutinosa. For 
weakness and fever, it can be decocted with 
Anemarrhena asphodeloides, Angelica sinensis, 
Artemisia apiacea and Gentiana macrophylla. Lycium 
chinense has been reported to give hypoglycemic 
effect in mice, antifungal effects and has been used as 
an herbal remedy in China for hypertension, nephritis 
and for cancer. 
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2.1.2 Morphology       

      Chinese wolfberries are also called Chinese matrimony vines which belong to 

Solanaceae. This plant is also known as Chinesischer Bocksdorn in Germane, Daun 

Koki in Indonesia, Gou Qi in China, Kaukichai in Malaysia, Kuko in Japan,  Lyciet 

de Chine in France, Spina Santa Cinese in Italy, Box thorn in Korea (Duke, 1992).  

Lycii folium is its Latin name and it appears as “Tien Chin Tso” in traditional Chinese 

medicine formulation books. These plants grow in thickets along riverbanks in Japan, 

Korea, Manchuria, China, Ryukyus, Taiwan, and the northeastern part of the United 

States (Fig. 2.1.1). They are ornamental shrubs valued chiefly for their showy berries, 

but they also provide wildlife habitat, watershed protection, and shelter hedges. The 

shrubs mature when they grow to 3 to 7 feet high. The purplish flowers bloom from 

June to September and are followed by scarlet to orange-red berries which ripen from 

August to October. The leaves can be collected from May to November in north part 

of America (Rudolf, 1974). LYCH leaves have also been known for improvement of 

stamina, tranquillizing activity, thirst-quenching and anti-aging activity (Soga, 1985). 

In Indonesia, an infusion of the leaves with tea is gargled as a mouthwash to relieve 

toothache (Perry, 1980). LYCH leaves (Fig. 2.1.2) have been used as tea substitute in 

China, Korea and Japan for more than 2000 years. The traditional tea making process 

includes cleaning, cooking and then filtered. There is no caffeine detected in the 

leaves thus there is no limitation to drink LYCH tea as a daily drink.  
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Fig 2.1.1. Lycium chinense P. Mill. distribution in USA. 
(http://plants.usda.gov/java/profile?symbol=LYCH, URL accessed on May 19, 2006) 

 

Fig 2.1.2. Specimen of Lycium chinense P. Mill. 

(http://research.kahaku.go.jp/botany/wild_p100/autumn/x600_jpg/09kuko.jpg, 

URL accessed on May 19, 2006)
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2.1.3 Nutrition Values       

      Nutrition evaluation of LYCH were collected and categorized in Table 2.1.2. 

Among all of the drying methods, freeze-drying maintained the highest components 

of water soluble compounds in LYCH leaves (Terauchi et al., 1997b). No et al. 

(1995) concluded that using water as solvent at 80℃ with four times immersion for 

eight hours each immersion to extract LYCH leaves achieved 30.27% yield of 

extractable solids compared with 25.14% yield using 30% ethanol solvent in the same 

condition. Long time immersion and 80℃ are good parameters to extract solids from 

LYCH leaves. Price et al. found that there are only small changes in either the overall 

level or the composition of quercetin glucosides during normal commercial storage. 

Boiling and frying did not result in gross changes in glucosides composition, although 

an overall loss of up to 25% was found for both processes, in the former by leaching 

into the cooking water and in the latter by thermal degradation into products. 

      Seasonal fluctuation could be observed on the total free sugars and other water 

soluble components. Total sugars reached the highest amount in May, 1997, but 

fructose was found to be highest in June, 1997 (Kim et al., 1997). Amount of vitamin 

C and rutin were highest in May and November (Mizobuchi et al., 1964). Flavonol 

glycosides (quercetin-3-O- sophoroside and kaempferol-3-O- sophoroside) increased 

from February to March and from November while the leaves were sprouting 

(Terauchi et al., 1997b). 
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Table 2.1.2. Reported nutritional data on LYCH leaves.  

Composition Amount (mg/g) Remarks Reference 
29 Kcal/100 g Dry basis. Kilocalories Duke, 1992 Water 896  
0.003 Crude lipid  No et al., 

1995 Crude protein 0.00125  
Free Amino acids  

Alanine 19.8 
Arginine 6.77  
Aspartic acid 11.1  
Cysteine 1.43  
Glutamine 1.06  
Glutamic acid 1.33  
Glycine 1.28  Dry basis. Histidine 22.4 Kim et 

al.,1997 
Sampled in 
May, 1997, 
Korea. 

Isoleucine 11.9 
Leucine 14.9 
Lysine 8.81 
Phenylalanine 8.55 
Proline 26.7 
Serine 2.04 
Threonine 1.83 
Tryptophan 3.89 
Tyrosine 8.58 
Valine 12.5 

Carbohydrates 385   Duke,1992 Fiber 125   
No et al., 
1995 

Total sugar 29.8   
Reducing sugar 0.00001  

Free sugars   
Fructose 0.00077  Dry basis. Kim et al., 

1997 Glucose 0.00133 
0.00098  Maltose 

Sucrose 0.00068  

Sampled in 
May, 1997, 
Korea. 

Mineral   
0.00036 No et al., 

1995 
OP2 5 0.00025 K O  2 0.00002 CaO 0.00001   MgO 0.519  Duke, 1992 Iron 0.18365 Sodium    
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Table 2.1.2. Reported nutritional data on LYCH leaves. (Cont.) 

Composition Amount (mg/g) Remarks Reference 

Vitamin Dry basis.  Mizobuchi et 
al., 1964 

 Sampled in 
April, 1964, 
Japan. 

Ascorbic acid 0.31  
Tocopherol 0.177  Duke, 1992 Beta carotene  0.428   
Thiamine 0.0077 Hansel,  1992 

 
Total flavonoids* Aubert and 

Kapetanidis, 
1989 

(Sweet, refreshing, apple-
like, honey-like flavonoids) 

0.6785 Dry basis.  

 
Quercetin  0.1315  Dry basis. Miean and 

Mohamed, 
2001 Apigenin 0.547  

Glycosides  Fresh leaves 
basis. New 
compounds 
were found in 
1998**. 

0.00014 - 0.00025  LyciumosideⅠ 
Kaznowski et 
al., 2005 

0.00097 - 0.0015 LyciumosideⅡ 
0.00028 - 0.00053 LyciumosideⅢ 
0.000006 - 0.000015 Rutin 

Antioxidants      Chlorogenic acid Na et al., 
1997  

0.01-0.017   
Quercetin-3-O-sophoroside 0.00095-0.0015     Kaempferol-3-O-
sophoroside  0.00012-0.00018    
Betaine 
 13.8  

 
Hansel, 1992 

Anticancer compounds      
Withanolide A 0.2  Duke, 2006 
Withanolide B 0.3   
Withasteroids 1   
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Table 2.1.2. Reported nutritional data on LYCH leaves. (Cont.) 

Composition Amount (mg/g) Remarks Reference 
Other compounds: 
β-sitosetrol- β-D-glucoside, nicotianamine, 
scopoletin, vanillic acid, (+)-3-hydroxy-7, 8-dehydro- 
β-ionone, 9-hydroxy-10,12, β-ionone, 9-hydroxy-
10,12,15-octadecatrienoic acid, α-dimorphecolic acid. 

 Shih, 1991 

 
* New flavonoids are identified as: quercetin-7-O-glucoside-3-O-glucosyl [1-2]galactoside, quercetin -
7-O-glucoside-3-O- sophoroside, kaempferol-7-O-glucoside-3-O-glucosyl [1-2]galactoside, and 
kaempferol-7-O-glucoside-3-O- sophoroside. (Aubert and Kapetanidis, 1989) 
** Six new acyclic diterpene glycosides named lyciumosides Ⅳ-Ⅸ were isolated from LYCH leaves, 
and there structures were elucidated as  
Lyciumoside Ⅳ: 3-O-α-L-rhamnopyranosyl-(1 4)-β-D-glucopyranosyl-17-hydroxygeranyllinalool-
17-O- β-D-glucopyranoside 
Lyciumoside Ⅴ: 3-O-β-D-glucopyranosyl-17-hydroxygeranyllinalool-17-O-α-L-rhamnopyranosyl-
(1 6)-β-D-glucopyranoside 
Lyciumoside Ⅵ: 3-O-α-L-rhamnopyranosyl-(1 4)-β-D-glucopyranosyl-17-hydroxygeranyllinalool-
17-O- α-L-rhamnopyranosyl-(1 6)- β-D-glucopyranoside 
Lyciumoside Ⅶ: 3-O-β-D-glucopyranosyl-17-hydroxygeranyllinalool-17-O- β-D-glucopyranosyl-
(1 2)-(α-L-rhamnopyranosyl-(1 6))- β-D-glucopyranoside 
Lyciumoside Ⅷ: 3-O-β-D-glucopyranosyl-12, 17-dihydroxygeranyllinalool-17-O- β-D-
glucopyranoside 
Lyciumoside Ⅸ: 3-O-(6-O-malonyl)-β-D-glucopyranosyl-17-hydroxygeranyllinalool-17-O- β-D –
glucopyranoside. (Terauchi et al., 1998) 
       

2.1.4 Pharmacology and Other Uses       

       Major pharmacological effects of LYCH leaves were listed in Table 2.1.3. LYCH 

leaves extracts were also used in several animal fertility studies in 1971. Hojyo found 

that the extracts increased luteinizing hormone (LH) activity in rats and rabbits. The 

water extracts were found to induce the ovulation in adult female rabbits, but the 

mechanism and the active compounds still remained to be further researched (Suzuki 

et al., 1972).  Active substances were demonstrated in LYCH leaves upon extraction 

with water but not with organic solvent. LYCH leaves were tested and used as animal 

feed in Korea for a long history. When the dietary LYCH leaves levels were 

increased, the amino acids content of broiler meat also increased. A significant effect 
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was observed of the 3%, 6% and 9% leaf extract on glutamic acid and valine in the 

broiler meat products (Na et al., 1997).  

 

Table 2.1.3. Pharmacological effect of LYCH leaves. 

Compounds Pharmacologic effect Ref. 
Abating or reducing the risk of certain diseases 
such as arteriosclerosis, essential arterial 
hypertension, diabetes, and night blindness 

Vitamin C and E Soga, 1985 

Lipotropic and hepatic function-protecting 
effects, and work as preventive phytochemical for 
reducing or abating the risk of fatty liver 

Nishiyama, 
1963 Betaine 

Preventive phytochemical for hypertension and 
stroke 

Mizobuchi 
et al., 1964 Rutin 

Vitamin C, vitamin 
E, rutin, chlorogenic 
acid, quercetin-3-O-
sophoroside, and 
kaempferol-3-O-
sophoroside 

Na et al., 
1997 Antioxidants 

Inhibit oxidation and cytotoxicity of low-density 
lipoprotein in vitro, reduce risk for coronary heart 
disease or cancer, work as strong antioxidant that 
can contribute to the prevention of atherosclerosis 
and also work as chemopreventive and 
chemotherapeutic agent that can relieve local pain 
caused by inflammation, headache, oral surgery, 
and stomach ulcer 

Miean et al., 
2001 Quercetin 

9-hydroxy-10, 12, 
15-octadecatrienoic 
acid and α-
dimorphecolic acid 

Angiotension converting enzyme inhibitor which 
can lower the blood pressure 

Inhibit the activity of angiotensin converting 
enzyme (ACE): ACE catalyzes the conversion of 
angiotensin I to angiotensin II and the breakdown 
of bradykinin. Angiotensin II and bradykinin are 
hypertensive and hypotensive agents, respectively 

Shih, 1991 Water extract of 
LYCH leaves  

Withaferin A, 
withaphysalin A and 
withangulatin A 

Anticancer reagents 

Antimicrobial function on Helicobacter pylori 
strains and Micrococcus flavus strain. 

Terauchi et 
al., 1998 LyciumosideⅠ 
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      The prebiotic effect of LYCH tea leaves was first observed in 1965 by Nishiyama. 

The 1% tea extracts stimulated the growth of Lactobacillus acidophilus cells to 

8.0×10 9 9  CFU/mL compared with control group 1.1×10 CFU/mL. The tea leaves 

extracts also increased acidity in the growth of Lactobacillus acidophilus cells in 

Nishiyama’s report.  

      LYCH leaves have been used as nutritional supplement in the form of tea in 

oriental area for thousands of years. The abundant amino acids, antioxidants, 

anticancer component in the leaves can be extracted with water into the drinking tea 

format. In 1998 Terauchi et al. concluded that the LYCH leaves of maybe beneficial 

as a health food.  

2.2 Extraction Methods 

2.2.1 Traditional Tea Making Process 

      Traditional tea making process includes sun drying for three to five days or 

mechanic drying overnight. Different tea leaves go throughout different fermentation 

process. Green tea as well as LYCH leaves are non-fermented tea leaves. The 

temperature to be used to cook non-fermented tea leaves cannot be over 80°C. 

Usually the cooking time depends on personal preference, but at least the leaves 

should be immersed with warm water for 3-5 min (Lin, 1985). To release higher 

soluble carbohydrates, longer time of extraction was recommended (No et al., 1995). 
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2.2.2 Microwave Extraction Method 

      Microwave system is consisted of microwave generator, wave guide for 

transmission, resonant cavity and a power supply. The microwave generator is a 

magnetron which is a cylindrical diode with a ring of cavities which acts as the anode 

structure. The heating effect in microwave cavities is from dielectric polarization. The 

polarization is achieved by the reorientation of permanent dipoles by the applied 

electric field. There are two basic systems (open and closed) commonly appear on 

market. The one with closed system as the equipment used in this study was supplied 

by Ethos, Milestone Inc. The chassis of the Ethos oven (Fig. 2.2.1) is made of 

corrosion-resistant stainless steel. The large interior cavity and the inside of the door 

are plasma coated with 5 layers of polytetrafluoroethylene (PTFE) applied at 350°C 

to protect the interior of the unit from aggressive acids. The heat is evenly distributed 

with a rotating diffuser. The system can provide up to 1600 W of microwave installed 

power. The maximum temperature the oven can reach is 300°C.  The system allows 

up to 12 extraction vessels to be irradiated simultaneously. Vessels are placed in a 

sample rotor and secured with a calibrated torque wrench to achieve uniform 

pressure. If the operating pressure exceeds the vessel limits, a patented spring device 

allows the vessel to open and close instantaneously; bringing the internal pressure 

down to a containable level thus they are inherently safe.  
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Fig 2.2.1. Ethos E Microwave extraction s

(Milestone Inc., Shelton, CT.) 

(

tation. 

http://www.milestonesrl.com/analytical/product

/ex_ethose.html, URL accessed on May 19, 

2006)

       

      Several classes of compounds such as essential oils, aromas, pesticides, phenols, 

dioxins, and other organic compounds have been extracted efficiently from a variety 

of matrices (mainly soils, sediments, animal tissues, foods and plant material). All the 

reported applications showed that microwave assisted solvent extraction (MAE) is a 

viable alternative to conventional techniques for such matrices (Dean, 1998). 

According to Saoud et al., the essential oil was obtained the highest at 800-1000W by 

using Ethos microwave lab station (Saoud et al., 2005). Standard MAE method was 

described in Fig. 2.2.2. 
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Fig 2.2.2. Patented microwave extraction method flow chart (Paré et al.,1998). 

(Courtesy of Milestone Inc.) 
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2.3 Prebiotics and Fructooligosaccharides 

2.3.1 Definition of Prebiotics 

      Prebiotic was first defined as “a nondigestible food ingredient that beneficially 

affects the host by selectively stimulating the growth and/or activity of one or a 

limited number of bacteria in the colon, and thus improves host health”(Gibson and 

Roberfroid, 1995). Prebiotics are required with the ability to resist gastric acidity and 

hydrolysis by mammalian enzymes and gastrointestinal absorption, to be fermented 

by intestinal micro flora, and selectively stimulate the growth and activity of 

intestinal bacteria associated with health and well being. A newly modified definition 

of prebiotic is “a prebiotic is a selectively fermented ingredient that allows specific 

changes, both in the composition and activity in the gastrointestinal micro flora that 

confers benefits upon host well-being and health (Roberfroid,2005).” 

      Prebiotics in practice are short-chain carbohydrates (SCCs) that are not digestible 

by human enzymes and which have been named resistant SCCs. Short chain 

fructooligosaccharides (scFOS) have been isolated from onions, wheat, barley, 

bananas, tomatoes, garlic, and artichokes. scFOS are non-reducing sugars and will not 

undergo the Maillard reaction. More than 70% of the energy from carbohydrate 

fermentation is conserved as short chain fatty acids (SCFA) and other fermentation 

products such as methane, carbon dioxide, and hydrogen. The SCFA (acetate, 

propionate and butyrate) serve as a source of energy for the host. Acetate is primarily 

used as fuel for host tissues. Propionate is used primarily in the liver as a substrate for 

gluconeogenesis. Butyrate is preferentially oxidized by colonocytes. Nondigestible 

oligosaccharides are not strictly oligosaccharides and their nondigestibility is not 
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always proved. Table 2.3.1 shows some of the SCCs which were considered as 

prebiotics available for human consumption. They can be more properly defined as 

“carbohydrates with a degree of polymerization (DP) of two or more, which are 

soluble in 80% ethanol and are not susceptible to digestion by pancreatic and brush-

border enzymes”, but several of the prebiotics even have DP value >10 (Roberfroid, 

2005). Until now, only three products meet the requirements for prebiotic 

classification (Table 2.3.1). They are inulin-type fructans, (trans)-

galactooligosaccharides, and lactulose (Roberfroid, 2005). 

 

Table 2.3.1. Classification of certain carbohydrates as colonic foods and prebiotics 

(adapted from Gibson and Roberfroid, 1995). 

Carbohydrates  Colonic food Prebiotics
Resistant starch  Yes No 

Non-starch polysaccharides Plant cell wall 
polysaccharides 

Yes No 

Hemicelluloses Yes No 
Pectics Yes No 
Gums Yes No 

Nondigestible 
oligosaccharides 

Fructooligosaccharides Yes Yes 
Galactooligosaccharides Yes - 

Soybean oligosaccharides Yes - 
Glucooligosaccharides - No 

 

2.3.2 Fructans 

      Fructans are generally defined as being a polymer of fructose having more than 

10 fructose units. In plants, up to 200 fructose units can be linked in a single fructan 

molecule (Table 2.3.2). Regardless if the fructose ring has a furanose form, the 

oligomeric molecule is still considered to be fructans.  In nature, the various fructans 

are broadly classified into three groups. The inulins, the levans (or phleins or phleans), 
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and mixtures or highly branched chain fructans referred to as the graminan type. The 

inulin type are linear fructans made up of fructosyl units linked by a β (2 1)-bond. 

The molecule is typically terminated by a glucosyl unit bound to one of the fructose 

moieties via an α1- β2 type linkage.  Some of them from plants contain small degree 

of branching of a β (2 6)-linkage (Roberfroid, 2005).  

 

Table 2.3.2. Inulin or oligofructose content of fresh or prepared vegetables, fruit and 

cereals (adapted from Van Loo et al., 1995). 

Foodstuff Form DP range 
Onion β (2 1) fructan; DP 2-12 

75% 1-kestose 1.1% to 7.5% on fresh 
weight and 25% neokestose 

Jerusalem 
artichoke 

β (2 1) fructan; DP 2-50 
1-kestose 16%-20% on fresh 

weight 
Rye β (2 1) fructan; 0.5%-1% on fresh 

weight 1-kestose 
and neokestose 

Dandelion(leaf) β (2 1) fructan 12%-15% on fresh 
weight 

Garlic β (2 1) fructan; DP 2-50 
1-kestose 9% -16% on fresh 

weight and neokestose 
Banana β (2 1) fructan 0.3%-0.7% on fresh 

weight 
Barley  0.5-1.5% 
Asparagus β (2 1) fructan;  

1-kestose 
And small amount of neokestose 

Chicory β (2 1) fructan; DP 2-65 
100% 1-kestose 15%-20% on fresh 

weight Roasted chicory still has >70% 
original fructan  
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      The degree of polymerization (DP) of inulin and the presence of branches are 

important properties that influence its functionality. Until recently, plant inulin was 

considered to be a linear molecule, but it has been possible to demonstrate that even 

native chicory inulin (DPav=12) has a very small degree of branching (1-2%) 

(Roberfroid, 2005). 

       FOS are mixture of β-D-fructans containing between 2 and 4 β (2 1) linked 

fructosyl units displaying a terminal α-D-glucose residue, named 1-kestose (GF2), 1-

nystose (GF ), and 1F-fructosylnystose (GF3 4), with average DP 3.7 (Fig. 2.3.1). Inulin 

is highly polymerized fructan of DP 10-60 whereas oligofructose with DP 2-9 

(average DP 4.5) is produced during the process of chemical degradation of inulin 

(Tokunaga, 2004).  

 

 

Fig 2.3.1. Chemical structure of fructooligosaccharides (FOS) and its enzymatic 

preparation from sucrose (adapted from Tokunaga, 2004). 
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      The second group is the levans. They are linear and predominately made up of 

fructose moieties linked via β (2 6) bond. The levan type fructans might also 

contain small amount of β (2 1) branching. These types of fructans are found in 

many of the monocotyledons and in almost all bacterial fructans.  

      The third group is the mixed, graminan or grass type. This group is distinguished 

by having significant amount of both β (2 1) and β (2 6) linked fructose units and 

thus contain significant branching. General structures of fructans are:  

α- D- glucopyranosyl-[β-D-fructofuranosyl]n-1- β-D- fructofuranoside (GpyF ) n

β - D- glucopyranosyl-[β-D-fructofuranosyl]n-1- β-D- fructofuranoside (FpyF ) n

Classification and chemistry of fructans were listed in Table 2.3.3. 

 

Table 2.3.3. Chemistry of fructans. 

Name   *Linkage(fructosyl-fructose)  Chemical structure    natural origins 
 

Inulin β (2 1)       linear, branched, 
cyclic   

plant, bacteria, 
fungi 

Levan β (2 6)              linear, branched         plant, bacteria, 
fungi 
 

linear, branched         plant Phlein β (2 6)              
 

Graminan β (2 1)and β (2 6)   linear, branched         plant 
 

Kestoses β (2 1)and β (2 6)   linear, branched        plant 
 

*in such a representation, the numbers indicate the linkage’s position on the C atoms 

of the fructose or glucose rings and the arrow points away from the reducing C atom 

(C  in fructose or C2 1 in glucose) 
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2.3.3 FOS Detection Methods  

 
      In 1997, AOAC international adopted method 997.08, the fructan method that 

specifically allows the accurate quantitative determination of inulin and oligofructose 

in foods (Fig. 2.3.2). The concentration of total FOS and/or inulin was calculated 

according to the method of Hoebregs, 1997: 

 

                     (1)

  

         (2)

  

where G and F represent the glucose and fructose from FOS, and G , G , F , and Ft f t f 

indicate the total glucose, initial free glucose, total fructose, and initial free fructose, 

respectively.  S/1.9 is the amount of glucose or fructose from sucrose.  The total FOS 

is the sum of G and F and corrected for the water loss during hydrolysis. Thus, 

        (3)

  

where k = 0.925 for FOS with an average degree of polymerization (DP) of 4 or k = 

0.91 for the inulin-type (linear) FOS that has an average DP of 10 (Pedreschi et al., 

2003).   

      High-performance anion-exchange chromatographic (HPAEC) coupled with 

pulsed amperometric detection (PAD), enables complete, single step separation of 

neutral and charged oligosaccharides and polysaccharides differing by branch, 

linkage, and positional isomerism (Fig. 2.3.3). The sensitivity of PAD detector 
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decreases rapidly from DP = 2 to DP = 6; for longer oligomers (DP =7-17), the 

sensitivity of detector only decreases slightly. The HPAEC-PAD technique was more 

sensitive in terms of detection limit than Matrix-assisted laser desorption/ionization 

mass spectrometry (MALDI-MS) ( Wang et al., 1999). The MALDI-MS results more 

accurately reflect the true amounts of FOS from food samples. Using linear 

oligosaccharide PAD response factors, one would overestimate FOS with branched 

forms present. MALDI-MS is a faster analysis method than HPAE-PAD, taking about 

20 minutes rather than an hour for each analysis and MALDI-MS is more tolerant to 

impurities. MALDI-MS gives better assurance of correct molecular assignment since 

the isotopic mass of each peak is available. The High Proficiency Liquid 

Chromatography (HPLC) method was developed with a combination of enzymatic 

treatment and carbohydrate analysis before and after the treatment. After the 

quantification of fructose, glucose and sucrose, the FOS content was calculated by 

Hoebregs’s method developed in 1997. A simple and convenient direct HPLC method 

was developed by Gan, 1999 using water as running solution and the FOS could be 

determined in 20 minutes. Available detection methods and equipments for FOS are 

compared in Table 2.3.4. 
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Fig 2.3.2. Flow diagram of enzymatic fructan determination method (adapted from 

Hoebregs, 1997). 

AG hydrolysis 

15 g extract and 15 g buffer pH 4.5 

Amyloglucosidase 30 min, 60℃ 

SP230 Hydrolysis 

+ 1g fructan 

Extraction dissolution 

Fructozyme 30min 60

Sugar analysis 2 

Sample 

℃

Fig 2.3.3. HPAEC-PAD data of 

chicory inulins (Roberfroid, 2005).     

 

 

 

 

 
 

Sugar analysis 1 

Sugar analysis 3 

Boiling water, pH 6.5-8.0, 
10min, 85℃, >100g 



 

Table 2.3.4. Comparison of different FOS detection methods. 
Sample 

Injection 
Volume    
(μL) 

Flow 
Rate Methods Sample 

Preparation Equipment Detector Column Temperature 
(℃) 

Running 
Solution 

Time Reference (mL 
min

(min) 
-1) 

89% water, 
10% 0.6M 
aqueous 
sodium 

hydroxide, 1% 
0.5M aqueous 
sodium acetate 

solution 

Samples were 
injected 

hydrodynamic
ally into the 

capillary in 5 
s at 0.5 psi 

Untreated 
fused-silica 
capillary of 

75 μm i.d. × 

60 cm 

HPAEC, Dionex 
Model 4000i 

gradient pump 
equipped with 

PED 

Modified 
HPAEC-

Pad 
method, 

2004 

UV 
detector at 

214nm 

Corradini et 
al., 2004 0.8  110  30 10  

AOAC 
method, 
HPAEC-

Pad 
method, 

1997 

Mobile phase 
A, carbonate-
free 10 mM 

NaOH; Mobile 
phase B, 

carbonare-free 
1 M NaOH 

Pulsed 
electroche

mical 
detector in 

PAD 
mode 

Enzymatic 
treatment 

(Fructozyme 
SP 230) 

HPAEC, Dionex 
Model 4000i 

gradient pump 
with Pad mode 

Carbopac 
PA1 4.0 mm 
i.d. ×25 cm 

Hoebregs, 
1997 50  40+

 

0.5 1.0  83  

Waters 
464 

pulsed 
amperome

tric 
detector 
(PAD) 
with a 

dual gold 
electrode 
and triple 

pulsed 
amperome

try 

Freeze dried 
samples were 
hydrolyzed 
with water, 
mixed with 

same volume 
0.01 M 

potassium 
chloride 
solution 

A: 100 mM 
sodium 

hydroxide,B:1
00 mM sodium 
hydroxide/400 
mM sodium 

acetate, C: 300 
mM sodium 
hydroxide 

Proflex Ⅲ 
Bruker 

Analytical 
Systems Inc. 
MALDI-MS 

MALDI-
MS 

method, 
1999 

Carbo Pac 
PA1 250 ×4 

mm 

Wang et al., 
1999 50  - 0.7  60  

           

 26 
 



27 

 
 

Table 2.3.4. Comparison of different FOS detection methods. (Cont.) 

Methods Sample 
Preparation Equipment 

Sample 
Injection 
Volume 
(μL) 

Detector Column Temperature
(℃) 

Running 
Solution 

Flow 
Rate 
(mL 

min-1) 

Time 
(min) Reference 

HPLC 
method, 

2000 

Enzymatic 
treatment 

(Novozym 
230) 

HPLC - 
Refractive 

index 
detector 

Aminex 
HPX-42C 
(0.78 cm ×
30cm, Bio-

Rad) 

85 Deionised 
water 0.5  - Jaimei et al., 

2000 

Modified 
HPLC 

method, 
2005 

Samples were 
heated to 95

℃ for 20 min 
HPLC - - 

Modified 
HPX 42A 
(7.8 ×300 
mm, Bio-
Rad) by 

passing 0.5 
M NaNO3 

at 2 mL mim 
-1for 18 h 

with a cation 
and anion 
exchange 

guard 
column 

 

- HPLC-grade 
water 0.4  - Livingston 

et al., 2005 

Direct 
HPLC 

method, 
1999 

- HPLC, Waters 
244 10  

Refractive 
index 

detector 
R401, 
Waters 

μ-
Bondapak 

C18 column 
(3.9 mm i.d. 
× 300 mm, 

Waters, 
USA) 

30 ℃ HPLC-grade 
water 0.8  20  Gan, 1999 

 

 
 



 

2.3.4 Physiological Effects 

      Oligofructose and inulin are nondigestible oligosaccharides; they pass through the 

upper gastrointestinal system without significant hydrolysis and reach the colon as 

they have been ingested. This is an important characteristic of prebiotics.  

      The colon has a major role in digestion which is achieved by microbial 

fermentation through the salvage of energy. The colon also has important roles in 

absorption of minerals and vitamins, production and absorption of fermentation end 

products such as SCFAs and lactate, protection of the body against translocation of 

bacteria and against proliferation of pathogens, endocrines functions, regulation of 

intestinal epithelial cell growth and proliferation and immune function. The 

microflora colonizing the large bowel is the key to keep the colon healthy. A 

balanced microflora implies that the intestinal microflora must be composed 

predominantly of bacteria recognized as potentially health-promoting (like 

lactobacilli, bifidobacteria, and fusobacteria), to prevent, impair, or control the 

proliferation of the potentially pathogenic and harmful microorganisms (like 

Escherichia coli, clostridia, vellonellae, and candida) (Gibson and Fuller, 2000). A 

strategy to promote colon health is to consume prebiotics aimed toward the 

stimulation of the growth of beneficial bacteria to the ultimate goal of beneficial 

management of gut micro biota (Salminen and Wright, 1998).  

      Because of the ß configuration of the glucosyl linkages inside the FOS chain, all 

inulin-type fructans resist hydrolysis in the upper part of the gastrointestinal tract. 

During the passage through the upper part of the gastrointestinal tract, the inulin-type 

fructans may well influence transit time as well as digestion and adsorption of 

different macronutrients and micronutrients. Inulin-type fructans are classified as 
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“colonic foods” or foods that feed the large bowel and the microflora it contains 

(Gibson and Fuller, 2000). In the colon, fructans are hydrolyzed, most likely inside 

the bacterial cells and primarily inside the bifidobacteria, and rapidly ferment to 

produce short chain fatty acids, lactate and gases. Being nondigestible but highly 

fermentable, inulin-type fructans are dietary fiber. Being fermented in the large bowel, 

inulin-type fructans improve stool production, both quantitatively and qualitatively. 

Fermentation also produces SCFAs that are effectively absorbed and reach the 

systemic circulation where they may exert miscellaneous metabolic regulations.  

Moreover, this fermentation even induces changes in colonic epithelium stimulating 

proliferation in the crypts, increasing the concentration of polyamines and changing 

the profile of mucins (Roberfroid, 2005).  

      Inulin-type fructans are not only dietary fiber but also low calorie carbohydrates. 

The energy content is 1.5 kcal/g and is perfectly in line with recommended value for 

all nondigestible carbohydrates (Spiegel et al., 1994).  

      Calcium and magnesium are specific nutrients most important for attaining peak 

bone mass, for reducing the risk of osteoporosis. Increasing bioavailability of an 

essential nutrient and mineral is recognized as a valid enhanced function claim. The 

claim “inulin-type fructans enhance calcium absorption” is scientifically substantiated. 

The most active product is a mixture of oilgofructose and long chain inulin (inulin HP) 

that is effective at a daily dose of 8 g. Regarding magnesium absorption, the human 

trials have demonstrated a beneficial effect of inulin-type fructans (Tokunaga, 2004).  

      Inulin-type fructans improve systemic health by their effects on modulation the 

expression of genes of hepatic lipogenic enzymes, on circulating levels of incretins 

 29 
 



 

and other gastrointestinal peptides, systemic infections, systemic immunities and 

tumor growth and tumor metastasis (Fig. 2.3.4) (Tokunaga, 2004).  

 

 

 

 

 

 

 

 

Short chain FOSs 
(indigestibility) 

Fermentation in the colon (increase of 
bifidobacteria/ VFAs production) 

• Good GI condition (stool frequency/ fecal odor/ 
intestinal microflora) 

• Improvement of bone mineral density (mineral 
absorption Ca, Mg, Fe and isoflavone absorption) 

• Immunomodulation (modulation of allergy) 

Fig 2.3.4. An overview of physiological functions of FOS and their key properties 

(adapted from Tokunaga, 2004).  

 

      In 1993, FOSHU, the Health Claim Approval System in Japan, approved the 

claim that FOS encourages a good gastrointestinal condition, inducing normal stool 

frequency, relief from constipation, and healthy intestinal microflora. The claim about 

the increase of mineral absorption and improvement of isoflavone bioavailability was 

approved in 2000. Japanese researches are making rapid progress on the studies of 

immunomodulation such as allergy prevention (Tokunaga, 2004).  

      Different Bifidobacterium strains (known probiotic bacteria) were capable of 

metabolizing L-(2, 6)-FOS if supplied as the sole carbon source. As already shown 

for inulin-type FOS, metabolization of L-(2, 6)-FOS is species-dependent. B. 

adolescentis showed the best growth and the highest degree of acidification and was 
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the only strain, of those tested, able to metabolize both short- and long-chain FOS 

(Gibson and Fuller, 2000; Kaplan and Hutkins, 2000; Durieux et al., 2001; 

Kaznowski et al., 2005; Rossi et al., 2005). Human studies showed that with 

consumption of inulin-type fructans increased the total bifidobacteria sampled from 

the feces (Roberfroid, 2005).  

 

2.3.5 Applications on Animals 

      Oligofructose reduces canine’s small intestinal bacterial growth. It enhances small 

intestinal absorptive capacity, improves the balance between epithelial cell 

proliferation and differentiation in the colon, and tends to decrease fecal excretion of 

putrefactive compounds. In cats, oligofructose may improve colonic bacterial balance. 

Ideal digestibility of nutrients is improved in pigs, colonic concentrations of 

beneficial bacteria are increased in pigs and quails, fecal and colonic epithelial cell 

proliferation is stimulated in young pigs, fecal excretion of ammonia is reduced in 

pigs and rabbits, and contamination and colonization of poultry by pathogen is 

reduced. In swine it increases total digestibility of zinc. Oligofructose improves 

growth performance and meat production of broilers and is as effective as antibiotics 

in poultry data. Numerous feed-efficiency studies in male broiler chicks revealed no 

adverse effects related to feed supplementation with FOS. In addition, positive effect 

on the gut flora are shown in piglets, dogs and cats (Roberfroid, 2005). 

 

2.3.6 Applications in Food Industry 

      Prebiotics have distinct advantages such as in situ stimulation of the growth of 

certain resident bacteria, activation of bacterial metabolism, and their own 
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physiological effects. FOS and inulin have strong bifodogenic activity as prebiotics. 

In addition to nutritional properties they also contribute to improve palatability of 

food products. Inulins can be incoperated into cream making to replace fat to reduce 

calorie in products such as spreads, margarines, and ice cream. High-molecular-mass 

levans have potential as food ingredients in various food products as emulsifying, 

thickening or stabilizing agents (Spiegel et al., 1994). 

      Native inulin and FOS both can be used as effective binders and provide low 

calorie fiber sources in beverages, health bars, and confection applications either in 

combination with other non-sugar bulking agents such as polyols, or alone. The use 

of inulin and FOS has been shown to provide desirable sweetness and mask the 

aftertaste of several high intensity sweeteners. Unlike other fibers, inulin and FOS are 

unique by not contributing to objectionable flavor profiles or significant increasing 

the viscosity of a food system.   

      The commercial product of FOS is sold under the brand name Nutraflora™ and 

produced by Golden Technologies, Inc., Westminister, Colo. and is 0.4-0.6 times as 

sweet as sucrose. The commercial product is treated by β-fructofuranosidase from 

Aspergillus niger and is a mixture of GF , GF , GF2 3 4, sucrose, glucose, ad fructose 

(Spiegel et al., 1994).  

      In Japan, FOS is considered as food, not food ingredients. FOS is currently used 

as feed additive in poultry in the United States and Japan. Subchronic and chronic 

toxicity and carcinogenicity studies in rats revealed no significant adverse effects at 

dose up to 2170 mg/kg/day (Roberfroid, 2005). Hata and Nakajima (1985) found that 

the minimum dose of FOS required to induce diarrhea was 44 g for men and 49 g for 
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women when FOS are added to food. The daily intake of FOS from common food 

items has been estimated to be approximately 806 mg/day (Spiegel et al., 1994).   

 

2.4 Probiotics and Pediococcus acidilactici 

2.4.1 Definition of Probiotics 

      Probiotics can be described as organisms and substances which contribute to 

intestinal microbial balance. In 1989, Fuller redefined a probiotic as a live microbial 

feed supplement which beneficially affects the host animal by improving its intestinal 

microbial balance (Gibson and Roberfroid, 1995).  

 

2.4.2 Pediococcus acidilactici  

2.4.2.1 Introduction of Pediococci 
 
      Pediococci are gram-positive lactic acid bacteria that are used as starters in the 

industrial fermentation of meat and vegetables. Gardner et al. (2001) studied various 

lactic acid bacteria for the fermentation of cabbage, carrot and beet-based vegetable 

products. It was found that a starter culture consisting of P. acidilactici AFERM772 

accelerated the fermentation process and prevented deterioration of fermented 

products for up to 90 days (Gardner et al., 2001). 

      In simulated gastrointestinal conditions, P. acidilactici had a strong capacity for 

surviving acidic conditions and 0.30% bile salts. At pH 3 and at pH 6 the number of 

this bacteria decrease approximately 1 log unit indicating that as many as 10% 

survived. This strain might be regarded as potentially probiotic (Erkkila and Petaja, 
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2000).  The optimum growth temperature for P. acidilactici is over 40°C and it does 

not grow under 8°C. 

 

2.4.2.2 Nutrition need and metabolism in Pediococcus acidilactici  

      According to Bergey’s manual of systematic bacteriology (Butler, 1986), 

Pediococci are facultative anaerobes, but tolerant to oxygen, homofermentative, gram 

positive, nonmotile, and spherical cocci. Growth is dependent on fermentable 

carbohydrate and probably by the Embden-Meyerhof pathway (Fig. 2.4.1), to DL or 

L-(+) lactate. Pediococci is characterized by the splitting of fructose 1, 6-

bisphosphate with aldolase into two triose phosphate moieties which are further 

converted to lactate. They ferment pentose via the same pathway with 

heterofermentative organism: pentoses are taken up by specific permeases and 

converted by appropriate enzymes to D-xylulose 5-phosphate which is fermented to 

lactate and acetate (Kandler, 1983).  

P. acidilactici can grow between 35 to 50°C, pH 4.2 to 7.5. It grows rapidly on MRS 

agar and broth and requires the most amino acids for growth, but they can grow 

without the supply of methionine. This strain also requires riboflavin, pyridoxine, 

pantothenic acid, nicotinic acid and biotin, while purines, pyrimidines or especially 

leucovorin (folinic acid, an adjuvant used in cancer chemotherapy) was not needed 

(Sakaguchi, 1960). P. acidilactici can ferment glucose, fructose, maltose, galactose, 

lactose [wild-type cannot ferment lactose (Caldwell et al., 1998)], sucrose, arabinose, 

ribose, and xylose, but the ability to use pentoses is limited (Table 2.4.1). Little 

information is available about the carbohydrate fermentation pathway, but it contains 
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lactate dehydrogenase in the reaction. In the Sant’Anna and Torres study, the highest 

biomass production was obtained when P. acidilactici was grown in MRS-5 (5% w/v 

sugar cane blackstrap molasses added in MRS base medium) broth at initial pH 6.5 

(Sant’Anna and Torres, 1998). The influence of supplementation with nutrients on 

cell density (optical density at 600 nm) after growth of P. acidilactici H in TGE broth 

(TGE broth contains the following components: Trypticase, glucose, and yeast 

extract, each at 1%; Tween 80, 0.2%; Mn2+, 0.033 mM; and Mg2+, 0.02 mM, pH 6.5, 

used as a basal broth) for 16 h at 37°C was studied by Biswas et al. (Biswas et al., 

1991). Addition of sucrose 1% reached highest optical density (4.0) after 16 h 

incubation, galactose 1% reached 2.3, arabinose 1%, 0.6, xylose 1%, 2.0, trehalose 

1%, 1.4 and raffinose 1%, 0.4 and glucose 1%, 3.5.  
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Fig 2.4.1.Glycolysis pathway. 

The color scheme is as follows: enzymes, coenzymes, substrate names, metal ions, 

inorganic molecules, inhibition, attached phosphate,  and stimulation 

(http://en.wikipedia.org/wiki/Glycolysis, URL accessed on May 19, 2006) 
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Table 2.4.1. Sugar-utilizing ability of different P. acidilactici strains. 

Bergey’s 

Manual
Carbohydrate 

1
H2 3G24 IL014 5C20

Fructose NA NA + NA NA 

Glucose NA + + + NA 

Sucrose - + NA + + 

Lactose D NA NA NA + 

Symbols: +, positive; -, 90% or more of strains are negative; D, 11-89% of strains are 

positive; NA, not available. 

1( Butler, 1986; 2Halami et al., 2000; 3 4Sant’Anna and Torres, 1998; Fitzsimons et al., 

1992; 5Biswas et al., 1991) 

 

2.4.2.3 Application of Pediococcus acidilactici  

      P. acidilactici has been used as inoculants to control fermentation in human foods 

such as soda crackers, fermented milks and sausages. P. acidilactici can produce 

pediocin PA-1/AcH (Halami et al., 2000).  Pediocin has been shown to be more 

effective than nisin against some food-borne pathogens, such as Listeria 

monocytogenes and Staphylococcus aureus. Pediocin has not yet been legally 

approved by the regulatory agencies, nor is it available commercially. Pediocins PA is 

stable over a pH range of 3–8. The molecular weight of the partially purified 

pediocins from P. acidilactici is less than 5 kDa. In dry sausages fermented by 
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bacteriocin producing from P. acidilactici JD1-23, the numbers of L. monocytogenes 

per gram dry sausage (pH > 5.0) were 1-2 log units lower than in the control 

sausages (Erkkilä and Petaja, 2000). 

      Probiotics is an existed idea in the field of human and is extended to animals to 

promote the development of fortifying diets for the intestinal micro biota, which 

improve feeding yields and survival. Commercial probiotic products designed for 

land animals contain lactic acid bacteria, P. acidilactici, or yeast, Saccharomyces 

cerevisiae. P. acidilactici has been authorized for use as a feed additive in Europe and 

approved for use in piglets, sows and fattening pigs (Simon, 2005). In October 2005, 

Bactocell® which contains P. acidilactici MA 18/5M by Lallemand Company was 

approved by the European Commission for use as a feed additive in fattening pigs for 

its probiotic use. In the United States it is considered GRAS by FDA and complies 

with the AAFCO (Association of American Feed Control Officials) requirements. 

Research done with this commercial product did not provide significant increase in 

the weight of weaner pigs, but reducing the pH of the liquid diet to 4.00 by 

fermentation with P. acidilactici was a cost effective method of eliminating 

enteropathogens and spoilage organisms from the diet (Geary et al., 1999). P. 

acidilactici also can be used in preservation of alfalfa for cow feed and to lower the 

pH value of alfalfa leaves and prevent yeast and molds spoilage (Sindou and Szucs, 

2005). It is a promising probiotic for fish larvae in view of its effect as a  growth 

promoter (Gatesoupe, 2002).The long-term dietary supplementation with P. 

acidilactici seemed promising as a preventive treatment against the vertebral column 

compression syndrome (VCCS) in rainbow trout (Aubin et al., 2005). In eel (Anguilla 

 38 
 



 

japonica) production, feeding with P. acidilactici can increase the body weight by 

50% and improve the immune system (Yu et al., 2005). Advantages of P. acidilactici 

supplementation include better bee survival and higher dry mass and crude fat level in 

comparison with bees fed with pollen substitute only (Kaznowski et al., 2005). 

      In the present study, the feasibility of using LYCH leaves to promote the growth 

of P. acidilactici and the variations among different leaf preparation methods with 

respect to chemical constituents and growth-promoting effects were addressed.  From 

a processing standpoint, if a simple operation could be established to release 

ingredients that stimulate the growth of probiotic cells, it would most likely be readily 

convertible for industrial applications and the process could be easily optimized to 

enhance cost effectiveness.  In respect of biomass utilization and efficacy, it is highly 

desirable if the LYCH leaves were able to provide dual functionalities—both as a 

growth promoter for probiotics in feed and as a feed themselves to enhance the amino 

acids content and to improve the flavor, texture, and taste of the end products.  
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Chapter 3: Material and Methods 

3.1 LYCH Leaf Samples 

      Leaves of Lycium chinense P. Mill. (Chinese wolfberry or desert-thorn), 

originated from Zhou Zheng Garden in Suzhou, China and now grown in California 

and many eastern states in the U.S. (USDA NRCS, 2006), were plucked every two 

weeks between June and November 2005 at the High Fall Garden in Philmont, NY.  

Freshly picked, chemical-free leaf samples were transported overnight via express 

mail to the University of Maryland, College Park.  Upon arrival, the samples were 

cleaned by rinsing under running tap water for ca. 15 min, oven-dried at 60°C for 

three days, and sealed in air-tight plastic bags.  The samples were stored at 4°C prior 

to treatments or analyses unless otherwise mentioned. 

3.2 Sample Treatments 

 
      For LYCH leaf treatment, the traditional tea-making process was employed in 

comparison with microwave-assisted extraction (MAE), an effective method 

commonly used for extracting aromatic compounds from plants and as a pretreatment 

when analyzing soil minerals in GC or HPLC (Dean, 1998).  In tea-making process, 

dried leaves (10.0 g) were placed in a 250 mL beaker containing 150 mL DI water 

and heated in a water bath at 80°C for 1 hr (Nishiyama, 1965).  The hydrolysate (H1) 

was filtered through a Whatman No. 41 filter paper (Whatman Inc., Florham Park, 

NJ) and collected into three 50 mL centrifuge tubes.  The leaves remaining in the 

beaker were added with 50 mL DI water and heated, following the same time and 
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temperature combination as aforementioned.  The hydrolysate (H2) was filtered and 

collected.  Both H1 and H2 hydrolysates were stored separately at -16°C before 

further uses.  H1 and H2 combined at a 1:1 volumetric ratio H1+H2 were used in this 

study.      

      In MAE, dried LYCH leaves (5.0 g) were weighed, trimmed into small pieces, 

added with 100 mL DI water as a solvent, and placed into the chamber of the Ethos E 

Microwave Extraction Labstation (Milestone Inc., Monroe, CT) with two magnetrons 

(800 W ea.) installed.  With the frequency set at 2,450 MHz and the processing time 

at 15 min, the samples were heated to 40, 80, and 120°C to produce hydrolysates 

M40, M80, and M120, respectively.  Another hydrolysate (M802h) was obtained by 

heating the samples at 80°C up to 2 hrs.  The hydrolysates were filtered, collected, 

and preserved at -16°C before use.     

3.3 Bacteria Growth 

 
3.3.1 Culture Preparation  

      Freeze-dried Pediococcus acidilactici IMT101, an osmotolerant starter strain used 

in the present study, was kindly provided by Imagilin Technology, LLC (Potomac, 

MD).  Powdered cells (1.0 g) were hydrated with 9 mL autoclaved water in a 100 mL 

flask and shaken at 260 rpm for 30 min.  The strain was propagated at 37°C in Man-

Rogosa-Sharpe (MRS) (Fisher Scientific, Raleigh, NC) broth until the pH reached 4.6 

(ca. 8 hrs).  The cultures were placed on ice for 30 min to stop the acidification 

process and stored at 4°C until used (Champagne et al., 2003).  Stock cultures were 

prepared by mixing 20 mL of freshly MRS-grown cultures with 50 mL of 20% skim 

milk and 50 mL of a 20% glycerol solution (glycerol and milk were sterilized 
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separately).  The milk/glycerol/cell suspensions were divided into 1 mL fractions, 

added to sterile 2 mL cryovials (Nalgene, Rochester, NY), and stored at -70°C until 

used.   

      All cell growth experiments conducted in the present study were based on a 1% 

(v/v) inoculation of actively growing P. acidilactici cells into freshly prepared growth 

media unless specifically noted.  The media compositions are discussed in the next 

section.  The growth profiles of P. acidilactici cells were established by periodically 

removing 1% (v/v) samples (in duplicate) from the broth and centrifuging them at 

10,000 rpm (9,159.4 x g) for 30 min under 4°C using a Beckman Coulter L7 

Ultracentrifuge (Beckman Coulter, Inc., Fullerton, CA) equipped with a Type 70.1 Ti 

rotor to precipitate the suspended cells.  The supernatant was carefully removed and 

stored at 4°C for additional analyses when necessary.  Cell pellets were washed twice 

with phosphate buffered saline (PBS) solution (Fisher Scientific Co., Raleigh, NC), 

vortexed, and recentrifuged to obtain media-free pellets.  The cells were then 

resuspended in autoclaved water, reaching the concentration as in the sample, and the 

optical density at 600 nm (OD600) was measured using a spectrophotometer 

(ThermoSpectronic, Rochester, NY).  The OD600 readings (properly diluted to fall 

within the linear range of the calibration curve) were then compared to a calibration 

curve and the dilution factor to estimate the cell concentrations.  The calibration curve 

was determined from the total cell dry weight in a concentrated solution and optical 

density values at various dilutions of this solution.  A linear relationship between the 

optical density and cell density was obtained when the optical density was below 0.9.   
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3.3.2 Media Formulation  
 
     To establish the baseline growth profile of P. acidilactici cells, MRS broth 

prepared with purified water following the manufacturer’s standard procedures was 

used as the control media.  Growth kinetics of P. acidilactici grown on MRS broth 

containing H1+H2 at different levels (5%, 10%, 15%, and 20% v/v) was analyzed to 

determine the proper medium substitution level.  The highest yield of P. acidilactici 

cells was reached in the medium containing 20% (v/v) H1+H2 (data not shown).  

Substitutions of MRS broth with hydrolysates H1+H2, M40, M80, M802h, and M120 

(20% v/v) were conducted individually in comparison with MRS broth enriched with 

2% (w/v) fructooligosaccharides (FOS) (Sigma-Aldrich, St. Louis, MO) as the 

growth media for P. acidilactici (1% inocula) (Rossi et al., 2005).  All media were 

autoclaved at 121°C for 30 min, cooled to room temperature, and kept sterile until 

use. 

      To evaluate the feasibility of using LYCH leaf hydrolysates as the carbon source 

for P. acidilactici cells, two different hydrolysates, namely H1+H2 and M802h, were 

incorporated (20% v/v) into M17 broth (Difco Laboratories Inc., Detroit, MI) in 

comparison with M17 broth supplemented separately by fructose, glucose, sucrose, or 

FOS (Sigma-Aldrich, St. Louis, MO) to the final concentration of 10 g/L (Rossi et al., 

2005).   The growth profiles, as well as the viable cell counts of P. acidilactici after 

incubation at 35°C for 48 hrs on MRS agar, were analyzed. 
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3.4 Analytical Methods 

3.4.1 Amino Acids Analysis  
 

      The hydrolysate samples were added with norvaline, an internal calibrator, before 

hydrolyzed with 6 M HCl containing 1% phenol at 110°C for 24 hrs, cooled, and 

dried.  The samples were then dissolved in a sodium citrate buffer and properly 

diluted to accommodate the range of instrument sensitivity (1-16 nmol/injection) 

before analyzed by ion-exchange chromatography on a Hitachi L-8800 amino acid 

analyzer (Hitachi High Technologies America, Inc., Palo Alto, CA) to determine the 

amount of free amino acids in the hydrolysates.   

 

3.4.2 FOS Analysis  
      

       The total concentration of FOS, which is composed of glucose-(fructose)n with 

β−2→1 linkage between the fructose monomer units, in the hydrolysates was first 

estimated using a calculation method (Hoebregs, 1997; Prosky and Hoebregs, 1999).  

Aliquots (0.9 mL) of LYCH leaf hydrolysates were mixed with 0.1 mL inulinase 

(2,259 U/g; density 1.2 g/mL) (Sigma-Aldrich, St. Louis, MO) and incubated at 60°C 

for 30 min.  The amount of sucrose was measured, as well as the fructose and glucose 

contents before and after inulinase treatment, using enzymatic assays (Sigma-Aldrich, 

St. Louis, MO).  The concentration of total FOS could be calculated based on the 

following equations: 
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          (1)

  

         (2)

  

where G and F represent the glucose and fructose from FOS, and G , G , F , and Ft f t f 

indicate the total glucose, initial free glucose, total fructose, and initial free fructose, 

respectively.  S/1.9 is the amount of glucose or fructose from sucrose.  The total FOS 

is the sum of G and F and corrected for the water loss during hydrolysis. Thus, 

        (3)

  

where k = 0.925 for FOS with an average degree of polymerization (DP) of 4 or k = 

0.91 for the inulin-type (linear) FOS that has an average DP of 10 (Pedreschi et al., 

2003).   

      To quantitatively determine the amount of FOS in the hydrolysates, reversed 

phase-high performance liquid chromatography (RP-HPLC) analysis (Gan, 1999) was 

performed on a Shimadzu LC 2010A system equipped with a RID-10A refractive 

index detector (Shimadzu Corp., Columbia, MD).  The unit was interfaced to a 

computer through a Versa Comm+4 PCI data acquisition board (Sealevel Systems 

Inc., Liberty, SC) that integrated the data into the Class VP software (Shimadzu 

Corp., Columbia, MD).  For all separations, a Waters reversed-phase μ-Bondapak C18 

column (3.9 × 300 mm, 10 µm particle size) with a guard column (Waters Associates 

Inc., Milford, MA) was used.  The mobile phase was HPLC-grade water (Fisher 

Scientific, Fair Lawn, NJ).  The separation temperature was kept constant at 30°C, 
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flow rate and sample volume were set to 0.8 mL/min and 10 µL, respectively.  To 

enhance sample separation, the hydrolysates were concentrated 10 times and filtered 

through a 0.45 µm filter before injected into the HPLC.  The sampling frequency was 

set at 5.00032 Hz to achieve the optimal resolution.  Peaks were assigned by spiking 

separately the samples with standard solutions of fructose, glucose, sucrose, and FOS 

(Sigma-Aldrich, St. Louis, MO), and comparison of the retention times on the 

chromatograms. 

 

 

Fig 3.6.1. HPLC system: (left to right) Monitor, Computer with Class VP software 

and Versa Comm+4. PCI data acquisition board, Shimadzu RID 10A refractive index 

detector, and Shimadzu LC 2010A HPLC system.  

 

3.4.3 Monosaccharides Analysis  
       

      High-performance anion-exchange chromatography with pulsed amperometric 

detection (HPAEC-PAD), a commonly used technique for the chain length analysis of 

amylopectin, was employed to profile the monosaccharides present in the 
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hydrolysates.  Freshly prepared hydrolysates were treated with 2 M trifluroacetic acid 

at 100°C for 4 hrs to cleave all glycosidic linkages.  After drying, samples were 

dissolved in water and analyzed by Dionex DX-500 HPLC (Dionex, Sunnyvale, CA) 

equipped with an LC20 chromatography enclosure, and an ED40 pulsed 

amperometric/conductivity detector (PAD) using a CarboPac PA-1 (4 × 250 mm) 

analytical column (Dionex, Sunnyvale, CA) eluted with 200 mM NaOH.  Common 

monosaccharide standards (mannose, galactose, glucose, N-acetylglucosamine, N-

acetylgalactosamine, fructose, and xylose) were treated in parallel and used for 

calibration. 

3.5 Statistic Analysis 

      The cell density and total viable cell count were analyzed using the general linear 

model (GLM) of ANOVA using Statistical Analysis System version 6.02 (SAS 

Institute Inc., Cary, NC). Means of three replicates were reported. Cell counts were 

converted into logarithm values to determine the significance of differences at the 

95% confidence limit (P < 0.05). Pairwise mean differences were evaluated using the 

Tukey’s test.  
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Chapter 4: Results and Discussion 

4.1 Bacteria Growth 

4.1.1 Growth of Pediococcus acidilactici IMT101  

      Calibration curve (Fig. 4.1) was obtained by taking optical density and measuring 

dried bacteria weight. The growth curve was obtained by converting optical density to 

concentration of bacteria via the equation from the calibration curve: Concentration= 

(OD600-0.0152) /3.9702. 

 

ig 4.1. Calibration curve of Pediococcus acidilactici IMT101. 

    The typical growth profiles of P. acidilactici IMT101 cells in MRS broth 
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(control), in comparison with MRS broth supplemented with 20% (v/v) H1+H

M802h and MRS enriched with 2% (w/v) FOS, indicate that P. acidilactici cells 
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grown in MRS broth containing 20% H1+H2 had a shortened lag phase and ente

exponential phase ca. 2 hrs earlier than in other media studied (Fig. 4.2). Determined

in part by characteristics of the bacterial species and in part by conditions in the 

media (Black, 1996), the lag phase of bacteria can be shortened if they are suppli

with metabolic intermediates, vitamins, amino acids, etc.  P. acidilactici requires 

most amino acids for growth (Jensen and Seeley, 1954; Sakaguchi, 1960; Raccach

1999), yet specific requirements remain unknown (Garvie 1984; Deguchi and 

Morishita, 1992).   
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Fig. 4.2. Typical growth profiles of P. acidilactici IMT101 cells in MRS broth (×), 
MRS broth supplemented with 20% (v/v) H1+H2 (○) or M802h (□), and MRS 

 

    Analysis of amino acids in H1+H2, M40, M80, M802h, and M120 showed that 

M802h contained the highest amount of amino acids both in total, more than fourfold 

enriched with 2% (w/v) FOS (∆). 
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of that in H1+H2 (Fig. 4.3a), and individually (Fig. 4.3b).  Methionine and lysine 

have been found stimulatory to the growth of pediococci (Raccach and Tully, 1999); 

however, only small amount of lysine was detected in LYCH hydrolysate samples.

Despite the slight variations found in samples collected in different months, in 

agreement with Terauchi et al. (1997), asparagine + aspartic acid, proline, and alanin

were found the most abundant amino acids in M80

  

e 

and, 

 

 

 

2h.  However, no significant 

reduction in lag phase was observed with P. acidilactici cells grown in MRS broth 

supplemented with 20% M802h when compared with the control.  On the other h

H1+H2 surprisingly contained the lowest total amino acid concentration and in the 

majority of individual amino acids, indicating that the growth stimulating effect (lag 

phase reduction) observed in medium supplemented with H1+H2 (Fig. 4.2) did not 

have direct correlation with the level of amino acids in the medium.  The results were

in agreement with Nishiyama (1969) who reported the growth stimulating effects of 

the aqueous extract of LYCH leaves on lactic acid bacteria and identified strong 

presence of a spectrum of amino acids in the extract.  However, in a following study 

in which a mixture of 22 amino acids were added to the growth medium for lactic

acid bacteria, no significant growth-stimulating effects were observed despite a 

notable increase in acid production (Nishiyama and Kaya, 1969ab). 
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Fig. 4.3. Comparison of amino acid concentrations (g/L) in different LYCH leaf 
hydrolysates investigated: (a) Total amino acids; (b) breakdown of individual 
amino acids.  Column with * is significantly higher than the others (P < 0.05). 
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      The growth of P. acidilactici IMT101 cells in various growth media was 

characterized by the total viable cell count entering stationary phase (Xs) and the 

maximum specific growth rate (µmax), an empirical parameter obtained from the 

steepest slope of the semi-logarithmic plot of cell density vs. growth time as defined 

by the Monod equation (Gardner et al., 2001) (Fig. 4.4).  P. acidilactici grown in 

MRS supplemented hydrolysates obtained by MAE for 15 min, namely M40, M80, 

and M120, did not show any significant differences in X  or µs max when compared with 

the control (100% MRS).  On the contrary, cells grown in MRS broth containing 20% 

H1+H2 showed the highest values in X 9 -1 CFU/mL) and µ (5.5 × 10  (3.5 hs max ), both 

significantly higher than those obtained in other media investigated (P < 0.05).  Cells 

grown in MRS supplemented with 20% M802h, the same extraction conditions as in 

M80 but for an extended period of time (2 hrs), showed an increase in Xs compared 

with the control, similar to the effect of MRS enriched by 2% (w/v) FOS, recognized 

prebiotics with growth stimulating effects on probiotic cultures (Wang and Gibson, 

1993; Tokunaga, 2004).  Although the increases of X  in M80s 2h- and 2% FOS-

enriched MRS broth were statistically insignificant in relation to the control, such 

positive effects remained relatively consistent in all replicates studied (n = 3).  
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Fig. 4.4. Comparison of growth kinetics of P. acidilactici IMT101 cells grown in 
MRS broth supplemented with various LYCH leaf hydrolysates (20% v/v) or 
enriched with 2% (w/v) FOS.  Xs: the total viable cell counts entering 
stationary phase; µmax: the maximum specific cell growth rate.  Columns with 
* are significantly higher than the others (P < 0.05). 

       
 

 

 

 

 

 

 

 

 

 

 

 53 
 



 

4.1.2 Sugar Utilization by P. acidilactici IMT101 

 
      To assess how P. acidilactici IMT101 cells utilize fermentable sugars, M17 broth 

supplemented with H1+H2 and M802h was employed in comparison with various 

carbon sources, including fructose, glucose, sucrose, and FOS (Fig. 4.5).  While cells 

grown in fructose and glucose showed X  at the level of 1-2 × 108
s  CFU/mL, P. 

acidilactici grown in M80 9
2h reached a higher X , ca. 10s  CFU/mL.  Cells in M17 

containing H1+H2 and sucrose both reached X  > 109
s  CFU/mL.  M17 broth plus 

H1+H2 yielded the highest cell concentration (2.1 × 109 CFU/mL), significantly 

higher than those achieved with fructose or glucose and even higher than when FOS 

was used as the sole carbon source (1.7 × 109 CFU/mL).  The elevated level of Xs 

reached when M17 was supplemented with 20% (v/v) H1+H2 could be attributed to 

its higher level of fructose, glucose, and sucrose in comparison with M17 containing 

20% (v/v) M802h (Table 4.1).   
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Fig. 4.5. Comparison of growth kinetics of P. acidilactici IMT101 cells grown in 
M17 broth supplemented with LYCH leaf hydrolysates (20% v/v) H1+H2 or 
M802h and M17 broth enriched by fructose, glucose, sucrose, or FOS to the 
final concentration of 10 g/L.  Columns bearing the same letter are not 
significantly different (P < 0.05). 

 

 
Table 4.1. Comparison of sugar contents in growth media (M17) supplemented with 
20% (v/v) LYCH leaf hydrolysates H1+H2 or M802h.  
 

80% (v/v) M17 Sugar* 
(mg/mL)  + 20% (H1+H2) + 20% M802h

Fructose 0.098 ± 0.011 0.025 ± 0.009 
Glucose 0.26 ± 0.005 0.12 ± 0.012 
Sucrose 0.98 ± 0.010 0.20 ± 0.002 

Total  1.338 0.345 
                 

*Mean ± SD, n = 3. 
 
 

      The µmax of P. acidilactici IMT101 cells grown in M17 supplemented with 

H1+H2 was in the same range as that in FOS-enriched M17, and was significantly 
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higher in relation to those grown in fructose- or glucose-supplemented M17 broth 

(Fig. 4.5).  The µmax of M17 supplemented with sucrose was significantly higher than 

M17 with fructose or glucose, but relatively lower than with FOS, H1+H2, or M802h.  

All values of µmax reached in M17-based broth, as expected, were much lower than 

those achieved in MRS-based broth (Section 4.1.1).  This could be attributed to the 

growth promoting effects of MRS medium, which because of the high consumption 

of carbohydrate resulted in almost an order of magnitude greater production of lactate 

in comparison with other basic growth media (Vázquez Alvarez et al., 2003).   

      Although the metabolism of simple sugar in P. acidilactici IMT101 remains 

unclear to date, more than 90% of positive growth when lactose and trehalose were 

used as the sole carbon source has been reported in Bergey’s Manual of Systematic 

Bacteriology (Butler, 1986).  Undergoing homofermentative pathways that produce 

lactate exclusively, Pediococus is known to enter glycolysis by the splitting of 

fructose 1,6-bisphosphate with aldolase into two triose phosphate moieties that are 

further converted to lactate (Kandler, 1983).  While glucose and most other 

monosaccharides are known to be fermented by P. acidilactici, the ability to use 

pentose remains inconclusive (Garvie, 1984; Riebel and Washington, 1990).  Kandler 

(1983) suggested Pediococcus could ferment pentoses readily, yet Caldwell et al. 

(1998) reported that the ability of P. acidilactici to use pentoses is limited.  

Nonetheless, the necessity of phosphoketolase for pentose fermentation is recognized 

(Kandler, 1983).   

      Moreover, Biswas and coworkers (1991) reported that the yield of P. acidilactici 

H cells was higher in sucrose and glucose than in other carbon sources (arabinose, 
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xylose, trehalose, and raffinose), whereas P. acidilactici C20 showed 90% positive 

growth in sucrose, lactose, maltose, raffinose, and trehalose.  P. acidilactici G24, 

when used as a silage inoculant, was found to grow on glucose and fructose with a 

short lag phase, a rapid acid production rate, and was able to grow within a broad 

range of pH and temperature (Fitzsimons et al., 1992).  The ability of P. acidilactici 

IL01 to grow on MRS broth substituting glucose with sugar cane molasses 

(Sant’Anna and Torres, 1998) also suggests that the efficiency of sugar utilization is 

strain-specific for P. acidilactici.   

4.2 Determination of FOS and Other Monosaccharides 

      As discussed, addition of FOS (10 g/L) in M17 broth showed significant increases 

in P. acidilactici cell yield (X ) as well as the maximal specific growth rate (µs max) in 

comparison with fructose and glucose (Fig. 4.5).  Such an increase was also observed 

in M17 broth containing 20% (v/v) of H1+H2, suggesting possible presence of FOS 

in H1+H2.  By using inulinase treatment, which enables endohydrolysis of 2,1-β-D-

fructosidic linkages in inulin, followed by the calculation method of Hoebregs (1997), 

the amounts of FOS in LYCH leaf hydrolysates could be estimated.  It was found that 

in M120 and M80 the estimated FOS contents were significantly higher than those in 

H1+H2 and M40 (P < 0.05) (Table 4.2).  This approach, which relies on the 

enzymatic treatment of samples with an inulinase, followed by determination of the 

released sugars, is appropriate for mixtures of molecules consisting of fructose 

moieties linked to each other by β (2 1) bonds with glucose molecules linked to the 

end of the chain by an α (1 2) bond as occurred in sucrose (Prosky and Hoebregs, 

1999).    
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Table 4.2. Estimated FOS concentrations in different LYCH leaf hydrolysates based 
on Hoebregs (1997) using the concentration difference of fructose and glucose 
before/after inulinase treatment and the sucrose content. 

Content* H1+H2 M40 M80 M80 M120 2h(mg/g dried leaf) 
Fructose 1.92/2.25 0.00/0.00 0.68/0.72 0.50/2.20 0.39/0.44 
Glucose 5.22/5.91 0.21/0.45 0.00/1.21 2.40/10.60 1.49/3.59 
Sucrose 0.63 0.00 0.00 4.00 1.57 

Estimated FOS 0.33a 0.22a 1.16b 5.27c 1.90b

 
*Only mean values are shown (n = 3); all measurements with SD < 0.02. 
Values bearing the same superscript in the same row are not significantly different (P 
< 0.05). 
 

      Direct measurement of FOS contents is thus desirable and could be achieved by 

using RP-HPLC with an RI detector (Gan, 1999).  While fructose and glucose both 

eluted chromatographically in one combined peak at retention time around 3.2 min, 

short-chain FOS, including GF (sucrose), GF  (kestose), and GF2 3 (nystose) could be 

separated at 5.0, 6.7, and 12.4 min, respectively (Fig. 4.6).  Based on the 

aforementioned estimated FOS contents (Table 4.2), peaks representing GF  and GF2 3 

were supposed to show up in the RP-HPLC chromatogram of H1+H2, with even 

higher peaks expected in the M802h chromatogram, since the estimated FOS content 

in M802h was significantly higher than that in H1+H2.  Surprisingly, however, no 

detectable amounts of GF  or GF2 3 were present in LYCH leaf hydrolysate H1+H2 or 

M802h (Fig. 4.6).  This could be attributed to the inherent inaccuracies of the 

estimation method.  The FOS concentration in this case is calculated by the difference 

from glucose and fructose determinations before and after the hydrolysis with 
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inulinase, small inaccuracies in the determination of high glucose or sucrose values 

from samples containing high levels of carbohydrates could significantly influence 

the small glucose content resulting from the FOS (Prosky and Hoebregs, 1999).  Such 

discrepancies could also be due to the hydrolysis of long-chain oligofructose or the 

presence of fructan-metabolizing enzymes that cleavage branched fructans (Pavis et 

al., 2001).  However, further investigations are needed to identify the presence of 

these enzymes. 

 
min 

(a) 

 
min 

(b) 
Fig. 4.6. RP-HPLC chromatograms showing the separation of monosaccharides 

(fructose and glucose), GF (sucrose), GF  (kestose), and GF2 3 (nystose) in (a) 
H1+H2; and (b) M802h. 
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      Measurements of monosaccharides using the HPAEC-PAD method revealed that 

glucose was the most abundant monosaccharide in the H1+H2 hydrolysate (Fig. 4.7).  

It is recognized that glucose could be readily transported into the pediococcal cell via 

the phosphoenolpyruvate:phosphotransferase system (PEP:PTS) and undergoes 

glycolysis utilizing the Embden-Meyerhof-Parnas (EMP) pathway yielding pyruvate.  

The pyruvate is then reduced to lactic acid with the coupled reoxidation of NADH to 

NAD+ (Kandler, 1983).  Therefore, based on the results gathered in the present study, 

the LYCH hydrolysate H1+H2, when added to the growth medium for P. acidilactici 

IMT101, elevated the level of glucose in the medium, consequently shortened the lag 

phase, increased the cell yields, and accelerated the specific cell growth rate.  
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Fig. 4.7. HPAEC-PAD chromatograms of monosaccharides in H1+H2.  Peaks shown 
include 1—Fuc; 2 & 3—unidentified; 4—GalNH2; 5—GlcNH2; 6—Gal; 7—Glc; 
and 8—Man. 
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      Also seen in Fig. 4.7, small quantities of galactose were present in H1+H2.  

Although it is unclear whether P. acidilactici IMT101 is capable of utilizing 

galactose, existence of intracellular β-galactosidase has been shown in some 

pediococci strains, with the synthesis of β-galactosidase inducible by galactose 

(Raccach, 1999).  Investigations into the activities of β-galactosidase in P. acidilactici 

IMT101 cells are recommended in order to provide additional evidence correlating 

the utilization of galactose with cell growth kinetics.  Detailed analysis of LYCH leaf 

hydrolysate H1+H2, which is prepared by a simple, traditional tea-making process, is 

also required to elucidate the spectrum of compounds present in the hydrolysate that 

could be responsible for the growth stimulating effects observed in the present study.  

After all, the same as other chemoorganotrophs, P. acidilactici requires an array of 

vitamins and metals (e.g. potassium and magnesium) for growth besides 

carbohydrates and amino acids (Jensen and Seeley, 1954; Cho et al., 1996).   
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Chapter 5:  Conclusions 
 
      By using a simple, traditional tea-making process, LYCH leaf hydrolysates 

H1+H2 provided notable growth-stimulating effects on P. acidilactici IMT101 cells 

grown in partially substituted MRS broth with a shortened lag phase, an elevated cell 

concentration (Xs) entering stationary phase, and the highest maximal specific growth 

rate (µmax).  In the absence of FOS, the high glucose concentration in the H1+H2 

hydrolysates was found responsible for the enhanced growth kinetics of P. 

acidilactici cells.  Further studies are required to fully elucidate the spectrum of 

compounds in H1+H2 stimulatory to the growth of P. acidilactici IMT101. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 62 
 



 

Appendices 
Correspondent Experimental Data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cell Density 
(g/L) O.D. 600 
0.06 0.22 
0.07 0.35 
0.09 0.39 
0.125 0.46 
0.15 0.58 
0.18 0.77 
0.22 0.89 

 
Fig 4.1. Calibration curve of Pediococcus acidilactici IMT101. 
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Control H1+H2 M80 2% FOS 2h
Cell Density 
(g/L) Hr Hr 

Cell Density 
(g/L) Hr 

Cell Density 
(g/L) Hr 

Cell Density 
(g/L) 

0 0.350648 0 0.25687 0 0.191633 0 0.191633 
1 0.30172 6 0.25687 7.5 0.497431 7.5 0.354725 
2 0.273179 6.5 0.338416 8.5 0.428117 8.5 0.737991 
3 0.322107 7 0.472967 9.5 0.701296 9.5 1.11718 
4 0.318029 7.5 0.81546 11 2.425994 11 3.355618 
5 0.318029 8 1.337354 12 4.411639 12 5.581824 
6 0.30172 8.5 2.136505 13 8.603103 13 11.98726 
6.5 0.318029 9 3.445319 15 13.86282 15 16.39075 
7 0.472967 9.5 5.520664 17 18.02167 17 19.73413 
7.5 0.322107 10 8.399238 19 21.12041 19 22.05819 
8 0.358802 10.5 9.683588 34 27.88873 34 25.60544 
8.5 0.489276 11 13.63857 60 27.481 60 27.44023 
9 0.693141 11.5 15.26949 
9.5 1.015248 12 16.39075 
10 1.496369 13 17.73626 
11 2.91527 14 20.06032 
12 4.909069 16 21.65046 
13 7.502232 17 23.15906 
14 9.744747 20 24.70844 
15 11.98726 21 24.99385 
16 13.69973 22 25.23849 
17 15.81992 25 26.50245 
18 17.20621 26 27.11405 
19 18.71481 27 27.481 
20 20.42727 28 28.21492 
21 21.8951 30 28.58187 
32 29.76429 32 29.56043 
48 28.29646 35 30.09047 
60 28.70419 36 29.92738 
  60 30.6613 

 
Fig. 4.2 Typical growth profiles of P. acidilactici IMT101 cells in MRS broth (×), 

MRS broth supplemented with 20% (v/v) H1+H2 (○) or M802h (□), and MRS 
enriched with 2% (w/v) FOS (∆). 
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 H1+H2 M80 M40 M80 M120 2h

Asparagine+Aspartic 
acid 0.054 0.457 0.083 0.046 0.092 

Threonine 0.021 0.082 0.041 0.019 0.045 
Serine 0.019 0.070 0.033 0.017 0.038 
Glutamine+Glutamic 
acid 0.090 0.184 0.096 0.132 0.120 

Proline 0.020 0.374 0.029 0.034 0.031 
Glycine 0.036 0.057 0.050 0.042 0.061 
Alanine 0.047 0.238 0.057 0.071 0.061 
Valine 0.032 0.116 0.052 0.042 0.052 
Isoleucine 0.019 0.073 0.035 0.024 0.037 
Leucine 0.028 0.100 0.062 0.041 0.073 
Tyrosine 0.008 0.056 0.023 0.015 0.017 
Phenylalanine 0.018 0.090 0.040 0.021 0.041 
Histidine 0.009 0.035 0.021 0.010 0.018 
Lysine 0.024 0.133 0.047 0.041 0.050 
Arginine 0.013 0.077 0.037 0.017 0.039 
Total AA (g/L) 0.440 2.142 0.704 0.572 0.774 
 
Fig. 4.3. Comparison of amino acid concentrations (g/L) in different LYCH leaf 

hydrolysates investigated: (a) Total amino acids; (b) breakdown of individual 
amino acids.   

 
 
 
 
 
 

µX SD SD s max

Control  1.6 0.01 2.1 0.07 
H1+H2 3.5 0.02 5.5 0.09 
M 40 1.2 0.01 2.3 0.07 
M 80 1.3 0.01 1.8 0.09 

1.5 0.01 3.9 0.14 M 802h
M 120 1.3 0.02 2.0 0.08 
2% FOS 1.8 0.02 3.7 0.15 

 
Fig. 4.4. Comparison of growth kinetics of P. acidilactici cells grown in MRS broth 

supplemented with various LYCH leaf hydrolysates (20% v/v) or enriched 
with 2% (w/v) FOS.  Xs: the total viable cell counts entering stationary phase; 
µmax: the maximum specific cell growth rate.   
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X µSD SD s max

Fructose 0.23 0.003 0.025 0.0002 
Glucose 0.16 0.007 0.021 0.0003 
Sucrose 1.3 0.013 0.082 0.0004 
FOS 1.7 0.016 0.136 0.002 
H1+H2 2.1 0.009 0.127 0.001 

1.0 0.014 0.102 0.002 M 802h

 
Fig. 4.5. Comparison of growth kinetics of P. acidilactici cells grown in M17 broth 

supplemented with LYCH leaf hydrolysates (20% v/v) H1+H2 or M802h and 
M17 broth enriched by fructose, glucose, sucrose, or FOS to the final 
concentration of 10 g/L.   
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