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Abstract

We consider the problem of designing stabilizing control laws for flight over a
broad range of angles-of-attack which also serve to signal the pilot of impending
stall. The paper employs bifurcation stabilization coupled with more traditional
linear control system design. To focus the discussion, a detailed analysis is given
for a model of the longitudinal dynamics of an F-8 Crusader.






I. Introduction

Several authors have studied the nonlinear phenomena that arise commonly in
aircraft flight at high angle-of-attack (alpha). The literature on high alpha flight
dynamics, control and aerodynamics has grown at a rapid pace. Of particular
relevance here are references [4]-[6], [9] and [10]. The direct linkage of aircraft stall
and divergence, as well as other nonlinear aircraft motions in high incidence flight,
to bifurcations of the governing dynamic equations is a goal of many previous
investigations. In particular, both stationary and Hopf bifurcations are reported
and/or studied for several aircraft models in [4], [5], [9]; and a Hopf bifurcation
occurring in the lateral dynamics of a slender-wing aircraft has been studied in

[10], [5], [1].

In this note, we study the stabilization of the trim condition of an aircraft
arbitrarily close to the stall angle, in a manner which also provides an impending
stall warning signalto the pilot. This signal is a small-amplitude, stable limit cycle-
type pitching motion of the aircraft which persists to within a prescribed margin
from impending divergent stall. This is a Hopf-bifurcated periodic solution of the
system dynamics, which is stabilized using the methods of bifurcation control [2],
[3]. A brief summary of bifurcation control is given in the next section.

I1. Bifurcation Control Laws

Local bifurcation control [2], [3] deals with the modification of stability charac-
teristics of bifurcated periodic solutions by feedback control. Thus, we can contain
to a local neighborhood of an unstable equilibrium the transients of a nonlinear
system, even in cases wherein the transient would otherwise exhibit divergence.
The feedback control designs of [1], [2] result in transforming a subcritical (unsta-
ble) bifurcation to a supercritical, and hence stable, bifurcation. (For background
on bifurcations, see for instance [7].)

Specifically, local bifurcation control deals with the design of smooth control
laws v = u(z) which stabilize a bifurcation occurring in a one-parameter family of
systems

T = f“(ZE,U). (1)

These control laws exist generically, even if the critical eigenvalues of the linearized
system at the equilibrium of interest are uncontrollable. (The critical eigenvalues
are those lying on the imaginary axis.) This approach has been employed in the
design of stabilizing control laws for a tethered satellite system in the station-
keeping mode.



IT1. Bifurcation Control of Longitudinal Dynamics

From [6, Egs. (10), (11)], we obtain the following model for pitching motions
of a model F-8 Crusader aircraft in nearly level flight (i.e., for pitch angle remaining
small). Here, a = angle-of-attack, § = pitch angle, § = pitching moment, and § =
the instantaneous elevator control surface deflection.

G =0 — a0 —0.08808 — 0.877a + 0.47a? + 3.8460°

— 0.2156, + 0.286.a* 4 0.478% + 0.636° (2a)
6 = — 0.3966 — 4.208a — 0.47a* — 3.5640°
— 20.9676, + 6.2658,0° + 4662 + 61.462 (20)

We have studied the stability of this model as a function of §, viewed as a
parameter, as well as stabilization of the trim condition using elevator deflection
as a feedback control signal which can either be linear or nonlinear. In either case,
we seek control laws which have a negligible effect on the trim condition, which
itself depends on é.. To achieve this, we require a certain form of dependence of
the control signal on the state, namely

de(z) = bec + { a polynomial in (z1 — z1¢(6ec))
and (22 — 29(bec))}- (3)

Here, x1 and zo are the state variables o and é, respectively, d.c is the constant
commanded value of 6., and subscripts 0 indicate equilibrium (trim) values of state
variables, which depend on .. In our example, curve fitting gives the following
approximations for the trim condition as a function of §,:

ay = —4.60926, ¢, (4a)
fo = 630.81466,.2, — 5.04986, . (4b)

The design procedure aims to result in an increased range of stable angles-of-
attack. First, a linear feedback complying with the general form (3) is designed to
stabilize the trim condition for all values of 6. up to a value which verges on stall.
Next, a nonlinear controller is designed to control the stability of the bifurcation
which occurs at the point of instability just prior to stall. This bifurcation is a Hopf
bifurcation to periodic solutions. By ensuring a small amplitude stable periodic
solution in the neighborhood of the unstable trim condition, a signal of incipient
stall is produced. This signal consists of the small amplitude sustained pitching
oscillations induced. These oscillations do not lead to a divergence instability, but
are a warning signal of an impending such instability. The figures best illustrate
the conclusions.

In Figures la and 1b, the dependence of the trim condition and several other
equilibria on é.c is shown. (In both Figs. 1 and 2, an S indicates a stable



equilibrium, while a U indicates instability of an equilibrium.) Fig. 1 gives the
equilibria of the open-loop system.

Note the presence of a Hopf bifurcation for the critical parameter value 6, =
—0.064, for which the angle-of-attack o = 0.305 (= 17.48°). At this bifurcation,
the eigenvalues are given by +52.212. Moreover, the positivity of the “bifurcation
stability coefficient” 8, = 3.123 (see Fig. 1) implies instability of the bifurcated
periodic solutions. Thus, for |6, | > 0.064, transients beginning near trim diverge.
This divergence of the uncontrolled system is shown in the simulation of Fig. 3.

To remedy this, we can either use linear feedback to stabilize the trim condi-
tion for a useful range of angles-of-attack, or use bifurcation control laws to render
the bifurcated periodic solutions stable and of small amplitude for such a range of
angles-of-attack. With the latter design, the aircraft would continually experience
an oscillatory pitching motion, which is not acceptable. With the former, the Hopf
bifurcation is delayed to a greater value of trim angle-of-attack, and operating at
higher than that new critical a might result in divergence as well. Thus, we em-
ploy a linear-plus-nonlinear feedback. The linear part of the feedback is chosen
as above (to delay the Hopf bifurcation), and the nonlinear terms are chosen to
stabilize (if necessary) the Hopf bifurcation at the new higher critical angle.

The system equilibria will be modified by feedback control laws of the type
considered. However, by design, the trim condition will experience a limited de-
formation. Moreover, a “windowing” operation (in state space) can be used to
result in control laws which have a negligible effect on the non-trim equilibria as
well. Such an operation is not discussed in detail here.

Fig. 2 shows the post-linear feedback equilibria, where the stabilizing linear
feedback is chosen to result in a (Hopf) critical a of 0.5 (= 28.65°). The linear
feedback chosen here is given by

8 = bec + k1o — ao(bec)) + k(8 — bo(Se00)), ()

where k1 = 0.3317 and %k, = 0.0836. The critical value of the bifurcation param-
eter at this bifurcation is é.c = —0.109, and the eigenvalues of the linearization
are given by +32.158. However, the Hopf bifurcation occurring in the linearly
controlled system remains subcritical, as indicated by a positive value of the bi-
furcation stability coefficient 8y (82 = 32.064, as noted in Fig. 2). Moreover,
Fig. 4 illustrates the result of a simulation starting near the trim condition for the
post-critical parameter value of §, = —0.1095. As can be seen from Fig. 4, the
trajectory diverges.

To stabilize the Hopf bifurcation, and thus result in containment of post-
critical trajectories to within a neighborhood of trim, nonlinear terms are added
to the linear feedback above. Specifically, we have chosen to add certain quadratic
and cubic terms to the linear feedback, as follows:

8o =bec + ki(a — ap(8ec)) + 2 (6 — Bo(bec))
+ ql(Of - 0_‘0(5ec))2 + hy(a — ag(bec))’
+ ha( — 8o(8.0))° (6)
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Here, ¢ = h1 = ho = 0.8, resulting in a bifurcation stability coefficient of value
Bz = —320.639. Thus, the Hopf bifurcation for the controlled system has been
stabilized. Fig. 5 shows the convergence of the system trajectory to a stable limit
cycle for the post-critical parameter value §, = —0.11318, thus significantly ex-
tending the operating envelope over that achieved with the purely linear feedback
noted above. The limit cycle then becomes a homoclinic orbit and disappears.
The simulation of Fig. 6 shows a trajectory of the system started near trim for
the parameter value 6, = —0.11319. The trajectory no longer converges to a stable
limit cycle, but now diverges.
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FIGURE 1a. o AT OPEN-LOOP EQUILIBRIA
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FIGURE 1b. 6 AT OPEN-LOOP EQUILIBRIA
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FIGURE 2a. o AT EQUILIBRIA UPON LINEAR FEEDBACK
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FIGURE 2b. 6 AT EQUILIBRIA UPON LINEAR FEEDBACK
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FIG. 3. SHOWING DIVERGENCE OF UNCONTROLLED SYSTEM
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FIG. 4. SHOWING DIVERGENCE UNDER LINEAR FEEDBACK
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FIG. 5. SHOWIN NVERGENCE TO LIMIT CYCLE UNDER
LINEAR-PLUS-NONLINEAR FEEDBACK
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FIG. 6. SHOWING DIVERGENCE AFTER APPEARANCE OF
HOMOCLINIC ORBIT
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