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This dissertation covers two innovative topics related to horizontal mergers.

One chapter investigates the welfare effect of mergers in the platform markets;

another one studies the impact of mergers where firms conduct dynamic price

competition with asymmetric information.

In Chapter 1, I analyze the welfare effects of lowering the costs to buyers

of searching and multihoming in a setting with multiple two-sided platforms.

The analysis is motivated by observed changes following the 2017 acquisition of

IronPlanet, which is an online auction marketplace for used heavy equipment by

Ritchie Brothers Auctioneers, which operates the largest offline auction market-

place. As is quite common after platform mergers, RBA maintained both platforms

but made it easier for buyers of equipment to search across the platforms (mul-

tihoming), which has the potential to render the allocation of equipment more

efficient, benefitting both buyers and sellers. These efficiencies could offset the

market power created by the merger. I use pre- and post-merger transaction data



to estimate a new model of search and auction entry by buyers and quantify the in-

crease in welfare effects of the observed changes. Depending on the specification,

the proportion of multihoming buyers increases substantially (by 50% in the base-

line specification), and the total surplus can increase by more than 8%, although

heterogeneity exists in the welfare impact on different market participants. I also

consider several additional counterfactuals involving changes in commission and

changes in equipment allocation across the marketplaces.

In Chapter 2, my coauthors and I model differentiated product pricing by

firms that possess private information about serially-correlated state variables,

such as their marginal costs, and can use prices to signal information to rivals.

In a dynamic game, signaling can raise prices significantly above static complete

information Nash levels even when the privately observed state variables are re-

stricted to lie in narrow ranges. We calibrate our model using data from the beer

industry, and we show that our model can explain changes in price levels and price

dynamics after the 2008 MillerCoors joint venture.
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Chapter 1: Platform Mergers in Search Markets: An Application in

the U.S. Used Heavy Truck Market.

1.1 Introduction

Transaction platforms, especially digital ones, that link buyers and sellers

play an increasingly important role in the economy. As of August 2019, digital

platforms exceed more than four trillion dollars in market capitalization.1 When

different goods are listed for sale on different platforms, multihoming by buy-

ers (i.e., searching multiple marketplaces) can raise the efficiency of the ultimate

allocation. One efficiency that might be considered when analyzing a merger

of platforms is that the merged firm could facilitate multihoming by developing

cross-platform search tools after the merger. This type of cognizable efficiency

could potentially offset any market power created by the merger.2

The partial platform integration, in which both platforms remain distinct but

cross-platform searching is facilitated, is a common outcome of platform mergers.

For example, after acquiring the resale ticket platform StubHub, eBay reports the

1https://www.chicagobooth.edu/research/stigler/events/
antitrust-competition-conference

2The Supreme Court decision regarding American Express vs. Ohio indicates it is important to
evaluate welfare effects on both sides of a transaction platform.
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listings available on StubHub when a buyer searches on eBay. Similarly, after

their acquisition by CoStar Group, Apartment.com and ApartmentFinder.com use

a cross-search mechanism to help users search for apartments on both platforms.

While two competing platforms may be reluctant to facilitate multihoming

since it might intensify competition for single-homing sellers (Caillaud and Jullien

(2003), Armstrong (2006), Armstrong and Wright (2007)), a merged platform

might seek to encourage multihoming to increase the surplus the platforms gen-

erate, which it may have a greater ability to extract. In this paper, I quantify

several welfare effects of this type of integration by analyzing the effects of the

2017 acquisition of Iron Planet (IP), an entirely online auction marketplace for

used heavy equipment, by Ritchie Brothers Auctioneers (RBA), the largest tradi-

tional auction marketplace that operated in 31 physical auction sites across the

United States. The transaction was subject to a second request investigation by

the U.S. Department of Justice’s Antitrust Division (DOJ), but was not ultimately

challenged.

I use data of sales of used truck tractors from both platforms before and after

the acquisition to estimate a model of buyers’ choices of whether to multihome,

how many listings to search and which auction to enter to quantify how buyer be-

havior changed after the acquisition and the effects of this change on the surplus

of different market participants. I find that multihoming by buyers substantially

increased, and there was some increase in the average number of searches. De-

spite the small increase in commission, I find that the changes in buyer behavior

increased the combined welfare of buyers and sellers and the platform’s revenues.
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This finding is consistent with the DOJ’s decision. As I will discuss, the plat-

forms accounted for a relatively small share of the overall used truck market, even

though they accounted for up to 60% of the truck auction market. Therefore, the

fact that the merger created only limited market power in this setting is unsurpris-

ing. However, the welfare benefits due to the lower search costs are substantial

and suggesting that these types of efficiencies should also be seriously considered

in settings in which a merger may create more market power.

This paper makes two contributions. The first contribution is providing the

first evaluation of a change in platform design that is commonly associated with

platform mergers in which both platforms exist post-merger. Most empirical ex-

isting platform literature focuses on traditional media markets (Rysman (2004),

Argentesi and Filistrucchi (2007) and Jeziorski (2014)) and the mechanisms used

on one online platform (Arnosti et al. (2014), Fradkin (2017) and Horton (2019)).

The trade-off between changes in search costs and other policy changes has not

been clearly discussed while considering the competition and mergers between

platforms.

To the best of my knowledge, the only study that also empirically ana-

lyzes the effects of online platform mergers is Farronato et al. (2020). These

authors consider the acquisition in pet-sitting services in which one platform was

shut down post-merger and provide a reduced-form analysis of how platform use

changes. In contrast, I estimate a structural model of buyer search to evaluate the

welfare effects of changes that facilitated search across platforms.

The second contribution is to develop and to estimate a new buyer search
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model that combines choices regarding whether to multihome, how many truck

auctions to search, and which auction to enter. This model, combining search

with endogenous entry, can be applied to other transaction platforms where allows

products to be vertically differentiated and sold by auction.

My model works in the following way. Given their private draws of marginal

search costs for additional search and fixed search costs to multihome, buyers de-

cide whether to search both platforms and how many auctions to search. In the

used truck auction market, the marginal search costs include an effort to search for

trucks online, consult with sales representatives, etc., while the fixed costs of mul-

tihoming include the time to learn two systems, register two accounts to monitor

trucks, etc. Searching allows buyers to discover individual trucks’ characteristics

and their private values. Then, buyers simultaneously decide which searched auc-

tions to enter. Finally, buyers bid in the entered auctions. I develop a numerical

method to solve the equilibrium in the auction entry stage. I consider two vari-

ants of the model. In one variant, all buyers have the same preference for quality,

and all single-homing buyers follow the same random entry rule when choosing

platforms, and in the other, buyers can have two different preferences for quality

and can follow different rules while choosing platforms when single homing. The

two-type model is motivated by the fact that buyers who are trucking companies

can operate locally or interstate.

The model provides several predictions regarding the market outcome under

certain assumptions. It predicts that lower search costs will encourage buyers to

perform more searches across the two platforms. Then, buyers can access more
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information about the trucks before making their auction entry choices. High-

quality trucks can be sold to a set of buyers with higher willingness to pay (WTP).

Meanwhile, the lower search costs provide buyers access to more trucks across the

platforms, resulting in the allocation results of one platform more sensitive to the

quality of trucks available on the other platform. These predictions are consistent

with the patterns in the pre- and post-merger transaction data.

I estimate a parametric version of the model, although I can prove the non-

parametric identification in some cases when there is enough variation in the sets

of available trucks across markets. I estimate the model using a two-step proce-

dure. In the first step, I adopt a Nested Fixed Point Algorithm to estimate the

distribution of WTP and equilibrium search choices. In the second step, I esti-

mate the bounds of the distribution of search costs by calculating the benefits of

different search choices and using the equilibrium conditions in the model.

The estimation results show that buyers’ WTP depends on the observed qual-

ity of trucks (which I reduce to a single index) and that buyers discount the qual-

ity of trucks sold online. Regarding the distribution of search costs, the marginal

search cost per search and the fixed search cost of performing multihoming both

significantly decrease after the merger. Although buyers’ searches are strategic

substitutes, the lower search costs still encourage buyers to search for more trucks

on average (in the model with one type of buyers, the average number of searches

increases from 5.8 to 6.3). Following the merger, more than 50% of buyers shift-

ing from single-homing to multihoming in the baseline model. The increase in the

search frequency of buyers with a high-quality preference choosing single-homing
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offline is more significant than that of buyers with a low-quality preference.

Based on the estimation results, I quantify the welfare effects of the changes

associated with the merger. I focus on the following three types of changes: search

costs, commission fees and supply side (numbers and types of trucks available

on each platform). I capture the partial effect of different elements in different

counterfactuals by controlling for other changes.

In the first and main counterfactual, I look at the effect of changes in search

costs, keeping the commission rates and supply-side fixed. This comparison shows

that the merger can increase the total surplus by more than 8%, among which

6% comes from better matches, and the rest comes from saving in search costs.

The total surplus of the buyers and sellers from trading significantly increases.

However, the split of the trading surplus among the participants is uneven. While

sellers with high-quality trucks can always benefit, it is more ambiguous for other

groups. For example, buyers’ trading surplus is lower post-merger, considering

the fiercer competition among buyers. The cost decomposition shows there is

efficiency gain from lowering the cost to multihome alone.

The second counterfactual discusses how the changes in commission struc-

tures can impact social welfare. When there is no reserve price, the observed

change in commission rate transfers a share of the surplus from sellers to plat-

forms, but the total surplus is the same if we treat the supply side exogenous.

Suppose the platforms use auctions with reserve prices and set significantly higher

commission rates. In that case, buyers may be discouraged from conducting more

searches because buyers’ expected payoffs from more searches become lower.
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However, based on my calculation, it requires a more significant increase in com-

mission rate to offset the efficiency gain from lower search costs in this merger,

given the supply side fixed.

Finally, I analyze the additional welfare effect from a possible change on

the supply side following the merger. The way to construct the possible change

is motivated by the data: post-merger, high-quality goods are more likely to be

listed offline, and low-quality goods are more likely to be listed online. I consider

a model of two types of buyers where the interstate companies have a higher

estimated quality preference and are assumed to choose the offline platform if they

conduct single-homing. The results show that this change can generate additional

benefits: specifically, with the post-merger search costs, it can increase the total

trading surplus by about 2%. This is because it can help buyers with different

search strategies to target the goods they prefer more easily.

The reader should be aware of the limitation of my analysis. This paper

focuses on buyers’ behavior while considering sellers and platform decisions exo-

geneous because of limited data of other auction platforms and the computation

burden. I analyze the changes in sellers and platforms in the counterfactual part.

Therefore, the indirect network effect in this platform market cannot be properly

analyzed. I discuss the plan to endogenize sellers’ platform entry and incorporate

indirect network effect in the paper. Additionally, actual buyers’ search data are

not publicly available; thus, the distribution of search costs is estimated based on

the observed transaction and bidding data.
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Related Literature. This paper builds upon the literature concerning multi-sided

platforms, search, and auction.

Most theoretical papers (Caillaud and Jullien (2003), Rochet and Tirole

(2003), Rochet and Tirole (2006), Armstrong (2006), and Weyl (2010)) have

focused on prices when discussing mergers and assume that no search costs exist

in the market. These papers construct models to analyze the competition between

multi-sided platforms. They focus on the number of users on two sides and the in-

direct network effect rather than the composition of users and matching distortion

between users on different sides. Bardey and Rochet (2010) is among the very few

papers that consider vertically differentiated users in the health insurance market.

In addition to the literature concerning traditional media markets, recently,

more studies have focused on online platforms’, Arnosti et al. (2014) mention the

potential congestion in the matching market with costly screening and uncertain

availability. Fradkin (2017) discusses transaction costs and potential congestion

in the Airbnb market. As a typical format of online platforms, online auction

markets are analyzed in several papers. Krasnokutskaya et al. (2020) study the

role of an online procurement market. These authors develop a way to estimate

primitives when unobserved seller heterogeneity exists. Bodoh-Creed et al. (2016)

discuss efficiency in decentralized auction platforms. Marra et al. (2019) show

how the careful design of a commission structure can improve welfare in a wine

auction platform with network effect exits. However, most of the analysis focuses

on mechanism design within one online platform.

The search model used in this paper is related to Allen et al. (2014) and Salz
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(2020). Allen et al. (2014) point out the importance of considering the search

costs in the market when analyzing the merger effect in the Canadian Mortgage

industry. Salz (2020) discusses the function of intermediation in New York City’s

trade waste market. Both papers use a non-sequential search model (De los San-

tos et al. (2012)) and introduce a competition stage to determine the price rather

than posted price setting (Hortaçsu and Syverson (2004)). In their papers, with

more searches, consumers can access more lenders/carters (corresponding to sell-

ers in this paper), and lenders/carters compete in the auctions by offering the low-

est prices to consumers. Differently, in my model, by searching for more goods,

buyers can observe the quality and private values of these goods. Based on this

information, buyers make their auction entry choices and compete in the auctions.

Therefore, my model includes a buyers’ endogenous auction entry stage.

Levin and Smith (1994) and Athey et al. (2011) study the endogenous auction

entry model, where Athey et al. (2011) compare the sealed bid and open formats

in the U.S. Forest Service timber auctions. They assume bidders have information

about their private value after entering the auctions, so bidders are not selective.

Different from these papers, my model involves buyers choosing which auction

to enter, assuming that they know their values of the goods being sold in each

auction that they search.3

This paper proceeds as follows. Section 1.2 introduces the market and data.

I illustrate several descriptive findings in the data. Section 1.3 describes the game

3There is an extensive literature on entry into single auctions under different information as-
sumptions. My model assumes that buyers know their values, as in Samuelson (1985), but more
importantly, they are choosing which, of several auctions, to enter rather than considering an
"in/out" entry choice into a single auction.
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played by buyers and discusses the economics of search choices. Sections 1.4 and

1.5 describe the identification and estimation strategies. Section 1.6 presents the

structural estimates. Section 1.7 is the counterfactual part and shows the welfare

analysis of different policy changes from the merger. Section 1.8 talks about the

plan to relax the assumption of exogenous sellers. Section 1.9 concludes the paper.

1.2 Market and Data

This section first provides an overview of the market and acquisition. Then,

I discuss the data used in this paper and summarize some interesting findings

observed in the data.

1.2.1 Market for Used Truck Tractors

In this paper, I study two platforms, i.e., RBA and IP, on which used truck

tractors and many other types of heavy equipment are sold through auctions.

1.2.1.1 Channels for Used Truck Tractor Sales

Each month, approximately 20,000 used heavy trucks are sold in the U.S.

Among these sales, auctions account for about 10%-15% of used heavy trucks in

the U.S. each year. Although the auction channel’s market share is less than that

of some other intermediaries, such as retailers, it allows sellers to sell "as is, where

is," namely, sellers need less certification to sell their trucks via auctions than via

other channels. Therefore, the auction market is irreplaceable, and on average,
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the used trucks sold through auctions are older or have higher mileage. Many dif-

ferent body-style trucks exist, and different trucks are used for different purposes.

Truck tractors are among the most popular body-style of heavy trucks (see Figure

A.1). The owners of these trucks are usually transportation trucking companies,

operating locally or interstate. The inventory of trucks of local trucking companies

is much smaller than that of interstate companies. To operate interstate, compa-

nies need to register their trucks under an interstate registration plan.4

1.2.1.2 Ritchie Bros. Auctioneers

RBA is a primary auction platform that sells heavy industrial equipment

through onsite auctions. It has 31 physical auction sites located nationwide (Fig-

ure 1.1), and most locations are concentrated in states with large heavy-machinery

markets. Post-merger, three auction sites closed.5 The dependence of the locations

affects the offline auction frequency. Texas has ten auction events every year, but

there are only four large auction events each year in Maryland. Although offline

auctions are less frequent than online auctions, RBA still accounts for a much

larger market share than IP (approximately 4:1). One reason is that many buyers

prefer the local inspection opportunities provided by the offline platform.

RBA lists the trucks it will sell in the next two months on its websites. Sell-

ers who choose offline auctions need to transfer the trucks to the auction sites.
4The International Registration Plan (the Plan) is a registration reciprocity agreement among

the states of the United States and provinces of Canada providing payment for license fees based
on the total distance operated in all jurisdictions. https://www.irponline.org/page/ThePlan
The trucking companies under this Plan usually operate interstate.

5https://www.bizjournals.com/triangle/news/2017/11/10/
the-amazon-effect-ritchie-bros-closes-five.html
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Figure 1.1: Auction Locations of RBA
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Notes: the black points represent the auction sites that closed after the merger.

Since sellers need to pay a high penalty fee if they withdraw the trucks in a short

window, I assume that sellers conduct single-homing only. This assumption is con-

sistent with the observation in the data. On the auction days, different auction

rings sell various items simultaneously. Buyers can bid in any auction online or

in-person with registration. Trucks are sold via English Auctions without reserve

prices.

1.2.1.3 IronPlanet

IP is a leading pure online used truck auction platform. There is no location

restriction on the online platform. Regardless of their location, all buyers have

the same information regarding the trucks sold on IP and can place their bids
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once allowed online. On the website, information regarding the trucks sold in

the next two weeks is available. IP holds auctions every Thursday. A very low

starting bid is given by the platform in each auction. Buyers can choose to place

a proxy bid before the auction day. On the auction day, several auctions are held

almost simultaneously. Since a buyer cannot withdraw her bids in an auction, it is

difficult for her to manipulate several auctions if she only has single-unit demand.

The auctions proceed very quickly; thus, if a buyer loses in one auction, she loses

the opportunity to participate in another auction in which she is interested.

Both RBA and IP sell heavy machinery in addition to trucks. The aggregate

market share of these two platforms in the used heavy truck market is no greater

than 60% since some other auction platforms exist in the market. 6

According to the bidding data and local investigation, buyers also search

for and purchase trucks in adjacent states. Therefore, in my analysis, I define

"markets" at the region-month level. Figure 1.2 shows the four regions defined

in this paper. In each market, the analysis includes all RBA auctions during that

month in the region, and all IP auctions are treated as if they occur simultaneously.

1.2.2 Merger

The acquisition was announced in August 2016 and finalized in May 2017.

After a second request for additional information under the HSR Act, the case

6This information was obtained by consulting with experts in this industry.
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Figure 1.2: Definition of Regions

received unconditional antitrust clearance from the DOJ.7 Some policies related

to both price and information changed after the merger.

First, RBA increased the commission rate of its physical auctions to make it

more similar to IP. RBA and IP charge buyers different rates for different trans-

action prices: the rate for a lower-priced truck is proportionately higher than the

rate for a higher-priced truck. Table 1.1 shows the commission rates of both plat-

forms before and after the merger. The commission rate for trucks with final prices

$5, 000 to $33, 500 increased from 2.5% to 3.85%. All other factors are similar. The

second change that I focus on is RBA’s integration of the platform media, websites,

and support teams to allow users to easily search for and request information re-

garding trucks on both platforms. First, RBA and IP release news and emails to

provide information regarding these two platforms.8 Second, both platforms built

7https://www.rbauction.com/media/news-releases/archives/2017/
0170518-rba-ip-secure-antitrust-clearancehttps://www.reuters.com/article/
idCNASC09NTD

8The following is an example of news released by RBA after an offline auction in TX: “...,"
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Table 1.1: Commission Pre- and Post-Merger

IP RBA

2016 & 2018 2016 2018

Price Commission Price Commission Price Commission
<10 10% <2.5 10% < 5 10%
10-33.5 min{3.85%, $1, 000} 2.5-33.5 min{2.5%, $950} 5-33.5 min{3.85%, $500}
>33.5 $1, 290 >33.5 $1, 290 >33.5 $1, 290

Notes: unit of the price is $1, 000.

new websites with a cross-listing mechanism. Both RBA and IP changed their Web-

sites. Before the merger, buyers could only find the trucks sold on the platform

they entered; after the merger, buyers can easily find some information regarding

the trucks sold on the other platform regardless of which website they enter (Fig-

ure A.2). Finally, the platforms share the same customer service. After the merger,

the customer service team of either platform can help buyers obtain information

regarding the trucks sold on both platforms.

These cross-platform mechanisms enable buyers to easily find information

regarding the trucks on both platforms, potentially decreasing the search costs in

the market.

1.2.3 Data

The primary data set contains transaction data collected from IP’s and RBA’s

websites. From both platforms, I obtain all transactions of used trucks from

02/01/2016 to 09/30/2016 (the pre-merger period) and from 02/01/2018 to

said Alan McVicker, Regional Sales Manager, Ritchie Bros. "Bidders were very active, competing
on a great selection of equipment consigned from more than 650 owners. For those buyers un-
able to get what they needed in Houston, we have an online Iron Planet auction today (Thurs-
day, April 18) with close to 1,000 items available."https://www.rbauction.com/news-releases/
20190418-ritchie-bros-sells-us47-million-of-equipment-in-houston-tx-this-week
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09/30/2018 (the post-merger period). The transaction data includes the trans-

acted prices, truck characteristics (VIN, age, mileage, make and model), and list-

ing characteristics (platform, transaction price, location, date, and commission

fees paid to the platforms). I do not have data of other small truck auction sites.

The following additional information of IP after the merger is considered: bids

in auctions, each bidder’s location (states), and bidding time. To obtain more in-

formation regarding the truck models, I match the trucks to the Truck Blue Book

to obtain information regarding each model’s suggested retail price (MSRP). I as-

sume that the trucks in the transaction data represent an approximation of trucks

available in the market. Although the data only shows the set of trucks that went

transactions, as RBA uses no reserve-price auctions and IP lowers the starting

prices in online auctions when there are no bidders, this assumption should be

close to satisfied.

Table 1.2 summarizes the characteristics and transaction price of the trucks

sold on both platforms before and after the merger. As shown in the table, the

trucks’ transaction volumes were similar before and after the merger. However,

the quality distributions of the trucks sold on these two platforms changed: the

trucks sold on IP are significantly older and have a significantly higher average

mileage post-merger. I further discuss this analysis in the descriptive findings.

Since many different observed characteristics can be used to measure trucks’

quality, it will be hard to do a structural estimation to include all of them directly.

Therefore, I use an additional data set to figure out a one-dimensional quality

index.
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Table 1.2: Characteristics and Prices of the Trucks Sold on IP and RBA

2016 2018

Measurements IP RBA Combined IP RBA Combined
Total Number 1,423 6,932 8,355 1,690 6,838 8,528
Freightliner 226 567 793 178 1,384 1,562
International 323 2,422 2,745 660 1,884 2,544
Kenworth 125 1,049 1,174 176 806 982
Mack 301 1,058 1,359 184 721 905
Others 67 323 390 216 249 465
Peterbilt 227 1,027 1,254 86 986 1,072
Volvo 154 486 640 190 808 998
Avg. Price 14,024 17,898 17,169 7,492 17,866 15,040
Avg. Age 9.70 9.27 9.35 11.85 9.12 9.66
Avg. Log(Mileage) 12.69 12.66 12.67 13.03 12.94 12.96
Avg. MSRP 72,945 75,618 75,159 71,543 79,870 78,148

Notes: 1. unit of price and MSRP is $; 2. unit of Mileage is mile.

The data set I use includes the registration data of trucks in Texas.9 This

data set includes transactions of used trucks in TX through all channels (retail-

ers, wholesalers, large fleets, and auctions) from 01/01/2016 to 08/31/2018. As

mentioned above, less friction exists in other channels than the auction channel,

so other channels’ transaction prices are more closely related to the trucks’ qual-

ity. Also, the transaction does not contain RBA and IP only. Therefore, I regress

the trucks’ transaction price in this data set on the observed characteristics listed

in Table 1.2 and construct the one-dimensional quality measurement. Table 1.3

shows the hedonic regression used to construct the quality index.

Finally, by combining the registration data with the licensing under the In-

ternational Registration Plan in Texas,10 I can identify the trucks purchased by

different types of buyers. Using the VIN as the trucks’ unique identity, I can match

this data set to the auction transaction data. Since Texas has the largest number

9Source: DMV of Texas.
10Source: DMV of Texas.
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Table 1.3: Hedonic Regression Used to Construct the One-Dimensional Quality
Index

VARIABLES logprice

log(mile) -0.0438***
(0.00351)

log(mrsp) 0.228***
(0.0225)

Constant 3.710***
(0.122)

Diesel Dummy -0.0709***
(0.0130)

Make Dummies Y
Age Dummies Y
Observations 46,545
R-squared 0.526

Notes: standard errors in paren-
theses *** p<0.01, ** p<0.05, *
p<0.1

of buyers according to the online bidding information, this sample is suitable for

analyzing two types of buyers’ behavior.

1.2.4 Descriptive Findings

Here, I summarize the notable findings in the data. I first illustrate some

cross-sectional facts in this market and then discuss the changes pre- and post-

merger.

1.2.4.1 Cross-sectional Variation

Cross-platform Facts There is a decrease in the quality of trucks sold in

auctions. According to Texas’s data, however, the decline in quality is also true for

the trucks sold in other channels (Table A.1). Therefore, I assume that the change

in general quality is irrelevant to the merger, and I control it in the counterfactuals.
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Figure 1.3: Quality Distribution Across Platforms
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Notes: quality is round to the nearest integers.

Comparing the quality distributions of the trucks sold on IP and RBA in 2016

and 2018 (Figure 1.3), I find that the average quality of the trucks sold offline is

higher than that of the trucks sold online. Consistent with Table 1.2, this difference

is much more significant after the merger: high-quality trucks are much more

likely to be sold on RBA, and low-quality trucks are much more likely to be sold

on IP post-merger. The reason for this change is uncertain and may be related to

the sellers’ platform entry choices or the platforms’ re-position policy. I investigate

the welfare effect and policy implication of this change in the counterfactual part.

Figure A.3 presents the price distribution (the mean and variance) of trucks

belonging to different quality bins. Here, each quality bin is constructed based

on the one-dimensional quality measurement and rounded to the nearest integer.

First, as shown in the standard deviation figure, considerable heterogeneity exists

in trucks’ prices with the same quality on the same platform. The price variance

increases in quality, indicating that the transaction prices are not linear in the
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observed quality levels of the trucks. Additionally, the average transaction price of

the trucks on RBA is higher than that on IP at all quality bins. One interpretation

of this price difference is related to RBA’s local inspection opportunity. Although

IP posts the inspection reports of the trucks sold online, buyers may doubt the

accuracy of the information about the trucks listed online. Therefore, buyers may

discount the observed quality of the trucks sold online.

Cross-buyer Facts Using Texas data, I compare the trucks purchased by in-

terstate trucking companies and local trucking companies. As shown in Figure

A.4, interstate firms tend to purchase higher quality trucks. Meanwhile, these

firms also pay higher prices for these trucks conditional on buying them. This

finding indicates that interstate companies may prefer to purchase high-quality

trucks more than local companies.

Cross-market Facts According to the definition of the markets, I calculate

the number and average quality of the trucks subject to transactions in each mar-

ket (Figure A.5). The transaction volume is much larger on RBA and more fluctu-

ated across markets than the one on IP. The average quality of trucks varies across

markets.

1.2.4.2 Cross-year Variation

Next, I show some interesting changes in market outcomes following the

merger.

Transaction Price and Quality of Trucks The first important finding is a
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Figure 1.4: Price Distributions of Trucks in Different Quality Groups

All Quality

0
.05

.1
.15

.2

Fr
ac

tio
n

0 2 4 6
Log(price)

2016 2018

Quality<=75th

0
.05

.1
.15

.2

0 2 4 6
Log(price)

2016 2018

Quality>75th

0
.05

.1
.15

.2

0 2 4 6
Log(price)

2016 2018

Notes: unit of price is $1, 000.

change in the relationship between the transaction price and the trucks’ quality.

I divide the trucks into different quality groups according to their percentiles.

Figure 1.4 shows the histograms of the log(price). The higher quality trucks’ prices

tend to increase after the merger, although the distribution of the prices of the

lower quality trucks remains approximately unchanged. The difference in the

quality of the trucks purchased by different types of buyers is more significant post-

merger: compared with local trucking companies, interstate trucking companies

are more likely to purchase the high-quality trucks post-merger (Figure 1.5).

Transaction Price and Trucks Available on Each Platform The final re-

markable change is related to the relationship between the transaction price and

trucks available on each platform in the market. To analyze the change in this

relationship, I use the number of trucks on each platform and the average qual-

ity of these trucks as two main measurements representing the available trucks.

Since the quality and number of trucks fluctuated more on RBA, I regress an on-
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Figure 1.5: Quality Distributions of Trucks Purchased by Different Types of Buyers
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line truck’s price on its quality and these measurements. I conduct this regression

pre-merger and post-merger separately (Table 1.4). One robust finding is that a

truck’s price on IP is more sensitive to the average quality of the trucks on RBA.

When the average quality of the trucks sold on RBA is high, trucks’ transaction

price on IP tends to be low post-merger if everything else remains the same.

Summary In summary, we can observe that after the merger: (1) compared

with the low-quality trucks, the probability of selling high-quality trucks at high

prices increases after the merger; (2) compared with local trucking companies,

interstate trucking companies are more likely to purchase high-quality trucks; (3)

the price distribution on IP is more sensitive to the quality of trucks available on

RBA in the same market.

I show that the change in search costs can potentially explain these three

findings.

22



Table 1.4: Sensitivity of Price on IP to the Trucks Available on Each Platform

2016 2016 2018 2018

VARIABLES log(price) log(price) log(price) log(price)
quality 1.086*** 1.164*** 0.790*** -2.689***

(0.0390) (0.298) (0.0373) (0.349)
quality2 -0.0115 0.547***

(0.0434) (0.0545)
qualityIP−j 0.430*** 0.433*** 0.285* 0.0855

(0.119) (0.119) (0.162) (0.158)
qualityRBA 0.0400 0.0359 -0.657*** -0.450**

(0.105) (0.106) (0.221) (0.215)
N IP -0.001* -0.001* -0.001** -0.002***

(0.001) (0.001) (0.001) (0.001)
NRBA 0.000 0.000 -0.000** -0.000*

(0.000) (0.000) (0.000) (0.000)
Constant -2.284*** -2.409*** 1.325* 6.661***

(0.619) (0.779) (0.802) (0.940)
Observations 1,354 1,354 1,470 1,470
R-squared 0.456 0.456 0.258 0.305

Notes: standard errors in parentheses ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p <
0.1.

1.3 Model

This section presents a model of the platform markets that endogenizes buy-

ers’ search, auction entry, and auction bidding. I assume that trucks with different

quality levels are sold in single-unit auctions on two platforms. My model treats

the supply-side as exogenous while developing an equilibrium model of buyers’

behavior. Given their private draws of search costs, buyers simultaneously choose

whether to search both platforms and how many auctions to search. Searching al-

lows buyers to discover the characteristics and private values of individual trucks.

Then, buyers simultaneously decide which of the searched auctions to enter. Buy-

ers have a unit demand and can enter exactly one auction. The model is static
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because I do not allow buyers to consider the possibility of entering subsequent

auctions if they fail to purchase a truck in the auction market.

1.3.1 Sellers

The realized set of trucks available on each platform is drawn from the ob-

served sets of trucks in the data across regions and time periods. The information

regarding the trucks available on each platform includes the realized quality levels

(q), namely, the one-dimensional quality index, of the trucks on each platform and

the number of trucks at each quality level on each platform.

1.3.2 Buyers

All buyers are ex-ante symmetric but distinguished by their i.i.d draws of

fixed search cost (fc ∼ Hfc(·)), marginal search cost (mc ∼ Hmc(·)), and private

value of each truck (v). A buyer’s WTP of a truck depends on the quality of the

truck and the her private value for that truck. I make the following assumption

regarding the buyers’ WTP.

Assumption 1. Distribution of WTP A buyer’s WTP for a truck follows a log-normal

distribution as follows: V = exp(θq + v), v ∼ N(µ, σ).

Assumption 1 places the restriction on the WTP that q and v are not addi-

tively separable. The multiplicative structure ∂V 2(q,v)
∂q∂v

> 0 indicates that the values

are always positive and consistent with the fact that the variance of the realized

prices increases with quality. A log-normal distribution is also a type of distribu-
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Figure 1.6: Timeline of the Game

Search Choice Stage Buyers simultaneously choose multi- or
single-home, number of searches(private
info. search costs)

Trucks available are realized

Market and Platform Entry Allocation of single-homing buyers’ plat-
forms

Search Stage Random, non-directed search

Auction Entry Stage Buyers simultaneously enter auctions
(private info. WTP for searched trucks)

Bidding Stage Buyers bid in auctions, exit the market

tion commonly used in the auction literature (e.g., Laffont et al. (1995)). The

specific form that I use also allows for a WTP discount (α < 0) for online trucks,

specifically, the WTP of a buyer with private value v for a truck with quality q

online is V = exp(θ(q + α) + v).

In addition to this baseline model, I also consider a model with two types

of buyers who can have different quality preferences, where the draws are i.i.d.

within types, and the mix of types fit the interstate/local data from TX. I allow

different types of buyers to have different coefficients of θH and θL for quality.

1.3.3 Timing

Figure 1.6 shows the timeline of the game.
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• Search Choice Stage During this stage, buyers draw private search costs

independently from the cost distributions. Based on the private search costs

and common knowledge (distribution search costs, distribution of WTP, and

distribution of trucks available on each platform), buyers simultaneously de-

termine their search choices. A search choice includes the following two

parts:

– Search frequency (m ∈ {1, ...,M}): number of trucks to search under

either homing choice.

– Homing choice (home ∈ {multi, single}):

* Single-homing: a buyer searches trucks randomly on one platform;

* Multihoming: a buyer searches trucks randomly on both platforms.

To reduce the computation burden, I assume when buyers make their

search choices, they have no information regarding the realized avail-

able trucks in the market and only know the distribution of a possible

set of trucks available on each platform.

• Market and Platform Entry Buyers enter the market based on the realized

number of trucks in the market, and single-homing buyers enter a platform.

I assume this process is exogenously determined. Specifically, I make the

following assumption:

Assumption 2. Market and Platform Entry When the realized numbers of trucks

sold on Platform A and Platform B in a market are NA and NB,
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• Market Entry: γ × (NA + NB) buyers enter the market, where γ is a scalar

parameter and exogenously determined.

• Platform Entry: the probability of a single-homing buyer entering one platform

is given according to a random entry rule which depends on the number of

goods on each platform in that market Prob(A) = NA

NA+NB , P rob(B) = NB

NA+NB .

When doing estimation, γ is calculated from bidding data. Under the random

entry rule, all trucks on both platforms have the same probability to be chosen.

The only difference between single-homing buyers and multihoming buyers is the

composition of the searched trucks they can choose when making their auction

entry choices. In reality, an implication of this assumption is that single-homing

buyers’ platform choice is closely related to the scarcity of offline auctions in that

market. In a market, there are many offline auctions, buyers tend to single-homing

offline; otherwise, they are more likely to single-homing online. Additionally, I

consider alternative rules where buyers can target a specific platform when they

conduct single-homing in the estimation part.

• Auction Entry Stage After randomly searching in the market, buyers simul-

taneously make their auction entry choice (e). They determine which of

the searched auctions to enter according to the information regarding the

searched trucks.

• Auction Bidding Stage After entering auctions, buyers submit their bids (b)

in the auctions. The trucks are sold via English auctions. They leave the

market regardless of whether they win.

27



When describing the equilibrium, I will use superscripts {A,B} to denote different

platforms, subscripts i ∈ {1, ..., Nbuyer} to represent a buyer and j ∈ {1, ..., N} to

represent a truck.

1.3.4 Equilibrium

The equilibrium of this game is defined as follows.

Definition 1. (A Symmetric Bayesian Nash Equilibrium for Buyers)

A symmetric Bayesian Nash equilibrium in the market for buyers with common

knowledge is a set of search strategies {m∗(·), home∗(·)}, auction entry strategies

e∗(·), and bidding strategies b∗(·) such that any buyer

• bids optimally

• enters a searched auction according to an optimal rule

• decides how to search based on an optimal rule

given the equilibrium strategies of the other buyers in each stage.

The game can be solved by backward induction. I describe the equilibrium

starting from the bidding stage.

1.3.5 Auction Bidding and Entry Stage

In the bidding stage, a buyer’s private information is her WTP for the truck

sold in the auction she enters: V (q, v). Given this private information, she makes
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her bidding decision. Since the auction is an IPV English auction, truthfully bid-

ding is the dominant strategy for all buyers, we have b∗(V (q, v)) = V (q, v). 11

In the auction entry stage, after searching, buyers have private information

regarding the searched trucks. I denote the private information of buyer i who

searched m trucks under homing choice home as (qm,home
i , vm,home

i ), where qm,home
i

and vm,home
i are m × 1 vectors, qm,home

i includes the quality information regarding

thesem trucks and vm,home
i includes the private values associated with these trucks.

Given the private information, buyers make their entry choice. Buyer i’s entry

strategy is a m× 1 vector ei(q
m,home
i , vm,home

i ), where all the elements are zeros but

the chosen one.

The expected payoffs from entering an auction depend on the expected com-

petition in that auction. In the view of other buyers, Prei (qj, vij) is the probability

that buyer i will enter auction j with a private value no less than vij. Similarly,

in the view of buyer i, Prel (qj, vlj), ∀l 6= i is the probability that buyer l will enter

auction j with a private value no less than vlj. Then, buyer i’s expected payoffs

11When platforms charge a commission from buyers, buyers’ bids equal their WTP discount
by the commission rate in the English auction. This can completely transfer the burden of the
commission from the buyers to sellers if there is no reserve price, we do not consider sellers’
platform entry choices, and all buyers have single-unit demand.
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from entering an auction with quality qj and private value vij is as follows:

Ui(qj, vij) =



∫ vij
v

[V A(qj, vij)− V A(qj, ṽ)]dΠl 6=i[1− Prel (qj, ṽ)] + ...

V A(qj, vij)Πl 6=i[1− Prel (qj, v)] if j is on A∫ vij
v

[V B(qj, vij)− V B(qj, ṽ)]dΠl 6=i[1− Prel (qj, ṽ)] + ...

V B(qj, vij)Πl 6=i[1− Prel (qj, v)] if j is on B

(1.1)

In equation (1.1), Πl 6=i[1−Prel (qj, ṽ)] is the probability that no buyers but i enters

the auction with quality qj and random value no less than ṽ.

According to the definition of BNE, an equilibrium entry strategy should

maximize buyer i’s expected payoffs. A buyer will enter the auction with the

highest expected payoff in the set of auctions she has searched. So in equilibrium,

the buyer i′s entry probability defined above equals

Pre∗i (qj, vij) =
∑

m,home

∑
qm,home
i

[

∫ v

v

...

∫ v

v

∫ v

vij

I{qj ∈ qm,home
i } × ...

I{U(qj, v) = max{U(qj′ , vij′)}(qj′ ,vij′ )∈(qm,home
i ,vm,home

i )
}...

dF (vm,home
i )Prob(qm,home

i )Prob(mi = m,homei = home) (1.2)

where I{·} are two indicator functions represent the event that truck j is searched

and the auction with (qj, v) has the highest expected payoffs in the set of trucks

searched by buyer i.

As equation (1.2) shows, the probability is determined by the distribution of

buyer i’s search choice {Prob(mi = m,homei = home)}, probability of searching

30



different sets of information including truck j conditional on a search choice and

the probability to choose auction j with the searched information.

We can transfer the BNE into probability space.12 Formally, according to

(1.1) (1.2), the symmetry of buyers and the difference between platforms, the

problem can be written as

 Pre
∗
(q, v, A) = Λe,A(Pre

∗
(q, v))

Pre
∗
(q, v, B) = Λe,B(Pre

∗
(q, v))



where Λe,A and Λe,B are the best response probability functions and

Pre
∗
(q, v) =

 Pre
∗
(q, v, A)

Pre
∗
(q, v, B)


Since the best response probability functions are well defined and continuous in

the compact convex set of players’ probabilities, according to Brouwer fixed-point

theorem, at least one equilibrium exists. 13

Given the equilibrium probabilities, I can obtain a set of equilibrium expected

payoffs U∗(q, v). A buyer’s expected payoffs from a set of auctions are the payoffs

from the auction with the highest U∗(q, v) in the set. Based on Assumption 2, I

can calculate the expected payoffs from different search choices given the realized

12There are many other papers, Seim (2006), Aguirregabiria and Mira (2007) , etc, treat BNE
as being in probability space. Note that here the probabilities come from the different sets of
information buyers can get from the random search process, not logit errors.

13It is easy to show that the expected payoff functions U is continuous and monotonically in-
creasing in v. In other words, ∀q, my expected payoffs to the auction with q will be continuous and
increasing in v. Under the optimal rule, buyers choose to entering the auction with the highest
expected payoffs. According to equation (1.1)(1.2), as the probability of other people (using their
optimal rule) entering auctions increases, my best response will fall continuously.
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trucks available in the market.

1.3.6 Search Choice Stage

In the first stage, buyers’ private information is their search costs. They

decide their homing choices and search frequencies according to their private in-

formation.

Since buyers make the choices before they discover the set of trucks avail-

able on each platform, the expected payoffs should be average across all possible

realizations of available trucks on each platform. I denote buyer i’s expected pay-

offs from a search choice Wi. According to equation (1.2), the expected payoffs

depend on the distribution of other buyers’ search choice. This distribution is

the conditional choice probability (Aguirregabiria and Mira (2007)) associated

with a search strategy of a buyer given the distributions of search costs. Define

Prm,home
i = Prob(mi = m,homei = home),∀i, Prm,home

−i = {Prob(ml = m,homel =

home),∀l 6= i}. In equilibrium, buyer i choose mi and homei that can maximize

her net expected payoffs given Prm
∗,home∗

−i

max
mi,homei

[Wi(mi,homei, P r
m∗,home∗

−i )−mci ×mi − I{homei = multi} × fci]

where I{homei = multi} is the indicate function that buyer i choose multihoming.

So there are two equilibrium conditions that (m∗,home∗) and Prm
∗,home∗ should

satisfy. The first condition ensures that no one wants to deviate to a different num-

ber of searches given their private marginal search costs and the homing choices.
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Since the expected marginal gain from an additional search decreases with the

number of searches,14 we can find the equilibrium cutoffs at which buyers feel

indifferent towards searching different numbers of trucks under the same homing

strategy.


Wi(m

∗ + 1,home∗, P rm
∗,home∗

−i )−Wi(m
∗,home∗, P rm

∗,home∗

−i ) = mc(m∗,home∗)

Wi(m
∗,home∗, P rm

∗,home∗

−i )−Wi(m
∗ − 1,home∗, P rm

∗,home∗

−i ) = mc(m∗,home∗)

(1.3)

Second, to ensure that no buyer has an incentive to deviate her homing choice with

her search costs, I need to compare the expected payoffs from the proposed equi-

librium strategy with the optimal search strategy under the other homing strategy.

Therefore, the second set of equilibrium conditions is as follows:



Wi(m
∗, single, P rm

∗,home∗

−i )−mci ×m∗ ≥ ...

max{Wi(m,multi, P rm
∗,home∗

−i )−mci ×mi} − fci,

max{W (m, single, P rm
∗,home∗

−i )−mci ×mi} ≤ ...

Wi(m
∗,multi, P rm

∗,home∗

−i )−mci ×m∗ − fci.

(1.4)

The first inequality is for the case that home∗ = single and the second inequality

is for the case that home∗ = multi. (1.4) indicates that given a marginal cost, a

buyer will choose multihoming only if her fixed cost is lower than a threshold.

Based on (1.3) and (1.4), the conditional choice probabilities can be calcu-

14Since the expected payoff function is the expectation of the largest order statistics, it is concave
in the number of searches (David (1997)).
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lated given the distributions of the marginal search cost and fixed search cost. For

example, the probability of (m,multi) is as follows:

Prm
∗,home∗

i (m,multi) =

∫ mc(m,multi)

mc(m,multi)

∫ fc(mci)

fc

hmc(mci)h
fc(fci)dfcidmci (1.5)

where fc(mci) = Wi(m
∗,multi, P rm

∗,home∗

−i )− ...

mci ×m∗ −max{Wi(m, single, P rm
∗,home∗

−i )−mci ×mi}

and fc is the lower bound of fixed cost.

Therefore, in the symmetric BNE, we have

Prm
∗,home∗ = Λm(Prm

∗,home∗),

where Λm is the best response probability function. According to (1.3), (1.4)

and (1.5), Λm is well defined and continuous in the compact convex set of the

buyers’ choice probabilities. Based on the Brouwer fixed-point theorem, at least

one equilibrium exists.

Given the equilibrium of the game, next, I will discuss the economics of

search choices and show how the change in search costs can affect the market

outcome.
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1.3.7 Economics of Search

1.3.7.1 Search Frequency

Buyers are more likely to find trucks with higher expected payoffs when

they search for more trucks. Therefore, a buyer’s expected payoffs increase in the

numbers of searches. The marginal cost of searching one more truck is the effort

required to investigate the quality of the truck and determine the private value of

the truck, such as online search and consulting with sales representatives, etc. A

buyer decides the number of trucks to search for by trading off between the gain

and cost of the marginal search.

When a buyer has lower marginal search cost, she has an incentive to search

for more trucks. However, other buyers will also have this motivation when they

draw lower marginal search costs. Searching is strategic substitution among buy-

ers because an increase of other buyers’ search frequency results in more com-

petition in auctions with high expected payoffs and reduces the gain from more

searches. Figure 1.7 shows one example of expected payoff functions from differ-

ent searches W (m,home∗) under the same homing choice. The average number

of searches chosen by other buyers (λm) increases from five to ten, resulting in a

flatter expected payoff function. This indirect effect can partly discourage buyers

from searching for more goods. However, in the new equilibrium with average

lower marginal search costs, the average number of searches among buyers is still

higher than the one in the old equilibrium. With more searches in the new equi-
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Figure 1.7: Net Expected Payoffs W (m,home∗) When λm = 5 and λm = 10
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librium, the distribution of transaction price will change. Here, I give an example

about how the price will change under a simple structure of available trucks in the

market.

Proposition 1. (Change in Search Frequency) If (1) there is one platform; (2)

there are two types of trucks differentiated by their observed quality levels qH and qL,

where qH > qL; (3) buyers in the market choose to search one or two trucks and the

equilibrium probability of buyers to search two trucks under different distributions of

search costs are Prm∗ and Prm∗∗, where Prm∗ < Prm
∗∗, then the difference between

the upper tail of the price distribution of high-quality trucks and that of low-quality

trucks increases when buyers tend to search two trucks. Formally, using p to denote
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final prices, we have

∃p∗,∀p̃ ∈ [p∗, p]

Prob(p > p̃|qH , P rm∗∗)− Prob(p > p̃|qL, P rm∗∗) ≥ ...

P rob(p > p̃|qH , P rm∗)− Prob(p > p̃|qL, P rm∗)

(1.6)

Proof. See Appendix A.2.1.1.

In addition to the formal proof in the appendix, here, I briefly present the

intuition about this proposition. First, given Assumption 1, I can prove that there

is always a threshold of private value above which high-quality trucks are more

attractive than low-quality trucks. Without changing the belief about other buyers,

when buyers search for two trucks, the auctions with high-quality trucks are more

likely to be chosen by buyers with private value above the threshold in the original

equilibrium. Then, when all buyers are more likely to search for two trucks, the

competition in those high-quality auctions is fiercer. Expecting this, some buyers

with moderate private values associated with the high-quality trucks may switch

to auctions with low-quality trucks. Namely, the threshold in the new equilibrium

will be higher. However, buyers, drawing private values above the new threshold,

are more likely to choose auctions with high-quality trucks. Finally, since the

transaction price is the second-highest WTP in that auction, relative to low-quality

trucks, high-quality trucks are more likely to be transacted with higher prices when
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buyers search more intensively.

For markets with more complicated structures of available trucks, the change

in buyers’ auction entry behavior follows a similar pattern when they tend to

search for more trucks. In Appendix A.2.2, I use simulations to illustrate this.

Additionally, I give a discussion about a model with two types of buyers and show

that buyers with high quality preference are more likely to purchase high-quality

trucks than low-type buyers when the marginal search costs are lower.

The analysis above shows that the cross-year change (1)(2) observed in the

data can be explained by higher search frequency. This mechanism is also useful

to justify identification, which I will discuss later.

1.3.7.2 Homing Choices

When buyers engage in multihoming, they can access a set of trucks from

two platforms and choose the platform having auctions with the highest expected

payoffs in their choice set, which can smooth the variation in the number and

quality across the platforms, and may increase buyers’ expected payoffs. The fixed

costs of multihoming include learning the two systems, registering two accounts

to monitor trucks, etc. Buyers make their homing choices by trading-off between

the gain from multihoming and these costs. When the fixed costs decrease, more

buyers switch to multihoming.

The increased share of multihoming buyers can change the market outcome.

Similar to search frequency, I also show the pattern in a simple setting.

38



Proposition 2. (Change in Homing Choices) If (1) there are two platforms and

all the trucks on the same platform have the same quality level; (2) there are two

observed quality levels qH and qL, where qH > qL; (3) buyers in the market choose to

search one or two trucks and the share of single-homing buyers under different fixed

search costs are ω∗ and ω∗∗, where ω∗ > ω∗∗, then the difference between the upper

tail of the price distribution of a truck on platform A when the average quality of

the trucks on platform B is low and that when the average quality of the trucks on

platform B is high increases if there are more buyers conduct multihoming. Formally,

∃p∗,∀p̃ ∈ [p∗, p]

Prob(pA > p̃|qB = qL, ω∗∗)− Prob(pA > p̃|qB = qH , ω∗∗) ≥ ...

P rob(pA > p̃|qB = qL, ω∗)− Prob(pA > p̃|qB = qH , ω∗)

Proof. See Appendix A.2.1.2.

The proposition is based on a similar logic in Proposition 1. The expected

payoffs of high-quality trucks are always higher than those of low-quality trucks if

the private values drawn by buyers are above some threshold. Therefore, buyers

with high private values are more likely to choose Platform B if the trucks on

Platform B have high quality. This can explain the change in price distribution

shown in Proposition 2.

This proposition shows that the cross-year change (3) observed in the data

can be explained by buyers’ more multihoming. It will also be called in the iden-
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tification.

Finally, the change in the fixed costs may alter the search frequency, and the

change in the marginal costs may alter the multihoming choices. For example,

under multihoming, there are more variations in the composition of trucks in a

choice set. Thus, the expected payoff function is less concave under multihom-

ing when the number of searches is large. Namely, the expected payoffs from

searching many trucks are higher under multihoming than the one under single-

homing. Therefore, lower fixed search costs can encourage buyers to search for

more trucks.

Based on the analysis and propositions above, the cross-year descriptive find-

ings in the data can be explained by the reduction in search costs.

1.4 Identification

In this section, I explain how to identify the two critical components in the

model, i.e., the distribution of buyers’ WTP and the distribution of search costs. In

general, the distribution of search costs is not nonparametrically identified. How-

ever, I can still identify the marginal search costs associated with the thresholds

between searching different numbers of trucks and the fixed search costs associ-

ated with the thresholds between multihoming and single-homing. For simplicity, I

refrain from considering post-merger changes and commission and focus on iden-

tifying the buyers’ WTP and the search cost thresholds.

Definition 2. A model is identified iff ∀(Hc, F V , Ĥc, F̂ V ),
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(P,B|Hc, F V , X) = (P̂ , B̂|Ĥc, F̂ V , X) implies Hc = Ĥc and F V = F̂ V . where

• Exogenous Variables (X): set of realized available trucks on each platform and

γ;

• Model Primitives (Hc, F V ): the distribution of buyers’ search costs and WTP;

• Observed Endogenous Outcomes (P,B): the realized transaction price and

trucks, and number of bidders in each auction.

As shown in the model, buyers make their search strategies before enter-

ing any market. In the auction entry stage, the distribution of equilibrium search

choices is a sufficient statistic for a buyer to make her optimal entry strategy.

Therefore, I can separate the identification problem into the following two prob-

lems: (1) the observed distribution of the transaction prices and number of bidders

can identify the distribution of WTP and distribution of buyers’ equilibrium search

choice (Prm∗,home∗) given the exogenous variables, and (2) the identified distribu-

tion of WTP and distributions of equilibrium search choice can identify the bounds

of distributions of search costs.

Similar to the discussion about economics of search, I use the case in which

all buyers search one or two trucks to show how the model can be identified.

The proportion of searching for two trucks is Prm∗, and the proportion of single

homing buyers is ω∗ in equilibrium.
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1.4.1 Distributions of WTP and Equilibrium Search

1.4.1.1 Baseline: One Platform and One Type of Buyers

I begin with markets with one platform, one type of buyers and trucks in

two quality levels (qH and qL). Using the observed endogenous outcomes in these

markets, I can prove identification.

Given the number of bidders, I can focus on the auctions with a small number

of bidders. For example, from the data, I can calculate the price distribution of

trucks with quality qH conditional upon having two buyers in the auctions. This

situation includes the following two cases: both buyers in an auction bid lower

than p and only one buyer bids lower than p in an auction. Formally, the CDF of

the transaction price for these auctions are as follows:

F2,price(p|qH , qL, NH , NL) = ...

{(1− Prm∗)F v(log(p)− θqH) + Prm
∗
[
NH − 1

2(N − 1)
(F v(log(p)− θqH))2 + ...

NL

N − 1

∫ log(p)−θqH

v

f v(v)F v(v′|U∗(qL, v′) = U∗(qH , v))dv]}2︸ ︷︷ ︸
both buyers bid lower than p

+...

2{(1− Prm∗)[1− F v(log(p)− θqH)] + Prm
∗
[
NH − 1

2(N − 1)
(1− (F v(log(p)− θqH))2) + ...

NL

N − 1

∫ v

log(p)−θqH
f v(v)F v(v′|U∗(qL, v′) = U∗(qH , v))dv]} × ...

{(1− Prm∗)F v(log(p)− θqH) + Prm
∗
[
NH − 1

2(N − 1)
(F v(log(p)− θqH))2 + ...

NL

N − 1

∫ log(p)−θqH

v

f v(v)F v(v′|U∗(qL, v′) = U∗(qH , v))dv]}︸ ︷︷ ︸
one buyer bids higher than p, one bids lower than p

(1.7)
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Here, N = NH + NL and F2,price(p|qH , qL, NH , NL) is calculated using the data.

According to the model, v′ is the private value which makes buyers feel indifferent

between the auction with qH and qL. Under Assumption 1, F V (·|q) is determined

by µ, σ and θ.

Proposition 3. The price distribution function F2,price(·|qH , qL, NH , NL),∀ qH ,qL,

NH , NL can identify the model primitives F V (·|q) and Prm∗.

Proof. See Appendix A.3.1.

Here, I describe the basic idea underlying the identification. As shown in

the expression of price distribution in (1.7), the price distribution depends on a

mixture of the following three distributions: the distributions of WTP for trucks

with quality qH and qL and the distribution of search frequency, which is simplified

as the coefficient Prm∗. To separately identify these distributions, I need to use the

variation in price distributions from markets with different structures of available

trucks.

Assume there are two sets of model primitives can generate the same price

distributions in markets where all trucks have quality qH and markets where all

trucks have quality qL. They cannot generate the same price distribution in mar-

kets having trucks with both qH and qL. As shown in the model part (Proposition

1), when buyers search for more trucks, the trucks with qH are more likely to be

purchased at a high price. If buyers search for two trucks, the difference in the

price distribution in these market differs from the difference in the price distribu-

tion in the market with one quality trucks. However, the differences are the same
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when buyers always search for one truck.

This idea can be applied to markets with more quality levels if we can ob-

serve the price distribution in markets with various structures of available trucks.

1.4.1.2 Extensions

Two Platforms Assume that buyers’ WTP for trucks with the same quality

level differs if the goods are listed on different platforms. I denote the distribu-

tions of WTP as F V,A and F V,B. Buyers also choose to conduct single-homing or

multihoming, and the equilibrium probability of conducting single-homing is ω∗.

To reduce the number of primitives to identify, here I make the following assump-

tion:

Assumption 3. Prm∗,single = Prm
∗,multi = Prm

∗

According to the baseline model results, I can use the price distributions in

markets only with platform A to determine the WTP on platform A and Prm∗. It is

similar to markets only with platform B. An additional initial condition is needed

to identify ω∗. One way to get this condition is to use the price distributions in

markets with qH on a platform and qL on another platform. As discussed in the

model part (Proposition 2), the price distribution in these markets and price distri-

bution in markets with one platform are different when the share of multihoming

buyers changes.

Two Platforms and Two Types of Buyers In this model, the share of differ-

ent types of buyers is the same across different markets. In addition to the price
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distribution of trucks, the types of winners in the auctions are observed. Simi-

larly, I make the following assumption to simplify the identification problem. This

assumption and Assumption 3 are kept in estimation.

Assumption 4. Prm
∗,single

H = Prm
∗,multi

H = Prm
∗

H , P rm
∗,single

L = Prm
∗,multi

L = Prm
∗

L

As shown in the extended model above, using the price distributions of trucks

with different quality levels, it is possible to identify {F V,A, F V,B, P rm
∗
, ω∗}. This

set of statistics can be derived from the underlying model primitives

{F V,A
H , F V,A

L , F V,B
H , F V,B

L , P rm
∗

H , P rm
∗

L , ω∗H , ω
∗
L}.

Consider the markets with one platform in each market where the qual-

ity of the trucks is the same. Since the share of different types of buyers is the

same across different markets, the distribution of equilibrium search choices of

both types of buyers is the same in these markets. Given a distribution of search

choices {Prm∗H , P rm
∗

L , ω∗H , ω
∗
L}, the difference between price distribution of trucks

with the same quality purchased by the same type of buyers but on different

platforms can identify the difference between the same type of buyers’ WTP on

different platforms:{F V,A
H − F V,B

H , F V,A
L − F V,B

L }. By combing with the identified

{F V,A, F V,B}, I can express everything as functions of buyers’ search choices. Fi-

nally, as discussed in the model, using the difference in the quality distribution

of the trucks purchased by different types of buyers, {ω∗H , P rm
∗

H , ω∗L, P r
m∗
L } can be

identified separately given {ω∗, P rm∗}.

Figure A.9 in Appendix A.3.2 gives a summary the measurements and as-

sumptions used to identify different models.
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1.4.2 Distribution of Search Costs

Given the distribution of WTP F V and equilibrium search choice (Prm
∗
, ω∗),

I can partially identify the distribution of the search costs according to the equilib-

rium conditions in the model.

Specifically, given the cutoffs constructed by (1.3) and (1.4), I can map the

distribution of equilibrium search choices to the distributions of the search cost.

The probability of a buyer searching for two trucks on two platforms equals the

probability that the buyer’s marginal search cost falls into a range and her fixed

search cost is lower than a threshold.

(1− ω∗)Prm∗ =

∫ mc(FV ,P rm
∗
,ω∗)

mc(FV ,P rm
∗ ,ω∗)

∫ fc(mci,F
V ,P rm

∗
,ω∗)

fc

hmc(mci)h
fc(fci)dfcidmci

Similarly, I can map the probability of single-homing to a range of the marginal

cost and fixed cost. Notably, there is no overlap of the fixed search cost which can

support the different homing behavior performed simultaneously given the same

marginal cost. For the lowest and highest assumed M , I cannot identify the upper

and lower bounds; thus, I make assumptions to identify these mass points.15

15I make the following assumptions: (1) the upper bound of the marginal search cost at M = 1
equals the expected payoffs from searching for one truck; (2) the lower bound of the marginal
search cost at M = 10 equals zero; and (3) the upper bound of the fixed cost of single-homing
buyers equals the highest lower bound of the fixed costs of single-homing buyers.
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1.5 Estimation

As shown above, the model can be nonparametrically identified in two steps.

I still use a two-step algorithm to estimate the model. To simplify the estimation,

I introduce several parametric assumptions and fix certain parameters that are

otherwise difficult to estimate.

1.5.1 Parametric Assumptions and Normalizations

• Search Choices: the number of searches performed by buyers follows a

Poisson distribution, m∗i ∼ Poisson(λ). The share of buyers who choose

to conduct single-homing in equilibrium is ω∗. I denote the set of all pa-

rameters to be estimated as Θ = {θ, ω, α, λ, ω}. When buyers are allowed

to have different quality preferences in the model, I obtain the following

Θ = {θH , θL, σ, α, λH , λL, ωH , ωL}. I assume the distribution of WTP is the

same before and after the merger, but the distribution of equilibrium search

choices can change following the merger.

• Proportion of high/low-type buyers: based on the Texas data, I assume that

shareH = 0.6, shareL = 0.4;16

• Ratio of Buyers to Sellers: I fix γ = 4 because the median number of bidders

in auctions equals 4;

16For the trucks transacted in all channels, the share of high type buyers is 0.6 and the share of
low type buyers is 0.4. For the trucks transacted in auctions only, the share of high type buyers is
0.35 and the share of low type buyers is 0.65. In Appendix A.5.1, I show the estimation results
using both pair of shares.
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• I use 6%, 3%, and 5%, which are the weighted average of the observed com-

mission rates, to approximate the commission rates charged by IP, RBA pre-

merger, and RBA post-merger, respectively.

1.5.2 Algorithm

As shown in the identification section, I can first use the observed distribution

of prices and bids to estimate the distribution of WTP and the distribution of

equilibrium search choices. Then, the distribution of search costs can be estimated

based on the estimated distributions. The estimation framework is summarized in

the following two steps:

• Step 1 I use a nested fixed-point algorithm to estimate the distribution of

buyers’ WTP and the distribution of buyers’ search choice in equilibrium

based on the observed bidding and transaction data.

– Inner Loop I numerically solve the equilibrium bidding and auction

entry strategies of buyers in the inner loop and generate the distribution

of prices and the distribution of bids based on simulations.

– Outer loop I use the simulated distributions and observed distributions

to construct several moments for estimation. The distribution of WTP

and the distribution of equilibrium search choices are estimated in this

outer loop.

• Step 2 I use the estimated distribution of WTP and distribution of equilib-

rium search choices to nonparametrically estimate the distribution of search
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costs based on the equilibrium conditions for the equilibrium search strate-

gies.

Next, I discuss the details in each step.

1.5.2.1 Solving Equilibrium Bidding and Auction Entry Strategies

When there are two types of buyers, there are four equilibrium payoff func-

tions from auctions in each market: U IP∗
H ,U IP∗

L ,URBA∗
H and URBA∗

L . Since there is

no analytical solution to this problem, I propose a numerical way to solve them. To

implement the computational method, I assume that the expected payoff function

from entering an auction is continuous in the quality of the goods.

Specifically, I use a two-dimension Lagrange interpolation (Judd (1998))

to approximate the equilibrium payoffs. Given the initial guess of the expected

payoff functions U (0), I can figure out a set of simulated buyers’ entry choices.

Then I calculate a new expected payoff U (1) by averaging all the ex-post payoffs of

buyers over simulations. A buyer’s ex-post payoff from an auction is determined

by the equilibrium bidding strategies and set of competitors in that auction. In

Appendix A.4.1, I show the details of this computation procedure.

Given a guess of the distribution of WTP and equilibrium search choices, I

can simulate a set of bids based on the equilibrium auction entry strategy and bid-

ding strategy. To assign a price to the auctions with only one bidder, I assume that

there is always an additional bidder in the auctions who mimics buyers’ behav-

ior. They draw WTP from buyers’ distribution of WTP, bid truthfully, and discount
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their bids by the commission. The only difference is they do not make auction

entry choices. We can treat these additional bids as bids from sellers or platforms

to ensure trucks can be sold with a positive price when there is one buyer in the

auctions.

Here I use 100 simulations and denote the sets of bids from simulations

{bs(Θ)}s.

1.5.2.2 Estimating the Distributions of WTP and Equilibrium Search

Choice

As shown in the identification part, the price distributions in markets with

different sets of available trucks on each platform are used to identify the model.

Using {bs(Θ)}s and observed data, I can calculate the distribution of bids and the

distribution of prices. Based on these distributions, I construct three sets of mo-

ments {g1(Θ), g2(Θ), g3(Θ)}. The estimator can minimize the Wald-type objective

function:

Θ̂ = argminΘ


g1(Θ)

g2(Θ)

g3(Θ)



′

W


g1(Θ)

g2(Θ)

g3(Θ)


where W is the weighting matrix.

The underlying justification for using the first two sets of moments is that the

differences between the simulated prices and observed prices of the trucks with the
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same quality on the same platform faced with the same set of available trucks are

independent across auctions and having zero means. The underlying justification

for using the third set of moments is that the differences between the simulated

quality and observed quality for the trucks purchased by the same type of buyers

on the same platform faced with the same set of available trucks are independent

across auctions and having zero means.

First Set of Moments (g1(Θ)): Mean and Standard Deviation of Prices

First, I calculate the mean and standard deviation of the log(price) of IP/RBA

before/after the merger. The simulated mean and standard deviation can be

achieved by averaging all simulated price across all auctions and sets of avail-

able trucks on each platform pre- or post-merger. Using the observed data, I can

calculate their correspondence in reality. I construct a set of moments to measure

the difference between simulated data and observed data. For example, I consider

the mean of the online transaction price pre-merger in the one-type model. The

moment is calculated as follows

1

K

K∑
k=1

1

Nk

Nk∑
j=1

[
1

N s

∑
s

(log(pIP,Pre,k,sj ))− (log(p̃IP,Pre,kj ))]

Here, market 1...K represents K realized sets of available trucks on each platform

before the merger, N s is the number of simulations, and p̃ are the observed prices

in the data.

As shown above, the price distribution of trucks in different quality groups

can differ. I divide the trucks into two categories according to whether the trucks’
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quality is above the median. In each category, I calculate the mean and standard

deviation of the log(price). For the online auction after the merger, I also construct

moments of the price distribution for auctions with one bidder in each auction.

Second Set of Moments (g2(Θ)): Relationship Among Price, Quality and

Trucks Available on Each Platform

The first set of moments includes the aggregate information about price dis-

tributions. It is necessary to capture more information about price distributions at

different quality levels and different realizations of available trucks. Since there

are numerous quality levels and realized sets of available trucks, I use regressions

to achieve this goal. Specifically, I regress the transaction price of trucks on the

trucks’ quality and some measurements of available trucks which are used in the

data section. The measurements include the number of trucks available on each

platform, average quality of other trucks available on the same platform and the

average quality of trucks available on the other platform in the same market. I

conduct regressions using both simulated data and observed data. For example, I

consider the online transaction price as follows:

log(pIP,k,sj ) =βIP,s0 + βIP,s1 qIP,k,sj + βIP,s2 (qIP,k,sj )2 + βIP,s3 qIP,k,s−j + βIP,s4 qRBA,k,s + ...

βIP,s5 N IP,k,s + βIP,s6 NRBA,k,s + εIP,k,sj

log(p̃IP,kj ) =β̃IP0 + β̃IP1 qIP,kj + β̃IP2 (qIP,kj )2 + β̃IP3 qIP,k−j + β̃IP4 qRBA,k + ...

β̃IP5 N IP,k + β̃IP6 NRBA,k + ε̃IP,kj

Above are two regressions based on simulated data and observed data. I conduct
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the regressions for the pre-merger period and post-merger period, respectively.

Since WTP is assumed to follow a log-normal distribution, I use log(price) instead

of price itself. qIP−j is the average quality of trucks on IP except for truck j and

qRBA is the average quality of trucks on RBA in the same market. As I discussed

before, the decrease of search cost will encourage buyers with high random values

to enter the auctions with high-quality trucks, so I add a quadratic term of trucks’

quality and calculate the price sensitivity to quality at the median and third quar-

tile of quality. The coefficient of qRBA can capture the cross-platform sensitivity

emphasized before.

The moments are used to measure the difference in the relationships be-

tween the simulated data and observed data. I can attempt to match all the coef-

ficients directly or match the difference in coefficients pre- and post-merger.

Third Set of Moments (g3(Θ)): Moments of Different Types of Buyers

The third set of moments is used to estimate the model with two types of

buyers. According to the winners’ types in auctions won by buyers in Texas, I

can divide the data into two subsets. Different types of buyers have different

quality preferences, which can result in different quality distributions and price

distributions for trucks purchased by different types of buyers. The average quality

qT and the average price of pT differ among the trucks in different subsets. The

third set of moments is used to measure the difference between simulated data

and observed data in these two measurements.
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1.5.2.3 Search Cost

After obtaining the estimation results of the distribution of WTP and the

distribution of equilibrium search choices, I use the equilibrium conditions men-

tioned in the model to nonparametrically estimate the bounds two distributions of

search costs: hmc(·) and hfc(·).

I first calculate the average expected payoffs from all the possible deviations

to other homing strategies and search frequencies, given other buyers follow the

estimated equilibrium search. I assume buyers know the difference in distribu-

tions of available trucks on each platform pre-merger and post-merger. When

calculating the expected payoffs from deviations pre-merger, I average all realized

pre-merger markets in the data; when calculating the expected payoffs from de-

viations post-merger, I average all realized post-merger markets in the data. This

assumption about buyers’ belief is the same for the model with one type of buyers

and the model with two types of buyers.

According to these results and the equilibrium conditions, I can construct a

mapping from the distribution of equilibrium search choices to the joint distribu-

tion of search costs. The mapping has been shown in the identification part. Since

a range of search costs can rationalize a search choice, I can only partially esti-

mate search cost distribution. I denote the joint distribution of the lower bound of

search costs as Hfc,mc
LB and the joint distribution of the upper bound of search costs

as Hfc,mc
UB . The corresponding marginal distributions of marginal cost and fixed

cost can be calculated and are denoted {Hfc
LB, H

mc
LB} and {Hfc

UB, H
mc
UB}. Similarly, I
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can partially estimate the distributions of search costs in a model with two types

of buyers.

1.6 Estimation Results

1.6.1 Distribution of WTP and Distribution of Search Costs

Table 1.5 shows the estimation results of the one-type model. In the Ap-

pendix A.5.1, I show the estimation results for the two-type model under different

assumptions about single-homing buyers’ platform choice. Based on the estima-

tion results, I can draw the implied average WTP, the 25th and 75th percentiles of

WTP at different quality levels on different platforms (Figure 1.8). When q = 3,

the average WTP is $8, 135 on IP and $11, 172 on RBA; when q = 5, the average

WTP is $35, 407 on IP and $48, 626 on RBA . According to the way to construct the

quality index, a truck’s quality can decrease by two if increasing a truck’s age from

almost 0 to 15 years old.

Figure 1.8 also shows the implied distribution of search choices pre-merger

and post-merger, where the number of searches is truncated at one and ten trucks.

By comparing these two distributions, we see that buyers significantly increase

the number of trucks to search. The median number of searches increased from

5 trucks to 6 trucks. More than 50% of buyers engage in multihoming, resulting

in almost all buyers multihoming after the merger. This is consistent with the fact

that the platform presents integrated search results as a default.

Given the estimated distribution of WTP, the change in buyers’ equilibrium
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Figure 1.8: Implied Distribution of WTP and distribution of equilibrium search
choices
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Table 1.5: Estimation Results of the Model with One Type of Buyers

Quality Preference

θ 0.7354
(0.0027)

Distribution of v

µ 0.0001
(0.0205)

σ 0.6015
(0.0064)

Discount of Quality Online

α -0.4314
(0.0060)

Mean Number of Searches

λPre 5.7907
(0.0721)

λPost 6.2964
(0.0324)

Proportion of Buyers Single-Homing

ω∗,Post 0.0505
(0.0134)

ω∗,Pre 0.6392
(0.0342)

Notes: standard errors are shown in parentheses. They
are obtained by numerically calculating the derivatives
in (∂g(Θ)

∂Θ W ∂g(Θ)
Θ )−1.
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search choices results from the change in search costs. Using the approach men-

tioned in the estimation, I obtain the estimates of the distributions of search costs.

Figure 1.9 shows the lower bound and upper bound of the cumulative distribution

functions of search costs. The lower and upper bound of the median marginal

search cost decrease from $270 to $224 and from $328 to $255, respectively. The

lower and upper bound of the median fixed search cost decrease from $4 to $0 and

from $10 to $5, respectively. The estimated costs of additional searches are quite

high, but not unreasonable given that buyers need to conduct much searching be-

fore determining which trucks to buy. According to an investigation of the used

truck market, on average, buyers spend approximately one day to finalize whether

to purchase a truck. Considering that the average salary per hour in the U.S. is

approximate $30, the estimation results of the marginal costs are reasonable. One

potential explanation for the lower marginal search costs after the merger is that

the merged platforms design a better online environment for buyers to search and

sales representatives are more familiar with the trucks in the market. This can

help buyers to figure out their WTP of trucks with less effort. The estimated mul-

tihoming costs are small compared to the marginal costs. The magnitude of fixed

costs depends on the assumption about the platform choice of single-homing buy-

ers. I assume buyers know the realized number of trucks in the one-type model

before they are randomly allocated to a platform. Therefore, the fixed costs of

multihoming are mainly the costs of buyers becoming familiar with the system on

these two platforms, the effort they take to register two accounts to monitor the

trucks on different platforms, etc. Logically, these fixed costs are not very high.
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Figure 1.9: Cumulative Distribution Functions of Search Cost in the One-type
Model
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Additionally, the integrating policies provided by the merged platforms can lower

these costs.

I use an example to illustrate how the change in search costs can change

buyers’ search choices. This example can also explain why the significant change

in marginal search costs only leads to a small change in search frequency. As-

sume a buyer has mc = $317, fc = $19 pre-merger and mc = $239, fc = $3 post-

merger. Her expected payoff functions are increasing and concave in the number

of searches (Figure 1.10). When she searches more than six trucks, her expected

payoffs under multihoming are higher than those under single-homing. Given the

pre-merger search costs, she will choose to conduct single-homing and search for

six trucks to earn her expected payoff $2, 333.
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Figure 1.10: How the Change in Search Costs Affects the Buyers’ Search Choices
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Next, the buyers’ search costs decrease to the post-merger level. If all other

buyers still choose the same search choices, this buyer will search for nine trucks

under multihoming (Point 2). However, because other buyers are more likely

to have lower search costs post-merger, she expects that they will search more

aggressively. Because of the strategic substitution of searching among buyers,

her expected payoff function shifts downward. In the new equilibrium, she will

choose to search for seven trucks on both platforms (Point 3). Compared with her

original search, the lower search costs encourage her to search for more trucks

on both platforms, which can be applied to other buyers. Thus, the change in the

distribution of search costs can explain the estimated change in the distribution of

search choices.
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1.6.2 Model Fit and Sensitivity Analysis

Table A.3 shows how the model and estimation results fit the targeted mo-

ments of the observed prices and bid distributions. In the model with two types of

buyers, I show the moments when single-homing high-type buyers choose the of-

fline platform and low-type single-homing buyers follow the random choice rule.

The model can fit most of the first and second-order moments of price. Addition-

ally, the estimated results can capture the changes pre-merger and post-merger

and fit the quality of trucks purchased by different types of buyers.

Here I show some examples. The observed and simulated average price

of offline trucks are $21, 977 and $22, 646 pre-merger and $21, 542 and $22, 198

post-merger, respectively. Both simulated and estimated prices decrease by ap-

proximately $450. According to the observed data, if the average quality offline

increases by one and the average quality online decreases by one, we can pre-

dict that the price of a truck sold online will decrease by 14% more post-merger

than pre-merger; according to the simulated data, if the average quality offline

increases by one while the online quality remains the same, I can predict that the

price of a truck sold online will decrease by 14.6% more post-merger than pre-

merger. Pre-merger, the average quality of online trucks purchased by low-type

buyers is 3.09 pre-merger and 3.12 post-merger in the Texas data. According to

the estimates of the two-type model, the average quality is 3.09 pre-merger and

3.15 post-merger.

In addition to the targeted moments, I use the bidding data online post-
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Figure 1.11: Observed and Simulated Distributions of Quality and Price Online
Post-merger
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merger to show how the estimates fit. In Figure 1.11, I draw the CDF of the

quality and price on IP according to the number of bidders in the auction (n). For

10 ≥ n > 2, I also divide the quality into two groups. I observe that except for the

case 10 ≥ n > 2, q ≤ 3.5, all other price and quality distributions fit well.

Finally, given the estimates, I can test how different moments can be used to

identify different model primitives based on the approach proposed by Andrews

et al. (2017). I show the results in Appendix A.5.3. Consistent with the model,

the parameters of the equilibrium search choices are sensitive to the moments

describing how the transaction price is sensitive to the truck’s quality and how it

is sensitive to the average quality of trucks on the other platform.
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1.7 Counterfactuals

1.7.1 Roadmap

As shown above, following the merger, I can observe three types of policy

changes. In this section, I analyze each change individually. Here I briefly show

the framework of each counterfactual.

• The first change, which is also the focus of this paper, is the change in the

buyers’ search costs resulting from the change in the integration policies. In

this counterfactual, all buyers are ex-ante symmetric. All trucks are sold via

auctions without a reserve price. I control for the other two changes. Re-

garding the supply side, I assume that all observed changes are irrelevant to

the merger; thus, when calculating the expected payoffs, I compute payoffs

pre- and post-merger search costs across all observed markets; regarding the

commission rate, I calculate the welfare change from lower search costs with

pre-merger observed commission rates. Except for the estimated change in

search costs, I also consider the case where there is a change only in marginal

costs and the case there is a change only in fixed costs.

• The second change is the change in commission charged by the platforms

and paid by buyers. To make the change affects buyers’ search choices, I

also consider cases where trucks are sold via auctions with reserve prices. I

calculate the welfare under alternative changes in commission rates with one

type of buyer and estimated search costs post-merger. In this counterfactual,
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I assume that all observed changes on the supply side are irrelevant to the

merger.

• The final change is the change in sets of trucks available on each platform as

follows: sellers with different quality levels list their trucks across platforms

differently. Since this counterfactual focuses on qualities, I allow buyers to

have two different preferences for quality. Buyers with high-quality pref-

erence will choose the offline platform when they conduct single-homing,

and buyers with low-quality preference will follow the random entry rule

when they conduct single-homing. All trucks are sold via auctions without

a reserve price. I calculate the welfare change from the change on supply

side with estimated pre-merger and post-merger search costs separately. The

commission rate used in this counterfactual is the same as that observed pre-

merger. Considering the change in the general quality distribution may be

irrelevant to the merger, I construct two new sets of available trucks in which

both sets have the same population quality distribution and 64 markets. In

the first set, the trucks are separated into different platforms according to

the rule in the pre-merger data; in the second set, trucks are separated into

different platforms according to the rule in the post-merger data.

Next, I discuss how welfare changes in each counterfactual.
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1.7.2 Welfare Analysis with Changes in Search Costs

Efficiency Gain Given the estimated search costs of buyers pre- and post-

merger, I first re-calculate buyers’ equilibrium search choices under different cost

structures. The method used to solve the new equilibrium is shown in the Ap-

pendix A.6.1. As mentioned above, I control for the change on the supply side

by assuming that the possible sets of trucks available on each platform include all

realized markets. Table 1.6 shows the results. Regardless of the marginal search

costs or the fixed costs are lowered, buyers will search for more trucks and con-

duct more multihoming. This finding is consistent with the analysis about the

economics of search costs in the model part. While lowering marginal costs has a

more significant effect on search frequency, the change in fixed costs has a more

significant effect on homing choice. In addition, compared with the equilibrium

search choices under post-merger costs, lowering both costs can trigger further

more searches and more multihoming buyers than simply lowering one.

Table 1.6: New Equilibrium Under Alternative Changes in Search Costs

mc Pre Post

fc Pre Post Pre Post
Mean Number of Searches
λ 5.50 5.66 6.60 6.86
Proportion of Single-homing
ω∗ 0.72 0.50 0.62 0.24

Notes: "Pre" means pre-merger, "Post" means post-merger, "mc"
means marginal search costs, and "fc" means the fixed search
costs for multihoming.

Next, I calculate the welfare under alternative changes in the search costs.

Table 1.7 compares welfare under different cost structures. The search costs of
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buyers are between $23.9 million and $32.2 million and total surplus is between

$231.6 million and $239.9 million when the search costs follow pre-merger distri-

butions (see the second column in the table). Changes in both the marginal and

fixed search costs can result in higher trading surplus and total surplus. Welfare

increases more significantly than when only one type of search costs are lowered.

Comparing the cost structure pre-merger and post-merger shows that the total

trading surplus increases by approximately 6% on average, and the total surplus

increase by 8% to 18%. The total surplus of buyers and sellers also increases from

[$217.3 million,$225.6 million] to [$245.5 million,$260.1 million]. Among these

gains, sellers’ welfare gain is derived from higher trading surplus, and buyers’

welfare gain comes from lower search costs. Buyers’ surplus from trading is lower

post-merger.

Table 1.7: Welfare Under Alternative Changes in Search Costs

mc Pre Post

fc Pre Post Pre Post
Buyers [23.9,32.2] [21.9,30.5] [31.7,45.1] [29.5,44.0]
Trading 133.21 132.7 130.03 129.28
Search Cost [101.0,109.3] [102.3,110.9] [85.0,98.3] [85.3,99.8]
Sellers 193.4 196.7 212.0 216.0
IP 22.3 22.3 24.3 24.3
RBA 171.1 174.3 187.7 191.7

Platform 14.3 14.4 14.9 15.0
IP 3.1 3.1 3.2 3.2
RBA 11.2 11.3 11.7 11.9
Total Trading 340.9 343.8 356.9 360.3
Total Surplus [231.6,239.9] [232.9,241.5] [258.6,271.9] [260.5,275.1]

Notes: 1. unit is $1,000,000; 2. "Search Cost" includes the total search costs generated by
all buyers in the market regardless of whether the buyers win the auctions. 3. Sellers’ sur-
plus is adjusted by their possible WTP, namely, I randomly draw the WTP of sellers from
the distribution of buyers’ WTP. For the auctions online, sellers’ WTP also has a discount α;
4."Pre" means pre-merger, "Post" means post-merger.

To explain the observed welfare change, I calculate the average trading sur-
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plus of buyers and sellers from choosing trucks at different quality levels on dif-

ferent platforms (Table 1.8). It can be observed that, in general, buyers obtain a

lower average surplus from high-quality trucks post-merger. This is especially true

for RBA who has a larger market share and relatively more high-quality trucks in

the data. With more searches under multihoming, buyers access more information

about trucks across platforms before they make auction entry choices on both plat-

forms. As the economics of search choice shows, more buyers with high idiosyn-

cratic values choose the auctions with high-quality trucks and choose the platform

that includes those auctions. Therefore, buyers are less likely to win those auc-

tions or pay more to win the auctions. This situation also results in sellers with

high-quality trucks obtaining higher surplus. Combined with the increased rev-

enue of platforms, the average surplus from trading is higher post-merger, and the

increase is more significant in the auctions with high-quality trucks. This finding

is consistent with the economics of search cost analysis mentioned in the model

part: when buyers search more trucks under multihoming, it can achieve more

assortative matching results across platforms.

Efficiency Loss How close do these changes get us to first-best efficiency

conditional on search? Here, I define the first-best efficiency as the case where the

trading can generate the highest surplus given buyers’ equilibrium search choices.

One way to achieve this is by using a centralized auction mechanism. In

this selling mechanism, buyers report their WTP for all the trucks searched. The

allocation rule and payment rule in this auction follow the Vickrey–Clarke–Groves

(VCG) mechanism (Vickrey (1961)Clarke (1971) and Groves (1973)).The auc-
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tioneer (platform) calculates the trading surplus from each possible allocation and

picks the one generating the highest total trading surplus.

I assume that buyers’ search still follows the estimated distribution post-

merger. By calculation, the decentralized auction mechanism’s trading surplus

accounts for about 98% ($360.3 million in $368.7 million) of the trading surplus in

the centralized mechanism. The difference mainly comes from the trading surplus

of high-quality trucks. This is because, in the decentralized market, buyers have

no complete information about other buyers. Some buyers may switch to low-

quality trucks when they consider the fiercer competition they might encounter.

Therefore, the coordination failure makes some trucks not be allocated to the

buyers who have the highest WTP. Nevertheless, the efficiency loss is not big.

1.7.3 Welfare Analysis with Changes in Commission

The merger’s main concern is that the merger can increase the market power

such that users of the platforms may be harmed. While a larger share of the surplus

is transferred from sellers to platforms because of the increased commission rate,

sellers also benefit from buyers’ search choice change. At least, this situation is

true for sellers with high-quality trucks. However, if the change in price policy can

generate a counter-search effect, it may partially offset the efficiency gain from

lowering search costs.

When the platforms charge the observed higher commission rate from buy-

ers post-merger, the change will not alter buyers’ search choices because in the
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second-price auctions with no reserve price, buyers can completely transfer the

burden of commission to sellers by shading their bids if entry choices of sellers

are exogenous. Resolving the equilibrium with or without the change in commis-

sion shows that buyers’ equilibrium search choices keep the same (Table 1.9). The

change only affects the welfare split between sellers and platforms (Table 1.10).

The platform obtains a larger share of surplus post-merger (from $15.0 million to

$22.5 million); of this share, approximately $7.5 million is transferred from sellers

to the merged platforms because of the increase in commission on RBA. Given the

supply side fixed, the total surplus of buyers and sellers post-merger outweighs

the one pre-merger with the observed change in commission rate and estimated

change in search costs.

Considering that in reality, some auction platforms, such as eBay, use re-

serve prices, I construct a counterfactual in which sellers set reserve prices in their

auctions. The reserve prices equal the sellers’ potential WTP. Then, since buyers

cannot completely transfer the burden of commission to sellers by lowering their

bids, the change in commission can affect buyers’ entry and search choices.

Instead of using the approximation of post-merger commission structure, i.e.,

6% for IP and 5% for RBA, I consider alternative higher commission rates. The ad-

ditional reserve price with high commission works as an additional competitor

for all buyers, and the reserve prices are higher for auctions with high-quality

trucks. Thus, these commission fees lower buyers’ expected payoffs from exten-

sive searching. Some buyers deviate from the original search choices to search

for fewer trucks and conduct single-homing. The average equilibrium search fre-
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quency will become lower, and the share of single-homing buyers will increase.

For example, when the commission rate increases to 50%, the average number

of search decreases from 6.86 to 6.11, and the share of single-homing buyers in-

creases from 24% to 33% (see Table 1.9).

When platforms charge buyers a commission rate as high as 70% (see the

last column in Table 1.9 and Table 1.10), buyers’ average search frequency will

decrease to 5.75. The share of single-homing buyers is approximately 39%. The

surplus from trading will decrease from that post-merger ($360.3 million) to a

much lower value ($342.0 million) close to the one pre-merger.

Table 1.9: New Equilibrium Under Reserve Prices and Alternative
Changes in Commission Rates

Search Costs Pre Post

Reserve Price No No Yes

Commission Rate 6%, 3% 6%, 3% 6%, 5% 50% 70%
Mean Number of Searches
λ 5.50 6.86 6.11 5.75
Share of Single-homing
ω∗ 0.72 0.24 0.33 0.39

Notes: "RP" means the case with the reserved price.

In summary, the increased market power may allow the merged platforms to

charge a higher commission rate, which can discourage buyers from searching for

more trucks on two platforms when they cannot completely transfer the burden to

sellers. This will result in a lower total trading surplus. However, at least in this

auction setting, the platform needs to charge a higher commission rate to elimi-

nate the welfare gain from lower search costs with the supply fixed. Therefore,

when analyzing this merger, if the platform can significantly lower the market’s
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Table 1.10: Welfare Under Reserve Price and Alternative Changes
in Commission Rates

Search Costs Pre Post

Reserve Price No No Yes

Commission 6%, 3% 6%, 3% 6%, 5% 70%
Buyers Trading 133.2 129.3 103.1
Search Cost [101.0,109.3] [85.3,99.8] [83.1, 92.9]
Sellers 193.4 216.0 208.5 45.1
Platform 14.3 15.0 22.5 193.7
Total Trading 340.9 360.3 342.0
Total Surplus [231.6,239.9] [260.5,275.1] [249.1,258.9]

Notes: 1. "RP" means the case with reserved price and I solve for commission
fees which eliminate the welfare gain from lowering search costs; 2. unit is
$1,000,000; 3. "Search Cost" includes the total search costs generated by all
buyers in the market regardless of whether the buyers win the auctions. 4.
Sellers’ surplus is adjusted by their possible WTP, namely, I randomly draw the
WTP of sellers from the distribution of buyers’ WTP. For the auctions online,
sellers’ WTP also has a discount α; 5. "Pre" means "Pre-merger" and "Post"
means "Post-merger"

search costs, the efficiency gain from integrating policies can be substantial.

1.7.4 Welfare Analysis with Changes in Supply Side

In the data section, I show that sellers with different quality trucks may

enter platforms according to a different rule after the merger: sellers with high-

quality trucks are more likely to list offline, and sellers with low-quality trucks

tend to list online. If buyers are ex-ante asymmetric, having different quality and

platform preferences, are there any benefits from separating sellers by quality into

two different platforms in the observed way? This counterfactual attempts to

investigate this issue. As mentioned above, I use two new data sets that follow

different rules to separate the trucks into auctions. Then I compute the predicted

outcomes in each market based on these two data sets with pre-merger and post-

merger search costs.
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Table 1.11 shows the new equilibrium search choices of buyers under al-

ternative changes. First, regardless of whether pre-merger or post-merger search

costs are applied, high-type buyers search for more trucks and tend to single-

home when trucks are separated into platforms in the way post-merger. It is be-

cause high-type buyers can easily target high-quality trucks by single-homing. The

change is more significant when the search costs of multihoming are high since,

in that case, buyers cannot easily access the trucks on other platforms and highly

count on the composition of trucks on their single-homed platform. Second, faced

with fiercer competition from high-type buyers in the offline auctions with high-

quality trucks, low-type buyers tend to search for fewer trucks if the search costs

are the same. Finally, similar to the one-type model, lower search costs can trigger

both types of buyers to search for more trucks and conduct multihoming.

Table 1.11: New Equilibrium Under Alternative Changes in Supply Side

Search Costs Pre Post

Supply Side Pre Post Pre Post
Mean Number of Searches
λH 6.28 7.82 7.54 7.93
λL 6.98 6.36 7.33 7.23
Share of Single-homing
ωH∗ 0.39 0.49 0.23 0.28
ωL∗ 0.28 0.33 0.05 0.06

Notes: "Pre" means pre-merger, "Post" means post-merger.

Table 1.12 shows the welfare of different groups. Both the change in the

supply side and lower search costs can increase the total trading surplus. Specif-

ically, the change in the supply side alone can increase the trading surplus by

4.2%. The supply-side change significantly increases the trading surplus offline

and RBA’s revenue. This change is more remarkable when the search costs are
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high. High-type buyers benefit from this change, but low-type buyers get a lower

trading surplus because high-type buyers search more aggressively. The lower

search costs post-merger can reduce the loss of low-type buyers. Also, with lower

search costs, the surplus of online sellers and IP increases significantly. Similarly,

Table 1.12: Welfare Under Alternative Changes in Supply Side

Search Costs Pre Post

Supply Side Pre Post Pre Post
High Type 109.1 112.9 110.9 112.2
Low Type 28.5 25.0 26.0 25.4
Search Cost [108.6,121.3] [110.8,127.6] [92.7,109.5] [92.5,110.7]
Total Buyers [16.3,29.0] [10.3,27.1] [16.5,35.4] [26.9,45.0]
Sellers 232.6 248.3 245.8 251.2
Sellers IP 25.9 20.5 29.2 24.6
Sellers RBA 206.7 227.8 216.6 226.6
Platform 15.8 16.0 16.3 16.2
IP 3.7 3.1 3.8 3.3
RBA 12.1 13.0 12.5 12.9
Total Trading 386.1 402.2 399.0 405.0
Total Surplus [264.7, 277.4] [274.6,291.4] [289.5,306.3] [294.4,312.5]

Notes: 1. unit is $1,000,000; 2. "Search Cost" includes the total search costs generated by
all buyers in the market, regardless of whether the buyers win the auctions. 3. Sellers’ sur-
plus is adjusted by their possible WTP, namely, I randomly draw the WTP of sellers from the
distribution of buyers’ WTP. For the auctions online, sellers’ WTP also has a discount α; 4.
"Pre" means pre-merger, "Post" means post-merger.

to determine the reason for the changes in welfare, I calculate the average trading

surplus of the different groups at different quality levels under different cases (Ta-

ble 1.13 and Figure 1.12). The numbers of trucks in the different groups change

when separating trucks according to different rules. When it comes to the average

trading surplus, except for the high-quality group online, the post-merger rule on

the supply side lower the surplus online and increase the surplus offline because

online trucks are less likely to be searched by buyers. However, since the num-

ber of high-quality offline trucks increases, the total trading surplus significantly

increases in Table 1.12.
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If the platforms can lower the search costs, some high-type buyers will shift

to multihoming and enter online auctions if they are more likely to win those

auctions, and some low-type buyers will search more aggressively. The trading

surplus from online auctions can notably increase while the trading surplus from

offline auctions slightly decreases. The decrease in search costs is more beneficial

for the markets with a small number of offline auctions. To be specific, Figure 1.13

illustrates that, in the markets where NIP

NRBA is large, the case with the post-merger

costs can generate a significantly higher average trading surplus than the case with

the pre-merger costs. Therefore, combining the change in search costs with the

change in the number of trucks can considerably increase the total trading surplus.
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Figure 1.12: Number of trucks and Average Trading Surplus in Different Quality
Groups
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Figure 1.13: Average Trading Surplus in Different Markets
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1.8 Discussion

As mentioned many times in the paper, the current paper focuses on the

buyers’ search behavior and discusses the welfare effect of the merger through al-

tering buyers’ search costs. Ideally, we should endogenize both buyers’ and sellers’

entry decisions to the platform. Although this can provide a complete picture of

all the participants in the market, it requires more data and significantly raises the

computation burden. In this section, I will discuss the situation where I relax the

exogenous supply assumption. While I still treat the buyers’ platform entry exoge-

nous, buyers’ search choice now will be affected by sellers’ platform entry strategy.

Therefore, I can partially capture the indirect network effect in this two-sided plat-

form market: a buyer’s search choice is indirectly affected by other buyers’ search

choices through their effect on sellers’ platform entry. Following, I will discuss two

cases according to the data availability of transacted trucks in the market outside

of these two auction platforms.

1.8.1 No Additional Data About Trucks in the Outside Market

Since there is no information about sellers in the outside market, I will still

treat the entry of sellers to these two platforms exogenous but consider sellers’

choice between these platforms as endogenous.

Consider a new game as follows. After buyers make their search choice,

potential sellers draw their private information about the quality of their trucks

and entry costs to two platforms (εA and εB). Then, they simultaneously make
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their platform entry choices conditional on their private value and belief about

the distribution of buyers’ search costs. After that, N sellers are randomly drawn

into the market. Sellers enter the market according to the entry choice they have

made. The following stages are as the one described in the model section. Figure

1.14 summarizes the new timeline of this game.

Figure 1.14: Timeline of the Game With Endogenous Platform Entry of Sellers (1)

Search Choice Stage Buyers simultaneously choose multi- or
single-home, number of searches(private
info. search costs)

Platform Choice of Sellers Sellers simultaneously choose to enter
platform A or B (private info. quality
of trucks and entry costs)

Market Entry of Sellers N sellers are randomly drawn and enter
the market

Market/Platform Entry of Buyers Allocation of single-homing buyers’ plat-
forms

Search Stage Random, non-directed search

Auction Entry Stage Buyers simultaneously enter auctions
(private info. WTP for searched trucks)

Bidding Stage Buyers bid in auctions, exit the market

I assume that sellers draw their quality and entry costs randomly from com-

mon distributions F q(·), FA,ε(·) and FB,ε(·). The realized number of trucks in a

market is also randomly drawn from a population distribution. Then the realized

supply of trucks on each platform is determined by the realized number of trucks

in that market, the quality of those trucks, and sellers’ platform choices. As we

have shown before, given the number of determined trucks on each platform, the
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equilibrium in the buyers’ auction entry and bidding stages can be solved by back-

ward inductions. Therefore, the expected price of trucks with different quality

levels on different platforms in a realized market can be calculated. Further, the

expected payoffs of sellers with different quality trucks from different platforms

can be calculated by average the expected conditional prices over all possible re-

alization of markets.

In the empirical part, to reduce the computation burden, I can use the re-

alized markets in the data to approximate the distribution of market realization.

Similar to the auction entry stage of buyers, the uncertainty when sellers make

their platform choices comes from the uncertainty in quality and entry costs of

other sellers in the same market. Therefore, I can use a similar algorithm to solve

for the equilibrium strategy of sellers. To be specific, in equilibrium, sellers have

beliefs about the distributions of other sellers’ platform choice {PrA−j(q), P rB−j(q)}.

The expected payoffs of a seller with (qj, εj) is a function of these choice probabili-

ties. On the other hand, these choice probabilities also depend on other sellers’ ex-

pected payoffs from entering different platforms. Namely, I can show the existence

of equilibrium by the fixed-point theorem. In the equilibrium, I can approximate

seller j’s expected payoffs from different platforms V A
S and V B

S as polynomials of

the truck’s quality and the seller’s entry cost. By iterating the expected payoff

functions, the equilibrium can be solved.

Instead of estimating the new model with a large amount of time, I will

construct some simulations to check how the changes in search costs might affect

sellers’ equilibrium behavior and the social welfare given reasonable assumptions
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about the distributions of entry costs. The changes in the distributions of search

costs are constructed based on the one estimated in the paper. This exercise is

more interesting in a model with two types of buyers where they have different

quality and platform preferences. I will use it to check whether, through affect-

ing sellers’ platform choices, the change in search costs can explain the observed

change in supply on different platforms post-merger.

1.8.2 With Data About Transacted Trucks in the Outside Market

This is an ideal case where I have the number of trucks with different quality

levels on each platform, including the outside market. Given more complete data,

I can endogenize sellers’ entry to the merged platforms. In this case, a buyer’s

search choice is also indirectly affected by other buyers’ search choices through

its effect on the aggregate number and quality of sellers on these two platforms.

Similar to the game mentioned above, there is an additional stage describing sell-

ers’ endogenous strategy. However, now sellers make their choices among three

options: platform A, platform B, and the outside market. Still, I assume the num-

ber and quality of trucks that appear in a market are given. Figure 1.15 shows the

new timeline.

Now sellers’ three entry costs are drawn from common distributions FA,ε(·),

FB,ε(·) and FO,ε(·. The realized supply on different platforms, including in the

outside market, is still determined by the realized number of trucks in that market,

their quality, and sellers’ platform choices. Assume the trucks in the outside market
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Figure 1.15: Timeline of the Game With Endogenous Platform Entry of Sellers (2)

Search Choice Stage Buyers simultaneously choose multi- or
single-home, number of searches(private
info. search costs)

Platform Choice of Sellers Sellers simultaneously choose to enter
platform A, B or outside(private info.
quality of trucks and entry costs)

Market Entry of Sellers N sellers are randomly drawn and enter
the market

Market/Platform Entry of Buyers Allocation of single-homing buyers’ plat-
forms

Search Stage Random, non-directed search

Auction Entry Stage Buyers simultaneously enter auctions
(private info. WTP for searched trucks)

Bidding Stage Buyers bid in auctions, exit the market

can be sold by giving take-it-or-leave-it offers where a realized price of a truck

with quality qj is exp(θ0q+ v0) and v0 ∼ N(µ0, σ
2
0). Assume there is always enough

potential buyers in the outside market to accept a seller’s offer no matter how

many other sellers choose the outside option. Then, V O
S (qj, ε

O
j ) = E[exp(θ0qj +

v0)]− εOj . When sellers make platform choices, they need to compare V A
S , V B

S , and

V O
S . In equilibrium, a seller’s equilibrium expected payoffs from entering platform

A and B are functions of the private (qj, ε
A
J ) and (qj, ε

B
j ) respectively.

I can solve the equilibrium choice probabilities PrA(q), PrB(q) and PrO(q).

Then the elasticities of entry to the quality of trucks can be calculated. For exam-

ple, elasA =
∂PrA(q)

PrA(q)
∂q
q

. Without estimating the entire model with endogenous sellers,

I will first use pre-merger markets to calculate elasA, elasB, and elasO in the data.
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These elasticities can be used to calibrate the model primitives in the outside op-

tion, given the distribution of search costs pre-merger. Next, I will simulate the

market outcome when buyers draw lower search costs to check how sellers’ entry

choices are affected.

There are two ways to define the outside market. One is considering all the

other channels and other auction platforms as the outside market. Then I can use

the data from some states17, which includes transaction data in all channels, to

calculate a reasonable approximation of elasticities and calibrate the model prim-

itives in the outside market. Then I can simulate potential realizations of markets

based on the nationwide transaction data in each month and census data of truck

inventories in each state. In the nationwide transaction data, I know the number

and average quality of trucks transacted each month. In the census data, I have the

number of truck inventories in each state. Assuming the turnover rates of trucks

are stable across states, I can simulate the number of transacted trucks in each

state. Another way is only treating other auction platforms as the outside mar-

ket. From some websites, such as Truckpaper.com, that collect trucks transacted

through different platforms, I have collected data about nationwide trucks trans-

acted pre-merger and post-merger on the other auction platforms. Although this

data set might be incomplete, I can still use them to approximate some realized

markets, including transactions in the outside market.

17Transaction data through all channels in Texas and Washington State is collected.
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1.9 Conclusion

Using a recent merger case in the U.S. used heavy-truck auction market, this

paper investigates how partially integrating two competing platforms can affect

market outcomes and social welfare. To clearly analyze the causal effect, I develop

a detailed model of buyers’ behavior. Based on the model, this paper provides

several predictions regarding the market outcome when the search costs are low.

To quantify the welfare effect, I structurally estimate the distribution of WTP and

distributions of search costs before and after the merger. The estimation results

show a significant decrease in the search costs after the merger and reveal that

buyers search more extensively across the platforms.

In the counterfactual part, I compare the welfare in the market with and

without the change in search costs and observed commission. Buyers’ more ag-

gressive search allows them to access more information about the trucks before

making auction entry choices. The trading surplus increases with the estimated

distributions. While sellers with high-quality trucks always benefit from the change,

other participants’ welfare is more complicated. For example, buyers’ welfare de-

pends on the composition of competitors and the magnitude of the reduced search

costs. The cost decomposition shows, lowering the search costs of multihoming

can generate efficiency gain. When buyers search more extensively, the decentral-

ized market’s allocation results are close to those of a market with a centralized

mechanism in which there is no coordination failure among buyers. I also com-

bine the change in search costs with the following two alternative changes: high
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commission fees when auctions have reserve prices and separation of trucks into

platforms according to their quality levels. The analysis shows that (1) the in-

creased commission fees may discourage buyers from extensive searching when

buyers cannot completely transfer the burden of commission to sellers; (2) the

changes on the supply side may generate additional efficiency gain when consid-

ering single-homing buyers’ platform preference.

Methodologically, the paper considers the heterogeneity among the partici-

pants in many dimensions. Both buyers and trucks are differentiated horizontally

and vertically. Building upon the literature, I develop a new model that combines

search and endogenous auction entry stages. The model can capture a wide range

of transaction markets in which search costs are considerable.

Partial integration or the facilitation of multihoming is a common feature

of platform mergers, and my analysis suggests that the welfare benefits may be

substantial. To the extent that it is not easy for firms to facilitate multihoming prior

to mergers, in the language of the Horizontal Merger Guidelines, these benefits are

cognizable efficiencies that could be set against market power created by a merger.

In the context of this merger, the benefits to buyers and sellers exceeded the harm

caused by the increase in commission fees that followed the merger.

This paper can be extended in several ways. Besides extending the model by

endogenizing sellers’ platform entry, as discussed above, I will also consider some

alternative changes along with the merger. For example, upon the acquisition,

RBA forms a strategic alliance with Caterpillar. How this change will affect social

welfare is another interesting topic to analyze.
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Chapter 2: Dynamic Oligopoly Pricing with Asymmetric Informa-

tion: Implications for Horizontal Mergers

2.1 Introduction

Theoretical and empirical analyses of differentiated product markets usually

assume that firms have complete information (CI) and set prices to maximize

their current profits. If an alternative is considered, it is typically tacit collusion

with repeated CI stage games. These assumptions provide tractability, but there

is surprisingly little evidence that they accurately predict how prices change after

events such as mergers. The CI assumption is also inconsistent with how firms

closely guard information about the margins of individual product lines and how

sensitively this information is treated during merger investigations.

This paper considers what happens when we relax the static and CI assump-

tions. Specifically, we will assume that each firm has a payoff-relevant state vari-

able, such as its marginal cost, which is imperfectly serially-correlated and un-

observed by rivals. In this environment, each firm may want to choose its price

strategically to affect its rivals’ inferences. We will consider fully separating equi-

libria where, in equilibrium, a firm’s chosen price perfectly reveals its current cost,
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and beliefs have a simple form. In these equilibria, all firms that do not have

the lowest possible marginal cost set prices above static best response levels to

credibly signal this information to their rivals. This can, in turn, cause static best

response prices to increase, and signaling prices to rise further, a positive feedback

that can cause equilibrium prices to be significantly above static CI Nash levels, al-

though, as we discuss, separating equilibria may not exist if prices rise too much.

While a small theoretical literature has shown that oligopoly signaling can affect

equilibrium prices in two- or three-period models, we provide the first analysis of

how large these effects may be, and the first empirical application.

We apply our model to horizontal merger analysis. Signaling is a strate-

gic investment to raise rivals’ future prices, and like many strategic investments,

the equilibrium incentive to invest can rise when the number of competitors is re-

duced. We use an example to illustrate how a standard static CI merger simulation

can significantly underpredict post-merger price increases if the firms are playing

a dynamic signaling game. We then apply the model to data from the U.S. beer

market around the time of the 2008 Miller-Coors (MC) joint venture (JV). Miller

and Weinberg (2017) (MW) show that, after the JV, domestic brewers’ prices in-

creased in a way that is inconsistent with static CI Nash pricing. We calibrate our

dynamic signaling model using only data on pre-JV price dynamics and show that

it predicts the observed change in the level of prices accurately and that it also

predicts directional changes in measures of observed price dynamics. We also ex-

tend MW’s conduct parameter framework (Bresnahan (1982), Lau (1982), Nevo

(1998), Berry and Haile (2014)) to show that the CI tacit collusion explanations
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for the post-JV price increase advanced by MW and Miller et al. (2020) (MSW) do

not fully describe the pricing of domestic brewers, suggesting the need to explore

new explanations, such as ours.

Before discussing the related literature, we should be clear about several

limitations of our analysis. First, we have to assume that each firm has exactly one

privately-known state and can send exactly one signal per period. This imposes

restrictions on how firms are modeled after mergers. Second, we only consider

fully separating equilibria, even though these may not exist for some parameters

and we can only prove existence and uniqueness in special cases. Third, while we

can reject some specific tacit collusion models, folk theorems imply that collusive

models may exist that could fit the data perfectly.

The rest of this introduction reviews the related literature. Section 2.2 lays

out the model and the equilibrium concept. Section 2.3 presents some exam-

ples and illustrates the implications for merger analysis. Section 2.4 provides our

empirical application. Section 2.5 concludes. The online Appendices detail the

computational algorithms; additional examples; a proof of existence and unique-

ness for the case of linear demand; and, further details of the data and empirical

analysis.

Related Literature. Shapiro (1986) and Vives (2011) examine how equilibrium

prices and welfare change when marginal costs are private information in one-

shot oligopoly models. Most of our focus will be on models where marginal costs

lie in quite narrow intervals and the static effects that these papers identify are
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very small. A large theoretical literature has considered one-shot signaling models

where only one player has private information. The classic Industrial Organiza-

tion example is the Milgrom and Roberts (1982) limit pricing model, where an

incumbent monopolist may lower its first period price to deter entry in a two-

period game. Sweeting et al. (2020) develop finite and infinite-horizon versions

of this model where an incumbent monopolist’s type changes over time, as we will

assume in this paper.1 They estimate the model and show that it can explain why

incumbent airlines dropped prices by as much as 15% when Southwest threatened

entry on monopoly routes. The oligopoly setting considered here is potentially ap-

plicable to many more markets.

The literature on games where multiple players signal simultaneously is

much more limited.2 Mailath (1988) identifies conditions under which a separat-

ing equilibrium will exist in an abstract two-period game with continuous types,

and shows that the conditions on payoffs required for the uniqueness of each

player’s separating best response function are similar to those shown by Mailath

(1987) for models where only one player is signaling (Mailath and von Thad-

den (2013) generalize these conditions). Mailath (1989) applies these results to

a two-period pricing game where differentiated firms have static linear demands

and marginal costs that are private information but fixed. Firms raise their prices

1Kaya (2009) and Toxvaerd (2017) analyze one-sided, dynamic signaling games where the
informed firm’s type is fixed, and, in equilibrium, the informed firm signals until its reputation is
established.

2Bonatti et al. (2017) analyze linear signaling strategies in a continuous-time Cournot game
where each firm’s marginal cost is private information and fixed, but firms cannot perfectly observe
the quantities that their rivals choose. We will assume that prices are perfectly observable.
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in the first period in order to try to raise their rivals’ prices in the second period.3

Mester (1992) extends this approach to a three-period quantity-setting model

where marginal costs change over time, and she shows that signaling, which leads

to increased output in this case, happens in the first two periods.

We rely on Mailath’s results to characterize best response signaling pricing

functions, and we will focus on the magnitude, empirical relevance and implica-

tions of the equilibrium effects in multi-period settings with more standard forms

of differentiated product demand. Fershtman and Pakes (2012) and Asker et al.

(2020) develop an alternative approach to discrete state and discrete action dy-

namic games with asymmetric information. They reduce the computational bur-

den using the concept of Experience-Based Equilibrium (EBE) where firms have

beliefs about their payoffs from different actions rather than rivals’ types.4 Our

equilibrium concept is more standard, and the computational burden is reduced

by focusing on fully separating equilibria in continuous action games.

We discuss the relationship between our paper and discussions of coordi-

nated effects in horizontal merger analysis (Ordover (2007), Baker and Farrell

(ming), Farrell and Baker (2021)) in the conclusion. Our paper is partly moti-

vated by the empirical merger retrospectives literature. Ashenfelter et al. (2014)

find that 36 of 49 studies across several industries identify significant post-merger

3Caminal (1990) considers a two-period linear demand duopoly model where firms have pri-
vate information about the demand for their own product, and also raise prices to signal that they
will set higher prices in the final period.

4The rest of the literature on dynamic games, following Ericson and Pakes (1995) and Pakes
and McGuire (1994), has assumed that players observe all state variables up to iid payoff shocks
so that there is no role for signaling.
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price increases.5 Peters (2009) and Garmon (2017) show that merger simulations

and other methods, such as pricing pressure indices, that are derived from static

CI first-order conditions often perform poorly at predicting price changes after air-

line and hospital mergers. This leads naturally to the question of which alternative

models can do better.

2.2 Model

In this section, we present our general model. More specific assumptions

will be made in our examples and application.

2.2.1 Outline.

There are discrete time periods, t = 1, ..., T , where T ≤ ∞, with discount

factor 0 < β < 1. β = 0.99 in the rest of the paper. There are a fixed set of N risk-

neutral firms. Each firm either sells a single-product or sells multiple products,

which are symmetric in demand and are produced at the same marginal cost, at

a single price. There may be observed and fixed differences in demand and costs

across firms, but exactly one dimension of a firm’s type is private information. In

the text, we will assume that the type is continuous on a known compact interval

[θi, θi], but Appendix B.2.1 uses examples where firms can have two discrete types,

θi and θi. Types are assumed to evolve exogenously, and independently, from

5Ashenfelter et al. (2014) note that retrospectives have not typically found price increases in
banking. Interestingly, the Mester (1992) analysis of a Cournot oligopoly model with asymmetric
information was explicitly motivated by a desire to explain why, contrary to the predictions of
Nash and tacit collusion models, concentration appeared to lead to more competitive behavior in
banking.
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period-to-period according to a first-order Markov process, ψi : θi,t−1 → θi,t.6

2.2.2 Within-Period Timing.

In each period t of the game, timing is as follows. Firms enter period t

with their t − 1 types, which then evolve according to ψi. Firms observe their

own new types, but neither the previous nor the new type of other firms.7 Each

firm then simultaneously chooses a price, pi,t, with no menu costs. Once a firm

sets its period t price, it is unable to change it. A firm’s profits are given by

πi(pi,t, p−i,t, θi,t) and we assume that ∂πi
∂p−i,t

> 0 for all −i. Note that πi(pi,t, p−i,t, θi,t)

only depends on current prices and the firm’s type, consistent with static and time-

invariant demand. Current and past prices are assumed to be perfectly observed

by each firm.

2.2.3 Assumptions.

For continuous types, we make the following assumption.

Assumption 5. Type Transitions for the Continuous Type Model. The conditional

pdf ψi(θi,t|θi,t−1)

1. has full support, so that the type can transition from any value on the support

to any other value in a single period.

6This assumption seems unrealistic, but it is consistent with how the empirical literature on hor-
izontal mergers and the production function literature that has followed Olley and Pakes (1996)
(see Doraszelski and Jaumandreu (2013) for an exception) has treated marginal cost or produc-
tivity changes.

7Our fully separating equilibria would be unchanged if t− 2 types were revealed.
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2. is continuous and differentiable (with appropriate one-sided derivatives at the

boundaries).

3. for any θi,t−1 there is some θ′ such that ∂ψi(θi,t|θi,t−1)

∂θi,t−1
|θi,t=θ′ = 0 and ∂ψi(θi,t|θi,t−1)

∂θi,t−1
<

0 for all θi,t < θ′ and ∂ψi(θi,t|θi,t−1)

∂θi,t−1
> 0 for all θi,t > θ′. Obviously it will also be

the case that
∫ θi
θi

∂ψi(θi,t|θi,t−1)

∂θi,t−1
dθi,t = 0.

This assumption implies types are positively, but not perfectly, serially cor-

related so that a higher type in one period implies that a higher type in the next

period is more likely.

Beliefs about rivals’ types play an important role in our game. In a fully

separating equilibrium, each firm will (correctly) believe that each rival has a

particular type in the previous period. For convenience, we assume that beliefs

about types in t = 1 have the same structure.

Assumption 6. Initial Period Beliefs. Firms know what their rivals’ types were in

a fictitious prior period, t = 0.

2.2.4 Fully Separating Equilibrium in a Finite Horizon and Contin-

uous Type Game.

We now describe the equilibrium for a game with two ex-ante symmetric

single-product duopolists, which we will use in our first example.
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2.2.4.1 Final Period (T ).

In the final period, each firm maximizes its expected payoff given its own

type, its beliefs about the types of the other firms and their pricing strategies.

Play is therefore consistent with a Bayesian Nash Equilibrium. If firm j believes

that firm i’s period T − 1 type was θ̂ji,T−1 and j’s period T pricing function is

Pj,T (θj,T , θj,T−1, θ̂
j
i,T−1)8, then a type θi,T i will set a price

p∗i,T (θi,T , θj,T−1, θ̂
j
i,T−1) = ...

arg max
pi,T

∫ θj

θj

π(pi,T , Pj,T (θj,T , θj,T−1, θ̂
j
i,T−1), θi,T )ψ(θj,T |θj,T−1)dθj,T .

2.2.4.2 Earlier Periods (1, .., T − 1).

In earlier periods, i may choose not to set a static best response price in order

to affect j’s belief about its type. The equilibrium concept that we use is symmetric

Markov Perfect Bayesian Equilibrium (MPBE) (Roddie (2012), Toxvaerd (2008)).

An MPBE specifies period-specific pricing strategies for each firm i as a function

of its current type, and its belief about j’s previous type, and j’s belief about i’s

previous type; and, each firm’s belief about its rival’s type given observed histories

of prices. Equilibrium beliefs should be consistent with Bayes Rule given equi-

librium pricing strategies. If there are multiple rivals, they should all have the

same beliefs given an observed history. While only current types and prices are

8This notation reflects the fact that we are assuming that player j used an equilibrium strategy
in T − 1 that revealed its type (θj,T−1), but we are allowing for the possibility that firm i may have
deviated so that j’s beliefs about i’s previous type are incorrect.
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directly payoff-relevant, history can matter in this Markovian equilibrium because

it affects beliefs. We will only consider fully separating MPBEs where, in every

period, a firm’s equilibrium pricing strategy perfectly reveals its current type, and

j’s belief about i’s current type will come from inverting i’s pricing function.

2.2.4.3 Characterization of Separating Pricing Functions in Period

t < T .

We follow Mailath (1989), which shows that one can apply the results in

Mailath (1987) to this problem, in characterizing fully separating pricing functions

using a definition of firm i’s period-specific “signaling payoff function”,

Πi,t(θi,t, θ̂
j
i,t, pi,t). This is the present discounted value of firm i’s expected

current and future payoffs when its current type is θi,t, it sets price pi,t and j

believes, at the end of period t, that i has type θ̂ji,t. Πi,t is assumed to be continuous

and at least twice differentiable in its arguments. It is implicitly conditional on (i)

j’s period t pricing strategy, which will depend on beliefs about types at t− 1, and

(ii) both players’ strategies in future periods. As j’s end-of-period t belief about i’s

type enters as a separate argument, pi,t only affects Πi,t through period t profits.

Given conditions on Πi,t that will be listed in a moment, the fully separating best

response function of firm i, which is also implicitly conditioned on j’s current

pricing strategy and beliefs about previous types, can be uniquely characterized as

follows (see Appendix B.3 for a restatement of the Mailath (1987) theorems): i’s
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pricing function will be the solution to a differential equation where

∂p∗i,t(θi,t)

∂θi,t
= −

Πi,t
2

(
θi,t, θ̂

j
i,t, pi,t

)
Πi,t

3

(
θi,t, θ̂

j
i,t, pi,t

) > 0, (2.1)

and a boundary condition. The subscript n in Πi,t
n denotes the partial derivative

of Πi,t with respect to the nth argument. Assuming that lower types want to set

lower prices (e.g., a type corresponds to the firm’s marginal cost), the boundary

condition will be that p∗i,t(θi) is the solution to

Πi,t
3

(
θi, θ̂

j
i,t, pi,t

)
= 0, (2.2)

i.e., the lowest type’s price maximizes its static expected profits given j’s pricing

policy. The numerator in (2.1) is i’s marginal future benefit from raising j’s belief

about θi,t, and the denominator is the marginal effect of a price increase on i’s

current profit. For prices above a static best response price, the denominator will

be negative, and the pricing function will slope upwards in the firm’s type.

This characterization of a separating best response will be valid under four

conditions on Πi,t, in addition to continuity and differentiability,

Condition 3. Shape of Πi,t with respect to pi,t. For any (θi,t, θ̂
j
i,t), Πi,t

(
θi,t, θ̂

j
i,t, pi,t

)
has a unique optimum in pi,t, and, for all θi,t, for any pi,t where Πi,t

33

(
θi,t, θ̂

j
i,t, pi,t

)
>

0, there is some k > 0 such that
∣∣∣Πi,t

3

(
θi,t, θ̂

j
i,t, pi,t

)∣∣∣ > k.

Condition 4. Type Monotonicity. Πi,t
13

(
θi,t, θ̂

j
i,t, pi,t

)
6= 0 for all (θi,t, θ̂

j
i,t, pi,t).

Condition 5. Belief Monotonicity. Πi,t
2

(
θi,t, θ̂

j
i,t, pi,t

)
is either > 0 for all (θi,t, θ̂

j
i,t)
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or < 0 for all (θi,t, θ̂
j
i,t).

Condition 6. Single-Crossing.
Πi,t3

(
θi,t,θ̂

j
i,t,pi,t

)
Πi,t2

(
θi,t,θ̂

j
i,t,pi,t

) is a monotone function of θi,t for all

θ̂ji,t and for (θi,t, pi,t) in the graph of p∗i,t(θi,t, θj,t−1).

To interpret these conditions, assume that types correspond to marginal

costs. The first condition will be satisfied if, for any marginal cost and distri-

bution of prices that the rival may set, a firm’s expected current period profit is

quasi-concave in its own price. This will hold for common forms of differentiated

product demand such as the multinomial and nested logit models. Type mono-

tonicity requires that, when a firm increases its price, the profit that it loses will

be lower if it has higher marginal costs. This will hold for constant marginal costs.

Belief monotonicity requires that a firm’s expected future profits should increase

when rivals believe that it has a higher cost, holding its actual cost fixed. This

condition may fail: Appendix B.2.1 discusses in detail a two-type example where

j will respond to i having a higher cost by setting a lower price in the next pe-

riod. The single-crossing condition requires that a firm with a higher marginal

cost should always be more willing to raise its price, reducing its current profits,

in order to raise its rival’s belief about its marginal cost. This condition can also

fail.

For completeness, we also need to define beliefs that a firm will have if the

rival sets a price that is outside the range of the pricing function (i.e., a price that

is not on the equilibrium path). When types correspond to marginal costs, we will

assume that when a firm sets a price below (above) the lowest (highest) price in
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the range of the pricing function, it will be inferred to have the lowest (highest)

possible cost type.

2.2.4.4 Existence and Uniqueness of a Fully Separating Equilib-

rium.

The conditions defined above guarantee the existence and uniqueness of

fully separating best responses in any period, but this does not prove the exis-

tence or uniqueness of a fully separating equilibrium in the whole game. Mailath

(1989) proves existence and uniqueness in a two-period duopoly game with lin-

ear demand and there is private information about marginal costs. Appendix B.3

shows the existence and uniqueness in a finite horizon, linear demand duopoly

game where marginal costs are private information. The proof requires that the

marginal cost interval (θ − θ) is small enough so that a single-crossing condition

holds when prices rise.

In our application, we will assume nonlinear demand and, to reduce the

computational burden, an infinite horizon. We will therefore proceed without

proofs of existence or uniqueness. Appendix B.1 details how we compute equilib-

rium strategies, and verify belief monotonicity and single-crossing as part of the

algorithm. We will discuss examples where we cannot find a separating equilib-

rium below. We have only ever found a single equilibrium in finite horizon games

and infinite horizon games with continuous types, but we have found examples of

multiplicity in infinite horizon games with two types even when, as we describe
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below, we impose a refinement that is needed to guarantee unique best response

functions in that case.9

2.3 Examples

This section uses examples to illustrate the equilibrium of our game and

the effects of a merger. Additional examples described in Appendix B.2 are also

discussed.

2.3.1 Continuous-Type Duopoly Example.

2.3.1.1 Specification.

There are two ex-ante symmetric single-product firms. Demand is deter-

mined by a nested logit model, with both products in one nest, and the outside

good in its own nest. Consumer c’s indirect utility from buying from product i is

ui,c = 5− 0.1pi + σνc + (1− σ)εi,c where pi is the dollar price, εi,c is a draw from a

Type I extreme value distribution, σ = 0.25, and νc is an appropriately distributed

draw for c’s nest preferences. For the outside good, u0,c = ε0,c. We will set market

size equal to 1, so that our welfare numbers have a “per-consumer” interpretation.

We first examine what happens to strategies in a finite horizon game with T = 25

periods. The game is solved backwards, starting at the last period.

We assume that marginal cost is private information, and that, for each firm,

9In examples where we have found multiplicity, the algorithm that we use elsewhere in the
paper appears to consistently pick out an equilibrium that is the limit of the equilibrium in the
early periods of a finite horizon game as the number of periods grows.
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it lies in the interval [c, c] = [$8, $8.05]. Costs evolve independently according to

an exogenous truncated AR(1) process where

ci,t = ρci,t−1 + (1− ρ)
c+ c

2
+ ηi,t (2.3)

where ρ = 0.8 and ηi,t ∼ TRN(0, σ2
c , c−ρci,t−1− (1−ρ) c+c

2
, c−ρci,t−1− (1−ρ) c+c

2
),

where TRN denotes a truncated normal distribution, and the first two arguments

are the mean and variance of the untruncated distribution, and the third and

fourth arguments are the lower and upper truncation points. σc = $0.025.

Two features of this parameterization are worth highlighting. First, marginal

costs are restricted to a narrow range (diverging by less than 0.32% from mean

value) and the probability that a firm will switch from a relatively high cost to

a relatively low cost across periods is quite high.10 Therefore, no signal should

affect a rival’s posterior belief about a firm’s next period marginal cost very much.

Despite this, we find large signaling effects. Second, the demand parameters im-

ply high margins and limited substitution to the outside good in both static and

dynamic equilibria. As we will discuss, these features contribute to the existence

of a fully separating equilibrium with large price effects.

2.3.1.2 Equilibrium Outcomes and Strategies.

Table 2.1 shows expected price levels, the standard deviation of prices and

various welfare measures when we simulate data using equilibrium strategies in

10For example, the probability that a firm with the highest marginal cost has a cost in the lower
half of the support in the next period is 0.32.
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Table 2.1: Equilibrium Prices and Welfare in the Duopoly Game

Expected Welfare Measures
Per Market Size Unit

Nature of Mean Std. Dev. Cons. Producer Total
Period Equilibrium Price Price Surplus Surplus Welfare
T-24 MPBE $24.76 $0.47 $30.91 $15.96 $46.87
T-13 MPBE $24.76 $0.47 $30.91 $15.96 $46.87
T-10 MPBE $24.75 $0.47 $30.92 $15.95 $46.87
T-7 MPBE $24.68 $0.45 $30.98 $15.89 $46.88
T-4 MPBE $24.25 $0.36 $31.40 $15.51 $46.91
T-2 MPBE $23.38 $0.17 $32.23 $14.74 $46.97
T-1 MPBE $22.88 $0.06 $32.71 $14.29 $47.00
T BNE $22.62 $0.01 $32.96 $14.05 $47.01

Infinite Stationary $24.76 $0.47 $30.91 $15.96 $46.87
Horizon MPBE

Notes: except for the last row, all prices are based on equilibrium strategies in a finite
horizon model with parameters described in the text. The last line reports results
for the stationary strategies in an infinite horizon model with the same parameters.

different periods of the finite horizon game. For comparison, expected joint-

profit maximizing prices and static Nash equilibrium prices under CI (given av-

erage costs) are $45.20 and $22.62, with small standard deviations ($0.007 and

$0.011). Signaling MPBE prices are higher and significantly more volatile than

Nash prices when the game is more than a couple of periods from the end, but

they are always much lower than joint profit-maximizing prices. We now describe

the strategies that result in these outcomes.

Figure 2.1(a) shows four static BNE period T pricing functions for firm 2,

for different values of firm 1’s period T − 1 marginal cost (c1,T−1), assuming that

both firms know/believe that c2,T−1 = $8. Firm 2’s price increases with c1,T−1 as

firm 1’s expected period T price rises with c1,T−1. However, the variation in firm

1’s prior cost affects firm 2’s price by less than one cent, and, averaging across
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Figure 2.1: Period T and T−1 Pricing Strategies in the Finite Horizon, Continuous
Type Signaling Game
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all possible cost realizations, average prices and welfare are almost identical to

outcomes with CI.11 Therefore the existence of asymmetric information alone (i.e.,

when not combined with some form of dynamics) does not generate interesting

effects given our parameters.

There is an incentive to signal in period T−1 because a firm’s price can affect

its rival’s price in period T . Assuming both firms’ period T−2 costs were $8, Figure

2.1(b) shows firm 1’s signaling pricing function (found by solving the differential

equation in (2.1) given the boundary condition (2.2)) if it expected that firm 2

was using its period T strategy. We reproduce the period T pricing strategy for

comparison. The pricing functions intersect for c1,T−1 = $8, but signaling may

lead firm 1 to raise its price by as much as 20 cents for higher costs. At first blush,

this large increase may seem surprising given that we know the effect on firm

2’s price can only be small. However, the assumed demand implies that firm 1’s

profit function, shown in Figure 2.2, is sufficiently flat that, if c1,T−1 = $8.025, its

expected lost period T−1 profit from using a signaling price of $22.76, rather than

the statically optimal period T −1 price of $22.61, is only $0.00070 per consumer,

which is less than the (discounted) expected period T profit gain of $0.00079 from

being viewed as a firm with a c1,T−1 = $8.025 rather than c1,T−1 = $8.0001 (which

is how firm 2 would interpret a price of $22.61).

Figure 2.1(b) assumed that firm 2 was using its period T strategy with no

signaling. Figure 2.1(c) shows firm 2’s best signaling response when firm 1 uses

the strategy in Figure 2.1(b) (repeated in the new figure as a comparison). As firm

11Expected producer and consumer surplus differ by less than $0.0001 across these models.
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Figure 2.2: Expected T − 1 Period Profit Function: c1,T−1 = $8.025 and c1,T−2 =
c2,T−2 = $8
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Notes: the profit function is drawn “per potential consumer” for a firm assumed to have a
marginal cost of $8.025, and with a rival using the static BNE pricing strategy when both
firms’ previous period marginal costs were $8.

1’s expected price has increased, firm 2’s static best response pricing function shifts

upwards. Of course, this positive feedback will cause firm 1’s pricing function to

rise as well. Figure 2.1(d) shows the equilibrium period T − 1 pricing functions.

The increase in the slope and the dispersion of the pricing functions means that

period T − 1 prices will be higher and more volatile than period T prices.

The increased vertical spread also means that period T − 1 prices are more

sensitive to perceived period T − 2 costs which increases period T − 2 signaling

incentives. Figure 2.3 shows a selection of equilibrium pricing functions for pe-

riod T − 2 and earlier periods. The pricing functions become more spread out and

the level of prices increases, although by successively smaller amounts, in earlier

periods. Further back than period T − 15 equilibrium pricing functions and av-

erage prices barely change. The figure also plots the stationary pricing strategies
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Figure 2.3: Equilibrium Pricing Functions for Firm 1 in the Infinite Horizon Game
and Various Periods of the Finite Horizon Game.
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that we compute for an infinite horizon game with the same parameters. They

are indistinguishable from the strategies in the early periods of the finite horizon

game.12

2.3.2 Merger Analysis.

There are many possible applications of our model, but we will focus on its

predictions for horizontal mergers. We present a simple motivating example using

the infinite horizon, continuous cost model with the same demand and marginal

cost parameters that we have just assumed, although we will allow for more firms.

We will assume that a merger occurs as an unanticipated one-off shock, i.e., firms

signal assuming the prevailing market structure will last forever. As discussed in a

two-type example with up to seven firms in Appendix B.2.1.3, signaling tends to

have more effects on pricing when there are fewer firms, because each firm’s price

will tend to have a larger effect on its rivals’ next period prices.

Table 2.2 shows the effects of 4-to-3 and 3-to-2 mergers. Before either

merger, there are symmetric single-product firms. In the upper panel, we assume

that a merger eliminates a product, so that after the merger there are only single-

product firms with symmetric demand. If we assume that the firms always use

equilibrium signaling strategies, then a 4-to-3 merger with no synergy (implying

the firms remain symmetric post-merger) will raise average prices by 8.5%. To

prevent the merged firm’s price from rising, the merger would need to reduce the

12We have consistently found this convergence except in cases when the conditions required
for separation are violated or are very close to being violated (in which case the infinite horizon
strategies may not converge).
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Table 2.2: The Effects of Signaling on Mergers and Merger Analysis When Firms
Use Infinite Horizon Signaling Strategies

(a) Merger Leads to the Elimination of a Product By the Merged Firm

4-to-3 Merger 3-to-2 Merger

Signaling MPBE
Pre-Merger Avg. Price $18.25 $19.79

Post-Merger Avg. Price of Merged $19.81 (+8.5%) $24.75 (+25.1%)
Firm if No Marginal Cost Synergy

Post-Merger Avg. Price of Non- $19.81 (+8.5%) $24.75 (+25.1%)
Merging Firm if No Marginal Cost Synergy

Merged Firm Marginal Cost Required to $5.73 -$2.20
Prevent Merged Firm Avg. Price from Rising

If Merger Analyzed under CI
Implied Pre-Merger Avg. Marginal Cost $8.29 $8.62

Merged Firm Marginal Cost Required $7.11 $5.13
to Prevent Prices from Rising

Avg. Merged Firm Price in Signaling Model $19.17 (+5.0%) $23.25 (+17.4%)
if Analyst Required Marginal Cost is Realized

(b) Merging Firm Owns Two Products Post-Merger

4-to-3 Merger 3-to-2 Merger

Signaling MPBE
Pre-Merger Avg. Price $18.25 $19.79

Post-Merger Avg. Price of Merged $21.53 (+18.0%) $27.18 (+37.3%)
Firm if No Marginal Cost Synergy

Post-Merger Avg. Price of Non- $19.12 (+4.8%) $23.59 (+19.2%)
Merging Firm if No Marginal Cost Synergy

Merged Firm Marginal Cost Required to $2.26 -$11.92
Prevent Merged Firm Avg. Price from Rising

If Merger Analyzed under CI
Implied Marginal Cost $8.29 $8.62

Merged Firm Marginal Cost Required $3.43 -$2.05
to Prevent Prices from Rising

Avg. Price in Signaling Model $18.85 (+3.2%) $23.00 (+16.2%)
if Analyst Required Marginal Cost is Realized
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average marginal cost of the merging firm from $8.025 to $5.73, a 29% reduc-

tion.13

We can compare these effects to the predictions of an analyst who knows de-

mand and uses a standard CI merger simulation model.14 Using average prices and

CI first-order conditions, the analyst would infer that average pre-merger marginal

costs are equal to $8.29 (i.e., higher than they really are), and that a 14% syn-

ergy (reducing marginal costs to $7.11) would prevent price increases. If the 14%

synergy was achieved but firms play a signaling equilibrium after the merger, then

the merged firm’s average price would increase to $19.17 (a 5% post-merger in-

crease). In the case of a 3-to-2 merger, all of the effects seen in the 4-to-3 case

become larger, and, in fact, the merged firm’s marginal cost would need to be

negative to prevent a price increase.15 The realization of the synergy identified by

a CI simulation would not prevent prices from rising by 17%.

The lower panel assumes that, after the merger, the merged firm has two

products, which have the same marginal cost and which are sold at the same price.

This restrictive assumption preserves the structure that each firm has one piece of

private information and can send exactly one signal. Ownership of two products

increases incentives to raise prices, and hence the size of required synergies. As

in the upper panel, a CI analysis will underpredict price increases and required

13We assume that the range of marginal costs, $0.05, and the process by which marginal costs
evolve remain the same after the merger and after any synergy is realized.

14This characterization follows how merger simulation is used in the academic literature. Agency
economists typically calibrate the price and nesting parameters in the demand system to match
average margins given CI Nash pricing. An incorrect static CI Nash assumption would then lead to
the wrong demand parameters.

15We assume that the firm cannot freely dispose of products so that it cannot choose to produce
an infinite amount if it has negative marginal costs.
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synergies.

2.3.3 Signaling Incentives and the Existence of Separating Equilib-

ria.

In our example, signaling incentives are relatively weak because marginal

costs are only weakly correlated from period to period. Increasing the AR(1)

parameter or c − c, or reducing σc tend to increase signaling incentives and raise

equilibrium prices. However, when price increases are too large, the conditions for

characterizing best responses can fail and we may not be able to find a separating

equilibrium.

The first six columns of Table 2.3 show, for different periods, the baseline

average prices and average prices when signaling incentives are strengthened.

Small parameter changes result in higher equilibrium prices, but larger changes

result in the failure of our algorithm as we cannot define best response pricing

functions. Pooling or partial pooling equilibria may exist, but we do not know

how to characterize them. Appendix B.2.1.2 uses a two-type example to examine

the failure of the conditions, including belief monotonicity, in more detail.16

However, as illustrated in the final column, we can sustain separating equi-

16The two-type model has a much lower computational burden but requires imposing a re-
finement just to identify unique separating best responses. Specifically, we always find the best
response that achieves separation at the lowest cost to the signaling firm, consistent with the type
of “intuitive criterion” (Cho and Kreps (1987)) refinement that has been widely used in one-sided
signaling models with two types. However, even with this refinement, we have found examples of
multiple separating equilibria in the infinite horizon version of the two-type model. The algorithm
that we use to produce the reported results appears to consistently select the equilibrium that cor-
responds to the limit of a (seemingly unique) equilibrium in a finite horizon game as the number
of periods grows large.
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Table 2.3: Equilibrium Pricing in a Finite Horizon Game with Alternative Cost
Specifications

Reduce Expand Range
Baseline Expand Range Std. Dev. &Std. Dev.

c− c [8,8.05] [8,8.075] [8,8.15] [8,8.3] [8,8.05] [8,8.05] [8,8.50]
σc 0.025 0.025 0.025 0.025 0.02 0.01 0.25
T-24 24.76 26.51 - - 25.71 - 24.90
T-10 24.75 26.59 - - 25.70 - 24.89
T-9 24.74 26.59 fails - 25.69 fails 24.89
T-8 24.72 26.57 28.48 - 25.66 28.58 24.89
T-7 24.68 26.50 29.17 fails 25.60 28.76 24.87
T-6 24.61 26.37 29.35 30.40 25.49 28.65 24.85
T-1 22.88 23.05 23.42 23.93 22.93 23.05 23.55
T 22.62 22.63 22.67 22.74 22.62 22.62 22.84

∞ 24.76 26.50 fails fails 25.71 fails 24.90

Notes: unit is $. Values in all but the last line are based on the duopoly, continuous type, finite
horizon model with demand parameters described in the text (cost parameters indicated in the ta-
ble). The last line reports results for the stationary strategies in the infinite horizon model with
the same parameters. “Fails” indicates that the belief monotonicity or single-crossing conditions
fail so that we cannot calculate signaling best response pricing functions.

libria if we increase c − c and increase σc simultaneously.17 This pattern will be

relevant for our application.

2.3.4 Additional Examples.

Appendix B.2.1 uses two-type duopoly examples to examine how price ef-

fects vary with the number of firms and to examine the relationship between the

existence of separating equilibria, the magnitude of price effects, the serial cor-

relation of costs and the extent to which, when a firm’s price rises, demand is

diverted to the outside good. When there is limited diversion to the outside good

we find large increases in prices above static CI Nash levels (an increase of 45% in

one case) under duopoly even when there is moderate serial correlation in costs

(e.g., Pr(ci,t = ci,t−1)=0.75). On the other hand, price increases are small with

more than three firms, and only small increases can be sustained in separating

17The probability that a cost goes from one extreme of the support to the opposite half of the
support is 0.32, which is the same as in the baseline case.
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equilibria when there is more diversion to the outside good even under duopoly.

The examples suggest that thinking about the effects of signaling is most relevant

when two or three firms dominate a market or a very distinct segment of a market.

Appendix B.2.2 present three simple duopoly examples where marginal costs

are fixed and known, but firms have private information about some other ele-

ment of their payoff function (a feature of demand, the weight managers place

on revenues rather than profits, or the weight they place on the profits of rivals).

Signaling can raise prices significantly above CI Nash levels in each case.

2.4 Empirical Application: The MillerCoors Joint Venture

In this section, we apply our model to data from the U.S. beer industry

around the time of the 2008 MC JV. MW show that, relative to the price of imports,

the real prices of brands owned by MC and Anheuser-Busch (AB) increased after

the JV.18 We describe the setting and the data, before explaining the calibration of

our model using pre-JV pricing data and reporting how well it predicts observed

changes in pricing after the JV. Finally, we examine how well the CI models that

have previously been used to explain why price increased fit the data.

2.4.1 The JV and Its Effects.

The MC JV, announced in October 2007, effectively merged the U.S. brew-

ing, marketing and sales operations of SABMiller (Miller) and MolsonCoors (Coors),

the second and third largest U.S. brewers. The Department of Justice (DOJ) de-

cided not to challenge the transaction in June 2008 because it expected “large

reductions in variable costs of the type that are likely to have a beneficial effect on

prices”.19 For example, the JV was expected to lower transportation costs by pro-

ducing Coors products at Miller breweries around the country. Ashenfelter et al.

(2015) provide evidence that transportation efficiencies were realized.

18Anheuser-Busch was purchased by InBev in 2008. Throughout the paper we will use AB to
refer to Anheuser-Busch before 2008 and Anheuser-Busch InBev afterwards.

19Department of Justice press release, 5 June 2008.
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MW show that, at a national level, the real prices (i.e., deflated by the CPI-U

price index) of the most popular domestic brands, such as Bud Light (BL), Miller

Lite (ML) and Coors Light (CL), increased after the JV, relative to the prices of

imported brands, such as Corona Extra and Heineken, which MW use as controls

for industry-wide cost shocks. Regressions in Appendix B.4 quantify these price

increases to lie between 40 cents and a dollar per 12-pack, or 3%-6%, depending

on the specification. We will proceed assuming that MW’s interpretation that the

relative price increase was a causal anticompetitive effect of the JV is correct.20

An important feature of the relative price change is that AB’s prices increased

as much as those of Miller and Coors. If AB’s marginal costs were unaffected by the

JV, this pattern is inconsistent with static CI Nash pricing, as a static best response

function would predict that AB should have responded to any JV price increase by

raising its prices by a smaller amount.

2.4.2 Data.

We use the same data as MW, which comes from the IRI Academic Dataset

(Bronnenberg et al. (2008)) which provides weekly UPC-store-level scanner data

for the beer category from an unbalanced panel of grocery stores from 2001 to

2011. Appendix B.4 provides details, but we will note in the text where our treat-

ment differs from MW. We will follow the typical convention of assuming that

retail prices are set directly by brewers, and that any retail margin is a fixed com-

ponent of brewers’ marginal costs.21

Table 2.4 lists the 20 brands with the largest sales by volume in 2007, to-

gether with additional brands that MW include in their analysis. The table lists

market shares and average nominal prices (per 144 oz, the volume in a standard

12-pack) in 2007 and 2011. Most domestic brands are differentiated from imports

20This interpretation is complicated by how the Great Recession may have affected demand and
the fall in the deflator, from 220.0 in July 2008 to 210.2 in December 2008, at exactly the same
time that the merger was being consummated.

21MW estimate a model that allows for a monopolist retail margin, and cannot reject a model
with fixed retail pass-through.
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by being sold primarily in larger packs and at lower prices. The relative prices of

domestic brands increased after 2007, but, although CL gained share at ML’s ex-

pense, the domestic brewers’ market shares remained stable: for example, AB’s

volume share was 41.3% in 2007, 41.5% in 2009 and 39.6% in 2011, with light

beer shares of 50.0%, 50.8% and 50.6% respectively.22

We calibrate the model to match observed pre-JV dynamics of BL, CL and

ML prices. As an example of the dynamics in the data, Figure 2.4 shows monthly

average nominal prices of 12-packs for the flagship domestic brands in two large

markets for 49 months around the consummation of the JV.23 Average prices are

calculated excluding all sales at prices that IRI indicates are temporary price reduc-

tions, as changes in regular prices are more likely to reflect changes in wholesale

prices. Within-year volatility is a clear feature of this data, even if we ignore the

drop in ML prices during the DOJ’s investigation.

2.4.3 Calibration of the Dynamic Asymmetric Information Model.

We calibrate an infinite horizon, continuous marginal cost three-firm/product

version of our model using pre-JV data, and then compare its predictions with

post-JV data. We say “calibration”, even though we estimate five cost parameters,

because of the strong assumptions we make to limit the computational burden.

The most important simplification is that our calibration will treat data from dif-

ferent markets as data from independent repetitions of the same game, rather than

reflecting markets with different demand and cost primitives.

22Appendix B.4 presents a figure showing the evolution of market shares over this period. The
post-JV decline in the shares of several non-flagship domestic brands reflected a continuation of
pre-existing trends.

23We use nominal prices so that they are not distorted by fluctuations in the CPI-U deflator,
including the drop referenced in footnote 20. See Appendix B.4 for the same figure plotted using
real prices.
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Figure 2.4: Average Nominal Prices (excluding sales) of 12-Packs of the Domestic
Flagship Brands in Two Regional Markets Around the JV.

Notes: averages are calculated as the total dollar sales of 12-packs at prices not identified
as temporary price reductions, divided by the number of 12-packs sold. See Appendix B.4
for the same figure with real prices.
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2.4.3.1 Products.

We model the pricing of three brands. We label these brands as BL, ML and

CL, and will estimate the cost parameters to match the observed price of dynamics

of these flagship products. However, Appendix B.4 shows that the prices of brands

in the same portfolio (e.g., Budweiser and BL) are highly correlated, and one

can also view the brands as representing the portfolios of AB, Miller and Coors.

Products of other brewers, including imports and craft beers, are included in the

outside good.24 We will assume that ML and CL are symmetric before the JV, as

we will have to assume that MC sets the same price for both products after the JV.

Appendix B.4 also shows the correlation of ML and CL prices increased after the

JV.

2.4.3.2 Demand.

We assume static, time-invariant nested logit demand, with the three brands

in the same nest. The parameters are the nesting and price parameters, and the

mean utilities (excluding the effect of price) of BL and ML/CL. Our baseline pa-

rameters are chosen so that, at average real prices in the pre-JV data, the average

own price elasticity is -3, the market shares of the three products are 28% for BL

and 14% each for ML/CL and, on average, if the price of one brand increased,

85% of the demand that it loses would go to the other brands (with the remainder

to the outside good).25 When we use weekly data on 6/12/18/24/30-packs and

exclude temporary price reductions, the pre-JV cross-market average prices are

$10.09 for BL and $9.95 for ML/CL, and the implied nesting and price parameters

are 0.772 and −0.098, and the BL and ML/CL mean utilities are 1.044 and 0.863

respectively.

As motivation for the assumed elasticity and diversion, Table 2.5 reports five

24In an earlier version, we estimate the model allowing for imports to be a non-signaling fringe
that used Bayesian Nash pricing. The model predicted that, after the JV, they would raise their
prices by a couple of cents.

25These assumed shares overstate the share of BL relative to ML and CL, but understate the share
of AB, relative to Miller and Coors, in the beer market and the light beer segment.
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Table 2.5: Estimates of Demand

(1) (2) (3) (4) (5)
Nested RCNL RCNL Nested Nested
Logit Logit Logit

Nests All Beer All Beer All Beer Flagship/ Flagship/
Other Other

Data Freq. Monthly Monthly Quarterly Monthly Weekly
Real Price Coefficient -0.056 -0.083 -0.099 -0.073 -0.047
(2010 dollars) (0.017) (0.014) (0.014) (0.018) (0.011)
Nesting Coefficients
Single All Brand Nest 0.741 0.838 0.831 - -

(0.051) (0.039) (0.039)
Two Nests
Domestic Flagship - - - 0.838 0.898

(0.049) (0.040)
Other Brands - - - 0.634 0.815

(0.047) (0.037)
Income Coefficients
*constant - 0.014 0.014 - -

(0.005) (0.005)
*price - 0.001 0.001 - -

(0.000) (0.000)
*calories - 0.004 0.004 - -

(0.002) (0.002)

Median Product -2.31 -4.71 -5.41 -2.51 -3.12
Elasticity

Mean ML Brand -1.66 -3.68 -4.22 -3.06 -3.09
Price Elasticity

Mean Flagship 0.41 0.48 0.47 0.83 0.90
Diversion

% Change in Flagship -5.20% -8.24% -9.65% -4.30% -2.20%
Sales Given 75¢
Domestic Price Rise

Observations 94,656 94,656 31,777 94,656 405,004

Notes: market size is defined as 50% more than the highest sales observed in the geo-
graphic market for monthly and quarterly specifications. For the weekly specifications it is
estimated as 50% more than the sum of the highest sales from stores observed in the scan-
ner data that week. ML Brand Elasticity reflects the change in ML sales when the prices of
all ML products are increased. Mean Flagship Diversion is the average proportion of lost
sales that go to other flagship products (i.e., BL, ML and CL products) when the price of a
flagship product is increased. The change in flagship sales after a 75 cent price rise is the
average across pre-JV observations change in total flagship sales when the prices of all do-
mestic products are increased by 75 cents. Standard errors, clustered on the geographic
market, in parentheses.
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sets of demand estimates (the first three will be used in Section 2.4.4).26 For these

specifications, we follow MW as closely as possible in the choice of data, instru-

ments and controls, except that we use optimal GMM for the nested logit models

as doing so affects the estimates.27 The first three columns contain one nested

logit specification, using monthly data, and two random coefficients nested logit

(RCNL) specifications, where the 13 MW brands are all included in a single inside

nest, and preferences vary with income. The remaining columns estimate nested

logit models using monthly and weekly data (we will use weekly price changes

when estimating the cost parameters) where flagship products are grouped into a

flagship nest, and the remaining products are placed in an “other beer” nest with a

different nesting coefficient. The flagship nesting coefficients are larger, consistent

with these brands being close substitutes.

The table reports several implied statistics for each specification, including

the average ML brand elasticity (i.e., the effect on demand when all ML prices

increase), the proportion of lost demand that switches to other flagship products

when a flagship price is increased, and the average, across pre-JV observations,

predicted change in flagship sales when the prices of all domestic products in-

crease by 75 cents, which is within the range of the observed post-JV price change.

The statistics vary across the specifications. Given that the limited decline in flag-

ship brand and domestic brewer market shares after the JV, we assume values for

elasticity and diversion that are consistent with the estimates in columns (4) and

(5).
26All specifications include time period and product (brand*size) fixed effects, and use data

from Jan 2005 to Dec 2011, excluding June 2008 to May 2009. All estimates use two-step optimal
GMM. Instruments are the same as in MW for the relevant specification, apart from the two nest
models where we define instruments for the number and distance measures for other products
based on products in the same nest, and interact instruments with a flagship brand dummy.

27None of the specifications yield exactly the same estimates as MW although the monthly RCNL
estimates are almost identical.
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2.4.3.3 Marginal Costs.

We assume that the marginal costs of product i, ci,t, lie on the interval [ci, ci+

c′], where we estimate cBL, cML/CL and c′. ci,t evolves according to an AR(1)

process with truncated innovations

ci,t = ρci,t−1 + (1− ρ)
ci + ci + c′

2
+ ηi,t (2.4)

where ηi,t ∼ TRN(0, σ2
c , ci−ρci,t−1− (1−ρ)

ci+ci+c
′

2
, ci + c′−ρci,t−1− (1−ρ)

ci+ci+c
′

2
)

and σc is the standard deviation of the untruncated innovation distribution. The

fit of the model improves only slightly if we allow ρ, σc and c′ to vary across firms.

2.4.3.4 Objective Function, Matched Statistics and Identification.

The cost parameters are estimated using indirect inference (Smith (2008)).

For a given value of the cost parameters, we solve the model (see Appendix

B.1.2 for the method) and simulate a time-series of data to calculate six statis-

tics/regression coefficients that we match to ones from the data that we describe

below. The estimation problem is

θ̂ = arg min
θ
g(θ)′Wg(θ)

where g(θ) is a vector where each element k has the form gk = 1
M

∑
m τ

data
k,m − τ̂k(θ)

where τ datak,m is a statistic estimated using the actual data and τ̂k(θ) is the equivalent

coefficient estimated using simulated data from the model solved using parame-

ters θ. W is a weighting matrix. The reported results use an identity weighting

matrix, although the choice of W has little effect on the parameters as we match

all of the moments almost exactly. The objective function is minimized using

fminsearch in MATLAB (version 2018a). Standard errors are calculated treating

different markets before the JV as independent observations on the same game.
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Estimation takes between 12 and 24 hours.28

For each geographic market, we calculate six statistics using data from Jan-

uary 2001 to the announcement of the JV in October 2007. Our preferred spec-

ification uses weekly data and the five most common pack sizes (6, 12, 18, 24

and 30-packs).29 Market-week-brand-size average real prices per 12-pack equiv-

alent are calculated excluding temporary store price reductions, and using only

market-weeks where we observe more than five stores.30 The first two statistics

that we match are the (unweighted) average prices for BL and ML across pack

sizes and weeks. The third statistic is the interquartile range (IQR) of prices for

BL. This is calculated as the IQR of the residuals for each market from a regression

where, pooling markets, we regress the week-market-size prices of BL products

on dummies for the specific set of stores observed in the market-week (interacted

with pack size) and week-size fixed effects in order to control for fixed retail price

differences across stores and any national promotions. The remaining statistics

are coefficients from market-brand-specific regressions of market-week-brand-size

prices on the lagged prices of all three brands. Specifically we use the averages of

ρML,ML and ρCL,CL, ρBL,CL and ρBL,ML, and ρML,CL and ρCL,ML, where ρi,j is the

coefficient on the lagged price of brand j when the dependent variable is the price

of brand i. These AR(1) regressions include dummies for the exact set of stores

observed, interacted with pack size, and a linear time trend.

Assuming that the equilibrium is unique, the intuition for identification is

straightforward.31 Given the assumed demand parameters and the observed price

28Computationally light two-step approaches, which are often used to estimate dynamic games,
cannot be used because they require that all serially-correlated state variables, which in our setting
would include beliefs, are observed by the researcher.

29Our model does not have different pack sizes, market heterogeneity, varying sets of stores or
time trends, so the regressions using simulated data do not control for these factors.

30See Appendix B.4 for a discussion of the sample selection.
31The possibility that our game has multiple equilibria may create two issues for estimation.

First, the objective function may be hard to minimize if our solution algorithm jumps between
different sections of the equilibrium correspondence. In practice, we can match our moments
almost exactly across many alternative parameterizations. Second, another equilibrium supported
by different parameters might give similar predictions to the equilibrium that our algorithm finds.
This is essentially a potential identification problem. Here we have to rely on the fact that we have
never found multiple equilibria in continuous-type games, although we suspect that they may exist
for some parameters.
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levels, the mark-ups implied by the model will identify the lower bounds on brand

marginal costs. The AR(1) coefficients and the dispersion of prices will identify the

range of costs and the parameters of the cost innovation process.32 We will com-

pare additional statistics that we do not match during estimation to understand

the fit of the model.

To provide a sense of the AR(1) coefficients, Table 2.6 shows the coefficients

from similar regressions that pool data from all markets for four alternative sam-

ples. Panel (a) reports the results for our preferred specification. The serial corre-

lation parameters for a product’s own price are between 0.41 and 0.46, while the

cross-product correlations are positive but smaller. If price reductions are included

(panel (c)), serial correlations fall, which is consistent with sales lasting one week

and being proceeded and followed by higher regular prices. Serial correlation is

higher if we use only 12-packs (panel (b)). Panel (d) repeats (a) using monthly

prices and market, rather than group-of-store, fixed effects (equivalent regressions

will be used in our monthly data specification). In this case, the serial correlation

parameters increase, but further investigation reveals that this happens primarily

due to the change in the fixed effects.33

While our calibration does not seek to match cross-market heterogeneity, the

serial correlation coefficients show some interesting patterns across markets. Us-

ing data simulated from our model, we typically estimate higher serial correlation

parameters when we change the parameters to induce larger signaling effects on

prices, by, for example, reducing diversion to the outside good. Given any type of

logit or nested logit preferences, diversion to other brands will tend to be lower

when the market share accounted for by the signaling brands is higher. Figure

2.5(a) shows scatter plots of the estimated market-level serial correlation param-

eters for BL, ML and CL against the share of all beer sales accounted for AB, Miller

32Larger cross-brand ρ coefficients imply stronger signaling effects, so that a smaller range of
costs may be required to generate the dispersion of prices in the data.

33We have estimated monthly regressions including set of store fixed effects and dropping
market-months where the set of stores changes within months. This causes the number of ob-
servations to drop dramatically: for example, the number of observations in the BL regression falls
to 2,806, and the estimated coefficient on pBLt−1 falls to 0.318. For some individual markets, there
is not enough data to estimate serial correlation coefficients.
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Table 2.6: AR(1) Price Regressions Using Flagship Market-Pack Size-Week or -
Month Data

(a) Week, Price Reductions Excluded, (b) Week, Price Reductions Excluded,
All Pack Sizes, 12 Packs Only,

Fixed Effects for Set of Stores Fixed Effects for Set of Stores

(1) (2) (3) (1) (2) (3)
pBL,t pML,t pCL,t pBL,t pML,t pCL,t

pBL,t−1 0.451 0.056 0.043 0.489 0.071 0.028
(0.033) (0.017) (0.010) (0.032) (0.026) (0.018)

pML,t−1 0.030 0.409 0.016 0.062 0.505 0.028
(0.011) (0.036) (0.014) (0.013) (0.038) (0.012)

pCL,t−1 0.027 0.021 0.461 0.004 0.016 0.549
(0.012) (0.015) (0.040) (0.012) (0.015) (0.043)

Observations 36,659 36,670 36,700 10,829 10,817 10,828
R-squared 0.979 0.972 0.978 0.964 0.945 0.957
Mean Price 10.08 9.95 9.94 10.3 10.22 10.19
SD residuals 0.184 0.221 0.197 0.144 0.183 0.163

(c) Week, Price Reductions Included, (d) Month, Price Reductions Excluded,
All Pack Sizes, All Pack Sizes,

Fixed Effects for Set of Stores Fixed Effects for Markets

(1) (2) (3) (1) (2) (3)
pBL,t pML,t pCL,t pBL,t pML,t pCL,t

pBL,t−1 0.287 0.036 0.020 0.646 0.097 0.091
(0.027) (0.013) (0.013) (0.025) (0.015) (0.012)

pML,t−1 0.045 0.322 0.010 0.074 0.601 0.066
(0.009) (0.027) (0.012) (0.015) (0.027) (0.014)

pCL,t−1 -0.023 -0.049 0.267 0.100 0.097 0.682
(0.013) (0.020) (0.039) (0.010) (0.016) (0.025)

Observations 37,449 37,431 37,442 13,972 13,973 13,975
R-squared 0.939 0.941 0.942 0.974 0.971 0.974
Mean Price 9.79 9.67 9.68 10.08 9.95 9.94
SD residuals 0.337 0.342 0.336 0.210 0.229 0.216

Notes: regressions also include time period*pack size interactions and use pack sizes containing
volumes equivalent to 6, 12, 18, 24 and 30 12 oz. containers. Market or store fixed effects de-
scribed in the label to each panel. Standard errors, clustered on the market, are in parentheses.
The SD residuals statistic is the standard deviation of the residuals from the regression.
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Figure 2.5: Estimated Pre-JV Price Dynamics and the Combined Market Shares of
AB, Miller and Coors.

Notes: The estimated univariate regression coefficients, with standard errors in paren-
theses, for panel (a) are BL: 0.011 (0.226) + 0.558C3 (0.288), R2 = 0.080; ML :
0.044 (0.192) + 0.465C3 (0.245), R2=0.077; CL : -0.025 (0.215) + 0.568C3 (0.278),
R2=0.091; and for panel (b): -0.039 (0.046) + 0.120C3 (0.058), R2=0.088.
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and Coors in 2007 (i.e., the C3). Figure 2.5(b) shows a similar plot for the aver-

age of the six cross-brand coefficients. In both cases there is a positive, and, using

a regression analysis, a statistically significant, relationship, consistent with our

simulations.34

Table 2.7: Parameter Estimates for Six Specifications

(1) (2) (3) (4) (5) (6)
Data Frequency Week Week Week Week Week Month
Sizes All 12 only All All All All
Price Reductions Excl. Excl. Incl. Excl. Excl. Excl.
Mean Own Price Elasticity -3 -3 -3 -2.5 -3.5 -3
Mean Flagship Diversion 85% 85% 85% 90% 80% 85%
Lower Bound Cost for BL $5.259 $5.278 $4.845 $4.248 $5.973 $4.616
(cBL) (0.201) (0.048) (0.046) (0.043) (0.026) (0.127)
L.B. Cost for ML/CL $6.425 $6.528 $5.984 $5.786 $6.874 $5.711
(cML/CL) (0.020) (0.014) (0.022) (0.024) (0.017) (0.020)
Width Cost Interval $0.625 $0.752 $1.246 $0.556 $0.672 $1.793
(ci−ci) (0.029) (0.021) (0.018) (0.102) (0.026) (0.037)
Cost AR(1) Parameter 1.156 0.939 0.850 1.222 0.959 0.742
(ρ) (0.020) (0.011) (0.026) (0.013) (0.012) (0.025)
SD Cost Innovations $0.282 $0.278 $0.566 $0.260 $0.270 $0.400
(σc) (0.024) (0.001) (0.050) (0.104) (0.026) (0.052)

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. Standard errors in parentheses. The
data specifications using weekly data include group-of-store fixed effects when calculating the data
statistics. For the monthly specification, the regression using the data only include market fixed
effects

2.4.3.5 Parameter Estimates and Model Fit.

Table 2.7 reports estimates from six specifications, using different data or al-

ternative demand parameters. Estimated marginal costs increase when demand is

more elastic, and the range of costs and the standard deviation of the innovations

increase when we try to match data that contains temporary price reductions. The

estimated marginal cost ranges are much larger than in our examples, but the es-

timated σcs imply that the probability that a marginal cost can go from high to

34We also find positive, statistically significant relationships when we look at individual cross-
brand coefficients.
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low across periods is quite high.35 As we will note below, the volatility of observed

prices means that the marginal costs implied by CI Nash or conduct parameter

models are also quite volatile.

The upper panel of Table 2.8 reports the fit of the moments that we match

during estimation for the column (1), (2) and (3) specifications. The lower part

of the table reports moments that are not matched, including the skewness of the

innovations from the AR(1) regression. The model systematically underpredicts

the standard deviation of price residuals for BL. The other moments are matched

quite accurately, except that we cannot match the skewness of the residuals when

price promotions are included in the data, consistent with our model having no

mechanism to match these types of changes.

2.4.3.6 Predicted Effects of the JV.

Table 2.9 reports predicted prices when we resolve the six models assuming

that ML and CL have the same marginal cost and are sold by a single firm at

the same price. We assume that MC benefits from a synergy that would have

prevented average prices from rising if firms set static CI Nash prices, as this seems

consistent with the DOJ’s expectation, but the width of the cost interval and the

remaining parameters remain the same. The predicted price changes in columns

(1)-(5) are all within the estimated 40¢-$1 or 3-6% ranges.36 We cannot find

an equilibrium for the monthly data specification. In this case, the estimated

parameters imply marginal costs are more persistent (the probability that a firm

with the cost ci will have a cost less than ci+ci+c
′

2
is only 0.067) because, in this

case, we are matching coefficients from a regression that does not control for

cross-store heterogeneity in retail prices, and signaling incentives raise prices so

35For example, for the specification in column (1) the probability that a firm with marginal cost
ci will have a marginal cost in the lower half of the range in the next period is 0.24, similar to 0.32
in our baseline example.

36One might be concerned that our assumed discount factor of β = 0.99 is too low for weekly
data. We have recomputed the column (1) estimates assuming β = 0.998, implying an annual
discount factor of around 0.9. While a higher discount factor increases signaling incentives, the
estimated parameters change to rationalize pre-JV dynamics in such a way that the predicted post-
JV prices are within 1 cent of those reported in Table 2.9.
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Table 2.9: Predicted Average Prices Before and After the MC JV

(1) (2) (3) (4) (5) (6)
Frequency Week Week Week Week Week Month
Sizes All 12 only All All All All
Price Reductions Excl. Excl. Incl. Excl. Excl. Excl.
Average Elasticity -3 -3 -3 -2.5 -3.5 -3
Flagship Diversion 85% 85% 85% 90% 80% 85%
Pre-JV Mean Prices
BL $10.09 $10.30 $9.81 $10.09 $10.09 $10.09
ML/CL $9.96 $10.22 $9.68 $9.96 $9.96 $9.95
Assumed ML/CL Synergy -$1.18 -$1.20 -$1.14 -$1.50 -$0.94 -$1.17
Post-JV Mean Prices
BL $10.62

(+5.3%)
$10.90
(+5.7%)

$10.17
(+3.7%)

$10.98
(+8.7%)

$10.42
(+3.3%)

fails

ML/CL $10.48
(+5.2%)

$10.79
(+5.8%)

$10.02
(+3.5%)

$10.82
(+8.5%)

$10.27
(+3.1%)

fails

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. For the data we report sep-
arate values for the statistics for ML and CL, but, because the model assumes that ML and
CL are symmetric, and so predicts identical statistics (ignoring simulation error), we report a
single prediction.

high that the conditions for separation fail.

Figure 2.6 compares, using the column (1) parameters, BL’s equilibrium pric-

ing strategies for the static Bayesian Nash 3-firm model, the estimated signaling

3-firm model and the counterfactual post-JV model. Signaling increases the level

and the range of BL prices, which span from the lowest point on the two BL pricing

functions to the highest point, especially in the counterfactual.

Table 2.10 compares the cross-market averages of the price dynamic statistics

before and after the JV in the data, and the values predicted by the column (1)

model. The model correctly predicts the directional change in each statistic except

the skewness measures, even if it does not predict which statistics change the

most. We view our ability to match qualitative changes in dynamics, as well as the

increase in average price levels, even though our model is calibrated using only

pre-JV data, as an encouraging result.
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Figure 2.6: Bud Light Equilibrium Pricing Strategies (for estimates in column (1)
of Table 2.7).

Notes: the strategies shown assume that cBLt−1 = cBL and cML
t−1 = cCLt−1 = cML/CL (lower

line) and cBLt−1 = cBL and cML
t−1 = cCLt−1 = cML/CL (upper line). Therefore, for each type of

equilibrium, the maximum range of BL’s prices spans from the lowest point on the bottom
line to the highest point on the upper line.

2.4.4 Testing Alternative Explanations for the Post-JV Price Increases.

Some people have suggested that, even if our model can explain why prices

rose after the JV, MW and MSW’s CI theories of tacit collusion provide pre-existing

and satisfactory explanations. While folk theorems imply that a CI tacit collusion

model that fits the data almost perfectly is likely to exist, we can test how well

MW and MSW’s assumptions fit the data. MSW’s supermarkup model of collusion

is clearly rejected and, in some specifications, MW’s baseline interpretation that

there was CI Nash pricing before the JV is also rejected. The estimates also imply

that marginal costs are serially correlated and quite volatile, a feature that plays

an important role in our model.

Our tests extend MW’s conduct parameter framework. The framework as-
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Table 2.10: Observed and Predicted Changes in Price Dynamics

Data Fitted Model
Pre-JV Post-JV Change Pre-JV Post-JV Change

IQR of Prices
BL $0.189 $0.241 +0.052 $0.189 $0.353 +0.164
ML $0.222 $0.256 +0.034 $0.281 $0.350 +0.069
CL $0.210 $0.244 +0.034 $0.281 $0.350 +0.069
AR(1) Regression Coefficients
ρBL,BL 0.444 0.524 +0.080 0.385 0.415 +0.030
ρML,ML 0.402 0.483 +0.081 0.408 0.409 +0.001
ρCL,CL 0.413 0.453 +0.040 0.408 0.409 +0.001
ρBL,ML 0.082 0.092 +0.010 0.074 0.122 +0.048
ρBL,CL 0.066 0.095 +0.029 0.074 0.122 +0.048
ρML,BL 0.059 0.087 +0.028 0.038 0.141 +0.103
ρCL,BL 0.042 0.080 +0.038 0.038 0.141 +0.103
Std. Dev. of AR(1) regression residuals
BL regression $0.177 $0.188 +0.011 $0.109 $0.203 +0.094
ML regression $0.204 $0.204 +0.000 $0.159 $0.204 +0.045
CL regression $0.189 $0.193 +0.004 $0.159 $0.204 +0.045
Skewness of AR(1) regression residuals
BL regression -0.361 -0.181 +0.180 -0.337 -0.504 -0.167
ML regression -0.100 0.001 +0.101 -0.331 -0.470 -0.139
CL regression -0.329 -0.104 +0.225 -0.331 -0.470 -0.139

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. The calculation of
the statistics is explained in Section 2.4.3.4. Pre-JV averages are calculated for 45
markets, and post-JV averages are calculated for 44 markets, as one market does
not have at least 5 stores observed in consecutive weeks after the JV.

sumes that pricing is characterized by stacked static, CI first-order conditions

(
Ωmt ◦

[
∂qmt(pmt, θ

D)

∂pmt

])
(pmt − cmt) + qmt(pmt, θ

D) = 0,

where pmt, qmt and cmt are vectors of prices, quantities and (constant) marginal

costs and ∂qmt(pmt,θD)
∂pmt

is a matrix of demand derivatives.

Ωmt is the “conduct” matrix, with (row i, column j) element Ωi,j. Ωi,j = 1

if products i and j are owned by the same firm. Under static Nash pricing, all

other elements of Ωmt are zero. MW’s baseline specification assumes static Nash

pricing before the JV, but allows Ωi,j = κ after the JV if i and j are owned by

different domestic brewers. κ = 1 is consistent with joint profit-maximization,

while 0 < κ < 1 could be interpreted as reflecting partial internalization of pricing
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externalities.

Given demand estimates, MW estimate the post-JV κ using equations

pmt = Wmtγ −
(

Ωmt(κ) ◦
[
∂smt(pmt, θ

D)

∂pmt

])−1

smt(pmt) + νmt. (2.5)

where cimt = Wimtγ + νimt and W includes time, product (brand-size) and geo-

graphic market fixed effects; a “distance measure” that multiplies distance to the

brewery or port with real diesel prices; and, a dummy for MC products after the JV

to allow for an additional efficiency. The JV is assumed not to affect AB’s marginal

costs. The instruments are the variables in W and a dummy for domestic products

after the JV. The post-JV κ is exactly identified by how much more AB’s prices

increase than the increase that can be rationalized as a static best response.

MW’s single exclusion restriction implies that they cannot estimate separate

pre- and post-JV κs or test whether a change in conduct is the source of the price

increase.37 We provide this type of test by adding additional instruments and con-

trols.38 Note, however, that we will only use the model to test MW and MSW’s

assumptions and we will not interpret positive κs as evidence of collusion. As

shown by Corts (1999), some forms of tacit collusion may be consistent with es-

timates of κ that are less than or equal to zero, and, as we discuss below, our

signaling model tends to imply positive estimates of κ even though there is no

collusion.

Our specifications include separate pre- and post-JV product and market

fixed effects in W . To understand our choice of instruments, consider the first-

order condition for product i owned by AB

pimt = Wimtγ +
qimt
∂qimt
∂pimt

+
∑
j∈AB
j 6=i

∂qjmt
∂pimt
∂qimt
∂pimt

(pjmt − cjmt) + κ
∑
k∈M,C

∂qkmt
∂pimt
∂qimt
∂pimt

(pkmt − ckmt) + νimt.

37MW re-estimate the post-JV κ assuming, but not estimating, different pre-JV κ ≤ 0.5. These
estimates imply that κ rose after the JV, although by smaller amounts as the assumed pre-JV κ rises,
as a pre-JV κ also implies that AB would increase its prices when MC benefits from an efficiency.

38We continue to assume that imported brands use Nash pricing and that Ωi,j = 1 when i and j
have the same owner.
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Valid instruments will be correlated with
∑

k∈M,C

∂qkmt
∂pimt
∂qimt
∂pimt

(pkmt − ckmt) (i.e., the in-

cremental effect of a change in i’s price on a rival’s profits), and uncorrelated with

the cost unobservable νimt.

The first six columns in Table 2.11 report conduct coefficients for the columns

(1)-(3) demand specifications in Table 2.5.39 Columns (1)-(3) use the distance

measures of rivals as instruments, as they affect rivals’ margins, and, as MW al-

ready assume that a product’s own distance measure is uncorrelated with νimt, the

additional assumptions required are minimal.40 Columns (4)-(9) use additional

instruments in the form of the average value of the demand unobservables (ξs)

for rival brewers over either the pre- or post-JV period, and the interactions of

these instruments with the distance instruments.41 These additional instruments

are valid if νimt is uncorrelated with the demand unobservables of rivals’ prod-

ucts. This is a stronger assumption, although economists sometimes assume that

a product’s own demand and marginal costs unobservables are uncorrelated in

order to estimate demand (MacKay and Miller (2019)). Columns (7)-(9) include

linear domestic-market-fiscal year fixed effects in W . These controls allow for

possible correlations between local preferences and costs for domestic products as

a group, and cause conduct to be identified only from within-market-year cross-

39The specifications in columns (1)-(9) contain time period fixed effects, and separate product
and market fixed effects for before and after the JV, as well as the distance measure interacted
with combinations of dummies for domestic products and periods after the JV. The specification in
column (10) is estimated separately for each fiscal year (e.g., the FY06 year runs October 2005-
September 2006), and the specification includes product, city and quarter fixed effects, the dis-
tance measure (interacted with a dummy for domestic products) as well as non-linear market
fixed effects for the domestic products. We have also estimated specifications using the two nest
nested logit models, and specifications that estimate κs based only on the pricing of the flagship
brands. These estimates lead us to reject Nash pricing behavior before the JV, and the pre- and
post-JV parameters are closer than those in columns (1)-(6).

40There are eight excluded distance instruments. For AB products in market m and time t
before the JV, the (m; t) distance measure for Miller and the (m; t) distance measure for Coors are
instruments. For pre-JV Miller products, the distance measures for AB and Coors are instruments.
For pre-JV Coors products, the distance measures for Miller and AB are instruments. For AB (MC)
products in market m and time t after the JV, the (m; t) distance measure for MC (AB) is the
instrument.

41Specifically, we calculate the average value of the demand residuals for the products sold by
brewer b in market m either before or after the JV, and then construct eight instruments in the
same way that we construct the instruments for distance. We average across periods because the
demand unobservables are more variable than the distance measures.
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brewer/-product variation. We will also use these specifications to test the MSW

model.

We reject Nash pricing after the JV in all nine specifications. This is, of

course, consistent with MW’s interpretation that there was collusion after the JV.

All of the estimated pre-JV κs are positive, and some are significant. The esti-

mates in columns (1)-(6) are consistent with an increase in κ after the JV, but the

estimates with market-year controls suggest that conduct did not change, even

though the κ estimates are very precise.

The plausibility of these CI pricing models can also be assessed by looking

at what they imply for marginal costs and synergies. Table 2.11 reports aver-

age implied marginal costs for ML 12-packs. Less elastic demand and higher

κ imply lower marginal costs, and the (1), (4) and (7)-(9) costs are implausi-

bly/impossibly low. The remaining columns imply larger synergies for ML, which

was being shipped the same distances before and after the JV in most markets,

even than the 17.5% synergy for ML and CL that we assumed for the column (1)

specification of our model. Controlling for market and time effects, the implied

νimts are also serially correlated and quite volatile.42 While cost volatility is cer-

tainly not inconsistent with CI, we view volatility as suggesting that a collusive

interpretation of the data requires a very strong CI assumption: if CI is not sat-

isfied, then, given that prices are volatile, collusion would be hampered by the

difficulty of distinguishing cheating from a conforming price set by a low marginal

cost firm.

The conduct model is not a fully-specified model of collusion because it does

not specify why firms choose not to cheat. Some collusion models cannot be

tested using the conduct framework, but the MSW supermarkup model can. MSW

assume that, every fiscal year, both before and after the JV, a price leader suggests

a “supermarkup” on top of Bertrand Nash prices that domestic brewers should

charge. If a domestic firm fails to charge the supermarkup, a punishment phase

42The rich fixed effects in columns (7)-(9) cause the νimts to jump across fiscal years, so the
estimated serial correlation falls.
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ensues, but in a CI subgame perfect equilibrium, the suggested supermarkup will

satisfy the incentive-compatibility constraints (ICCs). Prices may increase after a

merger if the ICCs are relaxed. We can test this model by using an appropriately

defined domestic product market-fiscal year fixed effect to control for the super-

markup. If the “supermarkup on Nash” theory is correct, estimates of conduct κ

parameters should be equal to zero once the fixed effects are included.

The columns (7)-(9) include linear domestic-market-fiscal year fixed effects.

These specifications are not quite consistent with the MSW’s exact theory43, but

they are simple to estimate. As already discussed, we can reject κ = 0 before

or after the JV at any significance level. Column (10) tests MSW’s exact model

by allowing for non-linear domestic-market-fiscal year fixed effects (see Appendix

B.5 for details) using the quarterly RCNL model (most favorable to pre-JV Nash

pricing in columns (3) and (6)). We estimate the model separately for each fiscal

year to reduce the number of coefficients estimated simultaneously. Consistent

with column (9), the reported conduct parameters are precisely estimated and are

between 0.9 and 1, and, because estimated supermarkups are also positive, most

of the implied marginal costs are negative. Therefore, we can clearly reject the

MSW formulation of CI collusion, although, as we have emphasized, this does not

imply that all models of collusion would be rejected.

While our model implies that the conduct parameter framework is misspec-

ified, because it does not control for beliefs or signaling incentives, we have esti-

mated conduct parameter models using data simulated from two and three-firm

versions of our model with cross-firm heterogeneity. The estimated conduct pa-

rameters are typically between 0.3 and 1, and the implied marginal costs are usu-

ally significantly below their true levels.44 The estimated conduct parameters can

rise, fall or stay roughly unchanged after a merger. The results of our conduct anal-

43Linear fixed effects would be consistent with a model where the leader suggested domestic
firms set Nash prices “as if” all of their marginal costs had been raised by a common fixed amount,
rather than suggesting a common dollar per 12-pack equivalent price addition to Nash prices.

44If, conditional on controls for costs, firms tend to set higher prices when other firms have higher
margins or there is more diversion to those rivals’ products, then estimated κs will be positive. As
discussed previously, these features also tend to lead to stronger signaling effects in our model, so
we tend to estimate positive κs using simulated data from our model.
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ysis are therefore not inconsistent with what one would expect given our model.

2.5 Conclusion

We have developed a model where oligopolists simultaneously use prices

to signal private information that is relevant for their future pricing decisions.

Although the possibility that this type of behavior would raise equilibrium prices

was identified in the theoretical literature over thirty years ago, we provide the

first attempt to quantify the magnitude of these effects, both in examples and in an

empirical application. We find that effects can be large, and that they can explain

changes in price levels and price dynamics after a large horizontal transaction in

the U.S. beer industry. While CI theories of tacit collusion can also explain an

increase in price levels, our model provides a natural explanation of the period-

to-period price changes observed in this data, and in data from other industries

where tacit collusion has been suggested (Ordover (2007)). It is also consistent

with how firms treat margin information as highly confidential.

We have often been asked how our model and our empirical analysis relate

to theories of “coordinated effects” in merger analysis. There is no standard defini-

tion of coordinated effects: the presentation in Ordover (2007) is focused on vari-

ants of tacit collusion models, but Baker and Farrell (ming) and Farrell and Baker

(2021) use a much broader definition which includes both “purposive” theories of

collusion and “non-purposive” theories, a group which includes the non-collusive

Markov Perfect theories of Maskin and Tirole (1988). Our model lies within this

group. Non-purposive theories are valuable partly because they can explain why

it may not be appropriate to rely exclusively on static CI unilateral effects models

in industries that do not have the characteristics that economists typically believe

favor tacit collusion (Stigler (1964)) or where, before a transaction, prices do not

display the rigidity that collusive theories often predict (Athey et al. (2004)). They

can also explain why coordinated effects do not raise prices to joint-profit maxi-

mizing levels, an outcome that a tacit collusion model will predict if prices are set
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frequently and firms are patient. However, we also believe that combining tacit

collusion and asymmetric information is likely to be a profitable direction for fu-

ture research, building on the work of Kreps et al. (1982) and Athey and Bagwell

(2008) who have examined the links in very stylized theoretical models.45 In fact,

one of our examples in Appendix B.2.2 illustrates how signaling could exacerbate

the impact of small coordination incentives.

One could also ask what our model adds to existing non-purposive theories.

Maskin and Tirole (1988) provide examples of price-setting games which lead to

both price rigidity and price volatility without any underlying volatility in costs

or asymmetries of information. We view our introduction of serially correlated

asymmetric information as not only realistic, but, also potentially helpful in solv-

ing more complicated models, without assuming price changes are asynchronous

or subject to potentially large menu costs (Maskin and Tirole (1988), Nakamura

and Zerom (2010)), because it means that firms choose prices against a perceived

continuous distribution of rivals’ prices. This feature of asymmetric information

models has long been appreciated in both the static and dynamic discrete choice

games literatures (e.g., Seim (2006)), but there are also benefits when choices are

continuous.

45Athey and Bagwell (2008) consider an example that is explicitly connected to the Mailath
(1989) model.

135



Appendix A: Appendix for Chapter 1

A.1 Supplement to Market and Data

A.1.1 Market

Figure A.1 shows two examples of truck tractors. Figure A.2 shows an exam-

ple of the webpages of RBA pre-merger and Post-merger.

A.1.2 Cross-sectional Variation

Table A.1 shows the change in general quality of trucks from TX transaction

data and nationwide auction transaction data. Figure A.3 summarizes the price

distribution of trucks on different platforms. Figure A.4 shows the price distri-

bution of trucks purchased by different types of buyers. Figure A.5 presents the

variation in the quality and transaction volume across different months and states.

Figure A.1: Pictures of Truck Tractors
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Figure A.2: Web Pages of RBA in 2016 and 2018

Table A.1: Characteristics of Trucks in the TX Transaction Data and Auction Trans-
action Data

2016 2018

TX, All Nationwide, Auctions TX, All Nationwide, Auctions
age 9.1841 9.1056 9.6960 9.6490
log(mile) 6.0312 5.7716 6.1159 6.0445

Notes: unit of mileage is 1,000 miles.

Figure A.3: Price Distribution Across Platforms
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Figure A.4: The Distribution of Truck Quality and Prices Paid by Different Types
of Buyers in Texas
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Figure A.5: Variation in the Number of Trucks Across Markets
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A.2 Supplement to Model

This section is used to supplement the model part. It has two subsections.

(1) Markets with at most two different quality levels. First, in a one platform

setting, I prove some properties of the equilibrium payoff functions in the auc-

tion entry stage. Then, based on these properties, I discuss the economics of

more searches, which gives proof for Proposition 1. Based on similar intuition, I

discuss the economics of more multihoming buyers in simple settings and prove

Proposition 2. (2) I extend the markets to include more complicated structures

of available trucks and provide more evidence about the economics of different

search choices. It includes a simulation showing the pattern of models with two

types of buyers.

A.2.1 Markets with at Most Two Quality Levels

Assume there are two possible quality levels qH > qL in the market. I use

NH,A, NH,B, NL,A, NL,B to represent the number of trucks on different platforms

with different quality levels, where NA = NH,A +NL,A, NH,B +NL,B = NB, NA +

NB = N . Assume buyers can choose to search for one truck or two trucks on

one platform or two platforms. The probability of buyers searching for two trucks

is Prm and the probability of buyers choosing single-homing is ω. Additionally,

for simplicity, I assume buyers’ WTP for trucks with the same (q, v) is the same

on different platforms, i.e., V A(q, v) = V B(q, v) = V (q, v). All buyers are ex-ante

symmetric. Assume the platform choice of single-homing buyers follows a rule

related to the number of trucks on each platform g(NA, NB).

A.2.1.1 One Platform

For now, assume there is only one platform with N goods. The equilib-

rium payoff function U∗(q, v) is monotonically increasing in v, where ∂U∗(q,v)
∂v

=

∂V (q,v)
∂v

[1 − Pre
∗
(q, v)]γN−1 ≥ 0. Intuitively, entry choices of other competitors is
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independent of buyer i′s private value, higher private value can increase buyer

i′s WTP for the truck and her chance to win the truck. Therefore, higher private

value can increase her expected payoffs from an auction for sure. Furthermore,

since V (q, v) is convex in v under Assumption 1 and

∂Pre
∗
(qH , v)

∂v
= ...

− 1− Prm∗

N
f(v)− Prm∗ [

(
1

NH−1

)(
2
N

) F (v) +

(
1
NL

)(
2
N

) F (v′|U∗(qH , v) = U∗(qL, v′))]f(v) < 0,

∂Pre
∗
(qL, v)

∂v
= ...

− 1− Prm∗

N
f(v)− Prm∗ [

(
1

NL−1

)(
2
N

) F (v) +

(
1
NH

)(
2
N

) F (v′|U∗(qL, v) = U∗(qH , v′))]f(v) < 0,

we have U∗(q, v) is convex in v.

Given these properties, I can proof the following Lemma about the equilib-

rium expected payoff function in the auction entry stage.

Lemma 1. ∃v∗, we have U∗(qH , v) ≥ U∗(qL, v), ∂U
∗(qH ,v)
∂v

≥ ∂U∗(qL,v)
∂v

,∀v ≥ v∗.

Proof. The proof includes two steps.

In the first step I prove that ∃v∗ such that U∗(qH , v∗) ≥ U∗(qL, v∗) and
∂U∗(qH ,v∗)

∂v
≥ ∂U∗(qL,v∗)

∂v
.

The proof is by contradiction.

• Assume U∗(qH , v) < U∗(qL, v), v ∈ [v, v].

Under this assumption, a truck with low-quality level will be chosen if a

buyer have the same private values for a high-quality truck and a low-quality

truck, so 0 ≤ Pre
∗
(qH , v) < Pre

∗
(qL, v), 0 > ∂Pre

∗
(qH ,v)
∂v

> ∂Pre
∗

(qL,v)
∂v

,∀v ∈

[v, v].
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Since under Assumption 1,

U∗(q, v) = ...

−
∫ v

v

(γN − 1)[V (q, v)− V (q, ṽ)][1− Pre∗(q, ṽ)]γN−2∂Pr
e∗(q, ṽ)

∂v
dṽ + ...

V (q, v)× [1− Pre∗(q, v)]γN−1,

V (qH , v)− V (qH , ṽ) > V (qL, v)− V (qL, ṽ),∀v > ṽ,

we have U∗(qH , v) > U∗(qL, v), which contradicts the assumption.

• Assume ∃v′, U∗(qH , v′) ≥ U∗(qL, v′), ∃v′′, U∗(qH , v′′) < U∗(qL, v′′) and ∀v ∈

[v, v], 0 < ∂U∗(qH ,v)
∂v

< ∂U∗(qL,v)
∂v

Under this assumption, we have U∗(qH , v) < U∗(qL, v). Then, we have

Pre
∗
(qH , v) = Pre

∗
(qL, v) = 0, 0 > ∂Pre

∗
(qH ,v)
∂v

> ∂Pre
∗

(qL,v)
∂v

.

Since

∂U∗(q, v)

∂v
=
∂V (q, v)

∂v
[1− Pre∗(q, v)]γN−1,

∂V (qH , v)

∂v
>
∂V (qL, v)

∂v
,

we have ∂U∗(qH ,v)
∂v

> ∂U∗(qL,v)
∂v

, which contradicts the assumption.

• Assume ∂U∗(qH ,v′)
∂v

< ∂U∗(qL,v′)
∂v

whenever U∗(qH , v′) ≥ U∗(qL, v′) and ∂U∗(qH ,v′′)
∂v

>

∂U∗(qL,v′′)
∂v

for some U∗(qH , v′′) < U∗(qL, v′′).

If U∗(qH , v) > U∗(qL, v), we must have some v satisfies ∂U∗(qH ,v)
∂v

≥ ∂U∗(qL,v)
∂v

and U∗(qH , v) ≥ U∗(qL, v); otherwise, we cannot find U∗(qH , v) < U∗(qL, v).

If U∗(qH , v) < U∗(qL, v), according to the above, we must have ∂U∗(qH ,v)
∂v

≥
∂U∗(qL,v)

∂v
. The assumption implies ∂U∗(qH ,v)

∂v
< ∂U∗(qL,v)

∂v
and U∗(qH , v) ≥ U∗(qL, v),

which cannot be true when ∂V (q,v)
∂v

= V (q, v).

In the second step, I prove ∀v∗ such that U∗(qH , v∗) ≥ U∗(qL, v∗) and
∂U∗(qH ,v∗)

∂v
≥ ∂U∗(qL,v∗)

∂v
, we must have U∗(qH , v) ≥ U∗(qL, v), ∂U

∗(qH ,v)
∂v

≥ ∂U∗(qL,v)
∂v

,∀v ≥
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v∗.

If U∗(qH , v∗) ≥ U∗(qL, v∗), then ∂Pre
∗

(qH ,v∗)
∂v

≤ ∂Pre
∗

(qL,v∗)
∂v

< 0. Namely,

∃ε→ 0, P re
∗
(qH , v∗ + ε)− Pre∗(qL, v∗ + ε) ≤ Pre

∗
(qH , v∗)− Pre∗(qL, v∗).

On the other hand,

V (qH , v∗ + ε)− V (qL, v∗ + ε) ≥ V (qH , v∗)− V (qL, v∗).

Therefore, we have ∂U∗(qH ,v∗+ε)
∂v

− ∂U∗(qL,v∗+ε)
∂v

≥ ∂U∗(qH ,v∗)
∂v

− ∂U∗(qL,v∗)
∂v

≥ 0 and

U∗(qH , v∗ + ε) ≥ U∗(qL, v∗ + ε).

We can iterate this process by using v∗ + ε as the starting point. Therefore,

we can show that ∀v ∈ [v∗, v], U∗(qH , v) ≥ U∗(qL, v) and ∂U∗(qH ,v)
∂v

≥ ∂U∗(qL,v)
∂v

.

Proof of Proposition 1

Proof. Now I will prove how the probability of searching two goods increases from

Prm
∗ to Prm∗∗ will affect Pre∗(qH , v) and Pre

∗
(qL, v). The effect can be analyzed

based on the following three equations

Pre
∗
(qH , v)− Pre∗(qL, v) = Prm{

∫ v

v

[

(
1

NH−1

)(
2
N

) −
(

1
NL−1

)(
2
N

) ]F (ṽ)f(ṽ)dṽ + ...∫ v

v

[

(
1
NL

)(
2
N

) F (v′|U∗(qH , ṽ) = U∗(qL, v′))−
(

1
NH

)(
2
N

) F (v′|U∗(qL, ṽ) = U∗(qH , v′))]f(ṽ)dṽ}

(A.1)

∂Pre
∗
(qH , v)

∂v
− ∂Pre

∗
(qL, v)

∂v
= −Prm{[

(
1

NH−1

)(
2
N

) −
(

1
NL−1

)(
2
N

) ]F (v)f(v) + ...

[

(
1
NL

)(
2
N

) F (v′|U∗(qH , v) = U∗(qL, v′))−
(

1
NH

)(
2
N

) F (v′|U∗(qL, v) = U∗(qH , v′))]f(v)}

(A.2)
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U∗(qH , v)− U∗(qL, v) = (γN − 1){
∫ v

v

[V (qL, v)− V (qL, ṽ)][1− Pre∗(qL, ṽ)]γN−2

∂Pre
∗
(qL, ṽ)

∂v
− [V (qH , v)− V (qH , ṽ)][1− Pre∗(qH , ṽ)]γN−2∂Pr

e∗(qH , ṽ)

∂v
dṽ}+ ...

V (qH , v)[1− Pre∗(qH , v)]γN−1 − V (qL, v)[1− Pre∗(qL, v)]γN−1. (A.3)

From (A.1)(A.2)(A.3), we see that Prm affects Pre∗(qH , v)− Pre∗(qL, v) and
∂Pre∗(qH ,v)

∂v
− ∂Pre

∗
(qL,v)
∂v

through two channels: (1) the direct channel, when Prm
∗

increase to Prm∗∗, according to Lemma 1, it can attract more competitive buyers

with private value above a threshold to the high-quality auctions while keeping

the equilibrium expected payoffs the same. This effect will increase Pre∗(qH , v)−

Pre
∗
(qL, v) and decrease ∂Pre

∗
(qH ,v)
∂v

− ∂Pre
∗

(qL,v)
∂v

when v is above the threshold;

(2) the indirect channel, lowering the expected payoffs because of the increased

competition from (1). When Prm increases, according to (A.3), the difference

between U∗(qH , v) and U∗(qL, v) becomes smaller.

The value of ∂Pre
∗

(qH ,v)−Pre∗ (qL,v)
∂Prm

and ∂
∂Pre

∗
(qH,v)
∂v

− ∂Pr
e∗ (qL,v)
∂v

∂Prm
can be calculated

using the implicit function theorem and (A.1)(A.2)(A.3). In the new equilib-

rium, ∃v∗∗, for v ∈ [v∗∗, v],∂Pr
e∗ (qH ,v)−Pre∗ (qL,v)

∂Prm
≥ 0. Assume the this is not true.

Since Pre∗(qH , v) = Pre
∗
(qL, v) = 0, we have ∂

∂Pre
∗

(qH,v−ε)
∂v

− ∂Pr
e∗ (qL,v−ε)
∂v

∂Prm
> 0, ε → 0.

Therefore, ∂U∗(qH ,v−ε)−U∗(qL,v−ε)
∂Prm

> 0, ε → 0, which contradicts the indirect effect

mentioned above. Similarly, we must have ∂
∂Pre

∗
(qH,v−ε)
∂v

∂Prm
< 0, ε → 0. In sum,

∃v∗∗, for v ∈ [v∗∗, v], Pre∗(qH , v|Prm∗∗) − Pre∗(qL, v|Prm∗∗) ≥ Pre
∗
(qH , v|Prm∗) −

Pre
∗
(qL, v|Prm∗) and ∂Pre

∗
(qH ,v|Prm∗∗ )
∂v

< ∂Pre
∗

(qH ,v|Prm∗ )
∂v

when Prm∗∗ > Prm
∗.

The probability of the transaction price to be higher than p is equivalent to
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the second highest WTP among bidders is higher than p = V (q, v).

P rob(p > p̃|q, Prm∗) = Prob(v(n−1:n) > V −1(p̃, q)|Prm∗) = ...

1− [1− Pre∗(q, V −1(p, q))]γN−1

Prob(p > p̃|qH , P rm∗)− Prob(p > p̃|qL, P rm∗) = ...

[1− Pre∗(qL, V −1(p̃, qL)|Prm∗)]γN−1 − [1− Pre∗(qH , V −1(p̃, qL)|Prm∗)]γN−1 + ...

[1− Pre∗(qH , V −1(p̃, qL)|Prm∗)]γN−1 − [1− Pre∗(qH , V −1(p̃, qH)|Prm∗)]γN−1

When Pre∗(qH , V −1(p̃, qL))− Pre∗(qL, V −1(p̃, qL)) and Pre∗(qH , V −1(p̃, qH))−

Pre
∗
(qH , V −1(p̃, qL)) increase, Prob(p > p̃|qH)−Prob(p > p̃|qL) increases. Namely,

we have Prob(p > p̃|qH , P rm∗∗)−Prob(p > p̃|qL, P rm∗∗) ≥ Prob(p > p̃|qH , P rm∗)−

Prob(p > p̃|qL, P rm∗) when p̃ is above a threshold.

A.2.1.2 Two Platforms

As mentioned in the main text, the effect of ω∗ is smoothing the variation

in quality and number of trucks across platforms in different markets. I discuss

the effect of lower ω∗ (share of single-homing) when there are two types of goods

differentiated in their quality.

Proof of Proposition 2

Proof. Under the conditions in Proposition 2 and equation (1.1)(1.2) in the auc-

tion entry stage, I can get the following two equations:

U∗(qA, v, A) = ...∫ v

v

[V (qA, v)− V (qL, ṽ)]d[1− Pre∗(qA, ṽ, A)]γN−1 + V (qA, v)[1− Pre∗(qA, v, A)]γN−1

(A.4)
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Pre
∗
(qA, v, A|qB = qH)− Pre∗(qA, v, A|qB = qL) = (1− ω∗)

(
1
NB

)(
2
N

) × ...∫ v

v

F (v′|U∗(qA, ṽ, A) = U∗(qH , v′, B))− F (v′|U∗(qA, ṽ, A) = U∗(qL, v′, B))f(ṽ)dṽ.

(A.5)

Similar to the one-platform case proved in Lemma 1, there is a threshold of private

value, when buyers’ private value is above the threshold, we have U∗(qH , v′, B)) ≥

U∗(qL, v′, B)). According to (A.5), when buyers conduct multihoming, they are

less likely to choose the trucks on Platform A if the trucks on platform B have

high quality and their private draws associate with those goods are not low. Sim-

ilar to the indirect effect mentioned above, when ω decrease and qB = qH , the

competition on platform B is fiercer, resulting in some buyers with moderate

private values switch to platform A. Similar to Proposition 1, I can prove that

∃v∗∗, for v ∈ [v∗∗, v], P re
∗
(qA, v, A|qB = qH , ω∗∗) − Pre

∗
(qA, v, A|qB = qL, ω∗∗) <

Pre
∗
(qA, v, A|qB = qH , ω∗) − Pre∗(qA, v, A|qB = qL, ω∗) and ∂Pre

∗
(qA,v,A|qB=qH ,ω∗)

∂v
<

∂Pre
∗

(qA,v,A|qB=qH ,ω∗∗)
∂v

. Then since the final price is second highest WTP among buy-

ers in an auction, we can get Prob(pA > p̃|qB = qL, ω∗∗) − Prob(pA > p̃|qB =

qH , ω∗∗) ≥ Prob(pA > p̃|qB = qL, ω∗) − Prob(pA > p̃|qB = qH , ω∗) when p̃ is above

a threshold.

A.2.2 Markets with More Than Two Quality Levels

For the markets with more complicated structure of available trucks, I do

some simulations to present the similar findings about the economics of search

choices. Considering the difficulty in proving the two-type model, I also illustrate

the findings about two-type model by simulation.
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A.2.2.1 One Type of Buyers

To be specific, I show a simulation result under the specification where the

WTP follows log-normal distribution:

V (qj, vij) =

 exp(θqj + vij) if j is on A

exp(θ(qj + α) + vij) if j is on B

θ = 0.8, vij ∼ N(0, 0.5), α = −0.5.

The set of realized trucks available on each platform is the same to the first realized

market in the data. I consider two distributions of equilibrium searches:

• Case 1: mmulti ∼ Poisson(5), ω = 0;

• Case 2: mmulti ∼ Poisson(10), ω = 0.

Figure A.6 shows that the expected payoffs from entering an auction U is

complementary in (q, v). When all buyers are more likely to search for more trucks

in equilibrium, the expected payoffs from entering the popular auctions, i.e., the

high-quality auctions on platform B, will decrease significantly.

Figure A.7 shows the entry behavior of buyers who search five trucks across

platforms on average and buyers who search ten trucks across platforms. I do 100

simulations and calculate the average v when they choose trucks with different q

in the two equilibria. We see that under this specification, the buyers who choose

to enter auctions with high-quality trucks have higher v on average when all the

buyers search for more trucks. Therefore, the trucks with high quality are more

likely to be transacted with high price when all buyers search more trucks.

A.2.2.2 Two Types of Buyers

Buyers with different quality preferences have different expected payoffs

from searching, resulting in different equilibrium search choices even if they draw
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Figure A.6: Expected Payoffs from Entering an Auction U∗(q, v) (One Type of Buy-
ers)

Notes: unit of expected payoffs $1, 000.

Figure A.7: Auction Entry Behavior of Buyers
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from the same distribution of search costs. Because of the higher WTP for high-

quality trucks, the expected gain from more searches among high-type buyers is

higher than that among low-type buyers. On the other hand, when both types of

buyers search for more trucks, low-type buyers are more likely to lose in auctions

with high-quality trucks since there are more high-type buyers in those auctions.

Notably, some low-type buyers may switch to the auctions with low-quality trucks

even if their private value for high-quality truck is high. Given these differences,

when the search costs are lower, high-type buyers are more likely to purchase

high-quality trucks than low-type buyers. I show this pattern by simulation.

Assume all buyers search on one platform. Here θ can have two different

values.

V (qj, vij) = exp(θT qj + vij) .

θH = 0.85, θL = 0.6, vij ∼ N(0, 0.5).

• Case 1: mH ∼ Poisson(5),mL ∼ Poisson(5);

• Case 2: mH ∼ Poisson(10),mL ∼ Poisson(10).

Figure A.8 shows while UH∗ is still complementary in q and v, it is not true for

UL∗. Buyers with high quality preference are more likely to choose the auctions

with high quality trucks relative to low-type buyers when all of them can search

more trucks.
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Figure A.8: Expected Payoffs from Entering an Auction U(q, v) (Two types of Buy-
ers)

Notes: 1. unit of expected payoffs is $1, 000; 2. "H" represents buyers with higher quality
preference and "L" represents buyers with low quality preference.
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A.3 Supplement to Identification

A.3.1 Baseline

Proof of Proposition 3

Proof. In the market with NH = N,NL = 0, according to the expression of F2,price

above, at a specified p, I can solve for the [(1 − Prm∗)F V (pqH) + Prm
∗
F V (p|qH)

2
]

which satisfies the following equation:

(1− Prm∗)F V (p|qH) + Prm
∗
F V (p|qH)

2
= 1−

√
1− F2,price(p|qH , qH , NH , NL)

Similarly to the case where NL = N,NH = 0.

Therefore, given the F2,price(p|qH , N) and F2,price(p|qL, N) at a specified p and

Prm
∗, I can get corresponding F V (p|qH) and F V (p|qL) which satisfy following

equations:

F V (p|qH) =

√
(1− Prm∗)2 + 4Prm∗ [1−

√
1− F2,price(p|qH , N)]− (1− Prm∗)

2Prm∗

(A.6)

F V (p|qL) =

√
(1− Prm∗)2 + 4Prm∗ [1−

√
1− F2,price(p|qL, N)]− (1− Prm∗)

2Prm∗

(A.7)

∀p ∈ [V , V ]

Note that this means that F2,price(p|qH , N) = F2,price(p|qH). In the market with one

quality level and one platform, the price distribution given a truck has two buyers

is independent of the number of trucks available in the market as long as N > 2.

Finally, using the markets with two different quality levels qH and qL in the
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same market, I can get the condition to pin down Prm∗:

(1− Prm∗)F V (p|qH) +
NL

NH
(1− Prm∗)F V (p|qL) + Prm

∗NH − 1

N − 1
F V (p|qH)

2
+ ...

P rm
∗ NL

NH

NL − 1

N − 1
F V (p|qL)

2
+

NL

N − 1
F V (V ∗(p, qL, qH)|qH)F V (V ∗(p, qH , qL)|qL)] =

1−
√

1− F2,price(p|qH , qL, NH , NL) +
NL

NH
[1−

√
1− F2,price(p|qL, qH , NH , NL)]

Where U∗(p, qH) = U∗(V ∗(p, qL, qH), qL), U∗(p, qL) = U∗(V ∗(p, qH , qL), qH) (A.8)

Note that given the mappings (A.6)(A.7), the equilibrium payoffs U∗ can be solved

as a function of Prm∗ and F2,price. Therefore, by solving equation (A.8), I can get

the Prm
∗. Namely, (A.6)(A.7)(A.8) can identify F V (·|qH), F V (·|qL) and Prm

∗.

Note that although the explicit part about Prm∗ in (A.8) just in degree 2, it may

enter U∗ in higher order. However, equation (A.8) should be satisfied for any

{qH , qL, NH , NL} where Prm∗ are the same. Then there is enough conditions to

pin down a unique Prm∗.

A.3.2 Extensions

Figure A.9 summarizes the data and assumptions used for identify different

models mentioned in the text.
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Figure A.9: Measurements and Assumptions for the Identification of Different
Models
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Algorithm 1: Solving for the Equilibrium Expected Payoffs U∗(q, v)

Result: U∗(q, v) = {U∗T (q, v)}, T ∈ {H,L}, platform ∈ {A,B}
initialization: U(0)(q, v) =

∑
i

∑
j a

(0)
ij q

i × vj, e∗−i(q, v)

while a(t) − a(t−1) > tol do
a(t) = a(t−2) + a(t−1)−a(t−2)

(t−1)
2
3

for Simulation s do
Calculating the realized payoffs from choosing an auction with (q,v)
when all the other buyers using e∗−i(q, v) : ŨA,s

T (q, v), ŨB,s
T (q, v).

end
Regress ŨA,s

T (q, v|A,Prm,home∗
−i ) and ŨB,s

T (q, v) on
∑

i

∑
j q

i × vj to get â.
Update a(t) = â from the regression

end

A.4 Supplement to Estimation

Algorithm 1 shows the way the details about the algorithm I used to solve

for the expected payoff functions in equilibrium, which approximate the payoffs

function by two-dimension Lagrange interpolation (Judd (1998)). To speed up

the convergence, I update the coefficients for the polynomials "smoothly". This is

similar to the way used in Weintraub et al. (2010).

A.4.1 Algorithm for Solving Equilibrium Payoffs of an Auction
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A.5 Supplement to Estimation Results

A.5.1 Estimation Results for Two-type Model

In the model with two-type of buyers, I estimate models with different set-

tings. For the single-homing buyers, their platform choice rule can follow one rule

listed below:

• Rule 1: Both types of single-homing buyers enter the market according to

the market share of the platforms.

• Rule 2: High-type single-homing buyers choose offline trucks and low-type

entering the market according to the market share of the platform.

• Rule 3: High-type single-homing buyers choose offline trucks and low-type

single-homing buyers choose online trucks.

• Rule 4: High-type single-homing buyers choose online trucks and low-type

single-homing buyers choose offline trucks.

The estimation results for different settings are shown in Table A.2. We can see

that the changes in buyers’ equilibrium search choices have the similar pattern

across different settings: buyers search more trucks and the share of buyers doing

single-homing increase significantly (for most cases, more than 20%).

Figure A.10 shows the distribution of search costs in the model with two

types of buyers under Rule 2 when shareH = 0.6 and shareL = 0.4. We see

that both marginal and fixed search costs decrease significantly. The level of fixed

costs is higher in this model since now high-type buyers only search on the offline

platform when they are single-homing, the difference between expected payoffs

from mulithoming and single-homing is higher.

A.5.2 Model Fits

Table A.3 summarizes how the estimates fit the observation by comparing

the target moments. For second set of moments which includes the regression
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Table A.2: Estimation Results for Two-type Model

ShareH = 0.6 ShareH = 0.35
ShareL = 0.4 ShareL = 0.65

Rule 2 Rule 3 Rule 1 Rule 3 Rule 4
Quality Pref.

θH 0.8048 0.7818 0.8375 0.8441 0.8410
(0.0046) (0.0030) (0.0057) (0.0051) (0.0047)

θL 0.7424 0.7568 0.7220 0.7487 0.7213
(0.0065) (0.0031) (0.0063) (0.0062) (0.0055)

Dist.of v

µ 0.0001 0.0001 0.0001 0.0001 0.0001
(0.0148) (0.0116) (0.0285) (0.0205) (0.0238)

σ 0.5246 0.5463 0.5463 0.5061 0.5487
(0.0057) (0.0072) (0.0085) (0.0094) (0.0089)

Discount of
Quality Online

α -0.3364 -0.4438 -0.4650 -0.5500 -0.5455
(0.0059) (0.0140) (0.0080) (0.0127) (0.0124)

Search Freq.

λPre
H 7.0603 6.6185 6.5483 6.4368 6.3038

(0.0342) (0.1334) (0.0460) (0.0662) (0.0414))
λPost
H 7.6173 7.3751 7.1978 7.0130 6.4934

(0.0326) (0.1936) (0.0397) (0.0463) (0.0300)
λPre
L 7.2080 6.3883 6.6464 6.2428 6.0765

(0.0107) (0.0895) (0.0363) (0.0435) (0.0098)
λPost
L 7.4542 6.4519 6.8942 6.4851 6.4961

(0.0069) (0.1598) (0.0536) (0.0074) (0.0257)
Homing

ω∗,Pre
H 0.4212 0.4939 0.5319 0.5137 0.4402

(0.0160) (0.0326) (0.1038) (0.0922) (0.0897)
ω∗,Post
H 0.3178 0.2188 0.1004 0.2136 0.0944

(0.0264) (0.0177) (0.0932) (0.0563) (0.0203)
ω∗,Pre
L 0.3194 0.3446 0.5212 0.3120 0.5375

(0.0104) (0.0311) (0.0243) (0.0446) (0.0080)
ω∗,Post
L 0.0991 0.1029 0.0879 0.0974 0.1986

(0.0069) (0.0173) (0.0426) (0.0087) (0.0167)

Notes: standard Errors are in parentheses.
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Figure A.10: CDF of Search Costs in Two-type Model
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parameters, I compare the two most important pattern: the change in price of

high quality trucks (75th percentile of quality) and the change in price sensitivity

to the quality of trucks on the other platform.

A.5.3 Sensitivity Analysis

I report the results of an analysis of the sensitivity of the model parameters to

the moments used in the estimation of the one-type model following the approach

proposed by Andrews et al. (2017). This approach can be used to conveniently

summarize the identification of the parameters in parametric structural models in

which changing a single parameter can affect multiple observed outcomes.
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Table A.3: Model Fitness of Targeted Moments

One-type Two-type (Rule 2)

Moment Observed Estimated Observed Estimated
pIP,Pre 2.8703 2.7155 2.8703 2.7158
std(p)IP,Pre(q ≥ median) 0.8997 0.7547 0.8997 0.7534
pIP,Pre(q ≥ median) 3.3525 3.0680 3.3525 3.0954
pIP,Pre(q < median) 2.4882 2.4362 2.4882 2.4150
pRBA,Pre 3.0917 3.1277 3.0917 3.1842
std(p)RBA,Pre 0.7105 0.7487 0.7105 0.7523
pRBA,Pre(q ≥ median) 3.3811 3.4370 3.3811 3.5248
pRBA,Pre(q < median) 2.0846 2.3749 2.7457 2.7769
pIP,Post 2.2634 2.5207 2.2634 2.5176
std(p)IP,Post 0.7547 0.7631 0.7547 0.7253
pIP,Post(q ≥ median) 2.8631 3.0401 2.8631 3.0546
pIP,Post(q < median) 2.0703 2.3534 2.0703 2.3446
pRBA,Post 3.0731 3.1092 3.0731 3.1488
std(p)RBA,Post 0.6409 0.7015 0.6409 0.6984
pRBA,Post(q ≥ median) 3.2613 3.3704 3.2613 3.4356
pRBA,Post(q < median) 2.8621 2.8162 2.8621 2.8271
bid

IP,Post
1 1.7979 1.8012 1.7979 1.7384

∂p
∂q (q75th)IP,Post − ... 0.2208 0.0997 0.2208 0.0153
∂p
∂q (q75th)IP,Pre

(∂p
IP,Post

∂qIP
− ∂pIP,Pre

∂qIP
)− ... -0.1384 -0.146 -0.1384 -0.1309

(∂p
IP,Post

∂qRBA
− ∂pIP,Pre

∂qRBA
)

pIP,PreH 3.1568 2.8405
qIP,PreH 3.3864 3.4383
pRBA,PreH 3.3077 3.3297
qRBA,PreH 3.6611 3.5094
pIP,PreL 3.0927 3.0851
qIP,PreL 3.3659 3.3779
pRBA,PreL 3.0927 3.085
qRBA,PreL 3.3659 3.3779
pIP,PostH 2.8206 2.6720
qIP,PostH 3.4887 3.4018
pRBA,PostH 3.2399 3.2405
qRBA,PostH 3.4887 3.4018
pIP,PostL 2.6748 2.5241
qIP,PostL 3.1200 3.1512
pRBA,PostL 3.0097 3.0410
qRBA,PostL 3.3016 3.3174

Notes: unit of price is $1, 000.
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Figure A.11: Sensitivity Analysis of the One-Type Model
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Algorithm 2: Solving for the Equilibrium Search Choices in the Counter-
factuals Given Hmc and Hfc: Prm∗,home∗(Hmc, Hfc)

Result: Prm∗,home∗(Hmc, Hfc)

initialization: Prm∗(0),home∗(0)

;
while Prm∗(t),home∗(t) − Prm∗(t−1),home∗(t−1)

> tol do
for Simulation s do

for Market k do
Calculate the realized payoffs from bidding in the centralized
auction with the information from using an search strategy mi ∀i
in market k: U∗s(q, v|Prm

∗(t),home∗(t)

−i )

end
end
1. Calculate the average payoffs from choosing a search choice (mihomei)
by average over all the markets and simulations:
Wm,home
i (Prm

∗(t),home∗(t)

−i );
2. Calculate the range of search costs which can support different search
choices according to the equilibrium conditions
{mc(m, home),mc(m, home), fc(m, home), fc(m, home)}m,home;

3. Update the equilibrium search choices according to the updated
thresholds and {Hmc, Hfc}:
Prm

∗,home∗

i (m,multi) =
∫ mc(m,multi)
mc(m,multi)

∫ fc(mci)
fc

hmc(mci)h
fc(fci)dmcidfci

end

A.6 Supplement to Counterfactuals

A.6.1 Algorithm Used to Solve the New Equilibrium in the Coun-

terfactuals

Algorithm 2 presents the approach I used to solve the new equilibrium search

choices used by buyers under alternative settings. Given the estimated search

costs, I solve the new probability of each search choice based on the fixed-point

theorem. Note since I can only identify the bounds of search cost distribution, I

assume that the search costs following uniform distributions whose supports are

estimated.
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Appendix B: Appendix for Chapter 2

B.1 Computational Algorithms

This Appendix describes the methods used to solve our model. We describe

the continuous type, finite horizon model in detail, before noting what changes

in other cases. Our discussion will assume that there are two ex-ante symmetric

duopolists. When firms are asymmetric, all of the operations need to be repeated

for each firm.

B.1.1 Finite Horizon Model.

B.1.1.1 Preliminaries.

We specify discrete grids for the actual and perceived marginal costs of each

firm, which will be used to keep track of expected per-period profits, value func-

tions and pricing strategies. For example, when each firm’s marginal cost lies

on [8, 8.05] and we use 8-point equally spaced grids, the points are {8, 8.0071,

8.0143, 8.0214, 8.0286, 8.0357, 8.0429, 8.0500}.1 We use interpolation and nu-

merical integration to account for the fact that realized types will lie between these

isolated points. The discount factor is β = 0.99.

It is useful to define several functions that we will use below:

• Pi,t

(
ĉji,t−1, cj,t−1

)
is firm i’s pricing function in period t. This is a function

of the marginal cost that j believes that i had in the previous period, ĉji,t−1

1The examples reported in Section 3 use 12 gridpoints, although we have experimented with
as many as 20 gridpoints in each dimension to make sure that this does not have a material effect
on the reported results.
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(which, when j is forming equilibrium beliefs, will reflect that cost that i

signaled in the previous period). It will also depend on the marginal cost

that i believes that j had in the previous period, but we solve the game

assuming that j is using its equilibrium strategy, so that i assumes that its

perception of j ’s prior cost is correct, so we use the argument cj,t−1. The

actual price set will depend on ci,t, and, when we need to integrate over the

values that pi,t may take (e.g., to calculate expected profits) we will include

ci,t as an explicit argument in the function.

• πi(pi,t, pj,t, ci,t) is firm i’s one-period profit when it sets price pi,t and has

marginal cost ci,t, and its rival sets price pj,t. This function does not depend

on t because demand is assumed to be static and time-invariant.

• Vi,t

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
is the value function for firm i defined at the begin-

ning of period t, before firm types have evolved to their period t values. It

reflects the expected payoffs of firm i in period t and the discounted value

of expected payoffs in future periods given equilibrium play in both t and

future periods. It depends on the true value of each firm’s type in t− 1, and

the rival’s perception of i’s t− 1 type (reflecting any deviation that i made in

t− 1). In the case of an 8-point grid, Vi,t is a 512x1 vector.

• Πi,t

(
ci,t, ĉ

j
i,t, pi,t, ĉ

j
i,t−1, cj,t−1

)
is the intermediate signaling payoff function of

firm i when it knows its current marginal cost ci,t, and is deciding what price

to set. It does not know the period t type of its rival, but it reflects the pricing

function that i expects j to use, Pj,t

(
cj,t−1, ĉ

j
i,t−1

)
. ĉji,t is the perception that

j will have about i’s cost at the end of period t. When the rival sets price
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Pj,t

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
,

Πi,t

(
ci,t, ĉ

j
i,t, pi,t, ĉ

j
i,t−1, cjt−1

)
= ...

cj∫
cj

 πi

(
pi,t, Pj,t

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
, ci,t

)
+

βVi,t+1

(
ci,t, ĉ

j
i,t, cj,t

)
ψj(cj,t|cj,t−1)dcj,t.

where we note that pi,t only enters through current profits, and ĉji,t only en-

ters through the discounted continuation value. In practice, our description

will make up Πi,t into two components: Πi,t = π̃i + Ṽi,t, where

π̃i

(
pi,t, Pj,t

(
cj,t−1, ĉ

j
i,t−1

)
, ci,t

)
= ...

cj∫
cj

πi

(
pi,t, Pj,t

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
, ci,t

)
ψj(cj,t|cj,t−1)dcj,t

and

Ṽi,t

(
ci,t, ĉ

j
i,t, cj,t−1

)
=

cj∫
cj

βVi,t+1

(
ci,t, ĉ

j
i,t, cj,t

)
ψj(cj,t|cj,t−1)dcj,t.

Given a set of fully separating pricing functions Pi,t

(
ĉji,t−1, cj,t−1

)
, the rela-

tionship between Π and V is that

Vi,t

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
= ...

ci∫
ci

Πi,t

(
ci,t, ci,t, Pi,t

(
ci,t, ĉ

j
i,t−1, cj,t−1

)
, ĉji,t−1, cj,t−1

)
ψi(ci,t|ci,t−1)dci,t

where we recognize that, in equilibrium, i’s period t pricing function will

reveal its cost to j, implying ĉji,t = ci,t.

162



B.1.1.2 Period T .

Assuming that play in period T − 1 was fully separating, we solve for BNE

pricing strategies for each possible combination of beliefs (on our grid) about

period T − 1 marginal costs. A strategy for each firm is an optimal price given

the realized value of its own period T cost, given the pricing strategy of the rival,

its prior marginal cost and the rival’s belief about the firm’s period T − 1 cost.

Trapezoidal integration is used to integrate over the realized cost/price of the rival

using a discretized version of the pdf of each firm’s cost transition, and we solve

for the BNE prices using the implied first-order conditions (i.e., those associated

with maximizing static profits). With symmetric duopolists and 8-point grids, we

find 512 equilibrium prices.

We use the equilibrium prices to calculate the beginning of period value

function

Vi,T

(
ci,T−1, ĉ

j
i,T−1, cj,T−1

)
= ..

ci∫
ci

cj∫
cj

πi

(
P ∗i,T

(
ci,T , ĉ

j
i,T−1, cj,T−1

)
, P ∗j,T

(
cj,T , cj,T−1, ĉ

j
i,T−1

)
, ci,T

)
...

ψj(cj,T |cj,T−1)ψi(ci,T |ci,T−1)dcj,Tdci,T .

B.1.1.3 Period T − 1.

Firms choose prices in period T − 1 recognizing that their prices will affect

rivals’ prices in period T . We solve for period T−1 strategies, assuming separating

equilibrium pricing and interpretation of beliefs in period T − 2, so that each firm

has a point belief about its rival’s period T − 2 marginal cost. We then use the

following steps to compute equilibrium strategies.
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Step 1. (a) Compute

Ṽi,T−1

(
ci,T−1, ĉ

j
i,T−1, cj,T−2

)
= β

cj∫
cj

Vi,T

(
ci,T−1, ĉ

j
i,T−1, cj,T−1

)
ψj(cj,T−1|cj,T−2)dcj,T−1.

Ṽi,T−1 is the expected continuation value (i.e., not including period T − 1 payoffs)

for i when it is setting its period T − 1 price, without knowing the period T − 1

realization of cj (but knowing that, in equilibrium, it will be revealed by pj,T−1).

(b) Compute β
∂Ṽi,T−1

(
ci,T−1,ĉ

j
i,T−1,cj,T−2

)
∂ĉji,T−1

using numerical differences at each

of the gridpoints (one-sided as appropriate). This array provides us with a set of

values for the numerator in the differential equation (2.1). These derivatives do

not depend on period T − 1 prices, so we do not repeat this calculation as we look

for equilibrium strategies.

(c) Verify belief monotonicity using these derivatives.

Step 2. We use the following iterative procedure to solve for equilibrium

fully separating prices.2 Use the BNE prices (i.e., those calculated in period T ) as

initial starting values. Set the iteration counter, iter = 0.

(a) Given the current guess of the strategy of firm

j, Pj,T−1

(
cj,T−1, cj,T−2, ĉ

j
i,T−2

)
, which is equal to the pricing functions solved for

in the previous iteration, calculate
∂π̃i,T−1

(
pi,T−1,Pj,T−1

(
cj,T−2,ĉ

j
i,T−2

)
,ci,T−1

)
∂pi,T−1

for a grid of values
(
pi,T−1, ĉ

j
i,T−2, ci,T−1

)
2We do not claim that this iterative procedure is computationally optimal, although it works

reliably in our examples. There are some parallels between our problem and the problem of
solving for equilibrium bid functions in asymmetric first-price auctions where both the lower and
upper bounds of bid functions are endogenous. Hubbard and Paarsch (2013) provide a discussion
of the types of methods that are used for these problems.
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where

π̃i,T−1

(
pi,T−1, Pj,T−1

(
cj,T−2, ĉ

j
i,T−2

)
, ci,T−1

)
= ...

cj∫
cj

πi

(
pi,T−1, Pj,T−1

(
cj,T−1, cj,T−2, ĉ

j
i,T−2

)
, ci,T−1

)
ψj(cj,T−1|cj,T−2)dcj,T−1

i.e., the derivative of i’s expected profit with respect to its price, given that it does

not know what price j will charge because it does not know cj,T−1. The derivatives

are evaluated on a fine grid (steps of one cent) of prices.3 This vector will be used

to calculate the denominator in the differential equation (2.1).

For each
(
ĉji,T−2, cj,T−2

)
,

(b) Solve the lower boundary condition equation
∂π̃

(
p∗i,T−1,Pj,T−1

(
cj,T−1,cj,T−2,ĉ

j
i,T−2

)
,ci

)
∂pi,T−1

= 0 for p∗i,T−1, using a cubic spline to in-

terpolate the vector calculated in (a). This gives the static best response price and

the lowest price on i’s pricing function.

(c) Using this price as the initial point4, solve the differential equation, (2.1),

to find i’s best response signaling pricing function. This is done using ode113

in MATLAB, with cubic spline interpolation used to calculate the values of the

numerator and the denominator between the gridpoints.5 Interpolation is then

used to calculate values for the pricing function for the specific values of ci,T−1 on

the cost/belief grid
(
ci,T−1,ĉ

j
i,T−2, cj,T−2

)
.

3A fine grid is required because it is important to evaluate the derivatives accurately around the
static best response, where the derivative will be equal to zero.

4In practice, the exact value of the derivative will be zero at the static best response, so that the
differential equation will not be well-defined if this derivative is plugged in. We therefore begin
solving the differential equation at the price where Πi,T−1

3 + 1e − 4 = 0. Pricing functions are
essentially identical if we add 1e-5 or 1e-6 instead.

5See discussion of tolerances in Appendix B.1.2.2.
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(d) Update the current guess of i’s pricing strategy using

P iter=k+1
i,T−1

(
ci,T−1,ĉ

j
i,T−2, cj,T−2

)
= (1− τ)P iter=k

i,T−1

(
ci,T−1,ĉ

j
i,T−2, cj,T−2

)
+ ...

τP
′

i,T−1

(
ci,T−1,ĉ

j
i,T−2, cj,T−2

)
∀ci,T−1,ĉ

j
i,T−2, cj,T−2

where P ′i,T−1 are the best response functions that have just been computed. In the

finite horizon case, τ = 1, i.e., full updating, works effectively unless we are close

to prices where the conditions required to characterize the unique best response

fail to hold, in which case we also try using τ = 1

1+iter
1
6
. See discussion below for

how we update in the application where we use an infinite horizon model.

(e) Check if the maximum difference between P iter=k
i,T−1 and P

′
i,T−1, across all

gridpoints, is less than 1e-6. If so, terminate the iterative process, else update the

iteration counter to iter = iter + 1, and return to step 2(a).

(f) Verify that the solved pricing functions are monotonic in a firm’s own

marginal costs, and that, given the pricing functions of the rival, that the single-

crossing condition holds for the full range of prices used in the putative equilib-

rium.

Step 4. Compute i’s value Vi,T−1,

Vi,T−1

(
ci,T−2, ĉ

j
i,T−2, cj,T−2

)
= ...

ci∫
ci

cj∫
cj

 π

(
P ∗i,T−1

(
ci,T−1, ĉ

j
i,T−2, cj,T−2

)
, P ∗j,T−1

(
cj,T−1, cj,T−2, ĉ

j
i,T−2

)
, ci,T−1

)
+βVi,T (ci,T−1, cj,T−1, ci,T−1)

 ∗ ...
ψj(cj,T−1|cj,T−2)ψi(ci,T−1|ci,T−2)dcj,T−1dci,T−1

where we are recognizing that equilibrium play at period T − 1 will reveal i’s true

cost to j. Note that this is the case even if, hypothetically, ĉji,T−2 6= ci,T−2 (i.e., j

was misled in period T − 2) because i should find it optimal to use its equilibrium

signaling strategy given its new cost ci,T−1 in response to j using a strategy based
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on its ĉji,T−2 belief.

B.1.1.4 Earlier Periods.

This process is then repeated for earlier periods, with an appropriate chang-

ing of subscripts. Given our assumption that first period beliefs reflect actual costs

in a fictitious prior period, this procedure will also calculate strategies in the first

period of the game.

B.1.2 Infinite Horizon Model.

We use an infinite horizon model for some of our examples and the empirical

application. We find equilibrium pricing functions in the continuous type model

using a modification of the procedure described above: in particular, we follow

the logic of policy function iteration (Judd (1998)) to calculate values given a set

of strategies.

The equilibrium objects that we need to solve for are a set of stationary pric-

ing functions, P ∗i

(
ĉji,t−1, cj,t−1

)
and value functions Vi

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
which

are consistent with each other given the static profit function and the transition

functions for firm types.

We start by solving the period T − 1 game described previously (i.e., assum-

ing that there is a one more period of play where firms will use static Bayesian

Nash Equilibrium strategies) to give an initial set of signaling pricing functions

(P ∗,iter=1
i ). We then calculate firm values in each state

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
if these

pricing functions were used in every period of an infinite horizon game. This is

done by creating a discretized form of the state transition process and calculating

V̂ iter=1
i = [I − βT ]−1π′i

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
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where

π′i

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
=

ci∫
ci

cj∫
cj

πi
 P ∗,iter=1

i

(
ci,t, ĉ

j
i,t−1, cj,t−1

)
,

P ∗,iter=1
j

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
, ci,t


 ...

ψj(cj,t|cj,t−1)ψi(ci,t|ci,t−1)dcj,tdci,t

and T is a transition matrix that reflects the transition probabilities for both firms’

types and the behavioral assumption that equilibrium play in t (and future peri-

ods) will reveal period t costs. P ∗,iter=1
j

(
cj,t−1, ĉ

j
i,t−1

)
will reflect P ∗,iter=1

i , applied

to the states of the rival, when the firms are symmetric.

V̂ iter=1
i is then used to compute a new set of pricing functions, P ∗,iter=2

i , and

the process is repeated until prices converge (tolerance 1e-4). Even though pol-

icy function iteration procedures do not necessarily converge, we find they work

very well in our setting, when the conditions for separation hold, although it is

sometimes necessary to update the pricing function to be a linear combination of

the previous guess and the newly calculated best response. As illustrated in Fig-

ure 2.3, converged pricing functions found by this method are essentially identical

to the pricing functions found for the early periods of long finite horizon games

where the exact value of t has almost no effect on equilibrium pricing strategies.

The computational advantage of this procedure comes from the fact that we do

not perform the iterative procedure described above for every period of the game:

instead there is a single iterative procedure where we solve for a single set of

pricing strategies for the entire game.

B.1.2.1 Speeding Up Solutions By Interpolating Pricing Functions.

When we consider more than two firms and allow for asymmetries, the so-

lution algorithm laid out above becomes slow, with most of the time spent solving

differential equations. For example, with 8-point cost/belief grids, three asymmet-

ric firms and 50 iterations, we would have to solve 25,600 differential equations.

This would make estimation of the model using a nested fixed point procedure
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very slow. On the other hand, reducing the number of gridpoints can lead to

inaccurate calculations of expected payoffs, and therefore strategies.

Examination of the equilibrium pricing functions (see, for example, Figure

2.3) shows that as we vary rivals’ prior types, a firm’s pricing functions look like

they are translated without (noticeably) changing shape. We exploit this fact

by solving for pricing functions for only a subset of the
(
ĉji,t−1, cj,t−1

)
gridpoints

and using cubic splines to interpolate the remaining values.6 This allows us to

achieve a substantial speed increase, while continuing to calculate expected values

accurately on a finer grid.

B.1.2.2 Tolerances and Updating Rules Used for the Estimation of

the Cost Parameters Using the Infinite Horizon Model.

In Section 2.4 we estimate the cost parameters using a nested fixed point

algorithm, which means that both speed and accuracy are important. After con-

siderable experimentation, we use the following tolerances:

• for the parameter search using fminsearch we set the tolerance for the pa-

rameter values at 1e-5 and the tolerance on changes to the objective function

at 1e-5. The value of the minimized objective function is typically less than

0.0002, compared with the initial guess, for which we use estimates of the

parameters assuming firms use static Bayesian Nash pricing strategies, which

usually gives an objective function value of around 0.2.

• the tolerance for criterion for the pricing functions when solving the model

is 1e-6 (i.e., at none of the grid points should the price on the best response

pricing function be more than 1e-6 from the current guess).

• for the differential equation solver, the initial step size is 5e-5 and the max-

imum step size is 0.003 for the first ten iterations of the algorithm, but we

6For example, when we estimate our model in Section 2.4, we use a seven-point cost grid
({1,..,7}) for the profits and values of each firm. We solve for pricing functions for the full
interaction of gridpoints {1,3,5,7} and then interpolate the pricing functions for the remaining
gridpoints.
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then use an initial step size of 1e-5 and a maximum step size of 0.001.

• we update the pricing function to be the best response for the first 15 it-

erations, and then use a linear combination of the best response and the

current guess where the weight on the best response changes linearly from

1 (iteration 16) to 0.1 (iteration 115).

When we use these tolerances, the infinite horizon game is typically solved

using somewhere between 12 and 45 iterations, taking between 3 and 20 min-

utes. Estimation of the five parameters usually requires around 250 function eval-

uations, although the objective function and parameters are usually close to their

final values within 100 evaluations.

B.1.3 Two-Type Model.

We use a model where each firm can have one of two types when we want to

examine all strategies simultaneously or to consider a large number of alternative

demand parameters. An additional advantage is that because prices, profits and

values can be calculated for each possible type, we avoid small inaccuracies that

result from numerical integration.

The key difference to the solution algorithm is that we no longer solve dif-

ferential equations to find best response pricing functions. Recall that in the

continuous type model, the differential equations characterize the unique separat-

ing best response when the signaling payoff function satisfies several conditions.

In the discrete type model, one can construct multiple separating pricing functions

that can be supported for different beliefs of the rival firm. To proceed we there-

fore need to choose a particular pricing function. We describe our choice, and the

method we use to calculate the best response prices here. This procedure can be

embedded within the procedure for solving either a finite horizon or an infinite

horizon game.

To be as consistent with the continuous type model as possible, we use the

prices that allow the two types to separate at the lowest cost, in terms of foregone
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current profits taking the current guess of the pricing function of the rival as given,

to the signaling firm (i.e., “Riley” signaling strategies, which would also be those

that satisfy application of the intuitive criterion).7

The amended computational procedure is as follows (described for the infi-

nite horizon case). Suppose that we are looking to find the pricing strategy of

firm i in period t when it believes that j’s previous cost was cj,t−1 and j believes

that i’s previous cost was ĉji,t−1. We will repeat this process for each
(
ĉji,t−1, cj,t−1

)
combination, of which there will be four in the duopoly model. We need to solve

for two prices: i’s price when its cost is ci and its price when its cost is ci.

Step 1. Find p∗i,t(ci), which will be the static best response, as the solution to
∂π̃

(
pi,t,Pj,t

(
cj,t,cj,t−1,ĉ

j
i,t−1

)
,ci

)
∂pi,t

= 0 where

π̃i

(
pi,t, Pj,t

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
, ci

)
= ...

πi

(
pi,t, Pj,t

(
cj, cj,t−1, ĉ

j
i,t−1

)
, ci

)
Pr(cj,t = cj|cj,t−1) + ...

πi

(
pi,t, Pj,t

(
cj, cj,t−1, ĉ

j
i,t−1

)
, ci

)
Pr(cj,t = cj|cj,t−1)

Step 2. Find p∗i,t(ci). This is done by finding the price, p′, higher than p∗i,t(ci),

which would make the low cost firm indifferent between setting price p∗i,t(ci) and

being perceived as a low cost type, and setting price p′ and being perceived as a

high cost type, i.e.,

π̃

(
p∗i,t(ci), Pj,t

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
, ci

)
+ βṼi,t+1(ci, ci, cj,t−1) = ...

π̃

(
p′, Pj,t

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
, ci

)
+ βṼi,t+1(ci, ci, cj,t−1)

7Of course, in the game we are considering it could be advantageous to the firms to use higher
signaling prices, because of how this raises rivals’ prices in equilibrium. This equilibrium consid-
eration is ignored when selecting the Riley best response.
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where

βṼi,t+1

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
= Vi,t+1

(
ci,t−1, ĉ

j
i,t−1, cj

)
Pr(cj,t = cj|cj,t−1) + ...

Vi,t+1

(
ci,t−1, ĉ

j
i,t−1, cj

)
(1− Pr(cj,t = cj|cj,t−1)).

We verify that, consistent with single-crossing, the ci type prefers to set the price p′

rather than setting its static best response price. We also verify belief monotonicity

when we calculate the value functions. As illustrated in Section B.2.1, there are

parameters for which belief monotonicity fails.
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B.2 Additional Examples.

B.2.1 Two-Type Examples.

A model where each firm can have one of two types has a much lower com-

putational burden than the continuous type model. In this Appendix we will con-

sider several parameterizations of a two-type model. In all of them we assume

that firms are symmetric and that in any period ci = c = 8 or ci = c = 8.05. The

probability that the cost remains the same as in the last period is 0.5 ≤ ρ < 1.

There are no signaling incentives when ρ = 0.5.

Refinement. A disadvantage of the two-type model is that for a given pricing

strategy of firm j, firm i separating best response pricing function is not unique in

the sense that it depends on how firm j will interpret the signal. We therefore im-

pose a refinement that is consistent with the logic of the “intuitive criterion” (Cho

and Kreps (1987)), which has often been applied as a refinement in discrete-type

signaling games where only one player is signaling. Specifically, we assume that

the low cost type’s strategy will be the static best response, as in the continuous

type model, and, under assumptions that appropriately map Conditions 3-6 to the

two-type case, the high cost type’s best response price will be the lowest price

that the low cost type would be unwilling to set even if this would result in ri-

vals’ perceiving it as a high cost type rather than a low cost type. While this does

uniquely define the best response, it does not guarantee a unique equilibrium in

the oligopoly signaling game, and we have identified several examples in the in-

finite horizon version of the two-type model where there are multiple equilibria.

The results reported in this Appendix use an algorithm which, when an infinite

horizon equilibirum exists, appears consistently to select the equilibrium which

corresponds to the equilibrium in the early periods of a long finite horizon game.

Method. See Appendix B.1.3 for a description of the method used to solve the

two-type model.
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B.2.1.1 Outcomes for Alternative Serial Correlation and Demand

Parameters.

We assume nested logit demand where the indirect utility function for con-

sumer c has the form ui,c = β − αpi + σνc + (1 − σ)εi,c. We choose β, α and σ

so that, for each combination of parameters that we consider, the CI equilibrium

prices (at average cost levels) are $16 for each firm, the market share of each

firm at these prices is 0.25, and the diversion, which measures the proportion of

a product’s lost demand that goes to the rival’s product, rather than the outside

good, when its price increases from the CI equilibrium price, has a value that we

specify. We focus on diversion because when more demand goes the outside good,

which is like a competitor that always offers a fixed utility and does not respond to

a signal, firms have less incentive to signal and, as we will show, the belief mono-

tonicity and single-crossing conditions become harder to satisfy.8 Given assumed

market shares, the lowest possible value of this diversion measure is 1
3
, which cor-

responds to multinomial logit demand. We vary ρ from 0.5 (in which case there is

no incentive to signal) to 0.99. We solve an infinite horizon version of our model.

Figure B.1 shows the results for a fine grid of values of diversion and ρ.

The orange crosses indicate combinations where the conditions for characterizing

best responses fail and we cannot find a separating equilibrium. For combinations

where we can find a separating equilibrium the size and color of the circles indi-

cate the percentage increase in average prices relative to average static Bayesian

Nash equilibrium prices with the same demand and serial correlation parameters

(these prices are also always very close to $16). When serial correlation is very

low, the price effects are always small whatever the level of diversion, and, for

given diversion, the price effects become larger as serial correlation increases. For

given serial correlation, higher diversion is associated with larger price effects, as

it becomes more beneficial for a firm to increase its rival’s price (because more of

8The intuition is that when the rival’s expected price increases, a firm may have a greater
incentive to lower its price, towards a static best response price, to take demand from the outside
good. See below for an example.
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Figure B.1: Equilibrium Average Price Increases in the Infinite Horizon Two-Type
Duopoly Model as a Function of Diversion and Serial Correlation of Costs
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Notes: red dots mark outcomes where there is a stationary separating equilibrium with av-
erage prices less than 0.5% above static BNE levels. The blue circles mark outcomes where
there is a stationary separating equilibrium with larger average price increases relative to
static BNE prices, and the size of the circle is linearly increasing in the percentage differ-
ence in prices (the largest effect shown has average prices increasing by 44.8%). Orange
crosses mark outcomes where the conditions required to solve for best response functions
fail and we cannot find an equilibrium. The diversion is measured by the proportion of
demand that goes to the rival product when one product experiences a small increase in
price at CI Nash equilibrium prices given average costs.
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the demand that the rival loses will come to the firm), and the increase in a rival’s

price has a greater effect on the firm’s best response. For moderate diversion, such

as 0.6, an equilibrium cannot be sustained once serial correlation increases above

0.66. When diversion to rival products is very high, equilibria can be sustained

with very large price effects: we find a maximum price increase of 44.8%.9

B.2.1.2 Failure of the Conditions Required for Existence of a Sepa-

rating Equilibrium.

We now consider in more detail an example where the conditions required

for separation fail. Demand is the same as before (i.e., indirect utility is ui,c =

5 − 0.1pi + 0.25νc + (1 − 0.25)εi,c), and each firm’s marginal cost is either 8 (low)

or 8.05 (high). We assume that ρ = 0.99 so a signal is very informative about next

period’s marginal costs and signaling incentives are strong.

Figure B.2: Equilibrium Prices in the Two-Type Marginal Cost Model (parameters
described in the text)
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Figure B.2 shows the full set of eight equilibrium prices in each period as we
9In the diagram, the highest serial correlation for which we can find an equilibrium falls when

we increase diversion above 0.95. This appears to reflect the fact that, at this level, small increases
in diversion can increase signaling prices significantly, leading the conditions to fail. For each
considered value of diversion above 0.95, we identify a value of ρ where signaling raises prices by
more than 43.0% and 44.8%.
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move backwards from the end of the game. The legend denotes states by {“the

firm’s perceived cost in t−1”, “its rival’s perceived cost in t−1” - “the firm’s realized

marginal cost in t”} so blue indicates prices for a firm whose perceived marginal

cost in the previous period was high, its rival’s perceived previous period cost was

low, and a cross (circle) indicates that the firm’s current cost is low (high).

The green crosses (LL-L) remain almost unchanged across periods, as they

represent static best responses when both players know that their rival is very

likely to be setting the same price, but, as we move earlier in the game, the re-

maining prices increase, because they involve either signaling (by a c firm) or a

static best response to a rival who is likely to be raising its price to signal.

In period T − 6 the order of the prices changes with the HH-H price (red

circle) below the HL-H price (blue circle). This implies that in period T − 7, a

firm that believes its rival is likely to be high cost, is more likely to increase its

rival’s next period (T −6) price if it (the firm) is believed to be low cost than if it is

believed to be high cost. As profits increase in the rival’s price, this will lead belief

monotonicity to be violated.

Why does the order of the red and blue circles switch? It reflects changes

in both the incentive to signal (i.e., the possible effect on future prices) and the

cost of signaling (i.e., the effect on current profits). Recall that in the two-type

model the equilibrium price of the c type is determined by the lowest price that

the low-cost firm would be unwilling to set even if choosing it would lead to it

being perceived as high cost. Consider the cost, in terms of foregone period T − 6

profit, for a low-cost firm of raising its price. The upper panel of Figure B.3 shows

the period T − 6 one-period profit functions for a low cost firm given different

beliefs about previous firm types and the expected price of the rival.10 The lower

panel shows the corresponding derivatives of the profit function with respect to

the firm’s own price. For prices above $34, the marginal loss in profit from a price

increase is greater for a red firm (i.e., a firm likely to face a high cost rival) than

10For example, an HL firm expects to face a low-cost LH firm (setting a black cross price) with
probability 0.99, so the expected rival price is $29.46.
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Figure B.3: Period T − 6 Profit Functions in the Two-Type Game
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a blue firm (i.e., a low cost rival) so it is less costly for the blue firm to raise its

price.11

Now consider the incentive of a low-cost firm to signal (i.e., to pretend to be

high-cost). The incentive of an HL (blue) firm to signal a high cost in period T − 6

is that it is very likely to lead to its rival setting the black cross, rather than the

green cross, price in period T − 5. This difference is large, so that the incentive to

signal is strong. The incentive of an HH (red) firm to signal is that this will very

likely lead to it facing the red, rather than the blue, circle price in period T − 5.

These period T − 5 prices are closer together (than the black and green crosses)

so the incentive to signal will tend to be weaker. The cost and the incentive effects

together lead to a reversal of the order of the period T − 6 equilibrium prices,

causing belief monotonicity to fail in period T − 7.

B.2.1.3 Effect of the Number of Firms on Equilibrium Outcomes.

We can also use the two-type model to illustrate the effects of increasing the

number of symmetric competitors. Demand is the same as in our example in the

text (i.e., indirect utility is ui,c = 5− 0.1pi + 0.25νc + (1− 0.25)εi,c), and each firm’s

marginal cost is either 8 (low) or 8.05 (high). We assume ρ = 2
3
. Figure B.4

shows average equilibrium prices under CI and in our model in infinite horizon

games with between 1 and 7 firms. For comparison, average prices with joint

profit maximization under CI are also included. Monopoly prices are (obviously)

identical under complete and asymmetric information. Relative to CI, dynamic

signaling raises average prices by 7.4% under duopoly, 2.2% under triopoly and

0.9% with four firms. With seven firms, the effect is just 0.1%.

The interpretation of why signaling raises prices more when there are fewer

firms is that it is a strategic investment to raise rivals’ future prices: a firm sacrifices

profits in the current period, in order to raise its profits in the next period. For the

11The crossing of the derivative functions reflects the failure of strategic complementarity (de-
fined as ∂2πi

∂pi∂pj
> 0) for logit-based demand when prices are significantly above static profit-

maximizing levels. The intuition is that, as a rival’s price increases, the incentive for a firm to
reduce its (high) price towards the static best response price can increase.
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Figure B.4: Equilibrium Effects on Average Prices in the Infinite Horizon Two-Type
Model with Different Numbers of Symmetric, Single Product Firms
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same indirect utility function, a price increase becomes more costly in terms of

current lost profits when there are more firms because a firm’s residual demand is

more elastic. In addition, there is a reduced incentive for a single firm to invest

because, all else equal, the expected price of single firm will have less effect on

the prices of its rivals.
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B.2.2 Alternative Sources of Asymmetric Information.

While it is plausible that, in many industries, firms have some private infor-

mation about their marginal costs and that whatever is unobserved is likely to be

serially correlated, our results are not dependent on assuming that it is marginal

costs that are privately observed. In this Appendix we consider three examples

where marginal costs are fixed and known and the asymmetric information is

embedded in a different part of the profit function. In each case we show that

equilibrium prices can be significantly higher, and more volatile, than in the CI or

static incomplete information versions of the model. The fact that other formula-

tions generate similar results is not surprising, but we perform the calculations in

order to emphasize the point that we are not tied to the marginal cost assumption.

In all cases, we assume single-product duopolists, as in Section 2.3, and we solve

the continuous type, infinite horizon version of our model. The demand parame-

ters also take on their baseline values from Section 2.3, and marginal cost of each

firm is held fixed at 8.

Variant 1: Weights on Profits and Revenues. In the first variant, we al-

low for there to be uncertainty about the weight that each firm places on profits

rather than revenues. A number of theoretical and empirical papers study whether

managers want to maximize profits or alternative outcome variables, and whether

shareholders might strategically choose to incentivize managers to deviate from

profit maximization (e.g., Sklivas (1987), Katz (1991), Murphy (1999), De An-

gelis and Grinstein (2014)). The empirical literature suggests that managers are

affected by a variety of incentives that may be complicated for outsiders to evalu-

ate and which may vary over time, depending on oversight from shareholders or

corporate boards, and financial constraints.

Without assuming a particular theory of governance, we suppose that the

weight placed on profits by firm i in period t is τi,t and that this variable lies on

the interval [0.89, 0.9], with the remaining weight on firm revenues. As before, we

suppose that the variable evolves according to a truncated AR(1) process, with
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ρ = 0.8. The standard deviation of the innovations is chosen so that, as for our

baseline model where marginal costs are private information, the probability that

a type will transition from the highest point of the support in one period to a value

in the lower half of the support in the next period is 0.32.

The first panel of Table B.1 reports the average CI price when both firms

(are known to) maximize profits is 22.59. When a firm places some weight on

revenues, it will tend to set a lower price, and the average static BNE or CI price

when the profit weight lies on [0.89, 0.90] is 21.79. However, with signaling, av-

erage prices increase significantly: in this example, the average Markov Perfect

Bayesian Equilibrium price is 8.2% above the average price level when both firms

are known to maximize profits, with profits increasing by 18%. This example sug-

gests there may be some advantage to shareholders if they keep managers’ in-

centives opaque to rivals even in markets where firms set prices for differentiated

products.12

Variant 2: Weight on Profits of Other Firms in the Industry. In the em-

pirical Industrial Organization literature, it is common to model tacitly collusive

behavior in a reduced-form way by generalizing static first-order conditions to al-

low for each firm to place some weight on the profits of other firms in the same

market (Porter (1983), Bresnahan (1989), Miller and Weinberg (2017)). This

type of formulation could also be rationalized by models where participants in

financial markets become more optimistic about a firm’s prospects when its rivals

announce high profits (Rotemberg and Scharfstein (1990)) or by models where

firms maximize the overall returns of shareholders who hold stock in competitors

(O’Brien and Salop (1999), Azar et al. (2018)).

We consider a model where rivals have some limited uncertainty about the

weight that a firm places on its own profit rather than the profit of the industry.

Specifically we assume that each firm places a weight τi,t of [0.98, 1] on its own

12The usual explanation for why shareholders might want to commit to incentivizing their man-
agers to place some weight on revenues comes from quantity-setting models where other firms
will reduce their output when a firm’s managers are committed to increase their output. In our
model it is uncertainty about what firms are trying to maximize that causes equilibrium prices to
rise, through the mechanism of signaling.
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profits, and 1 − τi,t on the profits of the industry as a whole (of course, its own

profits also contribute to industry profits). We assume that the transition process

has ρ=0.8 and σ = 0.0088, which means that the probability of a type transitioning

from the highest point of the support to below the median is 0.32, as in the first

example. As can be seen in the second panel of Table B.1, the effect is, once again,

to raise prices substantially in the dynamic game with asymmetric information.

Variant 3: Demand Shocks. Our experience in seminars is that many

economists believe it is more intuitive that some aspect of demand will be pri-

vate information to the firm than marginal costs will be.

Some formulations of demand uncertainty give rise to signaling incentives

that would be qualitatively different from the ones in our framework. For ex-

ample, suppose that demand has a logit structure and that each firm has private

information about the serially correlated and unobserved quality of its product.

Duopolist firms observe each other’s prices but not quantities, so that prices are

informative about quality. A firm with higher quality will want to charge a higher

price, but its rival’s optimal price will likely decrease in the firm’s quality, so it is

unclear whether a firm will want to be perceived as high quality or as low quality.

This is likely to be a case where only some type of pooling equilibrium exists.

Here we consider a simple example where firms do have incentives to raise

prices to signal that their demand is high. Suppose that each firm sells its products

in two markets. In one market, the firms compete as duopolists, but in the other

market the firm is a monopolist (so for example, both firms are in market A, firm

1 is the only firm in market B, and firm 2 is the only firm in market C). Due to

the possibility of arbitrage, or some other constraint, each firm can only set one

price across the markets. One rationalization of this setup would be that each

firm has some loyal or locked-in customers, but that additional consumers are

competed for. Product quality is known, but firms are uncertain about the size

of their rival’s loyal market. Normalizing the size of the common market to 1,

the sizes of the loyal markets lie between [0.1, 0.12]. The utility specification is

the same as before except loyal customers only choose between a single product
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and the outside good. The transition assumptions are the same as in variant 2.

In this formulation, firms will set prices based on the weighted average marginal

revenues from the two markets, and when the size of their monopoly market is

larger they will prefer higher prices. A firm will therefore have incentive to raise

its price to signal that its monopoly market is larger.

The results are presented in the third panel of Table B.1. The addition of the

loyal market, where a firm’s demand is less elastic, raises prices under all informa-

tion structures, but the average signaling equilibrium prices are 10% higher than

the prices under CI or in a static game with asymmetric information.
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B.3 Existence and Uniqueness of a Fully Separating Equilibrium in
a Finite Horizon Game with Linear Demand

As discussed in the text, Mailath (1989) and Mester (1992) provide proofs

of the existence and uniqueness of a fully separating equilibrium in a two-period

duopoly, linear demand, continuous cost price-setting game and a three-period

duopoly, linear demand, continuous cost quantity-setting games respectively. This

Appendix presents a theoretical proof of existence and uniqueness of a fully-

separating Markov Perfect Bayesian Equilibrium for a finite-horizon duopoly pric-

ing game with linear demand and marginal costs that are private information, un-

der a condition that the range of costs is “small enough" so that the single-crossing

condition holds. As explained in the text, we have to rely on computational analy-

sis when assuming nonlinear demand or an infinite horizon, and in our application

we assume both.13 However, we include our proof for the linear demand and finite

horizon case for completeness.

We make the following specific assumptions on the model. There are two

firms, and i will index the firm.

Assumptions

A1 (linear demand). qi,t = ai − b1,ipi,t + b2,ipj,t, b1,i > b2,i > 0.

A2 (positive demand). The intercepts a are large enough that for all of the

prices charged on the equilibrium path, both firms will have positive output.

A3 (continuous cost interval). The marginal costs of each firm, ci,t, lie on

compact intervals where [ci, ci] where ci > ci > 0.

A4 (cost transitions). Costs evolve independently according to first-order

Markov processes with conditional densities Ψi(ci,t|ci,t−1), where the conditional

density functions are smooth in ci,t and ci,t−1 and strictly positive for all [ci, ci].

E(ci,t|ci,t−1) is continuous and strictly increasing in ci,t−1.

A5 (discount factor). There is a common discount factor 0 < β < 1.

The statement of the results and the proof will use the following notation.
13Our proof is for two firms that may be asymmetric. Extending the proof to three symmetric

firms is straightforward.
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• πi,t denotes per-period profits in period t. πi,t = (pi,t − ci,t)qi,t(pi,t, p−i,t).

• Vi,t(ci,t−1, ĉi,t−1, cj,t−1) is i’s value at the beginning of period t, before ci,t is

revealed, when it is perceived to have cost ĉi,t−1, and its real cost is ci,t−1,

and it believes that j’s t− 1 cost was cj,t−1.

• Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) (“signaling payoff function”) represents the expected

current and future profits (given equilibrium behavior in future periods) of

firm i in period t, when it sets price pi,t, has cost ci,t and is perceived, at the

end of the period, as having cost ĉi,t. cj,t−1 is i’s perception of j́’s cost in

period t − 1. In equilibrium, this perception will be correct so we denote it

simply by cj,t−1. Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) is implicitly conditioned on j’s period

t pricing strategy, which will involve j setting a price with an average of

pj,t and which i assumes will reveal cj,t. Πi,t
k (ci,t, ĉi,t, pi,t, cj,t−1) denotes the

derivative of Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) with respect to the kth argument.

• Prices (the proof will indicate conditioning arguments where necesary):

– p∗i,t is i’s equilibrium strategy in a fully separating MBPE (i.e., it is a

function);

– pBRi,t is i’s separating best response pricing function given some separat-

ing strategy (not necessarily the equilibrium strategy) by j;

– p∗∗i,t is a price that is a statically optimal best response (i.e., maximizes

i’s current profits) given j’s strategy;

– pj,t is the average price set by j when it uses a particular strategy; and,

– our description of separating pricing strategies will refer to “initial val-

ues”, which will reflect a p∗∗i,t price determined as the solution to a static

profit maximization problem when ci,t = ci, and, the “increment” which

refers to the additional price above this initial value that may reflect

signaling behavior.
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B.3.1 Preliminary Results.

We begin with a useful Lemma.

Lemma 2. In a fully separating Markov Perfect Bayesian Equilibrium, play on the

equilibrium path will have the following properties, (L-i) p∗i,t will be a function of

ci,t and the costs ci,t−1 and cj,t−1 revealed by prices at t − 1; (L-ii) the only effect of

ci,t−1 on p∗i,t is through the effect that it will have on the expected value of pj,t; (L-iii)

i’s period t price, and the inference that j makes about ci,t, based on this price, will

affect i’s profits in t and t+ 1 only.

Proof. (L-i) In a fully separating equilibrium, prices at t − 1 will reveal marginal

costs at t − 1 and the first-order Markovian assumption on the Ψis implies that

costs at t − 1 contain all available information from earlier periods about costs.

The Markovian equilibrium assumption implies that strategies depend on payoff-

relevant state variables (current costs) and beliefs about those variables, only.

This implies that strategies can be functions of ci,t (which is private information to

i when pi,t is chosen), ci,t−1 and cj,t−1 only.

(L-ii) The equilibrium choice of p∗i,t will depend on its effect on expected

profits in future periods and expected profits at t. Property (L-i) implies that

given pi,t, which reveals ci,t, ci,t−1 will not affect what happens at t+ 1. Expected

profits in period t are (pi,t − ci,t)(ai − b1,ipi,t + b2,ipj,t) so ci,t−1 can only affect i’s

payoffs through its effect on pj,t.

(L-iii) Suppose that instead of equilibrium price p∗i,t, i sets a price p′i,t in the

range of the equilibrium price function. t+1 strategies specify an optimal strategy

for i given ci,t+1, cj,t and the cost implied by p′i,t, and it will be optimal to use these

strategies at t + 1 (because of property (L-ii)), so t + 1 strategies will correctly

reveal ci,t+1. Therefore charging p′i,t not p∗∗i,t only affects profits at t and t+ 1.

Our results characterizing firm i’s separating best response function in period

t, given a fully revealing pricing strategy, of any form, by j and the assumed form
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of strategies at t+ 1, are based on the following theorems which are adapted from

Mailath (1987).

Theorem 7. Adapted from Theorems 1 and 2, and the Corollary, in Mailath (1987).

If (MT-i) Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) is smooth in arguments (ci,t, ĉi,t),

(MT-ii) Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1) > 0 [belief monotonicity], (MT-iii) Πi,t

13(ci,t, ĉi,t, pi,t, cj,t−1)

> 0 [type monotonicity], (MT-iv) Πi,t
3 (ci,t, ĉi,t, pi,t, cj,t−1) = 0 for only one pi, and for

this pi, Πi,t
33(ci,t, ĉi,t, pi,t, cj,t−1) < 0 [strict quasi-concavity], (MT-v) there exists k > 0

such that Πi,t
33(ci,t, ĉi,t, pi,t, cj,t−1) ≥ 0 implies

∣∣Πi,t
3 (ci,t, ĉi,t, pi,t, cj,t−1)

∣∣ > k, then a

pricing function pBRi,t (ci,t, cj,t−1) that solves the differential equation

∂pBRi,t (ci,t, cj,t−1)

∂ci,t
= −Πi,t

2 (ci,t, ci,t, pi,t, cj,t−1)

Πi,t
3 (ci,t, ci,t, pi,t, cj,t−1)

(B.1)

and has a lower initial value condition where pBRi,t (ci, cj,t−1) solves

Πi,t
3 (ci, ci, p

BR
i,t (ci, cj,t−1), cj,t−1) = 0 is the unique fully separating best response func-

tion if a fully separating best response exists.

Theorem 8. Adapted from Theorem 3 in Mailath (1987). Suppose assumptions

(MT-i)-(MT-v) in Theorem 7 hold. If (MT-vi), for (ĉi, p) in the graph of pBRi,t (ci,t, cj,t−1),
Πi,t3 (ci,t,ĉi,t,pi,t,cj,t−1)

Πi,t2 (ci,t,ĉi,t,pi,t,cj,t−1)
is either strictly increasing or decreasing in ci,t [single-crossing],

then the fully separating best response described in Theorem 7 exists.

B.3.2 Main Result.

The following theorem gives our main result.

Theorem 9. If ci−ci is small enough for all i, in any finite horizon game there

will exist a unique fully separating MPBE where, on the equilibrium path, firm i’s

equilibrium pricing strategy p∗i,t(ci,t, ci,t−1, cj,t−1) in any period t < T has the form

of the best response function described in Theorem 7. In period T firms will choose

static payoff-maximizing prices given their beliefs about rivals’ costs in period T − 1.
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In periods t < T , pricing strategies will have the following features: (T-i) (a) the

initial values (i.e., static best response prices when ci,t =ci) are functions of cj,t−1 and

ci,t−1 only (in the following we will denote the function that determines the initial

value gi,t(cj,t−1, ci,t−1)), and (b) the increment above the initial value (a function

fi,t(ci,t, cj,t−1)) is a continuous function of ci,t and cj,t−1 only, and in particular it does

not depend on pj,t; (T-ii) for all ci,t >ci the price charged is always above the static best

response price for ci,t, (T-iii) the effect of cj,t−1 on the increment only comes through

its effect on i’s belief about the distribution of cj,t+1, and (T-iv) (a) i’s pricing function

is continuous and strictly increasing in ci,t, (b) i’s pricing function is continuous and

strictly increasing in pj,t, (c) i’s pricing function is continuous and strictly increasing

in ci,t−1 and (i’s perception of) cj,t−1.

B.3.2.1 Proof.

The proof uses induction, showing that if strategies have this form in periods

t+ 1,...,T − 1 there will exist a unique MPBE with the required form in any period

t < T − 1. We then show that the form of equilibrium strategies in period T will

lead to strategies that have the specified form in period T − 1.

Period t < T −1. The logic of the proof for period t is to show that the conditions

required for Mailath’s theorems hold given Lemma 2 and the assumed equilibrium

form of pricing behavior in t + 1. This shows that there will be a unique best

response pricing function for each firm given any separating strategy of the other

firm. This will let us show some of the features specified above. We then show

that there can be only one pair of pricing functions with these properties that are

best responses to each other, and this will allow us to show the remaining features.

Uniqueness, Existence and Form of i’s Fully Separating Best Response Function Given

j’s Strategy.

We go through the conditions required for Mailath’s results in turn.
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Condition (MT-i): Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) is smooth in arguments (ci,t, ĉi,t). Lemma

2 implies that

Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) = Eπi,t(ci,t, pi,t, pj,t) + βE(Vi,t+1(ci,t, ĉi,t, cj,t|cj,t−1)) (B.2)

where the second expectation is over the cost that j reveals in period t.

Eπi,t(ci,t, pi,t, pj,t) = (pi,t − ci,t)(ai − b1,ipi,t + b2,ipj,t) which is smooth in ci,t. Profits

in t + 1 will be equal to (pi,t+1 − ci,t+1)(ai − b1,ipi,t+1 + b2,ipj,t+1) and smoothness

of the period-t expectation of these profits follows from the assumed smoothness

of the Ψi conditional densities (A4) and the continuity of the pricing functions (T-

i/T-iv). Similar logic (and the results concerning period T prices below) implies

that the period-t expectation of discounted profits in t + 2 and future periods will

also be continuous in ci,t, cj,t−1 and ĉi,t. Therefore βE(Vi,t+1(ci,t, ĉi,t, cj,t|cj,t−1)) will

be smooth in ci,t, ĉi,t and cj,t−1.

Condition (MT-ii): Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1) > 0. From Lemma 2, ĉi,t only affects fu-

ture profits in period t+1 given equilibrium play from t+1 forwards (L-iii). Denote

expected profits in period t + 1 when j charges an expected price pj,t+1(ĉi,t, cj,t),

Eπi,t+1(ci,t+1, pi,t+1, pj,t+1(ĉi,t, cj,t)), so

Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1) = ...∫ ∫

∂Eπi,t+1(ci,t+1, pi,t+1, pj,t+1(ĉi,t, cj,t))

∂ĉi,t
Ψi(ci,t+1|ci,t)Ψj(cj,t|cj,t−1)dci,t+1dcj,t

Given that ∂pj,t+1(ĉi,t,cj,t)

∂ĉi,t
> 0 (T-iv (c)), it is sufficient to show that

∂Eπi,t+1(ci,t+1,pi,t+1,pj,t+1)

∂pj,t+1
> 0.

Express the price that i charges in t + 1 as pi,t+1 = p∗∗i,t+1(pj,t+1, ci,t+1) +

p′, where p∗∗i,t+1(pj,t+1, ci,t+1) is the static profit-maximizing best response to pj,t+1

given ci,t+1 and p′ ≥ 0 is an increment above the static best response price. Linear
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demand implies that i’s expected t+ 1 profit is

Eπ′i,t+1(ci,t+1, p
′, pj,t+1) = (p∗∗i,t+1(pj,t+1, ci,t+1) + p′ − ci,t+1) ∗ ...

(ai − b1,i(p
∗∗
i,t+1(pj,t+1, ci,t+1) + p′) + b2,ipj,t+1) (B.3)

= Eπ′i,t+1(ci,t+1, 0, pj,t+1) +

∫ p′

0

∂Eπ′i,t+1(ci,t+1, x, pj,t+1)

∂x
dx

(B.4)

= Eπ′i,t+1(ci,t+1, 0, pj,t+1) +

∫ p′

0

(−2bi,1x)dx (B.5)

where the last line uses the facts that

∂Eπ′i,t+1(ci,t+1, x, pj,t+1)

∂x
= ai − 2b1,ip

∗∗
i,t+1(pj,t+1, ci,t+1)− 2b1,ix+ b2,ipj,t+1 + b1,ici,t+1,

(B.6)

and

ai − 2b1,ip
∗∗
i,t+1(pj,t+1, ci,t+1) + b2,ipj,t+1 + b1,ici,t+1 = 0, (B.7)

as p∗∗i,t+1(pj,t+1, ci,t+1) is the static profit-maximizing price, so that
∂Eπ′i,t+1(ci,t+1,x,pj,t+1)

∂x

= −2b1,ix.

Therefore,

∂Eπ′i,t+1(ci,t+1, p
′, pj,t+1)

∂pj,t+1

=
∂Eπ′i,t+1(ci,t+1, 0, pj,t+1)

∂pj,t+1

(B.8)

= b2,i(p
∗∗
i,t+1(pj,t+1, ci,t+1)− ci,t+1) > 0. (B.9)

where the final step uses the envelope-theorem as p∗∗i,t+1(pj,t+1, ci,t+1) is the static

profit-maximizing price.

Condition (MT-iii): Πi,t
13(ci,t, ĉi,t, pi,t, cj,t−1) > 0.

∂Πi,t(ci,t, ĉi,t, pi,t, cj,t−1)

∂pi,t
= ai − 2bi,1pi,t + b2,ipj,t + bi,1ci,t (B.10)
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as, conditional on ĉi,t, pi,t only affects period t profits. Therefore,

Πi,t
13(ci,t, ĉi,t, pi,t, cj,t−1) =

∂Πi,t(ci,t, ĉi,t, pi,t, cj,t−1)

∂pi,t∂ci,t
= b1,i > 0 (B.11)

Condition (MT-iv): Πi,t
3 (ci,t, ĉi,t, pi,t, cj,t−1) = 0 for only one pi,t, and for this pi,t,

Πi,t
33(ci,t, ĉi,t, pi,t, cj,t−1) < 0.

Πi,t
33(ci,t, ĉi,t, pi,t, cj,t−1) = −2b1,i < 0 ∀pi,t (B.12)

so Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) will have a unique maximum in pi,t.

Condition (MT-v): there exists k > 0 such that if Πi,t
33(ci, ĉi, pi, cj,t−1) ≥ 0 then∣∣Πi,t

3 (ci, ĉi, pi, cj,t−1)
∣∣ > k. As Πi,t

33(ci, ĉi, pi, cj,t−1) < 0 for all pi,t, the condition is

trivially satisfied.

Therefore, based on Theorem 9, if a fully separating best response function

in period t exists, it is uniquely characterized as pBRi,t (ci,t, cj,t−1) as the solution to a

differential equation

∂pBRi,t (ci,t, cj,t−1)

∂ci,t
= −Πi,t

2 (ci,t, ci,t, pi,t, cj,t−1)

Πi,t
3 (ci,t, ci,t, pi,t, cj,t−1)

(B.13)

with a lower initial condition price pBRi,t (ci, cj,t−1) that solves

Πi,t
3 (ci, ci, p

BR
i,t (ci, cj,t−1), cj,t−1) = 0.

Period t Pricing Function Properties, Part I

Before discussing single-crossing, we can now prove some features of period-

t pricing functions given this characterization of best responses.
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Feature (T-ii): the price charged is always above the static best response price for

all ci,t >ci.

Proof: as Πi,t
2 (ci,t, ci,t, pi,t, cj,t−1) > 0, and is independent of the value of pi,t, and

Πi,t
3 (ci,t, ci,t, pi,t, cj,t−1) < 0 for prices above the static best response price, and

Πi,t
3 (ci,t, ci,t, pi,t, cj,t) → 0 as pi,t approaches the static best response price for any

ci,t, the solution to the differential equation for a specific ci,t will be greater than

the static best response price given ci,t except at ci.

Feature (T-i(b)): the increment above the initial value is a function of ci,t and cj,t−1

only, and it does not depend on pj,t.

Proof: the initial value solves Πi,t
3 (ci, ci, p

∗
i,t(ci), cj,t−1) = 0, i.e., it is a static best re-

sponse when ci,t = ci to the expected price pj,t. As the numerator in the differential

equation, Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1), is independent of pi,t and Πi,t

3 (ci,t, ĉi,t, pi,t, cj,t−1)

depends only on the increment of pi,t above the intercept, the increment depends

only on ci,t and (possibly) cj,t−1.14

Feature (T-iii): the effect of cj,t−1 on the increment only comes through its effect

on i’s belief about the distribution of cj,t+1.

Proof: cj,t−1 affects pj,t and i’s period t belief about the distribution of cj,t+1, which

will affect i’s expectation of pj,t+1 . Given T-i(b), pj,t does not affect the increment.

From Lemma 2 (L-ii), at the start of period t + 1, the expectation of pj,t+1 will

depend only on cj,t (revealed by j’s period t price) and ĉi,t. Therefore the only

14The proof of (MT-ii) shows that Πi,t
3 only depends on the increment of pi,t above the static

best response price for ci,t (not the initial value which is the best response for ci). However, given
linear demand, static best responses are given by

p∗∗i,t =
ai

2b1,i
+
ci,t
2

+
b2,i
2b1,i

pj,t

so the increment of the static best response price above the static best response for ci,t =ci only
depends on ci,t−ci.
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effect that cj,t−1 can have on the period t increment, which is set before pj,t is

revealed, is that it affects i’s beliefs about the distribution of cj,t+1.

Feature (T-iv): (a) the pricing function is increasing and continuous in ci,t.

Proof: (a) as Πi,t
2 (ci,t, ci,t, pi,t, cj,t−1) > 0 and Πi,t

3 (ci,t, ci,t, pi,t, cj,t−1) < 0 above the

static best response price, the pricing function must be increasing in ci,t.

Single-Crossing.

Condition (MT-vi): we need to show that, in the graph of (ĉi,t, pi,t),
Πi,t3 (ci,t,ĉi,t,pi,t,cj,t−1)

Πi,t2 (ci,t,ĉi,t,pi,t,cj,t−1)

is either strictly increasing or decreasing in ci,t. This amounts to showing that
∂

Π
i,t
3 (ci,t,ĉi,t,pi,t,cj,t−1)

Π
i,t
2 (ci,t,ĉi,t,pi,t,cj,t−1)

∂ci,t
is either positive or negative within the graph of (ĉi,t, pi,t)

∂
Πi,t3 (ci,t,ĉi,t,pi,t,cj,t−1)

Πi,t2 (ci,t,ĉi,t,pi,t,cj,t−1)

∂ci,t
= ...

Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1)

∂Πi,t3 (ci,t,ĉi,t,pi,t,cj,t−1)

∂ci,t
− Πi,t

3 (ci,t, ĉi,t, pi,t, cj,t−1)
∂Πi,t2 (ci,t,ĉi,t,pi,t,cj,t−1)

∂ci,t(
Πi,t

2 (ci,t, ĉi,t, pi,t, cj,t−1)
)2

The denominator is positive. As ∂Πi,t3 (ci,t,ĉi,t,pi,t,cj,t−1)

∂ci
= b1 > 0, and Πi,t

2 (ci,t, ĉi,t, pi,t) >

0 the first term in the numerator is strictly positive, and does not depend on pi,t.

Recognizing that ∂pj,t+1

∂ci,t∂ĉi,t
= 0,

∂Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1)

∂ci,t
= ...

βb2,i

∫ ∫
(p∗∗i,t+1(ci,t+1, pj,t+1)− ci,t+1)

∂pj,t+1

∂ĉi,t

∂Ψi(ci,t+1|ci,t)
∂ci,t

Ψj(cj,t|cj,t−1)dci,t+1dcj,t.

∂pj,t+1

∂ĉi,t
is positive (T-iv). With linear demand, the static mark-up, p∗∗i,t+1(ci,t+1, pj,t+1)−

ci,t+1, will decrease in ci,t+1, and given the assumptions on the densities Ψi,∫
(p∗∗i,t+1(ci,t+1, pj,t+1)− ci,t+1)

∂Ψi(ci,t+1|ci,t)
∂ci,t

dci,t+1 < 0, but it will be bounded.

For prices at or above the static best response price, Πi,t
3 (ci,t, ĉi,t, pi,t, cj,t−1) ≤
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0, but, critically, Πi,t
3 (ci,t, ĉi,t, pi,t, cj,t−1) must be close to 0 when pi,t is not too far

above the static best response price. As the signaling price function is continuous

and increasing in ci,t, and is equal to the static best response price when ci,t =ci, it

follows that
∂

Π
i,t
3 (ci,ĉi,pi)

Π
i,t
2 (ci,ĉi,pi)

∂ci
> 0 when the interval [ci,ci] is small enough.

Therefore, from Theorem 8, the unique fully separating best response func-

tion described above exists.

A Unique MPBE in Period t Given the Form of the Best Response Functions.

The proof so far has chosen that, given a separating pricing strategy of j,

i will have a unique fully separating best response that takes the required form.

We now show that, with linear demand, the pair of separating functions used by i

and j, given a pair ci,t−1 and cj,t−1, as best responses to each other, will be unique

(i.e., there cannot be more than one distinct pair of best response functions that

are best responses to each other).

Recall that the only effect of a change in pj,t is on the intercept of i’s pricing

function. Therefore, holding fixed strategies in future periods, a change in j’s

period t strategy only translates i’s best response pricing function upwards and

downwards. It follows that there can only be a unique equilibrium if, for both i

and j, 0 <
∂p∗i,t
∂pj,t

< 1.

Proof:
dp∗i,t(ci)

dpj,t
=

b2,i
2b1,i

, which, given A1, is strictly greater than zero and strictly less

than one, as required.

Period t Pricing Function Properties, Part II.

We can now show the remaining features of the equilibrium pricing func-

tions.

Feature (T-i(a)): the initial values (i.e., static best response prices when ci,t =ci)

are continuous functions of cj,t−1 and ci,t−1 only.

Proof: this follows directly from the Markovian assumption as cj,t−1 and ci,t−1
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are sufficient to determine both players’ beliefs about period t costs, and, given

Theorem 9, to uniquely determine pj,t.

In the following, we will denote the function that determines the initial value

gi,t(cj,t−1, ci,t−1). The increment above the initial value, which we will denote

fi,t(ci,t, cj,t−1), is a continuous function of ci,t and cj,t−1 only. From T-i(b), the

increment does not depend on pj,t.

Feature (T-iv(b)): i’s pricing function is continuous and strictly increasing in pj,t,

and feature (T-iv(c)): i’s pricing function is continuous and strictly increasing in

(i’s perception of) cj,t−1.

Proof: The equilibrium price functions have the form

p∗i,t = gi,t(ci,t−1, cj,t−1) + fi,t(ci,t, cj,t−1)

where, as already shown, gi,t(ci,t−1, cj,t−1) is the solution to

gi,t(ci,t−1, cj,t−1) =
ai

2b1,i

+
ci

2
+

b2,i

2b1,i

pj,t(ci,t−1, cj,t−1)

which is increasing and continuous in pj,t. From the perspective of firm i, pj,t is

equal to

pj,t =
aj

2b1,j

+
cj

2
+

b2,j

2b1,j

pi,t +

∫ cj

cj

fj,t(cj,t, ci,t−1)Ψj(cj,t|cj,t−1)dcj,t

where the continuity of the increment f and the conditional density Ψj(cj,t|cj,t−1),

and the properties that (i) fj,t(cj,t, ci,t−1) is increasing in cj,t, and (ii) the integral

is increasing in cj,t−1 means that pj,t is continuous and increasing in cj,t−1, holding

pi,t fixed. But as pi,t is also increasing, and continuous, in pj,t and vice-versa, both

pricing functions will also be increasing and continuous in both ci,t−1 and cj,t−1.
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Strategies in Period T .

It remains to show that strategies in the final period have a form that will

lead to the type of separating equilibrium strategies described above in period

T − 1. The required features are that:

• the period T equilibrium pricing function of firm i is continuous in ci,T , ci,T−1

and cj,T−1; and,

• the expected value pi,T is increasing in cj,T−1.

In period T , both firms will use static optimal strategies given their beliefs

about their rival’s previous price. Therefore

p∗i,T =
ai

2b1,i

+
ci,T
2

+
b2,i

2b1,i

pj,T

where

pj,T =
aj

2b1,j

+
b2,j

2b1,j

pi,t +
E(cj,T |cj,T−1)

2

and solving these equations simultaneously gives

pj,T =

(
aj

2b1,j
+

aib2,i
4b1,jb1,i

)
+

b2,jE(ci,T |ci,T−1)

4b1,j
+

E(cj,T |cj,T−1)

2(
1− b2,ib2,j

4b1,ib1,j

)
so

p∗i,T =
ai

2b1,i

+
ci,T
2

+
b2,i

2b1,i


(

aj
2b1,j

+
aib2,i

4b1,jb1,i

)
+

b2,jE(ci,T |ci,T−1)

4b1,j
+

E(cj,T |cj,T−1)

2(
1− b2,ib2,j

4b1,ib1,j

)
 .

Given the form of Ψi and Ψj (A4), p∗i,T will be continuous in ci,T , ci,T−1 and cj,T−1,

and pj,T is increasing in ci,T−1, as required.

198



B.4 Data

This Appendix provides additional details on the data used in our empirical

analysis, and some additional analyses that are not presented in the text.

B.4.1 IRI Data.

The data comes from the beer category of the IRI Academic Dataset (Bron-

nenberg et al. (2008)). The underlying data is at the weekly UPC-store-level from

2001 to 2011. We only use data from grocery stores.

We use different samples at different points of our analysis. When perform-

ing our demand and conduct parameter analysis, we follow MW as closely as

possible (and indeed use their code as the basis for our code). When we are esti-

mating price dynamics to calibrate our model, we use selections that we view as

appropriate. For example, MW ignore sales of cans and bottles in 18-packs, which

are rare for most brands. However, 18-packs account for more than 20% of sales

(by volume) of the three flagship brands (Bud Light (BL), Miller Lite (ML) and

Coors Light (CL)) that we use in our calibration so we do not want to exclude

them. We also choose to stop our pre-JV sample at the time that the JV was an-

nounced, rather than including the period of the DOJ’s investigation as, during

the investigation, ML prices dropped quite dramatically.

In the following sub-sections, we detail the data selection and definitions

used in the two parts of the analysis.

B.4.1.1 Data Selection for the Demand and Conduct Analysis.

We follow MW in using the following selection of data.

• selection of markets: 39 geographic (IRI defined) regional markets exclud-

ing (e.g., because they lack other types of data that will be used in demand

estimation, or are viewed as having too few beer sales) the following markets

with some stores selling beer in the data: Harrisburg/Scranton; Philadel-
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phia; Providence RI; Tulsa; Minneapolis-St. Paul; Oklahoma City; Salt Lake

City; Kansas City; New England; Pittsfield; Eau Claire, WI.

• brands: 13 brands, which are BL, ML, CL, Budweiser, Miller Genuine Draft,

Miller High Life, Coors, Corona Extra, Corona Light, Heineken, Heineken

Premium Light, Michelob Ultra, Michelob Light.

• pack sizes: packages of cans and glass bottles containing the equivalent of 6,

12, 24 and 30 12oz. servings. 24 and 30-packs are aggregated into a single

“large” size. Prices are calculated as total dollars sold divided by volume in

12-pack equivalents.

• product: a product is a brand × pack size (6-pack, 12-pack, “large”) combi-

nation.

• time periods: for demand and supply estimation, data from January 2005

to December 2011 is used, but months from June 2008 to May 2009, i.e., the

period immediately after the JV was consummated, are excluded. Monthly

data is created by allocating individual days within a week to their correct

month, and assuming that sales within a week are spread equally across the

days in the week, before aggregating to the monthly level.

• distances and diesel prices: we use MW’s estimated distance from the

brewery or port (for Heineken) to the market, measured in thousands of

miles. Monthly diesel prices come from the U.S. Energy Information Admin-

istration.

• income data: the random coefficients models are estimated using data on

household income taken from the 2005-2011 PUMS samples of the American

Community Survey (ACS). We use the same samples as MW to estimate

demand.

• deflator: when using real prices, or real diesel prices, they are deflated to

January 2010 levels using the CPI-U All Urban Consumers-All Items price
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index.

The following additional variables are defined:

• market size: for each market, market size is defined as 150% of the maxi-

mum of the total sales, measured in 12-pack equivalents, of all of the brands

listed above plus 23 others (including popular brands such as Busch and

Busch Light) in the package sizes/types that are being used. When we es-

timate demand using weekly data, we use an alternative definition that de-

fines demand as 150% of the sum of the maximum sales across the stores

observed in the sample that week.

• distance measure: the distance measure is constructed by multiplying de-

flated diesel prices by the driving distance from the brewery, or port in the

case of Heineken, to the market.

• demand instruments: to estimate demand it is necessary to define instru-

ments for a product’s price and its share of volume sold amongst the products

in its nest. MW use the following instruments:

– the product’s own distance measure (iv-1)

– the sum of the distance measures for all of the products in the nest

(iv-2)

– the number of products in the nest (iv-3)

– a dummy for domestic products after the JV (iv-4)

– (iv-2) and (iv-3) interacted with a dummy for products produced by

Miller, Coors, AB or MillerCoors

– (iv-2) and (iv-3) interacted with a dummy for products produced by AB

When we estimate demand allowing for a flagship nest and an “other brand” nest,

(iv-1) and (iv-4) are interacted with a dummy for flagship products, and the other

instruments are defined at the nest level (e.g., adding over all products in the same
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nest, rather than all products). However, all three package sizes are available for

all flagship products in all markets, so, for the flagship nest, the (iv-3) instruments

are dropped due to collinearity.

B.4.1.2 Data Selection for the Calibration of Our Model.

For our calibration we depart from this selection in the following aspects.

• selection of markets: we use observations from all market-weeks where we

observe the flagship brands being sold in at least 5 stores. This gives us 45

markets before the JV, although some markets do not meet the criteria in

some weeks. The markets that are added back are: Eau Claire, Kansas City,

Minneapolis, New England, Oklahoma City, Salt Lake City. Boston never

meets the 5 store criterion after the JV so it is excluded from our estimates

of post-JV price dynamics.

• pack sizes: packages of cans and glass bottles containing the equivalent of

6, 12, 18, 24 and 30 12oz. servings. These sizes are treated separately, but

prices are converted into 12-pack equivalents.

• time periods: we use the months from January 2001 to October 2007 for

the pre-JV period. The months after May 2009, until December 2011, are

the post-JV period.

B.4.2 Additional Empirical Analyses.

We now describe several additional analyses that support the results pre-

sented in the paper.

B.4.2.1 Effects of the Joint Venture on Prices.

MW present estimates of the effects of the joint venture on prices. We present

complementary estimates here, which can be compared to the price increases pre-

dicted by our calibrated model.
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An observation in our analysis is a brand-market-month, where real prices

are calculated at the brand level by adding up the total sales in package sizes

equivalent to packs of 6, 12, 18, 24, 30 or 36 12oz. containers (we include 36-

packs in this regression where they are available, although they account for a

small proportion of sales). The sample contains the following brands: BL, ML

and CL (i.e., the domestic flagship brands), Corona Extra and Heineken which

we will treat as providing controls for industry-wide shocks, as MW assume. The

sample runs from 2001 to 2011, and includes the period immediately before and

following the JV. We consider prices defined using all store-UPC-week observations

in the appropriate sizes, and prices that are defined excluding store-UPC-week

observations that are identified as being sold at temporary price reduction prices.

We use both definitions as our analysis of price dynamics will use price series

where price reductions are removed.

Table B.2 presents the results from six specifications that differ depending on

whether price reductions are included, we use prices in levels or logs and whether

brand-time trends are included. The reported coefficients are the coefficients on

Post-JV dummies for the domestic flagship brands, so that they measure the in-

crease in real prices relative to the two imported brands. The estimated price

increases vary across the columns, but lie in the range from just over 40 cents

to one dollar, or 3% to 6%, and the price increases are smaller when we include

brand-specific time trends.
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Table B.2: Estimates of the Effects of the Joint Venture on Prices.

(1) (2) (3) (4) (5) (6)
$ Price/ Log(Price/ $ Price/ Log(Price/ $ Price/ Log(Price/
12 Pack 12 Pack) 12 Pack 12 Pack) 12 Pack 12 Pack)

incl. incl. incl. incl. excl. excl.
Post-JV
Brand Dummies
Bud Light 0.853 0.046 0.428 0.046 0.485 0.032

(0.049) (0.005) (0.064) (0.005) (0.080) (0.007)
Miller Lite 1.024 0.065 0.415 0.045 0.492 0.034

(0.058) (0.006) (0.071) (0.006) (0.070) (0.006)
Coors Light 0.945 0.056 0.438 0.048 0.542 0.040

(0.060) (0.006) (0.068) (0.006) (0.076) (0.007)

Brand Time N N Y Y Y Y
Trends

Observations 25,740 25,740 25,740 25,740 25,740 25,740
R2 0.971 0.973 0.972 0.973 0.970 0.970

Notes: the reported coefficients are on domestic brand × post-JV interactions. The brands in-
cluded are those listed, plus Corona Extra and Heineken. Observations at the brand-market-
month level, aggregating across packages containing the equivalent of 6, 12, 18, 24, 30 or 36
12oz. containers in cans or glass bottles. All specifications include market-brand and time pe-
riod fixed effects. Standard errors in parentheses clustered on the market.
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Figure B.5: Brand Market Shares Around the Joint Venture

Notes: Budweiser, Michelob Ultra and Michelob Light aggregated into “Other AB”; Miller
Genuine Draft and Miller High Life aggregated to “Other Miller”; Coors is “Other Coors”;
Heineken and Heineken Premium Light are “Heineken” and Corona Extra and Corona
Light are “Corona”. Shares based on volume sold in packages equivalent to 6, 12, 18, 24,
30 and 36 12oz containers.

B.4.2.2 Market Shares Around the Joint Venture.

Our preferred demand system for the calibration assumes that there is lim-

ited substitution between the flagship domestic brands and other brands and the

outside good, and that observed post-JV price increases should not reduce demand

for the flagship products very much. This is consistent with some of our estimates

in Table 2.5, although MW’s specifications imply more substitution.

Figure B.5 shows the volume-based market shares of the different brands

included in the demand analysis (for this purpose, we define market share based

on the shares of all beers in the IRI data). We aggregate the non-flagship brands

based on their pre-JV ownership. The main feature of the figure is that while the
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real prices of the flagship brands and the other domestic brands increase after

the JV, the effect on brand market shares is quite limited, except that CL gained

market share at the expense of ML (a change that appears unrelated to average

price changes). Non-flagship Miller and AB brands do lose share after the JV, but

this appears to primarily reflect a continuation of pre-JV trends. The imported

brands do not appear to gain share.
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Table B.3: Cross-Brand Correlations in Prices for 12-Packs

Pre-JV
(1) (2) (3) (4) (5) (6)

(1) Bud Light 1
(2) Miller Lite 0.891 1
(3) Coors Light 0.891 0.889 1
(4) Budweiser 0.994 0.892 0.893 1
(5) Miller Genuine Draft 0.872 0.973 0.870 0.872 1
(6) Coors 0.804 0.812 0.916 0.807 0.804 1

Post-JV
(1) (2) (3) (4) (5) (6)

(1) Bud Light 1
(2) Miller Lite 0.857 1
(3) Coors Light 0.874 0.967 1
(4) Budweiser 0.995 0.856 0.872 1
(5) Miller Genuine Draft 0.840 0.957 0.940 0.839 1
(6) Coors 0.825 0.934 0.959 0.824 0.916 1

Notes: the correlations are for brand-market-week average prices of 12-packs, be-
fore the announcement of the JV and after its consummation. Average prices are
calculated including price reductions. Correlations for brands with the same owner
are slightly higher if price reductions are excluded.

B.4.2.3 Price Correlations Across Brands Before and After the JV.

A significant limitation of our model is that we can only model each firm

setting a single price per period. One can view our model as a representation of

a more complicated problem where brewers set prices for portfolios of products,

but these products can obviously be sold at different prices and these prices could

move in different ways over time. In this Appendix, we report price correlations

for six domestic brands and find that the prices of brands sold by the same brewer

are especially correlated, and Miller and Coors prices are more correlated after

the JV. This provides some comfort that viewing the brewers as choosing a single

price is not too misleading.

Table B.3 reports the correlations of market-week prices of 12-packs of the

flagship brands, plus Budweiser, Miller Genuine Draft and Coors, before and after

the JV. It is noticeable that the prices of products with the same owner (e.g.,
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BL and Budweiser) are highly correlated and that the prices of Miller and Coors

products become more correlated after the JV.

The reported correlations are high partly because beers retail at different

prices in different markets. We can also calculate correlations by regressing the

price of one brand on the price of another brand, and market and week fixed

effects. These results also show significant increases in correlations of Miller and

Coors products after the JV: for example, the coefficient on the CL price when the

ML price is the dependent variable increases from 0.68 before the JV to 0.84 after

the JV. Patterns in the table and the regressions are similar if we use prices defined

to exclude temporary price reductions.
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B.4.2.4 Price Dynamics in Los Angeles and Seattle Around the JV
(Real Prices).

Figure B.6: Average Real Prices (excluding sales) of 12-Packs of the Domestic
Flagship Brands in Two Regional Markets Around the JV.

Notes: Averages are calculated as the total dollar sales of 12-packs at prices not identified
as temporary price reductions, divided by the number of 12-packs sold. The text contains
the same figure with nominal prices.

Figure B.6 repeats Figure 2.4 but with real prices, rather than nominal prices.
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B.5 Testing the Supermarkup Model

MSW assume that each fiscal year, a price leader announces market-specific

incentive-compatible markups (mmt), in dollars, above Nash prices that all domes-

tic brewers should charge. Foreign brands are assumed to use static Nash pricing.

This implies that, given mmt, the first-order conditions for an AB product i are

given in the following expression where p̃D = pmt − mmt for domestic products

and p̃I(p̃D) are Nash equilibrium prices of imported brands if domestic brewers

charged p̃D:

pimt−mmt = Wimtγ+
qimt(p̃D, p̃I(p̃D))
∂qimt
∂pimt

(p̃D, p̃I(p̃D)
+
∑
j∈AB
j 6=i

∂qjmt
∂pimt

(p̃D, p̃I(p̃D))

∂qimt
∂pimt

(p̃D, p̃I(p̃D))
(pjmt−mmt−cjmt)+νimt.

(B.14)

The first-order conditions for an imported product k (say a Heineken (H) product)

are the standard static first-order conditions

pkmt = Wkmtγ +
qkmt(p)
∂qimt
∂pimt

(p)
+
∑
l∈H
l 6=k

∂qlmt
∂plmt

(p)
∂qkmt
∂pkmt

(p)
(plmt − clmt) + νkmt.

To test the model we assume that the imported brands do use static best responses,

and we test whether FOCs such as (B.14) describe the pricing of domestic produc-

ers. In particular we do this by generalizing the model to allow for a “conduct”

parameter, i.e.,

pimt −mmt = Wimtγ +
qimt(p̃D, p̃I(p̃D))
∂qimt
∂pimt

(p̃D, p̃I(p̃D)
+ ...

∑
j∈AB
j 6=i

∂qjmt
∂pimt

(p̃D, p̃I(p̃D))

∂qimt
∂pimt

(p̃D, p̃I(p̃D))
(pjmt −mmt − cjmt) + κ

∑
k∈M,C

∂qkmt
∂pimt
∂qimt
∂pimt

(pkmt − ckmt) + νimt.

where, if the supermarkup explanation is correct, κ = 0. The intuition for the test

is that if the supermarkup really is a constant markup on a static Nash price then,

controlling for supermarkup using an appropriately defined fixed effect, price-setting
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should not be affected by the incremental effect that a price has on the profits

of other domestic brewers. On the other hand, if there is an alternative type of

deviation from Nash pricing then the estimated κ may be significantly different

from zero.

B.5.1 Testing the Supermarkup Model Version 1.

We use two different implementations of the test. The first is easy-to-

implement (which means that we can use it for monthly data) but relies on devi-

ating from the MSW model so that the supermarkups only enter the FOCs linearly.

Specifically, suppose that a domestic product i in market m has marginal cost cimt,

and that the collusive plan operates by each domestic product being priced ac-

cording to static Nash best responses if its marginal costs are cimt + m′mt rather

than just cimt.15 One interpretation would be that the domestic firms act as if they

have to pay higher marginal retailing costs, a form of tacit collusion that might

be hard to detect. In this case, the MW first-order condition for an AB product is

simply

pimt = Wimtγ +m′mt +
qkmt(p)
∂qimt
∂pimt

(p)
+
∑
j∈AB
j 6=i

∂qjmt
∂pimt

(p)
∂qimt
∂pimt

(p)
(pjmt −m′mt − cjmt) + νimt. (B.15)

and, when we generalize to allow for conduct parameters that should be equal to

zero if the supermarkup model is correct, the estimating equation are

pmt = Wmtγ +mmt −
(

Ωmt(κ) ◦
[
∂smt(pt, θ

D)

∂pmt

])−1

smt(pmt) + νmt. (B.16)

The first-order condition has the nice feature that the level of demand and

the demand derivatives only depend on observed prices, and the supermarkup en-

ters linearly. This theory can be tested by including domestic market-fiscal year

fixed effects to control for m′mt, and testing if conduct parameters equal zero. We

15The effects on cross-market incentive-compatibility constraints would determine the form of
mark-ups that colluding firms prefer to use.
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use the domestic rival distance measures, their ξs (averaged across their portfo-

lios either before or after the JV) and interactions of these variables as excluded

instruments that identify the conduct parameters.

B.5.2 Testing the Supermarkup Model Version 2.

Testing version 1 is not the same as testing MSW’s supermarkup model be-

cause, in that model, mmt enters the first-order conditions non-linearly. Testing

the MSW model therefore requires estimating non-linear market-fiscal year fixed

effects for domestic products, where, for different values of the fixed effect, we

re-evaluate the demand derivative matrix and resolve for the Nash prices that the

imported brands would charge in response. This potentially creates a very large

computational burden, especially when using the RCNL demand model, even if we

use quarterly data. To make estimation feasible, we therefore proceed as follows.

First, we estimate all of the parameters, including the conduct parameters

and the linear parameters, separately for each fiscal year, so that we are only

estimating 40 (39 supermarkup fixed effects and 1 conduct parameter) nonlinear

parameters at a time. We report the conduct coefficients for 2005/6, 2006/7,

2009/10, and 2010/11 fiscal years (i.e., two full fiscal years before the JV and

after the JV), but we also estimate them for the partial fiscal years in the sample,

and the estimated coefficients are similar, but less precise. We expect separate

estimation to reduce the econometric efficiency and power of our test, as will the

fact that we do not restrict the supermarkups to be consistent with cross-market

incentive compatibility constraints on the domestic brewers. However, in practice,

our estimates of the conduct parameters are precise.

Second, and more importantly, rather than recomputing demand deriva-

tives, import best responses prices and inverting matrices to back out implied

marginal costs many hundreds of times during estimation, we use interpolation

from values that are pre-computed. Specifically, before estimation, we com-

pute implied marginal costs for each observed product-market-quarter observation

on a grid of supermarkups (mmt = {0, 0.25, 0.50, ..., 6}) and conduct parameters
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(κ = {0, 0.05, ..., 1.1}) then use cubic interpolation to get the required values dur-

ing estimation (restricting the supermarkups and conduct parameters to lie within

these ranges). As a result, the computational burden for each function evaluation

involves the computation of around 6,000 cubic interpolations.

As usual, one might be skeptical about a researcher’s ability to simultane-

ously estimate 40 nonlinear parameters. However, in practice, MATLAB’s fmincon

algorithm works very well on this problem even when it uses numerical deriva-

tives, and it delivers the same estimates from a range of different starting values.

The conduct parameter estimates are also comfortingly consistent with those from

testing version 1 of the supermarket model.
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