SRC TR 87-157

Robust Distributed Discrete-Time
Block and Sequential Detection in
Uncertain Environments

by

E. Geraniotis



ROBUST DISTRIBUTED DISCRETE-TIME

BLOCK AND SEQUENTIAL DETECTION IN UNCERTAIN ENVIRONMENTS

Evaggelos Geraniotis

Department of Electrical Engineering
and Systems Research Center
University of Maryland
College Park, MD 20742

ABSTRACT

Two detectors making independent observations must decide which one of two
hypotheses is true. Both fixed-sample-size (block) detection and sequential detection are
considered. The decisions are coupled through a common cost function which for tests
with fixed sample size consists of the sum of the error probabilities while for sequential
tests it comprises the sum of the error probabilities and the expected sample sizes. The
probability measures which govern the statistics of the i.i.d. observations belong to

uncertainty classes determined by 2-alternating capacities.

A minimax robust (worst-case) design is pursued according to which the two detec-
tors employ fixed-sample-size tests or sequential probability ratio tests whose likelihood
ratios and thresholds depend on the least-favorable probability measures over the uncer-
tainty class. For the aforementioned cost function the optimal thresholds of the two
detectors turn out to be coupled. It is shown that, despite the uncertainty, the two

detectors are thus guaranteed a minimum level of acceptable performance.
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I. INTRODUCTION

In (1] and [2] distributed discrete-time fixed-sample-size (block) detection and sequential
detection problems, respectively, were formulated and solved. The two detectors collect
independent observations and make decisions which are coupled through a common cost
function. Then, the optimal decisions are characterized by thresholds which are coupled.
The hypothesis testing models considered in [1] and [2] assume perfect knowledge of the

statistics of the observations.

In this paper we formulate similar problems for the case in which the observations are
characterized by statistical uncertainty. Both fixed-sample-size (block) and sequential
discrete-time robust detection problems are considered. Continuous-time distributed detec-
tion problems with known statistics are considered in [3] while similar problems with statisti-

cal uncertainty are treated in [4], the companion to this paper.

In particular the observations are assumed to have probability distributions (measures)
which belong to 2-alternating capacity classes. The 2-alternating Choquet capacities classes
include several useful uncertainty models like the e-contaminated class [5], the total variation
class [5], the band class [6] and the p-point class [7], which have been popular among the sta-
tisticians.

The design philosophy that we pursue for the problem above is that of minimax robust-
ness. According to it a worst-case situation (operational conditions) are specified in terms of
a performance criterion is identified and the optimal decision design for this situation is
derived. Then, this decision design is employed independent of the actual conditions (which
are not known, except for the fact that they belong to some strucured uncertainty class, e.g.,
the 2-alternating capacity class) and its performance under any other situation is better than

that under the worst-case operational conditions.



Minimax robust signal processing techniques have received considerable attention in the
last 15 years (see the tutorial in [8]). The selection of uncertainty classes determined by 2-
alternating capacities is motivated by the fact that for the uncertainty models defined in [5)-
[7] the least-favorable operational conditions (here probability measures) can be obtained in
closed form as the general results of [9) indicate. In [9] the performance criterion is the Bayes
risk or the error probabilities of the Neyman Pearson formulation of the hypothesis testing
problem. The results of [10] complemented these of [9] by considering the Chernoff bounds
on the error probabilities and by studying their asymptotic properties in the presence of
uncertainty within 2-alternating capacities.

This paper is organized as follows. In Section II we formulate and solve the problem of
robust distributed discrete-time detection with fixed sample size. Then in Section IIl we treat
the case of robust distributed discrete-time sequential detection. In each section the distri-
buted system and the uncertainty model are introduced first, then the case of detection
under mismatch is considered, then the case of robust detection for finite sample sizes (which
are fixed in Section Il and random variables in Section III) is treated, and, finally, asymptotic

results for large sample sizes are derived.

In all cases the robust tests are based on the likelihhod ratios between the least-
favorable measures in the uncertainty class and the optimal decision making of the two
detectors is coupled through their thresholds. For both the block and the sequential detec-
tion case we show that as the number of observations increases the joint cost function

decreases exponentially to zero despite the uncertainty.



. MINIMAX ROBUST DISTRIBUTED FIXED-SAMPLE-SIZE DETECTION

II.LA Problem Formulation and Models of Uncertainty

Consider the following hypothesis testing problem of two simple hypotheses Hy and H,
with two decision-makers. Decision-maker i (i =1, 2) is equipped with a sensor and is

faced with testing the hypotheses H, versus Hy:

Hol Xi,l ~ Mo, | = 1,2,...,n

Hll Xi,l ~ My, l = 1,2,...,‘” (1)

In (1) X;, denotes the /-th observation (sample), n is the number of samples, and m; ; (for
J == 0, 1) defined on the sample space (2;, B;), and o-filed is the probability measure which
governs the statistics of the i.i.d. observations of the decision maker 7 under hypothesis H;.
It i1s assumed that the two decision-makers make independent observations so that the pro-

bability measures (mg; and mg,) are mutually independent and so are (m; and m o).

The probability measures mg;, m,;, for the two detectors (i = 1, 2), are only known
to belong to uncertainty classes My; and M, ;, respectively, which are determined by the

2-alternating capacities vy; and v,; (defined below) as
M; ; :{ mj; EM; | mj;(A)<wv;;(A), VA €B; ,m;;(Q)=v;,(0) }, (2)

where M; is the class of measures on (fat 2, B;) and j = 0, 1 for the two hypotheses.

The decision making of detectors 1 and 2 is coupled through the following cost struc-
ture:
0 for di=do=h

C(dydyh)={e for dy#d,y ] (3)
f for d]. == d2#h



where d;,d,,h €{0,1}, ¢ and f are non-negative constants, and we assume that f > 2e.
Since the cost [C(1,1;0) = C(0,0;1)] of wrong decisions by both detectors is expected to be
considerably larger than the cost [C(0,1;0) = C(1,0;,0) = C(0,1;1) = C(1,0;1)] of a wrong
decision by one of the detectors, this assumption does not impose a serious restriction on the

generality of our problem formulation.

Next we define the 2-alternating capacities:
Definition: A positive set function v on a sample space 2 and assosciated o-field B is called
a 2-alternating capacity if it is increasing, continuous from below, continuous from above
on closed sets, and satisfies the conditions v(¢)=0,
v(AUB)+v(ANB)<v(A)+v (B) Suppose now that M is the class of

measures on (2, B ) and m € M is any such measure. Consider the uncertainty class

which is determined by the 2-alternating capacity v as follows [compare with (2)}:
M,,z{mEM|m(A)§v(A),VAEB,m(Q)=v(Q)}. (4)

When (2 is compact several popular uncertainty models like e-contaminated neighborhoods
[5], total variation neighborhoods [5], band classes [6] and p-point classes (7] are special cases
of this model.

Example: The e-contaminated model [5]
Mc={m EM | m(A)=(1- ¢ m%4)+ei(4), VA €B, m°(m=;n(m}, 5

fore€[0,1]. Thenv (A )=(1-€)m®°(A)+em®(Q)
Fundamental properties of these uncertainty models have been studied by Huber and

Strassen [9]. We will state the relevant properties as a Lemma.

Lemma 1: Suppose vo and v, are 2-alternating capacities on (2, B ) and My and M, are



the uncertainty classes determined by them as in (1). Then there exists a Lebesgue-

measurable function 7, : Q — [ 0, co | such that
0vo({my >0} + v ({my <0}) <Ovo(A4)+v,(4°) (6)

for all A € B and all 8 > 0. Furthermore there exist measures (g, my)in My X M,

such that
o ({m, >0})=vo({m, >0}) (7)
ﬁll({ﬂ-vso})zvl({ﬂ'vso}) (8)

(that is, 7, is stochastically largest over My under 7y and stochastically smallest over M,
under ;) and m, is a version of dim,/dm, and is unique a.e. [My]. The measures

Mg, My ) are termed the least-favorable measures over My X M.
0 1 0 1

Example: The e-contaminated mixture uncertainty classes described by
Mj ——-{ mJ- EL[ l m,- =(1—€j) mjo-{-ej?nj y ;I’IJ(Q)= mO(Q) },] =0, 1 (9)

associated with the 2-alternating capacities

(1-c)mP(A)+e; , A4 £ w0
v; (A )= 0 LA =¢"
have the least-favorable distributions
(1-¢€)dmg /dX\ , dm{ /dmg < ¢,
] ‘o dmQ /d\ |, ¢y < dm /dm§ (1)
Co
{
(1-¢)dmQ/dN\ , ¢y < dmQ /dm{
difvy/d X =S 0 01 0 (12)
C](l—Cl)dﬂlo/dk y dml/dmo SCI




and the Huber-Strassen derivative «,

1—61

T, = dih/dig = min{ co,max ( ¢y, dmy /dm{ )} (13)

1-¢
where 0 < ¢; < ¢y < oo are such that m, () =1my(N)=1.

Let us now return to the hypothesis testing problem (1). Assuming that the a priori
probabilities for the hypotheses Hy and H, are A and 1-), respectively, and that likelihood

ratio tests are employed, the average cost is

JL LM fyng) = Me [md3) (L ) (X)>m)) + mdy ({L4") (X2)>D))]
+(f -2¢)m D) ({L ") (X)>0)) mdB) (L") (X2)>0})}
+ (1=0){e [m {1 (LI (X)) + m B ({L4") (Xo)<n})]
+ (f ~2e)m {1 ({L (X ) <)) m B) (L5 (Xo)<n2}))

(14)

In (14) mj("}) are the n-th order extensions of the probability measures m; ; and characterize

the observations X; = (X,;,X,;,..,X, ;) of the ¢-th decision-maker (¢ = 1,2) under

hypothesis H; (j = 0,1). By L"(X;) = (dm{D/dmINX:) = TI (dmy;/dmo; )X ;)
{=1

we denote the likelihood ratio based on X; of the 7-th decision-maker and by 7; its thres-

hold.

The optimal thresholds for (14) are the pair (#;,7,) which minimizes the average cost

function J (L {"),L §") 5./n,), that is

(mym1y) = arg min J(L 1,04 ) (15)
NNz

Actually the likelihood ratio tests (LRTs) are the optimal policies for the two-decision-

maker problem formulated above as stated in the following proposition

Proposition 1: Likelihood ratio tests (LRTs) with thresholds which minimize



J(L ™) L {") 3,/7n,) of (14) are optimal over all tests for the aforementioned common cost
structure

Proof: The proof follows closely the corresponding proof of [1] about the optimality of the
one-detector strategy (i.e., the likelihood ratio test) in this case of decision makers with

independent observations, and will be ommitted.

II.B Robust Distributed Block Detection

The expression for the average cost function in (14) is valid for the case that there is no
uncertainty in the statistics of the observations of the two decision makers. In the presence
of uncertainty within the 2-alternating classes M; ; of (1), the likelihood ratios L;() and the
thresholds #);, ¢ = 1, 2, which are matched to the least-favorable measures 71; ; (singled out
by Lemma 1) of the classes M; ; are employed. In this case the average cost function
under mismatch--that is, when the statistics of the observations are actually governed by
m; ; € M; ;--is given by J(L 1(") L 2(") f1,712) which is obtained from (14), if we replace L;(")
by I:;(") and 9; by #;, for ¢ = 1, 2, and these thresholds are the solution to the minimiza-

tion problem:

(ﬁl;ﬁ?) = arg Inln j(l: 1(") ;I: 2(") 7;71;?72) ’ (16)
"117’2

where J(L (") L {") 3, 7,) is the average cost when the likelihood ratios L, (G =1,2 for
the two detectors) are employed and the observations are distributed according to m; ;

(7 =0, 1 for the two hypotheses).

Lemma 1 provides the robust test and the least-favorable distributions for the one-
dimensional (single observation) case and a single detector. For the case of n independent
identically distributed (i.i.d) observations, we denote by m]-(") J =0, 1 the measures on

(Q" ,B"™) which are the n-th order extensions of the measures m; € M; of the classes



defined in (4) and by ﬁzj(") J =0, 1 the n-th order extensions of the measures 7; singled
out by Lemma 1. Then, the following result holds
Lemma 2: For any threshold # > 0 and any decision statistic g('l ):
”({13( (X)>n}) < g™ ({LUNX)>n}) < wd™ ({9 X)>n)) (17)
PHLMX)<n}) < 1( (L X)Ly < ™ ({gX)<n}) (18)
s (n) n 2
F(n) m1 m . s . .
Where LV"(X) = ) (X)= ) is the likelihood ratio, X; € 2 is the [-th
0 :
observation and X = (X,X,, - ,X,) € Q". Equations (17) and (18) imply that the test

based on L (") is minimax robust.
Proof: For i.i.d. observations this Lemma was first proved in [5, section 4] and [9]; very
recently a more straihtforward proof was given in [11].

For the case of two detectors and uncertainty within 2-alternating capacity classes the

following result holds:

Proposition 2: The LRTs based on the least-favorable pairs of distributions (7,7 ;) in
the classes (Mg;,M;;), ¢ = 1,2 (for the two detectors) are minimax robust with respect to

the average cost function defined in (14), that is

J(LA l(n) xﬁ 2(") :ﬁl;ﬁ?) S j(ﬁ l(n) rﬁ 2(”) ;ﬁl)ih) S j(g l(n) 7g2(n) :7717772) (19)

Proof: The right-hand-side inequality in (19) is a straightforward application of Proposition
1 to the case characterized by m; ; (j = 0,1 and 7 =1, 2) for which the likelihood ratios

are I:,-(") and the optimal thresholds are #; .



The left-hand-side inequality in (19) is a consequence of Lemma 2. Specifically we apply
the left-hand-side inequalities in (17) and (18) to the probability measures (mg;, ;) and
(my;, ;) respectively, of the two detectors (i = 0, 1), and then use the definitons of the
mismatch average cost function J and the average cost function J matched to the least-

favorable pair of probability measures (g, ;).

Note: The optimal thresholds (#,,7);) can be determined from the error probabilities &; 3;

(1=1,2) for the least-favorable case of problem (1) by minimizing

min{x (¢ (6 + ag) + (7 -2 ) | + (10) [e (B + B) + (f -2 )3132]}
under the constraints 3; = f;(&;) [operating receiver characteristic (ROC) for detector 5],

0<&; <1,0<f3; <1, and &; + B; <1 for i=12.

IO.C Asymptotic Performance

We will need the following two Lemmas which are concerned with the Chernoff upper
bounds on the error probabilitties of hypothesis testing problems in the presence of uncer-

tainty within 2-alternating capacity classes:

Lemma 3: Suppose that in the presence of uncertainty about the statistics of the aforemen-
tioned i.i.d. observations X = (X,X,...,X,,) we employ a likelihood ratio test based on

L™) defined above, then the error probabilities of the hypothesis testing problem of H,

versus Hy can be upperbounded by the Chernoff bounds:

md {LPYX)>nn} < expl-nlsy + Cols L))} (20)

m ML X)<ny} < exp{-n[-sv+ Cy(s,L)}} (21)

where 7 = n~ is the threshold, L = di 1/dg, and for all s € (0,1) the Chernoff dis-

tances C; (s ,I:) are given by
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Co(s,L)=-ln E{L*} (22)

Cys,L)y=-lm E{L*°}. (23)

In (22)-(23) the expectations are with respect to the probability measures my and m,, respec-
tively.

Proof: See [10].

Lemma 4: As the number of observations increases the Chernoff bounds of (20)-(21) con-
verge exponentially to zero for all probability measures m; j = 0, 1 belonging to uncer-

tainty classes of the form (4).

Proof: See [10].

Note: Lemmas 3 and 4 are also valid for discrete-time stationary Gaussian observations

with spectral uncertainty determined by 2-alternating capacity classes; see [10] for details.

The following proposition provides the desired asymptotic result for the mismatch aver-

age cost function J(L (") L {") #,4,) as the number of observations n increases:

Proposition 3: Under the assumptions of Proposition 2, the average cost function under
mismatch converges to zero exponentially as the number of observations increases, despite
the uncertainty; that is, J(I: 1(") ,l: 2(") /11,712)—0, as n —oo for all probability measures m; ;
in the uncertainty class M; ; given by (1).

Proof: By applying Lemma 3 to the error probabilities of the hypothesis testing problem of
each of the two detectors and using the definition of J(ﬁl(") L 2(") ,71,712) we derive an upper

bound on the average cost under mismatch in terms of the Chernoff bounds. This takes the

form

J(L 1(") L 2(") i) < Me lexp{-n[s 1+Cgy(s,L,)]} + exp{-n|s No+C o8 L)1}
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+ (f -2¢ Jexp{-n [s 1+ Co (s ,L )] }exp{-n [s Yo+Co (s L)}
+ (1-N){e [exp{~n [-s 11+ C 11(s ,L 1)]} + exp{-n [-s 72+ C 1 2(s ,L 3)]}]
+ (f —2¢ )exp{-n[-s :71+01,1(3 L Vltexp{-n[-s :72‘1'01,2(3 Lo}

(24)
where #; = n~; for i=1,2, is the threshold for the i-th detector, [; = di 1,i /d™g ;, and

for all s €(0,1) the Chernoff distances C;;(s JL;) for j =0,1 are given by
Coi(s,Li) =-In Eq; {L} and C,;(s,[;) =-In E,;{L;™"}, where the expectations are
with respect to the probability measures my; and m,;, respectively. Finally we apply

Lemma 4 to (24) to complete the proof of Proposition 3.
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III. MINIMAX ROBUST DISTRIBUTED SEQUENTIAL DETECTION

IIT.A Problem Formulation

The distributed sequential detection problem that we consider in this section has a lot
of sismilarities with the problem considered in the previous section. The two decision makers
are faced with the same hypothesis testing problem described in (1), where the uncertainty
classes of (2) and the cost function of (3) remain the same. However, now there is also a cost

for collecting data, which for the ¢-th decision maker (i = 1, 2) is defined by:

ki NEoi {N; } + (1-N)E; {N; }], (25)
where k; (§ = 1, 2) are nonnegative conntants, K, denotes expectntiaon with rempect ta the
probability measure m; ; (under the hypothesis H;, j =0, 1, and for the i-th detector,
t =1, 2), the a priori probabilities for the hypotheses Hy, and H, are A and 1-)\, respec-
tively, and the random variable NN; is the (discrete) stopping time (sample size) of the 7-th

detector; i.e., the number of samples necessary in order to reach a decision in favor of one of

the two hypotheses.

Recall [12] that in the sequential detection of a single detector, the optimal test, termed
the sequential probability ratio test (SPRT), consists of keep sampling till the likelihood ratio
L™) based on n samples of the observations exceeds B or falls below A --the two

thresholds--in which case a decision is made in favor of H, or H, respectively.

Assuming that SPRTs are employed by both detectors, we can write the average cost as

I:B l:A 2:B2)

= >\{klEo,l{Nl‘Ll} + ko Eqo{Na| Lo}
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e fmd) (LM (X)2B1)) + md3) (Ls 2 (X)2Bo))
+(f -20)m D (L (X )2 B} md (L5 (xz)ziam}
+(1—>\){k1Em{N1 | L1} + ko E12{Ny| Ly}
te [m {3 (L") (X)<ALY) + m D (L (X)<AL)

+Hf -2e)m DL (X)<A ) m D LS P (X)<A 2})} (26)

where N; (¢ = 1, 2) are (discrete) stopping times for the two detectors, that is, if L;(")(X;),

which is based on the n observations X;, is larger than or equal to B;, it is decided that H,
is true, the test terminates and N; = n; if it is smaller than or equal to A;, it is decided
that H, is true, the test again terminates and N;= n; otherwise, one more sample (observa-

tion) is collected and the procedure continues. mj(,:) is the probability measure which governs

the observations of the i-th detector under hypothesis H; (57 = 0, 1) when the SPRT ter-
(N,) al

minates after N; samples, L; ''(X;) = JIL;(X; ;) is the likelihood ratio of the :-th detec-
=1

tor based on the N; samples of the iid. observations X; = (X1;,Xg;,...,.Xn ;)

dm . - -
Li(X; ;)= et (X, ;) is the likelihood ratio for one-sample, and 0 < A; < 1 < B; are
’ dmo',' !

the two thresholds for the SPRT of detector i. The notation E; ; {N; | L; } has been pre-
ferred over the notation E; ; {N;} for the expected value of N; under probability measure
m; ; and an SPRT employing the likelihood ratio L;") = dm 1(',' )/dmo(,'f ) because it allows
us to consider situations of mismatch, that is, when the likelihood ratio employed is not the

one corresponding to the operating probability measures.
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The optimal thresholds for (26) are the quadruple (A ;,B;,A4 9,B5) which minimizes the

(N (Ny)

average cost function J(L, ) Lo ¥ ,A,B,AB,), that is

. N N) ~ =
(A I:B er 2»B 2) = arg _ mn _ J(Ll( l) 7L2( 2) ’A l:B I:A Z)B 2) (27)

A,B,AyB,

Actually the sequential probability ratio tests (SPRTs) are the optimal policies for the two-

decision-maker problem formulated above as stated in the following proposition

Proposition 4: SPRTs with thresholds which minimize J(L\"?,L3"? 4 ,,B,,45B,) of

(26) are optimal over all tests for the aforementioned common cost structure.
Proof: The proof is provided in (2] for discrete-time sequential detection and in [3] for

continuous-time sequential detection and it establishes the optimality of the one-detector
strategy (i.e., the SPRT) in this case of decision makers with independent observations. It

will be ommitted.

III.B. Robust Distributed Sequential Detection

The expression for the average cost function in (26) is valid for the case that there is no
uncertainty in the statistics of the observations of the two decision makers. In the presence
of uncertainty within the 2-alternating classes M; ; of (1), the likelihood ratios lA,,-(") and the
thresholds (A; B, ), ¢ =1, 2, which are matched to the least-favorable measures 7 ; (sin-
gled out by Lemma 1) of the classes M; ; are employed. In this case the average cost func-

tion under mismatch--that is, when the statistics of the observations are actually governed

r (Nl) 7 (Nz)

by m;; € M; ;-is given by J(Ly " ,L, ,fi I,Bl,fi 2,32) which is obtained from (26), if we

(N,)

replace L,-(N') by L;" ' and (A;,B;) by (A;,B;), for i =1, 2. These thresholds are the solu-

tion to the minimization problem:



(A liél!fi 2 )E2( ;;1 I:B l)A 2:B2) ; (28)

v S
e
Il
1
3

Q

E
=
L
&~

a (N A(N) ~ ~ ~ =
where J(Ll( ) ,L2( 2 A 1,B1,A 4,B,) is the average cost when SPRTs based on the likelihood

. AN e
ratios L,-( ) and the thresholds (A;,B;) (1 = 1, 2 for the two detectors) are employed and
the observations are distributed according to 7; ; (7 = 0, 1 for the two hypotheses).

For sequential detection the following result also holds

Lemma 5: For i.i.d. observations with probability measures belonging to uncertainty classes
of the form (4), the sequential probability ratio test (SPRT) based on the likelihood ratio

ﬁ(")(X) defined in Lemma 2 above and on the thresholds A and B (A <1 < #) is

minimax robust for the error probabilities; that is, it satisfies the equations

md N {LM(X)>BY) < ml {LM(X)>BY) < md) (g™ (X)>B)) (29)
m{N{LMX)<A Y < w{THLMX)<AY) < w{V{eWIX)<4 }) (30)

In (29)-(30) N is a stopping time for the SPRT. The measures mj(*) and ﬁzj(') for j =0,1
are the multi-dimensional extensions of the original measures m; and 7, respectively, which
are induced by the stopping time N defined above. Finally, g(") is any other decision statis-
tic, based on the n observations X, which could be used in the aforementioned sequential
test instead of the likelihood ratio.

Proof: See section 5 of [4].

Before stating and proving the basic result of this section we need to prove the follow-
ing Lemma about the expected values of the sample sizes (stopping times) of the SPRTs

under mismatch:

Lemma 6: Let E; ;[N; | L;] represent the expected sample size of the SPRT of the i-th

n A
detector under hypothesis H; based on the likelihood ratio LX) = TIL: (X ), where
I=1
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dm 1,i

L; (X ;)= (X;;), and on the thresholds (A; ,B;), when the ii.d. observations are dis-

dm 0,

tributed according to the probability measure m; ;. Then

w(éy ,Bi )

Eo:{N; | [;} = A 31
0s (N 1 £} = 5 S50 @)
- w(B; ,&;,5:)
Eii{N;i | L;} = ——F—, 32
vt Lk = ) #2)
where
w(z,§,2) = (1-z) In l—Ax + 7z In IA , (33)
y 1-y

a;, B; are the mismatch error probabilities for the ¢-th detector under hypotheses H, and

H , respectively, given by

o = mdI(L" > B)) (34)
and
B = m{PLM<dy), (35)

while &; and ,AB,- are the corresponding matched error probabilities, which are given by

& = ad(L>BY) (36)
and
B = m LM<y . (37)

Proof: We prove only (31); (32) can be proved in a similar way. We write two different

expressions for E ; {lnI:,-(N' )()_(, )}

N, . N, R
Eo,,-{lnﬁ,-‘”"o_c-)} - Eo,,-{lnHL,- (X,,‘-)} ~ Eo,,-{ S Inf, (X,,,-)}
=1

=1
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N,
= Eo,i{Eo,i{lE InL; (X, ;)| V; }}
~1

= Ey; {N; | L;} Eq; {InL;}, (38)

where E‘o,,- denotes expectation with respect to the measure m,; governing the observations,
whereas Eo’,- denotes expectation with respect to the measure induced by the stopping-time
variable NN;; since Eo,,- {InL;} is a constant, it can be pulled out of the expectation Eq i {N;}

in the equation proceeding the last one in (38)]; and

Eo,,-{lnlj,-“v')()_(,-)} ~ mo(;){lj,-“v*) > B} mB + mo(j:){li,-(”') < A} InA

A

15 + (1-¢;) In 'Bi

a; 1-&;

= Qy In

= _w(&t 7Bi & ) (39)

In deriving (39) we used the definition of the SPRT, the definitions (34)-(35), the Wald’s

approximations
) 1-B;
B~ ()
H
and
Ay~ 2 (41)
l—a;

and neglected the oveshoot phenomena [12]. Then (31) follows from (38) and (39).
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For the case of uncertainty within 2-alternating capacity classes the following result

holds:

Proposition 5: The SPRTs which employ thresholds (A;,B;) and a likelihood ratio I:,-(")
defined as in Lemma 6 which i1s based on the least-favorable pairs of distributions
(fg;,M ;) in the classes (Mg; ,M,;), i = 1,2 (for the two detectors) are minimax robust

with respect to the average cost function defined in (26), that is

P (N) (N~ 5 2 5 sep (N 2 (N 2 5 2 5 b0 (N N
J(Ly ¥\ Ly ¥, ALBLAgBy) < J(Ly YLy ¥ ,A B, AgB,) < J(.‘h( v ,92( o A 1,B1,A4,B))
(42)
where g,-(N') (¢+ =1, 2) is any decision statistic operating on the observations X;, if for
i =1,2& and f3; of (36)-(37) satisfy the following condition:
. & B
In P >> ~f;In A’ﬁ' - (43)
§ lﬁai )(l_ﬂz)

Proof: To prove the right-hand-side inequality in (42) we only need to use Proposition 4 for

the optimality of the one-person stategies (the SPRTs). To prove the left-hand-side inequal-

(Nl) - (Nz)

ity in (42) it suffices, because of the definition of J(L; A 1,B1,A 9 B)) to show that

forj =0,1and: =1, 2

E; i {N; | L;} < E; N, | L;} (44)
and

md{E ™) > B ) < mdE™X)>B:)) (45)

m UL X <A ) < w HEMX)<ADY) (46)

Since (45) and (46) follow from an application of Lemma 5 to the robust SPRT of the 7-th

detector, we only need to prove (44) in order to complete the proof of (42). Next, we prove
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(44) for j = 1; a similar proof holds for j = 0. We write

. b B; 1-B;
EoilNi | Ly = — L g 2P 15
E,;{InL;} (1-6, )(1-5;) &;
~ 1 1-3;
Elt{lnLi} dz
< 1 1-B;
El,{lnL,-} &;
R & 1-3;
~_ 1 [ﬂ,-l Gk 1B ]
El:{lnLa} (1_ 1)(1— § a;
= E1{N: | i} (47)

In proving (47) we successively used the definition (32) of Lemma 6, condition (43), the ine-
quality E,;{lnL;} > E,;{lnL;} ({ =1, 2) which follows from the stochastic dominance
property (8) of Lemma 1 when applied to the increasing function In(-) and the probability
measures mq; and 7, ;, condition (43) again, and the definition (32) for the matched case

My = Myi-

Note: The optimal thresholds (A;,B;) ({ =1, 2) can be determined form the Wald’s

approximations (40)-(41) where the error probabilities &; and B; are solutions to the minimi-

zation problem:

min{k[k w(dry,By,61) Lk w(btg,Pg,br2)

1= > 9 = —— + € (dy+ay) + (f —2¢ )&1&2}
EO,I{'“lnL 1} E0'2{—lnL 2}

w(B1,81,31) w(Ba,b19,52)
1 = = + k2 = =
El,l{lnL 1} El,?.{lnL 2}

RN [k b o (ButB) + (-2 )b ]}

under the constraints 0 < &; < 1,0 < B; <1,and &; + B; <lfori=1,2

II1.C Asymptotic Performance
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III.C Asymptotic Performance

The following proposition provides a result on the asymptotic speed--which is
defined as the sum of the asymptotic (for small error probabilities) stopping times of the

two detectors--of the robust sequential test.’

Proposition 68: Suppose that for the problem (1) with the uncertainty classes (2) and
under the mismatch conditions of Proposition 5 above, the error probabilities &; and ﬁ,-
(for i=1,2) approach zero. Then the sum of the asymptotic expected stoppong times--

under mismatch and for the least-favorable case--satisfy the inequalities

—lnfi 1 —lnA 2 lnBl lnB2
ky —— + kg = + (1-)\) [ #4 — + kg >
Eo,l{‘lnL 1} Eo,z{—lnL 2} El,l{lnL 1} E1,2{lnL 2}
~InA -InA InB InB
SMh el ke TR (1)) [kl—A—"——‘-A— b bt
Eo {-inL} Ego{-InL o} Ey1{inL } E o{inL o}

<X [kIEO,I{Nl | G} + k?Eo,2{N2| Gz}] + (1-X) [k1E1,1{N1 | G} + k2E1,2{N2| Gz}]

(48)

denotes

A

where G'; and G, are any other sequential tests different from the SPRT; £

—j ’i
the limit of the expectation E'j,,- as &; —0 and f3; —0.

Proof: As &; —0 and B; =0, then o; and B; approach zero as well, since o; <é&; and

A

B; <B; . Thus J(L,L,
2411

A

,A 5, B,) (under mismatch) reduces to the first sum in

~

A ,B,
(48), whereas J(L1,L 5,A 1,B1,A 5,B,) reduces to the second sum in (48). The first sum is
smaller  than  the second sum since Ey; {-inL;} > Eo;{~InL;} and
E,; {InL;} > El,i {InL;} for i=1,2 because of the stochastic dominance inequalities (7)
and (8) of Lemma 1. The second inequality (48) holds because of a theorem by Wald
[12] (for the matched single detector case) which states that the SPRT has the minimum

asymptotic speed (expected stopping time) among all sequential tests.
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V. CONCLUSIONS

In this paper we considered two detectors making independent observations and
trying decide which one of two hypotheses is true. Both fixed-sample-size (block) detec-
tion and sequential detection were considered. The decisions were coupled through a
common cost function which for fixed-sample-size tests consisted of the sum of the error
probabilities while for sequential tests it comprised the sum of the error probabilities and
the expected sample sizes. The probability measures which govern the statistics of the

i.1.d. observations belonged to uncertainty classes determined by 2-alternating capacities.

We were able to derive minimax robust (worst-case) designs according to which the
two detectors employ fixed-sample-size tests or sequential probability ratio tests whose

likelihood ratios and thresholds depend on the least-favorable probability measures over
the uncertainty class (actually, the Huber-Strassen derivative and the least-favorable ele-
ments of the 2-alternating capacity class). For the aforementioned cost function the
optimal thresholds of the two detectors turn out to be coupled. It was shown that,
despite the uncertainty, the two detectors are guaranteed a minimum level of acceptable
performance. In the case of block detection it was also shown, via Chernoff bounds, that
for the aforementioned robust likelihood ratio test the two-detector cost function
decreases exponentially to zero as the number of observations increases for all elements

in the uncertainty class.

The results of this paper can be extended to several directions. First, they can be
extended to situations of distributed detection where the two detectors are still making
independent observations but the obseravtions for each detector are not i.i.d (they could
be stationary Gaussian with spectral uncertainty, first-order Markov with uncertainty in

the transition probabilities, or more generally dependendent observations). Second, we
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can formulate and solve similar problems in continuous-time (see [4]). Third, we can for-
mulate and investigate problems of data fusion from distributed sensors in uncertain
environments. Finally, we should relax the assumption of independent observations for
the two detectors and formulate and attempt to solve similar problems for the case in

which the observations of the two detectors are correlated.
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