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Geometric approximation of multi-dimensional data sets is an essential algorith-

mic component for applications in machine learning, computer graphics, and scientific

computing. This dissertation promotes an algorithmic sampling methodology for a

number of fundamental approximation problems in computational geometry. For

each problem, the proposed sampling technique is carefully adapted to the geometry

of the input data and the functions to be approximated. In particular, we study

proximity queries in spaces of constant dimension and mesh generation in 3D.

We start with polytope membership queries, where query points are tested

for inclusion in a convex polytope. Trading-off accuracy for efficiency, we tolerate

one-sided errors for points within an ε-expansion of the polytope. We propose a

sampling strategy for the placement of covering ellipsoids sensitive to the local shape

of the polytope. The key insight is to realize the samples as Delone sets in the

intrinsic Hilbert metric. Using this intrinsic formulation, we considerably simplify

state-of-the-art techniques yielding an intuitive and optimal data structure.



Next, we study nearest-neighbor queries which retrieve the most similar data

point to a given query point. To accommodate more general measures of similarity, we

consider non-Euclidean distances including convex distance functions and Bregman

divergences. Again, we tolerate multiplicative errors retrieving any point no farther

than (1 + ε) times the distance to the nearest neighbor. We propose a sampling

strategy sensitive to the local distribution of points and the gradient of the distance

functions. Combined with a careful regularization of the distance minimizers, we

obtain a generalized data structure that essentially matches state-of-the-art results

specific to the Euclidean distance.

Finally, we investigate the generation of Voronoi meshes, where a given domain

is decomposed into Voronoi cells as desired for a number of important solvers in

computational fluid dynamics. The challenge is to arrange the cells near the boundary

to yield an accurate surface approximation without sacrificing quality. We propose

a sampling algorithm for the placement of seeds to induce a boundary-conforming

Voronoi mesh of the correct topology, with a careful treatment of sharp and non-

manifold features. The proposed algorithm achieves significant quality improvements

over state-of-the-art polyhedral meshing based on clipped Voronoi cells.
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Chapter 1: Introduction

A predominant theme in geometric computing is the decomposition of geometric

domains into a discrete set of simple pieces that are easy to process. At a high

level, this can be seen as a multi-dimensional analogue to the use of finite-precision

arithmetic to approximate computations over the reals. Indeed, it is often the

case that such discrete decompositions may only approximate the original geometry.

It is then imperative to trade-off acceptable degradations in accuracy against a

computational budget. Using the analogy of digital arithmetic, single-precision

floating points may suffice for a range of calculations, while others require double or

even arbitrary precision.

Depending on the context, the required decompositions can take on different

forms. For example, the indexing of multi-dimensional data typically utilizes a

decomposition of space, whereas the digital representation of a 3D model typically

takes the form of a surface mesh. In order to achieve efficiency, it is often necessary

to adapt the decomposition to the instance at hand, that is, to the distribution of

data points or the shape of the model.

Over the past few decades, different research communities have developed a

variety of decomposition and approximation techniques. While these techniques
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utilize different mathematical formulations and prioritize different objectives, they

actually have a lot in common.

This dissertation offers a reconciliation of a number of related themes in

geometric approximation. This is based on employing adaptive sampling as the

unifying paradigm. In particular, we develop sampling methods that capture the

relevant features of the underlying geometry while providing a suitable trade-off in

accuracy against processing cost.

Through a combination of sampling techniques from geometry processing

and analysis techniques from algorithm theory, we obtain a number of results

demonstrating the benefits of the proposed algorithmic sampling methodology. We

apply our sampling methodology to the following problems: (1) proximity search

with point sets and polytopes in multi-dimensional spaces, and (2) mesh generation

in 3D. For each problem, the proposed sampling technique is carefully adapted to

the geometry of the input data and the functions to be approximated.

In the remainder of this introduction, we briefly overview the problems we

study and summarize the contributions of the dissertation. In doing so, we further

elaborate on the different aspects of the proposed algorithmic sampling methodology

to be developed in the remainder of the dissertation.

1.1 Polytope Membership Queries

Convex bodies are ubiquitous in computational geometry and optimization

theory. Specifically, we consider polytopes represented as the intersection of n

2



half-spaces in Rd. The high combinatorial complexity of multidimensional convex

polytopes has motivated the development of algorithms and data structures for

approximate representations.

In Chapter 3, we demonstrate an intriguing connection between convex approx-

imation and the classical concept of Delone sets from the theory of metric spaces.

We show that with the help of a classical structure from convexity theory, called the

Macbeath region, it is possible to construct an ε-approximation of any convex body

as the union of O(1/ε(d−1)/2) ellipsoids, where the center points of these ellipsoids

form a Delone set in the Hilbert metric associated with the convex body.

Using the proposed approximation based on ellipsoid covers, we design a data

structure that answers ε-approximate polytope membership queries in O(log(1/ε))

time. This matches the best asymptotic results for this problem, by a data structure

that both is simpler and arguably more elegant.

This first application clearly demonstrates the main ingredients of the proposed

sampling methodology. By working in the Hilbert metric intrinsic to the polytope,

we obtain a sufficient sampling criteria as a Delone set with local approximations

provided by shape-sensitive ellipsoids. Compared to state-of-the-art results that also

utilized Macbeath regions, the intrinsic formulation greatly simplifies the analysis of

the resulting data structure.
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1.2 Nearest-Neighbor Search Queries

Nearest-neighbor searching involves indexing a set of n points from a metric

space into a data structure such that the nearest neighbor to a given query point

can be retrieved efficiently. In order to achieve efficiency in terms of storage and

query time, we consider the problem in an approximate setting, where we retrieve

any point whose distance is no farther than (1 + ε) times the distance to the true

nearest neighbor.

In Chapter 4, we present a new approach to ε-approximate nearest-neighbor

queries in fixed dimension d under a variety of non-Euclidean distances. In particular,

we consider two families of distance functions: (a) convex scaling distance functions

including the Mahalanobis distance, the Minkowski metric and multiplicative weights,

and (b) Bregman divergences including the Kullback-Leibler divergence and the

Itakura-Saito distance.

Under mild assumptions on the distance functions, we propose a sampling

strategy that adapts the sampling density to their growth rates in addition to the

local distribution of data points. This enables a generalized data structure that

answers queries in logarithmic time using O(n log(1/ε)/εd/2) space, which nearly

matches the best known results for the Euclidean metric.

A crucial ingredient to the efficiency of the proposed data structure is a careful

application of convexification, which appears to be relatively new to computational

geometry. The proposed convexification successfully circumvents the reliance on

the lifting transform, which has been essential in the fastest state-of-the-art data
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structures.

This second application demonstrates the treatment of both shape and function

constraints within our sampling methodology. This is a recurring scenario in geometry

processing applications that deal with different types of differential equations, e.g.,

fluid flows and elasticity. In contrast, the consideration of of non-Euclidean distances

and their differential properties has not received much attention in the computational

geometry community. This further underscores the potential benefits of exploiting

these connections as facilitated by the proposed unification through sampling.

1.3 Voronoi Mesh Generation

The computational modeling of physical phenomena requires robust numerical

algorithms and compatible high-quality domain discretizations. Finite element

methods traditionally use simplicial meshes, where well-known angle conditions

prohibit skinny elements. The limited degrees of freedom of linear tetrahedral

elements often lead to excessive refinement when modeling complex geometries or

domains undergoing large deformations. This motivated generalizations to general

polyhedral elements, which enjoy larger degrees of freedom and have recently been

in increasing demand.

In the second half of this dissertation, we study the problem of decomposing

a volume bounded by a piecewise-smooth surface into a collection of Voronoi cells,

a particularly attractive class of polyhedral cells. The proposed scheme, called

VoroCrust, leverages ideas from α-shapes and the power crust algorithm to produce
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unweighted Voronoi cells conforming to the surface. The scheme is based on a

suitable sampling of the surface, which is used to define a union balls of balls with

radii proportional to the feature size. The corners of this union of balls are the

Voronoi sites, on both sides of the surface, and the facets common to cells on opposite

sides reconstruct the surface.

In Chapter 5, we start by assuming the surface is a smooth manifold with a

known local feature size. We derive sufficient conditions on the sampling to guarantee

an isotopic surface reconstruction. In addition, we describe a simple approach to

further decompose the enclosed volume into a volumetric mesh of fat Voronoi cells

with a suitable bound on the number of cells.

Then, Chapter 6 presents the design and analysis of a robust implementation

of VoroCrust that can handle realistic 3D models. The crux of the algorithm is a

refinement process that estimates a suitable sizing function to guide the placement

of Voronoi seeds. This enables VoroCrust to protect all sharp features, and mesh

the surface and interior into quality elements. The algorithm carefully handles

non-manifold features and successfully eliminates undesired slivers on the surface.

The quality of the produced meshes is demonstrated through a variety of challeng-

ing models, establishing clear advantages over state-of-the-art polyhedral meshing

methods based on clipped Voronoi cells.

In this third application, we demonstrate a two-fold approach to designing

geometric algorithms, which is both robust and practical within our sampling

methodology. In particular, sliver elimination is widely recognized as a challenging

problem, and known analyses are rather intricate with pessimistically-weak guarantees

6



of marginal value in practice. Our two-fold approach is as follows. We start by proving

termination with a relaxed sampling criterion that tolerates a limited deterioration

in quality. Then, we provide a novel probabilistic analysis of termination with

the strict sampling criterion by borrowing ideas from the analysis of randomized

algorithms. The proposed implementation combines the two criteria to guarantee

termination in practice, while ensuring a strong guarantee on quality. The novel

use of probabilistic reasoning in this context underscores the potential benefits of a

sampling methodology with strong algorithmic aspects.
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Chapter 2: Literature Review

We review the most relevant related work on each of the problems we consider

in the dissertation.

2.1 Approximate Polytope Representations

We review the related work on the efficient representation of convex polytopes

as pertains to membership testing. Let K ⊆ Rd denote a convex polytope given as

the intersection of n halfspaces. Throughout, we assume that the dimension d is a

fixed constant and that K is full dimensional and bounded.

The polytope membership problem is that of preprocessing K so that it is

possible to determine efficiently whether a given query point q ∈ Rd lies within K.

Polytope membership queries, both exact and approximate, arise in many application

areas, such as linear programming and ray-shooting queries [1–4], nearest-neighbor

searching and the computation of extreme points [5–7], collision detection [8], and

machine learning [9].

We summarize prior work on polytope membership as follows. In Section 2.1.1,

we motivate the study of approximate representations by reviewing classical results

from exact range queries. Then, we review related work on approximating polytopes

8



in Section 2.1.2, as may be used for membership testing. Finally, we review state-

of-the-art results on approximate membership queries in Section 2.1.3. Later in

Chapter 3, we apply our sampling methodology to obtain a simplified data structure

matching state-of-the-art results.

2.1.1 Exact Membership Queries

To gain insight into the membership testing problem, we consider an equivalent

problem in the dual setting. It turns out that polytope membership is equivalent

to answering halfspace emptiness queries for a set of n points in Rd. When the

dimension d is small, i.e., d ≤ 3, it is possible to build a data structure of linear

size to answer such queries in logarithmic time [10, 11]. For higher values of d,

however, the fastest data structures with near-linear space have a query time of

roughly O
(
n1−1/bd/2c) [12], which can be prohibitively expensive in practice.

Another closely related problem is polytope intersection queries [11, 13, 14],

which can be considered as a general version of polytope membership queries. Barba

and Langerman [14] showed how to preprocess polytopes in Rd, treating d as a

constant, so that given two such polytopes, it can be determined whether they

intersect each other. As expected, the preprocessing time and space required are

rather high, growing as the combinatorial complexity of the polytopes (which can be

as high as Θ(nbd/2c)) raised to the power bd/2c.
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2.1.2 Approximating Polytopes

The study of general convex sets motivated the following interesting problem.

It asks to compute a convex polytope P to approximate a given closed convex set

K ⊆ Rd. Assuming K is normalized to have unit diameter, it is required that the

Hausdorff distance between P and K is at most a given error threshold ε > 0. In

addition, the polytope P is required to have low combinatorial complexity, which is

the total number of faces of all dimension. We call such a polytope an ε-approximating

polytope.

Known bounds on the complexity of ε-approximating polytope are of two types.

Non-uniform bounds there is an ε0, depending on K (for example, its maximum

curvature), allowing a bound on the complexity of ε-approximating polytopes with

ε ≤ ε0. Such bounds often hold in the limit as ε tends to 0, or equivalently as the

complexity of the approximating polytope tends to infinity [15–18]. The other types

of uniform bounds are usually stated for an ε0 that does not depend on K. For

subsequent algorithmic applications of ε-approximating polytopes, it is convenient

to apply the approximation as a black-box without further dependencies on the

properties of the inputs. As such, we focus on uniform bounds.

Dudley [19] showed that, for any convex body K in Rd, it is possible to

construct an ε-approximating polytope P with O(1/ε(d−1)/2) facets. This bound

is asymptotically tight in the worst case, even when K is a Euclidean ball. This

construction implies a (trivial) data structure for approximate polytope membership

problem with space and query time O(1/ε(d−1)/2). In this connection, Bronshteyn
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and Ivanov obtained the same bound for the number of vertices, which is also the

best possible [20].

Despite these bounds on the number of facets or the number of vertices, this

falls short of bounding the total combinatorial complexity. The upper-bound theorem

by McMullen [21,22] bounds the complexity of a polytope with n facets or vertices by

O(nbd/2c). Known classes of pathological polytopes, e.g., the cyclic polytope, realize

this upper bound [23]. As such, a direct application of the upper-bound theorem

to the polytopes constructed by Dudley or Bronshteyn-Ivanov yields a weak upper

bound of roughly O(1/ε(d
2−d)/4) on the complexity of ε-approximating polytopes.

However, given the special structure of the pathological polytopes achieving the worst-

case bounds from the upper-bound theorem, it is plausible to expect ε-approximating

polytopes to achieve lower complexities by exploiting the extra tolerance available.

In a series of papers, Arya et al. [24–29] were finally able to present a construc-

tion of an ε-approximating polytope matching the bounds Dudley and Bronshteyn-

Ivanov. Their construction makes use of a width-based variant of economic cap

covers [30] to approximate the boundary of the polytope in layers. Then, they

bound the total combinatorial complexity of the facets using the witness-collector

technique [31].

2.1.3 Approximate Membership Queries

The review above demonstrates a large gap between the high computational

overhead of exact membership testing and the succinct representations available

11



through approximating polytopes. This has motivated the study of approximate

membership queries.

To quantify the approximation errors, we introduce the real parameter ε > 0,

where errors are measured relative to the diameter of K, denoted by diam(K). Given

a query point q ∈ Rd, an ε-approximate polytope membership query returns True

if q ∈ K, False if the distance from q to its closest point in K is greater than

ε · diam(K), and it may return either result otherwise.

A simple approximation scheme was proposed by Bentley et al. [32]. First,

a d-dimensional grid with cells of diameter Θ(ε · diam(K)) is constructed. Then,

for every column along the xd-axis, the two extreme xd values where the column

intersects K are stored. Given a query point q, it is easy to determine if q ∈ P . The

storage required by the approach is O(1/εd−1).

In follow up work, the grid employed by Bentley et al. [32] was replaced with an

adaptive subdivision as in the SplitReduce data structure of Arya et al. [33]. Given

a parameter t, space is subdivided hierarchically using a quadtree until each cell

either (1) lies completely inside K, (2) completely outside K, or (3) intersects K’s

boundary such that it is possible to approximate the portion of the boundary within

the cell by at most t halfspaces, against which query points lying in such a cell can

be tested. In [33] it is shown that the quadtree height is O(log 1
ε
), allowing an overall

query time is O(log 1
ε

+ t).

While the SplitReduce data structure is conceptually simple, it leaves open

the possibility of achieving a query time of O(log 1
ε
) with a minimum storage of

O(1/ε(d−1)/2). This improved performance was recently achieved by Arya et al. [34],
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where the novel ingredient was to abandon the quadtree-based approach of [33]

and [24] in favor of a hierarchy of ellipsoids. The ellipsoids are chosen through a

sampling process inspired by a classical construct from the theory of convexity, called

Macbeath regions [35]. The main result of [34] is the following.

Theorem 1. Given a convex polytope K in Rd and an approximation parameter 0 <

ε ≤ 1, there is a data structure that can answer ε-approximate polytope membership

queries with

Query time: O

(
log

1

ε

)
and Space: O

(
1

ε(d−1)/2

)
.

The contributions of [34] hint that a more “shape-sensitive” approach potentially

achieves dramatic improvements over the space requirements of the data structure.

In Chapter 3, we further expand on this idea by working in the intrinsic Hilbert

metric, which elucidates the role of the Macbeath regions and enables an intuitive

data structure matching the results of [34].

2.2 Nearest-Neighbor Searching

A fundamental computational problem that arises countless times throughout

science and engineering is searching a data set for objects which are similar to a given

query object. This type of query arises in numerous areas, such as data compression,

pattern recognition, clustering, large data analytics, information retrieval and visual-

ization, similarity search in image and video databases, machine learning, geometric

network design, and signal processing. These problems are typically handled by

modeling objects as points in a metric space and applying nearest-neighbor searching.
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The most widely studied metric space is real d-dimensional space, Rd, under the

Euclidean metric. While many applications of nearest-neighbor searching involve

spaces of high dimension, there are also many applications that reside in relatively

low dimensions (say, smaller than 20), and theoretical computer science has played a

key role in the development of many of the most widely used data structures today.

We summarize prior work on nearest-neighbor searching as follows. In Sec-

tion 2.2.1, we motivate the study of approximate representations by reviewing

classical results on exact nearest-neighbor search. Then, we review approximate

nearest-neighbor search under the Euclidean metric in Section 2.2.2, which is most

related to our work. Finally, we review related work on nearest-neighbor search under

more general metrics in Section 2.2.3. Later in Chapter 4, we apply our sampling

methodology to obtain a data structure for nearest-neighbor search under more

general metrics with performance matching state-of-the-art results for the Euclidean

metric. For related work on nearest-neighbor searching in high dimensions, please

refer to the recent survey [36].

2.2.1 Exact Search

Without any data structures, it is straightforward to answer nearest-neighbor

queries exactly by simply considering all data points. Clearly, this only takes O(n)

time and O(n) storage. In very low dimensions with d ≤ 2, this can be improved to

O(log n) time still with linear storage using simple techniques like binary search trees

and point-location. Unfortunately, for d > 2, the computational overhead seem to
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grow extremely rapidly either in terms of the query time or the storage requirements.

Namely, the best solution achieving logarithmic query time uses roughly O(nd/2)

storage space [37], which is too high for many applications. On the other hand,

it is possible to keep the storage linear and achieve a barely sublinear query time

of O(nf(d)), where f(d) = 1
d

(
log(2d − 1)

)
[38]. However, such limited asymptotic

improvements have no real impact in practice.

2.2.2 Approximate Search

This prohibitive computational overhead of exact nearest-neighbor searching

motivated the study of approximations. In particular, we aim to achieve logarithmic

query times using only linear storage. Given an approximation parameter ε > 0, ε-

approximate nearest-neighbor searching (ε-ANN) returns any site whose distance from

q is within a factor of 1 + ε of the distance to the true nearest neighbor. Throughout,

we focus on Rd for fixed d and on data structures that achieve logarithmic query

time of O(log n
ε
).

Approximate nearest neighbor searching in spaces of fixed dimension has been

widely studied. Data structures with O(n) storage and query times no better than

O(log n + 1/εd−1) have been proposed by several authors [39–42]. In subsequent

papers, it was shown that query times could be reduced at the expense of greater

storage [5,43–45]. Har-Peled introduced the AVD (approximate Voronoi diagram)

data structure and showed that O(log n
ε
) query time could be achieved using Õ(n/εd)

space [44].
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Space-time trade-offs were established for the AVD in a series of papers [46–49].

At one end of the spectrum, it was shown that with O(n) storage, queries could be

answered in time O(log n+ 1/ε(d−1)/2). At the other end, queries could be answered

in time O(log n
ε
) with space Õ(n/εd). In [33], the Arya et al. presented a reduction

from Euclidean approximate nearest neighbor searching to polytope membership.

They established significant improvements to the best trade-offs throughout the

middle of the spectrum, but the extremes were essentially unchanged [24, 33]. While

the AVD is simple and practical, in [47] lower bounds were presented that imply

that significant improvements at the extreme ends of the spectrum are not possible

in this model.

Recently, Arya et al. [34,50] succeeded in reducing the storage to O(n/εd/2) by

building upon recent developments on approximate polytope membership queries.

Their main result achieves the following improved trade-off.

Theorem 2. Given a set X of n points in Rd, an approximation parameter 0 < ε ≤ 1,

and m such that log 1
ε
≤ m ≤ 1/(εd/2 log 1

ε
), there is a data structure that can answer

Euclidean ε-approximate nearest neighbor queries with

Query time: O

(
log n+

1

m · εd/2

)
and Space: O(nm) .

By setting m to its upper limit it is possible to achieve logarithmic query time

while roughly halving the exponent in the ε-dependency of the previous best bound.
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2.2.3 Non-Euclidean Distances

Unlike the simpler data structure of [44], which can be applied to a variety of

metrics, the recent results of Arya et al. [34,50] exploit properties that are specific to

Euclidean space, which significantly limits its applicability. 1 In particular, it applies

a reduction to approximate polytope membership [27] based on the well-known lifting

transformation [10]. However, this transformation applies only for the Euclidean

distance. Furthermore, all the aforementioned data structures rely on the triangle

inequality. Therefore, they cannot generally be applied to situations where each site is

associated with its own distance function as arises, for example, with multiplicatively

weighted sites.

Har-Peled and Kumar introduced a powerful technique to overcome this limita-

tion through the use of minimization diagrams [52]. For each site pi, let fi : Rd → R+

be the associated distance function. Let Fmin denote the pointwise minimum of these

functions, that is, the lower-envelope function. Clearly, approximating the value of

Fmin at a query point q is equivalent to approximating the distance to q’s nearest

neighbor.2 Har-Peled and Kumar proved that ε-ANN searching over a wide variety

of distance functions (including additively and multiplicatively weighted sites) could

1Chan [51] presented a similar result by a very different approach, and it generalizes to some

other distance functions, however the query time is not logarithmic.
2The idea of using envelopes of functions for the purpose of nearest-neighbor searching has a

long history, and it is central to the well-known relationship between the Euclidean Voronoi diagram

of a set of points in Rd and the lower envelope of a collection of hyperplanes in Rd+1 through the

lifting transformation [10].

17



be cast in this manner [52]. While this technique is very general, the complexity

bounds are much worse than for the corresponding concrete versions. For example,

in the case of Euclidean distance with multiplicative weights, in order to achieve

logarithmic query time, the storage used is O((n logd+2 n)/ε2d+2 + n/εd
2+d). Similar

results are achieved for a number of other distance functions that are considered

in [52].

This motivates the question of whether it is possible to answer ANN queries

for non-Euclidean distance functions while matching the best bounds for Euclidean

ANN queries. In Chapter 4, we apply our sampling methodology to obtain such data

structures. We achieve this by adapting the sampling to both the local distribution

of points and the growth rates of the distance functions. In addition, we circumvent

the reliance on the lifting transform by a careful application of convexification from

the optimization of non-convex functions.

2.3 Mesh Generation

The computational modeling of physical phenomena requires robust numerical

algorithms and compatible high-quality domain discretizations so-called meshes. In

this section, we review the most relevant related work on mesh generation. As we deal

with pieceswise-smooth surfaces with arbitrarily small angles, we review prior work on

this challenging problem through the development of Delaunay meshing algorithms

in Section 2.3.1. Next, we motivate the relatively new interest in polyhedral meshing

in Section 2.3.2. Then, Section 2.3.3 we further motivate the study of Voronoi meshes
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which will be the focus of Chapters 5 and 6.

2.3.1 Delaunay Mesh Generation

Delaunay refinement (DR) is a very successful algorithm for the generation

of quality unstructured tetrahedral meshes [53]. Since the presence of small angles

in the input domain may threaten the termination of DR, a lower bound on input

angles may be necessary. A series of works extended DR to more general classes of

domains starting with polyhedral domains with no input angles less than 90◦ [54], and

then polyhedral domains with arbitrarily small angles [55]. Motivated by scientific

applications dealing with realistic physical domains and engineering designs, the

class of inputs with curved boundaries is particularly relevant as treated in [56,57]

and implemented in the CGAL library [58]; albeit with assumed lower bounds on

the smallest angle in the input.

The challenging treatment of arbitrarily small input angles was finally resolved

by Cheng et al. [59] for a large class of inputs called piecewise-smooth complexes.

Cheng et al. [59] achieved that by deriving a feature size that blends the definitions

used for smooth and polyhedral domains, ensuring the protection of sharp features.

However, their algorithm is largely impractical as it relies on expensive predicates

evaluated using the equations of the underlying surface. To obtain a practical variant

as implemented in the DelPSC software, Dey and Levin [60] relied on an input

threshold to guide refinement, where topological correctness can only be guaranteed

if it is sufficiently small.
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2.3.2 Polyhedral Mesh Generation

The limited degrees of freedom of linear tetrahedral as well as hexahedral

elements often require excessive refinement when modeling complex geometries or

domains undergoing large deformations, e.g., cutting, merging, fracturing, or adaptive

refinement [61–64]. This motivated generalizations to general polyhedral elements,

which enjoy larger degrees of freedom.

While the generation of tetrahedral meshes based on Delaunay refinement [53]

or variational optimization [65] is well established, research on polyhedral mesh

generation is less mature. State-of-the-art approaches often rely on clipping, i.e.,

truncating cells of an initial mesh to fit the domain boundaries [66]. Such an initial

mesh can be obtained as a Voronoi mesh, e.g., with seeds randomly generated inside

the domain [67] or optimized by centroidal Voronoi tessellations (CVT) [66], possibly

taking anisotropy into account [68]. Alternatively, an initial Voronoi mesh can be

obtained by dualizing a conforming tetrahedral mesh [69]. Although no clipping

is needed if the tetrahedralization is well-centered, generating such meshes is very

challenging and only heuristic solutions are known [70]. A weaker Gabriel property

ensures all tetrahedra have circumcenters inside the domain and can be guaranteed for

polyhedral domains with bounded minimum angles [71]; however, the dual Voronoi

cells still need to be clipped.
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2.3.3 Orthogonal Primal-Dual Meshing

Voronoi meshes, along with their dual Delaunay triangulations, are a prime

example of primal-dual mesh pairs. In particular, the Voronoi facets are orthogonal

to their dual Delaunay facets. More generally, orthogonal primal-dual mesh pairs

are unstructured staggered meshes [72] with desirable conservation properties [73],

enabling discretizations that closely mimic the continuum equations being mod-

eled [74, 75]. The power of orthogonal duals [76] was recognized in early works

on structural design [77, 78] and numerical methods [79], and has recently been

demonstrated on a range of applications in computer graphics [80], self-supporting

structures [81], mesh parameterization [82], and computational physics [83]. In

particular, Voronoi-Delaunay meshes are the default geometric realization of many

formulations in numerical methods [84], fluid animation [85], fracture modeling [86],

and computational cell biology [87].
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Chapter 3: Polytope Membership Queries

Polytope membership queries, both exact and approximate, arise in many

application areas, such as linear programming and ray-shooting queries [1–4], nearest

neighbor searching and the computation of extreme points [5–7], collision detection [8],

and machine learning [9]. Please refer to Section 2.1 for a review of related work.

In this chapter, we demonstrate an intriguing connection between convex

approximation and the classical concept of Delone sets from the theory of metric

spaces. We show that with the help of a classical structure from convexity theory,

called the Macbeath region, we design a data structure that answers ε-approximate

polytope membership queries in O(log(1/ε)) time. This matches the best asymptotic

results for this problem, by a data structure that both is simpler and arguably more

elegant.

3.1 Introduction

We consider the following fundamental query problem. Let K denote a bounded

convex polytope in Rd, presented as the intersection of n halfspaces. The objective

is to preprocess K so that, given any query point q ∈ Rd, it is possible to determine

efficiently whether q lies in K. Throughout, we assume that d is a fixed constant
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and K is full-dimensional.

Let ε be a positive real parameter, and let diam(K) denote K’s diameter.

Given a query point q ∈ Rd, an ε-approximate polytope membership query returns a

positive result if q ∈ K, a negative result if the distance from q to its closest point

in K is greater than ε · diam(K), and it may return either result otherwise.

A space-optimal solution for the case of polylogarithmic query time was pre-

sented in [34]. It achieves query time O(log 1
ε
) with storage O(1/ε(d−1)/2). This paper

achieves its efficiency by abandoning the grid- and quadtree-based approaches in

favor of an approach based on ellipsoids and a classical structure from convexity

theory called a Macbeath region [35].

The approach presented in [34] is based on constructing a collection of nested

eroded bodies within K and covering the boundaries of these eroded bodies with

ellipsoids that are based on Macbeath regions. Queries are answered by shooting

rays from a central point in the polytope towards the boundary of K, and tracking

an ellipsoid at each level that is intersected by the ray. While it is asymptotically

optimal, the data structure and its analysis are complicated by various elements that

are artifacts of this ray shooting approach.

In this chapter, we present a simpler and more intuitive approach with the

same asymptotic complexity as the one in [34]. The key idea is to place the Macbeath

regions based on Delone sets. A Delone set is a concept from the study of metric

spaces. It consists of a set of points that have nice packing and covering properties

with respect to the metric balls. Our main result is that any maximal set of disjoint

shrunken Macbeath regions defines a Delone set with respect to the Hilbert metric
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induced on a suitable expansion of the convex body. This observation leads to a

simple DAG structure for membership queries. The DAG structure arises from a

hierarchy of Delone sets obtained by layering a sequence of expansions of the body.

Our results uncover a natural connection between the classical concepts of Delone

sets from the theory of metric spaces and Macbeath regions and the Hilbert geometry

from the theory of convexity.

3.2 Preliminaries

In this section we present a number of basic definitions and results, which

will be used throughout the chapter. We consider the real d-dimensional space, Rd,

where d is a fixed constant. Let O denote the origin of Rd. Given a vector v ∈ Rd,

let ‖v‖ denote its Euclidean length, and let 〈·, ·〉 denote the standard inner product.

Given two points p, q ∈ Rd, the Euclidean distance between them is ‖p − q‖. For

q ∈ Rd and r > 0, let B(q, r) denote the Euclidean ball of radius r centered at q,

and let B(r) = B(O, r).

3.2.1 Polytope Representation

Let K be a convex body in Rd, represented as the intersection of m closed

halfspaces Hi = {x ∈ Rd : 〈x, vi〉 ≤ ai}, where ai is a nonnegative real and vi ∈ Rd.

The bounding hyperplane for Hi is orthogonal to vi and lies at distance ai/‖vi‖ from

the origin. The boundary of K will be denoted by ∂K. For 0 < κ ≤ 1, we say

that K is in κ-canonical form if B(κ/2) ⊆ K ⊆ B(1/2). Clearly, such a body has a
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diameter between κ and 1.

It is well known that in O(m) time it is possible to compute a non-singular

affine transformation T such that T (K) is in (1/d)-canonical form [44,88]. Further,

if a convex body P is within Hausdorff distance ε of T (K), then T−1(P ) is within

Hausdorff distance at most dε of K. (Indeed, this transformation is useful, since

the resulting approximation is directionally sensitive, being more accurate along

directions where K is skinnier.) Therefore, for the sake of approximation with respect

to Hausdorff distance, we may assume that K has been mapped to canonical form,

and ε is scaled by a factor of 1/d. Because we assume that d is a constant, this

transformation will only affect the constant factors in our analysis.

3.2.2 Polytope Expansion

A number of our constructions involve perturbing the body K by means of

expansion, but the exact nature of the expansion is flexible in the following sense.

Given δ > 0, let Kδ denote any convex body containing K such that the Hausdorff

distance between ∂K and ∂Kδ is Θ(δ · diam(K)). For example, if K is in canonical

form, Kδ could result as the Minkowski sum of K with another convex body of

diameter δ or from a uniform scaling about the origin by δ. Because reducing the

approximation parameter by a constant factor affects only the constant factors in our

complexity bounds, the use of an appropriate Kδ instead of closely related notions

of approximation, like the two just mentioned, will not affect our asymptotic bounds.
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Given δ > 0, we perturb each Hi to obtain

Hi,δ = {x ∈ Rd : 〈x,~vi〉 ≤ ai + δ)}.

The associated bounding hyperplane is parallel to that of Hi and translated away

from the origin by a distance of δ/‖vi‖. With that, we define Kδ as the convex

polytope
⋂n
i=1Hi,δ. To ensure the required bound on the Hausdorff error, we require

that c1δ ≤ ‖vi‖ ≤ c2 for all i, where c1 and c2 are nonnegative reals. The following

argument shows that this condition suffices. If c1δ ≤ ‖vi‖ ≤ c2, then each bounding

halfspace of K is translated away from the origin by a distance of δ/‖vi‖ ≥ δ/c2,

which establishes the lower bound on the Hausdorff distance. Also, each bounding

halfspace is translated by a distance of δ/‖vi‖ ≤ 1/c1. Since K, being in canonical

form, is nested between balls of radius κ/2 and 1/2, this translation of the halfspace

is equivalent to a scaling about the origin by a factor of at most 2/c1κ, which maps

each point of K away from the origin by a distance of at most (2/c1κ)/2 = 1/c1κ.

This establishes the upper bound on the Hausdorff distance.

3.2.3 Macbeath Regions

Our algorithms and data structures will involve packings and coverings by

ellipsoids, which will possess the essential properties of Delone sets. These ellipsoids

are based on a classical concept from convexity theory, called Macbeath regions,

which were described first by A. M. Macbeath in a paper on the existence of certain

lattice points in a convex body [35]. They have found uses in diverse areas (see, e.g.,

Bárány’s survey [30]).
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Given a convex body K, a point x ∈ K, and a real parameter λ ≥ 0, the

λ-scaled Macbeath region at x, denoted Mλ
K(x), is defined to be

x+ λ((K − x) ∩ (x−K)).

When λ = 1, it is easy to verify that M1
K(x) is the intersection of K and the reflection

of K around x (see Fig. 3.1a), and hence it is centrally symmetric about x. Mλ
K(x)

is a scaled copy of M1
K(x) by the factor λ about x. We refer to x and λ as the center

and scaling factor of Mλ
K(x), respectively. To simplify the notation, when K is clear

from the context, we often omit explicit reference in the subscript and use Mλ(x) in

place of Mλ
K(x). When λ < 1, we say Mλ(x) is shrunken. When λ = 1, M1(x) is

unscaled and we drop the superscript. Recall that if Cλ is a uniform λ-factor scaling

of any bounded, full-dimensional set C ⊂ Rd, then vol(Cλ) = λd · vol(C).

K

x

M(x)

M1/2(x)

2x−K

(a)

K

x

E(x)

E
√
d(x)

M(x)

(b)

Figure 3.1: (a) Macbeath regions and (b) Macbeath ellipsoids.

An important property of Macbeath regions, which we call expansion-containment,

is that if two shrunken Macbeath regions overlap, then an appropriate expansion of

one contains the other (see Fig. 3.2a). The following is a generalization of results

of Ewald, Rogers and Larman [89] and Brönnimann, Chazelle, and Pach [90]. Our

generalization allows the shrinking factor λ to be adjusted, and shows how to adjust
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the expansion factor β of the first body to cover an α-scaling of the second body,

e.g., the center point only (see Fig. 3.2b).
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Figure 3.2: (a)-(b) Expansion-containment per Lemma 1. (c) The Hilbert metric.

Lemma 1. Let K ⊂ Rd be a convex body and let 0 < λ < 1. If x, y ∈ K such that

Mλ(x) ∩Mλ(y) 6= ∅, then for any α ≥ 0 and β = 2+α(1+λ)
1−λ , Mαλ(y) ⊆Mβλ(x) (see

Fig. 3.2).

3.2.4 Delone Sets and the Hilbert Metric

An important concept in the context of metric spaces involves coverings and

packings by metric balls [17]. Given a metric f over X, a point x ∈ X, and real r > 0,

define the ball Bf (x, r) = {y ∈ X : f(x, y) ≤ r}. For ε, εp, εc > 0, a set X ⊆ X is an:

ε-packing: If the balls of radius ε/2 centered at every point of X do not intersect.

ε-covering: If every point of X is within distance ε of some point of X.

(εp, εc)-Delone Set: If X is an εp-packing and an εc-covering.

Delone sets have been used in the design of data structures for answering
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geometric proximity queries in metric spaces through the use of hierarchies of nets,

such as navigating nets [91], net trees [92], and cover trees [93].

In order to view a collection of Macbeath regions as a Delone set, it will be

useful to introduce an underlying metric. The Hilbert metric [94] was introduced

over a century ago by David Hilbert as a generalization of the Cayley-Klein model

of hyperbolic geometry. A Hilbert geometry (K, fK) consists of a convex domain K

in Rd with the Hilbert distance fK . For any pair of distinct points x, y ∈ K, the line

passing through them meets ∂K at two points x′ and y′. We label these points so

that they appear in the order 〈x′, x, y, y′〉 along this line (see Fig. 3.2c). The Hilbert

distance fK is defined as

fK(x, y) =
1

2
ln

(
‖x′ − y‖
‖x′ − x‖

‖x− y′‖
‖y − y′‖

)
.

When K is not bounded and either x′ or y′ is at infinity, the corresponding ratio is

taken to be 1. To get some intuition, observe that if x is fixed and y moves along a

ray starting at x towards ∂K, fK(x, y) varies from 0 to ∞.

Hilbert geometries have a number of interesting properties; see the survey by

Papadopoulos and Troyanov [95] and the multimedia contribution by Nielsen and

Shao [96]. First, fK can be shown to be a metric. Second, it is invariant under

projective transformations.1 Finally, when K is a unit ball in Rd, the Hilbert distance

is equal (up to a constant factor) to the distance between points in the Cayley-Klein

model of hyperbolic geometry.

1This follows from the fact that the argument to the logarithm function is the cross ratio

of the points (x′, x, y, y′), and it is well known that cross ratios are preserved under projective

transformations.
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Given a point x ∈ K and r > 0, let BH(x, r) denote the ball of radius r about

x in the Hilbert metric. The following lemma shows that a shrunken Macbeath

region is nested between two Hilbert balls whose radii differ by a constant factor

(depending on the scaling factor). Thus, up to constant factors in scaling, Macbeath

regions and their associated ellipsoids can act as proxies to metric balls in Hilbert

space. This nesting was observed by Vernicos and Walsh [97] (for the conventional

case of λ = 1/5), and we present the straightforward generalization to other scale

factors. For example, with λ = 1/5, we have BH(x, 0.09) ⊆M1/5(x) ⊆ BH(x, 0.21)

for all x ∈ K.

Lemma 2. Given a convex body K ⊂ Rd, for all x ∈ K and any 0 ≤ λ < 1,

BH

(
x,

1

2
ln (1 + λ)

)
⊆ Mλ(x) ⊆ BH

(
x,

1

2
ln

1 + λ

1− λ

)
.

3.3 Macbeath Regions as Delone Sets

Lemma 2 justifies using Macbeath regions as Delone sets. Given a point x ∈ K

and δ > 0, define Mδ(x) to be the (unscaled) Macbeath region with respect to Kδ,

that is, Mδ(x) = MKδ(x). Towards our goal of using Delone sets for approximating

convex bodies, we study the behavior of overlapping Macbeath regions at different

scales of approximation and establish a bound on the size of such Delone sets. In

particular, we consider maximal sets of disjoint shrunken Macbeath regions Mλ
δ (x)

defined with respect to Kδ, such that the centers x lie within K; let Xδ denote such

a set of centers. The two scale factors used to define the Delone set will be denoted

by (λp, λc), where we assume 0 < λp < λc < 1 are constants. Define M ′
δ(x) = Mλc

δ (x)
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and M ′′
δ (x) = M

λp
δ (x).

3.3.1 Varying the Scale

A crucial property of metric balls is how they adapt to changing the resolution

at which the domain in question is being modeled. We show that Macbeath regions

enjoy a similar property.

Lemma 3. Given a convex body K ⊂ Rd and λ, δ, ε ≥ 0, for all x ∈ K,

Mλ
Kδ

(x) ⊆ Mλ
K(1+ε)δ

(x) ⊆ M
(1+ε)λ
Kδ

(x).

Proof. The first inclusion is a simple consequence of the fact that enlarging the

body can only enlarge the Macbeath regions. To see the second inclusion, it will

simplify the notation to translate space by −x so that x now coincides with the

origin. Thus, MK(x) = K ∩ −K. Recalling our representation from Section 3.2,

we can express K as the intersection of a set of halfspaces Hi = {y : 〈y, vi〉 ≤ ai}.

(The translation affects the value of ai, but not the approximation, because x ∈ K,

ai ≥ 0.) We can express MK(x) as the intersection of a set of slabs Σi = Hi ∩ −Hi,

where each slab is centered about the origin. MKδ(x) can be similarly expressed

as the intersection of slabs Σi,δ = Hi,δ ∩ −Hi,δ, where the defining inequality is

〈y, vi〉 ≤ ai+δ. This applies analogously to MK(1+ε)δ
(x), where the defining inequality

is 〈y, vi〉 ≤ ai + (1 + ε)δ. Since ai ≥ 0, we have ai + (1 + ε)δ ≤ (1 + ε)(ai + δ), which

implies that Σi,(1+ε)δ ⊆ (1 + ε)Σi,δ. Thus, we have

MK(1+ε)δ
(x) =

⋂m

i=1
Σi,(1+ε)δ ⊆

⋂m

i=1
(1 + ε)Σi,δ = M

(1+ε)
Kδ

(x).

31



The lem now follows by applying a scaling factor of λ to both sides.

As we refine the approximation by using smaller values of δ, it is important to

bound the number of Macbeath regions at higher resolution that overlap any given

Macbeath region at a lower resolution. Our bound is based on a simple packing

argument. We will show that the shrunken Macbeath regions M ′′
δ (y) that overlap a

fixed shrunken Macbeath region at a coarser level of approximation M ′
sδ(x), with

s ≥ 1, lie within a suitable constant-factor expansion of M ′
sδ(x). Let Yδ,s(x) denote

the set of points y such that M ′′
δ (y) are pairwise disjoint and overlap M ′

sδ(x). Since

these shrunken Macbeath regions are pairwise disjoint, we can bound their number

by bounding the ratio of volumes of M ′
sδ(x) and M ′′

δ (y).

As an immediate corollary of the second inclusion of Lemma 3 we have

vol(Mλ
δ (x)) ≥ vol(Mλ

sδ(x))/sd. This allows us to establish an upper bound on

the growth rate in the number of Macbeath regions when refining to smaller scales.

Lemma 4. Given a convex body K ⊂ Rd and x ∈ K. Then, for constants δ ≥ 0,

s ≥ 1 and Yδ,s(x) as defined above, |Yδ,s(x)| = O(1).

Proof. By the first inclusion of Lemma 3, M ′
δ(y) ⊆ M ′

sδ(y), and we have M ′
sδ(x) ∩

M ′
sδ(y) 6= ∅. Next, by applying Lemma 1 (with the roles of x and y swapped) we

obtain M ′
sδ(x) = Mλc

sδ (x) ⊆Mβλc
sδ (y), with α = 1 and β = (3 + λc)/(1− λc).

By definition of Xδ the shrunken Macbeath regions M ′′
δ (y) are pairwise disjoint,

and so it suffices to bound their volumes with respect to that of M ′
sδ(x) to obtain a

bound on |Yδ,s(x)|. Applying the corollary to Lemma 3 and scaling, we obtain

vol(M ′′
δ (y)) ≥ 1

sd
vol(M ′′

sδ(y)) =

(
λp
βλcs

)d
vol(Mβλc

sδ (y)) ≥
(

λp
βλcs

)d
vol(M ′

sδ(x)).
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Thus, by a packing argument the number of children is at most
(
βλcs
λp

)d
= O(1).

3.3.2 Size Bound

We bound the cardinality of a maximal set of disjoint shrunken Macbeath

regions Mλ
δ (x) defined with respect to Kδ, such that the centers x lie within K; let

Xδ denote such a set of centers. This is facilitated by associating each center x with

a cap of K, where a cap C is defined as the nonempty intersection of the convex

body K with a halfspace (see Fig. 3.3a). Letting h denote the hyperplane bounding

this halfspace, the base of C is defined as h ∩K. The apex of C is any point in the

cap such that the supporting hyperplane of K at this point is parallel to h. The

width of C is the distance between h and this supporting hyperplane. Of particular

interest is a cap of minimum volume that contains x, which may not be unique. A

simple variational argument shows that x is the centroid of the base of this cap [89].

C

h

bas
e

wid
th

wapex K

(a)

K

∈ [∆, 2∆]

(b)

Figure 3.3: (a) Cap concepts and (b) the economical cap cover.

As each Macbeath region is associated with a cap, we can obtain the desired

bound by bounding the number of associated caps. We achieve this by appealing

to the so-called economical cap covers [98]. The following lem is a straightforward
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adaptation of the width-based economical cap cover per Lemma 3.2 of [88].

Lemma 5. Let K ⊂ Rd be a convex body in κ-canonical form. Let 0 < λ ≤ 1/5 be

any fixed constant, and let ∆ ≤ κ/12 be a real parameter. Let C be a set of caps,

whose widths lie between ∆ and 2∆, such that the Macbeath regions Mλ
K(x) centered

at the centroids x of the bases of these caps are disjoint. Then |C| = O(1/∆(d−1)/2)

(see Fig. 3.3a(b)).

This leads to the following bound on the number of points in Xδ.

Lemma 6. Let K ⊂ Rd be a convex body in κ-canonical form, and let Xδ as defined

above for some δ > 0 and 0 < λ ≤ 1/5. Then, |Xδ| = O(1/δ(d−1)/2).

Proof. In order to apply Lemma 5 we will partition the points of Xδ according to

the widths of their minimum-volume caps. For i ≥ 0, define ∆i = c22
iδi, where c2

depends on the nature of the the expansion process that yields Kδ. Define Xδ,i to

be the subset of points x ∈ Xδ such that width of x’s minimum cap with respect to

Kδ lies within [∆i, 2∆i]. By choosing c2 properly, the Hausdorff distance between

K and Kδ is at least c2δ = ∆0, and therefore any cap whose base passes through a

point of Xδ has width at least ∆0. This implies that every point of Xδ lies in some

subset Xδ,i for i ≥ 0.

If a convex body is in κ-canonical form, it follows from a simple geometric

argument that for any point x in this body whose minimal cap is of width at least ∆,

the body contains a ball of radius c∆ centered at x, for some constant c (depending

on κ and d). If ∆i > κ/12, then B(x, cκ/12) ⊆ Kδ for all x ∈ Xδ,i. It follows that

B(x, cκ/12) ⊆Mδ(x) implying that vol(Mλ
δ (x)) ≥ λd · vol(B(cκ/12)) which is Ω(1)
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as c, κ and λ are all constants. By a simple packing argument |Xi,j| = O(1). There

are at most a constant number of levels for which ∆j > κ/12, and so the overall

contribution of these subsets is O(1).

Henceforth, we may assume that ∆j ≤ κ/12. Since λ ≤ 1/5, we apply Lemma 5

to obtain the bound |Xδ,i| = O(1/∆
(d−1)/2
i ). (There is a minor technicality here. If δ

becomes sufficiently large, Kδ may not be in κ-canonical form because its diameter

is too large. Because δ = O(1) and hence diam(Kδ) = O(1), we may scale it back

into canonical form at the expense of increasing the constant factors hidden in the

asymptotic bound.) Thus, up to constant factors, we have

|Xδ| =
∑
i≥0

|Xδ,i| =
∑
i≥0

O

(
1

∆i

) d−1
2

=
∑
i≥0

O

(
1

c22iδ

) d−1
2

= O

((
1

δ

) d−1
2

)
.

3.3.3 Macbeath Ellipsoids

For the sake of efficient computation, it will be useful to approximate Macbeath

regions by shapes of constant combinatorial complexity. We have opted to use

ellipsoids. (Note that bounding boxes [7] could be used instead, and may be

preferred in contexts where polytopes are preferred.)

Given a Macbeath region, define its associated Macbeath ellipsoid Eλ
K(x) to

be the maximum-volume ellipsoid contained within Mλ
K(x) (see Fig. 3.1b). Clearly,

this ellipsoid is centered at x and Eλ
K(x) is an λ-factor scaling of E1

K(x) about x.

It is well known that the maximum-volume ellipsoid contained within a convex

body is unique, and Chazelle and Matoušek showed that it can be computed for a
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convex polytope in time linear in the number of its bounding halfspaces [99]. By

John’s Theorem (applied in the context of centrally symmetric bodies) it follows

that Eλ
K(x) ⊆Mλ

K(x) ⊆ Eλ
√
d

K (x) [100].

Given a point x ∈ K and δ > 0, define Mδ(x) to be the (unscaled) Macbeath

region with respect to Kδ (as defined in Section 3.2), that is, Mδ(x) = MKδ(x). Let

Eδ(x) denote the maximum volume ellipsoid contained within Mδ(x). As Mδ(x) is

symmetric about x, Eδ(x) is centered at x. For any λ > 0, define Mλ
δ (x) and Eλ

δ (x)

to be the uniform scalings of Mδ(x) and Eδ(x), respectively, about x by a factor of

λ. By John’s Theorem, we have

Eλ
δ (x) ⊆ Mλ

δ (x) ⊆ Eλ
√
d

δ (x). (3.1)

K
Kδ

E′′
δ (x)

E′
δ(x)

x

(a) (b)

x

(c)

Figure 3.4: A Delone set for a convex body. (Not drawn to scale.)

Two particular scale factors will be of interest to us. Define M ′
δ(x) = M

1/2
δ (x)

and M ′′
δ (x) = Mλ0

δ (x), where λ0 = 1/(4
√
d + 1). Similarly, define E ′δ(x) = E

1/2
δ (x)

and E ′′δ (x) = Eλ0
δ (x) (see Fig. 3.4(a)). Given a fixed δ, let Xδ be any maximal set of

points, all lying within K, such that the ellipsoids E ′′δ (x) are pairwise disjoint for all

x ∈ Xδ.
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These ellipsoids form a packing of Kδ (see Fig. 3.4(b)). The following lem

shows that their suitable expansions cover K while being contained within Kδ (see

Fig. 3.4(c)).

Lemma 7. Given a convex body K in Rd and a set Xδ as defined above for δ > 0,

K ⊆
⋃
x∈Xδ

E ′δ(x) ⊆ Kδ.

Proof. To establish the first inclusion, consider any point y ∈ K. Because Xδ is

maximal, there exists x ∈ Xδ such that E ′′δ (x)∩E ′′δ (y) is nonempty. By containment,

M ′′
δ (x) ∩ M ′′

δ (y) is also nonempty. By Lemma 1 (with α = 0), it follows that

y ∈Mλ
δ (x), where

λ =
2λ0

1− λ0
=

2/(4
√
d+ 1)

1− 1/(4
√
d+ 1)

=
2

4
√
d

=
1

2
√
d
.

By applying Eq. (3.1) (with λ = 1/(2
√
d)), we have M

1/(2
√
d)

δ (x) ⊆ E
1/2
δ (x) = E ′δ(x),

and therefore y ∈ E ′δ(x). Thus, we have shown that an arbitrary point y ∈ K is

contained in the ellipsoid E ′δ(x) for some x ∈ Xδ, implying that the union of these

ellipsoids covers K. The second inclusion follows from E ′δ(x) ⊆M ′
δ(x) ⊆Mδ(x) ⊆ Kδ

for any x ∈ Xδ ⊆ K.

In conclusion, if we treat the scaling factor λ in Eλ(x) as a proxy for the radius

of a metric ball, we have shown that Xδ is a (2λ0, 1/2)-Delone set for K. By Lemma 2

this is also true in the Hilbert metric over Kδ up to a constant factor adjustment

in the radii. (Note that the scale of the Hilbert balls does not vary with δ. What

varies is the choice of the expanded body Kδ defining the metric.)
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By John’s Theorem, Macbeath regions and Macbeath ellipsoids differ by a

constant scaling factor, both with respect to enclosure and containment. We remark

that all the results of the previous two sections hold equally for Macbeath ellipsoids.

We omit the straightforward, but tedious, details.

Remark 1. All results from previous subsection on scaled Macbeath regions apply

to scaled Macbeath ellipsoids subject to appropriate modifications of the constant

factors.

3.4 Approximate Polytope Membership

The Macbeath-based Delone sets developed above yield a simple data structure

for answering ε-APM queries for a convex body K. We assume that K is represented

as the intersection of m halfspaces. We may assume that in O(m) time it has been

transformed into κ-canonical form, for κ = 1/d. Throughout, we will assume that

Delone sets are based on the Macbeath ellipsoids E ′′δ (x) for packing and E ′δ(x) for

coverage (defined in Section 3.3.3).

3.4.1 The Data Structure

Our data structure is based on a hierarchy of Delone sets of exponentially

increasing accuracy. Define δ0 = ε, and for any integer i ≥ 0, define δi = 2iδ0. Let

Xi denote a Delone set for Kδi . By Lemma 7, we may take Xi to be any maximal

set of points within K such that the packing ellipsoids E ′′δ (x) are pairwise disjoint.

Let ` = `ε be the smallest integer such that |X`| = 1. We will show below that
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` = O(log 1/ε).

Given the sets 〈X0, . . . , X`〉, we build a rooted, layered DAG structure as

follows. The nodes of level i correspond 1–1 with the points of Xi. The leaves reside

at level 0 and the root at level `. Each node x ∈ Xi is associated with two things.

The first is its cell, denoted cell(x), which is the covering ellipsoid E ′δ(x) (the larger

hollow ellipsoids shown in Fig. 3.5). The second, if i > 0, is a set of children, denoted

ch(x), which consists of the points y ∈ Xi−1 such that cell(x) ∩ cell(y) 6= ∅.

level 0level 1level 2level 3

Kδ0Kδ1Kδ2
Kδ3

Figure 3.5: Hierarchy of ellipsoids for answering APM queries.

To answer a query q, we start at the root and iteratively visit any one node

x ∈ Xi at each level of the DAG, such that q ∈ cell(x). We know that if q lies within

K, such an x must exist by the covering properties of Delone sets, and further at

least one of x’s children contains q. If q does not lie within any of the children of

the current node, the query algorithm terminates and reports (without error) that

q /∈ K. Otherwise the search eventually reaches a node x ∈ X0 at the leaf level

whose cell contains q. Since cell(x) ⊆ Kδ0 = Kε, this cell serves as a witness to q’s

approximate membership within K.
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3.4.2 Performance Analysis

In order to bound the space and query time, we need to bound the total space

used by the data structure and the time to process each node in the search, which is

proportional to the number of its children. Building upon Lemmas 4 and 6, we have

our main result.

Theorem 3. Given a convex body K and ε > 0, there exists a data structure of

space O(1/ε(d−1)/2) that answers ε-approximate polytope membership queries in time

O(log 1/ε).

Since the expansion factors δi grow exponentially from ε to a suitably large

constant, it follows that the height of the tree is logarithmic in 1/ε, which is made

formal below.

Lemma 8. The DAG structure described above has height O(log 1/ε).

Proof. Let c2 be an appropriate constant, and let ` = dlog2(2/c2ε)e = O(log 1/ε).

Depending the nature of the expanded body Kδ, the constant c2 can be chosen so

the Hausdorff distance between K and Kδ` is at least c2δ` = c22
`ε ≥ 2. Because

K is in κ-canonical form, it is contained within a unit ball centered at the origin.

Therefore, Kδ` contains a ball of radius two centered at the origin, which implies

that the Macbeath ellipsoid E ′δ`(O) (which is scaled by 1/2) contains the unit ball

and so contains K. Thus, (assuming that the origin is added first to the Delone set)

level ` of the DAG contains a single node.

By Lemma 4, each node has O(1) children and δi = 2iδ0 = 2iε, we obtain the
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following space bound by summing |Xi| for 0 ≤ i ≤ `.

Lemma 9. The storage required by the DAG structure described above is O(1/ε(d−1)/2).

As mentioned above, by combining Lemmas 4 with 6, it follows that the query

time is O(log 1/ε) and by Lemma 9 the total space is O(1/ε(d−1)/2), which establish

Theorem 3.

3.4.3 Construction

While our focus has been on demonstrating the existence of a simple data struc-

ture derived from Delone sets, we note that it can be constructed by well-established

techniques. While obtaining the best dependencies on ε in the construction time will

likely involve fairly sophisticated methods, as seen in the paper of Arya et al. [50],

the following shows that there is a straightforward construction.

Lemma 10. Given a convex body K ⊂ Rd represented as the intersection of m

halfspaces and ε > 0, the above DAG structure for answering ε-APM queries can

be computed in time O(m + 1/εO(d)), where the constant in the exponent does not

depend on ε or d.

Proof. First, we transformK into canonical form, and replace it with an ε
2
-approximation

K ′ of itself. This can be done inO(m+1/εO(d)), so thatK ′ is bounded byO(1/ε(d−1)/2)

halfspaces (see, e.g., [101]). We then build the data structure to solve APM queries

to an accuracy of (ε/2), so that the total error is ε.

Because the number of nodes increases exponentially as we descend to the leaf

level, the most computationally intensive aspect of the remainder of the construction
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is computing the set X0, a maximal subset of K whose packing ellipsoids E ′′δ0(x)

are pairwise disjoint. To discretize the construction of X0, we observe that by our

remarks at the start of Section 3.2, the Hausdorff distance between K and Kδ0 is

Ω(δ0) = Ω(ε). It follows that each of the ellipsoids E ′′δ0(x) contains a ball of radius

Ω(λ0ε) = Ω(ε). We restrict the points of X0 to come from the vertices of a square

grid whose side length is half this radius. Since K is in canonical form, it suffices to

generate O(1/εO(d)) grid points. By decreasing the value of ε slightly (by a constant

factor), it is straightforward to show that any Delone set can be perturbed so that

its centers lie on this grid.

Each Macbeath ellipsoid can be computed in time linear in the number of

halfspaces bounding K ′, which is O(1/εO(d)) [99]. The maximal set is computed by

brute force, repeatedly selecting a point x from the grid, computing E ′′δ0(x), and

marking the points of the grid that it covers until all points interior to K are covered.

The overall running time is dominated by the product of the number of grid points

and the O(1/εO(d)) time to compute each Macbeath ellipsoid.
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Chapter 4: Non-Euclidean Nearest-Neighbor Searching

Nearest-neighbor searching is a fundamental retrieval problem with numerous

applications in fields such as machine learning, data mining, data compression, and

pattern recognition. A set of n points, called sites, is preprocessed into a data

structure such that, given any query point q, it is possible to report the site that is

closest to q. The most common formulation involves points in Rd under the Euclidean

metric. For classical pointer-based data structures, the objective is to achieve O(n)

storage and O(log n) query time. When approximation is involved, an important

issue is the dependence of the storage and query time on ε, and particularly how

rapidly these processing requirements grow with the dimension.

In this chapter, we present a general approach for designing data structures for

ANN queries for non-Euclidean distance functions while matching the best bounds

for Euclidean ANN queries. In particular, the proposed data structures achieve

O(log n
ε
) query time and O((n/εd/2) log 1

ε
) storage. Thus, we suffer only an extra

log 1
ε

factor in the space bounds compared to the best results for Euclidean ε-ANN

searching.
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4.1 Introduction

Given a set P of n points in Rd, a nearest-neighbor query is given a point

q ∈ Rd, and the objective is to return the closest point to P . It is well known that

exact nearest neighbor searching in multi-dimensional spaces is quite inefficient, and

so much effort has been devoted to developing efficient approximation algorithms.

Given an approximation parameter ε > 0, an ε-approximate nearest-neighbor query

(or ε-ANN) returns any point whose distance is within a factor of (1 + ε) of that of

the actual nearest neighbor. Throughout, we assume that d is fixed, and we treat n

and ε as asymptotic quantities.

The most relevant related work on nearest-neighbor searching with non-

Euclidean distances is due to Har-Peled and Kumar. In their paper [52], they

proved that ε-ANN searching over a wide variety of distance functions (including

additively and multiplicatively weighted sites) could be cast in terms of minimiza-

tion diagrams. They formulated this problem in a very abstract setting, where no

explicit reference is made to sites. Instead the input is expressed in terms of abstract

properties of the distance functions, such as their growth rates and “sketchability.”

While this technique is very general, the complexity bounds are much worse than for

the corresponding concrete versions. For example, in the case of Euclidean distance

with multiplicative weights, in order to achieve logarithmic query time, the storage

used is O((n logd+2 n)/ε2d+2 + n/εd
2+d). Similar results are achieved for a number of

other distance functions that are considered in [52].

In this chapter, we present a general approach for designing such data structures
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Figure 4.1: (a) Unit balls in different Minkowski norms. (b) Geometric interpretation

of the Bregman divergence.

achieving O(log n
ε
) query time and O((n/εd/2) log 1

ε
) storage. Thus, we suffer only

an extra log 1
ε

factor in the space bounds compared to the best results for Euclidean

ε-ANN searching. We demonstrate the power of our approach by applying it to a

number of natural problems:

Minkowski Distance: The `k distance (see Figure 4.1(a)) between two points p and

q is defined as ‖q − p‖k = (
∑d

i=1 |pi − qi|k)
1
k . Our results apply for any real

constant k > 1.

Multiplicative Weights: Each site p is associated with weight wp > 0 and fp(q) =

wp‖q− p‖. The generalization of the Voronoi diagram to this distance function

is known as the Möbius diagram [102]. Our results generalize from `2 to any

Minkowski `k distance, for constant k > 1.

Mahalanobis Distance: Each site p is associated with a d×d positive-definite matrix

Mp and fp(q) =
√

(p− q)ᵀMp(p− q). Mahalanobis distances are widely used

in machine learning and statistics. Our results hold under the assumption that
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for each point p, the ratio between the maximum and minimum eigenvalues of

Mp is bounded.

Scaling Distance Functions: Each site p is associated with a closed convex body

Kp whose interior contains the origin, and fp(q) is the smallest r such that

(q − p)/r ∈ Kp (or zero if q = p). (These are also known as convex distance

functions [103].) These generalize and customize normed metric spaces by

allowing metric balls that are not centrally symmetric and allowing each site

to have its own distance function.

Scaling distance functions generalize the Minkowski distance, multiplicative

weights, and the Mahalanobis distance. Our results hold under the assumption that

the convex body Kp inducing the distance function satisfies certain assumptions.

First, it needs to be fat in the sense that it can be sandwiched between two Euclidean

balls centered at the origin whose radii differ by a constant factor. Second, it needs to

be smooth in the sense that the radius of curvature for every point on Kp’s boundary

is within a constant factor of its diameter. (Formal definitions will be given in

Section 4.4.2.)

Theorem 4 (ANN for Scaling Distances). Given an approximation parameter 0 <

ε ≤ 1 and a set S of n sites in Rd where each site p ∈ S is associated with a fat,

smooth convex body Kp ⊂ Rd (as defined above), there exists a data structure that can

answer ε-approximate nearest-neighbor queries with respect to the respective scaling

distance functions defined by Kp with

Query time: O
(

log
n

ε

)
and Space: O

(
n log 1

ε

εd/2

)
.
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Another important application that we consider is the Bregman divergence.

Bregman divergences generalize the squared Euclidean distance [104], the Kullback-

Leibler divergence (also known as relative entropy) [105], and the Itakura-Saito

distance [106] among others. They have numerous applications in machine learning

and computer vision [107,108].

Bregman Divergence: Given an open convex domain X ⊆ Rd, a strictly convex

and differentiable real-valued function F on X, and q, p ∈ X, the Bregman

divergence of q from p is

DF (q, p) = F (q)− (F (p) +∇F (p) · (q − p)),

where ∇F denotes the gradient of F and “·” is the standard dot product.

The Bregman divergence has the following geometric interpretation (see Fig-

ure 4.1(b)). Let p̂ denote the vertical projection of p onto the graph of F , that is,

(p, F (p)), and define q̂ similarly. DF (q, p) is the vertical distance between q̂ and the

hyperplane tangent to F at the point p̂. Equivalently, DF (q, p) is just the error that

results by estimating F (q) by a linear model at p.

The Bregman divergence possibly lacks many of the properties of typical

distance functions. It is generally not symmetric, that is, DF (q, p) 6= DF (p, q), and

it generally does not satisfy the triangle inequality, but it is a convex function in

its first argument. Throughout, we treat the first argument q as the query point

and the second argument p as the site, but it is possible to reverse these through

dualization [104].
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Data structures have been presented for answering exact nearest-neighbor

queries in the Bregman divergence by Cayton [109] and Nielson et al. [110], but no

complexity analysis was given. Worst-case bounds have been achieved by imposing

restrictions on the function F . Various different complexity measures have been

proposed, including the following. Given a parameter µ ≥ 1, and letting ‖p − q‖

denote the Euclidean distance between p and q:

• DF is µ-asymmetric if for all p, q ∈ X, DF (q, p) ≤ µDF (p, q).

• DF is µ-similar 1 if for all p, q ∈ X, ‖q − p‖2 ≤ DF (q, p) ≤ µ‖q − p‖2.

Abdullah et al. [112] presented data structures for answering ε-ANN queries

for decomposable2 Bregman divergences in spaces of constant dimension under the

assumption of bounded similarity. Later, Abdullah and Venkatasubramanian [113]

established lower bounds on the complexity of Bregman ANN searching under the

assumption of bounded asymmetry.

Our results for ANN searching in the Bregman divergence are stated below.

They hold under a related measure of complexity, called τ -admissibility, which is more

inclusive (that is, weaker) than µ-similarity, but seems to be more restrictive than

µ-asymmetry. It is defined in Section 4.5.1, where we also explore the relationships

1Our definition of µ-similarity differs from that of [111]. First, we have replaced 1/µ with µ for

compatibility with asymmetry. Second, their definition allows for any Mahalanobis distance, not

just Euclidean. This is a trivial distinction in the context of nearest-neighbor searching, since it is

possible to transform between such distances by applying an appropriate positive-definite linear

transformation to the query space.
2The sum of one-dimensional Bregman divergences.
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between these measures.

Theorem 5 (ANN for Bregman Divergences). Given a τ -admissible Bregman diver-

gence DF for a constant τ defined over an open convex domain X ⊆ Rd, a set S of n

sites in Rd, and an approximation parameter 0 < ε ≤ 1, there exists a data structure

that can answer ε-approximate nearest-neighbor queries with respect to DF with

Query time: O
(

log
n

ε

)
and Space: O

(
n log 1

ε

εd/2

)
.

Note that our results are focused on the existence of these data structures,

and construction is not discussed. While we see no significant impediments to their

efficient construction by modifying the constructions of related data structures, a

number of technical results would need to be developed. We therefore leave the

question of efficient construction as a rather technical but nonetheless important

open problem.

4.1.1 Methods

Our solutions are all based on the application of a technique, called convexifi-

cation. Recently, Arya et al. showed how to efficiently answer several approximation

queries with respect to convex polytopes [28,34,50,114], including polytope member-

ship, ray shooting, directional width, and polytope intersection. As mentioned above,

the linearization technique using the lifting transformation can be used to produce

convex polyhedra for the sake of answering ANN queries, but it is applicable only to

the Euclidean distance (or more accurately the squared Euclidean distance and the

related power distance [115]). In the context of approximation, polytopes are not
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required. The convex approximation methods described above can be adapted to

work on any convex body, even one with curved boundaries. This provides us with

an additional degree of flexibility. Rather than applying a transformation to linearize

the various distance functions, we can go a bit overboard and “convexify” them.

Convexification techniques have been used in non-linear optimization for

decades [116], for example the αBB optimization method locally convexifies con-

straint functions to produce constraints that are easier to process [117]. However,

we are unaware of prior applications of this technique in computational geometry in

the manner that we use it. (For an alternate use, see [17].)

The general idea involves the following two steps. First, we apply a quadtree-like

approach to partition the query space (that is, Rd) into cells so that the restriction

of each distance function within each cell has certain “nice” properties, which make

it possible to establish upper bounds on the gradients and the eigenvalues of their

Hessians. We then add to each function a common “convexifying” function whose

Hessian has sufficiently small (in fact negative) eigenvalues, so that all the functions

become concave (see Figure 4.3 in Section 4.3 below). We then exploit the fact that

the lower envelope of concave functions is concave. The region lying under this lower

envelope can be approximated by standard techniques, such as the ray-shooting data

structure of [34]. We show that if the distance functions satisfy some admissibility

conditions, this can be achieved while preserving the approximation errors.

The rest of this chapter is organized as follows. In the next section we present

definitions and preliminary results. Section 4.3 discusses the concept of convexifica-

tion, and how it is applied to vertical ray shooting on the minimization diagram of

50



sufficiently well-behaved functions. In Section 4.4, we present our solution to ANN

searching for scaling distance functions, proving Theorem 4. In Section 4.5, we do

the same for the case of Bregman divergence, proving Theorem 5.

4.2 Preliminaries

In this section we present a number of definitions and results that will be useful

throughout this chapter.

4.2.1 Notation and Assumptions

Given a function f : Rd → R, its graph is the set of (d+ 1)-dimensional points

(x, f(x)), its epigraph is the set of points on or above the graph, and its hypograph is

the set of points on or below the graph (where the (d+1)-st axis is directed upwards).

The level set (also called level surface if d ≥ 3) of f is the set of points x ∈ Rd for

which f has the same value.

The gradient and Hessian of a function generalize the concepts of the first and

second derivative to a multidimensional setting. The gradient of f , denoted ∇f , is

defined as the vector field
(
∂f
∂x1
, . . . , ∂f

∂xd

)ᵀ
. The gradient vector points in a direction

in which the function grows most rapidly, and it is orthogonal to the level surface.

For any point x and any unit vector v, the rate of change of f along v is given

by the dot product ∇f(x) · v. The Hessian of f at x, denoted ∇2f(x), is a d × d

matrix of second-order partial derivatives at x. For twice continuously differentiable

functions, ∇2f(x) is symmetric, implying that it has d (not necessarily distinct) real
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eigenvalues.

Given a d-vector v, let ‖v‖ denote its length under the Euclidean norm, and

the Euclidean distance between points p and q is ‖q − p‖. Given a d× d matrix A,

its spectral norm is ‖A‖ = sup {‖Ax‖ / ‖x‖ : x ∈ Rd and x 6= 0}. Since the Hessian

is a symmetric matrix, it follows that ‖∇2f(x)‖ is the largest absolute value attained

by the eigenvalues of ∇2f(x).

A real-valued function f defined on a nonempty subset X of Rd is convex if

the domain X is convex and for any x, y ∈ X and α ∈ [0, 1], f(αx + (1 − α)y) ≤

αf(x) + (1 − α)f(y), and it is concave if −f is convex. A twice continuously

differentiable function on a convex domain is convex if and only if its Hessian matrix

is positive semidefinite in the interior of the domain. It follows that all the eigenvalues

of the Hessian of a convex function are nonnegative.

Given a function f : Rd → R and a closed Euclidean ball B (or generally any

closed bounded region), let f+(B) and f−(B) denote the maximum and minimum

values, respectively, attained by f(x) for x ∈ B. Similarly, define ‖∇f+(B)‖ and

‖∇2f+(B)‖ to be the maximum values of the norms of the gradient and Hessian,

respectively, for any point in B.

4.2.2 Minimization Diagrams and Ray Shooting

Consider a convex domain X ⊆ Rd and a set of functions F = {f1, . . . , fm},

where fi : X → R+. Let Fmin denote the associated lower-envelope function, that

is Fmin(x) = min1≤i≤m fi(x). As Har-Peled and Kumar [52] observed, for any
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ε > 0, we can answer ε-ANN queries on any set S by letting fi denote the distance

function to the ith site, and computing any index i (called a witness) such that

fi(q) ≤ (1 + ε)Fmin(q).

We can pose this as a geometric approximation problem in one higher dimension.

Consider the hypograph in Rd+1 of Fmin, and let us think of the (d + 1)st axis as

indicating the vertical direction. Answering ε-ANN queries in the above sense can be

thought of as approximating the result of a vertical ray shot upwards from the point

(q, 0) ∈ Rd+1 until it hits the lower envelope, where the allowed approximation error is

εFmin(q). Because the error is relative to the value of Fmin(q), this is called a relative

ε-AVR query. It is also useful to consider a variant in which the error is absolute.

An absolute ε-AVR query returns any witness i such that fi(q) ≤ ε+ Fmin(q) (see

Fig. 4.2).

The hypograph of a general minimization diagram can be unwieldy. Our

approach to answer AVR queries efficiently will involve subdividing space into

regions such that within each region it is possible to transform the hypograph into

a convex shape. In the next section, we will describe this transformation. Given

this, our principal utility for answering ε-AVR queries efficiently is encapsulated in

the following lemma (see Figure 4.2). The proof presented below is based on the

constructions in [114].

Lemma 11. (Answering ε-AVR Queries) Consider a unit ball B ⊆ Rd and a family

of concave functions F = {f1, . . . , fm} defined over B such that for all 1 ≤ i ≤ m

and x ∈ B, fi(x) ∈ [0, 1] and ‖∇fi(x)‖ ≤ 1. Then, for any 0 < ε ≤ 1, there is a
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f1
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f2

Fmin

ε

q

1

0

X

Figure 4.2: Approximate AVR query assuming absolute errors. For the query q, the

exact answer is f2, but f3 would be acceptable.

data structure that can answer absolute ε-AVR queries in time O(log 1
ε
) and storage

O((1
ε
)d/2).

Proof. We adapt an approach for ray-shooting described in [114], which reduces

ray-shooting to walking the ray through a collection of ellipsoids. In order to apply

this approach, we will define two convex bodies K− and K+, where K− ⊂ K+. The

aforementioned ellipsoids will be contained withing K+ and will cover K−. The

number of ellipsoids will be O(1/ε(d−1)/2 and each vertical ray will pass through

O(log 1
ε
) ellipsoids of this collection. Knowing the last ellipsoid of this collection that

is hit by an upward ray will provide the answer to an ε-AVR query.

In order to apply this approach, let us translate space so that B is centered

at the origin, and let us translate the functions of F up by one unit, so that the

function values lie in [1, 2]. Let C denote a semi-infinite convex cylinder in Rd+1

whose central axis is vertical, whose cross section is B, and which is bounded below

by the horizontal hyperplane f(x) = −1
2
. Let K− be the convex body formed by

intersecting C with epigraph of the lower envelope function Fmin. To define

Next, to apply the method given in [114] we enclose K within an expanded
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body K+ as follows.

We will follow the strategy presented in [27] for answering ε-ANN queries. It

combines (1) a data structure for answering approximate central ray-shooting queries,

in which the rays originate from a common point and (2) an approximation-preserving

reduction from vertical to central ray-shooting queries [34].

Let K denote a closed convex body that is represented as the intersection of

a finite set of halfspaces. We assume that K is centrally γ-fat for some constant

γ (recall the definition from Section 4.4.2). An ε-approximate central ray-shooting

query (ε-ACR query) is given a query ray that emanates from the origin and returns

the index of one of K’s bounding hyperplanes h whose intersection with the ray is

within distance ε · diam(K) of the true contact point with K’s boundary. We will

make use of the following result, which is paraphrased from [34].

Approximate Central Ray-Shooting: Given a convex polytope K in Rd that is cen-

trally γ-fat for some constant γ and an approximation parameter 0 < ε ≤ 1,

there is a data structure that can answer ε-ACR queries in time O(log 1
ε
) and

storage O(1/ε(d−1)/2).

As in Section 4 of [34], we can employ a projective transformation that converts

vertical ray shooting into central ray shooting. While the specific transformation

presented there was tailored to work for a set of hyperplanes that are tangent to a

paraboloid, a closer inspection reveals that the reduction can be generalized (with a

change in the constant factors) provided that the following quantities are all bounded

above by a constant: (1) the diameter of the domain of interest, (2) the difference
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between the maximum and minimum function values throughout this domain, and

(3) the absolute values of the slopes of the hyperplanes (or equivalently, the norms

of the gradients of the functions defined by these hyperplanes). This projective

transformation produces a convex body in Rd+1 that is centrally γ-fat for some

constant γ, and it preserves relative errors up to a constant factor.

Therefore, by applying this projective transformation, we can reduce the

problem of answering ε-AVR queries in dimension d for the lower envelope of a set of

linear functions to the aforementioned ACR data structure in dimension d+ 1. The

only remaining issue is that the functions of F are concave, not necessarily linear.

Thus, the output of the reduction is a convex body bounded by curved patches,

not a polytope. We address this by applying Dudley’s Theorem [19] to produce

a polytope that approximates this convex body to an absolute Hausdorff error of

ε/2. (In particular, Dudley’s construction samples O(1/εd/2) points on the boundary

of the convex body, and forms the approximation by intersecting the supporting

hyperplanes at each of these points.) We then apply the ACR data structure to

this approximating polytope, but with the allowed error parameter set to ε/2. The

combination of the two errors, results in a total allowed error of ε.

In order to obtain a witness, each sample point from Dudley’s construction is

associated with the function(s) that are incident to that point. We make the general

position assumption that no more than d+ 1 functions can coincide at any point on

the lower envelope of F , and hence each sample point is associated with a constant

number of witnesses. The witness produced by the ACR data structure will be one

of the bounding hyperplanes. We check each of the functions associated with the
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sample point that generated this hyperplane, and return the index of the function

having the smallest function value.

4.3 Convexification

In this section we discuss the key technique underlying many of our results.

As mentioned above, our objective is to answer ε-AVR queries with respect to the

minimization diagram, but this is complicated by the fact that it does not bound a

convex set.

In order to overcome this issue, let us make two assumptions. First, we restrict

the functions to a bounded convex domain, which for our purposes may be taken to

be a closed Euclidean ball B in Rd. Second, let us assume that the functions are

smooth, implying in particular that each function fi has a well defined gradient ∇fi

and Hessian ∇2fi for every point of B. As mentioned above a function fi is convex

(resp., concave) over B if and only if all the eigenvalues of ∇2fi(x) are nonnegative

(resp., nonpositive). Intuitively, if the functions fi are sufficiently well-behaved it

is possible to compute upper bounds on the norms of the gradients and Hessians

throughout B. Given F and B, let Λ+ denote an upper bound on the largest

eigenvalue of ∇2fi(x) for any function fi ∈ F and for any point x ∈ B.

We will apply a technique called convexification from the field of nonconvex

optimization [116,117]. If we add to fi any function whose Hessian has a maximum

eigenvalue at most −Λ+, we will effectively “overpower” all the upward curving

terms, resulting in a function having only nonpositive eigenvalues, that is, a concave
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function.3 The lower envelope of concave functions is concave, and so techniques for

convex approximation (such as Lemma 11) can be applied to the hypograph of the

resulting lower-envelope function.

To make this more formal, let p ∈ Rd and r ∈ R denote the center point and

radius of B, respectively. Define a function φ (which depends on B and Λ+) to be

φ(x) =
Λ+

2

(
r2 −

d∑
j=1

(xj − pj)2
)

=
Λ+

2
(r2 − ‖x− p‖2).

It is easy to verify that φ evaluates to zero along B’s boundary and is positive within

B’s interior. Also, for any x ∈ Rd, the Hessian of ‖x − p‖2 (as a function of x) is

a d × d diagonal matrix 2I, and therefore ∇2φ(x) = −Λ+I. Now, for 1 ≤ i ≤ m,

define Ûfi(x) = fi(x) + φ(x) andÛFmin(x) = min
1≤i≤m

Ûfi(x) = Fmin(x) + φ(x).

Because all the functions are subject to the same offset at each point x, ÛFmin

preserves the relevant combinatorial structure of Fmin, and in particular fi yields

the minimum value to Fmin(x) at some point x if and only if Ûfi yields the minimum

value to ÛFmin(x). Absolute vertical errors are preserved as well. Observe that ÛFmin(x)

matches the value of Fmin along B’s boundary and is larger within its interior. Also,

since ∇2φ(x) = −Λ+I, it follows from elementary linear algebra that each eigenvalue

of ∇2 Ûfi(x) is smaller than the corresponding eigenvalue of ∇2fi(x) by Λ+. Thus, all

the eigenvalues of Ûfi(x) are nonpositive, and so Ûfi is concave over B. In turn, this

implies that ÛFmin is concave, as desired. We will show that, when properly applied,

3While this intuition is best understood for convex functions, it can be applied whenever there

is an upper bound on the maximum eigenvalue.
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relative errors are nearly preserved, and hence approximating the convexified lower

envelope yields an approximation to the original lower envelope.

4.3.1 A Short Example

As a simple application of this technique, consider the following problem. Let

F = {f1, . . . , fm} be a collection of m multivariate polynomial functions over Rd

each of constant degree and having coefficients whose absolute values are O(1) (see

Figure 4.3(a)). It is known that the worst-case combinatorial complexity of the lower

envelope of algebraic functions of fixed degree in Rd lies between Ω(nd) and O(nd+α)

for any α > 0 [118], which suggests that any exact solution to computing a point on

the lower envelope Fmin will either involve high space or high query time.

=+

(a) (b) (c)

f1

f2
f3

f̃1 f̃3

f̃2φ

Figure 4.3: Convexification.

Let us consider a simple approximate formulation by restricting F to a unit

d-dimensional Euclidean ball B centered at the origin. Given a parameter ε > 0, the

objective is to compute for any query point q ∈ Rd an absolute ε-approximation by

returning the index of a function fi such that fi(q) ≤ Fmin(q) + ε. (While relative
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errors are usually desired, this simpler formulation is sufficient to illustrate how

convexification works.) Since the degrees and coefficients are bounded, it follows

that for each x ∈ B, the norms of the gradients and Hessians for each function fi

are bounded. A simple naive solution would be to overlay B with a grid with cells

of diameter Θ(ε) and compute the answer for a query point centered within each

grid cell. Because the gradients are bounded, the answer to the query for the center

point is an absolute ε-approximation for any point in the cell. This produces a data

structure with space O((1
ε
)d).

To produce a more space-efficient solution, we apply convexification. Because

the eigenvalues of the Hessians are bounded for all x ∈ B and all functions fi, it follows

that there exists an upper bound Λ+ = O(1) on all the Hessian eigenvalues. Therefore,

by computing the convexifying function φ described above (see Figure 4.3(b)) to

produce the new function ÛFmin (see Figure 4.3(c)) we obtain a concave function.

It is easy to see that φ has bounded gradients and therefore so does ÛFmin. The

hypograph of the resulting function when suitably trimmed is a convex body of

constant diameter residing in Rd+1. After a suitable scaling (which will be described

later in Lemma 13), the functions can be transformed so that we may apply Lemma 11

to answer approximate vertical ray-shooting queries in time O(log 1
ε
) with storage

O((1
ε
)d/2). This halves the exponential dependence in the dimension over the simple

approach.
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4.3.2 Admissible Distance Functions

A key issue in the convexification process is how approximation errors are

affected. We will show that if the functions satisfy certain admissibility properties,

then this will be the case. We are given a domain X ⊆ Rd, and we assume that

each distance function is associated with a defining site p ∈ X. Consider a distance

function fp : X→ R+ with a well-defined gradient and Hessian for each point of X.4

Given τ > 0, we say that fp is τ -admissible if for all x ∈ X:

(i) ‖∇fp(x)‖‖x− p‖ ≤ τfp(x), and

(ii) ‖∇2fp(x)‖‖x− p‖2 ≤ τ 2fp(x).

Intuitively, an admissible function exhibits growth rates about the site that are

polynomially upper bounded. For example, it is easy to prove that fp(x) = ‖x− p‖c

is O(c)-admissible, for any c ≥ 1.

Admissibility implies bounds on the magnitudes of the function values, gra-

dients, and Hessians. Given a Euclidean ball B and site p, we say that B and p

are β-separated if d(p,B)/diam(B) ≥ β (where d(p,B) is the minimum Euclidean

distance between p and B and diam(B) B’s diameter). The following lemma presents

upper bounds on f+(B), ‖∇f+(B)‖, and ‖∇2f+(B)‖ in terms of these quantities.

(Recall the definitions from Section 4.2.1.)

4This assumption is really too strong, since distance functions often have undefined gradients

or Hessians at certain locations (e.g., the sites themselves). For our purposes it suffices that the

gradient and Hessian are well defined at any point within the region where convexification will be

applied.
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Lemma 12. Consider an open convex domain X, a site p ∈ X, a τ -admissible

distance function fp, and a Euclidean ball B ⊂ X. If B and p are (τκ)-separated for

κ > 1, then:

(i) f+
p (B) ≤ f−p (B)κ/(κ− 1),

(ii) ‖∇f+
p (B)‖ ≤ f+

p (B)/(κdiam(B)), and

(iii) ‖∇2f+
p (B)‖ ≤ f+

p (B)/(κdiam(B))2.

Proof. To prove (i), let x+ and x− denote the points of B that realize the values

of f+
p (B) and f−p (B), respectively. By applying the mean value theorem, there

exists a point s ∈ x−x+ such that f+
p (B) − f−p (B) = ∇fp(s) · (x+ − x−). By the

Cauchy-Schwarz inequality

f+
p (B)− f−p (B) = ∇fp(s) · (x+ − x−) ≤ ‖∇fp(s)‖‖x+ − x−‖.

By τ -admissibility, ‖∇fp(s)‖ ≤ τfp(s)/‖s − p‖, and since x+, x−, s ∈ B, we have

‖x+ − x−‖/‖s− p‖ ≤ diam(B)/d(p,B) ≤ 1/(τκ). Thus,

f+
p (B)− f−p (B) ≤ τfp(s)

‖s− p‖
‖x+ − x−‖ ≤ τfp(s)

τγ
≤

f+
p (B)

κ
.

This implies that f+
p (B) ≤ f−p (B)κ/(κ− 1), establishing (i).

To prove (ii), consider any x ∈ B. By separation, d(p,B) ≥ τκdiam(B).

Combining this with τ -admissibility and (i), we have

‖∇fp(x)‖ ≤ τfp(x)

‖x− p‖
≤

τf+
p (B)

d(p,B)
≤

τf+
p (B)

τκdiam(B)
=

f+
p (B)

κdiam(B)
.

This applies to any x ∈ B, thus establishing (ii).
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To prove (iii), again consider any x ∈ B. By separation and admissibility, we

have

‖∇2fp(x)‖ ≤ τ 2fp(x)

‖x− p‖2
≤

τ 2f+
p (B)

d2(p,B)
≤

f+
p (B)

(κdiam(B))2
.

This applies to any x ∈ B, thus establishing (iii).

4.3.3 Convexification and Ray Shooting

A set F = {f1, . . . , fm} of τ -admissible functions is called a τ -admissible family

of functions. Let Fmin denote the associated lower-envelope function. In Lemma 11

we showed that absolute ε-AVR queries could be answered efficiently in a very

restricted context. This will need to be generalized the purposes of answering ANN

queries, however.

The main result of this section states that if the sites defining the distance

functions are sufficiently well separated from a Euclidean ball, then (through convex-

ification) ε-AVR queries can be efficiently answered. The key idea is to map the ball

and functions into the special structure required by Lemma 11, and to analyze how

the mapping process affects the gradients and Hessians of the functions.

Lemma 13. (Convexification & Ray-Shooting) Consider a Euclidean ball B ∈ Rd

and a family of τ -admissible distance functions F = {f1, . . . , fm} over B such that

each associated site is (2τ)-separated from B. Given any ε > 0, there exists a data

structure that can answer relative ε-AVR queries with respect to Fmin in time O(log 1
ε
)

with storage O((1
ε
)d/2).

Proof. We will answer approximate vertical ray-shooting queries by a reduction to
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the data structure given in Lemma 11 for answering approximate central ray-shooting

queries. In order to apply this lemma, we need to transform the problem into the

canonical form prescribed by that lemma.

We may assume without loss of generality that f1 is the function that minimizes

f−1 (B) among all the functions in F . By Lemma 12(i) (with κ = 2), f+
1 (B) ≤ 2f−1 (B).

For all i, we may assume that f−i (B) ≤ 2f−1 (B) for otherwise this function is greater

than f1 throughout B, and hence it does not contribute to Fmin. Under this

assumption, it follows that f+
i (B) ≤ 4f−1 (B).

In order to convert these functions into the desired form, define h = 5f−1 (B),

r = radius(B), and let c ∈ Rd denote the center of B. Let B0 be a unit ball centered

at the origin, and for any x ∈ B0, let x′ = rx+ c. Observe that x ∈ B0 if and only if

x′ ∈ B. For each i, define the normalized distance function

gi(x) =
fi(x

′)

h
.

We assert that these functions satisfy the following properties. They are

straightforward consequences of admissibility and separation, but for the sake of

completeness, we present the derivations below.

Lemma 14. Each of the normalized distance functions g(x) = f(x′)/h defined in

the proof of Lemma 13 satisfy the following properties:

(a) g+(B0) ≤ 4/5 and g−(B0) ≥ 1/5,

(b) ‖∇g+(B0)‖ ≤ 1/2, and

(c) ‖∇2g+(B0)‖ ≤ 1/4.
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Proof. For any x ∈ B0, we have

g(x) ≤ f+(B)

h
≤ 2f−(B)

h
≤ 4f−1 (B)

h
=

4

5
,

and

g(x) ≥ f−(B)

h
≥ f−1 (B)

h
=

1

5
,

which establishes (a).

Before establishing (b) and (c), observe that by the chain rule in differential

calculus, ∇g(x) = (r/h)∇f(x′) and ∇2g(x) = (r2/h)∇2f(x′). (Recall that x and

x′ are corresponding points in B0 and B, respectively.) Since B0 is a unit ball,

diam(B0) = 2. Thus, by Lemma 12(ii) (with κ = 2), we have

‖∇g(x)‖ =
r

h
‖∇f(x′)‖ ≤ r

h

f+(B)

2(2r)
≤ 1

4
,

which establishes (b). By Lemma 12(iii),

‖∇2g(x)‖ =
r2

h
‖∇f(x′)‖ ≤ r2

h

f+(B)

(2(2r))2
≤ 1

16
,

which establishes (c).

Next, we convexify these functions. To do this, define φ(x) = (1 − ‖x‖2)/8.

Observe that for any x ∈ B0, φ(x) ∈ [0, 1/8] and ‖∇φ(x)‖ = ‖x‖/4 and ∇2φ(x) is

the diagonal matrix −(1/4)I. DefineÛgi(x) = gi(x) + φ(x).

It is easily verified that these functions satisfy the following properties.

(a′) Ûg+
i (B0) ≤ 1 and Ûg−i (B0) ≥ 1/5
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(b′) ‖∇Ûg+
i (B0)‖ ≤ ‖∇g+i (B0)‖+ ‖∇φ+(B0)‖ < 1

(c′) ‖∇2Ûg+
i (B0)‖ ≤ ‖∇2g+i (B0)‖ − (1/4) ≤ 0

By property (c′), these functions are concave over B0. Given that Ûg−i (B0) ≥ 1/5,

in order to answer AVR queries to a relative error of ε, it suffices to answer AVR

queries to an absolute error of ε′ = ε/5. Therefore, we can apply Lemma 11 (using

ε′ in place of ε) to obtain a data structure that answers relative ε-AVR queries with

respect to Fmin in time O(log 1
ε
) with storage O((1

ε
)d/2), as desired.

Armed with this tool, we are now in a position to present the data structures for

answering ε-ANN queries for each of our applications, which we do in the subsequent

sections.

4.4 Search Queries with Convex Distance Functions

Recall that in a scaling distance we are given a convex body K that contains

the origin in its interior, and the distance from a query point q to a site p is defined

to be zero if p = q and otherwise it is the smallest r such that (q − p)/r ∈ K.5 The

body K plays the role of a unit ball in a normed metric, but we do not require

that the body be centrally symmetric. In this section we establish Theorem 4 by

demonstrating a data structure for answering ε-ANN queries given a set S of n

5This can be readily generalized to squared distances, that is, the smallest r such that (q−p)/
√
r ∈

K. A relative error of 1 + ε in the squared distance, reduces to computing a
√

1 + ε relative error

in the original distance. Since
√

1 + ε ≈ (1 + ε/2) for small ε, our approach can be applied but

with a slightly smaller value of ε. This generalizes to any constant power.
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sites, where each site pi is associated with a scaling distance whose unit ball is a fat,

smooth convex body.

Before presenting the data structure, we present two preliminary results. The

first, given in Section 4.4.1, explains how to subdivide space into a number of regions,

called cells, that possess nice separation properties with respect to the sites. The

second, given in Section 4.4.2, presents key technical properties of scaling functions

whose unit balls are fat and smooth.

w

(b) (c) (d)

Bw

≥ α diam(B)

w

≥ β diam(Bw)
w

(a)

Bw

w
B

Figure 4.4: Basic separation properties for Lemma 15.

4.4.1 Separation Properties

In order to apply the convexification process, we will first subdivide space into

regions, each of which satisfies certain separation properties with respect to the sites

S. This subdivision results from a height-balanced variant of a quadtree, called a

balanced box decomposition tree (or BBD tree) [119]. Each cell of this decomposition

is either a quadtree box or the set-theoretic difference of two such boxes. Each leaf

cell is associated with an auxiliary ANN data structure for the query points in the

cell, and together the leaf cells subdivide all of Rd.

The separation properties are essentially the same as those of the AVD data
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structure of [47]. For any leaf cell w of the decomposition, the sites can be partitioned

into three subsets, any of which may be empty (see Figure 4.4(a)). First, a single site

may lie within w. Second, a subset of sites, called the outer cluster, is well-separated

from the cell. Finally, there may be a dense cluster of points, called the inner cluster,

that lie within a ball Bw that is well-separated from the cell. After locating the

leaf cell containing the query point, the approximate nearest neighbor is computed

independently for each of these subsets (by a method to be described later), and the

overall closest is returned. The next lemma formalizes these separation properties. It

follows easily from Lemma 6.1 in [120]. Given a BBD-tree cell w and a point p ∈ Rd,

let d(p, w) denote the minimum Euclidean distance from p to any point in w.

Lemma 15 (Basic Separation Properties). Given a set S of n points in Rd and

real parameters α, β ≥ 2. It is possible to construct a BBD tree T with O(αdn log β)

nodes, whose leaf cells cover Rd and for every site p ∈ S, either

(i) it lies within w, but there can be at most one site for which this holds (see

Figure 4.4(b)),

(ii) (outer cluster) letting B denote the smallest Euclidean ball enclosing w, d(p,B) ≥

α · diam(B) (see Figure 4.4(c)), or

(iii) (inner cluster) there exists a ball Bw associated with w such that d(Bw, w) ≥

β · diam(Bw) and p ∈ Bw (see Figure 4.4(d)).

Furthermore, it is possible to compute the tree T in total time O(αdn log n log β),

and the leaf cell containing a query point can be located in time O(log(αn)+log log β).
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4.4.2 Admissibility

In this section we explore how properties of the unit ball affect the effective-

ness of convexification. Recall from Section 4.3 that convexification relies on the

admissibility of the distance function, and we show here that this will be guaranteed

if unit balls are fat, well centered, and smooth.

Given a convex body K and a parameter 0 < γ ≤ 1, we say that K is centrally

γ-fat if there exist Euclidean balls B and B′ centered at the origin, such that

B ⊆ K ⊆ B′, and radius(B)/radius(B′) ≥ γ. Given a parameter 0 < σ ≤ 1, we say

that K is σ-smooth if for every point x on the boundary of K, there exists a closed

Euclidean ball of diameter σ · diam(K) that lies within K and has x on its boundary.

We say that a scaling distance function is a (γ, σ)-distance if its associated unit ball

B is both centrally γ-fat and σ-smooth.

In order to employ convexification for scaling distances, it will be useful to

show that smoothness and fatness imply that the associated distance functions

are admissible. This is encapsulated in the following lemma. It follows from a

straightforward but rather technical exercise in multivariate differential calculus.

Lemma 16. Given positive reals γ and σ, let fp be a (γ, σ)-distance over Rd scaled

about some point p ∈ Rd. There exists τ (a function of γ and σ) such that fp is

τ -admissible.

Proof. For any point x ∈ Rd, we will show that (i) ‖∇fp(x)‖ · ‖x − p‖ ≤ fp(x)/γ

and (ii) ‖∇2fp(x)‖ · ‖x− p‖2 ≤ 2fp(x)/(σγ3) . It will follow that fp is τ -admissible

for τ =
√

2/(σγ3).
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Let K denote the unit metric ball associated with fp and let K ′ denote the

scaled copy of K that just touches the point x. Let r be the unit vector in the

direction px (we refer to this as the radial direction), and let n be the outward

unit normal vector to the boundary of K ′ at x. (Throughout the proof, unit length

vectors are defined in the Euclidean sense.) As K ′ is centrally γ-fat, it is easy to

see that the cosine of the angle between r and n, that is, r · n, is at least γ. As the

boundary of K ′ is the level surface of fp, it follows that ∇fp(x) is directed along n.

To compute the norm of the gradient, note that

∇fp(x) · r = lim
δ→0

fp(x+ δr)− fp(x)

δ
.

As fp is a scaling distance function, it follows that

fp(x+ δr)− fp(x) =
δ

‖x− p‖
fp(x).

Thus

∇fp(x) · r =
fp(x)

‖x− p‖
.

Recalling that r · n ≥ γ, we obtain

‖∇fp(x)‖ ≤ fp(x)

γ‖x− p‖
.

Thus ‖∇fp(x)‖ · ‖x− p‖ ≤ fp(x)/γ, as desired.

We next bound the norm of the Hessian ∇2fp(x). As the Hessian matrix is

positive semidefinite, recall that it has a full set of independent eigenvectors that

are mutually orthogonal, and its norm equals its largest eigenvalue. Because fp is a

scaling distance function, it changes linearly along the radial direction. Therefore,
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one of the eigenvectors of ∇2fp(x) is in direction r, and the associated eigenvalue is

0 (see Figure 4.5). It follows that the remaining eigenvectors all lie in a subspace

that is orthogonal to r. In particular, the eigenvector associated with its largest

eigenvalue must lie in this subspace. Let u denote such an eigenvector of unit length,

and let λ denote the associated eigenvalue.

K ′

p

u t

r

x

yδ
xδ

δ

n

T

z′0

z′δ
zδ

B

Figure 4.5: Proof of Lemma 16.

Note that λ is the second directional derivative of fp in the direction u. In order

to bound λ, we find it convenient to first bound the second directional derivative

of fp in a slightly different direction. Let T denote the hyperplane tangent to K ′

at point x. We project u onto T and let t denote the resulting vector scaled to

have unit length. We will compute the second directional derivative of fp in the

direction t. Let λt denote this quantity. In order to relate λt with λ, we write t as

(t · r)r + (t · u)u. Since r and u are mutually orthogonal eigenvectors of ∇2fp(x), by

elementary linear algebra, it follows that λt = (t · r)2λr + (t · u)2λu, where λr and λu

are the eigenvalues associated with r and u, respectively. Since λr = 0, λu = λ, and

t · u = r · n ≥ γ, we have λt ≥ γ2λ, or equivalently, λ ≤ λt/γ
2. In the remainder of

the proof, we will bound λt, which will yield the desired bound on λ.

Let xδ = x+ δt and ψ(δ) = fp(xδ). Clearly λt = ψ′′(0). Using the Taylor series
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and the fact that ψ′(0) = ∇fp(x) · t = 0, it is easy to see that

ψ′′(0) = 2 · lim
δ→0

ψ(δ)− ψ(0)

δ2
.

Letting yδ denote the intersection point of the segment pxδ with the boundary of K ′,

and observing that both x and yδ lie on ∂K ′ (implying that fp(x) = fp(yδ)), we have

ψ(δ) = fp(xδ) =
‖xδ − p‖
‖yδ − p‖

fp(x),

and thus

ψ(δ)− ψ(0) =
‖xδ − p‖ − ‖yδ − p‖

‖yδ − p‖
fp(x) =

‖xδ − yδ‖
‖yδ − p‖

fp(x).

It follows that

ψ′′(0) = 2 · lim
δ→0

1

δ2
‖xδ − yδ‖
‖yδ − p‖

fp(x) =
2fp(x)

‖x− p‖
· lim
δ→0

‖xδ − yδ‖
δ2

.

We next compute this limit. Let B ⊂ K ′ denote the maximal ball tangent to

K ′ at x and let R denote its radius. As K ′ is σ-smooth, we have that

R ≥ σ

2
· diam(K ′) ≥ σ

2
· ‖x− p‖.

Consider the line passing through p and xδ. For sufficiently small δ, it is clear that

this line must intersect the boundary of the ball B at two points. Let zδ denote the

intersection point closer to xδ and z′δ denote the other intersection point. Clearly,

‖xδ − yδ‖ ≤ ‖xδ − zδ‖ and, by the power of the point theorem, we have

δ2 = ‖xδ − x‖2 = ‖xδ − zδ‖ · ‖xδ − z′δ‖.

It follows that

‖xδ − yδ‖
δ2

≤ ‖xδ − zδ‖
δ2

=
1

‖xδ − z′δ‖
.
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Thus

lim
δ→0

‖xδ − yδ‖
δ2

≤ lim
δ→0

1

‖xδ − z′δ‖
=

1

‖x− z′0‖
,

where z′0 denotes the point of intersection of the line passing through p and x with

the boundary of B. Since the cosine of the angle between this line and the diameter

of ball B at x equals r · n, which is at least γ, we have ‖x− z′0‖ ≥ 2γR. It follows

that

lim
δ→0

‖xδ − yδ‖
δ2

≤ 1

2γR
≤ 1

σγ‖x− p‖
.

Substituting this bound into the expression found above for λt, we obtain

λt = ψ′′(0) ≤ 2fp(x)

σγ‖x− p‖2
.

Recalling that λ ≤ λt/γ
2, we have

λ ≤ 2fp(x)

σγ3‖x− p‖2
,

which implies that ‖∇2fp(x)‖·‖x−p‖2 ≤ 2fp(x)/(σγ3). This completes the proof.

Our results on ε-ANN queries for scaling distances will be proved for any set of

sites whose associated distance functions (which may be individual to each site) are

all (γ, σ)-distances for fixed γ and σ. Our results on the Minkowski and Mahalanobis

distances thus arise as direct consequences of the following easy observations.

Lemma 17.

(i) For any positive real k > 1, the Minkowski distance `k is a (γ, σ)-distance,

where γ and σ are functions of k and d.

This applies to multiplicatively weighted Minkowski distances as well.
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(ii) The Mahalanobis distance defined by a matrix Mp is a (γ, σ)-distance, where γ

and σ are functions of Mp’s minimum and maximum eigenvalues.

4.4.3 The Data Structure

Let us return to the discussion of how to answer ε-ANN queries for a family of

(γ, σ)-distance functions. By Lemma 16, such functions are τ -admissible, where τ

depends only on γ and σ.

We begin by building an (α, β)-AVD over Rd by invoking Lemma 15 for α = 2τ

and β = 10τ/ε. (These choices will be justified below.) For each leaf cell w, the

nearest neighbor of any query point q ∈ w can arise from one of the three cases in

the lemma. Case (i) is trivial since there is just one point.

Case (ii) (the outer cluster) can be solved easily by reduction to Lemma 13.

Recall that we have a BBD-tree leaf cell w, and the objective is to compute an

ε-ANN from among the points of the outer cluster, that is, a set whose sites are at

Euclidean distance at least α ·diam(w) from w. Let B denote the smallest Euclidean

ball enclosing w, and let F be the family of distance functions associated with the

sites of the outer cluster. Since α = 2τ , B is (2τ)-separated from the points of the

outer cluster. By Lemma 13, we can answer ε-AVR queries with respect to Fmin,

and this is equivalent to answering ε-ANN queries with respect to the outer cluster.

The query time is O(log 1
ε
) and the storage is O((1

ε
)d/2).

All that remains is case (iii), the inner cluster. Recall that these sites lie

within a ball Bw such that d(Bw, w) ≥ β · diam(Bw). In approximate Euclidean
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nearest-neighbor searching, a separation as large as β would allow us to replace

all the points of Bw with a single representative site, but this is not applicable

when different sites are associated with different scaling distance functions. We will

show instead that queries can be answered by partitioning the query space into a

small number of regions such that Lemma 13 can be applied to each region. Let

{p1, . . . , pm} denote the sites lying within Bw, and let F = {f1, . . . , fm} denote the

associated family of (γ, σ)-distance functions.

Let p′ be the center of Bw, and for 1 ≤ i ≤ m, define the perturbed distance

function f ′i(x) = fi(x + pi − p′) to be the function that results by moving pi to p′

without altering the unit metric ball. Let F ′ denote the associated family of distance

functions. Our next lemma shows that this perturbation does not significantly alter

the relative function values.

Lemma 18. Let p ∈ Rd be the site of a τ -admissible distance function f . Let B

be a ball containing p and let x be a point that is β-separated from B for β ≥ 2τ .

Letting p′ denote B’s center, define f ′(x) = f(x+ p− p′). Then

|f ′(x)− f(x)|
f(x)

≤ 2τ

β
.

Proof. Define Bx to be the translate of B whose center coincides with x. Since p

and p′ both lie within B, x and x+ p− p′ both lie within Bx. Let κ = β/τ . Since

x and B are β-separated, p′ and Bx are also β-separated. Equivalently, they are

(τκ)-separated. Because κ ≥ 2, κ/(κ− 1) ≤ (1 + 2/κ). Because f ′ has the same unit

metric ball as f , it is also τ -admissible, and so by Lemma 12

f ′
+

(Bx) ≤
κ

κ− 1
f ′
−

(Bx) ≤
(

1 +
2

κ

)
f ′
−

(Bx) =

(
1 +

2τ

β

)
f ′
−

(Bx).
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Letting x′ = x − (p − p′), we have f(x) = f ′(x′). Clearly x′ ∈ Bx. Let us assume

that f ′(x) ≥ f(x). (The other case is similar.) We have

f ′(x)− f(x) = f ′(x)− f ′(x′) ≤ f ′
+

(Bx)− f ′−(Bx)

≤ 2τ

β
f ′
−

(Bx) ≤
2τ

β
f ′(x′) =

2τ

β
f(x),

which implies the desired inequality.

Since every point x ∈ w is β-separated from Bw, by applying this perturbation

to every function in F , we alter relative errors by at most 2τ/β. By selecting β so

that (1 + 2τ/β)2 ≤ 1 + ε/2, we assert that the total error is at most ε/2. To see this,

consider any query point x, and let fi be the function that achieves the minimum

value for Fmin(x), and let f ′j be the perturbed function that achieves the minimum

value for F ′min(x). Then

fj(x) ≤
(

1 +
2τ

β

)
f ′j(x) ≤

(
1 +

2τ

β

)
f ′i(x)

≤
(

1 +
2τ

β

)2

fi(x) ≤
(

1 +
ε

2

)
fi(x).

It is easy to verify that for all sufficiently small ε, our choice of β = 10τ/ε satisfies

this condition (and it is also at least 2τ as required by the lemma).

We can now explain how to answer ε-ANN queries for the inner cluster. Consider

the sites of the inner cluster, which all lie within Bw (see Figure 4.6(a)). We

apply Lemma 18 to produce the perturbed family F ′ of τ -admissible functions (see

Figure 4.6(b)).

Since these are all scaling distance functions, the nearest neighbor of any query

point q ∈ Rd (irrespective of whether it lies within w) is the same for every point
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Figure 4.6: (a) Inner-cluster sites with their respective distance functions, (b) their

perturbation to a common site p′, and (c) the reduction to Lemma 13.

on the ray from p′ through q. Therefore, it suffices to evaluate the answer to the

query for any single query point q′ on this ray. In particular, let us fix a hypercube

of side length 2 centered at p′ (see Figure 4.6(c)). We will show how to answer

(ε/3)-AVR queries for points on the boundary of this hypercube with respect to F ′.

A general query will then be answered by computing the point where the ray from

p′ to the query point intersects the hypercube’s boundary and returning the result

of this query. The total error with respect to the original functions will be at most

(1 + ε/2)(1 + ε/3), and for all sufficiently small ε, this is at most 1 + ε, as desired.

All that remains is to show how to answer (ε/3)-AVR queries for points on the

boundary of the hypercube. Let s = 1/(2τ + 1), and let W be a set of hypercubes of

diameter s that cover the boundary of the hypercube of side length 2 centered at

p′ (see Figure 4.6(c)). The number of such boxes is O(τ d−1). For each w′ ∈ W , let

Bw′ be the smallest ball enclosing w′. Each point on the hypercube is at distance

at least 1 from p′. For each w′ ∈ W , we have d(p′, Bw′) ≥ 1 − s = 2τ · diam(Bw′),

implying that p′ and Bw′ are (2τ)-separated. Therefore, by Lemma 13 there is a
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data structure that can answer (ε/3)-AVR queries with respect to the perturbed

distance functions F ′min in time O(log 1
ε
) with storage O((1

ε
)d/2).

In summary, a query is answered by computing the ray from p′ through q, and

determining the unique point q′ on the boundary of the hypercube that is hit by this

ray. We then determine the hypercube w′ containing q′ in constant time and invoke

the associated data structure for answering (ε/3)-AVR queries with respect to F ′.

The total storage needed for all these structures is O(τ d−1/εd/2). For any query point,

we can determine which of these data structures to access in O(1) time. Relative to

the case of the outer cluster, we suffer only an additional factor of O(τ d−1) to store

these data structures.

Under our assumption that γ and σ are constants, it follows that both τ and

α are constants and β is O(1/ε). By Lemma 15, the total number of leaf nodes in

the (α, β)-AVD is O(n log 1
ε
). Combining this with the O(1/εd/2) space for the data

structure to answer queries with respect to the outer cluster and O(τ d−1/εd/2) overall

space for the inner cluster, we obtain a total space of O((n log 1
ε
)/εd/2). The query

time is simply the combination of the O(log(αn) + log log β) = O(log n+ log log 1
ε
)

time to locate the leaf cell (by Lemma 15), and the O(log 1
ε
) time to answer O(ε)-AVR

queries. The total query time is therefore O(log n
ε
), as desired. This establishes

Theorem 4.
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4.5 Search Queries with Bregman Divergences

In this section we demonstrate how to answer ε-ANN queries for a set of n sites

over a Bregman divergence. We assume that the Bregman divergence is defined by a

strictly convex, twice-differentiable function F over an open convex domain X ⊆ Rd.

As mentioned in the introduction, given a site p, we interpret the divergence DF (x, p)

as a distance function of x about p, that is, analogous to fp(x) for scaling distances.

Thus, gradients and Hessians are defined with respect to the variable x. Our results

will be based on the assumption that the divergence is τ -admissible for a constant τ .

This will be defined formally in the following section.

4.5.1 Measures of Bregman Complexity

In Section 4.1 we introduced the concepts of similarity and asymmetry for

Bregman divergences. We can extend the notion of admissibility to Bregman

divergences by defining a Bregman divergence DF to be τ -admissible if the associated

distance function fp(·) = DF (·, p) is τ -admissible.

It is natural to ask how the various criteria of Bregman complexity (asymmetry,

similarity, and admissibility) relate to each other. For the sake of relating admissibility

with asymmetry, it will be helpful to introduce a directionally-sensitive variant of

admissibility. Given fp and τ as above, we say that fp is directionally τ -admissible if

for all x ∈ X, ∇fp(x) · (x− p) ≤ τfp(x). (Note that only the gradient condition is

used in this definition.)

To facilitate the analysis below, we start with establishing a number of basic
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properties of Bregman divergences. Throughout, we assume that a Bregman diver-

gence is defined by a strictly convex, twice-differentiable function F over an open

convex domain X ⊆ Rd. Given a site p, we interpret the divergence DF (x, p) as a

distance function of x about p, and so gradients and Hessians are defined with respect

to the variable x. The following lemma provides a few useful observations regarding

the Bregman divergence. We omit the proof since these all follow directly from the

definition of Bregman divergence. Observation (i) is related to the symmetrized

Bregman divergence [112]. Observation (ii), known as the three-point property [104],

generalizes the law of cosines when the Bregman divergence is the Euclidean squared

distance.

Lemma 19. Given any Bregman divergence DF defined over an open convex domain

X, and points q, p, p′ ∈ X:

(i) DF (q, p) +DF (p, q) = (∇F (q)−∇F (p)) · (q − p)

(ii) DF (q, p′) +DF (p′, p) = DF (q, p) + (q − p′) · (∇F (p)−∇F (p′))

(iii) ∇DF (q, p) = ∇F (q)−∇F (p)

(iv) ∇2DF (q, p) = ∇2F (q).

In parts (iii) and (iv), derivatives involving DF (q, p) are taken with respect to q.

The above result allows us to establish the following upper and lower bounds

on the value, gradient, and Hessian of a Bregman divergence based on the maximum

and minimum eigenvalues of the function’s Hessian.
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Lemma 20. Let F be a strictly convex function defined over some domain X ⊆ Rd,

and let DF denote the associated Bregman divergence. For each x ∈ X, let λmin(x)

and λmax(x) denote the minimum and maximum eigenvalues of ∇2F (x), respectively.

Then, for all p, q ∈ X, there exist points r1, r2, and r3 on the open line segment pq

such that

1
2
λmin(r1)‖q − p‖2 ≤ DF (q, p) ≤ 1

2
λmax(r1)‖q − p‖2

λmin(r2)‖q − p‖ ≤ ‖∇DF (q, p)‖ ≤ λmax(r3)‖q − p‖

λmin(q) ≤ ‖∇2DF (q, p)‖ ≤ λmax(q).

Proof. To establish the first inequality, we apply Taylor’s theorem with the Lagrange

form of the remainder to obtain

F (q) = F (p) +∇F (p) · (q − p) +
1

2
(q − p)ᵀ∇2F (r1)(q − p),

for some r1 on the open line segment pq. By substituting the above expression for

F (q) into the definition of DF (q, p) we obtain

DF (q, p) = F (q)− F (p)−∇F (p) · (q − p) =
1

2
(q − p)ᵀ∇2F (r1)(q − p).

By basic linear algebra, we have

λmin(r1)‖q − p‖2 ≤ (q − p)ᵀ∇2F (r1)(q − p) ≤ λmax(r1)‖q − p‖2.

Therefore,

λmin(r1)

2
‖q − p‖2 ≤ DF (q, p) ≤ λmax(r1)

2
‖q − p‖2,

which establishes the first assertion.

For the second assertion, we recall from Lemma 19(iii) that ∇DF (q, p) =

∇F (q)−∇F (p). Let v be any unit vector. By applying the mean value theorem to
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the function ψ(t) = vᵀ∇F (p + t(q − p)) for 0 ≤ t ≤ 1, there exists a point r2 ∈ pq

(which depends on v) such that vᵀ(∇F (q)−∇F (p)) = vᵀ∇2F (r2)(q − p). Taking v

to be the unit vector in the direction of q − p, and applying the Cauchy-Schwarz

inequality, we obtain

‖DF (q, p)‖ = ‖∇F (q)−∇F (p)‖ ≥ |vᵀ(∇F (q)−∇F (p))|

= |vᵀ∇2F (r2)(q − p)| ≥ λmin(r2)‖q − p‖.

For the upper bound, we apply the same approach, but take v to be the unit vector

in the direction of ∇F (q)−∇F (p). There exists r3 ∈ pq such that

‖DF (q, p)‖ = ‖∇F (q)−∇F (p)‖ = |vᵀ(∇F (q)−∇F (p))| = |vᵀ∇2F (r3)(q − p)|

≤ ‖∇2F (r3)(q − p)‖ ≤ λmax(r3)‖q − p‖.

This establishes the second assertion.

The final assertion follows from the fact that∇2DF (q, p) = ∇2F (q) (Lemma 19(iv))

and the definition of the spectral norm.

With the help of this lemma, we can now relate the various measures of

complexity for Bregman divergences.

Lemma 21. Given an open convex domain X ⊆ Rd:

(i) Any µ-similar Bregman divergence over X is 2µ-admissible.

(ii) Any µ-admissible Bregman divergence over X is directionally µ-admissible.

(iii) A Bregman divergence over X is µ-asymmetric if and only if it is directionally

(1 + µ)-admissible.
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Proof. For each x ∈ X, let λmin(x) and λmax(x) denote the minimum and maximum

eigenvalues of ∇2F (x), respectively. We first show that for all x ∈ X, 2 ≤ λmin(x)

and λmax(x) ≤ 2µ. We will prove only the second inequality, since the first follows

by a symmetrical argument. Suppose to the contrary that there was a point x ∈ X

such that λmax(x) > 2µ. By continuity and the fact that X is convex and open, there

exists a point q ∈ X distinct from x such that for any r on the open line segment qx,

(q − x)ᵀ∇2F (r)(q − x) > 2µ‖q − x‖2. (4.1)

Specifically, we may take q to lie sufficiently close to x along x+ v, where v is the

eigenvector associated with λmax(x). As in the proof of Lemma 20, we apply Taylor’s

theorem with the Lagrange form of the remainder to obtain

DF (q, x) = F (q)− F (x)−∇F (x) · (q − x)

=
1

2
(q − x)ᵀ∇2F (r)(q − x) =

(
1

t

)2
1

2
(r − x)ᵀ∇2F (r)(r − x).

By Eq. (4.1), we have DF (q, x) > µ‖q − x‖2. Therefore, DF is not µ-similar. This

yields the desired contradiction.

Because 2 ≤ λmin(x) ≤ λmax(x) ≤ 2µ for all x ∈ X, by Lemma 20, we have

‖q−p‖2 ≤ DF (q, p), ‖∇DF (q, p)‖ ≤ 2µ‖q−p‖, and ‖∇2DF (q, p)‖ ≤ 2µ,

which imply

‖∇DF (q, p)‖ ‖q−p‖ ≤ 2µDF (q, p) and ‖∇2DF (q, p)‖ ‖q−p‖2 ≤ 2µDF (q, p),

which together imply that D is 2µ-admissible, as desired.
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To prove (ii), observe that by the Cauchy-Schwarz inequality ∇DF (q, p) · (q −

p) ≤ ‖∇DF (q, p)‖ · ‖q− p‖, and therefore, any divergence that satisfies the condition

for µ-admissibility immediately satisfies the condition for directional µ-admissibility.

To show (iii), consider any points p, q ∈ X. Recall the facts regarding the

Bregman divergence presented in Lemma 19. By combining observations (i) and (iii)

from that lemma, we have DF (q, p) +DF (p, q) = ∇DF (q, p) · (q − p). Observe that

if D is directionally (1 + µ)-admissible, then

DF (q, p) +DF (p, q) = ∇DF (q, p) · (q − p) ≤ (1 + µ)DF (q, p),

which implies that DF (p, q) ≤ µ(DF (q, p), and hence D is µ-asymmetric. Conversely,

if D is µ-asymmetric, then

∇DF (q, p)·(q−p) = DF (q, p)+DF (p, q) ≤ DF (q, p)+µDF (q, p) = (1+µ)DF (q, p),

implying that DF is directionally (1 + µ)-admissible. (Recall that directional admis-

sibility requires only that the gradient condition be satisfied.)

Remark 2. Claim (i) is strict since the Bregman divergence DF defined by F (x) = x4

over X = R is not µ-similar for any µ, but it is 4-admissible. We do not know

whether claim (ii) is strict, but we conjecture that it is.

4.5.2 The Data Structure

Let us return to the discussion of how to answer ε-ANN queries for a τ -

admissible Bregman divergence over a domain X. Because any distance function that
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is τ -admissible is τ ′-admissible for any τ ′ ≥ τ , we may assume that τ ≥ 1.6 We begin

by building an (α, β)-AVD over Rd by invoking Lemma 15 for α = 2τ and β = 4τ 2/ε.

(These choices will be justified below.) For each leaf cell w, the nearest neighbor of

any query point q ∈ w can arise from one of the three cases in the lemma. Cases (i)

and (ii) are handled in exactly the same manner as in Section 4.4.3. (Case (i) is

trivial, and case (ii) applies for any τ -admissible family of functions.)

It remains to handle case (iii), the inner cluster. Recall that these sites lie

within a ball Bw such that d(Bw, w) ≥ β · diam(Bw). We show that as a result

of choosing β sufficiently large, for any query point in w the distance from all the

sites within Bw are sufficiently close that we may select any of these sites as the

approximate nearest neighbor. This is a direct consequence of the following lemma.

Lemma 22. Let D be a τ -admissible Bregman divergence and let 0 < ε ≤ 1.

Consider any leaf cell w of the (α, β)-AVD, where β ≥ 4τ 2/ε. Then, for any q ∈ w

and points p, p′ ∈ Bw

|D(q, p)−D(q, p′)|
D(q, p)

≤ ε.

Proof. Without loss of generality, we may assume that D(q, p) ≥ D(q, p′). By adding

D(p, p′) to the left side of Lemma 19(ii) and rearranging terms, we have

D(q, p)−D(q, p′) ≤ (D(q, p)−D(q, p′)) +D(p, p′)

= (D(p′, p) + (∇F (p′)−∇F (p)) · (q − p′)) +D(p, p′)

= (∇F (p′)−∇F (p)) · (q − p′)) + (D(p′, p) +D(p, p′)).

6Indeed, it can be shown that any distance function that is convex, as Bregman divergences are,

cannot be τ -admissible for τ < 1.
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By Lemma 19(i) we have

D(q, p)−D(q, p′) ≤ (∇F (p′)−∇F (p)) · (q − p′) + (∇F (p′)−∇F (p)) · (p′ − p)

= (∇F (p′)−∇F (p)) · (q − p).

Let v be any unit vector. Applying the mean value theorem to the function

ψ(t) = vᵀ∇F (p+ t(p′ − p)) for 0 ≤ t ≤ 1, implies that there exists a point r ∈ pp′

(which depends on v) such that vᵀ(∇F (p′)−∇F (p)) = vᵀ∇2F (r)(p′ − p). Taking v

to be the unit vector in the direction of q − p, and applying the Cauchy-Schwarz

inequality, we obtain

D(q, p)−D(q, p′) ≤ (∇2F (r)(p′ − p)) · (q − p) ≤ ‖∇2F (r)‖‖p′ − p‖‖q − p‖.

By Lemma 19(iv) and τ -admissibility, ‖∇2F (r)‖ = ‖∇2D(r, q)‖ ≤ τD(r, q)/‖r− q‖2,

which implies

D(q, p)−D(q, p′) ≤ τD(r, q)

‖r − q‖2
‖p′ − p‖‖q − p‖. (4.2)

Since r lies on the segment between p′ and p, it follows that r ∈ Bw. Letting

δ = diam(Bw), we have max(‖p′−p‖, ‖r−p‖) ≤ δ and ‖r−q‖ ≥ βδ. By the triangle

inequality, ‖q − p‖ ≤ ‖q − r‖+ ‖r − p‖. Therefore,

‖q − p‖
‖r − q‖

≤ ‖q − r‖+ ‖r − p‖
‖r − q‖

= 1 +
‖r − p‖
‖r − q‖

≤ 1 +
1

β
,

and since clearly β ≥ 1,

‖p′ − p‖‖q − p‖
‖r − q‖2

≤ 1

β

(
1 +

1

β

)
≤ 2

β
. (4.3)

We would like to express the right-hand side of Eq. (4.2) in terms of p rather

than r. By the τ -admissibility of D and the fact that r, p ∈ Bw, we can apply
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Lemma 12(i) (with the distance function fq(·) = D(·, q) and κ = β/τ) to obtain

D(r, q) ≤ D(p, q)/(1− τ/β). Combining Eq. (4.3) with this, we obtain

D(q, p)−D(q, p′) ≤ 2τ

β
D(r, q) ≤ 2τ

β(1− τ/β)
D(p, q).

In Lemma 21(iii) we showed that any (1 + µ)-admissible Bregman divergence is

µ-asymmetric, and by setting µ = τ − 1 it follows that D(p, q) ≤ (τ − 1)D(q, p).

Putting this all together, we obtain

D(q, p)−D(q, p′) ≤ 2τ(τ − 1)

β(1− τ/β)
D(q, p).

All that remains is to set β sufficiently large to obtain the desired result. Since τ ≥ 1

and ε ≤ 1, it is easily verified that setting β = 4τ 2/ε suffices to produce the desired

conclusion.

Under our assumption that τ is a constant, α is a constant and β is O(1/ε).

The analysis proceeds much like the case for scaling distances. By Lemma 15,

the total number of leaf nodes in the (α, β)-AVD is O(n log 1
ε
). We require only

one representative for cases (i) and (iii), and as in Section 4.4.3, we need space

O(1/εd/2) to handle case (ii). The query time is simply the combination of the

O(log(αn)+log log β) = O(log n+log log 1
ε
) time to locate the leaf cell (by Lemma 15),

and the O(log 1
ε
) time to answer O(ε)-AVR queries for case (ii). The total query

time is therefore O(log n
ε
), as desired. This establishes Theorem 5.
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Chapter 5: Sampling Conditions for Voronoi Meshing

Mesh generation is a fundamental problem in computational geometry, geomet-

ric modeling, computer graphics, scientific computing and engineering simulations.

There has been a growing interest in polyhedral meshes as an alternative to tetrahe-

dral or hex-dominant meshes [121].

In this chapter, we initiate our study the Voronoi meshing problem that asks

to decompose a volume bounded by a piecewise-smooth surface into a collection of

Voronoi cells. We start by assuming the surface is a smooth manifold with a known

local feature size, and derive sufficient conditions on the sampling to guarantee an

isotopic surface reconstruction.

5.1 Introduction

An intuitive approach to surface approximation is to

place pairs of Voronoi seeds mirrored across the surface such

that their shared Voronoi facets approximate the surface.

However, a naive implementation of this idea results in a

rough surface with spurious misaligned facets; see the inset.

Nonetheless, a more principled mirroring approach provided the first provably-correct
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surface reconstruction algorithm [122]. Given an ε-sample from an unknown smooth

surface, the PowerCrust algorithm [123] places weighted Voronoi seeds at a subset of

the vertices in the Voronoi diagram of the input samples.

The proposed scheme, called VoroCrust, can be viewed as a principled mirroring

technique, which shares a number of key features with the power crust algorithm [123].

The power crust literature [122–126] developed a rich theory for surface approximation,

namely the ε-sampling paradigm. Recall that the power crust algorithm uses an

ε-sample of unweighted points to place weighted sites, so-called poles, near the medial

axis of the underlying surface. The surface reconstruction is the collection of facets

separating power cells of poles on the inside and outside of the enclosed volume.

Regarding samples and poles as primal-dual constructs, power crust performs a

primal-dual-dual-primal dance. VoroCrust makes a similar dance where weights are

introduced differently; the samples are weighted to define unweighted sites tightly

hugging the surface, with the reconstruction arising from their unweighted Voronoi

diagram. The key advantage is the freedom to place more sites within the enclosed

volume without disrupting the surface reconstruction. This added freedom is essential

to the generation of graded meshes; a primary virtue of the proposed algorithm.

Another virtue of the algorithm is that all samples appear as vertices in the resulting

mesh. While the power crust algorithm does not guarantee that, some variations

do so by means of filtering, at the price of the reconstruction no longer being the

boundary of power cells [122,127,128].

The main construction underlying VoroCrust is a suitable union of balls cen-

tered on the bounding surface, as studied in the context of non-uniform approxi-
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mations [129]. Unions of balls enjoy a wealth of results [130–132], which enable a

variety of algorithms [123,133,134].

Similar constructions have been proposed for meshing problems in the applied

sciences with heuristic extensions to 3D settings; see [135] and the references therein

for a recent example. Aichholzer et al. [136] adopt closely related ideas to construct

a union of surface balls using power crust poles for sizing estimation. However, their

goal was to produce a coarse homeomorphic surface reconstruction. As in [136],

the use of balls and α-shapes for surface reconstruction was explored earlier, e.g.,

ball-pivoting [137,138], but the connection to Voronoi meshing has been absent. In

contrast, VoroCrust aims at a decomposition of the enclosed volume into fat Voronoi

cells conforming to an isotopic surface reconstruction with quality guarantees.

In this chapter, we present a theoretical analysis of an abstract version of the

VoroCrust algorithm. This establishes the quality and approximation guarantees of

its output for volumes bounded by smooth surfaces. A description of the algorithm

we analyze is given next; see Figure 5.1 for an illustration in 2D.

The abstract VoroCrust algorithm

1. Take as input a sample P on the surface M bounding the volume O.

2. Define a ball Bi centered at each sample pi, with a suitable radius ri, and let

U = ∪iBi.

3. Initialize the set of sites S with the corner points of ∂U , S↑ and S↓, on both

sides of M.
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4. Optionally, generate additional sites S↓↓ in the interior of O, and include S↓↓

into S.

5. Compute the Voronoi diagram Vor(S) and retain the cells with sites in S↓∪S↓↓

as the volume mesh Ô, where the facets between S↑ and S↓ yield a surface

approximation M̂.

(a) Surface balls. (b) Labeled corners. (c) Voronoi cells. (d) Reconstruction.

Figure 5.1: VoroCrust reconstruction, demonstrated on a planar curve.

In this chapter, we assume O is a bounded open subset of R3, whose boundary

M is a closed, bounded and smooth surface. We further assume that P is an

ε-sample, with a weak σ-sparsity condition, and ri is set to δ times the local feature

size at pi. For appropriate values of ε, σ and δ, we prove that Ô and M̂ are isotopic

to O and M, respectively. We also show that simple techniques for sampling within

O, e.g., octree refinement, guarantee an upper bound on the fatness of all cells in Ô,

as well as the number of samples.

The rest of this chapter is organized as follows. [Dave: Fix section numbers.]

Section 2 introduces the key definitions and notation used throughout the paper.

Section 3 describes the placement of Voronoi seeds and basic properties of our

construction assuming the union of surface balls satisfies a structural property.

Section 4 proves this property holds and establishes the desired approximation

91



guarantees under certain conditions on the input sample. Section 5 considers the

generation of interior samples and bounds the fatness of all cells in the output mesh.

Section 6 concludes the paper with pointers for future work. A number of proofs are

deferred to the appendices.

5.2 Preliminaries

Throughout this chapter, standard general position assumptions [139] are made

implicitly to simplify the presentation. We use d(p, q) to denote the Euclidean

distance between two points p, q ∈ R3, and B(c, r) to denote the Euclidean ball

centered at c ∈ R3 with radius r. We proceed to introduce the notation and recall

the key definitions used throughout, following those in [123,129,130].

5.2.1 Sampling and Approximation

We take as input a set of sample points P ⊂M. A local scale or sizing is used

to vary the sample density. Recall that the medial axis [123] ofM, denoted by A, is

the closure of the set of points in R3 with more than one closest point onM. Hence,

A has one component inside O and another outside. Each point of A is the center

of a medial ball tangent to M at multiple points. Likewise, each point on M has

two tangent medial balls, not necessarily of the same size. The local feature size at

x ∈M is defined as lfs(x) = infa∈A d(x, a). The set P is an ε-sample [140] if for all

x ∈M there exists p ∈ P such that d(x, p) ≤ ε · lfs(x).

We desire an approximation of O by a Voronoi mesh Ô, where the bound-
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ary M̂ of Ô approximates M. Recall that two topological spaces are homotopy-

equivalent [129] if they have the same topology type. A stronger notion of topological

equivalence is homeomorphism, which holds when there exists a continuous bijec-

tion with a continuous inverse from M to M̂. The notion of isotopy captures

an even stronger type of equivalence for surfaces embedded in Euclidean space.

Two surfaces M,M̂ ⊂ R3 are isotopic [141, 142] if there is a continuous mapping

F :M× [0, 1]→ R3 such that for each t ∈ [0, 1], F (·, t) is a homeomorphism fromM

to M̂, where F (·, 0) is the identity of M and F (M, 1) = M̂. To establish that two

surfaces are geometrically close, the distance between each point on one surface and

its closest point on the other surface is required. Such a bound is usually obtained

in the course of proving isotopy.

5.2.2 Diagrams and Triangulations

The set of points defining a Voronoi diagram are traditionally referred to as

sites or seeds. When approximating a manifold by a set of sample points of varying

density, it is helpful to assign weights to the points reflective of their density. In

particular, a point pi with weight wi, can be regarded as a ball Bi with center pi and

radius ri =
√
wi.

Recall that the power distance [130] between two points pi, pj with weights

wi, wj is π(pi, pj) = d(pi, pj)
2−wi−wj . Unless otherwise noted, points are unweighted,

having weight equal to zero. There is a natural geometric interpretation of the weight:

all points q on the boundary of Bi have π(pi, q) = 0, inside π(pi, q) < 0 and outside
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π(pi, q) > 0. Given a set of weighted points P, this metric gives rise to a natural

decomposition of R3 into the power cells Vi = {q ∈ R3 | π(pi, q) ≤ π(pj, q) ∀pj ∈ P}.

The power diagram wVor(P) is the cell complex defined by collection of cells Vi for

all pi ∈ P .

The nerve [130] of a collection C of sets is defined as N (C) = {X ⊆ C | ∩T 6= ∅}.

Observe that N (C) is an abstract simplicial complex because X ∈ N (C) and Y ⊆ X

imply Y ∈ N (C). With that, we obtain the weighted Delaunay triangulation, or

regular triangulation, as wDel(P) = N (wVor(P)). Alternatively, wDel(P) can be

defined directly as follows. A subset T ⊂ Rd, with d ≤ 3 and |T | ≤ d+ 1 defines a

d-simplex σT . Recall that the orthocenter [143] of σT , denoted by zT , is the unique

point q ∈ Rd such that π(pi, zT ) = π(pj, zT ) for all pi, pj ∈ T ; the orthoradius of σT

is equal to π(p, zT ) for any p ∈ T . The Delaunay condition defines wDel(P) as the

set of tetrahedra σT with an empty orthosphere, meaning π(pi, zT ) ≤ π(pj, zT ) for all

pi ∈ T and pj ∈ P \ T , where wDel(P) includes all faces of σT .

There is a natural duality between wDel(P) and wVor(P). For a tetrahedron σT ,

the definition of zT immediately implies zT is a power vertex in wVor(P). Similarly,

for each k-face σS of σT ∈ wDel(P) with S ⊆ T and k + 1 = |S|, there exists a dual

(3 − k)-face σ′S in wVor(P) realized as ∩p∈SVp. When P is unweighted, the same

definitions yield the standard (unweighted) Voronoi diagram Vor(P) and its dual

Delaunay triangulation Del(P).
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5.2.3 Unions of Balls

Let B denote the set of balls corresponding to a set of weighted points P and

define the union of balls U as ∪B. It is quite useful to capture the structure of U using

a combinatorial representation like a simplicial complex [130, 144]. Let fi denote

Vi∩∂Bi and F the collection of all such fi. Observing that Vi∩Bj ⊆ Vi∩Bi∀Bi, Bj ∈

B, fi is equivalently defined as the spherical part of ∂(Vi ∩ Bi). Consider also the

decomposition of U by the cells of wVor(P) into C(B) = {Vi ∩ Bi | Bi ∈ B}. The

weighted α-complex W(P) is defined as the geometric realization of N (C(B)) [130],

i.e., σT ∈ W if {Vi ∩ Bi | pi ∈ T} ∈ N (C(B)). It is not hard to see that W is a

subcomplex of wDel(P).

To see why W is relevant, consider its underlying space; we create a collection

containing the convex hull of each simplex in W and define the weighted α-shape

J (P) as the union of this collection. It turns out that the simplices σT ∈ W

contained in ∂J are dual to the faces of ∂U defined as ∩i∈Tfi. Every point q ∈ ∂U

defined by ∩i∈Tqfi, for Tq ∈ B and k + 1 = |Tq|, witnesses the existence of σTq in

W; the k-simplex σTq is said to be exposed and ∂J can be defined directly as the

collection of all exposed simplices [144]. In particular, the corners of ∂U correspond

to the facets of ∂J . Moreover, J is homotopy-equivalent to U [130].

The union of balls defined using an ε-sampling guarantees the approximation

of the manifold under suitable conditions on the sampling. Following earlier results

on uniform sampling [145], an extension to non-uniform sampling establishes sam-

pling conditions for the isotopic approximation of hypersurfaces and medial axis
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reconstruction [129].

5.3 Seeds Placement and Surface Reconstruction

We determine the location of Voronoi seeds using the union of balls U . The

correctness of our reconstruction depends crucially on how sample balls B overlap.

Assuming a certain structural property on U , the surface reconstruction is embedded

in the dual shape J .

5.3.1 Seeds and Guides

Central to the method and analysis are triplets of sample spheres, i.e., bound-

aries of sample balls, corresponding to a guide triangle in wDel(P). The sample

spheres associated with the vertices of a guide triangle intersect contributing a pair

of guide points. The reconstruction consists of Voronoi facets, most of which are

guide triangles.

When a triplet of spheres ∂Bi, ∂Bj, ∂Bk intersect at exactly two points, the

intersection points are denoted by g
l
ijk = {g↑ijk, g

↓
ijk} and called a pair of guide points

or guides ; see Figure 5.2a. The associated guide triangle tijk is dual to g
l
ijk. We use

arrows to distinguish guides on different sides of the manifold with the upper guide

g↑ lying outside O and the lower guide g↓ lying inside. We refer to the edges of

guide triangles as guide edges eij = pipj. A guide edge eij is associated with a dual

guide circle Cij = ∂Bi ∩ ∂Bj, as in Figure 5.2a.

The Voronoi seeds in S↑ ∪ S↓ are chosen as the subset of guide points that lie
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p1

p2
p3

s123
↑

s123
↓

(a) Overlapping balls and guide circles.

s123
↓

s134
↓

B1

B4

B2

B3

s124
↑

s234
↑

s123
↓

s234
↑

C34

g234
↓

g123
↑

(b) Arrangement of half-covered seed pairs.

Figure 5.2: (a) Guide triangle and its dual seed pair. (b) Cutaway view in the plane

of circle C34.

on ∂U . A guide point g which is not interior to any sample ball is uncovered and

included as a seed s into S; covered guides are not. We denote uncovered guides by

s and covered guides by g, whenever coverage is known and important. If only one

guide point in a pair is covered, then we say the guide pair is half-covered. If both

guides in a pair are covered, they are ignored. Let Si = S ∩ ∂Bi denote the seeds on

sample sphere ∂Bi.

As each guide triangle tijk is associated with at least one dual seed sijk, the

seed witnesses its inclusion in W and tijk is exposed. Hence, tijk belongs to ∂J as

well. When such tijk is dual to a single seeds sijk it bounds the interior of J , i.e., it

is a face of a regular component of J ; in the simplest and most common case, tijk

is a facet of a tetrahedron as shown in Figure 5.3b. When tijk is dual to a pair of

seeds s
l
ijk, it does not bound the interior of J and is called a singular face of ∂J .

All singular faces of ∂J appear in the reconstructed surface.
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5.3.2 Disk Caps

We describe the structural property required on U along with the consequences

exploited by VoroCrust for surface reconstruction. This is partially motivated by the

requirement that all sample points on the surface appear as vertices in the output

Voronoi mesh.

We define the subset of ∂Bi inside other balls as the medial band and say it

is covered. Let the caps K↑i and K↓i be the complement of the medial band in the

interior and exterior of O, respectively. Letting npi be the normal line through pi

perpendicular to M, the two intersection points npi ∩ ∂Bi are called the poles of Bi.

See Figure 5.3a.

We require that U satisfies the following structural property: each ∂Bi has disk

caps, meaning the medial band is a topological annulus and the two caps contain the

poles and are topological disks. In other words, each Bi contributes one connected

component to each side of ∂U . As shown in Figure 5.3a, all seeds in S↑i and S↓i lie on

∂K↑i and ∂K↓i , respectively, along the arcs where other sample balls intersect ∂Bi.

In Section 5.4, we establish sufficient sampling conditions to ensure U satisfies this

property. In particular, we will show that both poles of each Bi lie on ∂U .

The importance of disk caps is made clear by the following observation. The

requirement that all sample points appear as Voronoi vertices in M̂ follows as a

corollary.

Proposition 1 (Three upper/lower seeds). If ∂Bi has disk caps, then each of ∂K↑i

and ∂K↓i has at least three seeds and the seeds on ∂Bi are not all coplanar.
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Figure 5.3: (a) Decomposing the sample sphere ∂B1. (b) Uncovered seeds and

reconstruction facets. Let τp ∈ W(P) ⊆ wDel(P) and τs ∈ Del(S) denote the

tetrahedra connecting the four samples and the four seeds shown, respectively. s↓123

and s↓134 are the uncovered lower guide seeds, with g↑123 and g↑134 covered. The

uncovered upper guide seeds are s↑124 and s↑234, with g↓124 and g↓234 covered. 4ac is

the Voronoi facet dual to the Delaunay edge between as↓123 and cs↑124, etc. Voronoi

facets dual to magenta edges are in the reconstructed surface; those dual to green

and blue edges are not. n is the circumcenter of τs and appears as a Voronoi vertex

in Vor(S) and a Steiner vertex in the surface reconstruction. In general, n is not the

orthocenter of the sliver τp.

Proof. Every sphere Sj 6=i covers strictly less than one hemisphere of ∂Bi because the

poles are uncovered. Hence, each cap is composed of at least three arcs connecting

at least three upper seeds S↑i ⊂ ∂K↑i and three lower seeds S↓i ⊂ ∂K↓i . Further, any

hemisphere through the poles contains at least one upper and one lower seed. It

follows that the set of seeds Si = S↑i ∪ S
↓
i is not coplanar.
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Corollary 1 (Sample reconstruction). If ∂Bi has disk caps, then pi is a vertex in

M̂.

Proof. By Proposition 1, the sample is equidistant to at least four seeds which are

not all coplanar. It follows that the sample appears as a vertex in the Voronoi

diagram and not in the relative interior of a facet or an edge. Being a common vertex

to at least one interior and one exterior Voronoi seed, VoroCrust retains this vertex

in its output reconstruction.

5.3.3 Sandwiching in the Dual Shape

Triangulations of smooth surfaces embedded in R3 can have half-covered guides

pairs, with one guide covered by the ball of a fourth sample not in the guide triangle

dual to the guide pair. The tetrahedron formed by the three samples of the guide

triangle plus the fourth covering sample is a sliver, i.e., the four samples lie almost

uniformly around the equator of a sphere. In this case we do not reconstruct the

guide triangle, and also do not reconstruct some guide edges. We show that the

reconstructed surface M̂ lies entirely within the region of space bounded by guide

triangles, i.e., the α-shape of P , as stated in the following theorem.

Theorem 6. If all sample balls have disk caps, then M̂ ⊆ J (P).
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Figure 5.4: Cutaway view of a sliver tetrahedron τp ∈ W(P) ⊆ wDel(P), drawn to

scale. Half-covered guides give rise to the Steiner vertex (pink), which results in a

surface reconstruction using four facets (only two are shown) sandwiched within τp.

In contrast, filtering wDel(P) chooses two of the four facets of τp, either the bottom

two, or the top two (only one is shown).

The simple case of a single isolated sliver tetrahedron is illustrated in Fig-

ures 5.3b, 5.4 and 5.2b. A sliver has a pair of lower guide triangles and a pair of

upper guide triangles. For instance, t124 and t234 are the pair of upper triangles in

Figure 5.3b. In such a tetrahedron, there is an edge between each pair of samples

corresponding to a non-empty circle of intersection between sample balls, like the

circles in Figure 5.2a. For this circle, the arcs covered by the two other sample balls

of the sliver overlap, so each of these balls contributes exactly one uncovered seed,

rather than two. In this way the upper guides for the upper triangles are uncovered,

but their lower guides are covered; also only the lower guides of the lower triangles

are uncovered. Theorem 6 follows directly from Theorem 2 in [131].
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5.4 Sampling Conditions and Approximation Guarantees

We take as input a set of points P sampled from the bounding surfaceM such

that P is an ε-sample, with ε ≤ 1/500. We require that P satisfies the following

sparsity condition: for any two points pi, pj ∈ P , lfs(pi) ≥ lfs(pj) =⇒ d(pi, pj) ≥

σεlfs(pj), with σ ≥ 3/4. [Dave: This is a typesetting nitpick, but I would

prefer that expressions like εlfs(p) be written as ε · lfs(p) or with a bit of

space, as in εlfs(p).]

Such a sampling P can be obtained by known algorithms. Given a suitable

representation of M, the algorithm in [146] computes a loose ε′-sample E which

is a ε′(1 + 8.5ε′)-sample. More specifically, whenever the algorithm inserts a new

sample p into the set E, d(p, E) ≥ ε′lfs(p). To obtain E as an ε-sample, we set

ε′(ε) = (
√

34ε+ 1− 1)/17. Observing that 3ε/4 ≤ ε′(ε) for ε ≤ 1/500, the returned

ε-sample satisfies our required sparsity condition with σ ≥ 3/4.

5.4.1 The Medial Band

We start by adapting Theorem 6.2 and Lemma 6.4 from [129] to the setting

just described. For x ∈ R3 \M , let Γ(x) = d(x, x̃)/lfs(x̃), where x̃ is the closest

point to x on M.

Corollary 2. For an ε-sample P, with ε ≤ 1/20, the union of balls U with δ = 2ε

satisfies:

1. M is a deformation retract of U ,
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2. ∂U contains two connected components, each isotopic to M,

3. Γ−1([0, a′]) ⊂ U ⊂ Γ−1([0, b′]), where a′ = ε− 2ε2 and b′ ≤ 2.5ε.

Proof. Theorem 6.2 from [129] is stated for balls with radii within [a, b] times the

lfs. We set a = b = δ and use ε ≤ 1/20 to simplify fractions. This yields the above

expressions for a′ = (1− ε)δ − ε and b′ = δ/(1− 2δ). The general condition requires

(1− a′)2 +
(
b′ − a′ + δ(1 + 2b′ − a′)/(1− δ)

)2
< 1, as we assume no noise. Plugging

in the values of a′ and b′, we verify that the inequality holds for the chosen range of

ε.

Furthermore, we require that each ball Bi ∈ B contributes one facet to each

side of ∂U . Our sampling conditions ensure that both poles are outside any ball

Bj ∈ B.

Lemma 23 (Disk caps). All balls in B have disk caps for ε ≤ 0.066, δ = 2ε and

σ ≥ 3/2.

Proof. Fix a sample pi and let x be one of the poles of Bi and Bx = B(c, lfs(pi))

the tangent ball at pi with x ∈ Bx. Letting pj be the closest sample to x in

P \ {pi}, we assume the worst case where lfs(pj) ≥ lfs(pi) and pj lies on ∂Bx. To

simplify the calculations, take lfs(pi) = 1 and let ` denote d(pi, pj). As lfs is 1-

Lipschitz, we get lfs(pj) ≤ 1 + `. By the law of cosines, d(pj, x)2 = d(pi, pj)
2 +

d(pi, x)2 − 2d(pi, pj)d(pi, x) cos(φ), where φ = ∠pjpic. Letting θ = ∠picpj, observe

that cos(φ) = sin(θ/2) = `/2. To enforce x /∈ Bj, we require d(pj, x) > δlfs(pj),

which is equivalent to `2 + δ2 − δ`2 > δ2(1 + `)2. Simplifying, we get ` > 2δ2/(1−
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δ − δ2) where sparsity guarantees ` > σε. Setting σε > 2δ2/(1− δ − δ2) we obtain

4σε2 + (8 + 2σ)ε− σ < 0, which requires ε < 0.066 when σ ≥ 3/4.

Corollary 2 together with Lemma 23 imply that each ∂Bi is decomposed into a

covered region ∂Bi ∩∪j 6=iBj , the medial band, and two uncovered caps ∂Bi \ ∪j 6=iBj ,

each containing one pole. Recalling that seeds arise as pairs of intersection points

between the boundaries of such balls, we show that seeds can be classified correctly

as either inside or outside M.

Corollary 3. If a seed pair lies on the same side of M, then at least one seed is

covered.

Proof. Fix such a seed pair ∂Bi ∩ ∂Bj ∩ ∂Bk and recall that M∩ ∂Bi is contained

in the medial band on ∂Bi. Now, assume for contradiction that both seeds are

uncovered and lie on the same side of M. It follows that Bj ∩Bk intersects Bi away

from its medial band, a contradiction to Corollary 2.

Corollary 2 guarantees that the medial band of Bi is a superset of Γ−1([0, a′])∩

∂Bi, which means that all seeds sijk are at least a′lfs(s̃ijk) away from M.

5.4.2 Seeds and Guide Triangles

In addition to the topological properties of the medial band, we examine the

geometry of the seeds and the guide triangles giving rise to the VoroCrust surface

reconstruction. We start by bounding the elevation of such seeds above Tpi , the

tangent plane to M at pi.
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Lemma 24. For a seed s ∈ ∂Bi, θs = ∠spis′ ≥ 29.34◦ and θs >
1
2
− 5ε, where

s′ is the projection of s on Tpi, implying d(s, s′) ≥ h⊥s δlfs(pi), with h⊥s > 0.46 and

h⊥s >
1
2
− 5ε.

Proof. Let lfs(pi) = 1 and Bs = B(c, 1) be the tangent ball at pi with s /∈ Bs;

see Figure 5.5a. Observe that d(s,M) ≤ d(s, x), where x = sc ∩ ∂Bs. By the

law of cosines, d(s, c)2 = d(pi, c)
2 + d(pi, s)

2 − 2d(pi, c)d(pi, s) cos(π/2 + θs) =

1 + δ2 + 2δ sin(θs). We may write1 d(s, c) ≤ 1 + δ2/2 + δ sin(θs). It follows that

d(s, x) ≤ δ2/2 + δ sin(θs). As lfs is 1-Lipschitz and d(pi, x) ≤ δ, we get 1 − δ ≤

lfs(x) ≤ 1 + δ. There must exist a sample pj such that d(x, pj) ≤ εlfs(x) ≤ ε(1 + δ).

Similarly, lfs(pj) ≥ (1 − ε(1 + δ))(1 − δ). By the triangle inequality, d(s, pj) ≤

d(s, x)+d(x, pj) ≤ δ2/2+δ sin(θs)+ε(1+δ). Setting d(s, pj) < δ(1−δ)(1−ε(1+δ))

implies d(s, pj) < δlfs(pj), which shows that for small values of θs, s cannot be a

seed and pj 6= pi. Substituting δ = 2ε, we get θs ≥ sin−1 (2ε3 − 5ε+ 1/2) ≥ 29.34◦

and θs > 1/2− 5ε.

We make frequent use of the following bound on the distance between related

samples.

Proposition 2. If Bi ∩Bj 6= ∅, then d(pi, pj) ∈ [κε, κδ] · lfs(pi), with κ = 2/(1− δ)

and κε = σε/(1 + σε).

Proof. The upper bound comes from d(pi, pj) ≤ ri + rj and lfs(pj) ≤ lfs(pi) +

1Define f(u, v) =
√

1 + u2 + 2uv − (1 + u2/2 + uv) and observe that f(u,−u/2) = 0 is the only

critical value of f(u, .). As ∂2f/∂v2 ≤ 0 for (u, v) ∈ R × [−1, 1], we get that f(u, v) ≤ 0 in this

range.
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d(pi, dj) by 1-Lipschitz, and the lower bound from lfs(pi)− d(pi, dj) ≤ lfs(pj) and

the sparsity.

Bounding the circumradii is the culprit behind why we need such small values

of ε.

Lemma 25. The circumradius of a guide triangle tijk is at most %f · δlfs(pi), where

%f < 1.38, and at most %f · d(pi, pj) where %f < 3.68.

Proof. Let pi and pj be the triangle vertices with the smallest and largest lfs values,

respectively. From Claim 2, we get d(pi, pj) ≤ κδlfs(pi). It follows that lfs(pj) ≤

(1 + κδ)lfs(pi). As tijk is a guide triangle, we know that it has a pair of intersection

points ∂Bi ∩ ∂Bj ∩ ∂Bk. Clearly, the seed is no farther than δlfs(pj) from any vertex

of tijk and the orthoradius of tijk cannot be bigger than this distance.

Recall that the weight wi associated with pi is δ2lfs(pi)
2. We shift the weights of

all the vertices of tijk by the lowest weight wi, which does not change the orthocenter.

With that wj−wi = δ2(lfs(pj)
2− lfs(pi)

2) ≤ δ2lfs(pi)
2((1+κδ)2−1) = κδ3lfs(pi)

2(κδ+

2). On the other hand, sparsity ensures that the closest vertex in tijk to pj is at

distance at least N(pj) ≥ σεlfs(pj) ≥ σε(1 − κδ)lfs(pi). Ensuring α2 ≤ (wj −

wi)/N(pi)
2 ≤ κδ3(2 + κδ)/(σ2ε2(1− κδ)2) ≤ 1/4 suffices to bound the circumradius

of tijk by crad = 1/
√

1− 4α2 times its orthoradius, as required by Claim 4 in [143].

Substituting δ = 2ε and σ ≥ 3/4 we get α2 ≤ 78.97ε, which corresponds to crad < 1.37.

It follows that the circumradius is at most cradδlfs(pj) ≤ crad(1 + κδ)δlfs(pi) <

1.38δlfs(pi).

For the second statement, observe that lfs(pi) ≥ (1−κδ)lfs(pj) and the sparsity
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condition ensures that the shortest edge length is at least σεlfs(pi) ≥ σε(1−κδ)lfs(pj).

It follows that the circumradius is at most δcrad
σε(1−κδ) < 3.68 times the length of any

edge of tijk.

Given the bound on the circumradii, we are able to bound the deviation of

normals.

Lemma 26. If tijk is a guide triangle, then (1) ∠a(npi , npj) ≤ ηsδ < 0.47◦, with

ηs < 2.03, and (2) ∠a(nt, npi) ≤ ηtδ < 1.52◦, with ηt < 6.6, where npi is the line

normal to M at pi and nt is the normal to tijk. In particular, tijk makes an angle at

most ηtδ with Tpi.

Proof. Proposition 2 implies d(pi, pj) ≤ κδlfs(pi) and (1) follows from the Normal

Variation Lemma [147] with ρ = κδ < 1/3 yielding ∠a(npi , npj ) ≤ κδ/(1−κδ). Letting

Rt denote the circumradius of t, Lemma 25 implies that the Rt ≤ %f · δlfs(pi) ≤

lfs(pi)/
√

2 and the Triangle Normal Lemma [148] implies ∠a(np∗ , nt) < 4.57δ < 1.05◦,

where p∗ is the vertex of t subtending a maximal angle in t. Hence, ∠a(npi , nt) ≤

∠a(npi , np∗) + ∠a(np∗ , nt).

5.4.3 Approximation Guarantees

Towards establishing homeomorphism, the next lemma on the monotonicity of

distance to the nearest seed is critical. First, we show that the nearest seeds to any

surface point x ∈M are generated by nearby samples.

Lemma 27. The nearest seed to x ∈ M lies on some ∂Bi where d(x, pi) ≤ 5.03 ·

εlfs(x). Consequently, d(x, pi) ≤ 5.08 · εlfs(pi).
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Proof. In an ε-sampling, there exists a pa such that d(x, pa) ≤ εlfs(x), where

lfs(pa) ≤ (1 + ε)lfs(x). The sampling conditions also guarantee that there exists

at least one seed sa on ∂Ba. By the triangle inequality, we get that d(x, sa) ≤

d(x, pa) + d(pa, sa) ≤ εlfs(x) + δlfs(pa) ≤ ε(1 + 2(1 + ε))lfs(x) = ε(2ε+ 3)lfs(x).

We aim to bound ` to ensure ∀pi s.t. d(x, pi) = ` · εlfs(x), the nearest seed to x

cannot lie on Bi. Note that in this case, (1−`ε)lfs(x) ≤ lfs(pi) ≤ (1+`ε)lfs(x). Let si

be any seed onBi. It follows that d(x, si) ≥ d(x, pi)−d(pi, si) ≥ `·εlfs(x)−2εlfs(pi) ≥

ε
(
(1− 2ε)`− 2

)
lfs(x).

Setting ε
(
(1 − 2ε)` − 2

)
lfs(x) ≥ ε(2ε + 3)lfs(x) suffices to ensure d(x, si) ≥

d(x, sa), and we get ` ≥ (2ε+5)/(1−2ε). Conversely, if the nearest seed to x lies on Bi,

it must be the case that d(x, pi) ≤ `εlfs(x). We verify that `ε = ε(2ε+5)/(1−2ε) < 1

for any ε < 0.13. It follows that d(x, pj) ≤ `ε/(1− `ε)lfs(pi).

Lemma 28. For any normal segment Nx issued from x ∈M, the distance to S↑ is

either strictly increasing or strictly decreasing along Γ−1([0, 0.96ε]) ∩Nx. The same

holds for S↓.

Proof. Let nx be the outward normal and Tx be the tangent plane to M at x. By

Lemma 27, the nearest seeds to x are generated by nearby samples. Fix one such

nearby sample pi. For all possible locations of a seed s ∈ S↑ ∩ ∂Bi, we will show a

sufficiently large lower bound on 〈s− s′′, nx〉, where s′′ the projection of s onto Tx.

Take lfs(pi) = 1 and let Bs = B(c, 1) be the tangent ball toM at pi with s ∈ Bs.

Let A be the plane containing {pi, s, x}. Assume in the worst case that A⊥Tpi and

x is as far as possible from pi on ∂Bs ∩ Tpi . By Lemma 27, d(pi, x) ≤ 5.08ε and
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Figure 5.5: Constructions used for (a) Lemma 24, (b) Lemma 28 and (c) Theorem 7.

it follows that θx = ∠(nx, npi) ≤ 5.08ε/(1− 5.08ε) ≤ 5.14ε. This means that Tx is

confined within a (π/2− θx)-cocone centered at x. Assume in the worst case that nx

is parallel to A and Tx is tilted to minimize d(s, s′′); see Figure 5.5b.

Let T ′x be a translation of Tx such that pi ∈ T ′x and denote by x′ and s′ the

projections of x and s, respectively, onto T ′x. Observe that T ′x makes an angle θx with

Tpi . From the isosceles triangle 4picx, we get that θ′x ≤ 1/2∠picx = sin−1 5.08ε/2 ≤

2.54ε. Now, consider 4pixx′ and let φ = ∠xpix′. We have that φ = θx + θ′x ≤

2.54ε+ δ/(1− δ) ≤ 4.55ε. Hence, sin(φ) ≤ 4.55ε and d(x, x′) ≤ 5.08ε sin(φ) ≤ 0.05ε.

On the other hand, we have that ∠spis′ = ψ ≥ θs − θx and d(s, s′) ≥ δ sinψ, where

θs ≥ 1/2− 5ε by Lemma 24. Simplifying we get sin(ψ) ≥ 1/2− 10.08ε. The proof

follows by evaluating d(s, s′′) = d(s, s′)− d(x, x′).

Theorem 7. For every x ∈ M with closest point q ∈ M̂, and for every q ∈ M̂

with closest point x ∈ M, we have ‖xq‖ < ht · ε2lfs(x), where ht < 30.52. For

ε < 1/500, ht · ε2 < 0.0002. Moreover, the restriction of the mapping π to M̂ is a
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homeomorphism and M̂ and M are ambient isotopic. Consequently, Ô is ambient

isotopic to O as well.

Proof. Fix a sample pi ∈ P and a surface point x ∈ M ∩ Bi. We consider two

cocones centered at x: a p-cocone contains all nearby surface points and a q-cocone

contains all guide triangles incident at pi. By Theorem 6, all reconstruction facets

generated by seeds on Bi are sandwiched in the q-cocone.

Lemma 26 readily provides a bound on the q-cocone angle as γ ≤ ηtδ. In addi-

tion, since d(pi, x) ≤ δlfs(pi), we can bound the p-cocone angle as θ ≤ 2 sin−1 (δ/2)

by Lemma 2 in [122]. We utilize a mixed pq-cocone with angle ω = γ/2 + θ/2,

obtained by gluing the lower half of the p-cocone with the upper half of the q-cocone.

Let q ∈ M̂ and consider its closest point x ∈ M. Again, fix pi ∈ P such

that x ∈ Bi; see Figure 5.5c. By sandwiching, we know that any ray through

q intersects at least one guide triangle, in some point y, after passing through

x. Let us assume the worst case that y lies on the upper boundary of the pq-

cocone. Then, d(q, x) ≤ d(y, y′) = h = δ sin(ω)lfs(pi), where y′ is the closest

point on the lower boundary of the pq-cocone point to q. We also have that,

d(pi, x) ≤ cos(ω)δlfs(pi) ≤ δlfs(pi), and since lfs is 1-Lipschitz, lfs(pi) ≤ lfs(x)/(1−δ).

Simplifying, we write d(q, x) < δω/(1− δ) · lfs(x) < htε
2lfs(x).

With d(q, x) ≤ 0.55εlfs(x), Lemma 28 shows that the normal line from any

p ∈M intersects M̂ exactly once close to the surface. It follows that for every point

x ∈ M with closest point q ∈ M̂, we have d(x, q) ≤ d(x, q′) where q′ ∈ M̂ with x

its closest point in M. Hence, d(x, q) ≤ htε
2lfs(x) as well.
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Building upon Lemma 28, as a point moves along the normal line at x, it is

either the case that the distance to S↑ is decreasing while the distance to S↓ is

increasing or the other way around. It follows that these two distances become equal

at exactly one point on the Voronoi facet above or below x separating some seed

s↑ ∈ S↑ from another seed s↓ ∈ S↓. Hence, the restriction of the mapping π to M̂ is

a homeomorphism.

This shows that M̂ and M homeomorphic. Recall that Corollary 2(3) implies

U is a topological thickening [142] of M. In addition, Theorem 6 guarantees that M̂

is embedded in the interior of U , such that it separates the two surfaces comprising

∂U . These three properties imply M̂ is isotopic to M in U by virtue of Theorem

2.1 in [142]. Finally, as M̂ is the boundary of Ô by definition, it follows that Ô is

isotopic to O as well.

5.5 Quality Guarantees and Output Size

Building upon the analysis in Section 5.4, we establish a number of quality

guarantees on the output mesh. The main result is an upper bound on the fatness of

all Voronoi cell, i.e., the outradius to inradius ratio where the outradius is the radius

of the smallest enclosing ball, and the inradius is the radius of the largest enclosed

ball.
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5.5.1 Surface Elements

Recall that fatness is the outradius to inradius ratio, where the outradius is

the radius of the smallest enclosing ball, and the inradius is the radius of the largest

enclosed ball. The good quality of guide triangles allows us to bound the inradius of

Voronoi cells.

Lemma 29. For all guide triangles tijk: (1) Edge length ratios are bounded: `k/`j ≤

κ` = 2δ
1−δ

σε
1+σε

. (2) Angles are bounded: sin(θi) ≥ 1/(2%f) implying θi ∈ (7.8◦, 165◦).

(3) Altitudes are bounded: the altitude above eij is at least αt|eij|, where αt = 1/4%f >

0.067.

Proof. The edge ratio bound is basically a restatement of Proposition 2. Denote

by `i and θi the length of the triangle edge opposite to pi and the angle at vertex

pi, respectively. Proposition 2 implies `k ≤ κδlfs(pi) and the sparsity condition

guarantees that `j ≥ κεlfs(pi), hence `i/`k ≤ κ` for any pair of edges.

Let Rijk denote tijk’s circumradius. By the Central Angle Theorem, sin(θi) =

`i/(2Rijk), and we also have Rijk ≤ %f`i from Lemma 25. Hence sin(θi) ≥ 1/(2%f ).

For the worst case altitude, let the edge under consideration be the longest,

e = `k, and the second longest edge `j, so `j ≥ `k/2. The altitude is then sin(θi)`j ≥

`k/(4%f ).

The following technical lemma bounds the inradius of Voronoi cells with seeds

in S↑ ∪ S↓.

Corollary 4. If tijk is a guide triangle with associated seed s, then ∠spis′′ ≥ 1
2
− η′tε,
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where s′′ is the projection of s on the plane of tijk and η′t ≤ 5 + 2ηt < 18.18, implying

d(s, s′′) ≥ ĥsδlfs(pi) with ĥs ≥ 1
2
− η′tε.

Proof. Combining Lemma 24 with Lemma 26, we have ∠spis′′ ≥ ∠spis′−∠a(ntijk , npi).

Observe that a guide triangle is contained in the Voronoi cell of its seed,

even when one of the guides is covered. Hence, the tetrahedron formed by the

triangle together with its seed lies inside the cell, and the cell inradius is at least the

tetrahedron inradius.

Lemma 30. For seeds sijk ∈ S↑ ∪ S↓, the inradius of the Voronoi cell is at least

%vδ · lfs(pi) with %v = ĥs/(1 + 3
2σ%f

) > 0.3 and ĥs ≥ 1
2
− (5 + 2ηt)ε.

Proof. Fix a seed sijk and observe that {pi, pj, pk} belong to its Voronoi cell. By

the convexity of the cell, it follows that the tetrahedron T = pipjpksijk is contained

inside it. We establish a lower bound on the cell’s inradius by bounding the inradius

of T . Let fi denote the facet of T opposite to pi and f0 denote tijk. Let Ai be the

area of fi.

Observe that the incenter cT divides T into four smaller tetrahedra, one for

each facet of T , where the distance from cT to the plane of each facet is equal to the

inradius r. This allows us to express the volume of T as V =
∑3

i=0 rAi/3. Hence,

we have that r = 3V/
∑

iAi. We may also express V as HA0/3, where H is the

distance from sijk to the plane of tijk. Substituting for V and factoring out A0, we

get that r = H/(1 +
∑3

i>0Ai/A0).
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Triangle area ratios Ai/A0 are bounded because triangle angles are bounded,

and edge lengths are bounded by the local feature size. Consider the edge ei = pjpk

common to fi and tijk and let αs and αp be the altitudes of ei in fi and tijk,

respectively. It follows that Ai/A0 = αs/αp. Note αs is less than the length of the

longest edge of fi.

Hence, assuming that lfs(pj) ≥ lfs(pk), we get that αs ≤ δlfs(pj). On the

other hand, the sparsity condition guarantees d(pj, pk) ≥ σεlfs(pj), allowing us to

rewrite αs ≤ δ
σε
d(pj, pk). From Lemma 29, we have that αp ≥ d(pj, pk)/(4%f). It

follows that Ai/A0 ≤ 1
2σ%f

. The proof follows by invoking Corollary 4 to bound

H ≥ ĥsδlfs(pi).

5.5.2 Meshing the Interior

To get an upper bound on cell outradii, we must first generate seeds interior to

O. We consider a simple algorithm for generating S↓↓ based on a standard octree over

O. For sizing, we extend lfs beyond M, using the point-wise maximal 1-Lipschitz

extension lfs(x) = infp∈M(lfs(p) + d(x, p)) [149]. An octree box � is refined if the

length of its diagonal is greater than 2δ · lfs(c), where c is the center of �. After

refinement terminates, we add an interior seed at the center of each empty box, and

do nothing with boxes containing one or more guide seeds.

Given an octree box �i, denote by ci its center and ri its radius (half its

diagonal length). Assume that the input P has been scaled and shifted to fit into

the unit cube [0, 1]3. Starting with the unit cube as the box associated with the
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root node of the octree, the refinement process terminates with ri ≤ δlfs(ci) for all

leaf boxes �i. Note that refinement depends only on lfs and is independent of the

number of points in P , and the distances between them. We establish the following

Lipschitz-like properties for the size of leaf boxes.

Proposition 3. If �i is a leaf box, then δ
2+δ

lfs(ci) ≤ ri ≤ δlfs(ci).

Proof. By definition the leaf box was not split, so ri ≤ δlfs(ci). Letting �j be the

parent of �i, it is clear that �j had to be split. Hence, rj = 2ri > δlfs(cj). By

Lipschitzness, lfs(ci) ≤ lfs(cj) + ri ≤ ri(1 + 2/δ).

Proposition 4. For any p ∈ �i, where �i is a leaf box, δ
2(1+δ)

≤ ri ≤ δ
1−δ lfs(p).

Proof. Observe that d(p, ci) ≤ ri, so lfs(p) is bounded in terms of lfs(ci). Conveniently,

Proposition 3 bounds lfs(ci) in terms of ri. To get the lower bound, we write

lfs(p) ≤ lfs(ci)+ri ≤ (2+δ
δ

+1)ri. For the upper bound, we write lfs(p) ≥ lfs(ci)−ri ≥

(1/δ − 1)ri.

Lemma 31. If �i and �j are two leaf boxes sharing a corner, then ri/rj ∈ [1/2, 2].

Proof. Assume that rj ≤ ri. From Proposition 3 we have ri ≤ δlfs(ci) and rj ≥

δ
2+δ

lfs(cj). Together with lfs being 1-Lipschitz, this gives rj ≥ δ
2+δ

(
lfs(ci)−(ri+rj)

)
≥

δ
2+δ

(ri/δ − ri − rj). Simplifying, we get rj ≥ ri
2

1−δ
1+δ

. For δ < 1/3, we obtain rj > ri/4.

As the ratio of box radii is a power of two, rj ∈ {ri/2, ri}.

These propoerties of the octree may be used to bound the outradius of Voronoi

cells.
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Lemma 32. The Voronoi cell of s ∈ S has outradius at most 2δ
1−3δ lfs(s) ≤ 4(1+δ)

1−3δ ri,

where �i is the leaf box containing s.

Proof. Let v be a vertex on the Voronoi cell of s. The octree construction guarantees

v ∈ �j, for some leaf box �j. Proposition 4 gives rj ≤ δ/(1− δ)lfs(v). Fixing some

s′ ∈ �j ∩ S 6= ∅, it follows that d(v, s) ≤ d(v, s′) ≤ 2rj. Hence, lfs(v) ≥ 1−δ
2δ

d(v, s).

By Lipschitzness, lfs(s) ≥ lfs(v) − d(v, s) ≥ 1−3δ
2δ

d(v, s). As s ∈ �i, Proposition 4

gives lfs(s) ≤ 2(1+δ)
δ

ri. It follows that d(v, s) ≤ 2δ
1−3δ lfs(s) ≤

4(1+δ)
1−3δ ri.

5.5.3 Volumetric Cells

Any Voronoi vertex is in some box, and every box has at least one seed. This

provides an upper bound on the distance between a Voronoi vertex and its closest

seed, and an upper bound on the cell outradius, for both interior and guide seeds.

Interior seeds are at the center of a box containing no other seeds, so interior cell

inradius is at least a constant factor times r. Combining the outradius and inradius

bounds provides the following results.

Lemma 33. The fatness of interior cells is at most 8
√
3(1+δ)
1−3δ < 14.1.

Proof. Let s ∈ S be an interior seed and recall that s was inserted at the center of

some empty leaf box �i. By construction, s is the only seed in �i. It follows that

the inradius of Vor(s) is at least 1
2
√
3
ri, which is half the distance from ci to any of its

sides. The proof follows from the bound on the outradius in terms of ri as provided

by Lemma 32.

Lemma 34. The fatness of boundary cells is at most 4(1+δ)
(1−3δ)(1−δ)2%v < 13.65.
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Proof. Let s ≡ sijk ∈ S be a boundary seed and recall the lower bound of %vεlfs(pi)

on the inradius of Vor(s) from Lemma 30. By Lipschitzness, we may express this as

%vδ(1− δ)lfs(s). On the other hand, an upper bound of 4(1+δ)
1−3δ ra on the circumradius

of Vor(s) is provided by Lemma 32, where �a is the leaf box containing s. From

Proposition 4, we have that ra ≤ δ
1−δ lfs(s). With both bounds expressed in terms of

lfs(s), we evaluate their ratio.

5.5.4 Size Bound

To bound the number of cells, we bound the integral of lfs−3 over the domain

O. As the integral is bounded over a single cell, it effectively counts the seeds.

Lemma 35. |S↓↓| ≤ 18
√

3/π · ε−3
∫
O lfs−3.

Proof. Let I = S↓ ∪ S↓↓ and V (s) denote the Voronoi cell of seed s. Since the

Voronoi cells of interior seeds in I partition the volume O,
∫
O lfs−3 =

∑
s∈I
∫
V (s)

lfs−3.

Bounded outradii and inradii will bound each integral by as follows.

Fix a seed s and let Rs and rs be the circumradius and inradius of V (s),

respectively. From Lemma 32, we have R ≤ 2δ
1−3δ lfs(s). By Lipschitzness, for any

x ∈ Vor(s), lfs(x) ≥ 1−5δ
1−3δ lfs(s). Thus,

∫
Vor(s)

lfs−3 ≥ f1(δ)lfs
−3(s)vol(Vor(s)), where

f1(δ) =
(
1−3δ
1−5δ

)3
.

If s ∈ S↓↓, Proposition 4 yields rs ≥ δ
4
√
3(1+δ)

lfs(s). Hence, vol(Vor(s)) ≥

f2(δ)lfs
3(s), where f2(δ) = 4π

3

(
δ

4
√
3(1+δ)

)3
. If s = sijk ∈ S↓, Lemma 30 gives

rs ≥ %vεlfs(pi). Recalling d(pi, sijk) = δlfs(pi) and the extension of lfs to the

interior of O, we get lfs(s) ≤ (1 + δ)lfs(pi). It follows that rs ≥ %vδ
1+δ

lfs(s) and
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vol(Vor(s)) ≥ f3(δ)lfs
3(s), where f3(δ) = 4π

3

(
%vδ
1+δ

)3
.

Letting f4(δ) = f1(δ) · min(f2(δ), f3(δ)), we established that vol(Vor(s)) ≥

f4(δ)lfs
3(s). Plugging that into the above bound, we get

∫
Vor(s)

lfs−3 ≥ f4(δ). Hence,∫
O lfs−3 ≥ f4(δ)|I| ≥ f4(δ)|S↓↓|. The proof follows by observing that 1

f4(δ)
≤

18
√

3/π · ε−3.
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Chapter 6: Robust Sampling for Voronoi Meshing

Finite element methods traditionally use simplicial meshes, where well-known

angle conditions prohibit skinny elements [150]. The limited degrees of freedom of

linear tetrahedral as well as hexahedral elements often require excessive refinement

when modeling complex geometries or domains undergoing large deformations, e.g.,

cutting, merging, fracturing, or adaptive refinement [61–64].

This motivated generalizations to general polyhedral elements, which enjoy

larger degrees of freedom and have recently been in increasing demand in computer

graphics [151], physically-based simulations [152], applied mathematics [153], compu-

tational mechanics [154] and computational physics [155]. A key advantage of general

polyhedral elements is their superior ability to adjust to deformation [151,156] and

topological changes [157], while being less biased to principal directions compared

to regular tessellations [158]. In addition, polyhedral elements typically have more

neighbors, even at corners and boundaries, enabling better approximation of gradients

and possibly higher accuracy using the same number of conventional elements [121].

To further ensure the fidelity of the discrete model, the fundamental properties

of continuum equations have to be preserved [75]. A well-principled framework is

enabled through the combined use of primal meshes and their orthogonal duals [76].
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The power of orthogonal duals, exemplified by Voronoi-Delaunay meshes, has re-

cently been demonstrated on a range of applications in computer graphics [80] and

computational physics [83]. It is therefore imperative to develop new algorithms for

primal-dual polyhedral meshing.

In this chapter, we present the design and implementation of VoroCrust: the

first algorithm for meshing non-convex, non-smooth, and even non-manifold domains

by conforming polyhedral Voronoi meshes. The implicit output mesh, compactly

encoded by a set of Voronoi seeds, comes with an orthogonal dual defined by the

corresponding Delaunay tetrahedralization. This makes VoroCrust one of the first

robust and efficient algorithms for primal-dual polyhedral meshing. The crux of the

algorithm is a robust refinement process that estimates a suitable sizing function to

guide the placement of Voronoi seeds. This enables VoroCrust to protect all sharp

features, and mesh the surface and interior into quality elements. We demonstrate the

performance of the algorithm through a variety of challenging models, see Figure 6.5,

and compare against state-of-the-art polyhedral meshing methods based on clipped

Voronoi cells; see Figures 6.1 and 6.2.

6.1 Introduction

Despite many attempts to design a robust Voronoi meshing algorithm, a general

solution to the problem remained elusive. In particular, a number of widely used

numerical simulators for flow and transport models, e.g., TOUGH2 [159] and PFLO-

TRAN [160], compute gradients along nodal lines connecting neighboring cells, and
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Figure 6.1: State-of-the-art methods for conforming Voronoi meshing clip Voronoi

cells at the bounding surface. The Restricted Voronoi Diagram [66] (left) is sensitive

to the input tessellation and produces surface elements of very low quality, per the

shortest-to-longest edge ratio distribution shown in the inset. In contrast, VoroCrust

(right) generates an unclipped Voronoi mesh conforming to a high-quality surface

mesh.
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Figure 6.2: State-of-the-art clipping [66] may create non-convex cells (left); anywhere

from 3% up to 96%. In contrast, VoroCrust always produces true Voronoi cells

conforming to the boundary (right).

hence require that these dual edges are orthogonal to the common primal facets [161].

Several heuristic approaches to the generation of Voronoi meshes for such simulators

were developed [135,162–165]. The situation is further complicated for multi-material

domains, where the difficulty of generating conforming meshes necessitates dealing

with mixed elements straddling the interface between multiple materials [166–168].

In contrast, VoroCrust is a well-principled algorithm for conforming Voronoi meshing

that can handle a large class of domains having as boundary either a manifold or

non-manifold surface with arbitrarily sharp features.

While PowerCrust successfully avoids misaligned facets, the placement of seeds

as described is restricted to lie close to the medial axis resulting in very skinny

Voronoi cells extending perpendicularly to the surface; see Figure 6.3(c). For the

122



(a) Naive mirroring of seeds. (b) Naive mirroring reconstruction.

(c) PowerCrust reconstruction. (d) VoroCrust reconstruction.

Figure 6.3: Voronoi-based reconstruction interpolates boundary samples (blue) using

the Voronoi facets generated by seeds on different sides of the boundary, e.g., inside

(green) and outside (red). Naive mirroring (a) results in large normal deviations

(b) due to Voronoi facets between non-paired seeds. PowerCrust reduces normal

deviations by placing weighted seeds on the medial axis away from the boundary (c).

VoroCrust eliminates misaligned facets (d) using unweighted seeds.
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purposes of conforming Voronoi meshing, it is necessary to avoid such skinny cells.

In contrast, VoroCrust is able to capture the surface using pairs of unweighted seeds

placed close to the surface, enabling further decomposition of the interior using

additional seeds; see Figure 6.3(d). A visual summary of the VoroCrust algorithm is

provided in Figure 6.4.

Figure 6.4: VoroCrust summary: (left) Cover the boundary by a union of balls,

(middle) place pairs of Voronoi seeds where balls intersect to capture and isolate the

boundary, and finally (right) seed the interior.

The issue of arbitrarily small input angles was finally resolved by Cheng et

al. [59] for a large class of inputs called piecewise-smooth complexes. Cheng et al. [59]

achieved that by deriving a feature size that blends the definitions used for smooth

and polyhedral domains, ensuring the protection of sharp features. However, their

algorithm is largely impractical as it relies on expensive predicates evaluated using

the equations of the underlying surface. To obtain a practical variant as implemented

in the DelPSC software, Dey and Levin [60] relied on an input threshold to guide

refinement, where topological correctness can only be guaranteed if it is sufficiently

small. Another issue with using such a threshold is the uniform sizing of the output

mesh, since adaptive sizing requires better sensitivity to the underlying surface. In
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(a) (b) (c) (d) (e) (f) (g)

Figure 6.5: VoroCrust can handle inputs having both smooth (a) and sharp (b)

features as well as complex topology (c), multi-layers interfacing different types of

materials (d), and multiple components (e). The enclosed volume is decomposed

into convex unclipped Voronoi cells which can be optimized by CVT (e), controlled

to exhibit dominant lattices structures (f), or generated by randomly-sampled seeds

(g).

contrast, the proposed VoroCrust refinement leverages the quality of the input mesh

to automatically estimate a sizing similar to the one defined by Cheng et al. [59,169];

this enables VoroCrust to retain the superior guarantees they established while being

practical as shown in our results.

The rest of this chapter is organized as follows. We describe all steps of the

algorithm in Section 6.2. Then, we provide additional implementation details in

Section 6.3. Finally, we present the evaluation and comparisons in Section 6.4.

6.2 The VoroCrust Algorithm

Given a representation of a domain vol, the algorithm produces a boundary-

conforming Voronoi decomposition. The crux of the algorithm is the generation of a

set of weighted surface samples corresponding to a set of balls B whose union U = ∪B

approximates the boundary M = ∂vol. Specifically, U covers M and has the same
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topology. In addition, U captures the sharp features of M. To further guarantee

the quality of surface approximation, the radii of surface balls vary smoothly and

are sufficiently small w.r.t. the local curvature of M. In other words, the radii of

balls in B mimic a local feature size for M. Finally, certain configurations of balls

are perturbed to eliminate undesirable artifacts in the output surface mesh. These

requirements are used to design a refinement process that converges to a suitable

union of balls. The conforming surface mesh is obtained by essentially dualizing U to

obtain a set of Voronoi seeds Sl. Once U is obtained, the interior is easily meshed by

sampling additional seeds S↓↓ outside U . The output mesh can then be computed as

a subset of the Voronoi diagram of the seeds in Sl ∪S↓↓ without any clipping. In the

remainder of this section, we elaborate on these steps per the high-level pseudocode

in Algorithm 1 and Figure 6.4.

6.2.1 Input Specification

VoroCrust can handle a domain vol having as boundary a piecewise-smooth

complex (PSC)M that can be either manifold or non-manifold. The boundary PSC

M possibly contains sharp features where the normal to the surface does not vary

smoothly. We make no assumption on how small the input angles might be at such

sharp features. VoroCrust guarantees the preservation of all sharp features; sharp cor-

ners appear exactly as vertices, while sharp creases are approximated by a set of edges.

Input Mesh. The algorithm takes as input a watertight piecewise-linear complex
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(PLC) T approximating the boundary M. As in [170], we assume that T approxi-

mates M in terms of both the Hausdorff error and the surface normals; this enables

various predicates to be evaluated using the input PLC rather than the equations

describing the underlying PSC [169]. In particular, we assume that all dihedral angles

in the input mesh, except at sharp features, are at least π− θ[, where the smoothness

threshold θ[ > 0 is an implicit design parameter. For the current implementation,

we assume T is a triangle mesh with no self-intersection. Well-established methods

can be used to obtain such a mesh given a suitable representation of the domain

vol [57,60,171].

Parameters. The algorithm also takes the following inputs:

• sz: a sizing field indicating the largest allowed size of mesh elements, and

defaults to the diameter of T or ∞.

• θ] < π
2
: an angle threshold used to identify the sharp features in the PLC T

and bound approximation errors.

• L < 1: a Lipschitz parameter that bounds the variation of radii in B and helps

speed-up proximity queries.

We distinguish the angle parameters θ by the superscripts inspired from musical

notation: ] for sharp and [ for flat.
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Algorithm 1: High-level VoroCrust algorithm

Input: PLC T approximating the domain vol, sizing field sz,

eeeeew and parameters θ] and L (Section 2.1)

F ← the set of sharp features w.r.t. θ] (Section 2.2)

B ← a set of balls protecting all features in F (Section 2.3)

while U = ∪B does not cover T do

Add balls to recover the protection of F and cover T

Shrink balls violating any ball conditions (Section 2.3)

Shrink balls or forming half-covered seeds (Section 2.4)

end

Sl ← pairs of seeds from triplets of balls in B (Section 2.4)

S↓↓ ← seeds sampled from the interior of vol \ U (Section 2.5)

return Sl ∪ S↓↓

6.2.2 Preprocessing Steps

Before refinement, VoroCrust indexes the elements of the input PLC T and

enforces the smoothness condition per the parameter θ[. Then, the algorithm con-

structs a number of data structures for proximity queries against T and B.

Feature Detection. We define a sharp edge as an edge of T subtending a dihedral

angle less than π − θ], or any non-manifold edge incident to exactly one or more

than two facets. These sharp edges partition the set of facets incident to any fixed

vertex into sectors. We define a sharp corner as a vertex of T incident to more

than two sharp edges, or two sharp edges whose supporting lines make an angle
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less than π − θ], or two facets in the same sector whose normals differ by at least

θ]. A polyline arising from a chain of connected sharp edges is called a crease, and

either forms a cycle or connects two sharp corners. The connected components of

the boundary containing no sharp features, denoted TS, are called surface patches.

The collection of sharp corners, creases and surface patches are collectively referred

to as the strata of T .

The algorithm uses θ] to test each edge in T , and collects all sharp edges in a set

E. Then, each vertex is tested using θ] and E, and the sharp corners are collected into

the set FC . From E and FC , connected chains of sharp edges are collected into the set

FE by flooding through common vertices except for sharp corners. As a byproduct,

each crease is given an index and an orientation, applied consistently to all its sharp

edges. Similarly, the facets of T are indexed, oriented and collected into the set

of surface patches TS by flooding across non-sharp edges. Finally, we set F = FC∪FE.

Patch Smoothing. If the input mesh T does not satisfy the required bound on

dihedral angles in terms of θ[, VoroCrust starts by applying adaptive loop subdivi-

sion [172] to ensure all dihedral angles between neighboring facets in the same surface

patch in TS are sufficiently large. In our implementation, we run 6 iterations of loop

subdivision, applying subdivision adaptively such that facets with all associated

dihedral angles larger than 175◦ are not subdivided. Typical values of θ[ resulting

from this step range from 10◦ to 15◦.

Proximity Queries. Upon generating a new sample point p ∈ T , VoroCrust needs
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to find the balls in B covering p, and estimate its distance to the elements of T

satisfying certain conditions w.r.t. θ]. To speed up such queries, the algorithm

constructs three boundary k-d trees to index the elements in FC , FE and TS. The

k-d trees for FE and TS are populated by supersampling the respective elements

with a large number of samples proportional to their sizes. Similarly, the balls in B

are indexed into three ball k-d trees. When querying the ball k-d trees for balls in

the neighborhood of a given point, the L-Lipschitzness of ball radii helps to bound

the range and overhead of such queries; see the appendix for more details.

6.2.3 Ball Refinement

At a high level, the desired union of balls U has to (1) protect the sharp features

of T as in [169], and (2) cover T while matching its topology as in [173]. VoroCrust

achieves this through a set of ball conditions imposed on the balls in B. Violations

of these conditions drive a refinement process which converges to a suitable union

of balls. Before describing this process, we introduce a number of definitions and

subroutines.
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Figure 6.6: Ball conditions. C1 is violated at x by bp1 . C2 is violated by bp2 and bp3 .

C3 is violated by bp4 and bp5 . C4 is violated at y.

Smooth Neighborhoods. As in [169], we appeal to the curvature of the surface

to infer a suitable notion of sizing. Fix a point x ∈ T and let σ be a face of T

containing x. If σ is a sharp edge, define vx,σ as a unit vector parallel to σ. If

σ is a surface patch, define vx,σ as a unit vector normal to σ. vx,σ inherits the

orientation of the stratum, i.e., the crease or surface patch, containing σ. A path

γ lying entirely in a unique stratum Σ is called a smooth path iff for all x, y ∈ γ

we have that ∠vx,σ, vy,τ ≤ θ], where σ and τ are the two top-dimensional faces of

Σ containing x and y, respectively. Two points x, y ∈ T are called co-smooth iff

they can be connected by a smooth path. For example, for the curve shown in

Figure 6.6, if θ] = π/4, then p1 is not co-smooth with x while p5 is co-smooth with p6.

Ball Conditions. For a sample point p ∈ T , let bp ∈ B denote the ball centered at

p and let rp denote its radius. The following conditions drive the refinement process

and are ensured for B upon termination; see Figure 6.6.
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(C1) Smooth Coverage. For any bp ∈ B and all x ∈ bp ∩ T , we require that

p and x are co-smooth.

(C2) Smooth Overlaps. For any bp, bq ∈ B s.t. bp ∩ bq 6= ∅, we require that

bp ∪ bq contains a smooth path from p to q.

(C3) Local L-Lipschitzness. For any two balls bp, bq ∈ B such that p, q ∈ FC ,

or p, q ∈ FE, or p, q ∈ TS, we require that rp ≤ rq + L · ‖p− q‖.

(C4) Deep Coverage. Fix a constant α ∈ (0, 1). For all x ∈ T , we require

that ‖x − p‖ ≤ (1 − α) · rp for some ball bp ∈ B. In addition, we require that

‖p− q‖ ≥ (1− α) ·max(rp, rq) for all balls bp, bq ∈ B.

Sizing Estimation. A sizing assigns to each new sample p a radius rp. We seek

a sizing at most sz that satisfies all ball conditions. VoroCrust computes such

a sizing by dynamically evolving the assignments rp for each ball bp ∈ B in the

course of the refinement process. To speed up convergence, a newly generated ball

bp is initialized with a conservative estimate that is more likely to satisfy all ball

conditions. To help avoid C1 and C2 violations, the boundary k-d trees are queried

using p to obtain a surrogate point q∗ for the nearest non-co-smooth point on T .

To help avoid C3 violations, the ball k-d trees are queried to find the ball bq whose

center is nearest to p. With that, we set rp = min(sz(p), 0.49·‖p−q∗‖, rq+L·‖p−q‖).

Termination. Since VoroCrust uses the PLC T , which only provides a discrete

approximation to the PSC M, and approximates various distance queries, the sizing

estimates as defined above may later be found to violate some ball conditions. By
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similar arguments to those in [60], refinement terminates satisfying all ball conditions.

The intuition is that for each region on a crease or surface patch, there exists a

positive lower bound on ball radii below which neither of the first two conditions

can be violated. The refinement process resolves violations by shrinking some balls,

effectively adjusting all sizing estimates, before recursing to restore protection and

coverage. As demonstrated through a variety of challenging models, our algorithm is

tuned to avoid excessive refinement; see Section 3.

6.2.4 Sampling Basics

The refinement process uses Maximal Poisson-Disk Sampling (MPS) [174–176]

to generate the balls needed to protect the creases and cover the surface patches.

The MPS procedure maintains an active pool, initialized by all faces on the stratum

at hand. To generate a new sample, MPS starts by sampling a face σ from the active

pool with a probability proportional to its measure, defined as the length for edges

and the area for facets. Then, a point p is sampled from σ uniformly at random. If

p is not covered by the balls in B, it is assigned a radius rp and the ball bp is added

into B. Otherwise, p is discarded and a miss counter is incremented. Upon counting

100 successive misses, all faces in the active pool are subdivided into subfaces and

the miss counter is reset; edges are split in half and facets are evenly split into four

by connecting edge midpoints. Any subface whose points are all deeply covered is

discarded, and the remaining subfaces become the new active pool.

133



Deep Coverage. For any point x ∈ T , condition C4 dictates a stronger form of

coverage by the balls in B. We say that x ∈ T is α-deeply covered by a ball bp ∈ B

if ‖p − x‖ ≤ (1 − α) · rp; see Figure 6.6. We set α = 1 −
√

3/2 ≈ 0.13 in our

implementation. Equivalently, we require adjacent balls to intersect deeply. The

reason for that is twofold. First, any point x in the proximity of a crease Σ must

be closer to the weighted samples on Σ than the samples on any other stratum of

T [60]. Second, a sufficient distance between pairs of seeds is needed to bound the

aspect ratio of Voronoi cells [173]. The refinement process ensures C4 by modifying

the coverage test for MPS as follows. First, a new sample is only accepted if it is

not deeply covered. Second, upon subdividing a face in the active pool, a subface is

discarded only if it is completely deeply covered by a single ball with a co-smooth

center. Third, the requirements of protecting sharp features prohibit deep overlaps

between balls of different types; we elaborate on this further below following the

description of our MPS implementation.

Detecting Violations. Before MPS discards a subface σ, the algorithm checks for

violations of C1 or C2, and shrinks encroaching balls as follows. The algorithm starts

by finding the nearest sample to σ on each stratum using the respective ball k-d

tree. Then, the algorithm queries the trees for neighboring balls and checks whether

σ is deeply covered by any of these balls. For each such ball bp, the algorithm also

checks whether p is co-smooth with the points of σ. If not, the algorithm finds

the point q∗ ∈ σ minimizing the distance to p and shrinks bp if necessary to ensure

rp ≤ 0.49 · ‖p − q∗‖. By ensuring such bp does not overlap σ, C1 violations are
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avoided. In addition, letting τ denote the subface containing p, any ball bq with q ∈ σ

cannot overlap bp. This effectively avoids C2 violations as the algorithm ensures

max(rp, rq) ≤ 0.49 · ‖p− q‖ before σ and τ are both discarded. Finally, whenever the

algorithm shrinks a ball, it needs to check for violations of C3 and possibly shrink

more balls; the algorithm in [57] is similar in that regard. However, violations of C3

are not checked during the MPS procedure, which possibly terminates with such

violations. As we describe below, enforcing C3 is interleaved with a later step to

speed up convergence.

Testing Co-smoothness. Given two subfaces σ, τ on a stratum Σ and a point

p ∈ τ , our implementation uses a more practical test rather than computing smooth

paths on Σ. This test is based on the observation that smooth paths starting

at a subface σ are confined to small (co)cones of aperture 2θ] emanating from the

boundary of σ. In particular, the smooth neighborhood is nearly collinear or coplanar

with σ if Σ is a crease or surface patch, respectively.

The algorithm starts by finding the point q∗ ∈ σ minimizing the distance to p,

and sets vpq∗ = p− q∗. Then, the co-smoothness test is relaxed to only require that

(1) ∠vσ,q∗ , vτ,p ≤ θ] and (2) ∠vσ,q∗ , vpq∗ ≤ θ] if Σ is a crease, or ∠vσ,q∗ , vpq∗ ≤ π
2
− θ]

if Σ is a surface patch. We argue that this relaxed test suffices for the refinement

process to eventually guarantee both C1 and C2. Let γ ∈ Σ be any path from p to σ.

If γ is a smooth path, then the test passes on all subfaces along γ. Otherwise, the

test fails for some subface σ′ ∈ γ. Hence, if no smooth path exists from p to σ, then

every such path γ encounters a subface σ′ for which the test fails before reaching
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Figure 6.7: The three phases of VoroCrust refinement demonstrated on the Fandisk

model: protection by corner balls (left) followed by edge balls (center), and finally

coverage by surface balls (right).

σ. By applying the relaxed test to every subface σ and each ball in a sufficiently

large neighborhood around σ, any remaining violations of C1 or C2 can be detected

before MPS terminates. To further validate this claim, we implemented the strict

test and verified that both C1 and C2 are always satisfied when MPS terminates.

6.2.5 Protection and Coverage

The refinement process is realized as a recursive MPS procedure (RMPS) that

goes through three phases, ordered by the dimension of the underlying stratum,

starting with the protection of sharp corners to the protection of creases and finally

the coverage of surface patches; see Figure 6.7. At each phase, if refinement shrinks

any of the balls belonging to a previous phase, the algorithm recurses by rerunning

RMPS on the affected lower-dimensional strata before proceeding. The process starts

by initializing the set of balls with one corner ball centered at each sharp corner. As

the base case of RMPS, the algorithm enforces C3 among corner balls, shrinking balls
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as needed. Then, each crease Σ is protected by a set of edge balls by running RMPS

on Σ. If any corner ball had to be shrunk, RMPS immediately recurses to adjust the

corner balls. Whenever RMPS terminates on all creases, the algorithm enforces C3

on all edge balls and reruns RMPS as needed to restore protection. After successfully

protecting all sharp corners and creases, the algorithm proceeds to cover each surface

patch Σ by a set of surface balls by running RMPS on Σ. Similarly, if any corner

or edge ball had to be shrunk, RMPS immediately recurses to the respective phase.

Finally, the algorithm enforces C3 on surface balls. Before rerunning RMPS as

needed to restore protection and coverage, the algorithm perturbs slivers, as we

describe in Section 6.2.7; this helps refinement converge in fewer iterations.

We now turn back to the restrictions on overlaps between balls of different

type. Whenever a subface encountered by RMPS is completely contained in a corner

ball, it is excluded from RMPS in higher phases on neighboring strata. Similarly,

whenever a subface is completely contained in an edge ball, it is excluded from

RMPS on neighboring surface patches. This is necessary to ensure the protection of

sharp features. As a consequence, the deep coverage condition C4 may be violated

in the vicinity of sharp features. This contributes to the deterioration of element

quality in these neighborhoods but otherwise does not threaten the termination of

the algorithm; see Section 6.2.7.
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6.2.6 Density Regulation

Extra care is needed to avoid the well-known clustering phenomenon resulting

from the greedy generation of samples. This can be mitigated by biasing the sampling

to avoid introducing new sample points near the boundaries of existing balls. In

particular, whenever the radius assigned to a new sample p results in the ball bp

violating C4 by containing an existing sample, p is rejected with a small constant

probability; we set this constant to 0.1 in our implementation. If p is not rejected,

bp is shrunk to ensure it satisfies C4. As demonstrated in Section 3, VoroCrust

successfully avoids unnecessarily dense clusters of samples.

6.2.7 Surface Meshing

VoroCrust populates the set of surface seeds Sl using triplets of overlapping

balls in B. The bounding spheres of each such triplet intersect in exactly two points

on either side of the boundary. The algorithm places one labeled Voronoi seed at

each such point as long as it does not lie in the interior of any fourth ball in B. Then,

the Voronoi facets common to two Voronoi seeds on different sides of the boundary

constitute the resulting VoroCrust surface mesh which coincides with the weighted

α-shape of the samples W inheriting the topology of U [131]. The deep coverage

condition C4 guarantees that all samples p appear as vertices in the Voronoi diagram

of Sl, with at least 4 seeds lying on ∂bp. We point out that VoroCrust effectively

remeshes the surface on-the-fly to reduce the complexity of the output within the

tolerance specified by the input parameters. The quality of surface elements follows
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from L-Lipschitzness [173], with the exception of elements formed by corner or edge

balls in the vicinity of sharp features.

Sliver Elimination. VoroCrust applies further refinement to the set of balls B to

eliminate undesirable artifacts in the output. When a triplet of overlapping balls

yield only one Voronoi seed, we have a half-covered seed pair. The four samples

yielding the problematic configuration of balls are typically the vertices of a nearly

flat tetrahedron appearing as a regular component in W [173]; we refer to such

regular components as slivers. These slivers result in extra Steiner vertices, besides

the samples, appearing in the Voronoi diagram of the seeds and consequently on

the output surface mesh. As these Steiner vertices may not lie on the input surface,

their incident Voronoi facets may not be aligned with the surface possibly yielding

large deviations in surface normals; see Figure 6.8. To eliminate such slivers, the

algorithm determines one ball to shrink for each half-covered seed.
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Figure 6.8: Sliver elimination: (left) A quartet of balls centered at four samples

(black) with four half-covered seeds (blue) yielding a Steiner vertex (pink) with four

incident facets. (right) Shrinking one ball resolves half-covered seeds eliminating

the Steiner vertex to yield only two facets; see the supplemental materials for the

numerical values.

For every ball bp ∈ B, the algorithm queries the ball k-d trees for neighboring

balls and collects those overlapping bp into the set Bp. The algorithm iterates over

Bp to form triplets of overlapping balls including bp. For each such triplet t, the

algorithm computes the pair of intersection points on their bounding spheres and

tests whether the pair is half-covered by any fourth ball in Bp; all candidate fourth

balls along with the triplet in t are collected into a secondary set Bt. Then, every

quartet of balls in
(Bt
4

)
defining a half-covered seed pair is considered in isolation. For

each such quartet, the algorithm determines the ball requiring the least shrinkage to

uncover all seeds. Over all quartets in
(Bt
4

)
, the ball requiring the least shrinkage

is assigned a smaller radius. For each ball b, the algorithm records the smallest

radius assigned to b over all quartets it is part of. Once all balls are processed, the
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algorithm shrinks every ball assigned a smaller radius. Recalling that L-Lipschitzness

is satisfied for B, |Bp| is kept small and the running time of this procedure is linear

in |B|. The procedure just described eliminates a subset of existing slivers but

potentially violates some ball conditions and creates new slivers. The algorithm

reruns RMPS to resolve such violations before repeating to eliminate any remaining

slivers.

Each execution of the above procedure, followed by rerunning RMPS, counts

as a single iteration of sliver elimination. The termination of the algorithm requires a

finite bound on the number of such iterations, which can be established by bounding

the shrinkage that may be applied to any ball through subsequent iterations. The

intuition behind this bound is the well-known relationship between increasing the

density of sampling and the increased local flatness of the surface approximation.

Specifically, shrinkage decreases as the density increases. As it turns out, violations

of the deep coverage condition C4 are the main cause for refinement after shrinking to

eliminate slivers. The termination of the algorithm can be guaranteed by accepting

a set of balls with no half-covered seeds as long as all boundary points are only

α′-deeply covered, for some α′ < α.

q

g
#

g
"

vσ;p

p

Figure 6.9: Bounding ∆.

Shrinkage Ratio. Fix a triplet t and let g↑ and g↓

denote the intersection points of its bounding spheres,

such that t has a half-covered seed due to a fourth ball

bq. Assume w.l.o.g. that g↓ ∈ bq while g↑ /∈ bq, i.e.,

‖q − g↓‖ < rq while ‖q − g↑‖ ≥ rq; see Figure 6.9. To
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resolve the half-covered seed, the algorithm shrinks bq

by setting its radius to ‖q − g↓‖. Hence, the shrinkage

is rq − ‖q − g↓‖ > 0. As violations of α-deep coverage after shrinking are the

main cause for further refinement, we consider shrinkage as a ratio of the original

radius which we denote by ∆. The above inequalities imply the following bound:

∆ = rq−‖q−g↓‖
rq

≤ ‖q−g↑‖−‖q−g↓‖
‖q−g↓‖ = ‖q−g↑‖

‖q−g↓‖ − 1. In particular, as ‖q−g
↑‖

‖q−g↓‖ approaches 1,

α-deep coverage is less likely to be violated after shrinking. Specifically, if ∆ ≤ α
α−2 ,

then α
2
-deep coverage holds. Assuming the input T is sufficiently smooth per θ[,

this observation guarantees the termination of the algorithm if α
2
-deep coverage is

accepted.

6.2.8 Termination without Slivers

In this section, we formalize our claim of the termination of the proposed

refinement process with additional iterations triggered by the shrinking performed in

the course of sliver elimination as described in Section 2.4 in the paper. In particular,

whenever a ball bq ∈ B of radius rq encroaches on a pair of seed locations {g↑, g↓}

such that it covers exactly one, w.l.o.g. g↓, the radius of this ball is reduced to

‖q − g↓‖; see Figure 6.9. The main result of this section establishes that as the

density of sampling increases, the maximum shrinkage ∆ = rq−‖p−g↓‖
rq

can be upper

bounded in terms of the deviation of surface normals at the centers of overlapping

balls in the current B. Theorem 8 guarantees the termination of the algorithm by

requiring that the dihedral angles of the input surface mesh T are at least π − θ[,
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except at sharp features.

Recall that the algorithm generates a set of balls B whose union covers the

input surface T . In particular, B is required to satisfy an α-deep coverage condition

such that every surface point x ∈ T is contained in a ball bp ∈ B of radius rp such

that ‖x− p‖ ≤ (1− α) · rp. The main result of this section is then the guaranteed

finite termination of one variant of the algorithm, where refinement stops if sliver

elimination leaves all surface points α
2
-deeply covered, rather than α-deeply covered.

In what follows, we recall a few definitions from Section 2.3 in the paper. The

parameter L bounds the variation in ball radii per the L-Lipschitzness condition

dictating that for any two balls bp, bq ∈ B with p, q lying on the same surface patch Σ,

we have that rp ≤ rq + L · ‖p− q‖, i.e., the radii of balls covering Σ are L-Lipschitz.

In addition, for any point p ∈ T and a facet σ, we denote by vσ,p a unit normal

vector to σ at p.

Theorem 8. Consider any ball bp ∈ B with p lying on a facet σ on the surface

patch Σ, and a pair of potential seed locations g↑ and g↓ on the boundary of bp. Let

bq ∈ B, with q ∈ Σ, be an encroaching ball containing exactly one of the seed locations.

Assume in addition that the segment g↑g↓ makes an angle at most θ with vσ,p, and the

segment pq makes an angle at least π
2
− θ with vσ,p. If θ ≤ θ[, with θ[ depending on

α and L, then the shrinkage ∆ applied to bq to resolve the encroachment maintains

a relaxed α
2

-deep coverage condition. In particular, ∆ can be bounded as

∆ = max
(‖q − g↑‖
‖q − g↓‖

,
‖q − g↓‖
‖q − g↑‖

)
− 1 <

α

2− α
.

For example, using the default values of α = 1 −
√
3
2

and L = 1
4
, the bound on the
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ratio ∆ holds as long as θ[ < 0.049◦. Fixing α = 1−
√
3
2

, a simplified bound can be

expressed as θ[ < tan−1
(

1
1000

(1− L)2
)
.

Before presenting the proof of Theorem 8, we start with a number of technical

results. Observe that if the algorithm terminates earlier, then there is nothing to

prove. Hence, we assume throughout that refinement eventually ensures all balls are

sufficiently small such that any two balls bp, bq in B may only overlap if ∠vσ,p, vτ,q ≤ θ[,

where σ, τ are the two faces containing p, q on some surface patch Σ.

The first proposition justifies the choice of the right hand side in Lemma 8. In

particular, if the radius of the ball bq is reduced from rq to (1−∆) · rq, then α
2
-deep

coverage holds.

Proposition 5. Consider any ball bq ∈ B and a point x ∈ T such that x is α-deeply

covered by bq. If bq is shrunk to be of radius r′q ≥
(
1− α

2−α) ·rq, then x is still α
2

-deeply

covered by bq.

Proof. By the definition of deep coverage, ‖x − q‖ ≤ (1 − α) · rq. Observing that

(1− α
2
)·(1− α

2−α) = 1−α, we can rewrite the bound as ‖x−q‖ ≤ (1− α
2
)·(1− α

2−α)·rq ≤

(1− α
2
) · r′q.

The next proposition shows that any seed is far from the surface, as coming

closer puts it inside some ball.

Proposition 6. Consider any ball bp ∈ B, and let g be a potential seed location on

the boundary of bp, and g⊥ its projection on the plane Tp supporting any facet σ 3 p.

Then, ∠gpg⊥ ≥ φ− θ[, where φ = sin−1
(
α · 1−(1−α)·L

1+(1−α)·L

)
.
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Figure 6.10: (left) Proposition 6: distance of a seed g to the tangent plane Tp. (right)

Corollary 5: the midpoint m.

Proof. Assume for contradiction that ∠gpg⊥ < φ− θ[. Letting x denote the closest

point to g on T , refinement ensures that ‖g − x‖ < rp · sin(φ). Since x ∈ T , deep

coverage implies the existence of a sample q with ‖x− q‖ ≤ (1− α) · rq such that

‖p− q‖ ≤ (1− α) · (rp + rq). In addition, by the L-Lipschitzness condition,

rp ≤ rq + L · ‖p− q‖ ≤ rq + L · (1− α) · (rp + rq) =⇒ rp ≤
1 + (1− α) · L
1− (1− α) · L

· rq.

Figure 6.10 (left) depicts this situation by two tangent balls. Then, by the triangle

inequality we get

‖q − g‖ ≤ ‖q − x‖+ ‖x− g‖ < (1− α) · rq + rp · sin(φ)

≤ (1− α) · rq +
1 + (1− α) · L
1− (1− α) · L

· rq · sin(φ) = rq,

which is a contradiction as g cannot be contained in bq, as shown in Figure 6.10

(left).

Henceforth, φ is as defined in Proposition 6. As a corollary, we obtain bounds

on the distance between any two seeds in a pair.
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Corollary 5. Let g↑ and g↓ be a pair of potential seed locations on a ball bp ∈ B, and

m be the midpoint of the segment g↑g↓. Then ‖m− g↑‖ = ‖m− g↓‖ ≥ rp · sin(φ− θ[)

and ‖p−m‖ ≤ rp · cos(φ− θ[).

Proof. The first statement follows directly from the definition of φ as a lower bound

on the angle ∠gpm. Observing that g↑g↓ is a chord of bp, it is perpendicular to pm;

see Figure 6.10 (right). By Proposition 6, we can write ‖p−m‖ = rp · cos(∠gpm) =

rp
√

1− sin2(∠gpm) ≤ rp
√

1− sin2(φ− θ[) = rp · cos(φ− θ[).

The point where g↑g↓ intersects the tangent plane Tp, denoted by x, is particu-

larly useful in our proof. The next proposition bounds the distance from that point

to the midpoint of the segment g↑g↓.

Proposition 7. Consider any ball bp ∈ B and a facet σ on a surface patch Σ such

that p ∈ σ. Let g↑ and g↓ be a pair of potential seed locations on the boundary of bp

and let m be the midpoint of the segment g↑g↓. We further assume that g↑g↓ makes

an angle at most θ[ with vσ,p; see Figure 6.11. Let Tp denote the plane supporting σ

and let x denote the point of intersection between Tp and the segment g↑g↓. Then,

‖m− x‖ ≤ rp · cos(φ− θ[) · tan(θ[).

Proof. Letting m⊥ denote the projection of m on the plane Tp, we have that ‖m−

m⊥‖ = ‖p−m‖ · sin(θ[). By Corollary 5, we can write ‖p−m‖ ≤ rp · cos(φ− θ[).

Observing that ‖m − m⊥‖ = ‖m − x‖ · sin(π
2
− θ[) = ‖m − x‖ · cos(θ[), we get

‖m− x‖ = ‖m−m⊥‖
cos(θ[)

≤ ‖p−m‖·sin(θ[)
cos(θ[)

≤ rp · cos(φ− θ[) · tan(θ[).

The main technical argument is encapsulated in the following lemma which
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bounds the shrinkage in terms of the angle θ[ defining the smoothness of the input

mesh T .

Lemma 36. Consider any ball bp ∈ B with p lying on a facet σ on the surface

patch Σ, and a pair of potential seed locations g↑ and g↓ on the boundary of bp.

Let bq ∈ B, with q ∈ Σ, be an encroaching ball containing exactly one of the seed

locations. Assume in addition that the segment g↑g↓ makes an angle at most θ[ with

vσ,p, and the segment pq makes an angle at least π
2
− θ[ with vσ,p. Then the shrinkage

∆ applied to bq to resolve the encroachment is bounded as

∆ = max
(‖q − g↑‖
‖q − g↓‖

,
‖q − g↓‖
‖q − g↑‖

)
− 1 < ζ · (1 +

2δ

λ− δ
)− 1, (6.1)

where ζ ≤

√
1 + sin(θ[)

1− sin(θ[)
, δ ≤ tan(θ[) ·

(
2

1−L + cos(φ− θ[)
)
, and λ ≥ sin(φ− θ[).

Proof. Since bp∩bq 6= ∅, it follows that ‖p−q‖ ≤ rp+rq. By the L-Lipschitzness

condition, we have that rp ≤ rq + L · ‖p− q‖. Substituting into the first inequality,

we get that

‖p− q‖ ≤ rp + (rp + L · ‖p− q‖) =⇒ ‖p− q‖ ≤ 2

1− L
· rp.

Let Tp denote the plane supporting σ and q⊥ the projection of q onto Tp. By the

assumption that pq makes an angle at least π
2
− θ[, we have

‖q − q⊥‖ ≤ ‖p− q‖ · sin(θ[) ≤ 2

1− L
· rp · sin(θ[).

Letting g ∈ {g↑, g↓} and g⊥ denote the projection of g onto Tp, observe that ‖g−g⊥‖ ≥

rp · sin(φ). Assuming θ[ is sufficiently small, we have that both the seed locations

are farther from Tp than q.
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Lemma 36.

Assume without loss of generality that ‖q − g↑‖ ≥

‖q−g↓‖, and letHq denote a plane parallel to Tp and passing

through q. To simplify the analysis, we work instead with

the point q′ where the segment g↑g↓ intersects Hq; see

Figure 6.11. Hence, we seek a bound on the ratio ‖q
′−g↑‖
‖q′−g↓‖ .

As we show later, we can use that to bound ‖q−g↑‖
‖q−g↓‖ as

desired, while suffering only a small multiplicative factor.

We point out that while the points in question are not

necessarily coplanar, it is easy to see that the worst-case

is achieved when both seeds lie in a common plane with p

and q.

Letting x denote the intersection of Tp and g↑g↓, we start by bounding the

distance between q′ and x. Observing that both q′ and x ∈ g↑g↓ while q′ ∈ Hq, we

get that ‖q − q⊥‖ = ‖q′ − x‖ · cos(θ[). It follows that

‖q′ − x‖ =
‖q − q⊥‖
cos(θ[)

≤ 2

1− L
· rp ·

sin(θ[)

cos(θ[)
≤ 2

1− L
· rp · tan(θ[).

By Proposition 7, we get that

‖q′ −m‖ = ‖q′ − x‖+ ‖x−m‖ ≤ rp · tan(θ[) ·
( 2

1− L
+ cos(φ− θ[)

)
. (6.2)

Letting λ = ‖m−g↑‖
rp

, and δ = ‖q′−m‖
rp

, we can bound the ratio as ‖q
′−g↑‖
‖q′−g↓‖ = λ+δ

λ−δ =

1 + 2δ
λ−δ .
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We need to account for using the proxy q′ instead of the

point realizing the actual worst-case; see the inset. Observe

that the angle ∠g↑q′q∗ = π
2

+ θ[ while ∠g↓q′q∗ = π
2
− θ[. Using

the simplified notation in the figure, we apply the cosine rule

to express the ratio realized by an arbitrary point q∗ on Hq

and at distance ` from q′ as:

A2
∗

B2
∗

=
A2 + `2 + 2 · A · ` · cos(π

2
+ θ[)

B2 + `2 − 2 ·B · ` · cos(π
2
− θ[)

=
A2 + `2 + 2 · A · ` · sin(θ[)

B2 + `2 − 2 ·B · ` · sin(θ[)
.

For a fixed θ[, this ratio is maximized when A = B = `.

Namely,

A2
∗

B2
∗
≤ A2 + A2 + 2 · A · A · sin(θ[)

A2 + A2 − 2 · A · A · sin(θ[)
=

1 + sin(θ[)

1− sin(θ[)
· A

2

B2
.

Hence, we apply the following correction, denoted ζ, when deriving the bound on θ[,

using the ratio A
B

.

‖q∗ − g↑‖
‖q∗ − g↓‖

≤

√
1 + sin(θ[)

1− sin(θ[)
· ‖q

′ − g↑‖
‖q′ − g↓‖

= ζ ·
(
1 +

2δ

λ− δ
)
.

This completes the proof.

Lemma 36 confirms the intuition that the shrinkage ratio ∆ decreases as the

density of sampling increases, which in turn decreases the deviation of surface normals

θ[. Figure 6.12 shows the bounds on shrinkage suggested by the lemma for the default

value of α = 1−
√
3
2

and a range of values for L around the default value of 1
4
.
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Figure 6.12: The shrinkage ratio ∆ decreases as the angle θ[ decreases.

We are now ready to prove Theorem 8 by directly invoking Lemma 36. In

particular, the theorem guarantees termination for a variant of the algorithm that

leave the surface α
2
-deeply covered rather than α-deeply covered. Referring to

Figure 6.12, we seek a specific bound to ensure that shrinking is sufficiently small to

satisfy the relaxed deep coverage condition for termination.

Proof. The angle θ[ is chosen to ensure that ‖q
∗−g↑‖
‖q∗−g↓‖ is sufficiently small, i.e., less

than 1 + α
2−α . The range of validity for θ[ is established by invoking the bound from

Lemma 36 per Equation 36. Enforcing the desired bound, we get

∆ < 1 +
α

2− α
=⇒ ζ ·

(
1 +

2δ

λ− δ
)
< 1 +

α

2− α
=⇒ 2δ

λ− δ
<

1

ζ

(
1 +

α

2− α
)− 1

=⇒
(
3− 1

ζ

(
1 +

α

2− α
)
)
· δ +

(
1− 1

ζ

(
1 +

α

2− α
)
)
· λ < 0.

As define in Lemma 36, we make the substitutions ζ ≤
√

1+sin(θ[)

1−sin(θ[) , δ ≤ rp ·

tan(θ[)·
(

2
1−L+cos(φ−θ[)

)
from Equation 6.2, and λ ≥ rp ·sin(φ−θ[) from Corollary 5.
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Simplifying, we obtain the following characterization of θ[ in terms of α and L, where

φ = sin−1
(
α · 1−(1−α)·L

1+(1−α)·L

)
.

(
3−

√
1− sin(θ[)

1 + sin(θ[)
·
(
1 +

α

2− α
)
)
· tan(θ[) ·

( 2

1− L
+ cos(φ− θ[)

)
+
(
1−

√
1− sin(θ[)

1 + sin(θ[)
·
(
1 +

α

2− α
)
)
· sin(φ− θ[) < 0. (6.3)

Setting θ[ = 0 trivially satisfies the inequality, as the first term vanishes while

the second term is negative. Hence, an upper bound may be determined by a simple

bisection search over the interval [0, π
2
].

Using the default parameters α = 1−
√
3
2

and L = 1
4

yields the upper bound

θ[ < 0.049◦ per the following:

(
3− 4 · (2−

√
3) ·

√
1− sin(θ[)

1 + sin(θ[)

)
· tan(θ[) ·

(8

3
+ cos(4.95◦ − θ[)

)
+
(
1− 4 · (2−

√
3) ·

√
1− sin(θ[)

1 + sin(θ[)

)
· sin(4.95◦ − θ[) < 0, (6.4)

To gain more intuition about the general formula in Equation 6.3, we derive

a simpler one with a strictly smaller upper bound on θ[ in terms of L, where α is

fixed at 1 −
√
3
2

and θ[ assumed to be sufficiently small. This can be achieved by

making the tan(θ[) term larger and the sin(φ− θ[) term, which is in fact negative,

smaller in magnitude. First, the 1
ζ

factor is very close to 1 for small values of θ[ and

can be replaced by 1
2

for the tan(θ[) term and a constant value very close to one

for the sin(φ− θ[) term. Similarly, we replace cos(φ− θ[) by 1. Finally, we replace

sin(φ− θ[) with 1−L
20

. By relaxing the coefficients, we obtain the simplified formula:

tan(θ[) <
1

1000
(1− L)2, (6.5)
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which for L = 1
4

implies θ[ < 0.032◦. Figure 6.13 shows the degradation incurred by

the simplification.

Figure 6.13: Equation 6.5 simplifies the general bound in Equation 6.3 for the default

value of α = 1−
√
3
2

.

In Figure 6.14, we provide additional values to justify fixing the value of α

as a design parameter, and to further validate the utility of the formula derived in

the proof of Lemma 36. The upper-bounds corresponding to the relevant range of

parameter settings are summarized in the figure below with L ∈ [0.05, 0.95].

Figure 6.14: Upper-bounds on θ[ for different values of α and L per Equation 6.3.
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In conclusion, ensuring the input surface mesh T is sufficiently smooth, with

respect to the chosen parameters α and L, implies a suitable bound on the shrinkage

ratio ∆ to guarantee the termination of the algorithm. The smoothness of the input

mesh is defined in terms of the dihedral angles subtended by adjacent facets away

from the sharp features per the parameter θ[. As the derived formula exhibits no

singularities for L < 1, the bound degrades smoothly as shown in Figure 6.14.

To further validate our claim, within machine precision, we use α = 0.05 to

obtain a strictly positive lower envelop for all settings of the input parameter L

defining the L-Lipschitzness condition, as well as all relevant settings of the design

parameter α for deep coverage; see Figure 6.15 where we used log10 scale to better

distinguish small positive values. This guarantees the termination the algorithm

regardless of the parameters used, assuming the surface is sufficiently smooth.

Figure 6.15: Setting α = 0.05 still yields a strictly positive upper-bound on θ[

satisfying Equation 6.3.

Finally, we point out that to enable the derivations above, various inequalities

had to be relaxed such that they no longer correspond to any situation that may
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be encountered by the algorithm. Hence, the derived bounds on θ[ are rather

conservative and only serve to establish the existence of strictly positive upper

bounds.

6.2.9 Practical Sliver Elimination

Our implementation always reruns RMPS to recover α-deep coverage. We

argue that this variant terminates with high probability by combining the bounds on

shrinkage with the stability of deep coverage as a distribution. In our experiments,

VoroCrust always terminates with all slivers eliminated successfully while avoiding

excessive refinement; see Section 3. In the unlikely event that sliver elimination fails

to terminate in a constant number of iterations, set to 100, we restart in a safe mode

accepting α
2
-deep coverage to guarantee termination; we never encountered such cases.

Decaying Shrinkage and Violations. Subsequent invocations of RMPS in the

course of sliver elimination increase the density of sampling. A consequence of the

ball conditions maintained by RMPS is that the radii of overlapping balls get smaller.

In particular, the deviation in normals at the centers of overlapping balls gets smaller,

which is equivalent to enforcing the smooth overlap condition C2 with a smaller

angle threshold. Intuitively, the neighborhood of each sample becomes nearly flat.

This flatness increases the ratio ‖q−g
↑‖

‖q−g↓‖ for all nearby samples q, which reduces the

shrinkage ratio ∆ and restricts the potential locations of new samples that create

new slivers. It follows that the percentage of triplets with half-covered seed pairs
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|B|/100

Figure 6.16: Empirical analysis of sliver elimination using the Bimba model: (left)

evolution of the deep-coverage distribution through the first invocation of RMPS as

B grows in increments of 100 balls, (middle) sliver elimination executes 15 iterations

where shrinking eventually ceases to violate α-deep coverage, (right) the refinement

incurred by sliver elimination decreases the maximum shrinkage ratio applied in

subsequent iterations. As a result, the number of newly created slivers, measured by

the percentage of triplets with half-covered seed pairs, decays rapidly.

decays rapidly; see Figure 6.16(right).

Deep-coverage Distribution. Let fi be a function that maps each x ∈ T to

max{1− ‖x−p‖
rp
| bp ∈ Bi,x} where Bi,x is the subset of balls containing x at iteration

i. We use the family of functions {fi} to define the deep-coverage distribution as

Fi(α) = Pr[fi(x) ≤ α | x ∈ T ] with α ∈ [0, 1]. We estimate Fi by the empirical

distribution function over 100 bins using independent random samples of 106 points.

Figure 6.16(left) shows the evolution of the deep-coverage distribution through the

first invocation of RMPS until convergence. Every subsequent invocation of RMPS,

following shrinking for sliver elimination, converges to a nearly identical distribution.

Related aspects of the distributions of MPS samplings were analyzed [177], which are
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consistent with our experiments1. As seen in Figure 6.16(middle), shrinking for sliver

elimination initially violates α-deep coverage, per C4 requiring a fixed α ≈ 0.13, but

causes no such violations over the last few iterations. The combination of decaying

shrinkage and the stability of deep coverage as a distribution bounds the probability

of such violations. It follows that subsequent invocations of RMPS are less likely to

introduce new balls to recover α-deep coverage. As a result, the number of newly

created slivers per iteration decays rapidly; see Figure 6.16(right). Hence, the total

number of slivers encountered by the algorithm is bounded in expectation, which

implies termination in a finite number of steps with high probability.

6.2.10 Volume Meshing

Once the refinement process terminates, the set of balls B is fixed and a

conforming surface mesh can be generated. To further decompose the interior into a

set of graded Voronoi cells, additional weighted samples S↓↓ are generated in the

interior of the domain. Similar to B, the balls corresponding to interior samples are

required to satisfy the L-Lipschitzness condition. Standard MPS may be used for

sampling the interior. However, to reduce the memory footprint of this step, the

spoke-darts algorithm [179] is used instead following a lightweight initialization phase

using standard dart-throwing; see the appendix for more details. Alternatively, the

interior samples may be chosen as the vertices of a structured lattice. This can be

used to output a hex-dominant mesh conforming to the surface; see Figure 6.5(f). The

1The total variation distance [178] between the empirical distributions obtained through all

subsequent iterations is at most 0.02.
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quality of the volume mesh can be further improved by applying CVT optimization

to the set of interior seeds; see Figure 6.5(d).

6.2.11 Meshing 2D Domains

The proposed VoroCrust algorithm can readily be applied to the decomposition

of 2D domains into conforming Voronoi meshes. As illustrated in Figure 6.4, the

seed placement strategy can be applied in 2D given a suitable union of balls. The

refinement strategy described in this section can easily be applied to generate such

a union of balls by regarding the 2D boundary as a set of creases embedded in 3D.

In particular, assuming the 2D boundary is available as a set of line segments or a

planar straight-line graph (PSLG) as common in 2D meshing, the input segments

can be mapped to 3D by adding a third coordinate, e.g., z = 0, to all end points.

The ball conditions and refinement process for the protection of sharp features, as

defined in Section 6.2.3, guarantee a union of balls that approximates the embedded

2D boundary.

Figure 6.17: The VoroCrust algorithm readily handles 2D domains.

Such a union of balls can be used to place Voronoi seeds in 2D as follows. First,
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all balls are projected onto the 2D plane as circles centered along the boundary. Then,

the pairs of intersection points between consecutive circles are computed. Recalling

that the edge balls protecting any given crease may only overlap consecutive balls

along the same crease, these pairs of intersection points are well-defined. Once

the intersection pairs are obtained, the algorithm places Voronoi seeds across the

2D boundary and proceeds to sample additional seeds to mesh the 2D interior.

Figure 6.17 shows a number of conforming 2D Voronoi meshes, with uniform sizing

in the interior, obtained by a 2D implementation of VoroCrust.

6.3 Implementation Details

This section provides additional details to better explain some of the subroutines

we use in our prototype implementation of the VoroCrust algorithm. We start by

describing the speed-ups for proximity queries against the input PLC T and the set of

balls B. Then, we describe the generation of interior samples. Finally, we instrument

the code to detect performance bottlenecks and help improve the algorithm in future

iterations.

6.3.1 Supersampling the Boundary

The algorithm constructs one k-d tree for each type of strata to speed up

proximity queries against T . The k-d tree indexing the sharp corners is simply

populated using the set of sharp corners. In order to populate the k-d tree indexing

the creases, the algorithm generates a set of 105 points sampled uniformly at random
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from all sharp edges. Similarly, the k-d tree indexing the surface patches is populated

using a set of 106 points sampled uniformly from all facets. Each generated sample q

stores a vector vσ,q for each edge or facet σ 3 q.

6.3.2 Querying the Boundary k-d trees

Given a point p on a face σ, the algorithm estimates the distance to the nearest

non-co-smooth point on the input mesh T by querying the three boundary k-d trees

indexing the sharp corners, creases and surface patches. Let K denote any of the

boundary k-d trees. As the query aims to determine the nearest non-co-smooth

point, the co-smoothness test described in Section 2.3 can be used to filter the set

of points indexed by K. We implemented a custom k-d tree that performs this

filtration on-the-fly. As in the standard k-d tree, the query maintains an estimate of

the distance to the nearest point which can be initialized to any sufficiently large

value, e.g., the diameter of T or ∞. By comparing the current estimate against the

distance from p to the splitting plane associated with the current node, the query

discards an entire subtree if it cannot improve the estimate. The only difference is

that due to the filtration defined by the co-smoothness test, a node associated with a

point which is co-smooth with p does not provide a distance to update the estimate.

6.3.3 Ball Neighborhood

To find the set of balls overlapping a given ball bp, a naive search would be

costly. Instead, we find an upper bound on the distance between p and any sample q
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such that bq may overlap bp. Then, we use this bound to query the k-d trees.

Consider two overlapping balls bp and bq generated by the MPS procedure,

with radii rp and rq. W.l.o.g., assume rq ≥ rp > 0. The L-Lipschitzness condition

implies that rq ≤ rp + L · ‖p − q‖. Since the two ball overlap: ‖p − q‖ < rp + rq.

Combining the two inequalities, it follows that: ‖p− q‖ < rp + rq + L · ‖p− q‖. We

conclude that ‖p− q‖ ≤ 2
1−L · rp. Hence, we query the k-d trees for all balls whose

centers are within that distance from p and check if they overlap bp.

6.3.4 Point Neighborhood

The deep coverage condition is checked for each new sample p. To speed up

this check, we derive an upper bound on the distance between p and the center of

any ball that may cover it, and use this to query the k-d trees.

Let q denote the center of the closest ball to p, which we find by a standard

nearest-neighbor query to the k-d tree in question. The radius of a ball placed at p

respecting L-Lipschitzness can be estimated as rp ≤ rq + L · ‖p− q‖.

Consider a ball bs that barely covers p. It follows that rs ≤ rp+L·‖p−s‖, where

‖p−s‖ ≤ rs. Combining the two inequalities, it follows that rs ≤ rq+L·‖p−q‖+L·rs,

implying rs ≤ rq+L·‖p−q‖
1−L . Hence, we query the k-d tree for all balls whose centers

are within that distance from p and check if they contain p.
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6.3.5 Sampling the interior

The algorithm starts by computing a bounding box bb enclosing the input

mesh T ; we expand bb to the box 3× larger with the same center. This box is

used to initialize the set of interior seeds S↓↓ using a lightweight dart-throwing

phase. Additional samples are added as needed using the more efficient spoke-darts

algorithm [179]. To guide interior sampling, and ensure a sufficient distance between

interior seeds and surface seeds, each surface seed s ∈ Sl is assigned a radius rs by

averaging the radii of the three balls in B defining it. As was done for the set of

surface balls B, we maintain two k-d trees Kl and K↓↓ for all balls centered at seeds

in Sl or S↓↓, respectively.

To initialize S↓↓, a new sample z is generated uniformly at random from

bb. Then, the closest seed s ∈ Sl to z is found by a nearest-neighbor query to

Kl. If ‖z − s‖ < rs, z is rejected. Otherwise, z gets the label of s and a radius

rz = rs + L · ‖z − s‖, which extends the estimated sizing function to the interior

of the domain [149]. Similarly, the closest interior seed z∗ ∈ S↓↓ to z is found by

querying K↓↓ and z is rejected if ‖z− z∗‖ < rz∗ . Whenever a new sample is rejected,

we increment a miss counter and otherwise reset it back to 0 if the sample was

successfully added into S↓↓. Initialization terminates when the miss counter reaches

100.

Then, we continue to add seeds into S↓↓ using the spoke-darts algorithm [179]

as follows. We populate a queue Q with all seeds generated by dart-throwing. While

the queue is not empty, we pop the next sample z and do the following. Letting bz
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be the ball centered at z with radius rz, we choose a random direction δ and shoot

a spoke (ray) starting at z in that direction to obtain a new point zδ at distance

2 · rz from z. Then, we query the k-d trees to find all balls potentially containing

zδ. For each such ball, we trim the line segment `δ between z and zδ by pushing

zδ to lie on the boundary of that ball. Once we are done, if zδ was pushed all the

way into the ball bz, we increment the miss counter. Otherwise, we sample a point

z+ uniformly at random on `δ, add it as a seed, and reset the miss counter to 0.

As before, z+ is assigned a label and a radius before pushing it into Q. When the

miss counter reaches 100, we discard the current point and pop a new point from Q.

This process terminates when Q is empty. Finally, we enforce L-Lipschitzness on all

interior samples, shrinking balls as necessary, before repopulating Q with all seeds

and repeating until no ball gets shrunk.

6.3.6 Code Profiling and Bottlenecks

We instrument our code to collect more detailed timing statistics for the main

procedures of the algorithm; see Section 6.2. As would be expected, the most

time consuming component of the algorithm is surface coverage, with related MPS

iterations as described under “Protection and Coverage,” and to a lesser extent

volume sampling per Section 6.3.5; other procedures including preprocessing, sharp

feature protection, and sliver elimination are not as demanding. In particular, each

surface sample requires a sizing estimate by querying the boundary k-d trees which

store a dense sampling of surface elements; see Section 6.3.1. In addition, whenever
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we shrink a surface ball, checking for uncovered surface patches requires restarting

the surface MPS procedure. For example, Table 6.1 summarizes the running time on

two sample models.

Procedure Smooth Sharp Features

Corner protection 0 0.213

Edge protection 0 4.157

Surface coverage 671.165 180.986

Fixing C3 violations 17.255 2.962

Sliver elimination 14.127 3.216

Interior sampling 13.981 36.395

Table 6.1: Timing breakdown for the smooth model shown in Figure 6.1 and the

model with sharp features shown in Figure 6.2.

Per the table above, C3 violations and sliver elimination incur higher overhead

for the smooth model with higher surface curvature compared to the model with

sharp features and otherwise flat regions.

6.4 Evaluation

We demonstrate the capabilities of the VoroCrust algorithm and study the

impact of input parameters. Then, we compare against the work of Yan et al. [66]

as a representative of state-of-the-art clipping-based methods. All experiments were
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conducted on a Mac Pro machine with a 3.5 GHz 6-Core Intel Xeon E5 processor

and 32 GB of RAM.

6.4.1 Sample Results

We test VoroCrust on a variety of models exhibiting different challenges ranging

from smooth models with detailed features and narrow regions as in Figure 6.18, to

sharp features with curvature and holes as in Figure 6.19, and even non-manifold

boundaries as in Figure 6.20. The quality of the surface mesh is measured by the

percentage of triangles with angles less than 30◦ or greater than 90◦, as well as the

minimum triangle quality2 Qmin. The quality of the volume mesh is measured by

the maximum aspect ratio3 ρmax, which is often realized by cells incident to the

surface. We also report the approximation error in terms of the Hausdorff error

dH (normalized by the diameter of the bounding box). The number of seeds in

Sl and S↓↓ are reported along with the time in seconds taken to generate each,

denoted T l and T ↓↓, respectively. Meshes were generated from VoroCrust seeds

using Voro++ [180].

Non-manifold models are particularly important in physical simulations with

multiple materials of different properties. VoroCrust detects non-manifold features

in the input mesh, as described in Section 6.2.2, and the ball conditions described in

2Triangle quality is defined as 6S√
3hP

, where S is the area, h is the longest edge length, and P is

half the perimeter.
3Aspect ratio is defined as the ratio between the radius of the smallest circumscribing sphere to

the radius of the largest inscribed sphere.
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θ<30% θ>90% Qmin ρmax dH(×10−2) Sl S↓↓ T l T ↓↓

2 16 0.373 5.345 0.614 68472 17035 935 587

θ<30% θ>90% Qmin ρmax dH(×10−2) Sl S↓↓ T l T ↓↓

2 16 0.383 5.407 0.171 114472 6726 1581 1363

θ<30% θ>90% Qmin ρmax dH(×10−2) Sl S↓↓ T l T ↓↓

0.07 15 0.4 4.863 0.851 497536 113837 4582 7007

Figure 6.18: Sample results on smooth models.
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θ<30% θ>90% Qmin ρmax dH(×10−2) Sl S↓↓ T l T ↓↓

19 23 0.149 12.495 0.569 11480 868 32 34

θ<30% θ>90% Qmin ρmax dH(×10−2) Sl S↓↓ T l T ↓↓

11 19 0.273 377.029 0.087 258010 0 1464 3432

θ<30% θ>90% Qmin ρmax dH(×10−2) Sl S↓↓ T l T ↓↓

21 25 0.086 63 0.058 85380 57474 2146 9497

Figure 6.19: Sample results on models with sharp features.
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Section 6.2.3 guide the refinement to protect those features, ensuring their correct

recovery in the output mesh. Figure 6.20 shows VoroCrust output for a collection

of non-manifold models. In addition, Figure 6.21 shows VoroCrust output for a

complex mechanical model.

We encountered no issues with any of the models, which demonstrates the

robustness of the algorithm and its implementation. We set θ] to 60◦ for smooth

models, and choose an appropriate value of θ] for models with sharp features. The

value of L was fixed at 0.25 for all inputs. We note that the output surface meshes are

of high quality per the minimum triangle quality and angle bounds, while achieving

small approximation errors. The demonstrated quality of VoroCrust output, with

no skinny elements, is in agreement with the theoretical guarantees established in

Chapter 5.

6.4.2 Parameter Tuning

We start by studying the impact of L on the complexity of the output surface

mesh and the running time of the algorithm. Figure 6.22 demonstrates this impact

on the Joint model. The results of this experiment demonstrate the impact of L on

the level of refinement per the number of balls in B generated by the algorithm. In

particular, smaller values of L lead to higher refinement. On the other hand, larger

values of L slow down the algorithm due to the increased size of ball neighborhoods

resulting in processing a larger number of balls for various tasks; see Section 6.3.3.

This behavior of the algorithm in terms of L is consistent for different values of θ] as
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Figure 6.20: Sample outputs for non-manifold domains consisting of multiple materi-

als depicted in different colors. VoroCrust automatically detects the non-manifold

interfaces between the materials (top left) and decomposes each subdomain into

Voronoi cells that conform to those interfaces while preserving all sharp features

(top right). More challenging cases involve contact at sharp features (top center), or

multiple layers tapering into narrow regions towards contact (bottom).
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can be seen in Figure 6.22.

Next, we study the impact of varying both L and θ]. We chose a relatively

simple smooth model to better assess the degradation in surface approximation.

Figure 6.24 illustrates VoroCrust output on the Goat model for 5× 5 combinations

of parameter settings. As shown earlier, smaller values of L result in more regular

meshes with superior element quality per the minimum triangle angle. On the other

hand, the parameter θ] controls the surface approximation. Namely, higher values of

θ] result in higher Hausdorff errors.

Finally, we study the impact of the input sizing field sz on the multi-layered

nested spheres models. Figure 6.23 shows how sz can be used to directly control

ball radii to enforce further refinement. The default setting of sz = ∞ incurs the

minimum level of refinement required by the geometry of the domain according to

the quality requirements indicated by the parameters L and θ]. We note that sz can

be specified as a spatially varying sizing field.

In summary, this study demonstrates the flexibility of the VoroCrust algorithm

to accommodate a wide range of parameter settings that cater to the requirements of

different applications. In particular, the set of parameters provided allows the user

to trade-off the quality of the surface mesh, approximation error, output complexity,

and running time.
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6.4.3 Comparison

We compare against the restricted Voronoi diagram (RVD) [66] as a represen-

tative of state-of-the-art polyhedral meshing algorithms based on clipped Voronoi

cells. While RVD is typically used within CVT-based algorithms to speed up energy

calculations, we are only interested in its robust clipping capabilities which provide a

suitable baseline for comparison. For all models, we use the interior VoroCrust seeds

S↓↓ as input to RVD clipping. As shown in Figure 6.1, VoroCrust achieves superior

quality in terms of the surface mesh, where RVD clipping produces an imprint of

the input mesh with many small facets. In particular, by examining the ratio of

the shortest to longest edge length per surface facet, it is clear that RVD clipping

results in many skinny facets which can be problematic for many applications. More-

over, RVD clipping possibly results in non-convex cells for non-convex models, e.g.,

Figure 6.2. In our experiments, the ratio of non-convex cells in RVD output varies

between 3% and 96%, depending on the curvature of the input surface and the chosen

set of Voronoi seeds. In contrast, VoroCrust output conforms to the boundary with

true Voronoi cells, which are guaranteed to be convex, while achieving much better

quality of surface elements. We note that clipping the Voronoi cells of a given set of

seeds can be performed much faster, as in the parallel RVD implementation of [66],

compared to the multiple iterations and non-trivial steps of VoroCrust refinement;

see Section 6.2.
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Figure 6.21: VoroCrust output for complex mechanical parts sharing non-manifold

contact interfaces with detailed sharp features.
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Figure 6.22: Impact of the parameter L on the Joint model for varying values of θ].

While the level of refinement is inversely proportional to L, increasing L slows down

the algorithm due to larger ball neighborhoods.

Figure 6.23: Impact of the sizing field parameter sz on the nested spheres model.

From left to right: sz =∞ (default), sz = 1, and sz = 0.5.
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Figure 6.24: Impact of input parameters on surface quality and approximation error.
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Chapter 7: Conclusions and Future Directions

In this dissertation, we applied a sampling methodology to a number of fun-

damental problems in computational geometry. Our work emphasizes the potential

benefits of a sampling approach that adapts to both the shape or distribution of the

data, as in Chapter 3, as well as the functions defined on this data, as in Chapter 4,

for the design of approximation algorithms and data structures. While this sampling

approach is heavily inspired by related sampling techniques in geometry processing,

we also demonstrate the benefits of applying advanced techniques from algorithm

theory to the design and analysis of new algorithms in geometry processing, as in

Chapter 6.

The work presented here opens many potential directions for future research

to further develop the different aspects of our algorithmic sampling methodology. In

the sections below, we outline ongoing work and a number of follow-up questions to

the work we did on each problem.

7.1 Polytope Approximation

In Chapter 3, we demonstrated a simplified application of Macbeath regions for

convex approximations by appealing to the intrinsic Hilbert metric. One important
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consideration that we did not satisfactorily address is the efficient construction of the

proposed data structure, or the practical implementation of the such constructions.

While the boostrapping algorithm presented in [50] makes some progress in this

direction, it is not particularly well-suited for implementation.

The Delone set formulation encourages the investigation of practical con-

struction algorithms based on sampling techniques similar to those from geometry

processing, e.g., Poisson-disk sampling [174–176]. This may be combined with re-

cent developments in convex optimization to implement the lower-level steps. In

particular, the explicit computation of Macbeath regions can be avoided by directly

computing their John ellipsoids using the algorithm in [181]. Then, the generation of

random samples may benefit from efficient random walks from sampling in polytopes

as in [182].

7.2 Nearest-Neighbor Searching

In Chapter 4, we developed generalized data structures for nearest-neighbor

searching under non-Euclidean distances. An essential ingredient to the efficiency of

the proposed data structures is to retain the reduction to approximate ray-shooting

queries against a convex envelope of distance minimizers. As this reduction previously

relied on the lifting transform, its application was limited to the Euclidean distance.

By applying convexification, we circumvent reliance on the lifting transform.

As we have seen in Chapter 4, the efficient implementation of approximate

ray-shooting relies on the approximation of derived polytope that arise from the
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envelopes of distance functions at local neighborhoods. Those polytopes in turn are

approximated using Macbeath regions, similar to the work presented in Chapter 3.

In ongoing work, we avoid the reduction to ray-shooting queries by defining the

Macbeath regions directly in the original space without any lifting. We achieve that

by extending the Delone set criteria to derive a succinct approximation of the Voronoi

diagram using a hierarchy of ellipsoids. The proposed approach works for Bregman

divergences with well-behaved generators, and allows space-time trade-offs similar to

what the AVD data structure offers Euclidean nearest-neighbor search [34, 50], as

stated in Theorem 2.

7.3 Distance Approximation

By further elaborating on the proposed ellipsoidal covers for nearest-neighbor

searching, we consider the approximation of the distance function itself rather than

searching for an approximate nearest-neighbor.

Observe that the ellipsoids approximating the Voronoi diagram cover the entire

space using primitive elements which are sensitive to the distance functions. The

resulting cover bears similarity to the anisotropic meshes studied in approximation

theory. In ongoing work, we use the ellipsoidal cover to propose the first continuous

approximation of the distance function to the set of points. The approximation

can be evaluated in the same asymptotic time of standard nearest-neighbor search

queries, and exhibits bounded gradients whose magnitudes are proportional to the

reciprocal of the approximation parameter ε.
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Another application of the distance-sensitive ellipsoidal cover is to approximate

the level sets of the distance functions to a set of n points, as used in topological

data analysis. In particular, the recent work of Choudhary et al. [183] uses adaptive

grids, or pixels, to approximate the level sets to derive a sparse filtration of size

O(n/εd). It is plausible to expect the distance-sensitive ellipsoidal cover to enable a

a filtration of size only O(n/εd/2), similar to the recent improvements in the storage

requirements of nearest-neighbor search data structures.

7.4 Voronoi Meshing

The VoroCrust algorithm described in Chapter 6 has been successfully imple-

mented and verified over numerous challenging inputs. However, there are a number

of drawbacks and feature requests that require further research.

The main limitation of the presented algorithm is the possible presence of short

Voronoi edges in the interior of the output mesh, which can lead to small time steps

in numerical simulations significantly increasing their cost. To eliminate such short

edges, mesh improvement techniques may be applied as postprocessing [184,185].

Another limitation is the requirement that the input triangulation is a faith-

ful approximation of the domain. This inhibits the application of this approach

to implicit forms [186], noisy inputs [187], or unclean geometries [188]. In par-

ticular, the algorithm does not fill holes or undesirable cracks in non-watertight

inputs [189]. Nonetheless, VoroCrust readily handles surfaces with boundary as

shown in Figure 7.1.
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Figure 7.1: VoroCrust can handle surfaces with boundary. Volume samples within a

suitable bounding box can be filtered, e.g., manually, as shown.

Finally, the isotropic nature of the proposed sampling process may result in an

unnecessarily large number of cells in narrow regions. For such geometries, boundary

layers of elongated cells enable higher fidelity near the boundary [190,191]. In cases

of strong anisotropy, aligning the cells, e.g., to the eigenvectors of a Hessian [68,192],

better captures the variation of physical quantities.
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