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Department of Computer Science

Non-determinism occurs naturally in many search-based machine learning and

natural language processing (NLP) problems. For example, in parsing, the goal is to

automatically construct the syntactic tree structure of a sentence given a grammar.

Computationally, agenda-based parsing is a dynamic programming approach to find

the most likely syntactic tree of a sentence according to a probabilistic grammar. A

chart is used to maintain all the possible subtrees for different spans in the sentence

and a queue (agenda) is used to rank all the candidates. The parser chooses only one

candidate (called a partial tree or constituent) to build from the agenda per step and

the rest of the candidates on the agenda will remain unchanged until/unless they are

selected in later steps. Non-determinism occurs naturally in agenda-based parsing

since it is very likely that the new constituent may not depend on the previous two

consecutively built constituents. It can be built by combining items from a few steps

earlier.

Unfortunately, like most other problems in NLP, the size of the search space



in general is huge and exhaustive search is impossible. However, users expect a fast

and accurate system. Two major strategies to speed up a system are prioritization

and pruning. In this dissertation, I focus on the question of “Why, when, and how

shall we take advantage of non-determinism?” and show the efficacy and applica-

tion of a non-determinism agent (parser) to improve the parsing system in terms of

speed and/or accuracy. Many approaches have been applied to make prioritization

and pruning more efficient, such as search-based structured prediction methods, im-

itation learning methods as well as reinforcement learning methods. These all have

different limitations when it comes to a large NLP system. The solution proposed

in this dissertation is that “We should train the system non-deterministically and

apply (test) it deterministically if possible.” and I also show that “it is better to

learn with oracles than simple heuristics if possible”.

To support these major points, we start by solving a generic Markov Deci-

sion Process (MDP) with a novel non-deterministic agent. We show theoretical

convergence guarantees with non-deterministic learning and verify the efficiency

of different non-deterministic algorithms on maze solving problems. Then we fo-

cus on the application of agenda-based parsing. To show how to re-prioritize the

parser, we model a decoding problem as a Markov Decision Process with a large

state and action space. We discuss the advantages/disadvantages of existing tech-

niques: (1) The algorithms have to be well initialized, otherwise the agent could

wander in the wrong area of the search space. (2) The parsing trajectories are very

long and only a few visited states contribute to the final parse tree. We propose

a hybrid reinforcement/apprenticeship learning algorithm to tackle the problem of



initially bad policies and imbalanced examples in trading off speed and accuracy.

As re-prioritization involves hard decisions to choose one out of all the items on the

agenda, we consider a pruning strategy that restricts the action space to be only

pruning and keeping. To show how to prune the parser and make it faster without

losing too much on accuracy, we propose to use a dynamic pruner with features

that depend on the run-time status of the chart and agenda (dynamic features) and

analyze the importance of those features in the pruning classification. Our models

show comparable results with respect to state-of-the-art strategies.
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Chapter 1: Introduction

In this dissertation, I tackle the question of when and how to utilize non-

determinism in structured prediction problems to improve speed and/or accuracy.

Structured prediction is a prediction task: the goal of the task is to learn a pre-

diction function (or model hypothesis) from some input to some output, but it is

more general than predicting binary or class labels in that the expected predic-

tions take on specific structures such as (labeled) chains, trees, lattices, etc. Many

problems in natural language processing (part-of-speech tagging, parsing, machine

translation), vision (articulated body post estimation) and bioinformatics (protein

structure prediction) can be categorized as structured prediction problems.

For example, the input space for protein structure prediction [Baker and Sali,

2001] is a set of amino acid sequences and the output space is all the possible 3D

structures that can be derived from the sequences. In the problem of natural lan-

guage parsing[Earley, 1970, Manning and Schütze, 1999], the input space is natural

language sentences and the output space is the set of parse trees–syntactic tree rep-

resentations of sentences. Figure 1 shows an example of input to and output of a

parser.

Non-determinism implies revisiting previously explored states so that mistakes

1



Figure 1.1: Example: Constituency parsing input and output.

made earlier have a chance to be corrected later. Depending on how complex the

structures of the output should be, a non-deterministic predictor might be slow

and the search space of the output might be too large to explore. In the parsing

case, the search space is all the possible trees with each node associated with a tag.

Enumeration over all the possibilities for long sentences is intractable. On the other

hand, in the case of robot car driving, the goal is to let the robot learn to drive

from each origin to destination safely. Under this circumstance, knowledge of more

than the canonical ground truth will help. (e.g. if we not only know the solution,

but also how to get to the solution for some input.) As said, if we only provide the

origin and destination for the robot, it takes a long time for the robot to reach the

destination or it might even fail to find it. However, if we provide some instruction

on how to drive as well as some example route, it is easier for the robot to learn to

generalize from those examples.

Though later chapters in the dissertation will focus on constituency parsing

2



for using non-determinism, the algorithms/frameworks I propose are suitable for

any structured prediction algorithm in general.

1.1 Structured Prediction

In machine learning, standard prediction problems (classification/regression)

involve three components—an input space X , output space Y and a mapping from

input space to output space f : X → Y . In classification, the output space can

be binary Y = {0, 1} or multi-class Y = {1, . . . , k} where k is the number of

classes. For regression, in contrast, the output space is generally real valued Y = R.

Structured prediction can be thought of as a type of classification problem where Y

is a countable categorical variable except that the cardinality of Y is very large—

possibly unbounded—and in general has a complex internal structure. Structured

prediction problems naturally occur in the field of computer vision, bioinformatics,

natural language processing (NLP), etc.

The quality of a solution (i.e. a predictive function or model hypothesis that

generates output given input) to a structured prediction problem is often quantified

in terms of loss functions which measure how far off a predicted output is from the

true or gold output. For standard classification problems, this often takes the form

of 0/1 (zero one) loss which is defined to be the number of instances where the

prediction does not match the ground truth. For standard regression problems, a

common loss function is squared loss1 which is defined to be the sum of the squares

1equivalently L2 loss

3



of the deviation between the prediction and the truth.2 Loss functions for structured

prediction problems are more complicated but usually are defined such that the loss

function over the structured output can decompose into 0/1 loss over its individual

parts.

The traditional solutions to structured prediction problems are composed of

model training (learning) and decoding (testing). For example in part-of-speech

(POS) tagging, we are given a set of sentences and their POS tags {(He eats an

apple, PR V DET NN), (My cat rides roomba, ADJ NN V NN), . . . }. One way of

learning those tags is to learn a predictor that predicts the tag for a word in the

sentence from the word and the tag from the previous word, so the prediction of “PR

V DET NN” for “He eats an apple” is decomposed into a sequence of sub-prediction

problems: {(current word: He and previous POS: None, PR), (current word: eats

and previous POS: PR, V), (current word: an and previous POS: V, DET), . . . }. The

loss functions are defined over two structured outputs. In this example, it can be

0/1 loss (if there exists one tag that does not match, the loss will be 1) or Hamming

loss (where the loss is the number of mismatched tags). The model training part

is to find a model hypothesis from input sentences to output tag sequences such

that the expected loss is minimized. Once the mapping is found, we can use this

mapping to assign tags to new input sentences.

Formally, a training set D = {(x1, y1), . . . , (xn, yn)} is a set of input xi, pre-

diction yi pairs where xi ∈ X and yi ∈ Y , i = 1, . . . , n. Each prediction yi can

be decomposed into a set of sub-predictions of size Γ(|xi|), a function of the num-

2for each prediction ŷi and truth yi, i ∈ {1, . . . , n}, squared loss or L2 loss is
∑

i(ŷi − yi)
2.
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ber of variables for input xi. A loss function is defined over a pair of outputs:

l : Y × Y → R. Assume the training example (x, y) is drawn from an underlying

distribution P (and the test set will be drawn from the same distribution). The

task of learning is to find a mapping f : X → Y such that the expected loss

L(f) = E(x,y)∼P l(f(x), y) (1.1)

is minimized. If a parameterized scoring function Fθ (such as log-likelihood under

a conditional random field model [Lafferty et al., 2001a]) is defined, the goal of

training is to find a parameter θ such that F (y1, . . . , yn|x1, . . . , xn, θ) is maximized.

The decoding of an input x can be described as finding the structure ŷ such that

ŷ = arg maxy∈all possible structuresF (y|x, θ) (1.2)

It is often computationally expensive to enumerate all possible output struc-

tures for a given input. For general problems with a complex structure, like the

protein structure prediction problem mentioned before, decoding the secondary 3D

structure exactly is NP-hard [Crescenzi et al., 1998]. With a simpler structure such

as a chain or tree and K possible labels for each position in the structure, the exact

solution is tractable by dynamic programming strategies, but it can still be in the

order of O(n2) or O(n3) where n is the length of the input (e.g. number of words in a

sentence). In sequence labeling for first order history models, the overall cost isK la-

bels × chain length n for n words ×O(n) cost for looking at other words/labels/other

attributes in the sentence = O(Kn2). In natural language parsing with binary trees,

the overall cost is K labels × tree size O(n2) for n words (leaves) ×O(n) cost for

5



looking at other words/labels/other attributes = O(Kn3). Though polynomial com-

plexity in terms of n does not seem a hurdle given the length of natural language

sentences, additional computational challenges arise when K is large as is usually

the case in natural language where K is the size of the grammar. It is possible

to reduce the computational cost (O(n) for looking at other words/labels) of some

structured prediction problems to independent sub-predictions or sub-predictions

with bounded size—like the POS tagging example discussed earlier. However, for

more complex problems or algorithms that work for structured prediction problems

in general, this cost is inevitable.

1.2 Non-determinism in Structured Prediction

Many structured prediction algorithms are inherently non-deterministic. When

we say “non-deterministic,” we mean it in the sense of “non-deterministic Turing ma-

chine”, “non-deterministic finite state machine,” or “non-deterministic algorithm”

not as a synonym for “stochastic.” Some algorithms can be viewed as generating

paths from an input to an output. For a non-deterministic algorithm, at some states

on the path, multiple actions can become available to choose from at the same time.

Or for the same input, multiple paths can be generated to reach the same output.
One typical example is planning problems [Russell and Norvig, 1995]. A plan-

ning problem gives a set of initial states, final goals and possible actions for each
state. The planning problem is to find a plan (which we also refer to as policy later)
to generate a sequence of actions that are guaranteed to reach one of the goals. For
example, in the maze planning problem, the planner starts with some initial state
in the maze and is allowed to move in one of four directions: up, down, left, right
as long as there are no blocking walls in the chosen direction. The goal is to find a
path from initial state to exit/goal state with minimal cost. Figure 1.2 shows two
different paths with minimal cost from the start point to final goal (+10) if the cost

6



Figure 1.2: Example: Non-deterministic planning on the maze.

of each step is the same. 3

Another example is conducting inference on a graphical model4 [Pearl, 1988,

Wainwright and Jordan, 2008]. A graphical model is a probabilistic model with a

graph representation. The vertices in the graph are random variables and edges are

their conditional dependencies. The standard inference tasks are that we query the

probability of a combination of random variables in the graph or find the assignment

3In a planning problem, the actions can be non-deterministic: the same action can result in

more than one outcome.Moreover, if the agent is in a simulated environment, the agent itself can

be non-deterministic: the next state might not be a direct result from the immediate previous

state. We discuss more about the latter situation in Chapter 3.
4Note that this is not a standard approach to inference in probabilistic graphical models.
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of each random variable that maximizes the joint probability. Message-passing al-

gorithms are commonly used to infer high probability variable assignments. Each

vertex in the graph will receive from its neighbors messages about their quantified

beliefs and then subsequently will broadcast a message about its own beliefs to its

neighbors. These steps can be done simultaneously (i.e. all the vertices pass mes-

sages to their neighbors at once or asynchronously; vertices pass messages to their

neighbors one by one). It has been shown that finding a good ordering (which we

later refer to as the policy) of the set of messages to be passed helps to improve the

convergence of the algorithms in practice [Elidan, 2006, Vila Casado et al., 2010].

There are many more examples of non-deterministic algorithms in structured

prediction problems (A very detailed parsing example will be in section 1.3). Table

1.1 shows some examples of deterministic v.s. non-deterministic algorithms for

different NLP problems.

Table 1.1: List of deterministic/non-deterministic algorithms for NLP problems.

NLP Problem Deterministic Algo Non-deterministic Algo

Part-of-speech Tagging Greedy Tagger CRF/HMM Tagger
[Brants, 2000] [Lafferty et al., 2001b, Cutting et al., 1992]

Syntactic Parsing Incremental Parser CKY
[Collins and Roark, 2004a] [Younger, 1967]

Dependency Parsing Shift-reduce Parser MST Parser
[Aho et al., 2007, Nivre, 2003] [McDonald et al., 2005]

The advantage of choosing a non-deterministic algorithm is that it can tell

later in the decoding process whether an earlier decision is good or not. One key

question we would like to answer in this dissertation is “When should we use non-
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determinism?”, if we have the choice of changing a deterministic search to a non-

deterministic search. Here “when” can refer to either training time or decoding

(testing) time. At training time, if the scoring function is parameterized, we can

learn the parameters of the model by maximizing the score (if higher is better).

For search problems, search heuristics estimate how far the current state is

from the goal state and help to find the goal state faster. A∗ search is a best-first

search algorithm that finds a path from the start point to one goal with minimal

cost. Its admissible heuristic is defined to ensure the difference in the heuristics

of two nodes on the graph should be less than or equal to the distance between

them. For example, for map navigation where the search has to follow the roads,

the (admissible) heuristic can be picked as the direct straight line distance from the

start to the goal. We can also learn the search heuristics – how to improve a learned

model such as learning a pruning parameter or learning admissible heuristics in A∗

search.

In search problems, a deterministic algorithm always yields a faster solution

while a non-deterministic algorithm can better explore the search space. Ideally, if

the learner can predict the utility of the states correctly (for each avaiable action

at one state, how good is the final result) deterministic training and testing will be

very efficient. For example, for part-of-speech tagging, to tag the sentence s =“Time

flies like an arrow”, if it is easy to learn a function that predicts scores for each tag

in the sentence: e.g. f(T ime, V, s) = 0, f(T ime,NN, s) = 1, f(flies, V, s) = 1,

f(flies,NN, s) = 0.8, etc., then learning and applying this model is good enough.

However, in complicated structured prediction problems like parsing, machine
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translation or computer vision problems, building a model for all possible actions

at all possible states is intractable. Instead, one should learn how to perform

a deterministic search (policy) non-deterministically and run (test) the

policy deterministically if possible so that the final result will be good and quickly

obtained. During training time, we want to explore the search space and gather

training examples from non-deterministic paths. During test time, we take the

deterministic prediction from the learned model. Even if the search algorithm at test

time is non-deterministic, we can still learn a good policy to improve the performance

by training non-deterministically. Returning to the part-of-speech tagging example

“Time flies like an arrow”: during training, we would like to generate possible

different sequences of the tags and associated scores for the same sentence e.g. ((NN

V PREP DET NN), 1.0), ((NN NN V DET NN), 0.5) and learn a model based on

those examples. During test time, if we can learn a deterministic model such as a

greedy tagger from left to right, it will be very fast. On the other hand, we can

also learn a non-deterministic model as CRF and use the examples to speed up the

convergence.

Another important question here is “How can we learn a policy non-deterministically?”

In this dissertation, we show how to change a deterministic agent to be non-deterministic

and create a learning framework with reinforcement learning algorithms and learn

policies that give faster and/or better results (Chapter 3). For structured prediction

problems like agenda-based parsing, we also show how to learn a better search policy

at decoding time by pruning or prioritization (Chapter 4-5).
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Figure 1.3: Example: Chart parsing example.

1.3 Detailed Example: Agenda-based Parser with Deterministic and

Non-deterministic Agent

As an important subject in the dissertation, we now describe the difference

between deterministic and non-deterministic agents in parsing [Earley, 1970]. Let

us first start with a slightly simpler example – chart parsing. For a visual example,

see figure 1.3

For a sentence with length n, a chart is a grid of size O(n2) that stores the items

(constituents) spanning from position i to j in the cell [i, j], where 1 ≤ i < j ≤ n.

A grammar describes the rules for combining items from adjacent cells in the chart.
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Parse trees can be retrieved from the top of the chart – the cell [1, n]. It is an

application of dynamic programming. Without getting into too much detail about

parsing algorithms, we assume here each rule combines two adjacent cells [i, j] and

[j, k] and puts a new item at the cell [i, k].5

In the example shown, a grammar is given (or learned) before the decoding.

Each grammar rule may be associated with some probabilities or scores. The decoder

first fills in some part-of-speech tags of the sentence (in the bottom row), for example

“Time” is assigned “NN”. Then for each filled cell in the bottom row, it checks all

the adjacent cells: e.g. for cell (4, NN, 5), the parser looks up items that can be

combined with “NN” on the right and matches any left neighbors. In the grammar,

there is NP→DET NN and DET exists as (3, DET, 4), so the rule is applied and

we build (3, NP, 5) and fill that into the chart. Its score is the sum of the score of

the children and the rule. When the chart is fully populated, we extract the tree

with highest likelihood or the best score given the score definition.

We define this chart parsing as a planning problem: the states that we consider

are the cells in the chart: e.g. a cell spanning from 3 to 5 is a state. Possible actions

are combining two adjacent cells in the chart and adding one more item to a larger

span according to the grammar rules: e.g. combining (3, NP, 4) with (4, NN, 5).

There is only one initial state: we start with an empty chart. The final states are

those states that cannot combine with any other items in the chart. The goal is to

5Formally, we assume that we consider a context-free grammar in Chomsky Normal Form with

binary rules only as the example here. Note that we will not make this binary assumption in the

real application.
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find a way of filling the chart and extracting a parse tree.

A deterministic agent in the chart parsing case, e.g. an incremental parser

[Collins and Roark, 2004b], you have to use every cell you fill in in the final tree6.

The following action can only be that of combining two amiable items from the

chart. Imaginably, this deterministic parser will not perform well most of the time:

once a mistake is made, it will never have a chance to correct it later and it has

to continue with some tree containing this mistake. On the other hand, a non-

deterministic parser can reconsider past actions and fill the cells in the chart with

all possible grammar rules no matter when the children of the rule are built. (For

those who are familiar with the area, this is a more flexible version of the standard

CKY algorithm [Chappelier et al., 1998, Klein and Manning, 2001, Magerman and

Marcus, 1991]).

In this dissertation, we focus on a special case of the chart parser: the agenda-

based parser. In agenda-based parsing7, each grammar rule is associated with a

score (log-probability) and instead of directly updating the chart, it pushes all the

candidates to the agenda (which is a priority queue) first and pops off the most

likely ones and adds it to the chart. 1.3 shows the same example as the chart parser

but with the agenda as a priority queue for which item should be popped and added

to the chart first.

6There might also be a left-to-right restriction in the true incremental parsing setting
7For a detailed description of the algorithm, please refer to Chapter 2.2. It is similar to A*

search in hypergraphs [Klein and Manning, 2003].
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Figure 1.4: Example: Agenda-based parsing example. The crossedout item on the
agenda are those already popped.
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The agenda-based parsing algorithm is non-deterministic: there exist multiple paths

to achieve the same goal – there are no order constraints for which child of a node

in the tree should be built first. However, the computational cost for this algorithm

is O(Kn3) where K is the size of the grammar and n is the length of the sentence.

K in practice can be very large—some corpora may have more than half a million

grammar rules. Parsing a 40-word sentence with this parser may take anywhere

from a few seconds to about half a minute given a the grammar with half a million

rules.

In order to improve the performance of agenda-based parsers, we can prune or

prioritize the agenda. With prioritization (Chapter 3), the same parse tree can be

achieved with different paths by alternating the order of the items on the agenda.

With pruning (Chapter 4), we enable multiple choices of combining different items

to one item according to the grammar.

1.4 Learning with Oracles

For structured prediction problems, knowing the ground truth does not guar-

antee that a good model can be learned: the ground truth, alone, does not tell the

learner how to get to the ground truth. Different from the the standard ground

truth (or gold labels) in structured prediction problems, an oracle includes not only

the set of gold labels and their structure, but also the process of generating such

solutions. The oracle set is built in such a way that it guarantees that a learner can

follow it and produce the ground truth.

15



Consider the case of navigating a robot on the road where there will be ob-

stacles in the center of the road. Assume the robot only knows to adjust its angle

by adding weights on the left or right side to make turns. If no order is defined (no

preference of left or right side in this case), when the robot sees the obstacle, 50%

of the time the oracle tells it to turn left and 50% of the time turn right, and then

it will not be able to learn which way to go.

In parsing, the oracle can be the sequence of items (constituents) added to

the chart to achieve the gold tree rather than the gold tree itself. The ideal oracle

should also cover those states that do not result in ground truth and decide what

are the best options for all the possible actions given the current state. However, it

is very hard to find ideal oracles in structured prediction problems. Even though the

ground truth is provided, given a non-deterministic problem there can be multiple

paths leading to the ground truth and a measure with total order needs to be defined

to choose the oracle.

Moreover, the set of possible actions (new constituents to build at each state)

to choose might not be enough in certain cases to achieve the ground truth (e.g. the

gold tree in parsing). There are two properties that any oracle construction should

follow:

1. The oracle provides a sequence of (ordered) optimal actions. By following those

actions, the decoder can recover the ground truth or expert labels efficiently.

The order here refers to when multiple actions are available at one state, there

is a consistent order to tell which one to pick.
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2. For those states that do not lead to the ground truth or expert labels, the

oracle provides a way to lead back to some state that will continue to produce

optimal actions or find the second best choice from that state.

In this dissertation, we discuss how to construct different oracles and how to

approximate the optimal action when the states are not on the oracle path in the

case of parsing (Chapter 4).

1.5 Learning Target

Ideally, a NLP system is expected to be both accurate and fast. However, this

is usually not the case. Researchers often build complex systems to improve the

performance (accuracy measure) of the system at the cost of speed. In applications

with a large set of data to process, less accurate but faster solutions are often

preferred. For us, prioritizing and pruning refer to two different learning targets:

one is to learn to trade off speed and accuracy and the other is to learn to run as

fast as possible without losing too much accuracy.

The first target (learning a user-specified trade-off) is achieved by either cas-

cade modeling (building a set of models from the inaccurate but fastest to the most

accurate but slowest and choosing the model according to the performance request),

or optimizing the model according to some trade-off measurement while the second

one is usually approached by doing different types of pruning. In this dissertation,

we explore the first target in chapter 3 by using re-prioritization to optimize a speed

accuracy trade-off with user defined speed and accuracy measures. We also tackle
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the second target (learning to be as fast as possible without losing too much accu-

racy) in chapter 4 by using a pruning classifier for each of the candidates on top of

the agenda. Those targets are easily accomplished by allowing non-determinism at

training time.

1.6 Learning with Dynamic Features

Feature engineering is important for machine learning and/or NLP problems.

In structured prediction, we define three types of features: static, dynamic and

trace features. Static features are used in all machine learning/natural language

processing problems while dynamic and trace features are specifically designed for

structured prediction and planning problem whose output is built by sequences of

predictions.

Static features are those features associated with the input. They will not

change once the input is decided. Dynamic features are associated with the decod-

ing/learning process. Their values depend on local or global context as well as ranks

and orderings. Trace features records the history of building the structured output

so far, not just the current state.

Static features are cheaper to compute while dynamic and trace features re-

quire good bookkeeping of the current local/global context and history.

For example, in agenda-based parsing, static features include the width of the

cell, starting position, ending position, the punctuation it contains, etc. Dynamic

features can look at the competing item locally or globally such as ratio or absolute
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difference of best in cell, rank of item in cell, etc. Trace features use information

like how long an item has been waiting on the agenda or the number of pushes of a

constituent, etc.

Computing dynamic and trace features on the run can be very expensive, but

a lot of context-based dynamic features (e.g. n-gram features) can be pre-computed

and only require simple look-up during learning. We can also use statistics computed

from the training data to approximate the on-the-run feature values. As they better

describe the “real-time” information of the decoding/search process, dynamic and

trace features can improve the efficiency of local decisions. We show the impact of

dynamic and trace features in Chapter 5 in the case of learning a dynamic pruner.

With dynamic and trace features, the system produces better and faster parse trees.

1.7 Contribution

The main contribution of this dissertation is answering these important ques-

tions:

• Can non-determinism improve the accuracy and/or speed of a search/decoding

system?

• When shall we take advantage of non-determinism?

• How shall we apply this to NLP systems like parsers?

We claim that we should use non-deterministic algorithms in the training (either

learning a model or improving a decoder) stage if the search space is large and
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deterministic algorithms cannot properly explore different decisions for the visited

states. Moreover, if applicable, we should apply a fast deterministic algorithm during

decoding.

To answer the first and second question, we study the property of non-determinism

in the context of maze solving. We introduce a non-deterministic learning frame-

work that can be applied to all kinds of trajectory-based reinforcement learning

algorithms. While learning non-deterministically at training time to produce a de-

terministic policy at test time if possible, this framework will not sabotage the

original convergence condition of the existing algorithms and make those algorithms

converge better and/or faster.

For the third question, we take the agenda-based parser as an example. We

introduce more non-determinism into the training by allowing agenda prioritizing or

pruning. We show different problem formulations with different learning targets. To

automate the speed accuracy trade-off, we propose an oracle-infused policy gradient

algorithm that re-prioritizes the items on the agenda to trade-off customized speed

and accuracy. Besides these algorithms, we show a very detailed analysis of the ad-

vantage and disadvantage of some off-the-shelf structured prediction/reinforcement

learning algorithms in this application. With similar ideas, we propose a dynamic

pruning classifier for the agenda-based parser that achieves state-of-the-art accuracy

and speed and show the importance of dynamic features.
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1.8 Outline of the dissertation

The structure of this dissertation is as follows:

Chapter 2 In this chapter, we briefly explain some concepts, algorithms and

literature overview of Markov decision processes, reinforcement learning, imitation

learning and their applications to structured prediction problems. We also discuss

the agenda-based parser and different speed-up heuristics.

Chapter 3 To show how a non-deterministic agent can affect the learning of a

deterministic policy, we define a non-deterministic agent based on a MDP. Markov

Decision Processes (MDPs) are successful abstractions for modeling sequence deci-

sion making problems, with decisions being made by a deterministic, greedy agent.

Reinforcement learning algorithms, like offline Q-learning, use such a deterministic

agent to explore an MDP, updating estimates of Q-values incrementally. However,

for many problems, restricting one’s learning to a deterministic agent is detrimental:

this is a major source of difficulty due to the credit assignment problem. We con-

sider a non-deterministic variant of MDPs in which the agent can occupy multiple

states simultaneously: we call these multi-state MDPs. Multi-state MDPs can con-

ceptually be mapped to standard deterministic MDPs, though with an exponential

blowup in the size of the state space. We show how to directly take advantage of

the non-determinism of the agent in different reinforcement learning algorithms. In

all of these cases, we show convergence of the learning algorithms, and empirically

demonstrate that the non-deterministic algorithms we propose converge faster with
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more accurate policies than the other standard learning algorithms.

In Chapter 4 and 5, we study non-determinism in agenda-based parsing.

Chapter 4 Users want inference to be both fast and accurate, but quality often

comes at the cost of speed. The field has experimented with approximate inference

algorithms that make different speed-accuracy tradeoffs (for particular problems

and datasets). We aim to explore this space automatically, focusing here on the

case of agenda-based syntactic parsing. Unfortunately, off-the-shelf reinforcement

learning techniques fail to learn good policies: the state space is simply too large

to explore naively. An attempt to counteract this by applying imitation learning

algorithms also fails: the “teacher” follows a far better policy than anything in our

learner’s policy space, free of the speed-accuracy tradeoff that arises when oracle

information is unavailable, and thus largely insensitive to the known reward function.

We propose a hybrid reinforcement/apprenticeship learning algorithm that learns

to speed up an initial policy, trading off accuracy for speed according to various

settings of a speed term in the loss function.

Chapter 5 There are many heuristic based strategies to speed up a parsing al-

gorithm such as prioritization, pruning and coarse-to-fine. In terms of pruning an

agenda-based parser, the pruning heuristics decide whether the constituents should

be added to or popped off the agenda and speed up the decoding by removing costly

or unlikely ones. However, finding a good pruning threshold for a fast parser with

reasonable accuracy is hard and this threshold can vary from sentence to sentence.
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On the other hand, while using coarse pruning classifiers like [Roark and Holling-

shead, 2008] allows larger reductions in the search space before parsing a sentence,

it ignores the dynamic features in the decoding process. In this chapter, we propose

to use a dynamic pruning classifier at pop time to prune individual candidates from

the chart. We show our model can achieve state-of-the-art speed and accuracy by

pruning dynamically.

Chapter 6 In this chapter, we summarize the algorithms and results from the

dissertation and put a conclusion to the questions we answer in the dissertation.

We also discuss the generalization of these methods in different machine learning

problems.
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Chapter 2: Background and Related Work

The majority of the dissertation is built on ideas and algorithms from reinforce-

ment learning, structured prediction, imitation learning and agenda-based parsing.

In this chapter, we will first discuss the basics of Markov decision processes and

related reinforcement learning algorithms for discrete and continuous state/feature

space. The extension to the non-deterministic agent in chapter 3 is based on these

basics. Next, we will introduce the background of imitation learning and structured

prediction. We will also provide the necessary background for agenda-based parsing

and state-of-the-art speed-up techniques in section 2.2. Our discussion in chapter

4 about the disadvantage of applying off-the-shelf imitation learning methods in

structured prediction to the problem of trading off speed and accuracy in parsing is

based on the algorithms and ideas that we reveal in section 2.3.

2.1 Markov Decision Process (MDP) and Reinforcement Learning

Markov decision processes (MDP) [Bellman, 1957] provide a coherent model

for agents interacting with an environment. An MDP model contains state space S,

action space A, transition function T and reward function R. It is a formalization of

a memoryless search process — the effects of an action taken in a state depend only
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on that state, but not the history. Formally, for a deterministic transition function:

T : S × A→ S (2.1)

for each state and action, the subsequent state is deterministically decided.

For stochastic transition function:

T : S × A→ Prob(S) (2.2)

where Prob(S) is a probability distribution over the state space S. In a stochastic

setting, for each state and action, a distribution of the possible following states

is defined: T (s′|s, a). The reward function R(s, a) can also be deterministic or

stochastic according to some distribution.

An agent in an MDP observes the current state s ∈ S and chooses an action

a ∈ A. The environment responds by transitioning to a state s′ ∈ S, sampled from

the transition distribution T (s′ | s, a). The agent then receives a reward R(s′ | s, a),

observes its new state and chooses a new action. An agent’s policy π describes

how the (memory-less) agent chooses an action based on its current state, where

π is either a deterministic function of the state (i.e., a = π(s)) or a stochastic

distribution over actions (i.e., a ∼ π(· | s)), and by giving the agent a reward r ∈ R,

which is sampled from the MDP’s reward distribution R(r | s, a, s′).

We define the cumulative reward of a policy π to be
∑∞

t=0 γ
tR(st|st+1at where

γ ∈ (0, 1] is a discount factor. The optimal policy π∗ is the one which maximizes

the cumulative reward. If the total reward is infinite (in most cases), a few options

can be chosen to make the objective function tractable:
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1. Discounted reward: a discount factor 0 < γ ≤ 1 for the reward for each step.

This is the most common one in the literature.

2. Use a finite horizon (time steps) and the total reward for that period of time.

3. Use an averaged reward rate in the limit.

In the dissertation, we will only consider the case with discounting. To make the

terminology simpler, whenever we say that we maximize the expected future re-

ward, if the reward is infinite, we implicitly mean that we maximize the cumulative

discounted reward.

A value function Vπ(s) represents the objective value obtained by following

policy π from state s. The Bellman equation is a dynamic programming approach

for computing the value for each state if both rewards and transition functions are

known:

Vπ(s) = R(s, π(s)) + γ
∑

s′∈S

T (s′|π(s), s)Vπ(s
′) (2.3)

Iteratively, the maximized value at state s is nothing but

V ∗(s) = max
a

[

R(s, a) + γ
∑

s′∈S

T (s′|s, a)V ∗(s′)

]

(2.4)

When any of the rewards or transition functions are unknown, reinforcement

learning algorithms help the agent learn the model (estimate reward and transition

functions) as well as which actions to take at each state according the objective

function. In the dissertation, we will consider trajectory-based algorithms where the

agent explores and exploits trajectories in the state space to maximize the reward.

A trajectory is defined to be a sequence of state and action pairs from some initial
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state to some terminal state. A terminal state is a state that has no outgoing actions.

If the cumulative rewards are infinite, we can use an approach similar to the one

mentioned above.

2.1.1 Q-Learning and Variants

Similar to how we define the value for a state V (s), in reinforcement learning

we can also define a value function for a state and action pair

Q(s, a) =
∑

s′

P (s|s′, a) (R(s|s′, a) + γV (s′)) (2.5)

which corresponds to the cumulative reward of taking action a at state s and fol-

lowing the current policy.

When the state space is discrete, the Q-learning algorithm can be applied to

estimate the value for each state action pair. In Q-learning [Watkins, 1989], the

agent starts a trajectory at some start state s0, chooses an action a using the policy

derived from current Q value (π(s) = maxa Q(s, a)) with ǫ-greedy exploration 1, and

observes reward r and next state s′. The Q-value is then estimated by

Qt+1(st, at) = (1− αt(st, at))Qt(st, at) + αt(st, at)(r(st, at, s
′
t) + γVt(st+1))

where γ is a discount factor and the estimated value of a state at iteration t is

Vt(s) = max
a∈A(s)

Qt(s, a) (2.6)

So in equation 2.6, Vt(st+1) = maxa Qt(st+1, a).

Algorithm 1 shows the Q-learning algorithm.

1With 1− ǫ probability, the agent takes the action given by the previously learned policy and

with ǫ probability, it picks a random action
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Algorithm 1 Q Learning Algorithm

Input: state space S, action space A, reward R, transition function T , discount

factor γ, start state s0.

Initialize Q-values Q(s, a) arbitrarily.

repeat

repeat

Choose an action a that has the maximum expected future reward using the

current policy: a = arg maxa′∈A(s)Q(s, a′)

Take action a and observe reward r, state s′.

Update Q(s, a)← (1− α)Q(s, a) + α[r + γmaxa′ Q(s′, a′)].

until Trajectory termination condition is satisfied.

until The convergence criterion is met.

Q learning is a special case of an offline case of the SARSA (state-action-

reward-state-action) algorithm [Kaelbling et al., 1996, Sutton and Barto, 1998]. It

directly approximates the optimal Q-value Q∗ independent of the current policy and

only relies on the expected future reward for the following states.

Q value updates can also be policy dependent. Online SARSA is a policy

dependent algorithm and it uses the Q value of the following states and its following

action given current policy. Specifically,

Q(s, a)← (1− α)Q(s, a) + α[r + γQ(s′, π(s′))] (2.7)

pi(s′) is the current policy derived from the current Q value estimates.

In practice, updating the current state as well as some states visited in the
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past can result in better convergence, such as Dyna Q [Sutton and Barto, 1998] and

prioritized sweeping. Prioritized Sweeping in section 2.1.2 is one of the most common

ways of updating the value of previous states by backtracking the trajactories.

2.1.2 Queue Dyna

Q learning is guaranteed to eventually converge without error when enough

exploration in the space is done. However, when the search space is large or the

model is not given (transition/reward needs to be estimated), the actual covergence

speed can be slow. For example, if the agent is designed to explore a large maze

and it gains a high positive final reward when it finds the exit, it is obvious that

the value is high for the states near the exit and decrease with the increasing of

distance between the internal state and the exit. In other words, the value of the

states further away from the exit are required to wait for the value to be propogated

from the exit state. Even for an extremely simple example such as when a maze is

a 1000-step straight path, in order to get the Q value properly estimated the agent

is required to repeat the same path 1000 times! (For iteration i, only values from

1000-i to 1000 are properly updated.) However, if value backups are allowed – for

each value update, the agent is allowed to pick some states in the past and update

their values, the convergence speed can be faster. In the 1000-step straight path

maze case, if we allow the agent to trace back its trajectory from the exit and update

the value of states in the past in order, the agent now only needs one trajectory to

reach convergence (although the number of visited states is 2000 when the backup
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updates are figured in). On the other hand, if the agent selects random states in

the past, the convergence will not be as fast. So we need a good strategy to decide

the order of the states to be updated in the past.

Queue Dyna [Peng and Williams, 1993] is a trajectory-based reinforcement

learning algorithm for propagating the most recent value to the known precedents

after the terminal state is reached. Intuitively, if the value of a state differs a lot

between updates, it means the value is not close to convergence. If more information

is provided (update those states when the terminal state is reached), it is more likely

to be useful than updating the states whose values are already close to convergence.

In Queue Dyna, the underlying algorithm is still Q learning and the states to

be updated in the history are ranked according to the difference in value updates.

Previously visited states that have larger value changes will have higher priority to

be updated.

Prioritized Sweeping [Moore and Atkeson, 1993a, Andre et al., 1998] is based

on the same core idea with additional model (transition/reward) estimates.

The agent starts with an initial state and chooses the action according to the

current policy. The environment responds with state s′ and reward r. A priority

queue is used for all the visited states with priority as the difference of the value

before and after update. The state and action pair is pushed onto the priority queue.

N updates are performed by popping one item from the priority queue, updating

the Q value and adding all the precedent state-action pairs to the queue. It is shown

to have faster convergence speed in practice than unprioritized methods.
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Algorithm 2 Queue Dyna Algorithm

Initialize the Q value Q(s, a) for all state-action pairs randomly. Initialize the

model M(s, a) : S ×A→ S ×R for the following state and immediate reward by

taking action a from current state s. Set priority queue PQ to be empty, priority

threshold to be ǫ and the number of sweeping states to be N .

while Values not converged do

ŝ is the current visiting state and â = argmaxa Q(s, a).

Move the agent with action a, observe the following state s′ and the immediate

reward r̂.

Update the model M(ŝ, â)← (ŝ′, r̂).

Compute priority p̂ = |r̂ + γmaxa′ Q(ŝ′, a′)−Q(ŝ, â)|.

if p > ǫ then

Add (ŝ, â) to PQ with priority p̂.

end if

while N states have not been updated and PQ is not empty do

Pop (s, a) from PQ and its following state and immediate reward from model

M : (s′, r)←M(s, a).

Update Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)].

for all (s̃, ã) that are precedents of s, reward is r̃. do

Update p̃ = |r̃ + γmaxa Q(s, a)−Q(s̃, ã)|.

if p > ǫ then

Add (s̃, ã) to PQ with priority p.

end if

end for

end while

end while
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2.1.3 Policy Gradient

When the state space is huge and not many states can be explored during

learning, function approximation can be adopted to represent a state s in the state

space with its features θ = φ(s). So the correspoding policy is also paramterized

by θ. Finding the optimal policy is equivalent to finding parameters that yield the

highest possible expected reward. We carry out this optimization using a stochastic

gradient ascent algorithm known as policy gradient [Baxter and Bartlett, 2001,

Williams, 1992, Sutton et al., 2000].

For a parameterized trajectory τ , assume that τ is generated from pθ(τ). Recall

the cumulative reward R(τ) =
∑T

0 γtrk where γ is the discount factor and rk is the

reward for each step. The cumulative reward in expectation is

Eτ [R(τ)] =

∫

pθ(τ)r(τ)dτ (2.8)

In order to perform gradient descent, we need to compute the gradient of this ex-

pectation, Eτ [R(τ)]. From basic calculus, we know for any function pθ,

∇θ log pθ(τ) =
∇θpθ(τ)

pθ(τ)
(2.9)

So we can rewrite this as

∇θpθ(τ) = pθ(τ)∇θ log pθ(τ) (2.10)

So the derivative of the expectation becomes

∇θpθ(τ) = pθ(τ)∇θ log pθ(τ) (2.11)
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so the gradient of the objective becomes

∇θEτ [R(τ)] = Eτ

[

R(τ)∇θ log pθ(τ)
]

= Eτ

[

R(τ)
T
∑

t=0

∇θ log π(at | st)
]

(2.12)

which can be approximated by sampling trajectories. The policy gradient algorithm

samples one (or several) trajectories according to the current policy πθ, and then

takes a gradient step according to Eq (2.12). This increases the probability of actions

on high-reward trajectories more than actions on low-reward trajectories.

A question in reinforcement learning is the exploration and exploitation trade-

off. There are two standard approaches to explore the space. One is ǫ-greedy [Sutton

and Barto, 1998] which randomly picks an action with probability ǫ and follows the

policy with probability 1−ǫ. The other is Boltzmann exploration [Sutton and Barto,

1998]. Our policy is:

πθ(a | s) =
1

Z(s)
exp

[

1

temp
θ · φ(a, s)

]

(2.13)

That is, the log-probability of action a at state s is an affine function of its prior-

ity. The temperature temp controls the amount of exploration. As temp → 0, π

approaches the deterministic policy in Eq (4.2); as temp → ∞, π approaches the

uniform distribution over available actions. During training, temp can be decreased

to shift from exploration to exploitation.

2.2 Agenda-based Parsing

The goal of parsing is to obtain a syntax tree from an input sentence given a

grammar. Figure 2.1 shows an example of a sentence and its parse tree.
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�✁✂ ✄☎✆✂✝ ✂✞✟☎✠✡ ☛☞✟✞✟☞✂✝

✌✍ ✎✎✏✏

✏✌

✏✌✎✌ ✎✌✏✌

✏✌

�

Figure 2.1: Example of the parse tree of “She likes eating potatoes” with given
grammar.
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Given a grammar, perhaps the simplest approach to inferring the best parse

tree for a given sentence is to assemble the parse from the bottom up as in CKY

[Younger, 1967](Figure 2.2 shows an example of a filled chart.). When the grammar

is probabilistic, a standard extension of the CKY algorithm uses an “agenda” — a

priority queue of constituents built so far—to decide what to do next [Kay, 1986].

The priority can be the inside score [Klein and Manning, 2001] or inside score

combined with an admissible estimate of the outside score [Klein and Manning,

2003, Pauls and Klein, 2010, Felzenszwalb and McAllester, 2007] so that the first

tree built in the chart will be the most likely tree (Viterbi tree) under the current

grammar.

Three major strategies are used in the literature to speed up parsing: priori-

tization, pruning and coarse-to-fine search.

Prioritization heuristics govern the order in which search actions are taken

while pruning heuristics explicitly dictate whether particular actions should be taken

at all. Examples include A∗ [Klein and Manning, 2003, Haghighi et al., 2007] and

Hierarchical A∗ [Pauls and Klein, 2010] heuristics, which, in the case of agenda-

based parsing, prioritize parse actions by estimating outside scores admissibly so as

to reduce work while maintaining the guarantee that the most likely parse is found.

Figure-of-merit prioritization [Caraballo and Charniak, 1998, Charniak et al., 1998]

can result in even faster inference if a small amount of search error can be tolerated.

Alternatively, pruning heuristics decide if search actions should be taken at

all. The maximum number of elements allowed in a cell in the chart can be used to
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Grammar:
PR –> She
V –> likes
IN –> likes
V –> eating
NN –> potatoes
NP –> NN
NP –> PR
VP –> V
VP –> VP NP
VP –> NP VP
VP –> VP VP
PP –> PREP VP
S –> NP VP
S –> VP VP

��

Figure 2.2: Example of a parsing chart of “She likes eating potatoes”.
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Algorithm 3 Agenda-based Parsing Algorithm

while agenda is not empty do

dequeue some update according to its priority from the agenda, say (Y, i, j)←

75

update chart[Y, i, j] to 75

for each constituent adjacent to (Y, i, j), such as (Z, j, k) do

for each grammar rule X → Y Z that can combine (Y, i, j) with (Z, j, k) do

let new ← chart[Y, i, j] + chart[Z, j, k] + score(X → Y Z)

if new > chart[X, i, k] then

enqueue (X, i, k)← likelihood([X, i, k]) on the agenda

end if

end for

end for

end while
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prune the search space. The difference in probability between the candidate to be

filled into the cell and the best built element in the cell is another commonly used

pruning threshold. Classifier-based pruning [Roark and Hollingshead, 2008] learns

a classifier to disallow spans starting from/ending at a certain position by running

a part-of-speech tagger before parsing. Beam-width prediction [Bodenstab et al.,

2011] tries to predict the maximum number of items in each cell.

Coarse-to-fine strategies allow multiple passes during decoding. [Pauls and

Klein, 2010, Charniak et al., 2006, Petrov and Klein, 2007] uses a multi-level gram-

mar to parse the sentence from the most coarse grammar to finest grammar. The

most coarse grammar only uses one instance of each pre-terminal and non-terminal:

NP 0 –> DET 0 NN 0, VP 0 –> V 0 (here i indicates the ith instance of the sym-

bol). For level-k grammar, i ≤ 2k−1 instances of symbols are used in the grammar.

For high level grammars, different instances of the same symbol can be viewed as la-

tent clusters of the symbol in the examples. The most coarse grammar is the fastest

one to decode with but with lower accuracy while the finest grammar is the slowest

but most accurate. The parser can stop with coarser grammar if the decoding is

good enough.

2.3 Imitation Learning, Reinforcement Learning and Structured Pre-

diction

In reinforcement learning, an agent interacts with an environment and at-

tempts to learn to maximize its reward by repeating actions that led to high rewards
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in the past. In apprenticeship learning, we assume access to a collection of trajec-

tories taken by an optimal policy and attempt to learn to mimic those trajectories.

The learner’s only goal is to behave like the teacher: it does not have any notion of

reward. In fact, the related task of inverse reinforcement learning [Ng and Russell,

2000, Ziebart et al., 2008] (previously called inverse optimal control [Kalman, 1968,

Boyd et al., 1994]) attempts to infer a reward function from optimal behavior.

Many algorithms exist for apprenticeship learning. Some of them work by first

executing inverse reinforcement learning [Ng and Russell, 2000, Ziebart et al., 2008,

Kalman, 1968, Boyd et al., 1994] to induce a reward function and then feeding this

reward function into an off-the-shelf reinforcement learning algorithm like policy

gradient to learn an approximately optimal agent [Abbeel and Ng, 2004, Neu and

Szepesvári, 2009]. Alternatively, one can directly learn to mimic an optimal demon-

strator, without going through the side task of trying to induce its reward function

[Ratliff et al., 2007, Daumé III et al., 2009, Argall et al., 2009, Ross and Bagnell,

2010, Syed and Schapire, 2011, Natarajan et al., 2011, Ross et al., 2011a].

In [Neu and Szepesvri, 2009], inverse reinforcement learning is applied to train

a parser. The goal of inverse reinforcement learning is to find a reward function

so that if the agent performs optimally according to the reward function, it will

follow the optimal trajectories in the training set. As a result, the score of the rules

extracted for the parser are trained such that the highest reward decoding for the

sentence will match the ground truth.

[Maes et al., 2008a] also discuss reducing structured prediction problems to

MDP and use the approximate reinforcement learning algorithm SARSA to solve
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these and apply this framework to sequence labeling and ranking tasks in [Maes

et al., 2008b].

In this section, we introduce two very important algorithms that are widely

used in structured prediction: Search-based Structure Prediction (SEARN) [Daumé

III et al., 2009] and Dataset Aggregation (DAgger) [Ross et al., 2011a].

2.3.1 Search-based Structure Prediction (SEARN)

In SEARN, the prediction of the final output is decomposed into a sequence of

predictions yi and each prediction yi depends on the previous y1, . . . , yi−1 predictions.

A cost sensitive classifier is trained on the examples where the cost is estimated by

applying the current policy.

As in algorithm 4, SEARN starts with some expert policy π0 and trains a

policy π̄1 to minimize the induced loss. The new policy π1 is a mixture of the expert

policy and the learned policy: h1 = απ0 + (1 − α)π̄1. In order to train a classifier

π̄i, a set of cost sensitive examples are generated for each action according to the

current policy. The policy at time i, hi = (1 − α)πi−1 + απ̄i. The final policy is

returned without π0. The probability of using earlier classifiers decreases during the

learning, so finally, the learned policy will only depend on the expert a little.

SEARN has been applied in different structured prediction problems such as

dependency parsing [Choi and Palmer, 2011].
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Algorithm 4 SEARN

Initialize the policy π = π∗.

while the current policy πi strongly depends on π∗ do

Initialize the cost-sensitive dataset D = ∅.

for each training example do

Compute the current prediction ŷ = π(x).

for each component in x: xi do

Compute features φ(xi) based on the input x and output for each compo-

nent until i.

for each possible following action ak do

Compute the cost ck by taking action ak and running the current policy

πi.

end for

D = (φ(xi), ak, ck).

end for

Train a classifier π̄i+1 on D.

Update the policy πi+1 = απ̄i+1 + (1− α)πi

end for

end while

Return π without π∗.
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2.3.2 Dataset Aggregation (DAgger)

DAgger is an iterative dataset aggregating algorithm that collects datasets at

each iteration by running the current policy and trains a new policy with the union

of all the previously collected datasets. It starts with an expert policy and lets

the new policy be a mixture of the expert policy π∗ and learned policy. Then it

samples trajectories with the current policy and aggregates datasets D by adding

the sampled states and their oracle labels (si, π
∗(si). A new classifier trained on the

aggregated set D (See algorithm 5).

Algorithm 5 DAgger Algorithm

Initialize the expert policy π∗, initial policy π̄0 and aggregated dataset D.

for each iteration i, do

(optional) Set πi = αiπ
∗
i + (1− αi)π̄i.

Run the agent with policy π̄i for k steps.

Collect dataset Di = (x, π∗(s)) for all x visited by πi.

Train π̄i+1 on D = D ∪Di.

end for

Return the best π̄i with cross-validation.

DAgger always tries to best mimic the expert behavior on the aggregated

dataset. It is a no-regret algorithm: the difference between the cost of the algorithm

and optimal solution is zero. Variants of the algorithm have been used in robot

remote control [Argall et al., 2009], message-passing algorithms [Ross et al., 2011b],

etc.
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In the next chapter, we will use the reinforcement learning discussed here

and generalize it to a nondeterministic setting. In chapters 4 and 5, we will use

agenda-based parsing as an example and discuss some of the structure prediction

and reinforcement learning techniques discussed in this chapter to reprioritize and

prune the parser.
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Chapter 3: Learning with A Non-deterministic Agent

3.1 Overview

Markov decision processes [Bellman, 1957] provide a coherent model for agents

interacting with an environment. The standard assumption, appropriate in appli-

cations like robotics, is that the learning agent is deterministic. That is, it can only

occupy one state at any given time. When the agent exists in the “real world”,

this is sensible. Recently, however, MDPs and reinforcement learning have been

applied to a much broader range of problems, particularly ones in which the agent

and environment are simulated [Silver, 2009]. Here, the assumption of determinism

is overly restrictive: when reinforcement learning occurs offline, there is no reason

to force ourselves to use a deterministic agent to learn, even if the desired agent

will be itself deterministic. In this chapter, we will focus on trajectory-based learn-

ing algorithms and show how to use non-deterministic agents to learn deterministic

policies (Section 3.2) using computationally efficient variants of a few common learn-

ing algorithms (Section 6.2.5), such as Q-learning [Watkins, 1989] and Queue-Dyna

[Peng and Williams, 1993]. Our algorithms are provably convergent and achieve im-

proved empirical learning rates compared to other standard reinforcement learning

algorithms (Section 3.4).
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In order to achieve these goals, we introduce a framework called “multi-state

Markov decision processes.” In a standard MDP [Bellman, 1957], one has a state

space, an action space, a (possibly stochastic) transition function and a (possibly

stochastic) reward function. An agent is a function that maps states to actions,

at which point the environment responds by moving the agent to another state

(sampled from the MDP’s transition distribution) and by producing a reward. The

goal of an agent is to maximize its cumulative long-term reward. When we allow the

agent to be non-deterministic, we allow it to occupy multiple states simultaneously.

At each point in time, it must select which state it wants to move from (from its set

of occupied states) and what action to take from that state. Importantly, the agent

never “leaves” a state once it visits it: It expands in the state space. Multistate

MDPs implicitly encode the credit assignment into the trajectories: if there are two

competing states, the agent will explore both of them until some future states show

up with a lower reward.

Speed of convergence is a key notion here, since the large state spaces encoun-

tered in real world problems can make learning very slow. For example, Dyna-Q

learning [Sutton, 1991, Sutton et al., 2008] and Queue-Dyna [Peng and Williams,

1993]/prioritized sweeping [Andre et al., 1998, Moore and Atkeson, 1993b] update

the value of the past states during learning. Other methods like experience relay

[Cichosz, 1999] use the learning experience in the history to help the current value

updates.

Most reinforcement learning algorithms have two major concerns, one is the

exploration-exploitation tradeoff [Wilson and Strategies, 1996], which we do not
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address in this chapter. The second is temporal credit assignment [Kaelbling et al.,

1996, Sutton, 1988]: deciding, after achieving a large reward or suffering a large

punishment, what it was that the agent did that led to this outcome. Several

approaches exist to deal with credit assignment: TD(λ)-learning [Sutton, 1988]

uses a temporal difference operator that updates the prediction of values; while Q-

learning [Watkins, 1989] learns the values of state-action pairs without estimating

the transition and reward functions explicitly.

As discussed in the previous chapter, if the search space is very large, the

deterministic agent will take a long time to wait for the value to be propogated

from the terminal state. In order to compare two actions at one state, it requires

the agent to wait for multiple trajectories that take either of the actions and update

the value for the state action pairs. We show that by using non-deterministic agents,

we naturally obtain more control over credit assignment because we can truly answer

questions like “what would have happened if we had taken another action at some

point back in time.”

3.2 Multi-state MDPs

In a standard setting, an MDP is composed of a (typically finite) state space

S, an action space A, a (possibly stochastic) transition function T , and a (possibly

stochastic) reward function R. An agent observes the current state s ∈ S and

chooses an action a ∈ A. The environment responds by moving the agent to another

state s′ ∈ S, which is sampled from the MDP’s transition distribution T (s | a, s′),
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and by giving the agent a reward r, which is sampled from the MDP’s reward

distribution R(s | a, s′). The agent’s goal is to maximize its total cumulative reward

over time. An agent’s policy π describes how the agent chooses an action based on

its current state. Formally,

Definition 1 (MDP). A Markov Decision Process can be defined by a tuple M =

(S,A, T,R), where

• S is a finite state space,

• A(s) is a finite set of all available actions at state s ∈ S,

• T (s, a, s′) is the probability that taking action a ∈ A(s) in state s ∈ S will lead

to s′ ∈ S,

• R(s, a, s′) is the immediate reward by taking action a ∈ A(s) in state s ∈ S

and leading to s′ ∈ S.

The Bellman equations for value and Q value are defined as

V (s) = max
a

∑

s′

T (s, a, s′) (R(s, a, s′) + γV (s′)) (3.1)

Q(s, a) =
∑

s′

T (s, a, s′) (R(s, a, s′) + γV (s′)) (3.2)

A deterministic optimal policy is defined as π(s) = argmaxaQ(s, a).

We now define a multi-state MDP (MSMDP) on the basis of a given standard

MDP M . In an MSMDP, the state space S is a power set of the original state space

S. An agent observes the current state s̃ ∈ S where s̃ ⊆ S. It chooses a substate

s ∈ s̃, takes action a ∈ A(s) and expands to state s̃′ where s̃′ = s̃∪{s′} and s′ is the
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result of taking action a from state s according to M . We will refer to this choice

as the non-determinism of the agent in this chapter.

Definition 2 (Power state). A state s̃ is called a power state in a MDP M =

(S,A, T,R) if

• s̃ = ∪{si} where si ∈ S.

• ∀si, sj ∈ s̃, si 6= sj, ∃sk ∈ s̃ and two trajectories {sk0 , ak1 , sk1 . . . , akn , skn} and

{sk′
0
, ak′

1
, sk′

1
. . . , ak′n , sk′n}, such that

– sk0 = sk′
0
= sk, skn = si and sk′n = sj.

–
∏

t T (skt−1
, akt , skt) 6= 0 and

∏

t T (sk′t−1
, ak′t , sk′t) 6= 0.

The first condition indicates the power state is composed of some single states

in the standard MDP. The second condition guarantees those single states connect

with each other: in the simple case, if the non-deterministic agent starts with state

s0 and expands to s1, from s1 to s2 and selects s1 again and expands to s3, for the

powerset that contains {s0, s1, s2, s3},underlyingly, there are two individual paths

from s0: s0, s1, s2 and s0, s1, s3, we need to make sure those paths exist given a

power state. The definition for the power state above ensures that the state in a

multi-state MDP is composed of a set of connected states in the MDP. Each of

the states in the power state can keep backpointers to its previous states. Figure

3.1 shows an example of non-deterministic state versus deterministic state. For

simiplicity, we mark the grid axis at lower left corner (0,0) and upper right corner

(4,4) (the first dimension is column and second is row and each grid step +1 on the
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corresponding axis). For the deterministic agent (left), each grid in the maze is a

state and the trajectory shown is (0,0), up, (0,1), up, (0,2), up, (0,3), right, (1,3),

right, (2,3), right, (3,3), down, (3,2), down, (3,1), up, (3,2), up, (3,3), right, (4,3),

up, (4,4). For the non-deterministic agent (right), the trajectory is composed of

a set of powerset, so we describe an expanding process of the agent by a pair of

(picked single state in the power state, action taken from that state): ((0,0), up),

((0,1), up), ((0,1), right), ((1,1), right), ((1,2), right), ((1,2), down), ((0,2), up),

((0,3), right), ((1,3), right), ((2,3), right), ((3,3), right), ((3,4), up). The states in

dark color are the single states in the final power state. Note that state sets such as

{(0,0), (1,1)} do not satisfy the second condition in the definition of a power state

and thus it will not be in the state space of the multi-state MDP.

Figure 3.1: A 5×5 grid world example. The cells with diagonal lines are walls. The

terminal states are labeled +1. (Right) The full set of dark cells is the final state

in a multi-state MDP trajectory. (Left) In contrast, the last state of a trajectory in

the standard MDP is the cell at the tip of the arrow below the terminal state.

Define a multi-state MDP as follows:

Definition 3 (Multi-state MDP). A multi-state MDP (MSMDP)M = (S,A, T ,R)
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on a MDP M = (S,A, T,R) is defined as follows:

• A state s̃ inM is a power state in M ,

• An action ã = (s, a) ∈ A(s̃), where s ∈ S, s ∈ s̃, a ∈ A(s),

• The transition distribution T (s̃ | ã, s̃′) = T (s | a, s′) where s̃′ = {s′} ∪ s̃,

ã = (s, a).

• The reward function R(s̃ | ã, s̃′) = R(s | a, s′) where ã = (s, a) and s̃′ =

{s′} ∪ s̃.1

Note that in the definition of transition probability in MSMDP, the probability

T (s|s̃) cannot be defined according to the standard MDP, so in this chapter, we only

consider model-free (sometimes called direct) reinforcement learning algorithms that

compute the value and policy directly without estimating the model.

Bellman equations for value and Q value: V (s̃) andQ(s̃, ã) are defined similarly

to the standard MDP:

V (s̃) = max
ã

∑

s̃′

T (s̃, ã, s̃′)(R(s̃, ã, s̃′) + γV (s̃′)) (3.3)

= max
(s,a)

∑

s′

T (s, a, s′)(R(s, a, s′) + γV (s̃′)) (3.4)

and

Q(s̃, ã) =
∑

s̃′

T (s̃, ã, s̃′)(R(s̃, ã, s̃′) + γV (s̃′)) (3.5)

=
∑

s′

T (s, a, s′)(R(s, a, s′) + γV (s̃′)) (3.6)

1Transition and reward functions are defined in such a way that the probability of taking a

specific single state s in the power state s̃ and taking an action a to expand from the state and

adding s′ to s̃ to become s̃′ is the same as taking a from s to s′.
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If we use V (s̃) = maxs V (s) where s ∈ s̃, in MSMDP, we have

V (s̃) ≥ max
a

∑

s′

T (s, a, s′)(R(s, a, s′) + γV (s′)) (3.7)

where s, s ∈ S, {s} ∪ {s′} = s̃′.

We call the agent on MSMDP a non-deterministic agent. The agent starts to

expand from a fixed initial state and expands to occupy more states in the standard

MDP space. For simplicity, we only consider the case where only expansion actions

are allowed for the power states: the agent expands to a new state in MDP at each

step. So the size of the power set will be increased at least once every maxs |A(s)|

steps.

Definition 4 (Boundary set). The boundary set B(s̃) of a power state s̃ on M is

a set of state-action pairs in (s̃, ã) that are never explored in a trajectory. Formally,

• A history set of H(s̃) = {ã ∈ A(s̃)|ã ∈ s̃ and ã is already picked by the agent.}

• B(s̃) = {ã = (s, a) ∈ A(s̃)|∃a ∈ A(s), s.t. T (s, a, s′) > 0 and ã 6∈ H(s̃)}.

• Boundary actions ã = (s, a) ∈ B(s̃).

Instead of allowing all possible actions from the underlying MDP, we restrict

the MSMDP to take only the actions from the boundary actions (aka expansion ac-

tions). This is a minor restriction: even with it in place, the MSMDP still represents

an exponentially large set of possible configurations of the underlying MDP.

Figure 3.2 shows the boundary actions of the gray power state. Same as

before, we call the state at lower left corner (0,0) and upper right corner (3,3).

Moving horizontally corresponds to the first dimension and vertically the second
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Figure 3.2: Boundary actions of a power state

dimension. In this case, the expanding actions are shown in the arrows. Note that

for any determinstic trajectory in the standard MDP, we can find a shorter or equal

length non-deterministic trajectory. In the previous example, if the deterministic

trajectory is (0,0), up, (0,1), down, (0,0), right (1,0) which is of length 4, by using

the non-deterministic agent, it only requires ((0,0), up), ((0,0), right) which is of

length 2.

What we will show is that in cases when we only care about learning the

optimal deterministic path and policy (as opposed to the true value function), we

can do so efficiently. Here, the optimal deterministic path of a MDP or MSMDP is

defined as the sequence of actions from a fixed initial state to a terminal state with

maximal reward under the optimal policy. In MSMDP, a terminal state is a power

state that contains at least one terminal state in MDP. If the transition function
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is non-stochastic, then what we don’t care about is actions on states that are not

visited by the optimal policy. If the transition function is stochastic, we show later

in the experiments that a non-determinstic agent converges faster in practice.

Theorem 3.2.1. In a delayed reward setting2, for each optimal deterministic path

for a standard MDP M which is p = (s0, a0, s1, a1, . . . , sm, am) there is an optimal

path for a multi-state MDP M given M is p̃ = (s̃0, ã0, s̃1, ã1, . . . , s̃n, ãn) such that

s̃0 = {s0}, s̃t = s̃t−1 ∪ {st}, ∀i, ãi = (si, ai) and m = n.

Proof. Prove by contradiction. Define branches as those paths in a trajectory of a

MSMDP that do not lead to a terminal state. (1) There is no branch in p̃. If there

is only cost (negative reward) for all the states except the terminal state, pruning

those branches in p̃ will increase the accumulated reward. (2) Without branches,

an agent in a standard MDP setting can also follow p̃ by the definition of MSMDP.

Assume the two paths are different. Choose the one with the higher reward. If it

is p̃, construct a new path according to s̃0 = {s0}, s̃t = s̃t−1 ∪ {st}. This path will

give a higher reward inM, and vice versa.

By applying theorem 3.2.1 to all the non-terminal states in MDP, their optimal

paths in MSMDP are equivalent to those in MDP. Here, the equivalence means that

starting from a single state s, the optimal action at s for a non-deterministic agent

to expand is the same as the action for a deterministic agent to take.

2In a general delayed reward setting, the agent will need to take a long sequence of actions with

insignificant rewards until it receives a significant reward. This theorem applies in the case where

the immediate rewards for non-terminal states are negative.
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3.3 Learning with a Non-deterministic Agent

Theorem 3.2.1 shows that converged results on the MDP and MSMDP will

give equivalent optimal paths if running till convergence. Even if the number of

power state is exponential to the size of original state space, we are still able to find

optimal paths from estimating the value function of the MDP. Performing Bellman

updates on this exponential power state space can be expensive. However, we can

apply reinforcement learning algorithms with the non-deterministic agent from the

MSMDP and find the optimal value and policy for MDP and use MSMDP to answer

the question of “what would have happened if we had taken another action at some

point back in time.”

Algorithm 6 shows a sketch of the general learning framework.3

Algorithm 6 Non-deterministic Learning

Input: state space S, action space A, reward R, transition function T .

Initialize values.

repeat

repeat

Choose an action at current power state with non-deterministic agent.

Update value for certain states in the power state.

Expand to the new power state.

until trajectory termination condition is met.

until the convergence criterion is met.

3We discuss the trajectory termination condition in detail in section 3.3.3.
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From now on, we will shift our focus to using the non-deterministic agent to

solve MDP more efficiently, not only because the solution to a MSMDP gives the

optimal path in the corresponding MDP, but because the agent in MSMDP can

make learning on the original MDP converge faster.

This idea of a non-deterministic agent can be applied to most of the trajectory-

based reinforcement learning algorithms. In order to obtain a converged and op-

timal estimate of the value function, one of the most important prerequisites is

that no states will starve from updates under exploration [Kaelbling et al., 1996]

– if the agent runs forever, every state will be updated infinite times. With a

non-deterministic agent, the maximum length of a non-deterministic trajectory is

bounded by |S| × maxs |A(s)| where s ∈ S. At each step in the MSMDP, the ac-

tion is chosen from the boundary set — the state-action pairs that have not been

updated in the current iteration — with standard exploration policy like ǫ-greedy,

these pairs will be updated sufficiently often when the number of iterations goes to

infinity. Thus a non-deterministic agent can solve the original MDP exactly.

It turns out that non-deterministic algorithms are more efficient than the orig-

inal MDP solvers. In fact, MSMDPs implicitly encode the credit assignment

into the trajectories: if there are two competing actions from the same

state or two different states, the agent will explore both of them until

some future states show up with a lower reward.

Figure 3.3 shows an example how the credit assignment happens. Algorithmi-

cally, assume at iteration t: Qt(s, a1) > Qt(s, a2) and Vt−1(s2) > Vt−1(s) > Vt−1(s1)

where s1 and s2 are the two following states by taking a1 and a2 from state s. Given
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Figure 3.3: Competing actions of states.

a deterministic agent, it will follow a policy that goes from s to s1 even though s2

might be potentially better than s1. On the other hand, a non-deterministic agent

will expand from s to s1 and realise immediately that s2 has a high value, so it will

expand from s to s1 in the next step. A similar situation happens if there are two

competing actions from two different states: Qt(s1, a1) > Qt(s2, a2) ≥ Vt−1(s) where

s1, s2, s ∈ s̃, s1 6= s2 6= s and for the following states s′1 and s′2: Vt−1(s1) < Vt−1(s2).

A non-deterministic agent will keep the competition and explore both of the actions

until one action turns out later to be worse than the other.

In the experiments (section 3.4), we show that empirically, the non-deterministic

framework improves the time to convergence for the learning algorithms.

3.3.1 Non-deterministic Q Learning

In Q-learning [Watkins, 1989], the agent starts a trajectory at some start state

s0, chooses an action a using the policy derived from current Q value with ǫ-greedy

exploration, and observes reward r and next state s′. The Q-value is then updated

by

Qt+1(st, at) = (1− αt(st, at))Qt(st, at) + αt(st, at)(r(st, at, s
′
t) + γVt(st+1))(3.8)
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and

Vt(s) = max
a

Qt(s, a) (3.9)

Algorithm 7 gives the pseudocode for non-deterministic Q learning. As in the

general framework described in the previous section, we can use a non-deterministic

agent on a MSMDP to compute a deterministic policy on MDP. The main difference

now is how the trajectories are generated.

Algorithm 7 Non-deterministic Q Learning

Input: state space S, action space A, reward R, transition function T , discount

factor γ, start state s0

Initialize Q-values Q(s, a) arbitrarily and power state s̃ = ∅.

repeat

repeat

With probability ǫ, choose a random state-action pair ã = (s, a) ∈ B(s̃),

otherwise choose a state and action pair ã = (s, a) from the boundary set

B(s̃) under the current policy: π(s̃) = argmax(s,a) Q(s, a) where s ∈ s̃ and

a ∈ A(s).

Take action a from state s and observe reward r, state s′.

Update Q(s, a)→ (1− α)Q(s, a) + α[r+ γV (s′)] (V (s′) will be also updated

correspondingly).

If s′ 6∈ s̃, add s′ into s̃ and add {(s′, a′)} into B(s̃) for all a′ ∈ A(s′). Remove

ã = (s, a) from the boundary set.

until Trajectory termination condition is satisfied.

until The convergence criterion is met.
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Definition 5 (Neighbor). State sj is a neighbor of state si if ∃a ∈ A(si) s.t.

T (si, a, sj) 6= 0.

We call a state s in the power state s̃ a branching state if it is not the initial

state and at least three of its neighbors are in s̃. An initial state is also a branching

state if at least two of its neighbors are in s̃. If there is a branching state, this

means the current model has over-estimated the value function for some previous

states and so early updates should be performed to lower these values. As a result,

for those state-action pairs with large uncertainties, we should update the Q(s, a)

value (re-propagation) for all seen actions a after the update step in algorithm 7.

The following theorem in [Jaakkola et al., 1994] for the convergence and opti-

mality still hold for the non-deterministic Q-learning algorithms.

Theorem 3.3.1. The non-deterministic Q-learning algorithm with update

Qt+1(st, at) = (1− αt(st, at))Qt(st, at)

+ αt(st, at)(r(st, at, s
′
t) + γVt(st+1)) (3.10)

converges to the optimal Q∗(s, a) values if

1. |S| <∞ and |A| <∞.

2.
∑

t αt(s, a) diverges and
∑

t α
2
t (s, a) converges uniformly over s and a with

probability one.

3. Var{r(s, a, s′)} <∞.

4. If γ = 1, all policies should end up in a cost free terminal state with probability

one.
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The proof is identical to [Jaakkola et al., 1994] as the convergence condition

is guaranteed when the exploration policy is non-starving. The boundary set will

keep all the unvisited state and action pairs and with ǫ-greedy exploration, the

non-deterministic agent will not have any starving state when t → ∞, so the con-

vergence and optimality still hold for learning values and policies on MDP with a

non-deterministic agent.

3.3.2 Non-deterministic Queue-Dyna

A set of common model-free methods to take advantage of previously visited

states to perform more updates is Dyna-Q [Sutton, 1991, Sutton et al., 2008] and

Queue-Dyna [Peng and Williams, 1993, Zajdel, 2008] (See chapter 2.1.2).4 In Dyna-

Q learning, after updating the value for the current observed state and action pair, it

chooses some random states and actions in the space and updates the corresponding

values. It performs learning and simulation simultaneously. In Queue-Dyna, after

updating the current value, the observed neighbors are added into a priority queue

for updates. If the value difference between the current value and the previous value

is large (an indicator that the current estimate of the value is uncertain), this state

is given a higher priority to be updated again. Similarly, our non-deterministic

Queue-Dyna algorithm is described in algorithm 8.

The convergence condition is similar to what was discussed in [Li, 2008, Gul-

lapalli and Barto, 1994].

4Similar approaches with model estimation are called Prioritized Sweeping [Andre et al., 1998,

Moore and Atkeson, 1993b]
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Algorithm 8 Non-deterministic Queue-Dyna

Input: state space S, action space A, reward R, transition function T , discount

factor γ, start state s0, threshold δ, model M = ∅ and exploration rate ǫ.

Initialize Q-values Q(s, a) = 0 and priority queue PQ = ∅.

repeat

repeat

With probability ǫ, choose a random state-action pair ã = (ŝ, â) ∈ B(s̃),

otherwise choose a state and action pair ã = (ŝ, â) from the boundary set

B(s̃) under the current policy: π(s̃) = argmax(ŝ,â)Q(ŝ, â) where ŝ ∈ s̃ and

â ∈ A(ŝ).

Take the action â and observe reward r̂, state ŝ′.

Update M(ŝ, â)← (ŝ′, r̂).

If ŝ′ 6∈ s̃, add ŝ′ into s̃ and add {(ŝ′, â′)} into B(s̃) for all â′ ∈ A(ŝ′). Remove

ã = (ŝ, â) from the boundary set.

Compute priority p̂ = |r̂ + γV (ŝ′) − Q(ŝ, â)|. If p̂ >= δ, add (ŝ, â, ŝ′, r̂) into

the priority queue with priority p̂.

repeat

Pop (s, a) from PQ and (s′, r) from M .

Update the Q-value Q(s, a)→ (1− α)Q(s, a) + α[r′ + γV (s′)]

for All the preceding state-action pairs (s′′, a′′) s.t. M(s′′, a′′) ← (s, r′′)

do

compute their priority by |r′′+γV (s)−Q(s′′, a′′)| and add into the queue

if it is > δ.

end for

until queue is empty or maximum number of pops achieved

until Trajectory termination condition is satisfied.
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Theorem 3.3.2. The value function for standard MDP converges to the optimal

value with non-determinstic agent if the following conditions hold:

1. The priority value of state st ∈ S converges to 0 in the limit:

lim
t→∞

pt(st) = 0 (3.11)

2. For all the states s that are not chosen to be updated infinitely often and T is

the last time state s is updated. For t > T , there exists a constant C s.t.

pt(s) ≥ C|E(s, Vt)| (3.12)

where E(s, Vt) is the Bellman Error:

E(s, Vt) = max
a

(

R(s, a) + γ
∑

s′∈S

T (s, a, s′)Vt(s
′)− Vt(s)

)

(3.13)

The first condition makes sure that states with constant non-zero priorities will

be updated frequently enough (without starving). The second condition guarantees

for any starving states, the priority of the state will not be too small compared

to its Bellman error. So these two conditions show that the Bellman error for the

starving states should be 0 and its value already converged to the optimal value. In

non-deterministic Queue-Dyna (for deterministic transition function as described in

algorithm 8): The priority of a state-action pair (s, a)

pt(s) = max
a

pt(s, a) = max
a

(R(s, a) + γVt(s
′)−Qt(s, a)) (3.14)

≥ max
a

(R(s, a) + γVt(s
′)− Vt(s)) = E(s, Vt) (3.15)

so C = 1 and the second condition is satisfied. For the first condition, as for the

states that are updated frequently enough, it will converge to its optimal value
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[Bertsekas and Tsitsiklis, 1989], so when the time goes to infinity, the Bellman error

on those states will be zero.

lim
t→∞
|E(s, Vt)| = lim

t→∞
|max

a
(R(s, a) + γVt(s

′)− Vt(s)) | = 0 (3.16)

So

lim
t→∞

pt(s, a) ≤ lim
t→∞
|max

a
(R(s, a) + γVt(s

′)− Vt(s)) | = 0 (3.17)

So Dyna-Queue (with deterministic or non-deterministic agent) will converge to the

optimal value function.

Though algorithms like Q-Dyna or Dyna-Queue will back-propagate the learned

values to update the value of the preceding states, they use change in values as pri-

orities. However, what is more important for the learning is the impact of taking

different competing actions. The non-deterministic agent allows the exploration of

such state-action pairs which makes learning a better policy faster.

3.3.3 Non-deterministic Agent with Overgenerated Trajectories

In previous non-determinstic algorithms, we have not taken advantage of the

fact that there are multiple possible competing paths given a trajectory on the multi-

state MDP. Normally, a non-deterministic trajectory ends when the agent expands

to a terminal state. However, one advantage of using a non-deterministic agent is

that the agent can keep exploring even after it reaches a terminal state. This is not

applicable in the deterministic setting, because there a trajectory ends whenever a

terminal state is found. However, for the non-deterministic agent, it is still possible

62



to expand from other previous states in the power state. This is important for

addressing the credit assignment problem. We call those trajectories overgenerated

trajectories.

Assume the non-deterministic agent expands into one terminal state T1 with

reward R1. When overgeneration for the trajectory is allowed, the agent will keep

expanding from another state s′ in the power state until terminal state T2 with

reward R2 is covered in the power state. Assuming it’s reached a new terminal state

(T2 6= T1) with a higher reward (R2 > R1), the value of the “better” action (the

one that led to T2) will be updated in the next iteration so that it beats the value

of the “worse” action (the one that led to T1) and finally a policy leading to the

better terminal states can be learned. Similarly, when T1 = T2, the overgenerated

trajectories will assign credits to the better actions that reach the terminal state.

The overgenerated trajectories can be terminated when the agent visits termi-

nal states a certain number of times or it reaches the maximum length of a trajectory.

Moreover, we can decrease the number of visits to the terminal states during learn-

ing, so that the agent can focus on exploiting the non-deterministic trajectories

when it has more knowledge of the environment.

3.4 Experiments

In the experiments, we will explore some properties of the proposed non-

deterministic learning framework over mazes of different size and show their em-

pirical convergence results: non-determinism in general improves the convergence
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speed, policy accuracy and value. The baselines we use are: standard Q learn-

ing (Q), Dyna-Q (Dyna-Q) and Queue-Dyna (Q-Dyna). In the result tables 3.1

and 3.2, prefix ND refers to non-deterministic algorithms and OG to algorithms

with overgenerated trajectories. We use a fixed ǫ-greedy exploration where ǫ = 0.2

and learning rate α = 0.55. For Dyna-Q and Q-Dyna, the number of backups are

set to be 10. The main convergence measures we use are (1) the number of updates

(including backups). (2) the total length of the trajectories, which is the same as

the total number of states visited (backups are excluded).

We first focus on detailed analysis of a 19×19 maze (fig. 3.4) with two terminal

states: one positive (400) and one negative (-10). There is a fixed cost sample

from c ∈ U [−1, 0] for each step taken in the maze except at the terminal states.

The negative reward state is easily accessible from the start state. A deterministic

agent will get to the negative reward state very fast and without good strategies

to update the value in the history, it is very unlikely for it to find the terminal

state far away with a higher reward. However, with overgenerated trajectories, the

non-deterministic agent has a second chance to look for another terminal state or a

better way to reach the closer terminal state. The expected convergence and policy

correctness should be better.

Table 3.1 shows the convergence statistics, the learned values and policy accu-

racy for the start state6 over 100 runs. Here policy accuracy is measured over all the

5This is a standard setup in the literature even though theorem 3.3.1 requires
∑

t α
2
t → 0 when

t→∞
6We actually tried different random samples of step costs and got similar results.
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Figure 3.4: The 19× 19 maze with 2 terminal states. The black cells are the walls.
The start state is marked as S.
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non-terminal states. Since the maze is not too big, we can compute the value and

policy exactly for each state as references for measuring accuracy. We stop learning

when the value of states does not change for 3 continuous episodes. 7

Table 3.1: Convergence and optimality results for 19 × 19 maze. # Traj: the
number of trajectories until convergence. L(Traj) is the total length of trajectories
which is the same as the total number of visited states (backups are not included).
Updates is the number of Q value updates.

Algorithm # of traj L(Traj) updates (×105) V πlearned(s0) policy accuracy

Q 106.53 14392 0.1439 0.1217 31.09%
ND-Q 85.74 15063 0.1506 0.1217 32.37%
ND-Q-OG 196.8 123041 1.2304 293.44 86.74%

Dyna-Q 152.52 8454 0.8454 216.45 81.42%
ND-Dyna-Q 113.43 4967 0.4967 228.03 81.42%
ND-Dyna-Q-OG 22.15 16431 1.6431 295.65 91.68%

Q-Dyna 272.8 12670 1.268 248.93 99.71%
ND-Q-Dyna 337.97 16333 1.632 248.93 99.62%
ND-Q-Dyna-OG 92.9 25178 2.5161 295.94 100%

Compared to the standard algorithms, the non-deterministic versions without

overgenerated trajectories need to explore roughly the same or smaller amount of

states. The learned values for the start state and the final policy accuracy are slightly

better than the deterministic version. However, when overgenerated trajectories

are allowed, the non-deterministic agent will not stop an episode until it reaches

the terminal states twice (which can be the same or different terminal states), it

largely increases the learned value for the start state and the final policy accuracy.

Moreover, this increase in the learned value not only occurs for the start state, but

7We abuse the terminology and refer to this as convergence in the experiments. However, this

will cause some states to starve and we will discuss that later.
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also for some other non-terminal states.

From the results, it seems that Q-learning converged to a wrong answer, but

recall that we terminate the learning when the value does not change for 3 iterations

and ǫ-greedy exploration can only guarantee no starving state when t→∞. Some

of the states actually will never be updated enough. For Q-learning, about 33.8% of

the non-terminal states starve during the learning. Compared to the non-starving

states in Q learning, the values learned by non-deterministic agents increase by

142.96 on average and by 167.87 on average with non-deterministic overgenerated

trajectories. For Dyna-Q and Q-Dyna algorithms, the same situation happens.

In order to see the learning curve vs. runtime, we also compare the determin-

istic and non-deterministic agent with SARSA(λ) algorithm (eligibility trace [Rum-

mery and Niranjan, 1994, Singh and Sutton, 1996]) with λ = 0.9. SARSA updates

the Q value according to the policy:

Q(st, at)← (1− α)Q(st, at) + α[R(st, at) + γQ(st+1, at+1)−Q(st, at)] (3.18)

We try to estimate the value for the initial state as time passes by.

Figure 3.5 shows the learning curves of SARSA and Non-deterministic SARSA

(NDSARSA). The y-axis is the value of the path extracted from the initial state to

some terminal state. The higher value is the better. If an optimal path cannot be

extracted, we set the value to be 0. x-axis is the number of iterations (trajectories).

Though at the beginning of learning, SARSA can quickly find a terminal state and

update the value along the path from the start state, it does not find the better

terminal state. In contrast, NDSARSA spends the beginning episodes to explore

the state-action space and finds a better policy later.
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Figure 3.5: Value for the start state during the iterations in online deterministic and
non-deterministic SARSA. x-axis: number of iterations. y-axis: value under current
policy.

68



Similarly, we generate larger random mazes. Here we allow the number of

overgenerated trajectories to decrease as max{2− floor(log100(#of traj)), 1} during

the learning which improves the convergence. The results are in table 3.2 which

shows similar improvements as in the small maze.

Table 3.2: Results on larger mazes of size 900 and 1600. # Traj: the number of

trajectories until convergence. L(Traj): the number of state visits. Updates: the

number of Q value updates.

Size Algo
Value converged Policy converged

V π(s0)

# Traj L(Traj) Updates # Traj L(Traj) Updates

900

Q 898.4 71274.0 71274.0 671.0 61445.2 61445.2 3.85

ND-Q 184.8 20139.2 20139.2 171.6 19180.4 19180.4 4.61

ND-Q-OG 138.0 14621.2 14621.2 136.8 14602.0 14602.0 4.61

Q-Dyna 152.4 9106.4 100070.4 138.4 8558.0 94138.0 4.61

ND-Q-Dyna 119.0 11070.6 121376.6 113.8 10627.0 116497.0 4.61

ND-Q-Dyna-OG 113.8 11236.4 123209.4 110.8 11025.0 120275.0 4.61

1600

Q 1560.0 175232.8 175232.8 1186.0 121154.6 121154.6 0.94

ND-Q 338.2 54083.0 54083.0 333.0 53579.0 53579.0 1.04

ND-Q-OG 144.4 31359.4 31359.4 136.75 28970.5 28970.5 1.34

DynaQ 168.4 16998.4 186982.4 148.2 15887.6 174763.6 1.31

ND-DynaQ 197.0 36622.3 402845.3 196.5 37227.0 409497.5 1.31

Q-Dyna 666.6 44046.0 484306.2 386.0 29473.6 321209.6 1.48

ND-Q-Dyna 114.8 20905.6 224961.4 113.6 20744.0 226884.3 1.54

ND-Q-Dyna-OG 96.4 17473.6 190209.8 95.8 17418.2 187600.2 1.54
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3.5 Discussion

In this chapter, we show a non-determinstic learning framework for reinforce-

ment learning algorithms. In a simulated world with a large search space, standard

trajectory based reinforment learning algorithms converge slowly. With some addi-

tional updates for the value in the past, algorithms with backups like Queue Dyna

are proven to be efficient to learn. The non-deterministic agent improves not only

on the standard algorithms but also on algorithms with backups in terms of conver-

gence. The overgenerated trajectory with non-deterministic agent implicitly assigns

credit to competing actions at each time step – it keeps track of all the possible

action candidates and will pick the second best choice back in history if the pre-

vious best one is no long competitive. Understanding this non-deterministic agent

in reinforcement learning helps us better understand non-determinism in structure

prediction (as a search problem).

In the following chapters, we are going to consider another situation for learn-

ing with non-determinism — given a non-deterministic algorithm, how can we train

heuristics to improve its performance? The heuristics can be deterministic or non-

deterministic. In the case of agenda-based parsing, the parsing algorithm is non-

deterministic. However, we want to learn some heuristics automatically so that a

faster and/or better parse can be obtained using the same non-deterministic algo-

rithm.
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Chapter 4: Learned Prioritization for Trading Off Accuracy and Speed

4.1 Overview

The nominal goal of predictive inference is to achieve high accuracy. Unfortu-

nately, high accuracy often comes at the price of slow computation. If you could get

an additional 1% accuracy in syntactic parsing, for example, but the parser would

take two days to parse a sentence, the result would be significantly weakened. In

practice one wants a “reasonable” tradeoff between accuracy and speed. But the

definition of “reasonable” varies with the application. Our goal is to optimize a

system with respect to a user-specified speed/accuracy tradeoff, on a user-specified

data distribution. We formalize our problem in terms of learning priority functions

for generic inference algorithms (Section 4.2).

Much research in natural language processing (NLP) has been dedicated to

finding speedups for exact or approximate computation in a wide range of inference

problems including sequence tagging, constituent parsing, dependency parsing, and

machine translation. Many of the speedup strategies in the literature can be ex-

pressed as pruning or prioritization heuristics. Prioritization heuristics govern the

order in which search actions are taken while pruning heuristics explicitly dictate

whether particular actions should be taken at all. Examples of prioritization include
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A∗ [Klein and Manning, 2003] and Hierarchical A∗ [Pauls and Klein, 2010] heuristics,

which, in the case of agenda-based parsing, prioritize parse actions so as to reduce

work while maintaining the guarantee that the most likely parse is found. Alter-

natively, coarse-to-fine pruning [Petrov and Klein, 2007], classifier-based pruning

[Roark and Hollingshead, 2008], [Roark et al., 2012] beam-width prediction [Boden-

stab et al., 2011], etc can result in even faster inference if a small amount of search

error can be tolerated.

Unfortunately, deciding which techniques to use for a specific setting can be

difficult: it is impractical to “try everything.” In the same way that statistical

learning has dramatically improved the accuracy of NLP applications, we seek to

develop statistical learning technology that can dramatically improve their speed

while maintaining tolerable accuracy. By combining reinforcement learning and

imitation learning methods, we develop an algorithm that can successfully learn such

a tradeoff in the context of constituency parsing. Although this chapter focuses on

parsing, we expect the approach to transfer to prioritization in other agenda-based

algorithms, such as machine translation and residual belief propagation. We give a

broader discussion of this setting in [Eisner and Daumé III, 2011].

4.2 Priority-based Inference

Inference algorithms in NLP (e.g. parsers, taggers, or translation systems) as

well as more broadly in artificial intelligence (e.g., planners) often rely on priori-

tized exploration. For concreteness, we describe inference in the context of parsing,
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though it is well known that this setting captures all the essential structure of a

much larger family of “deductive inference” problems [Kay, 1986, Goodman, 1999].

4.2.1 Prioritized Parsing

Given a probabilistic context-free grammar, one approach to inferring the best

parse tree for a given sentence is to build the tree from the bottom up by dynamic

programming, as in CKY [Younger, 1967]. When a prospective constituent such as

“NP from 3 to 8” is built, its Viterbi inside score is the log-probability of the best

known subparse that matches that description.1

A standard extension of the CKY algorithm [Kay, 1986] uses an agenda—

a priority queue of constituents built so far—to decide which constituent is most

promising to extend next, as detailed in section 6.2.4 below. The success of the

inference algorithm in terms of speed and accuracy hinge on its ability to prioritize

“good” actions before “bad” actions. In our context, a constituent is “good” if it

somehow leads to a high accuracy solution, quickly.

Running Example 1. Either CKY or an agenda-based parser that prioritizes

by Viterbi inside score will find the highest-scoring parse. This achieves a percentage

accuracy of 93.3, given the very large grammar and experimental conditions described

in Section 4.6. However, the agenda-based parser is over an order of magnitude

faster than CKY (wall clock time) because it stops as soon as it finds a parse, without

1E.g., the maximum log-probability of generating some tree whose fringe is the substring span-

ning words (3,8], given that NP (noun phrase) is the root nonterminal. This is the total log-

probability of rules in the tree.
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building further constituents. With mild pruning according to Viterbi inside score,

the accuracy remains 93.3 and the speed triples. With more aggressive pruning, the

accuracy drops to 92.0 and the speed triples again.

Our goal is to learn a prioritization function that satisfies this condition. In

order to operationalize this approach, we need to define the test-time objective

function we wish to optimize; we choose a simple linear interpolation of accuracy

and speed:

quality = accuracy− λ× time (4.1)

where we can choose a λ that reflects our true preferences. The goal of λ is to

encode “how much more time am I willing to spend to achieve an additional unit of

accuracy?” In this chapter, we consider a very simple notion of time: the number of

constituents popped from/pushed into the agenda during inference. (A discussion

of alternative measures is relegated to Section 4.7.)

When considering how to optimize the expectation of Eq (4.1) over test data,

several challenges present themselves. First, this is a sequential decision process: the

parsing decisions made at a given time may affect both the availability and goodness

of future decisions. Second, the parser’s total runtime and accuracy on a sentence

are unknown until parsing is complete, making this an instance of delayed reward.

These considerations lead us to formulate this problem as a Markov Decision Process

(MDP), a well-studied model of decision processes.
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4.2.2 Inference as a Markov Decision Process

A Markov Decision Process (MDP) is a formalization of a memoryless search

process. An MDP consists of a state space S, an action space A, and a transition

function T . An agent in an MDP observes the current state s ∈ S and chooses an

action a ∈ A. The environment responds by transitioning to a state s′ ∈ S, sampled

from the transition distribution T (s′ | s, a). The agent then observes its new state

and chooses a new action. An agent’s policy π describes how the (memory-less)

agent chooses an action based on its current state, where π is either a deterministic

function of the state (i.e., π(s) 7→ a) or a stochastic distribution over actions (i.e.,

π(a | s)), and by giving the agent a reward r ∈ R, which is sampled from the MDP’s

reward distribution R(r | s, a, s′). The agent’s goal is to maximize its total reward

over time.

For parsing, the state is the full current chart and agenda (and is astronom-

ically large: roughly 1017 states for average sentences). The agent controls which

item (constituent) to “pop” from the agenda. The initial state has an agenda con-

sisting of all single-word constituents, and an empty chart of previously popped

constituents. Possible actions correspond to items currently on the agenda. When

the agent chooses to pop item y, the environment deterministically adds y to the

chart, combines y as licensed by the grammar with adjacent items z in the chart, and

places each resulting new item x on the agenda. (Duplicates in the chart or agenda

are merged: the one of highest Viterbi inside score is kept.) The only stochasticity

is the initial draw of a new sentence to be parsed. The environment also negatively
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rewards the agent for the time that this took. The agent can alternatively choose a

special stop action, which causes the environment to end the program and return

the current best parse (an item of type S that covers the whole input string), if any.

Here the environment positively rewards the agent for the accuracy of that parse.2

We are interested in learning a deterministic policy that always pops the

highest-priority available action. Thus, learning a policy corresponds to learning

a priority function. We define the priority of action a in state s as the dot product

of a feature vector φ(a, s) with the weight vector θ; our features are described in

Section 6.2.5.1. Formally, our policy is

πθ(s) = argmax
a

θ · φ(a, s) (4.2)

An admissible policy in the sense of A∗ search [Klein and Manning, 2003] would

guarantee that we always return the parse of highest Viterbi inside score—but we

do not require this, instead aiming to optimize Eq (4.1).

4.2.3 Features for Prioritized Parsing

We use the following simple features to prioritize a possible constituent. (1)

Viterbi inside score; (2) constituent touches start of sentence; (3) constituent touches

end of sentence; (4) constituent length; (5) constituent length
sentence length

; (6) log p(constituent label |

prev. word POS tag) and log p(constituent label | next word POS tag), where the

part-of-speech (POS) tag of w is taken to be argmaxt p(w | t) under the grammar;

2Thus, all positive reward is delayed till the parse completes. In section 4.3.4 we consider other

ways of distributing rewards over time, under training regimens that benefit from early feedback

for good actions.
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(7) 12 features indicating whether the constituent’s {preceding, following, initial}

word starts with an {uppercase, lowercase, number, symbol} character; (8) the 5

most positive and 5 most negative punctuation features from [Liang et al., 2008],

which consider the placement of punctuation marks within the constituent.

The log-probability features (1), (6) are inspired by work on figures of merit for

agenda-based parsing [Caraballo and Charniak, 1998], while case and punctuation

patterns (7), (8) are inspired by structure-free parsing [Liang et al., 2008].

4.3 Reinforcement Learning

Reinforcement learning (RL) provides a generic solution to solving learning

problems with delayed reward [Sutton and Barto, 1998]. The reward function takes

a state of the world s and an agent’s chosen action a and returns a real value r

that indicates the “immediate reward” the agent receives for taking that action. In

general the reward function may be stochastic, but in our case, it is deterministic:

r(s, a) ∈ R. The reward function we consider is: r(s, a) =

r(s, a) =















acc(a)− λ · time(s) if a is a full parse tree

0 otherwise

(4.3)

Here, acc(a) measures the accuracy of the full parse tree popped by the action a

(against a gold standard) and time(s) is a user-defined measure of time. In words,

when the parser completes parsing, it receives reward given by Eq (4.1); at all other

times, it receives no reward.
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4.3.1 Boltzmann Exploration

At test time, the transition between states is deterministic: our policy always

chooses the action a that has highest priority in the current state s. However, during

training, we promote exploration of policy space by running with stochastic policies

πθ(a | s). Thus, there is some chance of popping a lower-priority action, to find out

if it is useful and should be given higher-priority. In particular, we use Boltzmann

exploration to construct a stochastic policy with a Gibbs distribution. Our policy

is:

πθ(a | s) =
1

Z(s)
exp

[

1

temp
θ · φ(a, s)

]

with Z(s) as the appropriate normalizing constant

(4.4)

That is, the log-likelihood of action a at state s is an affine function of its prior-

ity. The temperature temp controls the amount of exploration. As temp → 0, πθ

approaches the deterministic policy in Eq (4.2); as temp → ∞, πθ approaches the

uniform distribution over available actions. During training, temp can be decreased

to shift from exploration to exploitation.

As we have a fixed-horizon episodic task (i.e., the agent does not live forever), a

stochastic policy π gives rise to a separate total reward R for each episode, i.e., each

time the parser parses a sentence. We want our policy to maximize the expected total

reward, which is fully defined by π together with the distribution over the random

behavior of the environment (transitions and rewards). We can measure this by

simulation.

A trajectory τ is the complete sequence of state/action/reward triples from
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parsing a single sentence. As is common, we denote τ = 〈s0, a0, r0, s1, a1, r1, . . . , sT , aT , rT 〉,

where: s0 is the starting state; at is chosen by the agent by πθ(at | st); rt = r(st, at);

and st+1 is drawn by the environment from T (st+1 | st, at), deterministically in our

case. At a given temperature, the weight vector θ gives rise to a distribution over

trajectories and hence to an expected total reward:

R = Eτ∼πθ
[R(τ)] = Eτ∼πθ

[

T
∑

t=0

rt

]

. (4.5)

where τ is a random trajectory chosen by policy πθ, and rt is the reward at step t

of τ .

4.3.2 Policy Gradient

Given our features, we wish to find parameters that yield the highest possible

expected reward. We carry out this optimization using a stochastic gradient ascent

algorithm known as policy gradient [Williams, 1992, Sutton et al., 2000]. This

operates by taking steps in the direction of ∇θR:

∇θpθ(τ) = pθ(τ)∇θ log pθ(τ) (4.6)

so the gradient of the objective becomes

∇θEτ [R(τ)] = Eτ

[

∇θpθ(τ)

pθ(τ)
R(τ)

]

= Eτ

[

R(τ)∇θ log pθ(τ)
]

= Eτ

[

R(τ)
T
∑

t=0

∇θ log π(at | st)
]

(4.7)
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The expectation can be approximated by sampling trajectories. It also requires

computing the gradient of each policy decision, which, by Eq (4.4), is:

∇θ log πθ(at | st) =
1

temp

(

φ(at, st)−
∑

a′∈A

πθ(a
′ | st)φ(a

′, st)

)

(4.8)

Combining Eq (4.7) and Eq (4.8) gives the form of the gradient with respect to a

single trajectory. The policy gradient algorithm samples one trajectory (or several)

according to the current πθ, and then takes a gradient step according to Eq (4.7).

This increases the probability of actions on high-reward trajectories more than ac-

tions on low-reward trajectories.

Running Example 2. The baseline system from Running Example 1 always

returns the target parse (the complete parse with maximum Viterbi inside score).

This achieves an accuracy of 93.3 (percent recall) and speed of 1.5 mpops (million

pops) on training data. Unfortunately, running policy gradient from this starting

point degrades speed and accuracy. Training is not practically feasible: even the first

pass over 100 training sentences (sampling 5 trajectories per sentence) takes over a

day.

4.3.3 Analysis

One might wonder why policy gradient performed so poorly on this problem.

One hypothesis is that it is the fault of stochastic gradient descent: the optimization

problem was too hard or our step sizes were chosen poorly. To address this, we

attempted an experiment where we added a “cheating” feature to the model, which

had a value of one for constituents that should be in the final parse, and zero
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otherwise. Under almost every condition, policy gradient was able to learn a near-

optimal policy by placing high weight on this cheating feature.

An alternative hypothesis is overfitting to the training data. However, we were

unable to achieve significantly higher accuracy even when evaluating on our training

data—indeed, even for a single train/test sentence.

The main difficulty with policy gradient is credit assignment : it has no way

to determine which actions were “responsible” for a trajectory’s reward. Without

causal reasoning, we need to sample many trajectories in order to distinguish which

actions are reliably associated with higher-reward. This is a significant problem for

us, since the average trajectory length of an A∗
0 parser on a 15 word sentence is

about 30,000 steps, only about 40 of which (less than 0.15%) are actually needed to

successfully complete the parse optimally.

4.3.4 Reward Shaping

Like other kinds of machine learning, reinforcement learning must learn which

features are responsible for high performance. This can be particularly difficult on

long trajectories (e.g. in the parsing case, hundred thousands of pops is typical),

since it is not clear which of the many actions contributed positively or negatively

to the total reward. It may take a long time to learn the correlation.

However, as in other kinds of learning, we can bias the learner toward likely-

good solutions in order to reduce the variance of learning. A simple option in our

setting is to exploit the traditional discount parameter γ that is used in infinite-
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horizon reinforcement learning. When γ < 1, the learner will more greatly increase

the probability of actions that were rapidly followed by a reward. This is a bias

toward assuming that temporal proximity implies causality.

A classic approach to attenuating the credit assignment problem when one has

some knowledge about the domain is reward shaping [Gullapalli and Barto, 1992].

The goal of reward shaping is to heuristically associate portions of the total reward

with specific time steps, and to favor actions that are observed to be soon followed

by a reward, on the assumption that they caused that reward.

If speed is measured by the number of popped items and accuracy is measured

by labeled constituent recall of the first-popped complete parse (compared to the

gold-standard parse), one natural way to shape rewards is to give an immediate

penalty for the time incurred in performing the action while giving an immediate

positive reward for actions that build constituents of the gold parse. Since only

some of the correct constituents built may actually make it into the returned tree,

we can correct for having “incorrectly” rewarded the others by penalizing the final

action. Thus, the shaped reward:

r̃(s, a) =































1−∆(s, a)− λ if a pops a complete parse (causing the parser to halt and return a)

1− λ if a pops a labeled constituent that appears in the gold parse

−λ otherwise

(4.9)

λ is from Eq (4.1), penalizing the runtime of each step. 1 rewards a correct con-

stituent. The correction ∆(s, a) is the number of correct constituents popped into
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the chart of s that were not in the first-popped parse a. It is easy to see that for

any trajectory ending in a complete parse, the total shaped and unshaped rewards

along a trajectory are equal (i.e. r(τ) = r̃(τ)).

We now modify the total reward to use temporal discounting. Let 0 ≤ γ ≤ 1

be a discount factor. When rewards are discounted over time, the policy gradient

becomes

Eτ∼πθ
[R̃γ(τ)] = Eτ∼πθ

[

T
∑

t=0

(

T
∑

t′=t

γt′−tr̃t′

)

∇θ log πθ(at | st)

]

(4.10)

where r̃t′ = r̃(st′ , at′). When γ = 1, the gradient of the above turns out to be

equivalent to Eq (4.7) [Peters and Schaal, 2008, section 3.1], and therefore following

the gradient is equivalent to policy gradient. When γ = 0, the parser gets only

immediate reward—and in general, a small γ assigns the credit for a local reward

r̃t′ mainly to actions at at closely preceding times.

This gradient step can now achieve some credit assignment. If an action is

on a good trajectory but occurs after most of the useful actions (pops of correct

constituents), then it does not receive credit for those previously occurring actions.

However, if it occurs before useful actions, it still does receive credit because we do

not know (without additional simulation) whether it was a necessary step toward

those actions.

Running Example 3. Reward shaping helps significantly, but not enough

to be competitive. As the parser speeds up, training is about 10 times faster than

before. The best setting (γ = 0, λ = 10−6) achieves an accuracy in the mid-70’s with
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only about 0.2 mpops. No settings were able to achieve higher accuracy.

4.4 Apprenticeship Learning

In reinforcement learning, an agent interacts with an environment and at-

tempts to learn to maximize its reward by repeating actions that led to high reward

in the past. In apprenticeship learning, we assume access to a collection of trajec-

tories taken by an optimal policy and attempt to learn to mimic those trajectories.

The learner’s only goal is to behave like the teacher at every step: it does not

have any notion of reward. In contrast, the related task of inverse reinforcement

learning/optimal control [Ng and Russell, 2000, Kalman, 1968] (previously called

inverse optimal control [Kalman, 1968]) attempts to infer a reward function from

the teacher’s optimal behavior.

Many algorithms exist for apprenticeship learning. Some of them work by

first executing inverse reinforcement learning [Ng and Russell, 2000, Kalman, 1968]

to induce a reward function and then feeding this reward function into an off-the-

shelf reinforcement learning algorithm like policy gradient to learn an approximately

optimal agent [Abbeel and Ng, 2004]. Alternatively, one can directly learn to mimic

an optimal demonstrator, without going through the side task of trying to induce

its reward function [Daumé III et al., 2009, Ross et al., 2011a].
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4.4.1 Oracle Actions

With a teacher to help guide the learning process, we would like to explore more

intelligently than Boltzmann exploration, in particular, focusing on high-reward

regions of policy space. We introduce oracle actions as a guidance for areas to

explore.

Ideally, oracle actions should lead to a maximum-reward tree. In training, we

will identify oracle actions to be those that build items in the maximum likelihood

parse consistent with the gold parse. When multiple oracle actions are available

on the agenda, we will break ties according to the priority assigned by the current

policy (i.e., we train the learner to choose the oracle action that it currently likes

best).

where reward is defined in terms of accuracy and speed (Eq (4.3)). However,

several oracle actions may be available at once. First, our agenda-based algorithm

has some freedom in how it orders its actions: e.g., it can arrive at the optimal

tree by building either the subject noun-phrase first or the main verb-phrase first.

Second, there may be multiple optimal trees with equal reward: e.g., for state-of-the-

art grammars like the ones we use [Petrov and Klein, 2008], the grammar produces

fine-grained parses, but accuracy is only measured against the coarse-grained parses

provided in labeled data. Thus, two fine-grained parses are equally accurate if they

disagree only on latent variables.

There are many different ways to get oracle trees. For simplicity, in the ex-

periments, we use the ground truth of a sentence as the oracle tree (Details in
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experiment section). Alternatively, if the full set of possible parses of a sentence is

accessible, we can find out the exact parse with the best speed-accuracy tradeoff

and use that as the oracle tree. Or, we can run the agenda-based parser but with

the pushed-back reward as the priority to get the oracle tree. However, these initial

choices should not influence the results at the end of reinforcement learning if we

gradually increase the ability of stochastic exploration for the parser.

We address this problem by letting the current policy decide which of the many

possible oracle actions it likes the best. Practically, this works as follows. During

the process of parsing, when an item is pushed onto the agenda, it is flagged if it

belongs to the maximum-reward parse tree. However, this flag does not affect its

position on the priority queue. When a learning algorithm requests an oracle action,

we pop the highest-priority flagged item. (We implement this as simply two queues:

one on which we push all actions and one on which we only push oracle actions as

they come). This favors oracle actions that the current policy is already somewhat

fond of, somewhat akin to easy-first parsing [Goldberg and Elhadad, 2010]. We let

our oracle actions be those that build constituents in the gold parse tree since this

tends to result in both fast and accurate parsing in most cases.

In order to use the oracle trees, we build two different agendas: one is the

standard for agenda-based parsing and the other for oracle constituents. There two

agendas are synchronized, in the sense that if the popped item exists in both of the

agendas, it will be removed from them after it is popped. When a constituent is

pushed into the standard agenda, it is checked against the oracle tree. If it is present

in the oracle tree, it is also pushed into the oracle agenda.
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In the following, we will describe two approaches to take the advantage of

oracle trees to speed up the training process.

4.4.2 Apprenticeship Learning via Classification

Given a notion of oracle actions, a straightforward approach to policy learning

is to simply train a classifier to follow the oracle—a popular approach in incremental

parsing [Collins and Roark, 2004a, Charniak, 2010]. Indeed, this serves as the initial

iteration of the state-of-the-art apprenticeship learning algorithm, DAgger [Ross

et al., 2011a].

Note that, although it was not originally described this way, using a shaped

reward has also been used to turn reinforcement learning into classification in the

task of learning to follow instructions [Branavan et al., 2009].

We train a classifier as follows. Trajectories are generated by following oracle

actions, breaking ties using the initial policy (Viterbi inside score) when multiple

oracle actions are available. These trajectories are incredibly short (roughly double

the number of words in the sentence). At each step in the trajectory, (st, at), a

classification example is generated, where the action taken by the oracle (at) is

considered the correct class and all other available actions are considered incorrect.

The classifier that we train on these examples is a maximum entropy classifier, so

it has exactly the same form as the Boltzmann exploration model (Eq (4.4)) but

without the temperature control. In fact, the gradient of this classifier (Eq (4.11))

is nearly identical to the policy gradient (Eq (4.7)) except that τ is distributed
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differently and the total reward R(τ) does not appear: instead of mimicking high-

reward trajectories we now try to mimic oracle trajectories.

Eτ∼π∗

[

T
∑

t=0

(

φ(at, st)−
∑

a′∈A

πθ(a
′ | st)φ(a

′, st)

)]

(4.11)

where π∗ denotes the oracle policy so at is the oracle action. The potential benefit of

the classifier-based approach over policy gradient with shaped rewards is increased

credit assignment. In policy gradient with reward shaping, an action gets (possibly

discounted) credit for all future reward (though no past reward). In the classifier-

based approach, it gets credit for exactly whether or not it builds an item that is in

the true parse.

Running Example 4. The classifier-based approach performs only marginally

better than policy gradient with shaped rewards. The best accuracy we can obtain is

76.5 with 0.19 mpops.

To execute the DAgger algorithm, we would continue in the next iteration by

following the trajectories learned by the classifier and generating new classification

examples on those states. Unfortunately, this is not computationally feasible due

to the poor quality of the policy learned in the first iteration. Attempting to follow

the learned policy essentially tries to build all possible constituents licensed by the

grammar, which can be prohibitively expensive. We will remedy this in section 4.5.

4.4.3 What’s Wrong With Apprenticeship Learning

An obvious practical issue with the classifier-based approach is that it trains

the classifier only at states visited by the oracle. This leads to the well-known
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problem that it is unable to learn to recover from past errors [Daumé III et al.,

2009, Ross et al., 2011a, Bagnell, 2005, Xu and Fern, 2007]. Even though our current

feature set depends only on the action and not on the state, making action scores

independent of the current state, there is still an issue since the set of actions to

choose from does depend on the state. That is, the classifier is trained to discriminate

only among the small set of agenda items available on the oracle trajectory (which

are always combinations of correct constituents). But the action sets the parser faces

at test time are much larger and more diverse. Thus, the notion that the model gets

itself stuck in states it has not yet seen before cannot be the only issue.

An additional objection to classifiers is that not all errors are created equal.

As far as the classifier-based approach is concerned, an action is either correct (the

one taken by the oracle) or incorrect (any other action). Some incorrect actions

are more expensive than others, if they create constituents that can be combined in

many locally-attractive ways and hence slow the parser down or result in errors. Our

classification problem does not distinguish among incorrect actions. The Searn al-

gorithm [Daumé III et al., 2009] would distinguish them by explicitly evaluating the

future reward of each possible action (instead of using a teacher) and incorporating

this into the classification problem. But explicit evaluation is computationally in-

feasible in our setting (at each time step, it must roll out a full future trajectory for

each possible action from the agenda). Policy gradient provides another approach

by observing which actions are good or bad across many random trajectories, but

recall that we found it impractical as well. We do not further address this problem

in this chpater, but in [Eisner and Daumé III, 2011] we suggested explicit causality
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analysis.

A final issue has to do with the nature of the oracle. Recall that the oracle

is “supposed to” choose optimal actions for the given reward. Also recall that our

oracle always picks correct constituents. There seems to be a contradiction here:

our oracle action selector ignores λ, the tradeoff between accuracy and speed, and

only focuses on accuracy.

This happens because for any reasonable setting of λ, the optimal thing to

do is always to just build the correct tree without building any extra constituents.

For fully binary trees, the minimum number of pops required to compute any tree

is a constant, so regardless of λ, the optimal trajectory is the same. Our trees, of

course, occasionally have unary rules. Even so, in order for the oracle to “want” to

exclude a unary rule, λ would need to be quite large. In an otherwise-binary tree,

the exclusion of a unary rule will lose one point in recall. In order for it to be worth

not popping this unary constituent, λ would have to be one! Even for trees that

are not otherwise binary, the oracle trajectories only change for values of λ on the

order of 0.1 or greater.

However, at test time, a λ of 0.1 or greater is completely unreasonable. Even

attempting to overfit the data as much as possible (by training and testing on a

single sentence at a time), the smallest number of pops we are able to achieve

is, on average, 15k (compared to the oracle, which takes 30 pops). Even at this

(unrealistically good) number of pops, having a value of λ more than about 10−3

would mean that the best thing the parser could do is give up immediately (which

our parser is not allowed to do).
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This means that under the apprenticeship learning setting, we are actually

never going to be able to learn to tradeoff accuracy and speed: as far as the oracle

is concerned, you can easily achieve both! The only reason the tradeoff appears is

because our model cannot come remotely close to mimicking the oracle. In fact, if

we add a cheating feature (akin to Section 4.3.3), the model is almost always able

to learn to mimic the oracle and once again λ does not matter.

4.5 Oracle-Infused Policy Gradient

The failure of both standard reinforcement learning algorithms and standard

apprenticeship learning algorithms on our problem leads us to develop a new ap-

proach. We start with the policy gradient algorithm (Section 4.3.2) and use ideas

from apprenticeship learning to improve it. Our formulation preserves the rein-

forcement learning flavor of our overall setting, which involves delayed reward for a

known reward function.

Our approach is specifically designed for the non-deterministic nature of the

agenda-based parsing setting [Eisner and Daumé III, 2011]: once some action a

becomes available (appears on the agenda), it never goes away until it is taken.

This makes the notion of “interleaving” oracle actions with policy actions both

feasible and sensible. Like policy gradient, we draw trajectories from a policy and

take gradient steps that favor actions with high reward under reward shaping. Like

Searn and DAgger, we begin by exploring the space around the optimal policy

and slowly explore out from there.
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To achieve this, we define the notion of an oracle-infused policy. Let π be an

arbitrary policy and let δ ∈ [0, 1]. We define the oracle-infused policy π+
δ as follows:

π+
δ (a | s) = δπ∗(a | s) + (1− δ)π(a | s) (4.12)

In other words, when choosing an action, π+
δ explores the policy space with proba-

bility 1 − δ (according to its current model), but with probability δ, we force it to

take an oracle action.

Our algorithm takes policy gradient steps with reward shaping (Eqs (4.10)

and (4.8)), but with respect to trajectories drawn from π+
δ rather than π. If δ = 0,

it reduces to policy gradient, with reward shaping if γ < 1 and immediate reward

if γ = 0. For δ = 1, the γ = 0 case reduces to the classifier-based approach with π∗

(which in turn breaks ties by choosing the best action under π).

Similar to DAgger and Searn, we do not stay at δ = 1, but wean our

learner off the oracle supervision as it starts to find a good policy π that imitates

the classifier reasonably well. We use δ = 0.8epoch, where epoch is the total number

of passes made through the training set at that point (so δ = 0.80 = 1 on the initial

pass). Over time, δ → 0, so that eventually we are training the policy to do well on

the same distribution of states that it will pass through at test time (as in policy

gradient). With intermediate values of δ (and γ ≈ 1), an iteration behaves similarly

to an iteration of Searn, except that it “rolls out” the consequences of an action

chosen randomly from (4.12) instead of evaluating all possible actions in parallel.

Running Example 5. Oracle-infusion gives a competitive speed and accuracy

tradeoff. A typical result is 91.2 with 0.68 mpops.
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4.6 Experiments

All of our experiments (including those discussed earlier) are based on the

Wall Street Journal portion of the Penn Treebank [Marcus et al., 1993a]. We use a

probabilistic context-free grammar with 370,396 rules—enough to make the baseline

system accurate but slow. We obtained it as a latent-variable grammar [Matsuzaki

et al., 2005] using 5 split-merge iterations [Petrov and Klein, 2007] on sections 2–20

of the Treebank, reserving section 22 for learning the parameters of our policy. All

approaches to trading off speed and accuracy are trained on section 22; in particular,

for the running example and Section 4.6.2, the same 100 sentences of at most 15

words from that section were used for training and test. We measure accuracy in

terms of labeled recall (including preterminals) and measure speed in terms of the

number of pops from on the agenda. The limitation to relatively short sentences is

purely for improved efficiency at training time.

4.6.1 Baseline Approaches

Our baseline approaches trade off speed and accuracy not by learning to pri-

oritize, but by varying the pruning level ∆. A constituent is pruned if its Viterbi

inside score is more than ∆ worse than that of some other constituent that covers

the same substring.

Our baselines are: (HA∗) a Hierarchical A∗ parser [Pauls and Klein, 2009]

with the same pruning threshold at each hierarchy level; (A∗
0) an A∗ parser with

a 0 heuristic function plus pruning; (IDA∗
0) an iterative deepening A∗ algorithm,
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on which a failure to find any parse causes us to increase ∆ and try again with

less aggressive pruning (note that this is not the traditional meaning of IDA*); and

(CTF) the default coarse-to-fine parser in the Berkeley parser [Petrov and Klein,

2007]. Several of these algorithms can make multiple passes, in which case the

runtime (number of pops) is assessed cumulatively.

4.6.2 Learned Prioritization Approaches

Table 4.1: Performance on 100 sentences on dev set.

Model # of pops Recall F1

A∗
0 (no pruning) 1496080 93.34 93.19

D- 686641 56.35 58.74
I- 187403 76.48 76.92

D+ 1275292 84.17 83.38
I+ 682540 91.16 91.33

We explored four variants of our oracle-infused policy gradient with with λ =

10−6. Figure 4.1 shows the result on the 100 training sentences. The “-” tests are

the degenerate case of δ = 1, or apprenticeship learning (section 4.4.2), while the

“+” tests use δ = 0.8epoch as recommended in section 4.5. Temperature matters for

the “+” tests and we use temp = 1. We performed stochastic gradient descent for

25 passes over the data, sampling 5 trajectories in a row for each sentence (when

δ < 1 so that trajectories are random).

We can see that the classifier-based approaches “-” perform poorly: when

training trajectories consist of only oracle actions, learning is severely biased. Yet
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we saw in section 4.3.2 that without any help from the oracle actions, we suffer from

such large variance in the training trajectories that performance degrades rapidly

and learning does not converge even after days of training. Our “oracle-infused”

compromise “+” uses some oracle actions: after several passes through the data,

the parser learns to make good decisions without help from the oracle.

The other axis of variation is that the “D” tests (delayed reward) use γ = 1,

while the “I” tests (immediate reward) use γ = 0. Note that I+ attempts a form

of credit assignment and works better than D+.3 We were not able to get better

results with intermediate values of γ, presumably because this crudely assigns credit

for a reward (correct constituent) to the actions that closely preceded it, whereas in

our agenda-based parser, the causes of the reward (correct subconstituents) related

actions may have happened much earlier [Eisner and Daumé III, 2011].

Our final evaluation is on the held-out test set (length-limited sentences from

Section 23). A 5-split grammar trained on section 2-21 is used. Given our previous

results in Table 4.1, we only consider the I+ model: immediate reward with oracle

infusion. To investigate trading off speed and accuracy, we learn and then evaluate

a policy for each of several settings of the tradeoff parameter: λ. We train our policy

using sentences of at most 15 words from Section 22 and evaluate the learned policy

3The D- and I- approaches are quite similar to each other. Both train on oracle trajectories

where all actions receive a reward of 1− λ, and simply try to make these oracle actions probable.

However, D- trains more aggressively on long trajectories, since (4.10) implies that it weights a

given training action by T − t+1, the number of future actions on that trajectory. The difference

between D+ and I+ is more interesting because the trajectory includes non-oracle actions as well.
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Figure 4.1: Pareto frontiers: Our I+ parser at different values of λ, against the
baselines at different pruning levels.

on the held out data (from Section 23). We measure accuracy as labeled constituent

recall and evaluate speed in terms of the number of pops (or pushes) performed on

the agenda.

Figure 4.1 shows the baselines at different pruning thresholds as well as the

performance of our policies trained using I+ for λ ∈ {10−3, 10−4, . . . , 10−8}, using

agenda pops as the measure of time. I+ is about 3 times as fast as unpruned A∗
0

at the cost of about 1% drop in accuracy (F-score from 94.58 to 93.56). Thus, I+

achieves the same accuracy as the pruned version of A∗
0 while still being twice as

fast. I+ also improves upon HA∗ and IDA∗
0 with respect to speed at 60% of the

pops. I+ always does better than the coarse-to-fine parser (CTF) in terms of both

speed and accuracy, though using the number of agenda pops as our measure of

speed puts both of our hierarchical baselines at a disadvantage.

We also ran experiments using the number of agenda pushes as a more accurate

measure of time, again sweeping over settings of λ. Since our reward shaping was
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crafted with agenda pops in mind, perhaps it is not surprising that learning performs

relatively poorly in this setting. Still, we do manage to learn to trade off speed and

accuracy. With a 1% drop in recall (F-score from 94.58 to 93.54), we speed up from

A∗
0 by a factor of 4 (from around 8 billion pushes to 2 billion). Note that known

pruning methods could also be employed in conjunction with learned prioritization.

4.7 Conclusions and Future Work

In this chapter, we considered the application of both reinforcement learning

and apprenticeship learning to prioritize search in a way that is sensitive to a user-

defined tradeoff between speed and accuracy. We found that a novel oracle-infused

variant of the policy gradient algorithm for reinforcement learning is effective for

learning a fast and accurate parser with only a simple set of features. In addition,

we uncovered many properties of this problem that separate it from more standard

learning scenarios, and designed experiments to determine the reasons off-the-shelf

learning algorithms fail.

An important avenue for future work is to consider better credit assignment.

We are also very interested in designing richer feature sets, including “dynamic”

features that depend on both the action and the state of the chart and agenda.

One role for dynamic features is to decide when to halt. The parser might decide

to continue working past the first complete parse, or give up (returning a partial or

default parse) before any complete parse is found.
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Chapter 5: Learned Dynamic Pruning for Agenda-based Parser

5.1 Overview

While prioritization heuristics govern the order in which search actions are

taken, pruning heuristics explicitly dictate whether particular actions should be

taken at all. Pruning is widely used in all kinds of search based algorithms to

reduce the search space.

In the case of syntactic parsing, pruning is extremely important for parsing

algorithms to scale to large grammars and long sentences. The parsing accuracy

increases with a rich grammar: [Petrov et al., 2006] increases the size of the grammar

from a few thousand rules to half a million rules and boosts the F-1 score from∼ 75%

to ∼ 90%. Though the standard CKY algorithm only takes O(n3) running time in

theory where n is the length of the sentence, it is more realistic to factor in the size

of the grammar |G| explicitly due to its size in natural language parsing, and the

complexity of the CKY algorithm becomes O(|G|n3).

In this case, the grammar constant |G| plays an important role in parsing –

to parse a set of sentences with length less than or equal to 40 words, |G| ≥ 403, so

the size of grammar |G| has a large impact on the real parsing time. Approximate

inference methods like [Charniak et al., 2006, Petrov and Klein, 2007, Weiss et al.,
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2012] prune the large search space based on an accurate (but slow) model to speed

up the decoding.

For agenda-based parsers, the pruning can be applied to chart cells as well as

agenda candidates (constituents). Coarse grained methods prune multiple cells or

constituents at each step. Fine grained methods only consider one cell candidate

or one constituent each time. For example, a simple fine grained pruning heuristic

is to compare the difference in score between the best candidate in the cell so far

and the current candidate. New candidates with scores underperforming the best

candidate by more than a certain threshold get pruned. For coarse grained pruning,

[Roark and Hollingshead, 2008] tags the sentence with a part-of-speech tagger and

trains an averaged perceptron to prune (close) the chart cells before actually parsing

the sentence. Starting or ending a non-terminal at certain positions is not allowed

after pruning. [Roark and Hollingshead, 2008] also shows the complexity of the

chart parsing algorithm can be reduced from O(n3) to O(n2) or even approximately

O(n). Moreover, [Bodenstab et al., 2011] applies beam-width prediction to limit the

potential search space for each cell in the chart.

In this chapter, we will focus on automatically learning a fine grained pruning

strategy to make inference faster. In contrast with the focus of re-prioritization, the

goal here is to decode the sentences as fast as possible without losing too much on

accuracy. In contrast with [Roark and Hollingshead, 2008] and [Bodenstab et al.,

2011], we do not learn a pruner to prune the chart before parsing the sentence. We

instead aim to learn a pruner that prunes while parsing the sentences. More specif-

ically, we learn a pruner for chart cells as well as constituents on the agenda during
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parsing. Using both a beam-width threshold to restrict the number of elements in

the cell as a cell pruner and the difference of inside score of the current candidate

and the best candidate as a constituent pruner is a simple case (without learning the

heuristics) for our setting. We learn pruning decisions for a cell when the elements

are updated in the cell and for a constituent whether it should be added to the

chart.

From now on, we call the pruner designated to prune cells in the agenda-

based parser as the cell pruner or cell classifier and the pruner to prune individual

constituents as the constituent pruner or constituent classifier. In the agenda-based

parser, a cell is updated when a constituent is popped from the agenda and filled into

the corresponding cell in the chart. The cell pruner is learned such that every time an

open cell in the chart is updated, it will decide if the cell can continue to accept more

constituents (open) or no more (close). If the cell is already closed, the cell pruner

will not re-classify it and mark it for re-opening later. The constituent pruner only

applies when removing constituents from the agenda and when updating the chart.

If the constituent is pruned, it will be gone immediately without any cell updates.

For more details of the algorithm, please refer to section 5.3.3 and algorithm 9. Both

of the pruners are applied at parsing time – unlike the beam-width prediction or cell

complete closure approach (background section 5.2.2) whose pruning is done before

parsing and no pruning is required during parsing.

In the experiments, we show that compared with different baselines, the learned

pruners can be comparable with some state-of-the-art approaches in speed and ac-

curacy.
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Figure 5.1: Grey area is the inside tree and white area is the outside tree of non-
terminal NP[1,3].

5.2 Background

5.2.1 Agenda-based Parser with Figure-of-merit

One way to speed up agenda-based parsing is to compute a better search

heuristic for constituents instead of using estimated inside scores from the grammar.

Figure-of-merit is an estimated score of the product of inside and outside score. We

use figure 5.1 to demonstrate the definition of inside, outside and figure-of-merit

scores.

Each word w[i, j] in a sentence of length n is labeled by its span – from i to

j. Each edge/symbol is also associated with a span, in the figure, NP[1,4] is a noun

phrase spanning from 1 to 4. The inside score of an edge N [i, j] (subtree) is defined

as

β(N [i, j]) = P (w[i, j]|N [i, j]) (5.1)
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e.g. β(N [1, 4]) = P (had an apple|NP [1, 4]) which is the likelihood of the word

sequence given the non-terminal (in the grey area of figure). On the other hand,

the outside score estimates how likely a sequence is if the subsequence covered by

inside tree of a sentence is replaced by the edge. For agenda-based parsing, inside

score is usually given with the grammar.

α(N [i, j]) = P (w[0, i], N [i, j], w[j, n]) (5.2)

where n is the length of the sentence. In the figure, α(NP [1, 4]) = P (he[0, 1], NP [1, 4], today[4, 5]).

The outside score is not available directly from the grammar and there is a lot of

work done in the field to give good estimates. Figure-of-merit estimates the merit

of the edge in the final tree as the product of the inside and outside score:

FOM(N [i, j]) = α(N [i, j])β(N [i, j]) (5.3)

In this chapter, we will use the same FOM as what is implemented in [Bodenstab

et al., 2011, 2010] for comparison (which uses a modified version of [Caraballo and

Charniak, 1998]). This Boundary FOM approximates the outside score of an edge

with POS forward-backward scores and transition probabilities of part-of-speech to

nonterminal (constituent) boundary. By using this FOM as a heuristic, an agenda-

based parser can be more than 20 times faster compared to using inside score only.

5.2.2 Cell Closing Algorithms and Beam-width prediction

The dynamic pruner that we propose shares some commonality with different

cell closure methods and beam-width prediction methods from [Roark and Holling-

shead, 2008, Bodenstab et al., 2011]. [Roark and Hollingshead, 2008] uses so-called
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Figure 5.2: Left: a non-binary parse tree in the training data. Right: a binarized
tree with partial constituent @NP.

chart contraints that train two classifiers to decide if any multiword edge (con-

stituent) can start from a word or end at a word. They convert training sentences

to part-of-speech and lexical features and train the classifiers.

[Bodenstab et al., 2011] propose three different cell closing algorithms: con-

situent closure, complete closure and beam-width prediction. The constituent clo-

sure algorithm learns a classifier to open or close cells for full consitutents while

complete closure makes the same decision for any constituent, partial or full. Par-

tial constituent here refers to a set of special factored nonterminals generated when

binarizing the grammar. In a given training set, a parse tree is not necessarily a

binary tree. Without giving too much detail, figure 5.2 shows an example of a non-

binary tree and the tree after binarization1. The grammar is already trained on the

input with the same binarization.

Constitutent or complete closure trains a binary classifier for whether the cell

contains a full or partial edge while beam-width prediction trains a classifier to tell

1There are many ways of binarizing a tree, we just show one example of what a binarized tree

looks like and what the partial constituent looks like here.
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how many constituents one cell can have. It is done by using a few binary classifiers

to classify if the cell is open for 0, 1, 2, 3, 4 constituents, etc.

In order to train those classifiers, [Roark and Hollingshead, 2008, Bodenstab

et al., 2011] use an averaged perceptron with an asymetric loss function to penalize

false negatives during training – if some cells that should be open got pruned, the

overall accuracy would definitely be hurt.

The major differences of our approach in this chapter are:

1. We prune both at cell and constituent level.

2. The pruning is done dynamically at runtime, not before parsing.

3. The feature set we use contains not only static features, but also dynamic/trace

features.

5.3 Constituent and Cell Pruner

As mentioned in the previous sections, we aim to learn two different classifiers

at training time, one for constituents and one for cells. Before introducing the

training methods for those pruners, we first show how and when we prune with

those classifiers.

5.3.1 Constituent-based Pruning

In agenda-based parsing, the chart changes when a constituent is popped from

the agenda. The agenda is re-organized when new constituents are built and pushed.
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Pruning can be involved at pop time or push time or both. Most state-of-the-art

parsers do not use exhaustive parsing. Either the first popped tree is extracted or

additional overparsing is allowed [Hall and Johnson, 2003, Charniak and Johnson,

2005]. In these cases, the number of constituents pushed is greater than the number

of those popped. Given a grammar of around 500,000 rules and the Viterbi inside

score as the order of the agenda, when the first tree is popped, less than 1% of the

constituents pushed into the agenda are processed and for a sentence of length 15,

more than 20,000 items are already popped. So fewer pruning decisions are required

to be made at pop time than at push time. Even if cheating is allowed (each pruning

decision is made by looking up the ground truth) pruning at push time has a more

significant delay on the wallclock time speed.

As a result, a constituent classifier is learned at pop time. If a constituent is

marked to be pruned by the classifier, the constituent will not be added into the

chart and the next constituent at the top of the agenda will be popped. This allows

the parser to avoid the extra computation of combining with adjacent constituents

and significantly reduces the number of candidates to be pushed when the number

of pops is large.

5.3.2 Cell-based Pruning

There are two different situations where one cell can be pruned. The first one

is before parsing happens. This is exactly the same as what complete closure does.

However, we do not try to make this decision before parsing, we only need to check
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if a cell is open right before when we start to fill in constituents. Another chance

to close a cell will be after when the cell is updated, i.e. when a constituent is just

added to the cell, the classifier can make a decision for whether to close the cell to

additional constituents. If a cell is closed before adding any constituent, the cell will

remain empty during parsing and any candidate of that cell will be removed directly.

When a cell is closed after being populated with some constituents, the constituents

in the cell will still be available in the later steps, but no new consituents can be

added to the cell.

5.3.3 Constituent and Cell Dynamic Pruning Algorithm

By combining the cell pruner and constituent pruner at test time, the parser

works as follows: when a constituent is popped from the agenda, if the target cell

of the constituent is never considered before, the cell pruner will be run and decide

if the cell will be open or closed. If the cell is closed, no further action is required.

The current constituent will be discarded and the next one on top of the agenda

will be popped.

If the cell pruner keeps the cell open, the constituent pruner will classify if

the constituent is pruned or not, if the constituent is pruned, then the parser moves

on to the next candidate. Otherwise, the constituent is filled into the chart. After

that, the cell classifier will be run again and check if it is ok to close the cell after

adding this constituent. The added constituent will combine with its neighbors and

add more candidates to the agenda.
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Algorithm 9 Classifier-based Cell and Constituent Pruner at Test Time

Initialize the classifier.

while Agenda is not empty and no tree is returned do

1. Dequeue a constituent from the agenda, say (Y, i, j)→ 75

2. If cell has never been visited before, classify whether the cell is open. Oth-

erwise check whether cell is open. If the cell is closed, discard the constituent

and go to 1.

3. Predict if (Y, i, j) should be pruned. If it should be pruned: Skip the following

and go back to step 1. If not, continue to step 4.

4. Update the chart if necessary.

5. Run the cell classifier again and check if the cell can be closed now.

for each constituent adjacent to (Y, i, j), such as (Z, j, k) do

for each grammar rule, e.g. X → Y Z, that combines (Y, i, j) with (Z, j, k)

do

a. Let new ← chart[Y, i, j] + chart[Z, j, k] + score(X → Y Z).

b. Enqueue new constituent (X, i, k) with priority new.

end for

end for

end while

Return the first complete parse that is popped without overparsing.
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Algorithm 9 shows a sketch of the test algorithm.

5.4 Training classifiers

In order to train a cell and constituent pruner, we must define the three key

components for any supervised learning algorithm: (1) training examples (2) gold

labels/ground truth (3) a classification algorithm.

5.4.1 Ground truth and oracles

The ideal pruner will be one that keeps only gold constituents and prunes

everything else. This is nearly impossible, but a good pruner should at least mimic

this behavior as much as possible. So how do we decide if a constituent is “gold”

or not or if the cell should be open or not? Here, trees that are used to label

constituents and cells are called oracles.

Two very obvious choices are according to the Viterbi tree and the gold tree.

The Viterbi tree is the most likely tree (tree with maximum likelihood) under the

given grammar while the gold tree gives the best accuracy. The Viterbi tree requires

that we parse the training set once ahead of time with the inside score as priority

which might be relatively slow to obtain, but it can be applied to the training set

without the ground truth and can be adapted to other domains.

On the other hand, gold trees are hard to get: the training data can be unla-

beled or some sentences might not be re-constructible under nonsmooth grammars

or the gold trees can be very unlikely given the grammar. With a properly smoothed
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grammar, it is possible to extract some trees that are compatible with gold trees.

We now show how to find a labeled tree for a sentence that is compatible with

its gold tree. Assume we are given a grammar G, a sentence w1, . . . , wn with length

n and a gold tree T={N [i, j] | i, j ∈ [0, n]}. Here we represent the gold tree as a

collection of constituents / edges from the gold tree. For latent grammars like the

Berkeley grammar, each nonterminal is associated with a latent tag while in the

ground truth, there is no such tag, e.g. a grammar rule will look like NP 3 − >

DET 0 NN 3 with latent tags but the gold tree looks like (ROOT (S (PR He) (VP

(V has) (NP (DET a) (NN cat))))). (For a real example of latent grammar and

ground truth, please refer to Appendix B). The extraction process is as follows:

we take an agenda-based parser with inside score as the priority for the agenda

and parse the sentence without pruning. (This is a UCS parser which we use as a

baseline in Chapter 4 and later in this Chapter.) We parse the sentence with the

UCS parser, but only allow the constituents that are compatible with the gold tree

to be filled into the chart. For example, in the previous example, we allow NP ? − >

DET ? NN ? with arbitrary latent tags as long as the nonterminals/preterminals

in the grammar match the gold tree. We then extract the first complete tree with

the UCS parser under this restriction. We call this tree most probable compatible

tree. The most probable compatible trees are not necessarily gold: it might skip

some unary rules to make the trees more likely under the grammar. (For examples

of latent grammar and gold tree, please refer to Appendix B).

Once we pick one type of oracle, either most probable compatible trees or

Viterbi trees, the ground truth of a cell is easy to define: if the cell contains all the
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edges that it should have to get the ground truth tree, the cell should be closed.

Otherwise, it should remain open.

5.4.2 Discussion: Dynamic Oracle v.s. Fixed Oracle

One question one might ask is what if the oracle action gets pruned by the

pruner during learning. More specifically, shall we change the current oracle if the

constituents that should be kept get pruned? Our simple answer here is that a

“dynamic oracle” is not necessary in the parsing case. This sounds counter-intuitive

at first glance since if the current oracle items are pruned, it might be better to find

the second best oracle in the original setting and continue with that. In the cases

of robot control or driving cars, this is exactly the case. However, in parsing, the

goal is not to successfully finish the parsing process, but to obtain a tree with high

accuracy.

If one oracle item is pruned, the second best option to continue will be finding

a tree that is closest to the gold tree without that pruned item. If the grammar

is large enough: almost every non-terminal can combine with others, we can safely

assume that the next oracle item can be constructed in some other way that does not

contain the pruned item. So the trajectory after pruning will not change too much.

It is possible that the previous kept gold constituents will not be used in the final

tree, but keeping those around is the best choice with respect to accuracy. When

the rest of the oracle constituents cannot be achieved after pruning, for example, in

rule VP→ NP VP, if the right child VP is pruned by mistake and NP is the current

110



right child, rule VP → NP NP does not exist in the grammar, so it is not possible

to build the remaining oracles.

It is possible that once an oracle item is pruned during training, another parser

can be run from that point to obtain the second best tree. If the learned non-zero

weight feature sets are disjoint for different oracles, using dynamic oracles is a good

choice. Assume the true objective is to predict a one-sided branching parse tree:

left-branching tree or right-branching tree. The training data is a set of parse trees

that are either left-branching or right-branching. Two indicator features are used

to mark whether the constituent touches the beginning or the end of the sentence.

By learning towards this oracle, the learner increases the weights on both features

and results in one-sided trees for most of the sentences.

However, when the learned feature sets are not disjoint for different oracles,

dynamic features can be troublesome: We use the same left-branching and right-

branching tree example here, but now, our feature set contains two features: one

is still the indicator feature of whether the constituents touch the beginning of the

sentence or not, but the other is now the length of the span. By alternating the

two features, the right branching tree oracle can only add weights on the length of

the span while the left-branching tree oracle adds more weight to the beginning-

of-sentence indicator. The resulting learner now is very likely to produce neither a

left-branching nor right-branching tree in this case.

We run preliminary experiments with pruners with dynamic oracles on real

parse data where we observe that the pruners actually get confused and produces

a worse model compared to a fixed oracle in terms of both speed and accuracy
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(lost more than 10% in accuracy and no faster) given our feature set. So in our

experiments, we only use a fixed oracle for each sentence.

5.4.3 Training examples

Gathering training examples for the cell classifier and constituent classifier is

not trivial here as the examples for the cell classifier are strongly correlated with the

behavior of the constituent classifier and vice versa. Here is a simplified example.

Assume we are collecting training examples for the cell pruner for a cell C=[NP,

VP, PP] and the only feature we use here is the number of elements in the cell.

Also assume VP here is in the ground truth. If there is no constituent pruner, we

can generate four examples for the cell pruner: { empty cell: (0, open), NP: (1,

open), VP: (2, close), PP: (3, close) } and the cell pruner can learn to close after 2

constituents in the cell. However, if there is a constituent classifier to be learned at

the same time. The constituent pruner may decide to prune or not to prune the NP

before the cell pruning happens and this results in another set of training examples:

{ empty cell: (0, open), VP: (1, close), PP: (2, close) }. Learning on these two sets

of examples for different iterations in the training will confuse the learner.

On the other hand, ideally, what we want are two classifiers that can mimic

what perfect pruners do: if a popped constituent is not gold, it is pruned. If after

the cell is updated, all the gold edges are in the cell, then the cell should be closed.

However, these perfect pruners are not always easy to achieve. If we use the perfect

pruners to generate examples, during test time, if there are some examples cannot be
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classified perfectly, the data from the training set and test set will be generated from

two different distributions: training from perfect pruners and test from non-perfect

pruners. So it is hard for the learned pruners to guarantee a good performance on

the test set.

In order to tackle these two problems, we propose two different training algo-

rithms. The first option is iterative training. Assume we start with an initial cell

pruner (it will also work out when starting with a constituent classifier). For itera-

tion 2i− 1 where i ≥ 1, we fix the cell pruner and train a constituent pruner based

on parsing results with the fixed cell pruner only. For iteration 2i, we then fix the

constituent pruner as what we learned from the previous iteration and train a cell

pruner. This learning procedure is not guaranteed to converge to a pair of classifiers

that is globally optimal, but after training for a few iterations, the examples for the

cell pruner are generated by the learned constituent pruner which we will use during

test time and vice versa.

The second option is joint training. Algorithm 10 describes this training pro-

cess. Let us see what exactly we want to fix in the second problem. Assume our

classifiers after training T iterations is hT , we hope the classifiers in iteration T − 1

will be close to hT . Recall DAgger[Ross et al., 2011a] (section 2.3.2) is an imitation

learning algorithm that encourages learning from past errors. For each iteration,

it aggregates instances by running a hybrid classifier that combines a previously

learned classifier with the ground truth (or oracles as we called them in the previ-

ous chapter). Then the classifier is re-trained on the aggregated dataset from the

beginning until this iteration.
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Algorithm 10 DAgger joint learning for dynamic pruners
Initialize oracle probability p0, cell classifier e, training set De = ∅ and oracle cell classifier

he−oracle, constituent classifier o, training set Do = ∅ and its oracle classifier ho−oracle.

for iteration t = 1, . . . , n do

Set the current hybrid cell classifier e′t = (1− pt)× et−1 + pt × he−oracle.

Set the current hybrid const classifier o′t = (1− pt)× ot−1 + pt × ho−oracle.

for each training sentence i do

while Agenda is not empty and no tree is returned do

1. Dequeue a constituent from the agenda, say x[j, k].

2. Add this constituent and its oracle label to the constituent datasetDo = Do∪{x[j, k]}.

3. If the cell is never visited, generate the features for the cell c[j, k] and add its oracle

label to the cell dataset De = De ∪ {c[j, k]}.

4. If the cell is closed, discard x[j, k] and back to step 1.

5. Predict the pruning action by yx[j,k] = ot(x[j, k]).

if yx[j,k] =prune then

Return to step 1.

end if

if yx[j,k] =keep then

Add x[j, k] to the chart and push the new constituents to the agenda according to

the grammar.

6. generate the features for the cell c[j, k] and add its oracle label to the cell dataset

De = De ∪ {c[j, k]}.

7. Predict the cell closing by et.

end if

end while

end for

Train new cell and constituent classifier et and ot based on De and Do and decrease the oracle

probability to pt+1 = C exp(−f(i, t)) where C is a constant and f(i, t) > 0 is a monotonic

function with sentence number i and iteration number t.

end for

Return en and on.
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In this work, we use DAgger with the perfect pruner as the initial classifier

to train the pruner. The initial classifier is set to prune everything that is not

gold. In each training iteration, a hybrid classifier of oracle and classifier learned

from previous iterations is used to make decisions. A new data instance (xi, li) is

added to the dataset where xi is the set of features of the constituent at the top

of the agenda or the cell features and li is its label according to the oracle. The

data instance is pruned or not pruned according to the hybrid classifier. When an

iteration is complete, two new classifiers will be trained on the two accumulated

datasets.

5.4.4 Classification algorithm

Pruning a correct constituent can drastically reduce the accuracy with cascade

effects; keeping incorrect candidates around will add to the parsing time without too

much impact on accuracy. During agenda-based parsing, most of the constituents

on the agenda or chart will not be used to build the final tree, so the set of pruned

constituents is larger than that of kept constituents by at least three orders of

magnitude given a reasonable size of the grammar. For a 20-word sentence, it

has only a little more than 40 gold (positive) constituents while the agenda-based

parser will pop more than 60,000 constituents from the agenda. It is possible for the

pruner to decide to prune all the constituents and achieve an (unweighted) accuracy

of 99.93% for the classification, but return no parse tree. For a balanced dataset,

predicting all the examples to be in a single class should return an accuracy of 50%.
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If the accuracy is weighted, by simple math, the ratio of the weights on positive

examples and negative examples should be around 1500 : 1.

Given this skewed and cost-sensitive dataset in the training, assume the cost

for pruning a constituent that should be kept (positive class) is Ckeep and the cost

for retaining a constituent that should be pruned (negative class) is Cprune. We

choose the costs given nkeep, nprune constituents from each class such that

Ckeep/nkeep = Cprune/nprune (5.4)

If the pruner is trained by a support vector machine (SVM) with soft margin,

for each instance xi, we want to find the weight vector such that

min
w

1

2
| w | 2 + C

∑

i

max(0, 1− yi(w
Txi + b)) (5.5)

where w is the weight vector, yi is the gold label for xi and b is a bias. The

total misclassification error λ
∑

all ξi can be decomposed into λprune

∑

prune ξprune +

λkeep

∑

keep ξkeep. The soft margin parameters λprune = 1
Cprune

and λkeep = 1
Ckeep

.

This reweighting scheme is applied in LibSVM [Chang and Lin, 2011], PyML and

etc. [Ben-Hur and Weston, 2010]

[Roark and Hollingshead, 2008, Bodenstab et al., 2011] similarly define an

asymmetric loss function for cell pruning with 100 for the false negative and 1 for

the false positive with averaged percetron without data rebalancing.

In the experiments, when comparing with Bubsparser [Bodenstab et al., 2011],

we will use its implementation of an averaged perceptron. For the study with con-

stituent only pruner, we use the LibSVM package (from WEKA) to try out different
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algorithms.2

5.5 Features

In this work, we consider two sets of features: static features and dynamic

features. The static features are decided whenever the constituent is built and they

will not change in the learning process. The static features we use are listed below.

They are mostly identical to the previous chapter. The dynamic features monitor

the real-time condition of the agenda and chart and change at each time step. In

this disseration, we have about 60-70 different static feature templates and about

10-20 different dynamic feature templates. For some of the feature templates, the

size can be large: e.g. for lexical feature templates, the unigram feature is of the

size of the vocabulary and unigram feature is the square of that.

In the following, we use e (edge) as the constituent whose features are going

to be extracted. S(e) is the starting position of e in the sentence and E(e) is the

ending position. L(e) is the length of the constituent and Nc(e) = L(e)+1 is used as

a normalization constant for inside scores: for a constituent of length l > 1, if only

binary rules are used, it requires a total of l+1 rules. Ls is the length of the current

sentence. Some of the features are computed on the run, such as Viterbi inside

scores, figure of merit (FOM), etc. Values for conditional likelihood features for

all tags are approximated from the training data, precomputed and hashed before

2We use WEKA here to try out different classification systems and pick LibSVM due to its

speed and accuracy. We also try other classifiers like random forest. It is fast but prunes very

conservatively to achieve a good accuracy.
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training, so they can be retrieved very quickly.

The word at position i is wi.

5.5.1 Static Features

Values of static features do not change during parsing.

1. Lexical and POS features: we take the unigram and bigram of lexicons and

POS tags from [Roark and Hollingshead, 2008, Bodenstab et al., 2011].

2. Position features:

• Ratio between the length of the constituent and the length of the sen-

tence: L(e)/Ls.

• The starting/ending position of the span: We use the relative position of

the starting or ending position for the span here given the length of the

sentence, S(e)/Ls and E(e)/Ls.

• Binary indicators for whether the constituents touch the beginning or

end of the sentence.

• Punctuation patterns of the constituent span: We use the same type of

punctuation patterns as in [Liang et al., 2008]. The punctuation pat-

terns only retain the punctuation tokens in a sentence and replace non-

punctuation tokens with a constant: if the token is punctuation matching

$ , . ‘‘ ’’ -LRB- -RRB- : #, it is retained. Otherwise a token is

replaced with “x”. In the experiments, we only use indicator features for
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the 25 top rated, most likely patterns for a nonterminal and 19 bottom

rated, most unlikely patterns. For the list of punctuation patterns used

in the experiments, please refer to Appendix A.

• Case patterns. The case pattern of a word here is defined as the case of

the first letter in the word. This feature indicates whether the first letter

of the word is in the form of uppercase, lowercase, number or punctuation.

We compute the case pattern of the first word in the span and the words

just before/after the span.

• Number of times ROOT is popped from the agenda. This is supposed to

be a dynamic feature during parsing, however, we only return the first

complete tree, so it is actually an indicator for whether the constituent

is ROOT.

3. Conditional likelihood features:

• The log likelihood of the span given the part-of-speech tags for the pre-

vious or following word. The conditional probabilities are computed and

hashed according to the ground truth dataset that the grammar is trained

on. And only coarse labels are used to be memory efficient. The span la-

bels include pre-terminals and non-terminals. When using the constituent

boundary FOM as priority, we need to train a POS tagger ahead of time,

so we use the tags of words in the sentences tagged by this learned tagger.

When using inside score as priority, instead of using the most likely tag

sequence for the sentence built so far (which can be very expensive), we
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only take the top three most likely tags for the cell and take the highest

conditional log likelihood.

• Similar to the previous one, but the previous or following two tags are

used. We also use the conditional likelihood depending on the previous

and following tag.

• The maximum log likelihood of the span [i, j] given its neighboring con-

stituents that end at position i or start from position j. If multiple

neighbors are found, we use the maximum log likelihood from all the

possible neighbors.

5.5.2 Dynamic/Trace Features

Here is the list of dynamic features that we use in the experiments:

1. Scores:

• Viterbi inside score V (e) which is a sum of the log-likelihood of all the

grammar rules used to build the constituent e.

• Normalized Viterbi inside score which is V (e)/Nc(e).

2. Margins:

V ∗(i, j) indicates the maximal Viterbi inside score in the cell starting at i and

ending at j. Similar for F ∗(i, j).

• Margin between the best candidates with inside score in the cell and the

current constituent: V ∗(S(e), E(e))−V (e)). This computes the difference
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in the inside score between the current candidate and the up-to-date best

candidate in the same cell.

• Normalized inside margin: margin normalized by the number of rules:

(V ∗(S(e), E(e))− V (e))/(L(e) + 1).

• FOM margin: F ∗(S(e), E(e))− F (e).

3. Crossing bracket feature. We use additional array to keep track of the current

best competitor for each cell. This feature is one of our most expensive features

in our experiments.

• The margin between the normalized inside score of the current span and

the maximal normalized inside score of all the constituents in the chart

that cross brackets with the span.

• The margin between the FOM of current span and maximal FOM of its

crossing bracket competitors.

4. Cell features:

• Last time step (as indexed by number of pops) when the cell is updated.

More specifically, we use the difference between the current time and the

time when the cell is updated.

• Relative rank of the constituent with regard to all the current constituents

in the cell.

• Number of constituents in the same cell.
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5.6 Experiment

In the experiments, we first study how the parser works with only one pruner

in section 5.6.1. As cell pruning is somewhat well studied in Bubsparser [Bodenstab

et al., 2011], we only focus on learning a constituent parser. In fact, if we train a cell

pruner (only) with lexical and POS features (which are the same from Bubsparser),

relative and absolute length of the span, this is identical to training the complete

closure method in Bubsparser. Next, in section 5.6.3, we will train our dynamic

constituent and cell parser at the same time and show results compared to state-of-

the-art parsers.

We use the Wall Street Journal section of the Penn Tree Bank[Marcus et al.,

1993b]. The grammar we use is the level-6 grammar[Petrov et al., 2006] trained

on section 2-21. Section 22 is used to train the dynamic pruner, section 24 is the

development set and section 23 is the final test set. For the first part, we train and

test on sentences with length less than or equal to 15 with Berkeley parser. For

the second part, we use the sentences with length less than or equal to 25 with

Bubsparser.

5.6.1 Constituent pruner only

For training the pruner at pop time, we use LibLinear [Fan et al., 2008] with

weight 1000 on the positive examples (We pick the weight given tuning on the dev

set) and 1 on the negative examples.

Training on the whole development section multiple times is time-consuming,
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so we divide the training section into sets of 10 sentences and re-train the classifier

every 10 sentences. The time measures in the experiments are the number of pops

and number of pushes. We measure the time consumed to compute the features for

each edge and the average difference in the wall clock time for building a constituent

with and without features is less than O(10−5) seconds (which is less than 10% of

the total parsing time.3).

The first set of baselines we compare to are the agenda parser with inside score

as priority and pruning on difference of inside scores (UCS), A∗ parser (∗ parser)

with different pruning thresholds. 4

The parameter for choosing an oracle classifier at iteration t is defined as pt =

exp(−(t−1)), so the probability of choosing an oracle action decreases exponentially

during training. We call the models learned according to Viterbi trees as LDP-V

and gold trees as LDP-G.

The baselines we compared to in this part are implemented in the Berkeley

parser. Due to the implementation efficiency restriction, we use all sets of features

excluding the lexical and POS features. While computing conditional likelihood

features, we use the top 3 locally best candidates in the adjacent cells to avoid

heavy computation overhead.

NLDP model is a model trained with examples generated by agenda-based

3This is just an analysis with constituent pruning only. We will compare to a state-of-the-art

parser with both constituent and cell pruning in the next part.
4For the A∗ parser, we use a coarse grammar with at 2 labels for each non-terminal or pre-

terminal (Berkeley level 1 grammar) to parse the sentence and estimate outside scores.
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Figure 5.3: The graph of accuracy vs. number of pops on dev set. “LDP-V” is
the dynamic pruning model with Viterbi trees as reference and ‘LDP-G” is the one
with the most probable compatible trees as reference. “NLDP-V” does not use data
aggregation (DAgger).

parsing without pruning and then labeling the examples with oracles. The other

models LDP-V and LDP-G are trained with the DAgger algorithm with constituent

pruning only (Algorithm 10). LDP-V uses the Viterbi tree as ground truth / oracle

while LDP-G uses most probable compatible trees. Each DAgger iteration, we train

on a batch of 10 sentences and pick the final model on the dev set with desired

speed and accuracy. Figure 5.4 plots all the models learned by LDP-V, LDP-G and

NLDP-V.

With data aggregation, the learned models are spread out on a pareto frontier.
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Figure 5.4: The graph of accuracy vs. number of pushes on dev set. “LDP-V” is
the dynamic pruning model with Viterbi trees as reference and ‘LDP-G” is the one
with the most probable compatible trees as reference. “NLDP-V” does not use data
aggregation (DAgger).
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The reason there is such a pareto frontier curve is due to the limit of the consitutent

pruner. If it is possible to learn a really good pruner, the pruner prefers a fast and

accurate parser with no such trade-off. Without that, the only difference among the

learned models is the size of the training data and most of the models fit the training

set well. However, in order to choose a single model in this situation, the definition

of a “best” pruner is vague: a good pruner should be both fast and accurate. So we

pick a set of trade-off parameters λ and measure the efficiency of a model by

model efficiency = F1 score− λC ×# of pushes (5.6)

and plot the curve with increasing λ.

Figure 5.5 and 5.6 show the accuracy vs. speed plots with respect to the

number of pops and number of pushes. Ideally, a fast and accurate parser will show

up in the bottom right corner while a slow but accurate one will appear in the upper

right corner.

NLDP-V without data aggregation overfits the training data and does not

perform as well on the test set. We showed the models that use both Viterbi trees

(LDP-V) and most probable compatible trees (LDP-G). Since dynamic pruning

is done at pop time, our model does a much better job when measuring number

of pops (figure 5.5) compared with measuring the number of pushes (figure 5.6)

(Note that those numbers in the graph are in log-scale). Compared with LDP-G,

LDP-V does slightly better in terms of speed. When doing the model selection on

the development set, LDP-V produces more models with a decent accuracy (F1>
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Figure 5.5: The graph of accuracy vs. number of pops on final test set with different
trade-off. “UCS” is the standard agenda-based parser (with uniform cost search)
with different fixed pruning thresholds. “A∗” uses outside scores estimated from a
coarse level grammar (level-1) to speed up parsing. “LDP-V” is the dynamic pruning
model with Viterbi trees as reference and ‘LDP-G” is the one with the most probable
compatible trees as reference. NLDP-V does not use data aggregation. LDP-V+
uses more dynamic features.
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Figure 5.6: The graph of accuracy vs. number of pushes on final test set with
different trade-off. “UCS” is the standard agenda-based parser (with uniform cost
search) with different fixed pruning thresholds. “A∗” uses outside scores estimated
from a coarse level grammar (level-1) to speed up parsing. “LDP-V” is the dynamic
pruning model with Viterbi trees as reference and ‘LDP-G” is the one with the most
probable compatible trees as reference. NLDP-V does not use data aggregation.
LDP-V only uses unigram conditional dependency information while LDP-V+ uses
additional bigram features as well as cross-bracket features.
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90%). With more dynamic features, model LDP-V+ improves slightly more on the

accuracy. By looking at the weights of LDP-V and LDP-V+ from LibSVM, we find

the LDP-V+ pruner learns to put high weights at margin features and cross-bracket

features to prune more constituents dynamically.

Table 5.1: Relative comparison of accuracy and speed for dynamic pruner. UCS-

Prune-1 is used as a reference. Smaller number is faster.

Model F1 difference # of pops ratio # of pushes ratio Runtime

UCS-No-Prune 0 0.85 0.34 2.44x

UCS-Prune-1 0 1 1 1x

UCS-Prune-2 -0.09 1.25 4.5 0.31x

A∗-No-Prune 0 0.67 0.55 1.61x

A∗-Prune-1 +0.17 1.2 7.8 0.19x

A∗-Prune-2 0 1.3 8.6 0.17x

A∗-Prune-3 -0.52 1.4 9.0 0.14x

LDP-V -0.09 6.9 11.1 0.13x

LDP-G -0.13 5.6 15.0 0.13x

LDP-V+ -0.02 7.0 13.4 0.12x

In table 5.1, we pick a few points from figure 5.5 and 5.6: UCS-No-Prune

is uniform cost search without pruning. UCS-Prune-1 is UCS with one pruning
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threshold that maintains the same F1 score but improves the speed. UCS-Prune-2

is picked so that the F1 score after pruning happens to be the same as the best of

the LDP-V models. A∗-No-Prune is the A∗ search without pruning. A∗-Prune-1

model is the one with highest F1 score. A∗-Prune-2 is a fast model with the same

accuracy as UCS. A∗-Prune-3 is a model that loses on accuracy but is faster than

A∗-Prune-2. LDP-V and LDP-G are the dynamic pruner models with their best F1

score.

In terms of accuracy, the best model that LDP-V has is about 0.09% lower

than the accuracy of the Viterbi tree and LDP-G is about 0.13% lower. As A∗ uses a

reasonably good heuristic, pruning happens to help the F1 score. A∗ has better and

faster models when the pruning threshold is not too large and with larger thresholds,

the speed curve becomes flat. The dynamic pruning models are learned to prune a

lot more compared to other baseline models. The overhead of feature extraction and

classification takes about 18% of the overall time, so the gain in the runtime is not

as much as the numbers of pops and pushes, but they are still better or comparable

with baseline models.

5.6.2 Heuristic Pruning at Push Time

The learned dynamic pruner only performs pruning at pop time while com-

puting rich features at push time will slow down the parser. To speed up at push

time, we can use the standard heuristic pruner directly. Here, we use the difference

between inside scores as a pruning heuristic and apply various thresholds to our
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Figure 5.7: The graph of accuracy vs. number of pops on final test set with addi-
tional heuristic pruning at push time. “UCS” is the standard agenda-based parser
(with uniform cost search) with different fixed pruning thresholds.“A∗” uses admis-
sible outside scores to speed up parsing. “LDP-V” is the dynamic pruning model
with Viterbi trees as reference and ‘LDP-G” is the one with the most probable com-
patible trees as reference. LDP-V+ is LDP-V model with more dynamic features
from 5.5 and 5.6.

learned models. To show the performance improvement by this additional pruning,

we pick the best models from LDP-V, LDP-G, LDP-V+ curves in the previous sec-

tion and set the pruning threshold at push time to be the same as UCS. We also

use the same threshold to generate the Pareto frontier for A⋆. Figure 5.7 and 5.8

show the curve after pruning for the picked models.

If we only train a constituent parser at pop time, the pruner learns it’s best to

prune constituents at pop time. However, there are constituents built at push time
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Figure 5.8: The graph of accuracy vs. number of pushes on final test set with
additional heuristic pruning at push time. “UCS” is the standard agenda-based
parser (with uniform cost search) with different fixed pruning thresholds. “A∗” uses
admissible outside scores to speed up parsing. “LDP-V” is the dynamic pruning
model with Viterbi trees as reference and ‘LDP-G” is the one with the most probable
compatible trees as reference. LDP-V+ is LDP-V model with more dynamic features
from 5.5 and 5.6.
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that are too low in inside score compared to what is currently available in the cell,

so they should not even be added to the agenda. By pruning those constituents at

push time with heuristics, we save the time spent on reordering things available on

the agenda. Many constituents with low scores will not be popped from the agenda

when parsing with a pruner at pop time, pruning these will not affect the number

of pops too much. When comparing LDP-V and LDP-G models (different oracles)

with the same pruning thresholds, the drop in accuracy of models trained with most

probable compatible trees is smaller than models trained with Viterbi trees. The

number of pushes has a sharp drop without hurting accuracy at the beginning and

the curves become flat when the thresholds are large. Our learned model behaves

very similar to the pruned A∗ while the learned pruner still maintains a faster speed.

5.6.3 Joint constituent and cell pruner

As shown in the previous part, we can achieve some speedup by using a con-

stituent pruner. However, the constituent pruner can only remove candidates when

it is popped from the agenda and the runtime is still much slower compared to a

state-of-the-art parser. Here we will add our cell pruner which prunes even more

candidates. For the implementation and baselines, we implemented our model on

top of bubsparser [Bodenstab et al., 2011] and use their averaged perceptron to train

cell and constituent classifiers.

For the features, we use all the features mentioned above except the score

features: inside score, FOM score and outside score (we run some preliminary ex-
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periments with these and they do not help in this case). To compute the conditional

likelihood features, we use the POS tags labeled by a POS tagger trained for FOM

estimations in Bubsparser. (This is necessary to compute FOM for Bubsparser, so

we just take it for free. In the inside score case, for A⋆, we can use the POS tags

from the coarse level grammar estimation, but we do not use it so the features for

all the models in the previous sections are extracted in the same way.)

We first compare a model trained by static features only, with static only

features. On the development set, it can learn a model that is slightly slower than

the complete closure model but faster than the FOM model while losing about 0.2%

on F-1 score. On the other hand, with dynamic features, we can get comparable

results with adaptive beam prediction.

Table 5.2: Relative comparison of accuracy and speed for dynamic pruner to parse

sentences of length 25 and less. Figure-of-merit parser is used as reference. Smaller

number is faster.

Model F1 Runtime

FOM 89.22 1x

Adaptive Beam 90.1 0.41x

Complete Closure 89.22 0.59x

LDP2-Joint 89.22 0.47x

LDP2-Iterative 89.20 0.53x
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Table 5.2 shows the results on the test set. FOM is the figure-of-merit best-

first-parser and the rest of the algorithms all use figure-of-merit as priorities instead

of inside scores. Adaptive Beam is the beam-width prediction algorithm imple-

mented in Bubsparser. Complete Closure is the algorithm that closes individual

cells before parsing in Bubsparser. LDP2-Joint is the cell and constituent pruner

trained with joint DAgger algorithm and LDP2-Iterative is the algorithm where we

fix a pruner and train for the other. We use the development set to select our mod-

els with highest accuracy then pick the fastest one (in the pruning case, we only

want something that is fast and accurate) and report the results on the test set.

We assume the time to parse the test set is 1x for the FOM model and compare

the relative speed in terms of wall clock time. Iterative training results have a large

variance in the final models – some models tend to prune more cells and some tend

to prune more constituents. It is very likely that we get different local optimum by

using this method. On the other hand, joint training is fairly stable and achieves

a decent speed compare to other baselines. We also observe that our cell pruner

prunes about 80% about the constituents overall and the constituent pruner prunes

the rest. This also supports the fact that training a consitutent pruner is not enough

to achieve good accuracy and speed. However, in general, when using both cell and

constituent pruners, we need to compute more features as well as classify more can-

didates compared to the adaptive beam model. Excluding the variance in different

runs, our models are still slightly slower than the adaptive beam method.

Compared to the complete closure model, we add a constituent pruner and

close cells dynamically during runtime with speed-up and no loss in accuracy. How-
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ever, compared to the adaptive beam model, which trains multiple classifiers for

different beam-widths, we are slightly slower. Moreover the beam-width prediction

model wins in accuracy due to its beneficial search error. A simple preliminary

test shows that training with features from the beam-width prediction model with

one additional feature for number of elements in the cell does not prune as many

constituents as multiple independent classifiers. This is an indicator that classifiers

of different beam-widths prefer different weights on the features. In this case, we

need to properly divide decisions for hard pruning problems to a few easier ones

and combine the results efficiently. Using a fast classifier with a non-linear decision

boundary that can beat an averaged perceptron might be helpful here. We will leave

investigation of this issue for future work.

5.7 Conclusion

In this chapter, we discussed another way to cooperate with dynamic features

to speed up an agenda-based parser – dynamic pruning. We proposed two different

learning algorithms to learn pruning classifiers for both constituents and cells and

make pruning decisions for each of the constituents at runtime. We show that by

using dynamic features, we get comparable performance compared to the state-of-

art bubs-parser or standard Berkeley parser. Meanwhile, our training framework

can be generalized to other pruning problems where we want to learn two pruners

at the same time.

So far in chapter 3-5, we discussed nondeterministic agents in reinforcement
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learning, reprioritization and pruning for agenda based parsing. In the next chapter,

we will conclude with a general framework of how can we use nondeterminism in

learning and show short examples of other applications.
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Chapter 6: Conclusion and Future Work

In this dissertation, I answer the question of “Why, when and how shall we

take advantage of the non-determinism to speed up a search system?” by showing

an abstract example of a non-deterministic agent in reinforcement learning as well as

a detailed case study in constituency parsing. We also show how to use the ground

truth as oracles in agenda-based parsing. The simple answers to these questions are:

• We should use non-deterministic training.

• Do not let the agent explore the space randomly if the search space is huge.

We should exploit the search space near oracles first and explore the space

around them later. In supervised learning, good oracles may be constructed

according to ground truth.

• Carefully use as many dynamic features as possible.

By following these rules, we propose an oracle-infused policy gradient algorithm to

automatically trade off speed and accuracy in agenda-based parsing. We also apply

it to learning a dynamic pruner. As shown in the experiments, our models achieve

performance comparable to the state-of-the-art.
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In the main chapters of the discussion, we gave some demonstrations of how to

do the training when oracles can be constructed in structured prediction problems.

In this final chapter, we are going to summarize the framework such that it may

be applied to other problems as well as suggesting a procedure for solving problems

where oracles cannot be found. As preliminary future work, we will discuss an

application in asynchronous belief propagation.

6.1 General Solution for Training with Non-deterministic Algorithms

Summarizing the work in this dissertation, to optimize a non-deterministic

structured prediction problem, we can take the following steps:

• Step 1: Choose an optimization target and prioritizing heuristic.

• Step 2: Construct oracles.

• Step 3: Train iteratively with a mixture of policies from the previous iterations

and oracles.

• Step 4: Incorporate as many dynamic features as possible when the overall

impact of the feature extraction on speed is low.

In step 1, we have to select the target that we want to optimize: whether to pursue a

speed and accuracy trade-off by prioritizing search actions or pruning search space.

Pruning can be done directly on the search space or action space. Prioritizing

can be formulated as optimizing an objective of speed and accuracy tradeoff or

running a cascade model. Optimization heuristics are the strategies that improve
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the performance, e.g. prioritization or pruning in the case of parsing. This decides

which learning algorithms we can use to solve the problem.

In step 2, we need to construct oracles given ground truth or other expert

knowledge. Ideally, the oracles or expert knowledge should be fully aware of which

action to take at any possible state in the search space and be optimal in terms of

the learning target. In practice, we can try to construct the oracles by mimicking

or enforcing the behavior to produce ground truth. [Daumé III et al., 2009, Ross

and Bagnell, 2010]

In step 3, during training, we can define the running policy/classifier/ranker to

be a mixture of previously learned policy and oracle policy. This allows the learner

to start searching in a reasonably good policy area. The weight on the oracle policy

can be reduced so that the final learned policy does not have to depend on the

oracles. [Daumé III et al., 2009, Ross and Bagnell, 2010]

In step 4, as shown in the dissertation, dynamic features play an important role

in improving the performance of the system in both speed and accuracy. However,

we also need to take the feature extraction and computation time into consideration.

For a lot of dynamic features, we can pre-compute or approximate the values and

store it in hashmaps to speed up the search. Multi-level dynamic features can be

used when a coarse-to-fine style algorithm is used for structured prediction.

The above case considers when oracles can be found somehow. When oracles

cannot be built at all, we can make modifications to steps 2 and 3 as follows:

In step 2, we need to find a way to estimate or approximate the cumulative

future reward for each possible choice. For example, [Daumé III et al., 2009, Huang
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et al., 2012] provide ways of doing roll-out or inexact search; or we can use rein-

forcement learning algorithms in the delayed reward setting to update once a goal

(terminal state) is reached. This estimates how good an action is in the long run

which is similar to outside score estimation in the parsing setting, and it is the

learning target for prioritizing search candidates.

In step 3, instead of training with a mixed policy, we need to allow certain

stochasticity in the learning so that the search space can be well explored. Moreover,

if a measurement of the difference between the ground truth and the current learned

policy is defined, we can properly evaluate the policy and choose a better region to

explore.

In the next section, we will give a preliminary example of optimizing belief

propagation where oracles are hard to define by following our framework.

6.2 Example: Asynchronous Belief Propagation

Message scheduling is shown to be very effective in belief propagation (BP)

algorithms. However, most existing scheduling algorithms use fixed heuristics re-

gardless of the structure of the graphs or properties of the distribution. On the other

hand, designing different scheduling heuristics for all graph structures are not feasi-

ble. In this section, we propose a reinforcement learning based message scheduling

framework (RLBP) to learn the heuristics automatically which generalizes to any

graph structures and distributions. In the experiments, we show that the learned

problem-specific heuristics largely outperform other baselines in speed.
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6.2.1 Problem Overview

Probabilistic graphical models [Pearl, 1988, Wainwright and Jordan, 2008,

Jordan, 1999] play an important role in representing complex distributions and

dependencies between random variables for many real world applications. Many ap-

proximate inference algorithms have been proposed to solve the problem efficiently.

One of the most common methods is message-passing algorithms such as loopy belief

propagation [Murphy et al., 1999, Ihler et al., 2005, Yedidia et al., 2000]. The idea

behind this is to pass messages between adjacent nodes until the fixed points of the

beliefs are achieved.

It is shown in [Elidan, 2006] that asynchronous propagation can achieve better

convergence compared to synchronous methods and thus initiated interest in study-

ing message scheduling schemes. However, most existing research only focuses on

manually designed heuristics. For example, [Wainwright et al., 2001] proposed a

tree reparameterization algorithm as message scheduling for asynchronous propaga-

tion. [Elidan, 2006] orders the messages in the order of the differences between two

consecutive values of the message. [Vila Casado et al., 2010, Yedidia et al., 2005]

also design specific scheduling for LDPC decoding problems.

In contrast with standard scheduling algorithms, in this chapter, we explore

automatically scheduling messages for any graph structure and distribution. To

achieve this, we formalized the learning of the ordering as a Markov Decision Process

(MDP) and associate the final reward with the convergence speed. The ordering can

be viewed as a linear policy of the MDP. The goal is trying to learn a good policy such
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that the corresponding scheduling can achieve a better convergence speed. In the

experiments, we show that that for the graphs that the heuristics are automatically

learned, the learned heuristics performs better than the baselines. We also notice

that the learned weights reveal some useful features to consider in the scheduling.

6.2.2 Background

In this chapter, we consider the problem of marginal inference on undirected

and discrete graphical models. Formally, we denote a graph G = (X,E) and let

x = {x1, ..., xm} to be the random variables associated with nodes in X. The

exponential family distribution p over the random variables is defined as follows:

pθ(x) = exp[〈θ, φ(x)〉 − A(θ)] (6.1)

where φ(x) is the sufficient statistics of x and θ is the canonical or exponential pa-

rameters. A(θ) = log
∑

x exp[〈θ, φ(x)〉] is the log-partition function. In this section,

we will focus on solving the marginal problem which is inferring marginal distribu-

tion p(x) for all x.

6.2.2.1 Belief Propagation

Belief propagation [Murphy et al., 1999, Ihler et al., 2005, Yedidia et al., 2000]

(or sum-product) algorithm is the standard message-passing algorithm for inferring

marginal distributions over random variables. It is a fixed point iteration algorithm

where the fixed point is the exact solution to trees or polytrees structures [Pearl,

1988]. On loopy graphs, they are not guaranteed to converge, but if they do, the
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final estimates are shown to be reasonably good [Yedidia et al., 2000].

The message Mts passed from node t to one of its neighbors s is defined as:

Mts(xs)← κ
∑

x′

t∈Xt

{

exp[θst(xs, xt′) + θt(xt′)]

∏

u∈N(t)\s

Mut(xt′)
}

(6.2)

where κ is the normalization constant. N(t)\s are the neighbors of t excluding s.

When the messages converge, the belief/psuedomarginal distribution for the node s

is given by

µs(xs) = κ exp{θs(xs)}
∏

t∈N(s)

Mts(xs) (6.3)

For synchronous message-passing, only the old messages from the previous iteration

are used to compute the messages for the current iteration. However, asynchronous

message-passing uses the latest messages for updates. In [Elidan, 2006], it is shown

that any reasonable asynchronous BP algorithm converges to a unique fixed point

under the assumptions that are similar to the synchronous version. They use the

residues (differences in beliefs between updates) as a priority to schedule the mes-

sages. In this chapter, instead of using the greedy residual schedule, we learn a

proper schedule automatically by a reinforcement learner.

6.2.3 Message Scheduling with Reinforcement Learner

We formulate the schedule learning problem as a MDP and the goal is to learn

a policy for the MDP such that the corresponding ordering can improve the speed

of convergence. Note that in this chapter, we will only consider ordering the nodes
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in the graph, but the learning framework can be easily generalized to ordering each

message in the graph.

6.2.4 MDP Formulation

A Markov Decision Process (MDP) [Bellman, 1957, Puterman, 2009] can be

viewed as a memoryless search process. It consists of a state space S, an action

space A, a transition function T , a reward function R and the environment E . An

agent repeatedly observes the current state s ∈ S and takes an action a ∈ A. The

environment E then samples the new state s′ from the transition function T (s′|s, a)

and gives a reward R(s′|a, s). A policy π(a|s) describes how the agent chooses an

action based on its current state.

More specifically, for the schedule learning problem, the state space S is the

graph and its messages/beliefs. The action to take at each step is choosing a node x

in the graph and computing its outgoing messages. Assume the features associated

with node x is φ(x) and the transition function T is deterministic. The reward

is defined with regard to the convergence speed. Here we consider a linear policy

(priority) which is

πω(s) = argmax
x

ω · φ(x) (6.4)

where ω is the feature weight vector. The goal is to maximize the expected reward

R = Er∼πω
[R(τ)] = Er∼πω

[
∑T

t=0 rt] where τ = (s0, a0, r0, ..., sT , aT , rT ) is a trajectory.

In the current situation, this is equivalent to minimizing the number of messages

passed.
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At test time, the transition function is deterministic so that we always choose

the node that has the highest priority in the current state s. However, at the training

time, we allow the agent to explore the space by a stochastic policy:

πω(xt) =
1

Z
exp

(

1

T
ω · φ(x)

)

(6.5)

where T is temperature and Z is a normalization constant. When T → ∞, πω

achieves a random choice over all the nodes while T → 0 only exploits the deter-

ministic policy.

To solve this, we apply the standard policy gradient algorithm as discussed in

Chapter 4.

6.2.5 Algorithm

A detailed training algorithm is described in Algorithm 11. In the training,

assume node and edge potentials are given for a set of training graphs. The goal is

to learn the policy (feature weights) so that the ordering of the nodes will help the

model convergence. One run on a graph is treated as a trajectory for the learner.

A priority queue is maintained to order the nodes of the graph. For each

iteration, a node is popped from the queue according to a Boltzmann exploration

policy. Then the relevant messages are updated for the node and the features (and

their priorities) of the neighboring nodes are also updated. One iteration is over

when there are no more nodes in the priority queue. If the beliefs are not converged,

then push all the nodes to the priority queue and repeat. Continue this process until

the gradient converges and update the weight vector ω. Return the final weight
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vector ω when the gradient → 0.

During the test time, the learned deterministic policy will be used to prioritize

the nodes and the node with the highest priority is updated for each step.

6.2.5.1 Features

The features we use here include both static features and dynamic features.

The static features are mostly extracted according to the graph properties once per

inference run. Dynamic features are associated with real-time updates and a change

in the values of dynamic features for a node can impact the feature values for other

nodes in the graph.

The static features are:

• the degree of the node,

• the dimension of the node,

• the max/min degrees of the neighboring nodes,

• the max/min dimension of the neighboring nodes

Dynamic features are those features that change between iterations or even

within a single iteration. Here we use

• KL divergence and residual between the current learned belief and previous

belief

• the difference between the current and last incoming messages

• the difference between the outgoing messages.
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6.2.6 Experiments

To empirically evaluate the model, we randomly generate Ising models accord-

ing to the experiment setups in [Elidan, 2006]2 with degree 4 and variable dimension

2: The graphical representation of an Ising model is a N × N random grid with a

corresponding number of binary variables. The node potentials are drawn from

U [0, 1] and the pairwised potentials

φs,t(Xs, Xt) =



















exp(λC) if xs = xt

exp(−λC) if xs 6= xt

(6.6)

where λ ∼ U [−0.5, 0.5] and C is a constant.

We evaluate our reinforcement learning based message scheduling framework

(RLBP) against the standard loopy belief propagation (LBP) and residual belief

prorogation (RBP). We also propose and evaluate against a novel variant of the

RBP where instead of measuring the L2 differences between belief updates, we use

a KL divergence type of difference (KLBP).

We generate 40 5× 5 grid graphs with C = 5. We train our scheduling policy

on the same graphs for which we report convergence results. LBP converges on 19

graphs and the remaining 3 algorithms converge on 27 graphs. We only try to learn

the scheduling on the 27 graphs where either RBP or KLBP converges. In table 6.1,

we show results in terms of time reduction over LBP per model. For clarity, LBP is

shown as having 0% time reduction over itself. It is clear that RLBP outperforms

all other models by a wide margin.

2As ongoing work, we only show the preliminary results here.
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LBP 0% RBP 34.70%

KLBP 39.62% RLBP 55.10%

Table 6.1: Time reduction in percentage over LBP by propagation framework

Figure 6.2.6 shows the number of iterations taken for each of the 27 graphs.

Note some of the results for LBP are missing because it does not converge. In order

to make the plot easy to read, we order the graphs on the x-axis by the number of

iterations RLBP (red line) takes.

It can be seen that RBP and KLBP also show large reductions in the time to

convergence and sometimes one scheme is better than the other. However, the

learned heuristics (RLBP) performs the best of all most of time. One interesting

observation in the final feature weights is that the degrees of the node here is a

very indicative feature besides the difference or divergence of the beliefs, which

supports the fact that different graph structures should have different scheduling for

the messages.
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Figure 6.1: Plot of iterations per model until convergence.
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Algorithm 11 Training Algorithm

Input: Training set with graphs and given potentials.

Initialize the policy parameter ω.

for each graph in the training set do

Initialize the messages and priority queue Q with all the nodes in the graph.

while the beliefs are not converged or the maximum number of iterations is

not reached do

Pop a node x from Q according to (6.5).

Compute its messages by (6.3).

Compute the derivative ∇ω log π(xt|Qt) as in policy gradient (Eq.2.12).

Update the dynamic features of its neighbors.

if the priority queue Q is empty and algorithm not converged then

Enqueue all the nodes1.

end if

end while

Compute the reward of the current trajectory.

Compute the baseline.

Update the policy when the gradient converges.

end for
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Chapter A: List of Punctuation Patterns

As we mentioned in the prioritization and pruning chapters, we use the same

type of punctuation features as in Liang et al. [2008]. For a span, regular words

are replace with symbol “x” and only punctuation: $ , . “ ” -LRB- -RRB- : # are

saved. Here is a list of top 25 most likely punctuation patterns. The list is ranked

in the order of decreasing likelihood.

x

x , x ,

x $ x

$ x

x , x , x

, x ,

x : x :

x “ x ” x

x -LRB- x -RRB-

“ x , ” x

x -LRB- x -RRB- x

-LRB- x
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x $ x $ x

: x

x -LRB- $ x -RRB-

‘ x , x , ”

x “

x , x , x ,

“ x , ”

x # x

x : x , x :

“ x , x , ” x

x : “

x $

# x

Following is the list of bottom 19 punctuation patterns. The list is in the order of

increasing likelihood.

“ x

x , ”

x ,

x -RRB-

x : x

x -LRB- x

, x , x

x , x “ x
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x , ” x

x , x : x

“ x ,

x :

x $ x ,

x , ” x , x

x , x

x .

x , x $ x

x “ x .

$ x ,
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Chapter B: Examples of Latent Grammar and Ground Truth

Grammar rules in Berkeley parser is in the form of

S_8 -> VP_12 NP_3 3.5515382782419514E-9

S_9 -> VP_12 NP_3 3.818597576454279E-11

S_10 -> VP_12 NP_3 4.4037681483615745E-8

S_11 -> VP_12 NP_3 7.531926043833406E-11

and groud truth looks like:

(ROOT (S (NP (DT The)

(NNP Ways)

(CC and)

(NNP Means)

(NNP Committee))

(VP (MD will)

(VP (VB hold)

(NP (NP (DT a)

(NN hearing))

(PP (IN on)

(NP (DT the)
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(NN bill))))

(NP (IN next)

(NNP Tuesday))))

(. .)))
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Percy Liang, Hal Daumé III, and Dan Klein. Structure compilation: Trading struc-
ture for features. In Proceedings of the International Conference on Machine
Learning (ICML), Helsinki, Finland, 2008.

V. Gullapalli and A. G. Barto. Shaping as a method for accelerating reinforcement
learning. In Proceedings of the IEEE International Symposium on Intelligent
Control, 1992.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy
gradients. Neural networks, 21(4):682–697, 2008.

Slav Petrov and Dan Klein. Sparse multi-scale grammars for discrimina-
tive latent variable parsing. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP), pages 867–876, Hon-
olulu, Hawaii, October 2008. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/D08-1091.

Y. Goldberg and M. Elhadad. An efficient algorithm for easy-first non-directional
dependency parsing. In Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics and Human Language
Technology (NAACL/HLT), pages 742–750. Association for Computational Lin-
guistics, 2010. ISBN 1932432655.

Eugene Charniak. Top-down nearly-context-sensitive parsing. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP),
2010.

S.R.K. Branavan, Harr Chen, Luke Zettlemoyer, and Regina Barzilay. Reinforce-
ment learning for mapping instructions to actions. In Proceedings of the Confer-
ence of the Association for Computational Linguistics (ACL), 2009.

J. Andrew Bagnell. Robust supervised learning. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), 2005.

Yuehua Xu and Alan Fern. On learning linear ranking functions for beam search. In
Proceedings of the International Conference on Machine Learning (ICML), pages
1047–1054, 2007.

M.P. Marcus, M.A. Marcinkiewicz, and B. Santorini. Building a large annotated
corpus of English: The Penn Treebank. Computational linguistics, 19(2):330,
1993a. ISSN 0891-2017.

163



Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. Probabilistic cfg with latent
annotations. In Proceedings of the 43rd Annual Meeting on Association for Com-
putational Linguistics, pages 75–82. Association for Computational Linguistics,
2005.

A. Pauls and D. Klein. Hierarchical search for parsing. In Proceedings of the Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics and Human Language Technology (NAACL/HLT), pages 557–565. Asso-
ciation for Computational Linguistics, 2009.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate,
compact, and interpretable tree annotation. In Proceedings of the 21st Inter-
national Conference on Computational Linguistics and the 44th annual meeting
of the Association for Computational Linguistics, pages 433–440. Association for
Computational Linguistics, 2006.

David Weiss, Benjamin Sapp, and Ben Taskar. Structured prediction cascades.
arXiv preprint arXiv:1208.3279, 2012.

Nathan Bodenstab, Aaron Dunlop, Brian Roark, and Keith Hall. Exponential decay
pruning for bottom-up beam-search parsing. In Pacific Northwest Regional NLP
Workshop (NW-NLP 2010), 2010.

Keith Hall and Mark Johnson. Language modeling using efficient best-first bottom-
up parsing. In Automatic Speech Recognition and Understanding, 2003. ASRU’03.
2003 IEEE Workshop on, pages 507–512. IEEE, 2003.

Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and max-
ent discriminative reranking. In Proceedings of the Conference of the As-
sociation for Computational Linguistics (ACL), pages 173–180, Ann Ar-
bor, Michigan, June 2005. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P/P05/P05-1022.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):
27, 2011.

Asa Ben-Hur and Jason Weston. A users guide to support vector machines. Data
mining techniques for the life sciences, pages 223–239, 2010.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a
large annotated corpus of english: The penn treebank. Computational linguistics,
19(2):313–330, 1993b.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
Liblinear: A library for large linear classification. The Journal of Machine Learn-
ing Research, 9:1871–1874, 2008.

164



Liang Huang, Suphan Fayong, and Yang Guo. Structured perceptron with inexact
search. In Proceedings of the 2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
pages 142–151. Association for Computational Linguistics, 2012.

Michael I. Jordan. An introduction to variational methods for graphical models. In
Machine Learning, pages 183–233. MIT Press, 1999.

Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation for
approximate inference: An empirical study. In Proceedings of Uncertainty in AI,
pages 467–475, 1999.

Alexander T. Ihler, John W. Fisher Iii, Alan S. Willsky, and Maxwell Chickering.
Loopy belief propagation: Convergence and effects of message errors. Journal of
Machine Learning Research, 6:905–936, 2005.

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Generalized belief prop-
agation. In IN NIPS 13, pages 689–695. MIT Press, 2000.

MJ Wainwright, T Jaakkola, and AS Willsky. Tree-based reparameterization for
approximate estimation on loopy graphs. Advances in Neural Information Pro-
cessing Systems, 14, 2001.

Jonathan S. Yedidia, Yige Wang, Yige Wang, Juntan Zhang, Juntan Zhang, Marc
Fossorier, and Marc Fossorier. Reduced latency iterative decoding of ldpc codes.
In Proc. of the IEEE Global Communications Conf, 2005.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic pro-
gramming, volume 414. Wiley-Interscience, 2009.

165


