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Chapter 1 Introduction

1.1 Motivation and objectives

Large-scale (area-wide) disasters, e.g. natural (e.g. maric@rnado, earthquake,
flooding, or fire) or human-induced (riot, accidental or terrorist)pose extensive
physical, social and economic losses, and cause large destantlinjuries every year.
Such extreme events have exposed the vulnerability of lifeljlseems and the need to
mitigate the consequent risk to disruption of these systems. The transpasiatiem, the
focus of this effort, is of utmost importance in the event of asiphy disaster. The
functionality and performance of this system in a disaster-iradaatea can directly
affect the level of success in coping with the disaster. Evacuat survivors to safer
locations, on-site provision of medical assistance and movementuoédnpeople to
medical facilities, access by emergency personnel and deb¥Vesypplies to a disaster
zone are just a few examples that illustrate the importantteedfansportation system in
the aftermath of a disaster. Recovery and restoration of alyndifsystem will very
much depend on the ability of the transportation system to providetieff transport
services (Nicholson and Du, 1997). For example, following the May 12, 2008|eake
in Sichuan, China, widespread disruptions to the transportation systeed dayighe
actual seismic event, its aftershocks and resulting mudslidestlygrebstructed

emergency response activities, resulting in unnecessarylivest Additionally, an



operating transportation system is crucial to disaster reg@ret continued substandard
operating levels can have long-term economic impact (Chang, 2000).

Recent recognition that the transportation system not only supportdailye
movement of people and goods from one place to another, but also praadssilality
to a disaster region and the ability to escape from the regiahsupports recovery after
the disaster, has lead to increased attention by reseatalibesrole of transportation in
disaster preparedness and response. A number of publications have cappete
literature that, with specific concern for the role of transpioriadocument experience
gained from previous disaster events (e.g. Schiff, 1995; Giulizuwdo Golob, 1998;
Willson, 1998; Chang and Nojima, 2001; U.S.DOT, 2002; Nyman et al., 2003) and
propose methodologies for creating strategies to improve copingamsois for future
events (e.g. Cho et al., 2001; Bryson et al., 2002; Okasaki, 2003; Johnstorti2004t
al., 2005). These latter works consider evacuation and emergenonsesaimed at
mitigating the impact of the event on society.

Optimal decision-making in preparing for and mitigating thpauot of disaster is
impeded by the complexity and intractability of the underlyngpblems. This is, in part,
because the transportation system involves multiple transport nwaitlescomplex
systems of interdependent passageways, large geographic relgiges demand for
assistance or resources, uncertain intensity of disruptions, andaimaamsequences.
Although some problems are tactical (e.g. pre-disaster evawouptanning), other

problems are operational, requiring solution in real time (e.gattismg search and
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rescue teams post-disaster). Thus, optimization-based methods may badienefi

Optimization techniques are particularly useful to decision-makéen quick
decisions must be taken given large quantities of input data. Such mathadbeen
successfully applied in schedule recovery in the aftermath afptisns in both air and
rail industries (e.g. Clarke, 1997; Lettovsky et al., 2000; Thengtall., 2001 & 2003;
Rosenberger et al.,, 2003). Given that future disasters are expectedrease in
frequency and consequence (as noted in numerous writings, e.g. TurnBrdgadn,
1997), additional research is required in creating disasteierggitansportation systems
and in mitigating ensuing damage. This dissertation proposes optonibatsed
methodologies in terms of problem formulation and solution techniques dezvent
disaster planning, post-event response and recovery, and building diesist=mnt
transportation systems.

Driven by the needs and research challenges described aboveissieidation

research has the following objectives:

Address vital aspects in optimization of transportation systems in pre- and post- disaster
situations. Due to the intrinsic uncertain nature of disasters in terms of their causes
and consequences, damage to the transportation system and reqpoadeextions are
difficult to forecast in advance. This research seeks to provide fiamdalmnsight into
aspects of the following comprehensive questions: (1) How msiighe transportation

network to disaster? (2) How best to evacuate people to safetyfoyB)o optimally



deploy emergency personnel and allocate supplies in a largedisatder involving

multiple disaster sites.

Develop models for these identified optimization problems. Mathematical models of the
optimization problems addressed within this dissertation are formuladettheir inherent
uncertain and time-dependent characteristics are considered. Theajutpiimodels is
(1) the measurement of the transportation system’s recoveryiligpand optimal
selection of recovery activities, (2) pre-disaster evacuatianspland (3) post-disaster

emergency workforce and equipment deployment actions.

Provide conceptual frameworks and specific methodological procedures for solution of
identified optimization problems. A variety of algorithmic approaches, including, for
example, Benders decomposition and other exact or approximation iptegesamming
techniques, are developed for solving these problems. No prior wor& litetfature has
addressed these problems with the inherent complexities considereith. hEhe
developed methodologies were employed on real-world and carefudliedréctitious

networks to examine and demonstrate their effectiveness.

1.2 Specific problems addressed

This dissertation work has arisen from the increasing conckoth, nationally and
internationally, for securing existing transportation systems. wbik seeks to address

important aspects of pre-disaster emergency preparedness andsastgrdiesponse and



recovery. While it is widely recognized that transportationtesys are critical to
preserving mobility and general functionality of society aneédsnomy, systematic and
guantitative research in this arena has been limited. Thiforsgatovides a concise
statement of each of the problems addressed within this digserttte analytical
approach employed for their solution, and their import to reducing négative
consequences of a disaster. Formal definitions, together withedietikcription of the

problem formulations and solution approaches, are given in Chapters 3 through 5.

1.2.1 The Building Evacuation Problem with Shared Information

(BEPSI)

The BEPSI is addressed in this dissertation. Its objectivalestéomine a set of evacuation
routes and the assignment of evacuees to these routes for adangey building or a
building that has come under attack by enemy or natural catastregiehst the total
evacuation time is minimized. Resulting routes can be updated ponss to new
information ascertained about the operational capacity of the buddeigculation
systems (i.e. the means of egress) and updated evacuationtimssrgan be provided in
real-time to the evacuees. Given existing technologies thabeaesmployed for this
purpose, instructions that are provided at a particular location in tiaeniguwill likely be
simultaneously received by many evacuees. If multiple optionpraxéded, confusion
and/or chaos could ensue. Existing optimization approaches in thetulieercannot

guarantee that common instructions will be generated at inteateeldications at any



given point in time.

In this dissertation, the BEPSI is formulated as a mixeset linear program,
where the objective is to determine the set of routes alonghwhbicsend evacuees
(supply) from multiple locations throughout a building (sources) tefits (sinks) such
that the total time until all evacuees reach the exits iinmzed. The formulation
explicitly incorporates the constraints of shared informationpioviding on-line
instructions to evacuees, ensuring that evacuees departing fronermnediate or source
location at a mutual point in time receive common instructions. tkneel time and
capacity, as well as supply at the nodes, are permitted to whryinve and capacity is
assumed to be recaptured over time. The BEPSI is shown to be NFAhaekact
technique based on Benders decomposition is proposed for its solution. Thisgswor
expected to impact other functional areas as well, including evacua a geographic
region due to military attack, human-made accident, or naturaltelis@setails of the
formulation, together with the proposed algorithmic approach and restiltigs
application on a real-world example representing a four-story bujldirey given in

Chapter 3.

1.2.2 The Network Resilience Problem (NPR)

Individuals and companies have become increasingly dependent on thé thangport
system to deliver their goods, and thus, significant increase in nderiwet freight

transport in coming years is anticipated. However, the freighsport sector is operating



at or near its capacity in many regions of the world, inclutlregUnited States, and yet
an increase in the capacity of such systems is not antdigiteultaneously, risks from
accidents, weather-induced hazards, and terrorist attack on fraigspart systems have
dramatically increased. Thus, trucking companies, rail cariigrastructure managers,
and terminal and port operators must invest in security measumsvent or mitigate
the effects of disasters resulting from such incidents. Thug ihancreased pressure on
the freight transport industry to balance conflicting objectiveprofiding high service
and security levels while simultaneously offering low cost transporhatiees.

An indicator of network resilience is proposed that quantities ability of an
intermodal freight transport network to recover from random disruptioedo natural or
human-caused disaster. The indicator explicitly considers recaetisyties that might
be taken in the immediate aftermath of a disruption, as wethesluration of time,
investment and other resources required to undertake related actions.

A stochastic integer program is proposed for quantifying netwaikerce and
identifying the optimal course of action (i.e. set of actigjtito take in the immediate
aftermath of a disaster given target operational levels dnek@ budget. To solve this
mathematical program, a technique that accounts for dependenciemdom link
capacities based on concepts of Benders decomposition, column genardtibiorae
Carlo simulation is proposed. The technique is illustrated on the Dotdik-Sontainer
Network. Formulation of the Network Resilience Problem and tttentque proposed for

its solution are presented in Chapter 4.



1.2.3 The Urban Search and Rescue Team Deployment Problem

(USAR-TDP)

The problem of determining the optimal deployment of USAR teandistster sites
within the disaster region, including the order of site visitgh whe ultimate goal of
maximizing the expected number of saved lives over the seardhrescue period,
referred to herein as the USAR team deployment problem (UBAIR); is addressed in
Chapter 5. The problem is motivated by the need to quickly respondiigaster to

mitigate negative impacts. In an urban area that has been s{rudikaster, where the
impact area contains numerous sites, such as where buildingsher situctures

suspected of housing people stood prior to the disaster, it is dhetialrban search and
rescue (USAR) teams be quickly deployed. In such situations, ihar@eed for quick
decision-making despite the inherent unstable and uncertain natuwiecwhstances

immediately following disasters of this type.

USAR-TDP seeks to identify a set of non-overlapping tours for R&ams so
as to maximize the total expected number of people that can belsaatending to all
or a subset of disaster sites within the disaster region. Tosadtre probabilistic and
dynamic nature of conditions following a disaster, the on-sitécgetimes are assumed
to be uncertain and sites requiring assistance are identyfredrdcally over the decision
horizon. A multistage stochastic, integer program is formulaiedodel the sequential

stochastic information process.



To overcome the expensive computational effort associated witloltiteos of a
multistage stochastic program, a column generation-based metggdsldeveloped to
solve a sequence of interrelated two-stage stochastic pregréim recourse within a
shrinking-horizon framework. Interactions among teams are considandd sat
partitioning-type formulations are developed in terms of differecburse actions. Such
solution will aid the incident commander in determining the best deyol/ strategy for
available USAR task forces by directing crucial assetsites within the impact area,
where the most good can be done in the first days of the ermagrgenod. To illustrate
the feasibility and efficiency of applying the proposed solution teckenin support of
USAR operations in real-world applications, experimental restdts fa test case are

developed to replicate events of the 2010 Haiti earthquake.

1.3 Contributions

Three important problems associated with evacuation, network vuliitgradnd
emergency response operations, none of which was previously conceilrediierature,

are conceptualized and mathematically formulated. Such formulgpiavide precise
problem definitions and permit quantitative analyses of realdwvprbblem instances.

The inherent probabilistic and dynamic nature of real-world conditfollswing a
disaster is explicitly addressed. Exact or approximation isalutnethodologies are
proposed to address these problems. Such solution techniques provide support to

decision-makers faced with difficult, urgent decisions arisingnrergency preparedness



planning and post-disaster response. The problems addressed in thiataissesearch
are either shown to be NP-hard or their deterministic versi@enbl@rhard, and thus, are
known to be difficult problems. Computational experiments are conductéest the
effectiveness and efficiency of the proposed solution procedures.

In addition to the mathematical and methodological contributions asswbheidth
strategies for evacuation, response and recovery, an expositiogcwitys concerns
associated with transportation systems, including the role of traasporin emergency
management and in supporting other critical lifelines, as weeltha transportation
network as the target of natural or terrorist attack, is provide. focused discussion
provides a viewpoint for considering how the issues tackled withindibgertation fit
within the larger concerns of security and the movement of peodleréical resources
and supplies.

Natural and accidental events, as well as terrorist attaaksingpose extensive
damage to society. Such events are increasing in frequencyFEMA, 2008) and the
likelihood that the impact of such adverse events will be disastrausda rising (e.g.
Bureau for Crisis Prevention and Recovery, 2004). Thus, it isarifiat governments,
related non-governmental organizations (NGOs) and local citizarpgrbe prepared for
large-scale disasters. Lack of appropriate preparedness and resgioorse could lead to
needless injuries, lost lives and property loss. This disserta¢isgarch takes into
account society’'s need for safety in the case of disastdermrism resulting in

region-wide destruction and will support emergency preparednesgeapdnse by
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providing tools to aid in pre- and post-disaster decision-making.

1.4 Dissertation organization

The remainder of this dissertation proposal is organized in fivptetsa Chapter 2
presents a discussion of the role of the transportation systemergency preparedness
and response and includes insights into emergency preparednesspamseeoertaining
to events that impact the transportation system itself. Chaptdnough 5 address the
BEPSI, NRP and USAR-TDP discussed in this chapter. Finallyhapter 6, conclusions

and extensions for future research are given.
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Chapter 2 Disaster and the Transportation
System

This chapter presents general background literature for thier@digsen and is divided

into three sections. In the first section, a general overvieweviqus studies pertaining
to disasters and the transportation system’s unique role inatisagiresented. The next
two sections are devoted to emergency preparedness and disaptaise associated

with disaster events affecting the transportation system.

2.1 Transportation Systemsin Disaster

Disasters are the result of interactions between the eattysical systems, human
systems and the constructed environment (Mileti, 1999a). Turner andoRid#997),
among others, posit that many of the hazards that society tlzd#g are the result of
human intervention in environmental processes (e.g. through depletion of the ozane layer
deforestation, and genetic modification of organisms), manufacturingaoérdous
substances, and the creation of engineered systems with the pdmngacidental
catastrophic destruction. The development of such engineerednsyatel associated
technologies, e.g. nuclear power, biological chemistry and computersyelh as
increased globalization, have amplified human vulnerability to @isashe Center for

Research on the Epidemiology of Disasters (CRED) reportedhtbe were more than

12



16,000 mass disasters that impacted human society from 1900 to the.pdeskanta
different definition of disaster, Alexander (2005) estimates that in rgeans, the annual
rate of natural catastrophe and technological disaster has bésnander of 220 and 70,
respectively, around the world.

Disasters, by definition, impose extensive damage to societyhenlikélihood
that the impact of an adverse event will be disastrous continugset This increasing
destructive power of disaster events is due in large part teaiges in world population
and dense concentration of that population in vulnerable areas, such athalaogst,
raising the likelihood that any major hazardous event will adlyeadtect societies with
large numbers of people and significantly advanced civil infrastreidsee Turner and
Pidgeon (1997) for additional insights). As evidence of this inefeiasthe U.S., the
average number of declared disasters has risen from 10 per yearli®50’s to over 40
per year at the beginning of this century (Figure 2-1, FEMA, 2008jlitidnally, the
economic impact of these events continues to rise in absolute (semd-igure 2-2)
without considering the indirect costs caused by business disruptiorea(Bfor Crisis
Prevention and Recovery, 2004). The Munich Re Group estimates that anfdalieer
losses due to disaster in the 1990s were eight times greateintithe 1960s (United

Nations Development Programme, 2004).
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Figure 2-2 Global economic losses due to natural disasters (in 2002 values)

Source: The Munich Re Group

Recent events, including the Southeast Asian Tsunami (2004), HurricameaKa
(2005), Pakistani earthquake (2005), Myanmar cyclone (2008) and the eartligquake
China (2008), have made the first decade of this century theesbsth record. Disasters
present an extraordinarily complicated and incredibly challengmoplem for human

societies in planning for and managing such negative occurrences. Baterstanding
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of disasters and improved preparedness and response capabilities paiential to save

an enormous number of lives and to significantly reduce economic losses.

Conditionsfor disaster Countermeasures
Vulner ability Hazard ’
e Fragile physical environment| | e Natural events, e.g. flooding, Mitigation
e \ulnerable community earthquake, hurricane, fire
o Fragile local economy e Technical events, e.g. chemigal
Lack of preparedness eak, computer system faj Preparedness
Characteristics of disaster
Disaster
An event that produces death and injuiies,
and causes considerable physical, social
and economic dIS-I’uptIOI’]S Response
Consequences from disaster l
Physical damage Socio-economic losses Death and injuries Recovery

e Lifeline systems, e.ge Business interruption | ¢ Death tolls
water, electric power, ap@ Change of normativg e pPublic health issues

transportation systems behaviors e Psychological issues
e Structural damage, e}g Increase in tensions
buildings

Figure 2-3 Dimensions of Disaster Research

Disaster research began in the 1950s (Perry, 2007). Thigakedsss covered
such topics as case studies, human behavior and governmental actidigasters,
modeling of infrastructure development, and systematization oftdisananagement
services. Alexander (1997) has claimed that some 30 disciplindsdimg sociology,
geography, anthropology, politics and engineering, have an intertret disasters field.

Only recently, but rarely, have quantitative studies been conductede 2¢3 provides a
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conceptual framework of disaster research, which shows the donsr®iaracterizing a
disaster and describes the disaster countermeasures.

In past decades, the development of new technologies, e.g. nuclear, pow
biological chemistry and computers, as well as social and e¢oni@ansformations, e.g.
increasing population density and aggregation, international tradepetiion and
globalization, and industrial change in production and distribution of gowtiseavices,
have increased human vulnerability to disaster. Moreover, recenatestah terrorist
attacks and the potential lethality of weapons obtained by térerganizations have
created new threats. Thus, in recent years, our civilizations bhec@me increasingly
susceptible to nontraditional disaster events as compared to th@pasantelli et al.,
2007). New efforts to understand and cope with disasters are crucial.

The transportation system plays a critical role in coping witdasiers. This
system is composed of nhumerous modes (highway, rail, air, maringi@lohe), is a
vast, open, interdependent networked system that moves vast numbessenigeas and
guantities of goods nationally and globally. While the transportatistesyis critical to
coping with disasters, the transportation system may be serionpbcted during a
disaster. For example, the 1994 earthquake on the Hayward Fault $anhErancisco
area resulted in more than 1,600 road closures and damage to mostigel lamd major
highways (Okasaki, 2003). However, systematic study of the roleeofransportation
system in disasters has only recently begun to be consideredtudy of disasters and

physical structures and concerns of behavioral and social ssi@me far more mature
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fields of study. The majority of relevant transportation ezlatesearch has focused on
such topics as performance analysis, disaster impact evaluation, andiemacuat

The transportation system is a critical lifeline systen diffects any nation’s way
of life, economic vitality and society, in general. In the U.S.,tthasportation system
connects cities, manufacturers, and retailers, moving large volingeeds and people
through a network of 3.8 million miles of roadways, more than 143005 of rail,
over 582,000 bridges, through numerous sea ports, and over 500 public airports (U.S.
Department of Homeland Security, 2007). Destruction of and damagangpartation
systems results in, not only direct disruptions of transportationcsstgvbut also in
indirect economic losses and sociological effects. After tiaelkaof September 11, 2001,
one of the largest terrorist-caused disasters, more than $5.5 billion wasde¢gquebkuild
the transportation system in lower Manhattan (Waugh, 2007).

In the aftermath of a disaster, transportation systems providatiedsaccess for
emergency personnel carrying critical resources to disa#ies and allow for the
evacuation of people and property from those sites. On Septemb@01,, public
transportation in New York City, New Jersey, Washington, D.C. anoughout the
country helped to safely evacuate citizens from city centemur& 750,000 people were
evacuated by water transportation from lower Manhattan (KendiaVWachtendorf,
2003).

Transportation systems are essential for individuals, households, antindies

as they attempt to recover from disasters. Recovery and tasiashany lifeline system
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will depend on the ability of the transportation system to provideckie transport
services (Nicholson and Du, 1997). Chang (2000) pointed out the significaraoe of
operating transportation system in disaster recovery and thédongeconomic impact
of substandard operations through empirical data from the 1995 Kolbeeke and
other disasters. Giuliano and Golob (1998) examined behavioral datatembliectwo
heavily damaged corridors following the Northridge earthquake of 1994.fébeg that
the transportation system’s redundancy and a variety of short-tdranges in
individual's travel choices made rapid recovery possible even frofor ndégsasters.
Willson (1998) examined the impacts of the 1994 Los Angeles County edathqna
trucking firms and how they responded to the earthquake. The author pointgzatout
quick restoration of transportation capacity significantly impacted goods neowem
Meanwhile, the possibility of attack on transportation systemstlaadise of
transport vehicles as tools for terrorist attack have isedkancidents include not only
the September 11, 2001 attacks on the World Trade Center and the Pebtagisp
more recent attacks on transportation targets, such as the coardatigek on four
commuter trains in Madrid in 2004, the 2005 London underground bombings, the 2006
plot uncovered in the United Kingdom targeting airlines bound for theetl&tates, and
the 2010 Moscow metro bombings. These recent attacks provide evidendbethat
transportation system remains an attractive target for t&iso0As suggested by Johnston
(2004), perhaps our civilization should focus less on maximizing effigiand more on

increasing security and safety of the transportation systems.
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Thus, the importance of transportation systems for responding to @nernag
from a disaster, and the possibility of future events involving pamation systems,
presents new challenges and tasks for transportation practiti®emantly, researchers
have begun to consider the ramifications of disaster impact orptraatson systems.
Disaster events can negatively impact the transportationnsyaféecting mobility and,
ultimately, the economy. Disruptions in transportation serviceseuribgatively impact
disaster response. A number of publications have appeared in theulgettzt, with
specific concern for the role of transportation, document experienoedg@om previous
disaster events and propose methodologies for creating strategiegrove coping
mechanisms for future events. These latter works consider ewacaaid emergency
response aimed at mitigating the impact of the event on sobietile next sections,

pre-event disaster planning and post-event response are discussed in gahter det

2.2 Preparing for Disasters

To mitigate the negative consequences to society and the phiydieatructure that
might be caused by a disaster, preparedness plans can be developed and paiiectve a
can be takem priori. Preparation for disaster events includes a broad range otiasfivi
such as vulnerability assessment, implementation of risk-reducingsunes,
development of disaster plans, and training. A large body of réskascbeen conducted
on emergency preparedness from various perspectives (e.giesaamid households,

communities, engineering systems, and states and nations) @sm¢he ability of such
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social and physical units to respond when a disaster occurs. Tperqueess process
begins with vulnerability assessment that seeks to identificesuf risk and associated
consequences that are likely to occur in the aftermath of aatisagent. Risk-reducing
measures can be employed and plans for coping with disaster conssgilratenay not

be avoided can be developed.

2.2.1 Vulnerability analysis

All societies regularly face negative events that revéair tphysical and social
vulnerabilities (Tierney et al., 2001). Substantially better unaleding of the
vulnerability of transportation systems is required to achieveoie rdisaster-resistant
transportation system. Vulnerability of transportation systendissters stems from a
variety of interrelated factors that include network confijara topology, physical
location, the conditions under which the system operates, and other system
characteristics. Consistent with the social vulnerability pgradiransportation system
vulnerability can be thought of as stemming from not only exposurbetqatential
physical impacts of disasters, but also from societal conditiodstr@nds that cause
certain systems to be less able to cope with disasters. Vhilitgrathus, has both
physical and social dimensions. For example, urbanization has induestergtraffic
activity and placed increasing demands on the transportation inétase at the same
time as this infrastructure is aging and in need of major imergs for maintenance

and/or modernization, increasing the vulnerability of transportation systems.
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Sources of vulnerabilities of transportation systems are threéfpédincentration
of populations in dense regions, high levels of vehicular traffic ant pigplic
transportation ridership; 2) inadequate capacity of transportatiorensystand 3)
hazardous materials transport. These sources of vulnerabilitgtareslated. Reduction
in these vulnerabilities remains difficult, because it would plaetty costs on the
transportation industry. Thus, the improvements that have been madkiangethese
vulnerabilities have been small and society has chosen to réenadihmitigate damage
once incurred, rather than seek to prevent it (Perrow, 2007). SrinivZ@@2) (pointed
out that the absence of a quantitative vulnerability analysis &t dminponent and
system-wide levels remains a serious, if not the most signiifi challenge to developing

insights and systematic methods to improve transportation security.

2.2.2 Risk reduction

The risk of a hazard is the product of the probability of the rdaaacurring and the
consequence of its occurrence (i.e. the expectation of the hazhrdai).tRisk reduction
is a well-established process for identifying hazards, idémgftheir probabilities and
consequences, assessing the acceptability of the risks, and takimg t® address
unacceptable risks (Dalziell et al., 1999). Risk reduction is adlroacept including all
aspects that will help to reduce the risks of damage, such kagdeistification and
assessment, risk reduction, and risk transfer. Many actions coultbbght of as risk

reduction. Including safety features in the design of bridgesd¢agihen them against
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collapse during future earthquakes or building alternative routes v mnaffic from
some origin to destination are examples of risk-reducing actions that takebe

Risk identification and assessment can be applied to identify titiealc
components of the transportation system. These methods require indorrabtiut the
severity of hazard and the probability of hazard occurrence. Such atformis difficult
to obtain and may require a substantial data collection effortdatadled knowledge of
the processes underlying these hazards. Mainly, the risk to thpdrat®n system is
evaluated from direct damage to critical system components, sugtidges, and the
indirect costs due to travel delays in the disrupted systemBaspz and Kiremidjian,

1996; Werner et al., 2000; Kiremidjian et al., 2007).

2.2.3 Pre-disaster planning

While it is costly to implement other risk reduction measuresutficiently reduce

vulnerability and possible consequences of disaster events, id&ywaccepted that
pre-disaster planning has a positive effect on the systdbiliy a0 respond effectively
once a disaster occurs (Tierney et al.,, 2001). Pre-disasteniqda provides a
cost-effective way to reduce disaster risks and potential loSseh plans pertain to
evacuation, recovery, emergency response, and sheltering. Developimglains to

address these various stages of emergency management aid in the sysligyis eope

with adversity and are vital to the creation of a disaster-resilistérsy(Mileti, 1999b).

Evacuation planning is one important component of pre-disaster planning.
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Optimization-based approaches are widely use to produce evacuatisntpht identify
routes and schedules to evacuate impacted people to safety innthefedisaster within
an acceptable evacuation time (see, for example, Hamacher jandral 2001,
Miller-Hooks and Stock Patterson, 2004; Lu et al., 2003; Mamada e0@8; Baumann
and Skutella, 2006; Kamiyama et al., 2006). Recovery planning is anatpertant
component. Vocca (1992) recommends that several issues associhtegdwndancy be
considered when developing an effective network recovery plan, italtdanate routes,
backup strategies, contingency plans, and people plans be included. @S9®&Y
proposed six basic areas for disaster recovery planning, includingticopagsis, risk
assessment analysis, risk mitigation strategy developnmemdyery planning, alternate
site consideration, and routine training. Bryson et al. (2002) proposed ¢hefus
mathematical modeling as a decision support tool for successfulopgment of a
disaster recovery plan. Dekle (2005) used a covering location nwd#ritify optimal
disaster recovery center locations, which will provide long-teecovery assistance

subsequent to a declared disaster.

2.3 Respondingto Disasters

Figure 2-4 shows the different phases of the disaster lifee dpet take place in the
aftermath of a disaster. When a disaster occurs, police, firergency medical service
personnel, as well as emergency managers and numerous others, aredimvaihe

response and recovery processes within the disaster zone. Thesespionders partake
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in the provision of warning, emergency sheltering, search aedagengoing situation
assessment, emergency resource management, and implementatibar gmergency
measures. The response process has been the most studied phasteof(Tiseney et
al., 2001). The quality of the preparedness and response efiitglystd be interrelated
and the effectiveness of one affects and is affected by the. dflieti (1999b) has
concluded that high levels of preparedness would enhance the systdity scat@spond

effectively at the time a disaster strikes.
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Figure 2-4 Timeline of different phases post- disaster
2.3.1 Initial response

Once a disaster has taken place, the first concern idieffeelief, i.e. helping all those
affected to recover from the immediate effects of the adisa$his is known as initial
response and usually lasts for several weeks. Initial resporisddaacvarious actions,

such as assessing the conditions of transportation infrastruatatesnining evacuation
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requirements, assisting with evacuation of people to safe pldisgsitching materials,
personnel, and supplies in support of emergency activities, deployngpartation
agency response personnel, and adapting traffic control strategies.

Effective response to a disaster using transportation assetshéaeffect of
minimizing the loss of life and damage to property and maintairiivey basic
transportation services that are needed to decrease the magnitudegative

conseqguences of disasters.

2.3.2 Recovery

New models of recovery have been developed since the 1970s (1B&9h). Recovery
covers a variety of very complex activities that need to becaddd after a disaster, such
as quick return to normalcy; reduction of future vulnerability; or oppdst for
improved efficiency, equity, and amenities (see, for examplexeBat al., 1993; Batho et
al., 1999; Mileti, 1999b; Hecker et al., 2000; Smith and Wenger, 2007). Redsverya
linear phenomenon with a specific set of stages, but rathgrababilistic and recursive
process addressing decision-making associated with restoratemonstruction,
rehabilitation, and redevelopment activities. Recovery may take as loegras y

The recovery process is complex, often involving the civil infuastire,
engineered systems, the overall economy, and society, and the iompaech varies
greatly with the disaster event. Thus, it may be difficult toetl a standardized

recovery framework or a single model applicable to all typedisasters and impacted
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regions. For impacted transportation systems, recovery includes naiepalying some
subset of the existing infrastructure’s components, but also prilgitend/or allocating
resources necessary to maintain and restore the transportatiem,sgad adding new
components to a transportation network with the goal of creatingsavelnerable
post-event network configuration. Thus, it is not only important toghite system to
normalcy in terms of providing transportation services, but ilse eritical to change
traveler behavior and develop a sustainable, less vulnerable asigidisgistant network

for the future.

2.4 Conclusions

While extensive literature exists that addresses the subgéctsreparing for and
responding to disaster at various levels (e.g. households, organizationgjrabesnand
states and nation), limited research has been conducted that ificahecelated to
transportation systems. While it is clearly recognized thatdisaster-resistant
transportation system is a critical issue in reducing injunesdeath tolls, mitigating the
socio-economic losses and property damage, and minimizing a myrididroptions,
there is a dirth of works pertaining to transportation systdaismathematically model
the problems arising in the preparation and response phases in sopmmtimal

decision-making. This dissertation seeks to fill a piece of that void.
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Chapter 3 The Building Evacuation Problem

with Shared I nformation

3.1 Introduction

The Building Evacuation Problem with Shared Information (BEPSHdidressed in this
chapter. The objective of the BEPSI is to determine a setamiuation routes and the
assignment of evacuees to these routes for a large burning buildingudding that has
come under attack by enemy or natural catastrophe suclh¢himtal evacuation time is
minimized. The term building is used generically throughout this wodkrafers to any
structure that houses people and other assets, such as a higisideatial building, a
military complex like the Pentagon, or a large ship. Resulting saxdeld be updated in
response to new information ascertained about the operational gagfatie building’s
circulation systems (i.e. the means of egress). Such routes anesupmldahese routes
during the course of the evacuation could be provided in the form afigtiehs to the
evacuees via changeable message signs, photoluminescent ,sigmageevacuation
systems, or other technologies that would support real-time puldicriafion updates in
substandard conditions. Thus, any instructions that are provided aitcalpafbcation in
the building will likely be simultaneously received by many eeasu That is, evacuees
departing from an intermediate or source location at a partipoiat in time receive

common instructions as to how to proceed (i.e. shared information). Iplawptions are
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provided, confusion could ensue. The potential for providing such updated evacuation
instructions given real-time information and predictions of the camddf the building’s
structures and circulation systems based on data from sensemsyist described in
Miller-Hooks and Krauthammer (2007). Existing optimization approachémilitérature
cannot guarantee that common instructions will be generateceahetiate locations at

any given point in time.

Typical building evacuation plans are developed pre-disaster for nficfaeat
and these plans are posted throughout the building. Such plans could, ituan ac
evacuation, route evacuees into harms way (e.g. to a stairittelimtenable conditions),
leaving evacuees to their own devices to find alternative (saf#gs. Past experience has
demonstrated that two main hindrances to the movement of evacueebuiidiag
evacuation exist: (1) inappropriate selection of escape pashavad/(2) congestion along
the safest pathways (Lovas, 1998). Instructions generated for thicspiecumstances
leading to the need for the evacuation can lead to significant impeoisnn escape
pathway selection. Moreover, explicit consideration of the number of gdbat such
pathways can support in developing real-time evacuation instructioreachto reduced
congestion throughout the building and greater likelihood of successful egress.

In this chapter, the BEPSI is formulated as a mixed integeadiprogram, where
the objective is to determine the set of routes along whichtbeseacuees (supply) from
multiple locations throughout the building (sources) to the building exitss{ssuch that

the total time required of all evacuees to reach the exitsnimized. The formulation
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explicitly incorporates the constraints of shared informatiouns, feasible solutions must

not contain more than one path from a node at a given departure time. Arc tnavahd
capacity, as well as supply at the nodes, are permitted towtartime (i.e. the network is
permitted to be time-varying) and capacity is assumed to bptrged over time (i.e. the
network is dynamic). Thus, the formulation can be viewed as ad@pendent, dynamic
transshipment problem with side constraints. A similar distinctiortweden
time-dependence and problem dynamics is made in Miller-Hooks ank Badterson
(2004). An exact solution technique based on Benders decomposition is proposed for
solution of the BEPSI.

Optimization techniques have been proposed for use in determining optimal
evacuation routes for both building and regional evacuation over the past few decades and
a number of these works develop network flow-based solution techniquiesrialer the
dynamic and, in some cases, the time-dependent network propesgeblagiacher and
Tjandra (2001) and Miller-Hooks and Stock Patterson (2004) for a reviewlevant
works in the literature. Additional relevant works published in the gagple of years
include Lu et al. (2003), Mamada et al. (2003), Baumann and Skutella (2006) and
Kamiyama et al. (2006). All of these works assume that wherotwaore units of flow
(i.e. the evacuees) arrive at an intermediate node, instructioseqarovided that permit
the flow to split among various routes. Thus, the instructions magxmple, send a
subset of flow units along one route and the remaining units along amother The

provision of such instructions that require evacuees to separateratediate locations
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despite that they have arrived at this location together would nbt bkepalatable and
could lead to confusion, or worse, chaos.

To corroborate this concept of a need for shared instructions, fe$esshown
that in a crisis, such as would arise in an evacuation, people leakoother for cues in
making decisions as to how to proceed (Johnson, 1974; Helbing et al., 2000)gldeal.
(2000), for example, noted a strong tendency towards collective behatiere people
follow the actions of others in evacuations involving crowds. An emengam that
guides the group’s behavior forms as people seek coordinated, coléextiore(\WWenger et
al. 1994). In addition, Sime (1985) stated that during a fire, peoplgrailitate to familiar
people and if groups are split, they seek to reunite during the evacuatenger et al.
(1998) postulated that preexisting and emergent social relationshgasti collective
behavior. Observations from these works support the need for providingctimsis that
do not require a group of evacuees arriving at an intermediagdiodo split apart, i.e.
that support a group’s desire for collective action.

A similar concept of “unsplittable flow” has been employed in fdating
bin-packing, virtual-circuit routing, scheduling and load balancing pnablésee, for
example, Dinitz et al., 1999; Chakrabarti et al., 2002; Kolliopoulos ard, 2&04). The
unsplittable flow problem seeks to route numerous commodities eaghakingle route
from a source to a desired sink while respecting arc dgpaatations. In the limit, if only
one commodity is considered, this problem would be identical to a stsion of the

BEPSI with one sink and supply at only one origin. Of greater relevance, perhapss is w
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by Lu et al. (2003). Their work proposed a heuristic for evacualiiegacuees who begin
at a particular source node along a single route such that @ecityalimitations are

respected. Multiple sources are considered. If such routes ceosgd not independent),
such a solution could require evacuees simultaneously arriving inteamediate node
from different origins to take different routes out of that intermediate node.

In the next section, a mathematical formulation is proposed for BRSBthat
explicitly considers the inherent dynamic and time-varying natir¢he evacuation
problem. By explicitly considering these characteristics, fnegukolutions will avoid
sending evacuees to corridors or stairwells when conditions at tbeagons are
expected to be untenable or difficult to traverse. The author know oforkswn the
literature that address the issue of shared information thatsanis this building
evacuation problem. In addition, in the next section, the BEPSI is sl NP-hard.
In Section 3.3, a Benders decomposition approach for solving the BEP®biosed and
is illustrated on an example 5-node network. Computational resoilts frumerical
experiments on a real-world network representing a four-story bgildre given in

Section 3.4. Conclusions and directions for future work are discussed in Section 3.5.

3.2 Theevacuation problem with shared infor mation

The evacuation problem with shared information exploits a networksesqtedion of a
building. In such a representation, the network represents the laydut afr¢culation

systems of the building, where nodes correspond with locations ihgdmitiding (such
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as offices, meeting rooms, lobbies, lavatories, building exits, aml@omtersections)
and arcs correspond with the passageways that connect theemo(aich as staircases,
elevator shafts, doorways, corridors and ramps). A cost is ofteciatesl with the use of
an arc. In evacuation problems, the cost is typically given in tefriige time it takes to
traverse the arc, known as the arc traversal time. When largeensiof people must be
evacuated from the building simultaneously, issues concerningityapathe network
arcs arise. The capacity of an arc is the number of peoplecdhapass through the
associated passageway per unit of time. The arc capamiéedependent upon the size
and type of passageway that the arcs represent. Arc mhtierss are a function of the
arc capacities and the number of people simultaneously using dheTére nodes at
which the people are located when the evacuation begins are calted sodes and the

exits are referred to as sink nodes.

3.2.1 Preiminaries

Consider a time-dependent, dynamic network represented Jy(G,u,z) ,
G=(N,A{0,..T}), where N={1,...n} is the set of nodesA={(i,j)fi,j e N} is the set
of directed arcs, and is the analysis period of interest discretized into smale tim
intervals {OT} It is assumed that all evacuees can egress beforeTtiméhough,
one can set a tighter bound on the evacuation tiMete that T may be an
expert-generated bound to model physical processash as the time by which

conditions are expected to become untenable dsentike or fire spread or complete
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collapse of the building’s structures. Alternatiyel may be set simply to ascertain the
number of people that will escape in a given timienval. One could also seek an
optimal T, i.e. the minimum time by which every evacuee daiit the building. From
this latter perspective, Miller-Hooks and Stock tBx&on (2004) have developed an
approach for determining a bound Bthat could be employed in obtaining such a bound
for the problem studied herein. We focus, thoughonimizing total time, instead of
minimizing T, because solutions to this latter problem carugtelrather poor paths for
many of the evacuees. That is, there is no inceritiveduce the evacuation time of any
evacuee, as long as that time is below the opfiriedund.

Each arc(i,j)e A has associated with it a positive time-varyingazdy and a
nonnegative time-varying traversal time. The cdyaai arc (i, j) at departure time
is denoted byu, (t) with integral domain and range. Instead of reprtisg the actual
flow at any given time, the capacity of an archis maximum flow released on the arc at
a given departure time. That is, the capacity Bntlite rate of flow into an arc. As flow
leaves nodei at some departure timethe time it takes to reach nogei.e. the travel
time along arc(i, j), is given by positive valued, (t). The arc travel time is defined
upon entering an arc, and is assumed to be corfstatite duration of travel along that
arc. Thus, it is possible for a unit of flow to Weanode i ahead of some other flow, but
arrive later. Travel time estimates can be obtainadistorical data, sensor technologies
or from a function of capacity. The methodologygeneral enough to support all such

estimation methods.
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Holdover arcs(i,i),vieN, are introduced at the nodes to allow evacuees to

arrive at intermediate locations and wait for caiyato become available on outgoing
arcs. Traversal times and capacities of the holdaxes are set to one unit and infinity,
respectively, vie N at each departure times{0K ,T}. The traversal time of the
holdover arc at the sink node is set to zero fodepbarture time intervals, because there
is no penalty for arriving at the sink befare

The number of source nodes is denotedNvyand the set of source nodes and
sink node are denoted b ={kk,,...k,} and |, respectively. The supply at any

source nodek, attime t is denoted byh, (t) and can take on positive values for any
te{0OK ,T-1. The supply of any intermediate node is assumdmktpero. Without loss

of generality, it is assumed that only one sinksesxiOne can model additional sinks by
adding a super sink to the network and connectaod @ctual sink to this node with arcs

of zero travel time and infinite capacity. It isamed that att =T , the supply at nodé

will be equal to the total supplyB = ZZL% (t), so thath (T)=-B. This does not
k eK

prevent the flow from arriving at the sink at anliea time. When flow arrives before
time T, it simply waits without penalty until tim& to satisfy the demand. Supplies at
transshipment nodes are zero at all times. It suraed that the arc travel time and

capacity and supply at the source nodes are kraqviori.

3.2.2 Mixed integer programming formulation

The BEPSI is formulated as a mixed integer lineagmm. Decision variablex, (t)
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represents the rate of flow that leaves nioaletimet along arc (i, j), and is a continuous
variable, while binary variabley, (t) determines the arcs to be selected. The flg\)
arrives at nodej at time t+z,(t). The set of arcs directed in and out of a nodee
given by T ()={j|(j.i)eA} and I'"(i)={]j|(,j)e A}, respectively. The BEPSI is

formulated as follows.

p: min z z 7; (©)%; (t) 1)
(i,j)eAtel0,...T}
subject tc
> X, (t) - > x; (0)=h (1), VieN,te{0,....T} )
jer* (i) jeF’(i){f‘T+rl‘(ﬂ:t}
A (£) < %, (1) < A (t)u, (1), Vi,j)eAte{0..T] (3)
z 2 (1) <1, VieN \ te{0,..T } (4)
jert (i), j=i
X, ()= 0,4, (t)binary, Vi(eAtef0,..T} (5)

In this model, the objective function (1) seeksrtimimize the total time to send
all flow from the source nodes to the sink. The piag X: Ax{O,...,T} — Z, is said to
be a feasible solution if it satisfies four sets aminstraints, i.e. flow conservation
constraints (2), capacity constraints (3), sharatbrimation constraints (4), and
nonnegativity constraints (5). Constraints (2) werst proposed by Miller-Hooks and
Stock Patterson (2004) to model flow conservationstraints for the time-dependent
quickest flow problem (TDQFP) (where flows are pitead to split at all nodes). Similar
constraints are proposed in Tjandra (2003) for esking the multi-source version of the

TDQFP. Constraints (3) are logical constraints thgiose lower and upper bounds on
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the flow that can pass through each arc at a giegarture time. The bounds depend on
the choice of arcs that will contribute to the $ioln paths and aid in prohibiting
splittable flows. Constraints (4) allow splittalflews if the flow is split between a single
outgoing arc and the holdover arc at that nodeblBno (P) can be viewed as the
multi-source version of the TDQFP with side constsa Solution of the TDQFP may

result in split flows at source and intermediatde®

3.2.3 Complexity

In this section, it is shown that problem (P) cep@nding to the BEPSI is NP-hard.
Theorem 1. The evacuation problem with shared informatiorthvar without storage of
flow at intermediate nodes, is NP-hard in the gjreanse 1 >1).

Proof. We prove this by a reduction from the Three-Rartitproblem, which is
NP-complete in the strong sense (Garey and Johth8@0).

Three-Partition Problem (3-Partition): Given a eet3n items, neZ", with associated

The task is to decide whether or not the set carpdréitioned inton disjoint sets

S.S,....S, suchthatforje{l..n}, >. . b=B.

|ES]

Given an instance of 3-Partition, a network cancbastructed with multiple

sourcesa,...,a,, and single sink, as shown in Figure 3-1, in polynomial time.
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Figure 3-1 Reduction from 3-Partition

. . . 3n
Supply associated with each source nagleis b such thatzizlq =nB. Note
that supply is assumed to be available at timellCar&s in the network have unit transit

time. Without loss of generality, time bound:=2.

It is shown that a set of routes along whioB units of flow can be shipped from
sourcesa,,....a,, to sinkl within T, given that flow cannot be split at nodes....a,,,
exists iff there is a yes solution to the 3-Pantitinstance.

If: If the underlying instance of 3-Partition is ae%j instance, then there is a

partition S,...,S, of {1,..,3} such that forje{1,..n} ’Ziesjh =B. The set of routes
can be generated by shippirlg units along arc(a;,c) for everyieS. Then B
units of flow will be sent on to the sink from nodg . Thus, nB units of flow arrive at
sink| at time 2.

Only if: It remains to be shown that the existence ofoav fthat satisfies the

conditions that all units of flow leaving the samade can take only one direction and
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that the last unit of flow arrives at the sink el than tim& yields a feasible solution
to the corresponding 3-Partition problem instaridenote flow on any arqa,c ) at

timet by X(ai,ck)(t)' The binary variablei(a ,Ck)(t) represents that if the ar@a,c.) is

contained in the solution to the special instarfd@EP S| problem, then

zie{l  Xa.c0(0)=B andx. , 1)=B, vke{ 1,.n}

and ¥, Aag)(©@=1vie{l. .8}

It follows that

zie{im%)(o):]}q =B,vke{l,..n}
8 =il Aq )@ =1ie{1...8}} ,vke{l..n}

Hence, n sets of arcs that carry a positive amount of flawto node
¢.vke{l,...n} induce the partition af disjoint sets satisfyingziesjq =B,vje{l...n}.
Note that since all the arcs in the network havietiewversal time and the time bound is 2,
no flow will be shipped along any holdover arc irfeasible solution of problem (P).
While no holdover arcs are employed, such arcs amalable, and therefore, the

reduction works for both models, with and withottrage.o

3.3 Exact solution technique based on Bender s decomposition

The formulation (P) contains a set of integer J\aga representing the selection of arcs,
and a set of continuous variables representingltie along each arc. The number of
variables is large, even for mid-size instancesydwer, this structure is suitable for

mathematical decomposition. An exact algorithmeldasn Benders decomposition to
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solve Problem (P), i.e. the BEPSI, is proposediheBenders decomposition (Benders,
1962) has been successfully applied to solve mamxgdninteger programs. See, for
example, Cordeau et al. (2000) and Costa (2003, ®owhich successfully employed
Benders decomposition to solve difficult networlside problems.

The original problem is reformulated using Bendelescomposition into a
sub-problem, a pure network flow problem contairtimg continuous flow variables, and
a master problem containing the binary arc selectiariables. Benders cuts are
generated by solution of the sub-problem and adeddb the relaxed master problem at
each iteration, progressively constraining thexedbmaster problem. The cuts reduce the
number of flow variables that must be consideregneat the expense of increasing the

number of constraints.

3.3.1 Benderssub-problem

Let A be the 0-1 vector satisfying the shared infornmationstraints (4) and lét be the

set of valid A. To obtain the primal sub-problem, the valuesiofmust be fixed. For

some fixed 2& A and variablesx, (t), the primal sub-problem can be given as follows.

5@ mn 2 2 5040 ©)
subject tc:
J_EFZG) X (1) ‘HZ@)“H%M x,(0)=h(t), VieNte{0,..T} @
A1) <%, (1) < ARy, O, V(i)eAte0,..T) (8
x; () >0 and integer VI{jikAte 0,.T] (9)
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Since /ﬂ{ﬂ(t) is a constant in this formulation, constraints§8tome simple lower
and upper bounds on the (t) variables. The selection of arcs is made in sglttre

relaxed master problem. Thus, all that remaine @etermine the amount of flow to ship

along these arcs. The lower bounds giit) variables can be dropped without impacting
the optimal solution of problem (P). Due to thetfdmat the objective function does not
contain the 4, (t) variables, the optimal solutiori2’,x) for the relaxed problem
(without lower bounds) can be used to construaigiimal solution (1",x ) for problem
(P) with the same objective function value. It vaediserved in preliminary experiments

that computational complexity is reduced by drogpime lower bounds. In addition, arc

set A={(i,j)fi,jeN} can be partitioned into the following three disjsets:
LA ={(i,])fi,je N andr* { g
|2(A)={(i,j)\i,j eN andl™* { = } and
(A ={(i,i)ieN}.

Thus, A=1,(A)Ul,(A)UIl,(A). The sub-problems, (%) can be rewritten as:

RS, (%: min (i%m{;ﬂrﬁ ®)x; © (6)
subject tc:
j;ﬁ)xj (t) —j;i)“é(:w x,(T)=b(), VieN,te{0..T} @
X (t) < Ay, ©), Vel @)te{0,..T) (8a)
X, () <u, (1), vi(i El, A)e {0,.T (8b)
X, (t) > 0 and integer Vi 0eAtef0,...T} (9)
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Sub-problems RS, (¥9) and (S, (%) are equivalent mathematical descriptions;
however, significant improvement in computationagérfprmance of the Benders
decomposition approach can be obtained by usiRg, ¢9) in place of § (#).
Sub-problem RS, (") has a pure network flow structure and the comdtmmatrix is
totally unimodular. Hence, the optimal solution dam obtained by solving the linear
programming (LP) relaxation or its dual.

The dual of the LP relaxation of the primal subkeon, called the dual

sub-problem, is given as problemRS, (") as follows.

DRS, (%
TS0 D RIS ST L TEE i EPCLAC) et
tef0,...T}\ ieN ij)el, (A) ijel, A)
subject tc:
m () -7z (t+z®)+m () <z (1),  V@.j)eAV;(A)te{0,..T} (11)
m, (t)<0, V{,j)eA\l, A)te{0,..T) (12)

Here, 7, (t) for ieN and teT are the dual variables associated with
constraints (7) andm, (t)for ieN and teT are the dual variables associated with
constraints (8a) and (8b). LBt denote the polyhedron defined by constraints &)
(12), and letP, and R, be the complete sets of extreme points and extraysofD,
respectively. The null vector 0 satisfies constsifll) and (12); thus, the dual
sub-problem is always feasible. By the weak duahgorem, the primal sub-problem is
either infeasible or feasible and bounded if thal dsifeasible. To exclude the possibility

of primal infeasibility, the following inequality ost hold:
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2 (2” Jh®+ > w(tm )+ > E{F’(t)u”(t)mj(t)JSO, v(r.mjeR; .

ieN (i.j)el, A) (ij)elh &™)
If the dual sub-problem is bounded and the prinsdtgroblem is feasible, the optimal

value of both problems is then given by

vax Y (2z BoOs T wOmO: Y oy <>m,<t>j-

(zmeromn Ui (i )el, A) (i el @)

3.3.2 Bendersrelaxed master problem

The Benders master problem is obtained by replacomngtraints (2), (3) and (4) by
Benders cuts (14) and (15). Constraints (14) atienafity cuts that ensure corresponding
non-optimal solutions are excluded. Constraintg @& feasibility cuts that ensure the
resulting primal sub-problem is feasible. Introcgrithe additional free variablg,
problem (P) can be reformulated as the followingieajent problem P).

(P): min Z (13)

subject tc:

Z- X 2 w(m ()4 Z (2” ILIVESEDY uij(t)mj(t)J,

tef0,..T} (i .j)el; (A) te ieN (i j)el, &)

(z.m)ePR, (14)

> wOm0s0:- 3 (zn bo: Y uiJ-(t)mj(t)],

tef0,..T} (i .j)el; A) te{ 0, ieN (ijel, &)

(mm)eR,  (15)

Jerz(‘;m/l (t)<1, VieN\ te{0,..T} (16)
J; (t) binary, V{jleAte{0..T] (17)
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Constraints (14) and (15) need not be enumeratbéduskively, because most of the
constraints will be inactive in the optimal solutiorhus, a relaxation of problen?) can
be obtained by dropping constraints (14) and (X% @eratively adding them to the
relaxation until optimality is achieved. Results meliminary experiments show that
when beginning withR, =&, resulting sub-problems are likely to be infeasiland
Benders decomposition may be very slow to convefgps concern is addressed by
augmenting the relaxed master problem with valicdhrger inequalities that can reduce
the number of iterations required to reach optitpali

Proposition 1. In FIFO' networks, if in the optimal solution to the BEP®bw is

shipped from node(i =1 )at timet along a holdover arc, then

> A4 (t)=1vte{0,..T- 1.

jer* (i), j=i
Discussion. Let {x; (t)}V(m,)emomp;and{/l,j ¢)}WWE{ - be the optimal solution.
Suppose that in this solution};(t)=1and >  4,(t)=0 for some node (i=l) at
jer* (i), j=i
time t. Without loss of generality, suppose thaf(t+1)=1,jeI"" () and =i . Then a new
solution can be constructed wherg(t)=0, A4;(t)=1, 4;(t+7,(t)=1, constraints
(2)-(5) are satisfied and the objective functiofueas lower than in the optimal solution

(because the arc traversal times cannot improvetowe), contradicting the assumption

that the original solution is optimat.

According to proposition 1, for any nodei=1) at timet, > 4;(t)>4(t) holds.

el (i), j=i

L AFIFO (First-In, First-Out) network ensures toae can never arrive earlier by departing laternmtnaveling along
the same path
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Constraints (18a) and (18b) represent the relatipnsetween inflow and outflow in the
FIFO network (capacities are usually deterioratmghe evacuation problem), where

is the maximum in-degree for anin N.

o Y A®-> > 2,H=0,vieN\lte0,...T}, and (18a)
jer* (i), j=i jer ({T[T+e(D=1
- > A0+ D> D> 2,(T)=0 ,VieN\l,te{0,... T}, (18b)
jert (i), j=i jer (V{T[T+e(D =

In addition, the concept of Pareto-optimal cutsemployed. Similar to other
network flow problems, sub-problenR§, (") is often degenerate and there may exist
multiple optimal solutions which lead to differeoptimality cuts. Pareto-optimal cuts
were defined as any cut that is not dominated kyaher cut in Magnanti and Wong
(1981). By employing a Pareto-optimal cut in platean optimality cut obtained from
any optimal solution that is identified, a strongert may be obtained. As applied to

solving sub-problem RS, "9), the Pareto-optimal cuts can be generated byirgphhe

following auxiliary dual sub-problem:

te{0,...T}\ ieN (ij)el, () (iJ)ely &)

Max > [zﬂi(t)h(t)Jr 2 wOmit)+ X A?(t)u”(t)mj(t)J (19)

w ¥ (zm<t>n¢>+ S uOmbs Y fﬂt)uu(t)mj(t)}zwfﬂ o)

te{0,...T} ieN (i)el, A) (ii)ely &)
(zm)e (1)
where {4(t)] is a core point of\A and Z(# is the optimal objective value of

problem DRS, (#9). Constraint (20) ensures that the Pareto-optsuohltion determined

by solving this dual sub-problem corresponds withadternative optimal solution to
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sub-problem DRS, ("9). Constraint (21) is equivalent to constraints) @id (12).

Instead of solving the auxiliary dual problem dihgcone can solve its primal
problem, which is equivalent to primal sub-probléRs, ") with an additional variable
and minor changes in the right-hand side valuess &pproach is due to Magnanti and

Wong (1981).

3.3.3 Bendersdecomposition algorithm

Once problem (P) has been reformulated as in Se8ti®.2, the Benders decomposition
algorithm can be applied iteratively over the reldxmaster and sub-problems until
convergence. The algorithm begins by solving thaxexl master problem to determine
those arcs along which flow will be shipped, il hecessary input for solution of the
sub-problem. Les represent the iteration number. LBf — P, represent a restricted set
of extreme points andR, — R, a restricted set of extreme rays. Problé?) (s obtained
by replacing B, and R, with P, and R, in iterations. Sets P, and R, are
determined from solution of the sub-problem froerations 1 t®. Each of these extreme
points or extreme rays produces a Benders cut.eTbets are iteratively added to the
relaxed master problem during the execution oBreders decomposition algorithm.
Problem @) can be relaxed further: It is not necessary tegge all constraints

(16). If constraints (16) in problenP] were relaxed, a subset of nodes may contain flow
that splits in the optimal solution to this relaxgblem. For many problem instances,

this subset is relatively small in comparison te tlumber of nodes. Since computational
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effort significantly increases with the number ohstraints (16), and since many of these
constraints will be inactive at optimality, thosenstraints that are violated in an iteration
can be added to the relaxed master problem itefgtiVhis procedure is summarized in
step 3 of the BD algorithm, which is described next
Algorithm BD
Step 1: Set t :=1. Solve problemRS, (#3, where # is a 1's vector. LetQ' be the set
of nodes where flow splits.
Step 2: Sets:=1, By, =7, R, =0
Step 2.1: Solve problen®). If it has no feasible solutiosfop;otherwise, let 4, be
an optimal solution of objective function valug .
Step 2.2: Solve problenRs, (4, ).
If the problem is finite, letx, be a primal optimal solution, Ie(tzz,m)‘s be a
dual optimal solution, and let(4!) be the objective function value of
sub-problem. If Z(2)<Z;, then (x,4)) is an optimal solution to the
master problem with constraints sef, and go to step3ptherwise,set
Poio=Ps U{( ) } , R.p=Ry, si=s+1, and return to step 2.1.

If the sub-problem is infeasible, l¢tz,m)° be a dual extreme ray such that

ST uOm ) z[zn b+ S ui,-<t>mj<t>j

tef0,...T} (i .j)el; (A) te{0,..T}\ ieN (i j)el, &)
SetR,,, =R, U{( )‘S} P, =P., s=s+1, and return to step 2.1.

Step 3: If (x,4) satisfies constraints (16),x.,4 ) is the optimal solution to the
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original problem (P),stop; Let N' be the set of nodes where shared information

constraints (16) are violated. Se&f":=Q' UN', t:=t+1, and go to step 2.

The BD algorithm terminates with the optimal solution, ) to problem (P). Step
2 ensures thafx, 1) is a feasible solution to problem (P), such ttza!)>Z, will
hold. (/1;,2;) is an optimal solution to the relaxation of prabl¢P). Hence, Z;<Z
and if Z(4)<Zz,, then Z(4)=2Z,=Z2,. Thus, as long as problem (P) is feasible, the
algorithm will always terminate with an optimal gbbn (x;,ﬂ;). It is well known that
such Bender’s decomposition algorithms have expiadeworst-case computational
complexity, because it is possible that in the woese all the extreme points and

extreme rays oD will be enumerated.

3.3.4 Exampletoillustrate nature of solution

The solution of a small problem instance is showilltistrate the nature of solutions to
the BEPSI and to distinguish such solutions fromidgl solutions of other related

network flow problems.

Figure 3-2 Example network

Specifically, solution to the BEPSI by the BD algfom presented in Section
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3.3.3 is compared with solution to the TDQFP by éReension of the TDQFP algorithm

for multiple sources on a small time-dependent ndtwiven in Figure 3-2.

Table 3-1 Time-dependent travel times and capaati@xample in Figure 3-2

(i,}) (1,3) (1, 4) (2,3) (2, 4) (3, 5) (4, 3) (4,5)
(0 5t=0 4, 0<t<5 4, (<t<4 4, 0<t<1 5, O<t<6 1, (xt<14 6, O<t<3
. 6,1<t<20 | 6, 6<t<20 | 6, 5<t<20 5, X<t<10 | 7, 7<t<19 | 3, 15t<20 | 8, 4t<20
7,1kt<20 | 9,t=20
u () 20, Ot<2 | 20, G<t<1 20, (<t<1 20, xt<2 | 25, (t<2 | 20, Gt<9 | 25, Gt<12
U 15,%t<20 | 15, Xt<6 | 10, Xt<20 | 15, Xt<20 | 20,3t<20 | 18, 16t<17 | 20, 13t<20
10, Kt<20 15, 1&t<20
Assume thatT=20 , b(@0)=10, b,(0)=15, BB =20, b,B =25,

b.(T)=-70 and b (t)= Q otherwise. A holdover ar€,i), exists at eache N. The

time-dependent link traversal times and capacdresgiven in Table 3-1. Recall that for

all te{0,...T}and ieN\Il, 7;(t)=1 and u; ¢)=co.

(b) Solution to the BEPSI

Figure 3-3 Final solutions to the time-dependeiceation problem with and without
shared information constraints
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The resulting solution to the BEPSI and related HPQre illustrated in Figure
3-3 on a time-expanded network. The time-expandevark is created by making
copies of the original network for each discreternwal of time. The numbers correspond
to physical node numbers and their subscripts sepitethe departure time intervals, e.g.
2,represents node 2 at time 4. Waiting arcs are stasahashed lines and are defined at
every node between every consecutive pair of depaitimes. The example illustrates
that the TDQFP solution may be infeasible for tHePBI. In the solution to the BEPSI
(Figure 3-3(b)), the last unit of flow exits thetwerk at time 18. Since a solution exists
for which it is possible that, for a greater tdiate, the time by which the last unit of
flow exits the network can be reduced (i.e. fromtd 87 units of time viagfrom node
24), it can be shown that triple optimization resgjitgen in Jarvis and Ratliff (1982) for a
set of dynamic flow problems do not hold for theFE. Specifically, optimal solution of
the BEPSI is not necessarily optimal for an ege@rtbproblem that seeks the minimum
time by which the last unit exits the network iag# of minimizing total time.

The evacuation time (i.e. the time until the lasit @gresses) is 16 units for the
multi- source TDQFP and 18 units for the BEPSI. THXQPF solution contains three
nodes (nodes312; and 4) at which flow is split and is, therefore, an ia$éble solution
to the BEPSI.

Proposition 2. The value of the optimal solution to the multi-emu TDQFP provides a
lower bound on the value of the optimal solutionhie BEPSI.

Discussion. The feasible region of the BEPSI is containedha feasible region of the
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multi-source TDQFP and, is thus, more restrictivantthat of the multi-source TDQFP.
Hence, the value of the optimal solution to the tradurce TDQFP provides a lower

bound on the value of the optimal solution to tiePSI.o

3.4 Computational experiments

Results of computational experiments conducted ometvork representation of an
existing, four-story building, the A. V. Williamsuiding, on the University of Maryland
campus are given in this section. Data for thedgj was collected on-site, taking actual
measurements of doorways, corridor widths and hexngstairwell widths, and other
dimensions. The layout of the four floors was samithus, data was only collected on the
second floor and was replicated to create the m&twudel of the four-story building.

The layout of the second floor is shown in Figw#. 3

Figure 3-4 The A. V. Williams Building second flolayout
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3.4.1 Experimental design

A network representation of the A. V. Williams Biliihg was developed by placing nodes
on each side of each doorway connected by an edg#doiwv the movement of people
between rooms and corridors, into and out of s&llsvand through the exits and by
placing nodes at the intersection of corridors. mbdes in the corridors were connected
by edges. Edges were also used to represent dtairwkevators were ignored, because
use of elevators in this building is prohibited idgr an evacuation. It was further
assumed that escape from the first floor was ooBsible through doorways; no window
egress was modeled. This resulted in a 612-nod&04¥€dge network with five exit
nodes. The maximum occupancy related to the classyp offices, laboratories and
lavratories permitted by fire codes were estimatét the use of the 2000 edition of the
NFPA 101 Life Safety Code (2001).

The amount of supply (i.e. evacuees) at each reodetibased on variations of the
maximum occupancies of the rooms in the buildingp@sthe NFPA Life Safety Code.
Three levels of supply are considered (averagejrmar and maximum plus), where the
maximum plus category introduces exceptional sufgMgls at a subset of critical nodes.

Two approaches were considered for estimating fiaes that can be translated
to travel times and capacities associated withdtiges. The first is to calculate the
saturated flow rate from empirical formulae thaténdeen proposed in the literature (see,

for example, Chalmet et al., 1982). The secondisigde values related to pedestrian
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movement characteristics provided in the SFPE Haoklbf Fire Protection Engineering
(1988). The latter approach was employed in estimgathese values for the A. V.

Williams Building. These estimates are providedable 3-2.

Table 3-2 Crowd movement parameters for variouiitfas”

Facilit Density Speed Flow

y (person/fl) (ft/min) (person/min/ft)
Doorway 0.22 120 26
Pathway 0.20 120 24
Stairwell 0.19 95 18

" DiNenno et al. (1988)

Edge capacities were set to the maximum flow ratecanputed from rates given
in Table 3-2. The time interval duration for timesatetization was assumed to be one
minute. Speeds were employed to estimate edgd tranes.

Six scenarios were considered in tests of the Bpriahm for solving the BEPSI
that were conducted on the network representatidheoA. V. Williams Building. The
factors that were considered in the constructiothe$e scenarios include the number of
people present at the time of the initiation of #wacuation (i.e. supply at the source
nodes), whether or not corridors and stairwellsen#ocked or impaired (i.e. whether or
not edges were operating at maximum capacity andnmen speeds could be reached),
and the type and location of the event triggerireggvacuation.

In the first two scenarios, conditions were assumeede ideal, as would be the
case in a fire drill as opposed to an actual firenditions were, therefore, assumed to be

time-invariant. Multiplication factors were appliédl this ideal scenario in the remaining
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three scenarios to replicate conditions that wesesening over time. The multiplication
factors are cumulatively applied from one time iné to the next to both capacities and
travel times and are given in Table 3-3. The apgibm of these factors is designed to
replicate conditions that are worsening over tiimee,that are FIFO in nature (there is no
benefit in terms of egress time to wait for bett@nditions at later time intervals).
Scenarios are designed such that the scale ofatterdhthat initiated the need for
the evacuation and its impact increase with inéngascenario identification number. In
scenarios 3 to 5, conditions are assumed to beewben those of the ideal scenarios
(scenario 1 and 2), but no specific hazard locasosimulated. However, in scenario 6,
the hazard is assumed to occur at a location #silts in untenable conditions or
blockages along major escape pathways. In thisasicent is assumed that a fire begins
in the west wing of the fourth floor. Conditionsteiéorate rapidly. One corridor in the

west wing is blocked and the nearest stairwelhnigassable.

Table 3-3 Characteristics of test scenarios

Scenario| Capacities Travel Supply Severity of Conditions
times level
1 1 1 1 Ideal conditions
2 1 1 3 Ideal conditions
3 0.98 1.02 1 Slightly impacted
4 0.98 1.02 2 Slightly impacted
5 0.96 1.04 3 Impacted
6 0.95 1.06 3 Severely impacted, some links disable

In all six scenarios, time horizohwas assumed to be 20 minutes and stairwells
and corridors were assumed to be empty at initiatib the evacuation. Results from

application of the BD algorithm on the A. V. Wilires Building under these six scenarios
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are discussed next.

3.4.2 Result Analysis

The BD algorithm was implemented in Microsoft Vis&udio C++ 6.0 language with
the ILOG CPLEX callable library 9.1 (2005) and was on a personal computer with
Pentium (4) CPU 3.20 GHz and 2.00 GB of RAM.

Valid cuts (18) are added to the Benders masteblgm (P) to accelerate
convergence to the optimal solution. At each stdmere an optimality cut is desired, a
Pareto-optimal cut is generated. It was observatierexperiments that these cuts led to
quick convergence on the optimal solution. For nefghe problem instances that were
tested, the number of iterations and computatime tivere reduced considerably by the
inclusion of the Pareto-optimal cuts as compardth wins in which these cuts were not
employed. Additional computational improvements Imidge obtained by relaxing
integrality constraints on the variables of theaxeld master problem and generating
Benders cuts from fractional solutions as was pseddoy McDaniel and Devine (18).
McDaniel and Devine showed that exact solutionheftelaxed master problem was not
required at each step and noted that any feawhlé@ can generate Benders cuts.

The results of experiments showed that there isigaifisant reduction in
computational time obtained by using sub-probleRs,(#9) instead of &, (#). CPU
times were reduced by a factor of at least 10 Foteated cases. Either a generic MIP

solver or specially designed algorithms, such ashQFP algorithm, can be employed
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to solve RS, (*9).

An alternative to the BD algorithm is to employratch-and-cut algorithm based
on a similar concept to the relaxation step emmadpethe BD algorithm (i.e. step 3). As
illustrated in the example in Section 3.3.4, solitdf TDQFP may result in split flows at
one or more locations. Let the set of the nodesrevilew splits in the TDQFP solution
beS’(N)c N. A set of constraints can be generated to enfartsplittable flow as

follows.

> oxlu <1, VieS' @) (21)

jer™ (i), j=i

If the current solution violates cuts (21), there tbuts are valid. Repeat the
process until no valid cut can be generated. Onsel#ion is obtained that does not
violate cuts (21), branch on the, variables that violate the shared information
constraints (4), i.e. impose the disjunctic(niilzo)v(w:o)v...v(x”.s:0), where
X X e Xy € X, ‘)gj >0,Vi e S°(A)}. The number of branchads equal to the number
of arcs with positive flow departing from the sanuele at the same time.

Table 3-4 Computational results on the real network

Computational time (CPU seconds)
. Number BD
Scenario A(Zesrs = Zrocrr) of cuts | To 95% To Branch-and-Cut
optimality | optimality
1 0 4 - 3.0 4.6
2 0 4 1.6 3.3 21.7
3 0 12 1.9 30.8 80.0
4 32 36 6.0 31.2 178.7
5 0 32 19.6 58.5 221.3
6 224 44 17.7 94.8 >0.5h
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The computational time required by the BD algorithas well as the
branch-and-cut technique, for solving the BEPSIthe A.V. Williams Building is
provided in Table 3-4. The scenario number as ddfin Table 3-3 is given in the first
column. The second column reports the differen¢erdxen the optimal objective function
value to the BEPSI, containing shared informationstraints, and the TDQFP (extended
for multiple origins), where the shared informatioonstraints are dropped. The third
column reports the number of iterations, i.e. nundfdenders cuts. The fourth and fifth
columns report the computational time in CPU sesoused by the BD algorithm to
reach 95% of optimality and optimality, respectwelhe sixth column reports the
computational time required by the branch-and-dgorghm to reach optimality. All
reported times include all input and output time.

Results show that as the problem becomes moreudiffand waiting arcs are
required, the required computational time to sdive problem to optimality by either
approach increases. The more frequent flow splitte TDQFP solution, the greater the
computational effort required by the BD and braadd-cut algorithms. It is also
postulated that the performance of both algoritintisbe impacted by the degree of each
node, as the larger the degree, the more likely ftoto split. The required computational
time of the BD algorithm increases less than lilyeavith increasing supply and
deteriorating network conditions. Moreover, the pomational time required to achieve
95% of optimality is significantly less than thauired to achieve optimality. Since the

BD algorithm can be prematurely terminated with easible solution, stopping the
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algorithm after a short period of time may be @laaalternative. In all scenarios, the BD
algorithm outperforms the branch-and-cut methodeNbat step 3 of the BD algorithm
is specialized for this particular applicationwias observed that the addition of step 3 to
the BD algorithm, where only a subset of constga(ti6) of problem ®) are enforced,
led to significant reductions in computation tim&dditional experiments would be
required to assess the impact of network size ercttmputational performance of these
techniques.

In building evacuation, as new information aboue tburrent state of the
building’s structures and circulation systems dr&aimed, updates to the network model
in terms of supply, arc capacities and arc travensees will be made and a new BEPSI
will need to be solved. Rather than starting fraerakh, it is possible to employ the
Benders cuts generated in the prior problem instascthe initial cuts in employing the
BD algorithm to solve the new problem instancehé tsupply increases and/or arc
capacities decrease. Decreases in arc capaciiespected in circumstances warranting
an evacuation, as fire and smoke will spread througthe building and collapse of the
structural components will occur progressively. flisaconditions worsen with time and
capacities accordingly decrease with time. Addaloaxperiments were conducted to
assess the magnitude of improvement that resuwts ®mploying the Benders’ cuts
generated in the prior problem instance in soltirgupdated problem.

Changes to arc capacities and supply in Scenaneer@ considered in these

additional experiments. Specifically, four updatesre considered: (1) supplies at
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randomly chosen nodes increase, (2) supply aupplg nodes increase, (3) capacities of
randomly chosen arcs decrease, and (4) capacitiab arcs decrease. One might also
assess the benefits of such a reoptimization appreéere changes in supply and
capacities occur simultaneously. Results of runthese versions of scenario 3 are given
in Table 3-5.

The results of Table 5 show that significant (o dinder of 60-70%) reductions in
computational time result from solving the updapedblem instance starting with the
Benders’ cuts generated in solving the prior pnobiestance (i.e. the reoptimization time)
as compared with solving the new problem instaneanf scratch (i.e. with no

information from the prior problem instance).

Table 3-5 Reoptimization results of the BD Algonith

Increase of supply Decrease of Capacity
Select nodes Entire Select arcs Entire
network network
Computational time
required with reoptimization 33.4 33.5 30.5 24.6
(CPU seconds)
% of time required as
compared to resolving from 41.5% 42.0% 37.9% 30.5%
scratch

3.5 Conclusions and future research

In this chapter, the building evacuation problenthwshared information (BEPSI) is
formulated as a mixed integer linear program. Tiablem is shown to be NP-hard. An
exact algorithm based on Benders decomposition rgpgsed for its solution.

Computational experiments performed on a networgresentation of an actual
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four-story building were conducted to illustratewhdhe proposed procedure can be
applied to solve for the optimal evacuation ingdinrs in an actual building and to
demonstrate the feasibility of its application. Hadution technique is designed in such a
way that it can be prematurely terminated and Bassolutions can be obtained.
Experimental results show that significantly lessetis required to obtain solutions that
are within 95% of optimality.

By restricting flows to a single arc at each pamtime and explicitly considering
the inherent dynamic nature of future conditiohg, tesulting evacuation plans are more
likely to be followed in light of our understandig group dynamics in evacuation and
to aid the evacuees in avoiding potentially higsk rsituations. Traditional evacuation
planning techniques ignore the dynamics of a fiowimg through a corridor or through a
stairwell and existing optimization techniques wbuhot prevent solutions from
suggesting groups to split at the nodes. Conselguemplementation of evacuation
plans developed by the proposed technique forge lauilding, ship or military complex
can result in a reduction in the number of lostdivtrapped evacuees or rescue workers,
and risk of exposure. Further, shorter egress timeeg result, permitting recovery efforts
to begin quickly.

As presented, solution of the proposed formulatiay result in flows that arrive
at an intermediate location at a given point ingtiraut depart along different paths by
departing at different departure time intervalks, by definition, the flow is not split, but

in practice, the flows take different paths. Thypd of splitting of flows is permitted
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through the introduction of holdover arcs that mr@deled to ensure feasibility. If such
holdover arcs were not permitted, it would be diift to model situations where there is
an excess of evacuees waiting to enter a chosénapidit insufficient capacity to handle
all evacuees who arrive in a single time interalan evacuation, conditions typically
worsen with time; that is, the arc traversal tiraes FIFO, Thus, it is always best to leave
as early as possible and waiting will not be chaséncan be prevented. Additionally,
capacity of the holdover arcs may be restrictedthedliscretization interval size can be
set to a sufficiently large value to minimize theearrence of such splitting of flows.

One might argue that arc traversal times are ihityea function of flow, similar
to travel time estimation models for vehicular fiaflows. This concept of selecting
paths such that flows are not split can be extendembnsider flow-dependent traversal
times. A similar concept is described in Kéhler &iditella (2005) with respect to the
quickest flow problem.”

The procedures developed through this researchitgowill impact many other
functional areas as well, including, for examplgaiation of a geographic region due to
military attack, human-made accident, or natursasiier, such as an accident involving a
nuclear power plant or escape of hazardous chesnallapse of a structure such as dam
walls, hurricane, earthquake, flooding, volcaniauption, or tsunami. Evacuation
instructions can be provided to vehicles via chabtgemessage signs, radio, the internet,
or on-board devices in suitably equipped vehicléh further development of Intelligent

Transportation Systems. Moreover, as with othewort flow-based techniques, it is
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expected that the techniques proposed herein ak lapplication in many diverse arenas,
such as production-distribution systems, fleet gangent, and communications.

Many theoretical and practical aspects of this j@mmbremain to be explored. For
some problem instances, or building layouts, it rhayfeasible to employ the TDQFP
algorithm or something similar that allows spligtiof flow, if the solutions are unlikely
to contain split flows. Heuristic repair operatges be applied to locations of split flow
to obtain feasible and potentially near-optimaluiohs. Experiments on additional
building designs could be conducted to assess dlgative impact on total evacuation
time that results from enforcing solutions that rat permit splittable flows. Finally,
heuristics could be developed to more quickly abtdeasible and, hopefully,
near-optimal solutions for large-size networks. Exact procedure proposed herein for
this difficult problem can be used to obtain benahkrsolutions, enabling evaluation of
quicker, heuristic techniques.

Evacuees may not prefer the solution that optimizextions of time, e.g.
evacuation time, but instead may prefer a path vigh likelihood of leading to
successful escape. Alternative objectives thatidenghese and other issues of equity
that arise in solutions for the evacuation probleawe been proposed in the literature (e.g.
Lin, 2001; Opasanon and Miller-Hooks, 2009). Rebgssl of the objective that is chosen
for the determination of the optimal instructiotise issue of shared information arises.
One may extend this work to address the issue spliftable flows in the context of

other objectives, such as those related to minitoizaf risk.
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Chapter 4 Resilience: An Indicator of
Recovery Capability in Intermodal Freight

Transport

4.1 Introduction

The rapid development of e-commerce, economic ¢jldison, just-in-time production,
and logistics and supply chain systems over pasidis has lead to significant need for
efficient and effective management of freight moeats. Individuals and companies
have become increasingly dependent on the freighsport system to deliver their goods.
In fact, U.S. domestic freight moved by air, truakd railroad increased by 24% between
1996 and 2005 (Bureau of Transportation Statis@€X)7). Furthermore, international
trade is projected to increase by 2.8 percent dlyihaough 2020 (Leinbach & Capineri,
2007) and freight demand is projected to incre&seedcent by 2035 as compared with
2005 (FHWA, 2008). Consequently, significant ina@an demand for freight transport
in coming years is anticipated. However, the freigansport sector is operating at or
near its capacity in many regions of the world|udag the United States (AASHTO,
2007). Despite this, there has been little increagbe capacity of the freight transport
system. In fact, in the United States, the capadfithe rail freight network has decreased
in past years (Larson and Spraggin, 2000). Simettasly, risks from accidents,

weather-induced hazards, and terrorist attack @n fthight transport systems have
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dramatically increased. Thus, trucking companias,carriers, infrastructure managers,
and terminal and port operators must invest in rsgcmeasures to prevent or mitigate
the effects of disasters resulting from such ingideEven less monumental incidents,
such as derailment of cars from tangent track, lead to network-wide disruptions in
service and ensuing delays. The Hatfield accidenGieat Britain of 1993 provides
evidence of this (Commission for Integrated Tramsp®002). The demand for high
guality service at reasonable cost and with adeqabtection from these various
external forces has placed a heavy burden on #ightr transport industry. There is
increased pressure on this sector to balance toegkcting objectives of providing high
service and security levels while simultaneousfgrirfig low cost transport alternatives.

A characteristic of a secure and highly functionimgnsport network, i.e. a
resilient network, is its ability to recover fronmsdiptions. This ability depends on the
network structure and activities that can be uradker to preserve or restore service in
the event of a disaster or other disruption (Fanexe, Chrysler used expedited truck
service to backup air freight transport for trarmsipg critical components from Virginia
to Mexico immediately after September 11, 2001 thWrand Subbakrishna, 2002)). In
this chapter, an indicator of network resiliencelé$ined that quantifies the ability of an
intermodal freight transport network to withstamai aquickly recover from a disruption.
Recovery activities that might be taken in the irdiatge aftermath of a disruption, as
well as the duration of time and investment requite undertake related actions, are

consideredh priori.
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To quantify a network’s level of resilience, a gsmun technique based on
concepts of Benders decomposition, column generatial Monte Carlo simulation is
proposed. In addition to quantifying the networkésel of resilience, this technique
determines an optimal course of action (i.e. setactivities) to undertake in the
immediate aftermath of a disaster given target atpmral levels and a fixed budget.
Research has been conducted on steps that cankdre ta quickly restore system
performance following a disaster (e.g. Daryl (1998)lliams et al. (2000), and Juhl
(1993) consider recovery actions in the aftermathtoonados, tropical storms and
bombings). Quick identification of the appropriaigtions to take can play a crucial role
in mitigating ensuing post-disaster economic andietal loss. For example, repair
activities can be undertaken to restore criticldastructure damaged in the disaster to
pre-disaster conditions, traffic can be rerouteduigment and personnel can be
rescheduled, efficiencies in operations can be mgddy and logistics providers can
collaborate. That is, the performance of a netwm&t-disaster depends not only on the
inherent capability of the network to absorb exadigninduced changes, but also on the
actions that can be taken in the immediate aftdrnoétthe disaster to restore system
performance. The resilience indicator can aid ie-gisruption network vulnerability
assessment and making pre-disaster, vulnerabddyation investment decisions.

In the next section, related studies on the measeme of network performance
under uncertainty are described. Network resilieiscdefined and a stochastic, mixed

integer program based on an intermodal freight agkwepresentation is presented for
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computing resilience in Section 4.3. In Section, Mnte Carlo simulation is proposed
for generating possible network states for giveobj@m scenarios with dependencies.
Benders decomposition is employed in the exacttisoldor a given network state. The
network resilience definition, solution techniquedaresulting resilience levels, along
with recovery activities, are illustrated on theubte-Stack Container Network (Morlok
and Chang, 2004; Sun et al., 2006) under a vapétgcenarios, including scenarios
meant to replicate conditions under flooding, egutike and terrorist attacks, in Section
4.5. Results from additional experiments desigmedricover the role network structure
plays in resilience level are also presented. @kedection summarizes the contributions

of this work and discusses future potential extamsi

4.2 Related studies

Events that cause disruptions in nearly all humaalensystems are often unpredictable,
and, at some level, are inevitable. Thus, to peefar such events, significant effort has
been spent to predict system performance undearxgdisn, identify critical functions and
vulnerabilities, and develop means of reducing ehesinerabilities. Measures of
network-level vulnerability have been employed Wydscross a host of arenas, including
telecommunications, water and other critical lifiek. In this review of related studies,
those works with greatest relevance are discussed.

A number of works consider vulnerability of trangation systems (see, for

example, Taylor and D’Este (2003); Lleras-Echevand Snchez-Silva (2001); Berdica
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(2000)), where a sudden event may occur that redtiee performance of the network
components or significantly impacts demand for aisservices offered. Berdica (2002)
defines vulnerability as susceptibility to disrgpts that could cause considerable
reductions in network service or the ability to asparticular network link or route at a
given time. Networks that cannot quickly recoveonfr a disruption with minimal
reduction in service are deemed more vulnerable thase with quicker recovery time
and lower overall experienced disruption. No method the quantification of this
measure is provided. Srinivasan (2002) discussexd pbtential of developing a
guantitative framework for vulnerability assessmel#nelius et al. (2006) argued that
road network vulnerability is composed of the piuiiy and consequences (represented
by increased generalized travel cost) of singlenmuarltiple link failures. Although
numerous attempts to measure vulnerability existhi@ literature, vulnerability for
transportation networks is still a rather ambigutersn, lacking a clear definition and
methodology for its quantification.

Because vulnerability is often employed only qadifely, quantitative measures
of reliability have been used to gain insight iateystem’s level of vulnerability. Berdica
(2002) argued that vulnerability is reliability the road transportation system. Husdal
(2004) linked vulnerability and reliability from aost-benefit perspective, with
vulnerability the cost and reliability the benefdlue. Husdal argued that vulnerability is
equivalent to “non-reliability” in certain circungsices. Dayanim (1991) argued that it

was mandatory to incorporate reliability criterrda network design processes so as to

66



meet disaster recovery requirements. A variety @fability measures have been
implemented for transportation systems to meashegr tintended functions under
uncertainties. For example, connectivity reliapilis defined as the probability that the
network nodes remain connected (lida, 1999). Trawet reliability is concerned with

the probability that a trip can reach its destmratwithin a given period (Bell and lida,

1997)). Clark and Watling (2005) computed systerdentravel time reliability based on
the probability distribution of network travel timender variable demand. Capacity
reliability (Chen et al., 2002) is defined as thelability that the network can adapt to
external changes while maintaining a given serlesel. Elefteriadou and Cui (2007)
provided a review of a host of definitions of trhvene reliability proposed in the

literature.

Another relevant measure is flexibility. Goetz abryliowicz (1997) suggested
that flexibility can be useful in coping with untanty. While primarily used in
manufacturing systems analysis, several works heawesidered its application in
assessing transportation systems. Feitelson and8al(2000) discussed flexibility from
the infrastructure manager’s perspective and ddfaxbility as the network’s ability to
adapt to changing circumstances and demands. @dsease of building additional
network capacity are considered. Cho (2002) defosgmhcity flexibility as the ability of
a traffic network to expand its capacity to accordate changes in demand for its use
while maintaining a satisfactory level of performan Morlok and Chang (2004)

extended this definition from the perspective ofeexal changes in both travel demand
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(traffic volume and pattern) and network capacitiesn et al. (2006) further measured
flexibility in a more complicated problem settinghere future traffic patterns, service
deterioration and stochastic demand are considered.

Diverse measures of resilience have been proposed nfeasuring the
performance of engineering systems. For exampddienece is defined as the number of
failures that a computer network can sustain toarensonnected (Najjar and Gaudiot,
1990). For supply networks, resilience is descrilasl the ability to cope with
externalities and restore normal operations (Rioe &aniato, 2003). Konak and
Bartolacci (2007) used traffic efficiency, defined the expected percent of the total
traffic that a network can manage, as a measunesifience for telecommunication
networks. McManus et al. (2007) define organizatioresilience as a function of
system-awareness, identification and managemeheahost critical system components,
and adaptability. A measure of resilience is ini@d by Murray-Tuite (2006) in the
context of transportation. In her work, resilieriseviewed as a network characteristic
that indicates how well the traffic network perf@nunder unusual circumstances.
Resilience is seen as having ten dimensions (reshayd diversity, efficiency,
autonomous components, strength, collaborationptatdity, mobility, safety, and the
ability to recover quickly) which are individuallgomputed based on results of
simulation runs.

One can view the measures of reliability, flexilgiland resilience as indicators of

vulnerability. Such measures from prior works hawile interpretation, are often
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intertwined, and are sometimes interchangeableir Tdedinitions vary, although, the
majority involve some element of risk, as they @eéined based on a combination of the
probability of the occurrence of the disruptive myethe negative impacts of the
disruption, and aspects of network performance udideuption.

In this chapter, resilience is defined as a netigackpability to resist and recover
from a disruption or disaster. This definition esfls both the network’s inherent ability
to cope with disruptions by means of its topologiaad operational attributes and
potential immediate actions that may be taken m dftermath of the disruption that
would otherwise not be considered. For exampl@karhay be constructed that did not
exist in the original network. As recovery is th®gess of reconstructing, restoring, and
reshaping the physical, social, economic, and ahemvironment through pre-disaster
planning and post-disaster actions (Havidan eR@Dy), the proposed resilience measure
considers both pre-disaster planning through cemaitbn of the existing network
topology and attributes and immediate post-disaatdions (i.e. potential recovery
activities). Although numerous definitions of indiors of network performance exist in
the literature, only qualitative measures of resitie related to business contingency
planning exist that explicitly consider the impatsuch post-disaster actions (Havidan et

al., 2007). No prior work exists that provides theans of quantifying such a measure.

4.3 Definition and problem formulation

While the proposed definition of resilience and moet for its quantification can be
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applied widely, the focus herein is on assessmérdanointermodal freight transport
system. Such systems involve multiple modes (trraik,and marine) in the movement of
cargo between their origins and destinations. i $kection, a definition of resilience for
intermodal freight transport networks is introdu@d a mathematical formulation that
seeks an optimal set of recovery activities to uiatte in the immediate aftermath of a
disaster such that the network’s resilience is m&ed and budget constraints are met is
proposed. Formulation and solution of this mathé&abprogram relies on a multi-modal

network representation described in this section.

4.3.1 Thereslienceindicator

Measurement of network resilience of an intermdaaght transport system should take
into consideration the level of effort (cost, timesources) required to return the network
to normal functionality (or a fixed portion thereefg. 90% functionality) or the impact of
a given level of effort (in terms of cost, timeso@rces) on restoring the network to its
original level or fraction thereof of functionalifgbility to handle demanD by timeT).
Rose (2004) describes resilience as consisting@icomponents: inherent and adaptive.
In this regard, the network resilience indicatdiirted herein consists of inherent network
properties, e.g. redundancies, and a set of a@apttions, i.e. recovery activities. With
this in mind, network resiliencey , is defined in equation (1) as the post-disastpeeted
fraction of demand that, for a given network couafggion, can be satisfied within

specified recovery costs (budgetary, temporal dnaipal).
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where d,, is the maximum demand that can be satisfied figiredestination (O-D) pair
w post-disaster andd, is demand that can be satisfied for O-D pajpre-disaster. This
definition also recognizes that arc capacities ddpen the characteristics of the
disruption-causing event and, therefore, cannddrimevna priori with certainty. Thus, if
any network attribute that impacts its computatisrrandom, as is the case with arc

capacities,d, is a random variable. The set of conceivable tBsasvents, each with

stochastic outcomes in terms of network attribusespnsidered in the computation of.

4.3.2 Network representation

A network representation of the intermodal systermased, given byG = (N, A), where

N ={L,...,n} is the set of nodesA={(i, j)|i, jeN} is the set of directed arc&
consists of sub-networks, one for each mode. Oneieav each sub-network on a plane,
where transfers between modes take place alongféraarcs connecting designated nodes
(representing intermodal terminals) of the variplenes, as shown in Figure 4-1. The

transfer arcs are represented as vertical ar¢wifigure.
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Figure 4-1 Intermodal network representation (Zhaingl., 2008)
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Each modal or transfer arae A has associated with it a positive capacity,
denoted byc,, with integral domain and range, and a positiegdrsal (or transfer) time
7,. The capacity of each modal arc represents thebauraf shipments that can be
transported along the arc and the capacity of &actsfer arc represents the number of
shipments that an intermodal terminal can handtge khat because the type and timing
of the event and its impact cannot be knoavpriori with certainty, c, and r, are
random variables.

A set of O-D pairs,W, is also given. Each O-D paweW has an originr(w),

a destinations(w), and a given demand, i.e. number of shipmeils,to be shipped
between its origin and destination. A path is dedimms an acyclic chain of arcs. A
shipment can only be transported along a path thégrsame origin and destination as the
shipment. LetP, be the index set of all paths that start fraifw) and end ats(w).
The time for traversing patip, € P, is computed from the sum of traversal times of its
constituent arcs.

Additional notations employed in the mathematicaihfulation of the network

resilience problem are defined as follows.

K = the setof candidate recovery activitidé,= {k = 12,...,K }

Ac, = change in capacity of linkif recovery activityk is implemented

t _ travel time of link a could be reached if recovery activity is
* 7 implemented

J. = time needed to implement recovery actiwtyn linka
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QE = maximum implementation time of recovery actistiaken along path

T,% = maximum allowable travel time for O-D pair

0, = cost of implementing recovery activitypon arca

B = maximum allowable cost of recovery activities

s _in path-link incidence matrixg,, =1, if pathp uses linka and ¢,,=0,
w =

otherwise
Decision variables:

f, = number of shipments transported on path
Yo = binary variables indicating whether or not shiprsamge pathp
dw = number of shipments that cannot be satisfiedf@ pairw

binary variables indicating whether or not recovegtivity k is

}/ =
a undertaken on ara

4.3.3 Problem formulation

The network resilience problem can be formulated a®chastic, mixed integer program
shown in P): (2) — (11), wherew is a given realization of random arc capacitiesAny
realization of all @ is referred to as a network state. Progrdh dontains integer
variables, representing the selection of recovetiviies on corresponding arcs and the
selection of paths carrying flow, and continuousialdes, representing the flow along

each path and demand that cannot be satisfiecébr @-D pair.

weW

) E|min Y] @

st z fp(a)): Dw—aw(a)) vYweW, 3)

peR,
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2, 2.0 1p(@)-C(0)- X acurul(0)<0 vacA (4)

weW peRy,

30,0 + 3 (s (@)~ 7a(0) (@) + Q@) S TP (@) + M (L- v, (@) o

aeP aeP k y 5

VpePB,,weW

f(w)<D,y,(@) VpePR,weW, (6)
Q,?(a))_Qak%k(a))Zo Vae p,keK, (7)
Z‘,Z‘,l’)ald/ak(a’)S B, (8)
a k

27%(a))sl Yae A (9)
k

fp(a)), d,(w)>0 VpeP,weW, (10)
7u (@), ype{O,l} Vae AkeK,peR,,weW. (11)

The objective (2) of prograni) seeks to minimize the expected portion of demand

that cannot be accommodated, i.e. it maximizesxpected number of shipments that can

be sent from their origins to their destinations. dompute this expectationz dw is
wewW

evaluated over all possible realizations of randomattributes.

Constraints (3) are flow conservation constraifienstraints (4) are capacity
constraints, restricting flow on each arc to bes l#smn the capacity resulting from the
impact of the event and recovery actions thatalert. Constraints (5) and (6) are level of
service (LOS) constraints requiring that the timereshipment spends traversing a path
peP, not exceed a given maximum durati®ff*(w) and specific circumstances (i.e.
network staten). M is a sufficiently large positive constant. Tinae for traversing each
path pe P, is composed of three parts: constituent link tréawees under post-disaster
conditions, the maximum time required to implenregbvery activities along constituent
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links (defined by Constraints (7)), and reductiamdink travel times due to recovery
actions. It is assumed that all recovery activibegin simultaneously, immediately after
the event and any link chosen to undergo a recaaign will be out of service during the

action’s implementation. Constraints (5) and (&vute a linear implementation of the

equivalent complementarity constraintfp(z T+ > Y (g — 7 )7+ QF —Twmaxj <0.

aeP aeP k

Constraint (8) requires that the total cost ofdbkected recovery actions does not exceed a
given budget. Constraints (9) require that only muwvery activity, representing a set of
recovery actions, can be selected for each ars.drsures that conflicting actions will not
be simultaneously chosen. Non-negativity and iraiégr restrictions are given in
constraints (10)-(11). Constraints (3)-(11) ard@ated for a given network stade

It is assumed that the revenue (including futuveneie) from completing shipment
deliveries in a timely manner in post-disasterwinstances significantly outweighs any
savings that might be achieved in selecting optipadhs based on operational costs, and
therefore, operational costs are not included enrtiodel. If desired, an additional set of
constraints with similar form as constraints (5) &g incorporated in the formulation to
limit total operating expenses. This will increéise complexity of the problem, but can be
solved with the same solution technique.

While the formulation does not include pre-eventisien variables, a network’s
resilience level under a given network state andEpotential remedial actions (if any)

can be quantified by employing the formulation undae or more chosen scenarios
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pre-event. Remedial actions that may be taken yeateinclude, for example: adding
additional links to the network; ordering sparetpar backup equipment; prepositioning
resources in anticipation of potential recoveryidtaes; implementation of advanced
technologies; training; and other pre-event actithrad can reduce the time required to
complete potential recovery activities should theyrequired post-event. Such pre-event
use of the formulation facilitates network vulneliégpassessment and further informs the
decision-maker in taking pre-event action to imgroetwork resilience.

One will note that progranPj includes no first-stage variables. All decisi@ne
taken once the outcome of the random disaster evémbwn. Thus, the problem can be
directly decomposed into a set of independent smespecific deterministic problems
and the focus of the solution approach presentethensucceeding section is on the
sampling methodology and exact solution of eaclepeddent deterministic problem that
results for a given realization of the capacityd@m variables (i.e. a network state).
Denote the deterministic problem for a given netnsiate by problenP). Proof that the
recognition version of problenDP) is NP-complete is given in Proposition 1. It éolls

that problemDP) is NP-hard.

Proposition 1. The recognition version of proble®) is NP-complete.
Proof. To prove that the recognition version of probléDP) is NP-complete, a
transformation from the recognition version of tkikapsack problem, a well-known

NP-complete problem (Garey and Johnson, 1979hdadcognition version of problem
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(DP) is constructed.
An instance of the recognition version of the krzeggsproblem is given by a finite

set | ={i,i,,....i,,} of items, each with a nonnegative weight and valuev, . The

problem is to determine if there exists a subseit@hs |'c | with total weight

w(l')<Wand total valuev(l')>V .

max
w

Assume that is set sufficiently large so that LOS constrairfis Will not be
binding. Construct a networ®& with only one O-D pair(s,t) connected byn parallel
arcs. Each arc has a capactty. Suppose only one recovery activity is availabledach
arc and will increase the arc capacity tay with an implementation costv, , a fraction of
the budget W. Then, each a&c in G can be transformed into two parallel args with
capacity c, and cost 0, and, with a capacityv, and cosw, . Thus, the instance of the
knapsack problem has a solution if and only if ¢hisra flow that sends at Ie(':tfz§t+Zca

a
shipments frons to t with a cost of at mos¥ . This transformation can be achieved in

polynomial time. This, together with the fact tkta¢ recognition version of problerDP)

is in NP, proves that probler®P) is NP-completes

4.4 Solution technique

To measure network resilience for a given netwayotogy and associated operating
characteristics, as well as a given set of poterdg@very activity options, problenDP)
can be solved directly; however, this may requixea@rdinary effort. The number of

variables is large, even for mid-size instanceausJla framework employing Benders
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decomposition, column generation and Monte Cartwiation is proposed that considers
a manageable number of network states. For a gieemario (i.e. event), the joint
probability distribution of the random arc capaastis assumed to be known. For each
scenario considered, Monte Carlo simulation is ueegenerate the values of random arc
capacities required to specify the set of possiéwork states, while preserving
distribution properties (Subsection 4.4.2). A Besdéecomposition technique that
employs column generation in the solution of ax$éstib-problems is developed to find the
maximum demand that can be satisfied for the gnhetwork state. Network resilience is
computed from the expected value of the weightea sithe maximum level of satisfied
demand achieved for each replication as in equafign The solution technique is

discussed in detail next.

4.4.1 Solving problem (DP)

4.4.1.1 Benders decomposition

Benders decomposition (Benders, 1962) is perforaredrogram DP), a mixed integer
program over binary variableg, and y,. The original problem is reformulated into a
sub-problem containing the continuous path flowialdes and a master problem
containing the binary recovery activity selecticariables and path selection variables.
Benders cuts are generated by solution of the solbigm and are added to the relaxed
master problem at each iteration, progressivelysttaming the relaxed master problem.

The cuts reduce the number of flow variables thakstnbe considered, even at the
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expense of increasing the number of constraints.

For simplicity, program [PP) can be transformed into a network flow problem
with a single source and single sink by adding@essource connecting to each source
node r(w) with capacity D, and travel time (TmaX—TWmax), where T™ is the

maximum allowable travel time for amys path with positive flow, and a super siak

connected to each sink nod#€w) by arcswith capacity ZDW and zero travel time.
weW

Denote the path set betweerands by P. The exact algorithm presented hereafter is
applied in solving this-s network flow problem.
Let y be a 0-1 vector satisfying constraints (8) and & letA be the set of

valid y. For given 7 € A, the primal sub-problem can be stated as follows.

P(7): Max Zp: f, (12)
<t pze;cidp f,<c,+ Zk:Acaky?ak Vae A, (13)
;Pra +a;zk:(tak T W+ r?ea;xqaky?ak <T™ 4+ M(1- yp) VpeP, (14)

f,<Dy, VpeP, (15)
f,20y,=1{01} VpeP. (16)

Problem SP(y ) is a path-flow based formulation of a maximum flproblem with side

constraints.

For a giveny, the path setP can be separated into two disjoint subsets:

ol

PRI () rge%xqak;?ak <T™ Vpe P} , the set of paths between

acP acP k
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ands that satisfy LOS constraints, and

-

the set of paths betweerands that donot satisfy LOS constraints. By considering only

ZT& + ZZ(tak _Ta)7;ak +Maxgy 7y >T™,Vpe P},
acP acP k asp

R, sub-problemSP(?) can be reformulated with only continuous decisi@miables

given by sub-problemLSP(7):

LP(7): max Zp: f) (17)
st. D f <+ ) ACu Ty VaeA (18)

aep/ peP, k
f,20, Vpeh, (19)

The dual sub-problem is given as follows.

DSP(7): min Z(ca + > ACy T )na (20)
acA k
st 2. 7,21 VpeRh, (21)
aep
7,20 VaeA (22)

where 7z, are the dual variables associated with constra{®). The primal
sub-problem LSP(;?) is always feasible, because 0 is always a feasitlgion, and a
feasible solution forDSP(y )can be readily obtained. Thus, by the weak duality
theorem, the primal and dual sub-problems are bedind

The Benders master problem is obtained by replacomgtraints (4) - (7) by
Benders cuts (24). Constraints (24) are optimatitits that ensure that affected

non-optimal solutions are excluded. 2tdenote the polyhedron defined by constraints
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(21) and B, be the set of extreme pointsf Introducing the additional free varialde

program DP) can be reformulated as the following equivalenbiem MP .
MP: max Z (23)

st. Z - ZZACak”a?/ak < ZCaﬂ'a , VreP, (24)

acAkeK acA

(8), (9), (11)

Constraints (24) need not be exhaustively enuneratecause most of the
constraints will be inactive in the optimal solutiorhus, a relaxation of problerivp),
denoted asRMP), can be obtained by dropping constraints (24) itevatively adding
them to the relaxation until optimality is achieved

To improve RMP), constraints (8) can be replaced by (8):

B—a<zazzk:bak7/ak(a))£ B, &)
where o is the maximum implementation cost over all recgvactivities. One can
show that constraints (8’) are more restrictivent{) for problem RMP), thus, creating
a smaller feasible region. Moreover, the optimdutson will not be cut off by this
inequality. This can be shown by considering tHeWang. Suppose an optimal solution

(y*,y*,f*) to program B) with objective function valuez exists such that

B-> > b,ru(@)=0, then there exists at least one acfor which b, <o and
a k

z 7. =0. The corresponding recovery activity with cdsf <o can be undertaken
k

without violating constraints (3)-(11). The resugisolution is a feasible solution with

objective function value no greater than.
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4.4.1.2 Column generation for sub-problem solution

Primal and dual sub-problems are solved by itegltigenerating Benders optimality
cuts that constrain problemR¥IP). Both sub-problemsLSP(;?) and DSP(y) are
path-flow based formulations. The number of pathvflvariables grows exponentially
with the size of the network, making both problediicult to solve. Thus, a column
generation-based technique (see Wolsey (1998) doergl background) is applied that
narrows in on a limited set of paths. The columnegation algorithm presented in this
section is an iterative method, which takes adgnte sub-problemLSP(7)’s structure
and constructs a series of sub-problems, eachasiogly more restricted. At each step,
new paths (i.e. columns) are generated, expantmgestricted subset of,, defined in
the previous subsection. The algorithm terminatesnano new path (i.e. column) can be
identified for inclusion in this subset.

The column generation process starts with an irstiaset of path variables. The

reduced cost off, is computed astzl—Zna. The optimality condition is given

aep

byc,<0,VpeR. If there exists a pattpe B such thatc, >0, then f  should be

chosen as the variable that enters the limited petthThe new column will be identified
by considering which constraints in the dual sutibgm are most violated. If the
constant 1 is ignored in computing reduced cokts,problem of choosing the entering
column is a shortest path problem with a path tsaletime constraint. A variety of

algorithms have been proposed in the literaturadiress this problem (e.g. Aneja et al.,
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1983; Handler and Zang, 1980; Desrosiers et a@519n implementations described in
section 4.5, a label-setting algorithm based oncepts of dynamic programming

concepts that can be attributed to Dumitrescu avidrigl (2003) is used.

4.4.1.3 Upper and lower bounding

The Benders relaxed master probleRMP) becomes increasingly constrained as
Benders cuts are added, providing an upper bountti@wnbjective value of the original
problem that is non-increasing with every iteratidioreover, a feasible solution is
obtained, generating a lower bound, and possibprawing the best lower bound, at each
iteration. The algorithm stops when upper and loaarnds meet. Thus, tight bounds are
important to accelerating the convergence of therghm.

An initial upper bound on problenRIP) is obtained by relaxing binary variables
7« Va,k in problem DP) and solving the corresponding relaxed problecgrestrained
optimal capacity expansion problem with linear chsictions. If path constraints are
relaxed, the capacity expansion problem can beedolw polynomial time. Thus, a
similar technique as used to solve the Benderspsoiblem, sub-problemLSP(7), is
applied to solve this relaxed problem and gendhagenitial upper bound.

To generate an initial feasible solution, and atiainlower bound, to problem
(RMP), the following lexicographic ordering rules cam d&pplied, wherey,, is obtained
during the process of determining an initial uppeund on problemRMP): 1) rank all

the y, Vvariables by their values, giving priority to tleowith the largest capacity when
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ties exist and 2) obtain a limited set @f variables from the order produced in (1) with

the maximal value onbak such thathak <B and sety, = 1for all variables in
ak ak

the set.

The lower bound does not follow an increasing trelnécause the objective
function value obtained from consecutive iterationgy vary significantly. To address
this issue, local branching proposed by Fischeiti bodi (2003) is applied to identify a
feasible solution that results in an improved loweund. Rei et al. (2009) discussed the
possibility of using local branching to increase tspeed of Benders decomposition.
Their idea is to seek an improved feasible solufjand improved lower bound) by
considering a small sub-region of the feasible sgacrounding the previously identified

feasible solution. Given feasible solutio{rifak}a]k of problem RMP) and a positive

integer paramete, the local branching constraint can be written as:

Ap.7)= 2 A=7a)+ D ra <k. (25)

Yax=1 Yax=0

The local branching constraint divides the feasitdgion into two branches.
Branching strategies are used continuously to géadretter solutions until no improved
solution can be found or a prescribed computatiting limit is reached. Through local

branching, multiple Benders cuts can be generdtedch iteration.

4.4.1.4 Benders decomposition algorithm

Details of the Benders decomposition algorithmtboil concepts described in previous

subsections and proposed for solution of problBR) @re described next.
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1. Sett =1land P.:=@. Solve the relaxation of problenDP) (y is relaxed) to
generate an upper bound, UB. Generate a feasihigosoaccording to lexicographic
ordering rules.

2. Solve the Benders master problem and sub-problems.

2.1. Solve problem RMP"). Let »' be an optimal solution of objective function
value Z'. UB= min{UB,Z‘}. Use local branching to identify feasible soluson
2.2. Solve sub-problenLSP(7' Yyia column generation.

2.2.1. Let the initial column be given by the shettr-s path. If the LOS
constraint is not satisfied for the shortest pstbp.

2.2.2 Construct the restricted master problem ussiegtified paths (i.e. columns)
and solve to generate dual prices.

2.2.3 Use the dual prices obtained in Step 2.2$btee the constrained shortest
path problem. Ifc,<0,vpe R, stop; otherwise, identify columns (i.e.
paths) for whichc, >0, add the new column to the master problem, and
return to step 2.2.2.

3. Let {f;} be a primal optimal solution and' be the sub-problem objective function

value. Lower bound,LB=maxLB,Z|. If UB=LB, then (;',f) is an optimal

p

solution to problem[§P), stop;otherwise set Py =P} Y(y‘, f‘) and t=t+1. Return

p

to step 2.

The algorithm terminates with an optimal solutiorptoblem DP).
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4.4.2 Monte Carlo ssmulation

In the previous subsection, an exact Benders deasitign technique is proposed for
solution of problem@P), the deterministic equivalent problem of stocttagtogram P).

To compute network resilience, Monte Carlo simolatis employed to generate a
manageable number of samples (each sample createstance of problenDP)) from
random variates defined on the probability spaceagproximate the expectation of
equation (1). This idea of sample average appraxmdas been suggested by numerous
authors (e.g. Shapiro and Philpott, 2007).

Monte Carlo methods are widely used to simulatednelom behavior of systems
through repeated sampling from random variablek giken probability distributions. In
an intermodal transport network, dependency amarglam arc capacities can be
expected. For example, an earthquake will impddtaisportation facilities in the same
area at the same time. Correlation in arc capageitgng these adjacent facilities should
be expected and the correlation structure willediffonsiderably for varying types of
events. To preserve the specified correlation siracamong the random variables
associated with the given event, the employed Mdbéelo method must generate
random variates that maintain the same probabilisharacteristics. The approach
developed by Chang et al. (1994) is applied to ggaemultivariate correlated random
variates of arc capacities (see Appendix A for aoidal detail). This method has been

previously applied in the context of transportatisgstems to generate random

86



interdependent link capacities (Chen et al., 20@3)er a realization of the random
parameters is generated, the exact method propostw previous subsection can be
applied to solve each programF) for the given realization. The individual objei

function values are collected to compute the ezstle indicatora .

4.5 Numerical experiments

In this section, results of two sets of numericgdeiments are presented. The first set of
experiments involved an intermodal freight netwark the Western U.S. These
experiments were designed to illustrate the regikeconcept proposed herein. The second
set of experiments was conducted on four carefddlgigned hypothetical networks to
study the role a network’s structure plays in resie. The proposed solution technique
described in Section 4.4 was implemented in Micitogsual Studio C++ 6.0 language
with the ILOG CPLEX callable library 9.1 (2005). jgeriments were run on a personal

computer with Pentium (4) CPU 3.20 GHz and 2.00cEBRAM.

45.1 lllustration on Double-Stack Container Networ k

The solution technique is applied to the 8-nodeatt2Double-Stack Container Network
as depicted in Figure 4-2. This rail network covarwide area in the Western U.S. It
involves 17 potential O-D pairs and includes noagsesenting such cities as Chicago,
Los Angeles, and Houston. In double-stack operatioontainers are stacked one on top of

another in layers of two. Additional detail condaghthe network topology can be found
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in (Morlok and Chang, 2004; Sun et al., 2006). @owr travel times, including travel
time along arcs and handling in railway terminal® defined for each O-D pair. While
not depicted in Figure 4-2, intermodal connectierist at every node (i.e. city) in the
network, connecting the rail terminals with thehwgwy network. A virtual highway link

between every O-D pair was employed to model higheg@erations. Their travel times
were set using estimates from GoogleMap and capaeis assumed to be sufficient to

handle all freight transport demand for the region.

C= Chicago

D= Dallas

H= Houston

K= Kansas City
L= Los Angeles
O= Oakland

S= Seattle
SL= Salt Lake City

Figure 4-2 Western U.S. Double-Stack Container Metw
Five types of scenarios were considered in thegererents as described in
Table 4-1. Factors considered in the constructiothese scenarios include the disaster
classification, consequences of the disaster imgeof impact on arc capacities and
intermodal operations, and an appropriate coroelatinatrix for the given disaster
classification. In all scenarios considered, it vaasumed, for simplicity, that only ralil

links were impacted or can be addressed througiveeg activities.
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Table 4-1 Characteristics of test scenarios

Scenario Description Details on arc dependencies

1 Bombing Randomly selected links in the netwokk monfunctioning

Negative impact on arc capacities, large negatiyearct
2 Terrorist attack close to the emergency scene, less impact awaytfrem
emergency scene

3 Flood Multiple connected links nonfunctioning oeelarge area

Randomly selected links over a large area are ivefyat

4 Earthquake impacted

Intermodal | Flow into and out of terminals in Chicago and Lasgales
terminal attack| significantly impacted due to an attack

For area-wide disasters, as might arise under gosniavolving an earthquake
(i.e. scenario 4), highway links may suffer simitlisruption as rail links in affected
subregions. For simplicity, in the experiments thération required to traverse the
highway links where a terminal exists in an affdcsebregion is increased by 30% from
the average to account for likely delays incurréong the highway links. Greater
increases might be considered, where devastatierialthe disaster event is found to be
very significant, and more detailed modeling offficaimpacts can be employed for
greater accuracy.

Dependencies among capacity random variables, vapehify each scenario, are
a function of the disaster classification. For amste, a snow storm will simultaneously
affect all network components in the same arealigato strong correlation among arc
capacity random variables of adjacent arcs. Argfrarist attack on some location within
the network will cause serious damage to one orenne@twork components in a small

area. Monte Carlo simulation is used to generageréalization of interdependent arc
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capacities (specifying a network state) for a gigeanario. Different correlation matrices
are applied for each distinct scenario. In thisptéi the arc capacityg,,Vae A, is
assumed to be a uniform random variable with aiSpedaange [I,,u,].

Several recovery activities, defined as activitibt can be taken in the
immediate aftermath of a disaster to mitigate tisaster’s negative impacts and restore
network capacity, are considered for implementatiéramples of potential recovery
activities include, among others, rerouting shipteeemploying alternative transport
modes (e.g. from rail to truck); restoring and rgpg damaged infrastructure; building
temporary roadways; instituting access controlrtanapacted area; utilizing spare parts
or equipment, as well as extra personnel; and gnmgoadvanced traffic management
strategies. Six hypothetical recovery activitiegeveonsidered in the experiments, each
with different duration, cost and effect as deltedain Table 4-2. While the recovery
actions are generically defined, these actionscansistent with activities that might be
undertaken to mitigate the impact of the specifigasters considered in scenarios 1
through 5. For example, the changes created throegbvery activity 2 are consistent
with high-cost, short duration construction acti@ssociated with capacity restoration
along links of the network. Improvements rendetadugh recovery activity 3 may be
consistent with the use of spare equipment, thes,law cost, but relatively moderate
impact.

Intermodal networks may be more vulnerable thaglstimode networks in terms

of exposure to risk, but intermodal options prowgeater opportunity for recovery in the
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immediate aftermath of disaster. Recovery optioma8 designed to illustrate the impact
of recovery opportunities that exist by virtue tfiermodal connections, though needed as
a consequence of an attack on intermodal termaradsher network link (scenario 5). An
attack on an intermodal terminal would impact thality to process intermodal
containers. To accommodate affected shipments,acwis that were to be shipped
within the rail network through the impacted teralican be rerouted along alternative
railway lines or might be handled through truckngport along the highway links.
Changes in arc capacity, implementation duraticth @sts resulting from and required
for implementation of recovery activity 6 are catent with a mode shift from rail to
truck as might be required in response to a soerike scenario 5. The high cost of
transfer is expected due to the cost of termin@raons and the additional expenses
associated with the last-minute hiring of truckiegmpanies for what might be
considered emergency circumstances. This last eegaactivity assumes that capacity
for transfer to truck is sufficient to meet all nelgmand. Alternate recovery actions
might be considered under scenarios in which it the case.

Assumptions regarding the durations and costsadfvery activities are given in
Table 4-2. For each railway arc, it was assumed pine-event arc travel times and
capacities are known. Post-event capacities aoraly generated in accordance with
the characteristics of the event and changes weltrames resulting from reduced
capacity are determined as a function of changapacity. Any change in arc travel time

that results from a recovery activity is assumed b® directly correlated with
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improvements in arc capacity resulting from thaivaty. For example, under the first
scenario, if a recovery activity resultsxmpercent increase in capacity along an arc, it is
assumed that the arc travel time decreases yp@rtent. The total budget is assumed to
be 30 units and travel time limitations are setifaividual O-D pairs to a value slightly

larger than the time required by the shortest path.

Table 4-2 Characteristics of recovery activities

Recovery -
. Recovery activity effect
Recovery| activity Cost . . .
. . i (% increase in affected | Applicable for arcs
activities | duration | (units) capacity)
(units) pactty
1 2 6 10 1-12
2 1 10 10 1-6
3 6 1 5 7-12
4 4 4 10 1,3,5,7,9,11
5 3 8 15 2,4,6,8,10,12
6 3 10 Return to original capacity 1-12

To determine an appropriate sampling size for tlomte Carlo technique, 10,000
iterations were run for a test case from whichdhgective function value was collected
for each iteration. It is noted that the averaggedive function value steadily increases
in the early iterations of the simulation and wastednined to stabilize after
approximately 5,000 iterations. Thus, a stoppingecon of 5,000 iterations was
employed in all remaining tests. One might altauedy consider the mean square error
and maximum error differences in the resiliencetrithgtion in determining an
appropriate iteration in which to terminate theqadure.

Computational results of the experiments are giaefigure 4-3. To compare the

impact of recovery activities on resilience leveldar varying scenarios, post-event
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resilience is measured assuming that post-everdittmms will remain if no recovery

activity is taken. Note that the resilience indaraproposed herein was designed for
pre-event analyses. Thus, one could compute nesdi@f the Double-Stack Container
Network as defined in prior sections, where allgntial scenarios are considered in the

computation.

0.9 1
0.8 [
0.7
0.6 [
0.5 [
0.4
0.3 1
0.2 1
0.1

Terrorist H ood Ear t hquake Termnal attack
attack

\thh recovery activities OWthout recovery activities‘

Figure 4-3 Computational results for different saéos
The results show that recovery activities can leadignificant improvement in
resilience level, indicating the importance of nemxy activities in terms of network
performance in the aftermath of a disaster. Ovértedted scenarios, an average
improvement in resilience of approximately 57% fwatrange of 10 to 141%) was found
as a consequence of considering recovery activities worth noting that the resilience
level is much smaller for scenario 4, where anhegudke is presumed to have occurred,
than for other scenarios. This is due both to theatgr link capacity degradation

experienced in the scenario and presumed effeesgerof recovery activities. For
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example, in an earthquake, it is presumed thantpact of the disaster event on both rail
and highway is similarly significant. The wide difence between resilience levels with
and without recovery activity options associatedhvwacenario 5, involving attacks on
intermodal terminals in Chicago and Los Angeleshgps the busiest terminals in the
network), illustrates the magnitude of the potdmniide of recovery activities on system
performance.

To further illustrate the proposed concept of resde, intermodal network
implementations of network reliability and flexiiy as defined in (Chen et al., 1999;
Chen et al., 2002; Morlok and Chang, 2004; Sun.e806) are computed under each
scenario for the illustrative rail network and a@mpared with resilience. Chen et al.
(1999 and 2002) define reliability as the prob#pithat the network can accommodate
the demand while maintaining a given service larel Morlok and Chang (2004) (also
adopted in Sun et al., 2006) define flexibility g ability to efficiently utilize the
capacity of a traffic network to accommodate vaoiz in demand while maintaining a
satisfactory LOS.

To compute these measures of reliability and fldikgha bi-level optimization
model was constructed in which lower-level decisiovolve the assignment of traffic to
the network and upper-level decisions involve tegedmination of the maximum demand
multiplier (referred to as the reserve capacityjnpssible given problem constraints.
Similar constraints employed to measure resilieace employed in these models.

Reliability is equal to the probability that the xmum multiplier can be set to a value
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greater than the base demand level given randdatéipacities. Flexibility, on the other
hand, is set to the difference between the maximuuttiplier and base demand level
divided by the base demand level. In Morlok and r€@fsawork on flexibility, capacities
are assumed to be fixed. Here, the expected vadgedetermined.

While, like resilience, reliability and flexibilityare typically measured with no
knowledge of a particular disaster event, to itag the impact of recovery activities on
these network performance measures, post-evenes/ate computed. The values of
post-event reliability and resilience (considerethwand without recovery activities)
obtained from the experimental results are recoraedable 4-3. While post-event
flexibility was computed, the values were very $anito those obtained for reliability

and, thus, are omitted.

Table 4-3 Comparison by performance metric

Post-Event Resilience
. | Post-Event , -
Scenario N Without recovery With recovery
Reliability . .

activities activities
1 0.65 0.7 0.95
2 0.6 0.65 0.90
3 0.51 0.53 0.85
4 0.48 0.5 0.55
5 0.39 0.39 0.94

The values of the network performance metrics givefable 4-3 indicate that
the measure of resilience when no recovery acwitire considered provides similar
information to its reliability and flexibility couerparts in all scenarios. When effective
recovery activities are available, the reliabiliyeasure does not adequately capture a

network’s resilience level. For example, to miteg#te impact of a disaster caused by a

95



bombing or terrorist attack (scenarios 1, 2 andwB)ere highway links are relatively
unaffected by the incident, shipments can be sghiftem rail to truck. In such
circumstances, a network’s reliability may be quae, but its resilience may be quite
high. That is, resilient networks are not necebsasliable. The cost of making a
network highly reliable may be much greater tharking it highly resilient, because
resilience accounts for actions that can be takethe aftermath of disaster once the
disaster’s impact is known. To achieve greaterabdity, on the other handy priori
actions must be considered to address all plausiisiaster events. Thus, intermodal
freight networks, as with other transportation r@#s, should be designed to meet
acceptable levels of both reliability and resilienc

One can construct networks and circumstances fochamiere is even greater
disparity in relative performance (as measured édalility, flexibility and resilience)
over the various scenarios. For example, it is iptesghat the resilience of a network
under scenario A could be higher than for the ngtwader scenario B, but the reliability
of the network under scenario B is higher thas timder scenario A. This may arise, for
example, where effective recovery activities unsggnario B require greater investment

than the budget allows.

45.2 Roleof network structurein resilience leve

Casey (2005) found that topologies of infrastruetsensor networks have a great impact

on the networks' vulnerabilities to disruptions.tns section, additional experiments
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were developed to gain insight into the role okawork’s topology in its resilience level

given the possibility of disaster occurrence. Nekvostructure and operating

characteristics were carefully designed for thigopae. Arcs were treated generically to
maintain a maximum level of consistency in all expents so as to isolate network
structure from other features that could impactiesse level. Four network structures
were considered: a complete network, where each pait is connected by two oriented
directed arcs with opposite direction; a randomwoek with average degree two and
indegree (and outdegree) of each node ranging betwae and three; a grid network
with a regular grid structure; and a network withltiple hubs, i.e. with three completely
connected hubs into which traffic from outlying esdfeed. All networks were created
with symmetry, i.e. if an arc originates from nadéat is incident on nodg another arc

originates at nodgthat is incident on node

Table 4-4 Network structures

Networks # of nodes # of arcs A verage
indegree
Complete network 10 90 9
Random network 10 20 2
Grid network 10 30 3
Hub-based network 10 30 3

Table 4-4 synopsizes the characteristics of théfreht network topologies. All
arcs in all networks were assumed to have capaafigour units that if impacted by
disaster either decreased by 50 or 100 percemyndeted randomly assuming a binomial

distribution. Travel times were assumed to increagel00 or 400 percent, consistent
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with the chosen capacity reduction.

Three sets of recovery activities were considenedeu all runs. In the first set,
each activity raises the capacity of the arc tocthii is applied by one unit, decreases the
arc’s travel time by two units, requires one uritime for its implementation and costs
$10. The second set results in increased capddityoounits and decreased travel time of
four units. Each activity in this set requires tamits of time for its implementation and
costs $25. The third set results in increased égpatthree units and decreased travel
time of six units. Each activity requires two urfibs its implementation and costs $50.

Three disaster scenarios were considered, theifstcting a randomly chosen
set of five arcs, the second impacting a randorhbsen set of half the network arcs and
the third impacting all network arcs. Four budgsftels were applied: $0, $200, $500 and
$1500. In addition, it is assumed that 16 unitfay (each unit of flow corresponding to,
for example, a train) seek the use of the netwdHese units are evenly distributed
across possible O-D pairs. The maximum allowaldedirtime, T, is assumed to be
50 percent above path travel time requirementsmumaienal conditions for all O-D pairs.

Results of these experiments are given in TableEve hundred runs were made

for each specification. Each run required less traminute of computational time.

Table 4-5 Computational results

# of arcs Resilience level
Networks impacted Budget (%)
5 $0 100
Complete 5 $200 100
5 $500 100
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5 $1500 100

Half $0 99.1

Half $200 100

Half $500 100

Half $1500 100

All $0 36.0

All $200 50.9

All $500 84.1

All $1500 98.5

5 $0 72.1
5 $200 98.7

5 $500 100

5 $1500 100

Half $0 54.0

Random Half $200 59.7
Half $500 83.4

Half $1500 100

All $0 10.1

All $200 35.3

All $500 83.8

All $1500 98.3

5 $0 85.5

5 $200 98.7

5 $500 100

5 $1500 100

Half $0 62.3

. Half $200 72.5
Grid Half $500 92.1
Half $1500 100

All $0 15.3

All $200 47.7

All $500 71.6

All $1500 99.0

5 $0 95.2

5 $200 98.8

5 $500 100

Hub-based 5 $1500 100
Half $0 65.6

Half $200 86.8

Half $500 93.5
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Half $1500 100
All $0 12.4
All $200 75.0
All $500 94.2
All $1500 100

The results show that for each network, the levelatwork resilience decreases
dramatically with the severity of disruptions amdreases with the growth of recovery
budget. If a significant number of arcs in the ratkvare impacted and no recovery
activities can be undertaken, all networks exhgabr performance. That is, the LOS
constraints cannot be met for most O-D pairs. \&ihappropriately set budget, network
resilience levels greatly improve. These findings eonsistent with those from tests of
the Double-Stack Container Network.

The experimental results also indicate that corephettworks are very resilient.
Such networks exhibit high levels of redundancyndRem networks with average
indegree or outdegree of two were found to be ¢astlresilient among the four tested
network classes. The tested random network incléeledlternative routes between O-D
pairs. Random networks with higher average degridlelilkely be more resilient. In
nearly all tests, the hub-based network was mosdiest than the grid network,
especially when recovery activities could be uralarh. It appears that the nature of hubs,
which are associated with the majority of netwodnmections, plays a role in the
network’s resilience level. Unless critical linkenmecting pairs of hubs are impacted,
connectivity is maintained for most node pairs ewdren many links are impacted. If

recovery activities can be undertaken, criticakdinin the hub-based network will
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consistently be chosen for repair, restoring nocsnabith narrowly focused recovery

actions.

4.6 Conclusions and extensions

From the perspective of both researchers and poendrs, disaster recovery is considered
by some to be the least understood aspect of emmrgeanagement (e.g. Berke et al.,
1993). In this chapter, a quantitative, systemilendicator of network recovery capability
was proposed. A definition of resilience for intextal freight networks was developed
and a stochastic, mixed integer program was fortedlaConcepts of Monte Carlo
simulation and Benders decomposition were intedradeproduce a technique for its
solution. The solution methodology was employed set of computational experiments
performed on the Double-Stack Container Netwonkliich recovery activities that could
be undertaken immediately, requiring relatively réhomplementation time, were
considered. These experiments illustrate the eesié concept and show that post-disaster
activities can greatly improve resilience levelsd @hus, mitigate the negative impact of
disasters. The results also indicate that recoaetiyities are critical to a network’s ability
to recover and cannot be neglected. Competing megssuch as reliability and flexibility
that do not consider recovery actions may undenesé the network’s ability to cope with
unexpected events. In fact, a network may not g xediable or flexible, but may be
resilient or may be reliable or flexible, but natfgiently resilient.

The resilience concept was also applied in expetisngvolving four carefully
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designed networks with dissimilar topological stanes, including complete, hub-based,
grid and random structures. Results of these exyetis indicate that topological
structures with limited redundancies faired worseg a lack of available funds for taking
recovery actions; however, even with limited or emarodest budgets, improvements in
network resilience levels could be obtained. Adudislly, greatest improvements were
achieved in those networks where few actions miggdd to restoration in connectivity
between the largest number of O-D pairs, as isdlse in a network with hubs. Thus, these
experiments indicate that network structures traatitionally fair poorly when reliability
is considered can, with only limited recovery aatiperform reasonably well, as recovery
actions can be focused on highly critical links.isThlso indicates that pre-disaster
planning might be warranted for such networks tsuea that such actions can be quickly
and inexpensively taken in the aftermath of digaste

Modifications to the problem formulation and sodutiapproach may be desired to
consider recovery activities that are availableyoohder specific scenarios. Such
modifications would entail adding a dimension te tecovery activity selection variables
within the formulation. The proposed solution teciare could be immediately adapted for
this purpose.

This work was motivated by security and mobilityncerns in the Washington,
D.C.-New York freight corridor, one of the natiom®st critical freight transport lifelines.
New York is home to one of the largest concentretiof transportation facilities in the

world, including three major airports, dozens afiteener and intermodal yards and more
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than 11,000 miles of highways (Holguin-Veras, 2000ith both the nation’s capital and a
global financial center, this corridor is partialja susceptible to terrorist attack.
Moreover, as the corridor runs along the coasg gusceptible to natural hazards. The
proposed solution framework employs an exact pnaeedver a set of network states for
each disaster scenario. As the network resilienalelem given only one possible network
state is NP-hard, exact solution for large, reatldvoetworks, such as the Washington,
D.C. — New York corridor, will be difficult to obta. To decrease the computational effort
required, one might consider only the highest fi§id@-D pairs. Such consideration would
require only a nominal change in the objective fiomc Additionally, in this work,
recovery activities associated with individual aace considered. Instead of considering
all possible combinations of recovery activities@sated with all arcs, a subset of these
combinations can be considered. Alternatively, &iséc may be employed for computing
the resilience of large networks. The proposedriegie can be used to provide exact
solution on a set of benchmarks to which the hgarg®lutions can be compared.
Specific details of the types of resilient-buildiagtivities that can be undertaken
prior to, or in the immediate aftermath of, a disgssuch as increasing transportation
system diversity and promoting intermodalism, iasiag network redundancy and
connectivity, hardening facilities to withstand rexhe conditions, and preparing backup
fleets and personnel, should be further explordéulodgh sensitivity analysis, it may be
possible to identify critical system components abthin valuable information that can be

used in prioritizing activities to be undertakemlditional efforts may also be expended to
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extend the proposed resilience concept for usassgnger transport systems.

The focus of this work is on measuring networklresce as it concerns network
performance in the immediate aftermath of a disalttis presumed that all actions will be
reactive, require relatively limited time for imphentation, can be implemented
immediately and are taken in the aftermath of désadt may be beneficial, however, to
take some preparedness actions, i.e. proactiveuresagrior to disaster occurrence and
before the random attributes of the disaster saeage realized. Such actions may include
changes that impact network structure, such asdaddpacity or redundancies, or that
enhance opportunity for quick recovery, such ascagion of supplies for more immediate
access in the event of disaster. These actionsdmoeldetermined in the first stage.
Program P) can be modified for this purpose.

While not the focus of this work, one might extehid work to consider long-term
recovery and reconstruction. Such considerationddwaquire a dynamic network model,
where capacity is recaptured over time, and tinpeddent arc traversal times and
capacities that reflect changes in network perforceaas post-disaster conditions improve.
This can be the subject of future research. Addliily, one might consider travel time as a

function of link flows; however, the resulting foutation will likely be nonlinear.
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Chapter 5 Optimal Team Deployment in
Urban Search and Rescue

5.1 Introduction

In this chapter, the problem of optimally deployifegeral, state and/or local urban
search and rescue (USAR) teams with required ecqenpand other resources to disaster
sites in post-disaster circumstances is studiedARJSquipment includes: cranes,
bulldozers, tow trucks, bracing, generators, boh#dicopters and other large heavy
equipment; cutting tools; canine units; robotsrardd detection devices, heat sensors,
sonar, probes, microphones, remote fiber-optic casjeand other technologies; and
medical supplies (Olson and Olson, 1987; Alexandef2). USAR teams must locate,
extricate and provide emergency medical assistampeople who have become trapped
or wounded in the disaster and are in need of reittexlical assistance or assistance in
escaping (FEMA, 2006). The primary focus of thisrkvis in USAR for large-scale
(area-wide) urban disasters caused by natural feugicane, tornado, earthquake, or
flooding) or human-induced (accidental or terrgrestents, where key decisions relating
to search and rescue must be made quickly. In lsugk-scale disasters, local response
capabilities are often overwhelmed and state amidma, and sometimes international,
resources are required to serve the acute demanesfmonse and rescue.

It is often the case where an urban area has leek $y disaster that the impact
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area contains numerous sites, such as where hsldin other structures suspected of
housing people stood prior to the disaster, whereivwrs may be trapped. Lessons
learned from first-hand experience in USAR actéstiollowing three natural disasters in
1985 and 1986 are presented in (Olson and Olsdi])1%he Mexico City earthquake
that involved hundreds of failed buildings; the Hdw de Ruiz volcanic eruption and
ensuing lahar in Colombia that buried approxima8fypercent of the city; and the San
Salvador earthquake involving the collapse of emhjor structures. Similar experience
was noted following each of two earthquakes witlt@nters in Turkey that occurred in
1999 to which U.S. FEMA task forces were deployeENA, 2006). More recently in
2008, the Wenchuan earthquake in China caused 8Q@be duildings in the earthquake
zone, which included multiple cities, to collapberying thousands of people. Numbers
of local, national and international search andueseams joined the rescue efforts in
the days following the disaster (Zhang and Jin,820@50,000 residences and 30,000
commercial buildings collapsed or were severely algad as a result of an earthquake in
the Haitian capital of Port-au-Prince in 2010. Ex¢ent of structural damage is depicted
in Figure 5-1 (UNOSAT, 2010). USAR support was skain around the globe. These
area-wide disasters involved numerous structuilrés, hundreds to tens of thousands
of difficult to locate victims requiring extricatio and emergency care, damaged
infrastructure, and disrupted societies. When thmlver of sites requiring emergency
response assistance outnumbers the number of U®ARSst that can be deployed,

decisions must be made on the ordering of sitésvasid team assignment to the sites.
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Figure 5-1 The building damage map of Port-au-Rrihtaiti following the 2010
earthquake

Statistics show that 90% of all survivors of digasire saved within the first few
hours of an incident. Following the 1976 Tangshanthguake, the survival rate declined
from 81% to 7.4% between the first and fifth days@ and Olson, 1987) post-disaster.
Given the fact that the likelihood of finding surers at any location decreases over time
(Olson and Olson, 1987; Noji, 1997; Poteyeva et28107; Barton, 1969), decisions on
which disaster sites to visit and the order in \Wwhio visit the sites will impact the
number of survivors who can be saved. Generallg,would prefer to visit a site where
many people with a high likelihood of survival anesent than a site where few people
are present and the likelihood that any of themasive and can be saved is low so as to

save the largest number of people. This sentimenwell captured in the following
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statement.
“Indeed, as cruel as it may sound, local decisidergin a disaster may
have to engage in what might be called ‘structtiaye’; that is, because
the demand for urban heavy rescue will certainlyeexl capabilities, UHR
resources will have to be concentrated on thoss sihere the lifesaving
‘payoff’ appears highest (Olson and Olson, 1987).”

FEMA supports 28 federal USAR task forces acrossUts. When a governor
requests the assistance of the FEMA task forces-&MA grants the request, the closest
task forces and those on rotation are sent. Ea&hfdace consists of specially trained fire
and rescue personnel, physicians, paramedicsigtaliengineers, canine handlers, crane
operators, and other personnel and each task fsrcsupplied with heavy- and
light-rescue equipment. State-level USAR task fensith similar training exist in some
states. In addition, numerous voluntary organizatiavhose members are specially
trained for USAR operations exist in all stateswntthe U.S. (Poteyeva et al., 2007). For
simplicity, these organizations are classified tasesUSAR resources herein. Should an
event require the response of both state and fled&AR task forces, each task force is
treated as a resource for the incident commandes.ificident commander, a local fire
chief, if a fire is active, or even the mayor, eclis real-time information, communicates
with the task forces and manages the response.

Determining an effective team deployment stratemyynianaging the response is

challenging. Circumstances immediately followingatditer are often physically hostile
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and mentally confusing, making well reasoned densidifficult. Moreover, decisions

must be taken quickly despite that the number afsiibe actions/policies that must be
considered can be quite large. An effective respotigugh, is crucial to saving lives.
For example, following the 2003 earthquake in Bdran, hundreds of teams from

national governmental agencies, 44 foreign couwstribe United Nations, and other
non-governmental organizations arrived at the tisa®gion. Despite the tremendous
response, significant fatalities were incurred tudelays in the deployment of available
USAR resources as a result of a lack of coordina(@amezankhani and Najafiyazdi,
2006).

In this chapter, the problem of determining theiropt deployment of USAR
teams to disaster sites within the disaster regimiuding the order of site visits, with
the ultimate goal of maximizing the expected numifesaved lives over the search and
rescue period, referred to herein as the USAR @gpioyment problem (USAR-TDP), is
addressed. The need to model the uncertain nafucenalitions inherent in situations
requiring USAR stems from a multitude of factotsg tmost significant of which is the
uncertainty in the time required to extricate suovs from each site and knowledge of
site locations. The USAR-TDP is formulated as atistalge stochastic program (MSP).
The demand site and time for extrication are randoimntities and new sites containing
additional demand for help (referred to herein @wnand arrivals) may emerge randomly
over time. USAR teams arrive at the scene overd#dwsion horizon. Finally, survival

rates diminish with the passage of time. Decisians taken dynamically over the
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decision horizon as situational awareness impros¢she beginning of the decision
horizon, a subset of disaster sites with a positiuenber of survivors is known. The
incident commander determines sets of tours base¢depavailable demand information,
travel times, and stochastic on-site service tiniég tours must be rapidly determined.
When new demand arrivals become known, and setivies are revealed at visited sites,
the incident commander will update the tours wiie aim of increasing the expected
number of served lives.

This depiction of the USAR-TDP, in addition to caesing problem dynamics,
explicitly addresses the inherent variability entewed in situations requiring USAR
operations. Uncertainty in demand and time forieation is due to the fact that little is
known at the onset of the disaster about the nunhtoeation, or medical condition of the
victims. The likelihood of finding and extricatirsgirvivors at a particular site can only be
known probabilistically prior to arrival at the esit

A column generation-based methodology employed dlvesa sequence of
interrelated two-stage stochastic programs witlowese is proposed for the solution of
USAR-TDP. Such solutions can aid the incident comashea in determining the best
deployment strategy for available USAR task forbgsdirecting crucial assets to sites
within the impact area, where the most good candtwee in the first days of the
emergency period.

Related works are discussed in the next sectiors iBhfollowed by problem

definition and discussion of related propertiestaie of the proposed solution procedure
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are presented in Section 5.4. The technique iSeapph an illustrative example, results
from which are discussed in Section 5.5. FinallySaction 5.6, contributions and

potential extensions are discussed.

5.2 Related Research

Few works in the literature consider optimizatiarsearch and rescue operations (see, for
example, Gal, 1979; Alpern, 2005; Jotshi et alQ80and these works propose random
search techniques for military and maritime appioces, where the objective is to locate
a missing person or object. Such formal searchryhe@oes not provide direct benefit for
solving the USAR-TDP, because the potential sedodations (i.e. the sites) can
typically be quickly identified. The dynamic resoarallocation problem related to the
initial search and rescue period with the goal ahimizing fatalities over the time
horizon was considered in Fiedrich et al. (2000)nt&ger program was developed with a
nonlinear objective function in which fatalitieseacalculated over a time horizon and
assignment constraints. Heuristics using concept®th simulated annealing and tabu
search were implemented for its solution. No otbptimization-based works in the
literature were found with direct application t@ tiSAR problem addressed herein.
While there is rather extensive literature relatedother emergency response
applications, more commonality exists with otheemingly unrelated problem classes.
Thus, this review focuses on the more related aséaynamic routing and scheduling,

and dynamic resource allocation. Problem dynamiasstibe considered because
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consideration of uncertainty alone can only faaiétpre-planned solution (Kenyon and
Morton, 2003). Finally, routing problems with rewdar including the time-dependent, but
deterministic team orienteering problems, are edstewed as, if appropriately modified
to handle random inputs and employed within a dyogmnamework, solution methods
developed for this class of problems may have agbpiiity in solving the USAR-TDP.

Dynamic routing and scheduling problems have beediedd extensively. They
fall into the class of on-line routing problems.c8uproblems are characterized by
dynamics associated with service requests thae anser the problem horizon and
stochasticity in information pertaining to, for exple, customer presence, customer
demand, travel times and service times, that cabednown at the time of planning, or
are only revealed as time progresses. Such infmmaian be described by random
variables with known probability distributions. Aaverview of works addressing
dynamic routing and scheduling problems can be doun(Psaraftis, 1995; Bertsimas
and Simchi-Levi, 1996; Gendreau and Potvin, 199826 et al., 2003; Laporte, 2009).
Powell (1995), in addition to reviewing these worktescribed the advantages of
dynamic models over comparable static models fesdlproblems and discussed various
approaches to dealing with uncertainty.

In the related literature, problem dynamics arekleat either by myopic
approaches (e.g. Mahmassani et al., 2000; Larsah, &002; Chen and Xu, 2006) or by
look-ahead procedures (e.g. Larson et al., 2004 #teal., 2008). In the more myopic

approaches, routing plans are developed basedoongvailable information at time of
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decision; the possibility of new customers arrivingthe future is, thus, ignored. Such
methods are suitable for situations where futurenes/are difficult to forecast. On the
contrary, look-ahead procedures take probabilisfmrmation concerning the future into
account so as to improve performance over the timézon. Mitrovi'c-Mini’c and
Laporte (2004), and Branke et al. (2005) show the¢-positioning vehicles in
anticipation of future demand can lead to greatebability of servicing future potential
customers. Bent and Hentenryck (2004) found thgnifstant gains were produced by
considering the possibility of randomly arrivingstomers over the future with respect to
the dynamic vehicle routing problem. These appresctequire estimates of arrival
process probability distribution functions.

A special case of dynamic, stochastic vehicle rouproblems is the dynamic
traveling repairperson problem (DTRP) originallpposed by Bertsimas and Van Ryzin
(1989). In this problem, vehicles must service eomrs that arrive according to a
Poisson process. Customers require stochastict®rsasivice time. Bertsimas and Van
Ryzin (1991) considered the system as a spatiatyilouted queueing system and looked
for a single routing policy that minimizes the egf& time customers must wait for
service completion given known probability distiioms of random service times.
Larsen et al. (2002) examined routing policiestfa partially dynamic DTRP in which
some customers are known in advance while othexgearhile the vehicle is en route.

Two general modeling frameworks that account fajusetial realized random

variables are commonly used: multistage stochagtmgrams with recourse (e.g.
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Frantzeskakis and Powell, 1990; Chueng and Pod@B6) and Stochastic dynamic
programs with discrete time (e.g. Gendreau etl@P9; Yang et al., 2004; Chen and Xu,
2006). A number of techniques are applied for thkiteon of multistage stochastic
programs with recourse. These techniques can bsifodal into one of several categories:
solution of the deterministic equivalent formulatiqa computationally intractable
approach often resulting in unnecessarily expersphations), sampling methods (which
explicitly enumerate the space of possible outcomibe deterministic mean method
(replacing every random variable with its mean ealuapproximation methods
(approximating the recourse function as a setr@dr functions or as a piecewise linear
and convex function), and decomposition methodsigwhdecompose the original
problem into a collection of deterministic sub-peosbs usually governed by a master
problem). The majority of solution techniques foundhe literature that build on these
general classes of approaches are, however, heu¥isrious heuristics have also been
proposed in the literature to address stochastid dynamic program, including
rule-based heuristics, metaheuristics such as tsdmarch and genetic algorithms,
approximation dynamic programming, scenario-basedthods and mathematical
programming-based methods.

In the dynamic resource allocation problem (DRARgks arriving over time
must be covered by a set of indivisible and rewsabsources of different types. The
arrival process of tasks is known only through abpbility distribution. Each task

requires a certain amount of resources and prodartassociated reward. Such problems
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are often modeled as either dynamic assignmentlgom@bor dynamic and stochastic
knapsack problems (DSKP).

The dynamic assignment problem can be viewed asstance of the dynamic
resource allocation problem, where a complex resye.g. a vehicle) must be
dynamically assigned to tasks (loads) that ariselomly over time. Powell (1996)
formulated the dynamic assignment problem in tha&ted of load-matching for
truckload trucking using a nonlinear approximatiminthe future value of resources.
Powell et al. (2000) proposed a myopic model agdréghm for the dynamic assignment
problem of routing a driver through a sequenceustamers with loads in the context of
truckload trucking. Spivey and Powell (2004) pragmbs more general class of dynamic
assignment models and developed an adaptive dgotib iteratively solve a series of
interrelated assignment problems.

Kleywegt and Papastavrou, among others, have pedpsaiution techniques for
the DSKP (1996, 2001). Demand (constraining thélpra) arises randomly over time
and resources for serving the demand (i.e. itempatk in the knapsack) become
available over time. Each unit of demand requirgpexific amount and type of resource
and has an accompanying reward that is unknownrdedarival. The objective is to
determine an optimal policy for serving demand kat tthe expected total reward
achieved is maximized. The problem was formulatedaaMarkov decision process.
Properties of the value functions proposed in esicthe works were presented and

optimal policies and stopping rules were provideimh et al. (2007) studied a set of
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myopic policies for the DSKP and found that of #tedied policies, the best policy is to
wait (and not assign resources) until demands thigtighest price.

While DRAPs share some properties with the USAR-TD#e need to route
resources is not considered. Time (resources) coasby items in the DRAP does not
depend on the order in which the items are servkds, the USAR-TDP, while similar
in many respects to the DRAP, has the added coatilg factor associated with
order-dependent resource needs. To apply soluéonntques designed to address the
DRAP in solving the USAR-TDP, the solution techréequwould need to consider the
arrangement of items within the knapsack, as hantdms are arranged will affect the
space they occupy (i.e. the time required to cotaplee route). Moreover, the capacity
filled by these items would be time-dependent (asel time is time-dependent in the
USAR-TDP). Similarly, the exact and heuristic teigues for solving dynamic routing
and scheduling problems cannot be applied direicthsolution of the USAR-TDP,
because they do not account for the need to vyt @ subset of identified customers so
as to maximize the rewards gained by visiting eaoktomer. The DVRP can be
considered as a special, less complicated casdeolUSAR-TDP. Incorporating the
decreasing survival likelihood endemic in the USABP cannot be addressed by
techniques devised for either dynamic resourcecation or dynamic routing and
scheduling problems.

Another class of problems with possible relatioth® USAR-TDP is the class of

selective routing problems. The Team Orienteeringblem (TOP) is a well-known
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reward-collecting problem (a type of selective nogitproblem) that seeks a set rof
vehicle tours restricted by a pre-specified limitls that the total reward received from
visiting a subset of customers is maximized. A namdf heuristics have been proposed
for the TOP: a greedy construction procedure (Bumtl Cavalier, 1994), the 5-step
heuristic (Chaet al., 1996), a tabu-search based heuristic (BadgMiller-Hooks, 2005)
and an ant colony optimization approach (Ke et2fl08). The only two exact algorithms
that address the TOP are based on column gener@ioth and Ryan, 1999) and
branch-and-price (Boussier et al., 2007). A closeyated problem, with greater
relevance to the USAR-TDP, is the maximum collecgproblem with time-dependent
rewards (MCPTDR). In the MCPTDR, the sequence stamers to be visited for one
vehicle over multiple days is determined so as &ximize the total collected rewards
(Tang et al., 2007). Erkut and Zhang (1996) adexdbss related problem in which
rewards are assumed to be monotonic decreasingdnaaf time. They developed a
branch-and-bound-based heuristic for its solut@ther related routing problems in the
literature include the prize collecting travelirgesman problem (TSP), TSP with profits,
and selective vehicle routing problem (SVRP). Themssard collecting problems are
more complicated than the well-known TSP or VRRhim sense that not only tour must
be planned, but also a subset of customers musstlbeted for routing and assignment.
The USAR-TDP considered herein can be modeledME€RTDR with multiple
vehicles (i.e. USAR teams) and rewards that syrictecrease over time (due to

decreasing likelihood of survival). Each custonrethe MCPTDR represents a disaster
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site. To capture problem dynamics (i.e. evolvinigimation concerning demand arrivals
and estimated on-site service times), the technigweloped by Tang and Miller-Hooks
can be embedded within a rolling horizon framewtwokcapture problem dynamics
(minor modifications would be required to incorgeranultiple teams). Uncertainty in
site service times cannot be easily addressed,\reowe

To the best of the author’ knowledge, no other wiarkhe literature with greater
relevance than those reviewed herein exists andank in the literature can be directly

applied to solve the USAR-TDP.

5.3 USAR team deployment problem

In this section, the USAR-TDP is defined and a mit#lye stochastic formulation of the
problem is presented. The USAR-TDP is charactertzedhe fact that demand arises
continuously and randomly over a decision horiziften at a pace that exceeds available
resources. Thus, this requires the incident comeraiadmake life-and-death decisions as
to how these limited resources are to be deployethienvironment where every minute

counts.

5.3.1 Stochastic, dynamic sear ch and rescue networ ks

A network representation of the disaster-impactezh ds exploited to formulate the
USAR-TDP. In such a network representation, nodgsesent potential sites, where

survivors who are in need of assistance are likelybe located. The network arcs
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represent the passageways (e.g. roadways) congpelcérsites. LetG :(V, ) serve as
a model of the disaster-impacted region, WhereexeﬂetV:{O}Yl: represents the
origin (vertex 0, from which USAR teams are dispett) and a set of geographically
dispersed disaster sites={12,...,L}, and arc setA={{i, j)i,j eV,i # j} , representing
connections between all pairs of locations. Thugomplete graph is assumed; the
shortest path length between each pair of nodemdoyed.

The network is considered at a st of discrete time periods (i.e. stages)
{t, +ho}, where h=012,....H, anddis a constant increment of timé, + H5, defines
the last time interval il and, thus, the decision horizon. It is reasontbketH s to the
number of days beyond which there is no hope dfiriigp victims alive. Thus, there are
H +1 number of periods in the decision horizon, aHd={01,...,H} are the times at
which decisions are made. The travel time betwdt®s snd on-site service times are
assumed to require at least one period that waeiltblf an hour or one hour.

The demand (i.e. the number of survivors requiasgistance) at sitein stageh
is denoted byd". It is assumed herein that the demand size is kndeterministically
once the demand location is realized because defosswhsts can be made based on the
size and use of buildings, as well as materials1frehich they are constructed, building
occupancy. As situational awareness improves witie,t new information impacting
forecasts of demand arrivals will be received awer course of the search and rescue
period and new demand sites will be recognizew. dissumed that no new demand will

be generated at a site that is already servedube@USAR team will only leave a site
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after ensuring there is no remaining demand toesat\the site. The amount of demand
generated at such later times relative to the wémhand generated over the decision
horizon reflects the degree of dynamism of the-plasster system as defined by Larson
(2000) in the context of dynamic vehicle routingldems. Specifically, a probability

space (Q,F,P) under which a Poisson arrival procefN,).,

with intensity A is
defined. The sequence of demand arrival epochesjmrnds to the Poisson process
arrival times. It is assumed that demand arrivalg occur at the beginning of a stage.

As the likelihood of survival diminishes over tinteere will be a reduction in the
number of people seeking assistance (i.e. demavet) tome. Consequently, demand
decreases with increasing stage number. It is asdtinat once a site is visited, all those

alive upon the team's arrival on site will requasdrication and the number of people to

survive will be a function of the arrival stage Bvé extrication is completed in a later

stage. The demand reduction ratio for differengestais given by{;/o,yl,...,;/H } where
1>y,>%,>%,..>y, =0. Thus, for demandd" carried from the previous stage,
dih =h" dih_l-

Associated with each vertek=12,....L is an on-site service times, for
completing search and rescue operations at tles Bite on-site service times cannot be
known a priori as the exact time required for extrication of ev@e person cannot be
knowna priori of certainty. Service time depends on the numbsurrivors located on
site, working conditions, team make-up and equigmeshwell as many other factors. It

is not always the case that a larger number ofigny will require longer service time,
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as one difficult to extricate case may require nioree than efforts associated with a
number of less difficult to extricate cases. Thaesyice times at sitei is is a random
variable with a finite number of discrete, positive and gr support points and is
independent of the site demand and time stagesilaAservice times are revealed only
when USAR team arrives at the site. It is assurhatidervice can not be disrupted; that
is, a team will complete its service at a site kefmoving on to a new site and any work

on site begun prior to the end of the decisionZworiwill be completed.

A travel time matrixT:{ti:.‘}(i’j)ekheh‘I is defined on AxH . Travel times are
assumed to be constant over the decision horizas.assumption is supported by events
of the 2010 Haitian earthquake, where few resounase available during the first few
days following the earthquake for roadway repaiordbver, there is no evidence in the
reviewed literature that helicopters or other forofigransportation that would quicken
the travel times became available for wide use thwerdecision horizon.

A set of homogeneous USAR teams are availableeadépot for deployment
over the decision horizonK ={1,2,...,K}, whereK is fixed and indicates the number of
available USAR teams. While a portion of these wawill be ready for deployment at
the beginning of the decision horizon, some teanay larrive at later stages. It is

assumed that the time of arrival of USAR teams tivercourse of the decision horizon is

known a priori and any team to arrive to the disaster region tverdecision horizon
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does so at the beginning of a stage. The numbiraais available in stadeis denoted

by k" and K= Y k".
H

h=0,...,

Regardless of the magnitude of the disaster,a@kpected that the number of sites
requiring response is significantly larger than tloenber of available teams; that lis3
K. Thus, it is not advantageous for any team talkgtat any point in the decision horizon.
A team can only receive new instructions upon cetnph of service at a site. A team
can change its destination while en route, but cateave a site before completing its
work. No more than one team will be assigned tovargsite and no site will be visited
more than once.

Each team follows a tour, i.e. a sequence of sj@&s...,j], beginning from the
depot. The tours need not return to the depdd. dnticipated that each designed tour will
cover the span of the decision horizon and no testorns to the depot until USAR
operations are complete and the decision horizenetepsed. That is, the duration of
each tour is no greater th&h So that reasonable working conditions are maiethi
rescue workers must be provided with opportuniiiesest and obtain basic sustenance.
Such periods of rest can be accommodated by idéams at regular periods, but, for
simplicity, are not explicitly considered hereimiefTlUSAR-TDP seeks a set Kftours
through all or a subset of known demand sites éutait geographically dispersed
locations within the disaster region such that éixpected total number of survivors

extricated by available USAR teams is maximized.
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An important dimension of the USAR-TDP is the ewan of information. As
time progresses, the decision-maker gradually camksow more about the true state of
the situation. That is, the sites to be served, sg@s entering the system, the time
required to extricate survivors become known. Adddlly, improved situational
awareness can lead to improved future estimates. diven possible that surveillance
teams are deployed within the region to gatherrmétion that is then shared with the
decision-maker. It is assumed that decisions imgesta must be made using the
information available at the time the decisionailen (i.e. prior to stags). Forecasts for
future stages can also be updated based on swwmimation. The reality of the disaster
impact is fully realized only at the end of stadeWith the assumptions and definitions

in mind, the USAR-TDP is formulated next.

5.3.2 Multistage stochastic formulation

To model the process of decision making given uas#y in disaster site locations and
service times at known locations over a finite dieci horizon, a multistage stochastic
program is developed. Such multistage stochastgrpams capture the information
structure that can be represented by scenario. tidéesach time period in the decision
horizon, each USAR team is either serving a sit@roroute to a site. When a team
completes its work at a site, it becomes avail&tnieepositioning to a new site. Whether

it will follow the previously planned tour or a newaur is determined. That is, sites can
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be reassigned between teams and the order of wansbe altered. The following

decision variables are defined related to thessides.

h _ ] if ateamk travelstosite j directlyfromsitei atstageh,
Xk = 0, otherwise,

n |1 if ateamk startsts serviceatsitei atstagen,
Y = o, otherwise,

Parameters of the model not previously defined arergas follows.

d" = demand at sitethat is first revealed at stage d" ={d},_,
d" = demand at sitethat was carried over from a previous stage
d" = demand for USAR service at sitat stagdh, d/=d"+ y,d"*

Let &=(&,....&, )be a discrete-time stochastic information process a finite
probability space{Q,F,P}. An outcomegh sets the realization of random variables for
all sites visited (or identified in stage one ogher) prior to stagh. Thus, the history of
realizations and decisions can be captured by ate stavariable
S, ={(xo,y°),(§l,xl,yl),...,(i_l,x“’l,yh’l)}. A decision (x°,y° )is made to satisfy the
constraints in stage zero. Thus, a decision veator (x",y")= X(S,) is made then for
stageh, where X is a mapping from states to a finite number ofigsiens. Generally,
for any stageh, decisions(x“,y“) have to be adapted to the sequential information

process S,. The USAR-TDP can be written as the following nstifge stochastic

program.
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The objective function (1) seeks to maximize thpeeted number of people that
can be saved over the decision horizon. ConstréR)tsequire that available USAR
teams are immediately deployed from the depot. Cainss (3) and (4) are flow
conservation constraints, defining the time uponctvieach team arrives at the assigned
site and the time that team is repositioning t@o8ite. As the objective is to maximize
total reward, when a team becomes available, it nél assigned to a new site.
Constraints (5) require that only one team wilvsegach site. Constraints (6) enforce the
tour length for any teaikino greater thahl. Constraints (7) are binary restrictions.

The multistage stochastic programming formulationovigles a concise
representation of the USAR-TDP. The formulatioramgicipative in nature; although, a
solution requires forecasts of demand arrival ihistion functions for the entire decision

horizon. Approximation techniques have been progpdse multistage stochastic, linear
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programs. These techniques reduce the multistaggrgm to a problem with only a
single stage by approximating the series of reeodusctions by a single convex
function. The MSP formulation of the USAR-TDP emyddinary integer variables and
recourse functions associated with each stage @meonvex. Consequently, such an
approximation of the recourse function in a singvex function is not possible.
Approaches for multistage stochastic, integer @ogr are few and are generally
heuristic or scenario-based. In the next sectiortechnique that decomposes the
multistage stochastic, integer program into a seoé two-stage stochastic, integer
programs is presented. While solution of each ttages stochastic program is exact, the
solution approach is myopic. That is, it is nonapative. As a consequence, the
approach can be considered as an approximatioagprfor the MSP formulation of
the USAR-TDP. Such an approximation, however, @soeable for the considered
application, where situational awareness, and ttneisbility to forecast demand arrivals,
continuously improves with time. Obtaining a sindgteecast at the beginning of the

decision horizon is unrealistic.

5.4 Algorithm

In this study, the proposed solution approach emckthe multistage stochastic
programming formulation (1)-(7) by solving a seradsnter-related two-stage stochastic
programs with recourse, each arising at the beggnf a decision epoch and each

exploiting information from solution of the probleshthe prior epoch.
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5.4.1 The stochastic problem at each decision epoch

The time horizon is divided intél equal-size decision epochs, afgk,....t, ;,t.,t ,,..1, ,
with 0=t, <t, <...<t,, =H , where t, >6. Thus, decision epochs are composed of
[to.t [ty 1 o[ty oty |- Without loss of generality, it is assumed that thngth of a
decision epochlt_,,t,), can be a multiple of incremest The number of survivors at a
site in a given decision epoch is assumed to recwistant over the epoch. That is, the
reduction factor is only applied at the beginnifighe epoch in estimating the number of
survivors at a given site.

The system state is defined by the locations oftélaens (including those teams
first arriving at the depot as scheduled, and th@seoute), remaining on-site service
times at these locations, sequences of remainieg $0 be visited that are already
scheduled, and the locations and estimates of dknaamvals. New information
concerning the system state arrives over timehAtleginning of each decision epoch,
solution of the two-stage stochastic program gittem current system state, provides
updated tours for each of the teams. Solutions imaglve decisions to add, drop, or
resequence sites in tours developed in the predpash. Swapping sites among tours is
also permitted. Moreover, teams may be divertethfeotour while en route to a site.
Future demand arrivals and service times of fusite visits are known only with

uncertainty at the start of an epoch. Thus, toresignamically updated over the decision

horizon.
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A prototypical multistage stochastic program foe tdSAR-TDP is given as

follows.

1
max E,[D .+ E{;M‘é’gzy__ml]

subjectto Az<b

zc {01}\V\x\ A
Thus, at time 0, the two-stage stochastic probkeasifollows.

max E.[DZ]
subjectto  Az<b
zc {01}\V\x\A\

At each time epoch, thereafter, i.e. foi =12,...,M -1, given realizations of
random variables from prior decision epocﬁg...,&l and decisions takerx,,...,Z ,,
the two-stage stochastic problem can be writtefolbsvs.

max  E[DZ|E =85 =& 6 =8 ]
subject to Az<b- le'i‘(gl—l) Z,
2 (oA
The stochastic program at decision epdclis denoted by [SP for i = 012,...,.M -1.
Each [SR is defined over the perio{ti,H]. At time t, given demand arrivals and
service times revealed at or before time [SR] seeks to generate a set of tours to
maximize the expected number of people that casabed over[ti , H]. The solution will
be implemented for the decision epoftht,.,) and the system state is revealed at the end

of the decision epoch. Solution of each succeef8i®®] will yield a higher expected

reward compared with using the tours developed wiformation from a previous
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decision epoch, because the optimal solution frgria decision epoch is guaranteed to
be feasible for future decision epochs. Under perfgormation, the solution generated by
[SPy] is equivalent to the solution of the multistaggchastic formulation. The complexity
of the proposed solution technique grows linearityvthe number of stages and is found
to be reasonably fast in computational experimeht® general approach of solving a
multistage stochastic program by reducing the gmoltio a series of two-stage stochastic
programs with diminishing decision horizon was d&ed by Chen and
Homem-de-Mello (2008) in the context of airline eeue management.

Future demand arrivals that may be revealed intirdudecision epoch are not
considered in the current epoch. The set of disages in need of assistance at titneis
composed of the set of unvisited disaster sitel pasitive demand at or before and
the set of demand arrivals occurring in the timierival (t_,,t,], denoted byB . This
problem does not account for the potential impédcit® solution on future demand
arrivals. It is noted that not all USAR teams awailable in the disaster region at the
decision epocht,. Some teams will arrive later with a known arritiaie. However, all
the teams can be considered as available at that flgon time O, but travel times to
disaster sites can be increased to account farthal time of teams arriving later. Thus,
for each decision epoch, &lteams are considered akdours will be constructed so as
to maximize the expected number of people saved.

Alternatively, one can consider updating the solutas teams become available

for reassignment rather than at fixed intervals tohe. There are tradeoffs in
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computational requirements between resolving whaah éeam completes each job and
resolving at fixed time increments. The solutioohi@que described in the following
section can accommodate either representation.dvergit is not required that decision

epochs be of equal length.

5.4.2 The set-partitioning-based formulations

In this section, a column generation-based appraaciproposed for solving the
USAR-TDP by reduction to a series of interrelatet-stage stochastic programs with
diminishing decision horizon. This technique buitdsfindings from work by Chen and
Xu (2006), where similarities between solutions coinsecutive decision epochs are
exploited in a reoptimization-like approach. That & solution from decision epoch
provides a starting place for a solution in decisgpochi+1. Chen and Xu applied this
technique for solution of the dynamic vehicle raogtiproblem. Experimental results
showed the efficiency of this technique.

The problem to be solved at each decision epodh], [IS a two-stage stochastic
mixed-integer program with recourse. In stage @aeh team follows its planned tour
until either all the site visits on this tour arentpleted, or upon reaching the end of the
decision horizonH. It is assumed that all the random variables peng to on-site
service times are revealed, i.e. scenarios areidemesl, and stage two begins with the
implementation of a set of recourse actions thatimiae the expected reward associated

with serving the remaining disaster sites for thesig scenario. Thus priori tours are
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sought that perform best given the set of consttstage two scenarios. Such solutions
are said to be robust. One can view decisions tak&riure epochs as a form of recourse
action as considered in stage two.

[SP] must be reformulated by Dantzig-Wolfe decompositito construct
specially-structured sub-problems suitable for sotuby a column generation-based
technique. A decision variable is associated witithefeasible tour. Each tour is
associated with a column in the formulation anddbgective is to select a set of columns
to generate the maximum reward such that eachtelissite is covered by exactly one
column. Thus, [SfPis formulated as a set-partitioning-based prograsndescribed in the

following subsection.

5.4.2.1 Two modelswith/without recour se

The objective of the two-stage stochastic problga#)], that arises at each decision
epoch is to construct a set kfplanned tours with maximum expected reward. The
maximum expected reward is computed from the suniRpffrom first-stage decisions
and scenario-dependent probability-weighted rewadsieved through second-stage
recourse actions all totaled over the decisionzoori
As the random on-site service times are revealaday be found that it will not

be possible to complete some tours. When thissgribe tour is said to fail. Such failure
occurs, thus, whenever the realized cumulative keogth in terms of travel times and

service times exceeds the end of the decision dwkk Failure is not an indication of
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infeasibility, but rather notification that actusdwards will be less than expected and
recourse actions that reassign unvisited sitesgaiaited tours may be advantageous. A
recourse strategy that assigns unvisited sites failed tours or incorporates unassigned
sites when teams become available earlier thanceegbes implemented in the second
stage.

Given the planned set of disaster sites to beedstn a tour, the stochastic

program is augmented with a Sét of scenarios, where each scenario represents a
realization of the random on-site service timeg. Ug(t;) be the set of feasible tours for
team k, with Y, U, (t)=U(t). Under different realizationsall or a subset of
pre-planned sites will be served during stage dme model is further augmented by
inclusion of partial tours with additional sitésat can be served by augmenting the
original assigned toumu eUk(ti) if the teamk completes its assigned tcagforeH given
the realization of service times in scenavio

Each tourueU(t,) is defined as an ordering of visits to a seletbésites. The
objective of [SR is to maximize the expected number of people daweer the decision
horizon [t,H]. Each such person is referred to as a rewards,Téme can view this
problem as that of maximizing the total expectesarels. Because service times at each
site are uncertain, one cannot knawpriori the reward that will be obtained upon
completion of a tour. Instead, one can computeeikpected reward R, , associated with
atour ueU(t) over all possible service time scenarios.

To formulate the USAR-TDP as a set partitioning bbean, the following
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additional notation is employed.

A vector of random on-site service times with at@mumber of realizations

s &,&,...,&" where W is the number of realizations (i.e. scasrof vector &
P, = The probability that the random vectdr takes on the scenariovve W ;
C) = Set of partial tours designed to augment tounder scenarioveW ;
cv = Setofallpartial tours developed for scenavjoC, =YC..;
u
1lifasiteieB is covered by a planned tour;
Su =
0 otherwise
w 1lifasiteieB is covered by the realization of towr in scenariaw;
aiu =
0 otherwise;
By = 1lifasiteie B is covered by a partial touce C;' in scenariawv, O
icu -
otherwise;
R, = Expected reward of touteUf(t,);
r, = Reward associated with partial toare C;' in scenariow;
x“ = 1ifthe planned tourueU, (t,) is selected for teaik 0 otherwise;
Yo, = 1if ceC} is selected under scenaripO otherwise.

The USAR-TDP for a given decision epoch considen@gourse operations is

formulated as follows.

[SF] Max 3 3R X+ E[Qx &) (®)
subject to
> 28X <L vieB(t), (9)
keK ueU,(t;)
‘=1 VkekK,
Ueuzk(ti) (10)
x“={01}, vueU,(t)keK. (11)
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where, the conditional recourse function is givgn b

Qlegr)= M 2, 2 (12)
subject to
2 Xt 2 D fa Y <1 VW, (13)
uel (t) ueU () ceCY
y» e{01, vceClueU(t)weW. (15)

The objective function (8) is to maximize the expecreward of the planned
tours plus the expected second-stage reward gdigedptimally visiting additional
disaster sites given each scenario. Since allnlertainty is revealed at the end of stage
one, the expected reward of the extra tours cacobgputed from the expected sum of
the reward at the additional sites that can beeskefar each scenario. Constraints (9)
requires that each disaster site is covered by aat mne tour, while constraints (10)
ensure one and only one tour is selected for esarh.tThe conditional recourse function
(12) is to maximize the reward gained by visitinddiéional sites for each scenario.
Constraints (13) ensure that each site is servedt lmgost one team for each scenario.
Constraints (14) require that one and only onetanfdil tour is selected if one arprior
tour is implemented. Binary integrality constraiate given in constraints (11) and (15).

[SPR] is a two-stage stochastic program with simpleovese. The first-stage
variables arex’ and second-stage variables ayf. At the end of the first stage, the
visited sites, final position and remaining servicaes associated with each team are

known. Partial tours (i.e. second-stage variald®) e generated to improve the objective

134



function value. The formulation takes the possibleractions between teams into account
through recourse actions. Such interactions mig¥lve the swapping of sites between
tours of two teams, or perhaps the move of a si@ fone team’s tour to another team’s
tour. Thus, changes in one tour may impact theroffftee impact of such interactions or

interchanges is evaluated through consideratioerafurse actions.

If when setting all random service times to thexwperted values, the total
completion time of the tour is greater thidnthis tour is considered to be infeasible in
expectation. In this study, it is assumed thatféineulation does not include tours in the
first stage that are infeasible in expectationinfluding tours that are infeasible in
expectation, it is very likely that most teams a@noomplete their tasks or teams
finishing earlier will not have enough time to cowlditional sites. In this case, the
impact of considering recourse actions will be nraly On the other hand, if tours are
generated conservatively by, for example, assumhiagsite service times will be long, as
would be the case if the upper bounds on the setintes were employed in generating
feasible tours, recourse actions are likely to beded. In fact, very few sites will be
included in the tours developed in the first std@e postponing future routing decisions
to the second stage, the problem is effectivelyuced to solving a set of
scenario-dependent, deterministic problem instances

This problem can be simplified if recourse actians not considered and, instead,
a priori tours are determined assuming that the toursheilfollowed without change.

The simplified formulation is obtained by droppiting recourse function.
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[SSF] Max g ZF)%-XE (16)

uelU, (t;

subject to
(9),(10),(11)

The objective function (16) is to select a set @fumns with maximal expected
reward. Any tourueU,(t) will include as many sites as possible to improkie t
expected reward of the tour. Thus, tour can be rg¢ee by using the lower bounds of
service times. Such tours fail in expectation aoald fail under a specific realization of
service times. Any solution to [S$I® a feasible solution to [gPthat is, [SH provides a
better plan of the expectation of saving more pespives by taking teams' interactions
into account.

The set partitioning-based formulations containaat\number of tour variables.
To solve the problem to optimality, all possiblag#le tours would need to be generated.
The number of possible tours increases expongntidath increasing number of sites,
making it difficult to solve real-world size prolhs. To address the difficulty associated
with this feasible tour generation, a column getenabased approach is proposed and

described in the Section 5.4.3.

5.4.2.2 The expected reward of an a priori tour

order, 0»>1—-2...j > j+1...—n. Let a be the arrival time at site a is important

for evaluating the expected reward of armpriori tour because the number of people
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requiring service at sitediminishes over time. The earlier a site is vijtine larger the
number of people that can be saved. lget represent whether or not a sites served
given first-stage decisions and revealed servicediat the end of the first stagg.
equals one if the site has been served and zeeonase. On-site service time at dites ,
is a random variable with known distribution fuleti f,(s ) that is independent of other

service times.

The probability that sitelL, is visited is a function of travel time,,. Site L, is
visited with probability

H-z01-71,
p(gz :1): p(az < H): p(SL+T01+712 < H): p(701< H).Io fl(si)dsl-
Similarly, site L, is visited with probability

H-7101-715 H- Tiaj— S;
p(g, =1)= pla < H)= plrgy < H)- [ 72722 £, () (5, s

0
Let 0O represent an individual outconfeom the setO of all possible

outcomes, where an outcome is defined as the statempletion of ara priori tour.

Thus, each outcom@eO can be represented b{lg,,9,.....9,}. Let p be the

probability associated with a given outconoe= O, representing the probability that
disaster sites{0,L,,...,,} are visited and disaster sitdk. ,,...,L,} are unvisited. Thus,

1-0;

P, isgivenby p = II p(a <H)* p(a >H)™. This computation assumes that a site
1=1..n
is served if and only if the team arrives at the before the end of the decision horizon

H. For a given tour, the expected value of the nurobsites that can be served is given

by E(L)= Yip,.

i=1,..n
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The probability that siteL, is visited in decision epocly is given by

Pt <a <t.,)= ( <D TS <t j j‘“'“'“f(sl)dsi

i=1,2 Z"

Similarly, the probability that site.; is visited in the decision epoch is given
by

plt, <a, <t.,)= I;OJ': z Zz: (s)-f, (5., Jds.. s, ,

Consider the most general case in which the nuigurvivors at a siteat time
a, Ii (a),is a nonlinear, decreasing function of the tearivalrtime. Such a function
can be approximated by a decreasing step fundtloder this assumption, the expected

reward associated with a given tour can be compued

R= ZE(D (a,)) ZZ p(t <a, <t.+1) Sj(aj).

i=l,...n

The worst-case computational complexity required dealuating the expected
reward of ara prior tour, R, is O(ZW”). Thus, the effort required for the computation of
R, in the worst-case, increases exponentially whi number of decision epochs and
number of sites included in a tour. Thus, it wié Hifficult to generate the expected
reward of ara prior tour using analytical methods for large size nekso

An upper bound on R can be obtained by assuming dbmand is a linear

decreasing function of time. By this assumption,

R= Y. E(B(a))= YO/

..........

If demand actually diminishes exponentially overdj then
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=1,... i j i=1,..n i=1,..n

R:ilan(ISi (a)){lZ p(aj < H)'Sj (ai) and ZE(Di (a ))Z D (E(a)).
It may also be beneficial to explore alternativgpragimations with reduced
complexity. Schaefer et al. (2000) applied a Mdd&lo simulation method to estimate
the expected cost of a round-trip itinerary fotia& crew scheduling. Similar approaches

can be also considered here.

5.4.3 The column generation-based approach

The number of feasible tours through one or maessh need of assistance required as
input to [SH increases exponentially with increasing numbersités and number of
scenarios. Thus, the computational effort requfceddirect and exact solution of [$P
for large problem instances may be very significaven for a single decision epoch.
Moreover, a solution is required at each decisjpoch. Recent works (Silva and Wood,
2006) have shown that column generation, a wellslknoteger programming solution
method, is a viable approach for addressing twgesséochastic programs. In the context
of this work, such a methodology is found to besetifze in reducing the number of tours
that must be considered in solution of |[S& compared with more traditional exact
stochastic program solution techniques. And, wexXbaustive in the worst-case, rarely is
it necessary to consider all feasible tours.

To apply column generation in solution of a givestance of [SP, [SR] must
be reformulated as a restricted master problemsaibeproblem. The restricted master

problem is formulated with only a subset of varhl or tours, of the original
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formulation. Inclusion of a variable, or tour, imetformulation results in the addition of a
column if considered in a tableau format, whereheaolumn is associated with a
decision variable (i.e. a possible tour). At eatdration of the column generation
technique, the sub-problem is solved producing enenore additional columns with
attractive reduced costs. These columns are add#gk trestricted master problem. This
procedure iterates until no additional column caratided with negative reduced cost. In
the worst-case, it is possible that every tour Wil considered, i.e. every potential
column will be added. However, in practice, it isea the case that the procedure will
terminate having generated only a subset of feasihirs.

Thus far, solution by column generation of |[S#Br only a single decision epoch
has been considered. To solve the larger USAR-T[SBP] must be solved at each
decision epoch. As solutions associated with cariser decision epochs will be very
similar, a column-generation-based technique usimgcepts posed by Chen and Xu
(2006) for addressing a deterministic, but dynawahicle routing problem is proposed
herein that exploits these similarities.

For a given decision epoch,, and each teamk € K , this technique generates a
set of feasible tours ovet, [H], given by Y,_ U, (t)=U(t,). Each tour serves a subset
of the sites with known positive demand. The olpyectn updating the solution to the
USAR-TDP for the current decision epoch is to datee the optimal combination of

tours over select remaining sites. This solutioll wontain one tour for each starting
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location. Let Y, U,(t)=U'(t) represent a limited set of feasible tours inH]. The
restricted master problem associated with][8 the USAR-TDP, denoted by [RMP

is given by replacingU(t,) with a subsetU'(t,). The solution of the linear relaxation of
[RMP]] yields dual variables, which provide input to theb-problem. Solution of the
sub-problem then can be used to identify one oemew columns with favorable reduced

costs or prove that no such column exists. Thepsablem for teank is given as follows.

Max Rﬁ%:va Cgrcuycu 25.5”. (17)
Subject to

UZa X +UEUZ( Zc:‘ﬂ' ws<L o viw, (18)

xu—céwycuzo, vueUul(t), (19)

X, y» e{01, VvceCYueU(t)weW. (20)

where 7z, is an optimal dual variable associated with caists (9) for each siteand

4, s an optimal dual variable associated with camsts (10) associated with each team

k.

The reduced cost for any towis as following:

reducectost=R, + > p,,- er i Za]ﬁ;zl

weW

Yo, (z o e+ ZrcﬁchuJ—Zé.ﬁﬂ. ;

wew ceCY

- Yo Tatlafa)-4)

wew
where 7, = . Let d,(a)=d.(a )- 7 , representing the adjust reward of nadghus, the

sub-problem seeks a tour for te&rwith the maximal expected adjust rewards given the

tour length no greater thaH. It is a NP-hard problem because its deterministic
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counterpart, the team orienteering problem, is shéevbe NP-hard in Golden et al.
(1987).

An exact column generation ends when the sub-pmoltannot generate any
column with positive reduced cost. If one or moewvncolumns can be found with
positive reduced costs, the current solution isoptimal and the corresponding tours
must be added into the limited set of towd(t;) considered in [RMP. [RMP] must be
resolved with this updated set of tours. The preaemtinues iteratively until no more
columns with positive reduced cost can be found.

The proposed column generation technique emplastich a local search heuristic
is summarized as follows.

Column generation algorithm to solve problem [SPi]

Step 1: Generate an initial set of columns

For i=0:

Initialize [RMPy] with a set of columns generated from solvingdbaterministic version of
[SPy] with mean value. All the tours generated areifdasn expectation.

For i>1:

Begin with all columns used in the last iteratidmen solving [RMPy]. For such columns,
remove all the site that has been visited. Theeckclwhether or not the column is feasible
in expectation. If the column is not feasible, remthe site one by one from the end of the
column until it becomes feasible in expectation.

Step 2: Solvethelinear relaxation of the restricted master problem [RMPIi]
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For all previously generated columns, solve thednrelaxation of [RM#. Obtain optimal
value z and dual solution(r, x).
Step 3: Identify columnswith positive reduced cost

Solve the pricing sub-problem to generate columitis positive reduced cost. The
problem is NP-hard, thus, a local search heurnistapplied herein. A guided local search
heuristic is performed as described in Vansteenwegel. (2009). Note that every column
operated here is infeasible in expectation, bugilda in lower bound value of the service
times. The sites are ranked according to theirshdgwards.

If any columns have negative reduced costs thaezka given threshold, they can
be eliminated from further consideration. If newurons are generated, add them to the

[RMPj] and return to step 2. Otherwise, terminate.

In typical USAR operations requiring response byegoment-sponsored USAR
teams, service times at each site can be subst@mti@ertainly greater than an hour. Thus,
the number of sites included in construction ofhea@umn will be relatively small. Thus,
columns can be generated quickly and a column gdaefbased approach can be
computationally effective. The effectiveness ostapproach is illustrated on an example

problem in the next section.

5.5 Computational Experiments

The purpose of the numerical study is to demoresttia¢ feasibility of the proposed
solution technique in quickly deploying USAR teamsthe aftermath of a large-scale
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disaster. The solution approach is illustrated gor@lem instance derived from data
concerning structural failure following the 2010tbguake in Port-au-Prince, Haiti. The
test instance and parameter values are describegedtion 5.5.1. In Section 5.5.2,
implementation issues are discussed. This is fatblwy computational results that are

presented in Section 5.5.3.

5.5.1 Problem instance setting and experimental design

On January 12, 2010, a 7.0-magnitude earthquakekstort-au-Prince, the densely
populated Haitian capital with more than two mitlisesidents. Untold numbers of
people remained trapped under rubble following tieaster. Over 200,000 people
perished and another roughly 300,000 were injubéd.packages and organized USAR
teams were rushed to Haiti immediately following tthisaster from around the globe.
The first USAR team arrived from Iceland in Portunce within 24 hours of the
earthquake. By early afternoon, January 15, 1,@8&ign search and rescue workers
searched for survivors with 114 dogs. Over the fiveekend, there were nearly 2,000
search and rescue workers from 43 different orgaiozs with 161 search dogs. Because
of the overwhelming magnitude of damage to buildiagd other civil infrastructure, it
would take days to get help to all building sitesaihich survivors might have been in
need of assistance. The search and rescue operatiene called off on January 23.
However, as late as February 8, survivors werkelstihg found in the rubble. In total,

more than 110 people were pulled from the rubbl&/BAR teams.
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Figure 5-2 shows the damage assessment for majdmigs and urban facilities
in Port-au-Prince with a focus on hospitals, goweent and United Nations offices,
schools, churches and industrial complexes. This wes generated by UNOSAT (The
Union Nation Institute for Training and Researche@pional Satellite Applications
Programme). It should be noted that sites markedNas Visible Damage"” do not
necessarily mean that such sites were not impégtée earthquake. The damage levels
were estimated based on visual interpretation ailave satellite imagery and, thus,
buildings with major structural damage, includingléng that may have collapsed, may

not be identifiable. Damage, therefore, may be resienated.

| Probable Main Building
amage Level

. Destroyed

Severe Damage

Moderate Damage

No Visible
Damage

Figure 5-2 Damage assessment for major buildinigatructure in Port-au-Prince, Haiti
Immediately following the earthquake, UNOSAT idéetl 110 sites as the sites
in most significant need of response. 58 siteshef110 selected sites (i.e. 53% of the

total), including 50% of the schools, 88% of thevgmment-related buildings and 40%
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of the hospitals, were visibly damaged or destroftige and roadway conditions were
quickly surveyed via satellite imaging and mapsictég damage were developed to aid
in decision-making (UNOSAT, 2010).

The test instance developed herein was establissied the 110 identified sites.
The 58 sites with visible damage were assumed tddrgified by time 0. Further, it was
presumed that the remaining 52 identified sitesevadiscovered over the decision horizon.
These 110 sites are depicted in Figure 5-3. Depstipposed to be Toussaint Louverture

International Airport in Port-au-Prince, Haiti, bted at the upper right corner of the map.
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Figure 5-3 Disaster sites locations
Each decision epoch is set to be six hours in duraEach team can work twelve

hours per day. The decision horizon is set to @lags, or ten decision epochs. USAR
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teams can consist of over 100 personnel. For exgnipe Virginia USAR Task Force,
one of the FEMA task forces that responded to tlatidh event, consists of 131
members. Assuming 60 members per USAR team anad dhet many of the teams
focused on sites of special interest, it is assutnatithere are 15 USAR teams available
over the decision horizon in total. Five of thentsawere assumed to be available at the
beginning of the decision horizon, five were asstinee arrive at the beginning of the
second decision epoch, and the remaining five \wegsumed to arrive at the beginning
of the fourth decision epoch.

The likelihood of finding survivors decreases withe. This likelihood depends
on the building materials and survivors’ physicahditions. The survival probability
function from past earthquakes is summarized byu@obkt al. (1991). For simplicity, it
is assumed that all 110 considered buildings weraposed of weak brick or stone
masonry. A discrete function is used herein to expnate the function developed by
Coburn et al. This function is shown in Figure 5FAe maximum time of surviving is set
to be five days, consistent with estimates of feurseven day post-disaster survival
periods (Coburn et al., 1991). The survival ratepdrdramatically after the first three
days. Alternatively, the survival rate can be agpmated by an exponentially decreasing

function D,(a)=D,e*™ . Such a function would be convex. Thus, as noted

previously in Subsection 5.4.2.R= Y’ E(D,(a))> _=Z D,(E(a)). Thus, > D.(E(a))

i=1,...n 1,...n i=1,..n

provides a lower bound on the expected reward @ jamori tour. Such a bound can be

exploited in the local search heuristic for geriagpattractive columns.
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Figure 5-4 Real (left, taken from Coburn et. aQ1Pand approximated (right) survival
rates

For simplicity, and due to a lack of data on pred gost-earthquake roadway
conditions, Euclidean distances over the planeeamployed in estimating travel time.
Thus, given the map scale of 1:15000 and the meddtmclidean distance between any
two points in the space, travel times between sitas be calculated by the distance
divided by a constant travel speed (assumed t®milkés/hour).

Three demand-related attributes are needed to ajendre problem instance:
estimated number of survivors at each site atithe the site is identified, the demand
arrival process, and probability density functiof®n-site service times. As it is difficult
to acquire the additional data required to develegp problem instance, simulated data
were generated from discrete uniform distributitorsthese factors based on limited real
information. For example, if the site is known te & moderately damaged school, the
number of potential survivors might be quite higihile the number of potential
survivors in a collapsed complex may be rather kmal

Considering the different damage levels and ussscaged with each building in
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Figure 5-2, the number of survivors present uptm isientification is generated from a
uniform distribution ranging between 0 and a specipper bound. The upper bound is
calculated by the demand generation ratio, as givdrable 5-1, times 100. For demand
arrivals, new demand sites were generated dyndmiaacording to a Poisson
distribution with parameterl =100. Then, the upper bound for the new demand will be
determined by the product of the demand generatitio given in Table 5-1 and the
survival rate at the time that the site is ideatfi The size of the new demand, thus, will

be generated from the uniform distribution betw@emd the upper bound.

Table 5-1 Parameters associated with survivor ge¢ioer

Ratio School Hospital Government Othgr u se of
-related buildings
Destroyed 0.60 0.54 0.48 0.42
Severe damaged 0.80 0.72 0.64 0.56
Moderate damaged 1.00 0.90 0.80 0.70
No visible 0.50 0.45 0.40 0.35

The impacts of modeling stochasticity in serviametion solution quality are
explored through comparisons of various assumptdrservice time distributions. Four
such assumptions are enumerated next, creatingifstances in the computational
experiments.

1) All service times are independent and identycdistributed random variables,
following a discrete uniform distribution withf (s;9)=1/9,s=6,...14;

2) For any sita, service time is uniformly distributed betweeﬂril, ui], where [,

is randomly generated from a discrete uniform itigtion f(l;5)=1/5,1=4,...8, and
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u =1l +8.

3) The same as assumption 2, butis not generated from a distribution. Instead,

it is determined byl, = [6X\/numberof beopleati } :

80
4) All service times are independent and identycdistributed random variables,

characterized by a truncated discrete normal Higion with =0 and o =5.

The proposed algorithm and two other algorithms @sed to solve the test
instance for comparing the quality of the solutioa, the total expected rewards from all
the visited sites. The other algorithms include imilar column generation-based
approach in shrinking-horizons but based on soltiegproblem with mean values of the
random variables, and a similar column generatasetd approach in shrinking-horizons

but based on solving two-stage stochastic modelowi recourse as shown in (16).

5.5.2 Implementation issues

Proposed solution techniques were implemented iorddoft Visual Studio C++ 6.0
language with ILOG CPLEX callable library 9.1 (200Experiments were performed on
a Windows XP personal computer with one 3.20 GHI @rRcessor and 2.00 GB RAM.
The two-stage stochastic model, {SBt the beginning of decision epoth can
be easily constructed from [SIPby appropriately modifying the parameter valueshie
constraint matrix and coefficients within the olbjee function. Columns from the last

iteration of solution in the previous decision ep@nd related dual values serve as the
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initial set of columns and dual values for [[SPhese dual values are applied in computing
reduced costs of the columns given updated infoomatoncerning demand arrivals and
experienced service times. Columns with positivduced cost will be considered for
inclusion in the next iteration.

A branch-and-price method can be used in placelefrg the linear relaxation
[LSP] of the restricted master problem [RRhen solution of [LSP is non-integral.
Based on findings from prior works (Johnson, 19&Xhere is a fractional tour variable

X,, there must be a fractional variablg, (t;) which defines whether or not siteis

visited by any teank in the solution of [SP Thus, instead of branching on the tour
variable x,, it is more efficient to branch ory,(t) . Branch-and-price scheme
guarantees optimality. However, it is often theectgmt exact solutions are not necessary.
Near optimal solutions with fast computational tevee sufficient. An alternative is to
solve the [RMR directly with the MIP solver in CPLEX, despiteat by such direct
solution, a column with positive reduced cost may e in [RMHF currently. Thus, this

implementation does not guarantee optimality.

5.5.3 Computational results

The test instance contains ten stages, resultingrininterrelated two-stage stochastic
programs. Table 5-2 provides the computationalgperance associated with solution of

the program at each stage.

Table 5-2 Computational performance of two-stagelsistic programs
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Problem size Solution time
Stage | #of | #of Remaining # of columns
. . (seconds)
teams| sites | time (hours)
1 5 58 60 453.5 7905
2 10 59 54 380.5 7925
3 10 62 48 244.5 8120
4 15 66 42 187.5 5900
5 15 70 36 70 4465
6 15 75 30 69.5 3965
7 15 80 24 46.5 1720
8 15 84 18 56 2332
9 15 87 12 94 599
10 15 88 6 56.5 443

As shown in Table 5-2, the performance of the psegdocolumn generation-based
approach improves nonlinearly with each stage, eagerf sites remain for possible
inclusion and remaining time for action decreaSdwe approach is shown to be very
effective in addressing the USAR-TDP problem instanf Haiti. Such problems are
amenable to solution by this approach, becausdefrelatively large on-site service
times. Initial tours contain few sites and recowastons involve the addition of only one

or two sites to any tour in most cases.

Table 5-3 provides the computational results far tisst instance with different
service time distributions. Three different modgliechniques are considered within the
dynamic solution framework: deterministic (D); dtastic, but no recourse (SSP,
Subsection 5.4.2.1); and stochastic with simpleuwese (SP, Subsection 5.4.2.1). In the
first approach, random variables are replaced kgir ttmean values, creating a

deterministic version of the problem. In the secamproach, the SSP described in
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Subsection 5.4.2.1 is solved. Finally, in the Esproach the SP is solved directly. Four

service time distributions are considered, as dasdtin Section 5.5.1.

Table 5-3 Computational performance of two-stagelsistic programs

Service time Objective function
. . Stochastic without Stochastic with
distribution Deterministic .
recourse simple recourse
Distribution (1) 1294 1616 1650
Distribution (2) 1307 1537 1649
Distribution (3) 1388 1594 1738
Distribution (4) 1294 1470 1472

Results of these experiments indicate that theagati modeling stochasticity and
permitting recourse actions are significant. Onrage, the objective function value
improved by 23.2% between (D) and (SP), indicatthgt stochastic factors may
significantly affect the optimality of the problerdditionally, on average, the objective
function value improved by 4.6% between (SPP) &id),( showing that incorporating

team interactions can result in improved solutions.

5.6 Conclusions and Extensions

In this work, the USAR-TDP for addressing the nésdjuickly respond to disaster to
mitigate its negative impacts is conceptualizede phoblem seeks to identify a set of
non-overlapping tours for USAR teams so as to meparthe total expected number of
people that can be saved by attending to all aibaet of disaster sites within the disaster
region. To address the probabilistic and dynamianeaof conditions following a disaster,

the on-site service times are assumed to be knawiy with uncertainty and sites

153



requiring assistance arrive dynamically over theigien horizon. A multistage stochastic,
integer program is formulated to model the segaéstbchastic information process. To
overcome the expensive computational effort astegtiaith the solution of a multistage
stochastic program, a column generation-basecdegirahat consists of solving a series
of interrelated two-stage stochastic programs wétourse within a shrinking-horizon
framework is developed. Two types of recourse aresicered and set-partitioning-type
formulations for both are developed. Consistenhwiformation availability in disaster
applications, the algorithm relies only on inforioatavailable at each decision epoch.

Experimental results from a test case develope@bcate events of the 2010
Haiti earthquake illustrate the feasibility andi@éncy of applying the proposed solution
technique in support of USAR operations in realddiapplications. Moreover, the value
of considering stochasticity in on-site servicedsis shown to be significant.

In post-disaster scenarios, conditions change Isapidh time. USAR strategies
must adapt to ground realities, including new infation from reconnaissance efforts,
new resources, and progress made by deployed teBEms.work addresses this by
developing tools for robust decision support. Eaeple, a particular site may require
more time than anticipated, depriving potentialvauors at other sites. In light of such
information, routing and resource allocation dexisimade previously must be quickly
evaluated to see if improved strategies or repization is required. Such real-time
decisions must be made quickly and USAR teams brigshmediately informed of their

new tasks. In this study, uncertain service tinmesthe dynamic arrivals of new demands
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are considered. Models and solution techniquesdress other uncertainties, e.g.
roadway conditions, will be a future research dicec

This research will provide logistical support taiolent commanders charged with
deploying USAR teams in the event of a large-sdadaster, where victims have become
trapped in collapsed buildings or in flooded ssemtd are in immediate need of rescue.
By explicitly considering the inherent stochastiedadynamic nature of the hazard
conditions, and potential location of survivors need of assistance, and by further
employing real-time communications from the on-sitéSAR personnel and
reconnaissance teams in updating the routing ofgesnd allocation of resources to sites
in on-line operations, the resulting decisions e@h USAR teams in expeditiously
locating and extricating survivors, and thus, sgvimore lives. The proposed
methodologies can be used off-line for a posteaoalyses to assess decisions that were
taken in-situ. These tools can be used to obtaactexupdated solutions, providing
benchmark solutions for development of heuristicssonple protocols for USAR
personnel deployment and resource allocation tlaat lbe used on-line to provide
real-time decision support. The potential impactdetisions resulting from the tools
developed in this work on equity, fairness and o#thical concerns will need further
investigation.

This research effort is a first step in bringingtstof-the-art optimization
techniques — similar to those already in use byapei enterprises for other applications —

to aid USAR operations. Few works have addressed dptimization of USAR
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operations or related problems and none of thesecbasidered the probabilistic and
dynamic nature of conditions surrounding a disaSteaditional optimization techniques
that may have utility in this context cannot addréége complexities of USAR operations
or conditions in which USAR teams work. Consequerekisting procedures will likely
result in suboptimal decisions. If the dynamic amdertain nature of conditions present
in such situations is considered and real-time tggdto this information are employed,
more efficient operations will result. The procealusteps for identifying optimal
decisions for USAR operations in such dynamicallgrgging environments will permit
the identification of robust solution strategiessiolving problems of a scale seen in
real-world applications. These improved solutiongdl wesult in greater payoff in
exchange for the risk endured by the rescuers. dsida support tool that takes into
account society’'s need for safety in the case sadder or terrorism resulting in
region-wide destruction increases the public’sfatthe government entities responsible
for USAR.

Emergent groups of volunteers who immediately redppost-impact of a
disaster to help with reconnaissance and rescsaster relief, medical aid, transport and
other key emergency response functions are aariti@mponent of any community’s
emergency response capability. In the immediatermatith of a disaster, the local
community is isolated and must rely on locally éatale resources (Noji, 1997). It may
take many hours for state and national emergengyorese organizations to arrive on

location once the acute need for external assistentecognized and a request for their
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help is made. Thus, every community must have dpalgility and capacity to help itself
(Noji, 1997; Barton, 1969) at least in the immeelisgrm. Since a significant portion of
the victims require medical aid in the first hoafter the disaster impact(Noji, 1997; Noji,
1989), these volunteers and local agencies mutstebiérst line of response. Many works
in the literature describe events where the mgjdetven as high a 90 or 95%) of
survivors who were rescued, were saved by unskilledrained volunteers and other
uninjured survivors (Barton, 1969; Noji, 1989; Wengl991; Noji 1997; Tierney et al.,
2001). In some documented disasters, by the timeplecial forces arrived on site, only
technical rescues, requiring special training agdipgment necessary for disassembling
collapsed structures and extricating trapped vitinemained (Noji, 1989; Poteyeva,
2007). Since such technical rescues require ena@rhoman-power and can take hours
each (Noji, 1989), it is critical that these spetemms spend the majority of their effort
on the more difficult technical rescues requiringe@al skills and equipment that
ordinary and even relatively well trained civiliaoguld not assist with. In events where
the victims outnumbered the volunteers, as in ftegraath of Hiroshima (Barton, 1969),
the death tolls were enormous. Undoubtedly, thesmagsault and emergence of groups
or multi-organizational networks that are descrilaed conceptualized in, for example,
(Drabek et al., 1981; Drabek, 1983; Kreps and Bogwd993; Ross, 1980; Wenger and
Thomas, 1994, Stallings and Quarantelli, 1985; @uiatli et al., 1977) are required for a
community’s response to disaster. The proposeduiation and solution technique do

not diminish the role of the volunteers and emetrgesups in disaster response.

157



While every community should be prepared, a cdamtdl process, as could be
provided by the federal government, is approprifiie serving certain emergency
response functions, where local, decentralizedesystfail. It would be inefficient for
every local community to independently develop eyaecy response capabilities for all
conceivable disasters (Drabek, 1985). This worls admobilizing the specially trained
task forces and could be extended to aid in depipgroups of volunteers, should a
community be well organized enough to make effectivse of its volunteers.
Consequently, results of this effort can aid inigaiting some of the difficulties that arise

in coordinating USAR activities (as described or, éxample, Poteyeva et al., 2007).
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Chapter 6 Conclusionsand Extensions

6.1 Conclusions

In this dissertation, three important optimizatigroblems associated with evacuation,
transportation network vulnerability and emergenmsponse are considered in
time-dependent, stochastic and/or dynamic envirowsad his dissertation is motivated
by the increasing need to better secure the tratadjpm system and better prepare for
unexpected events, thus, mitigating loss due torgeney occurrences. Despite its
importance and practical applications, it does appear that any of the problems
proposed and solved herein has been previouslyogttin the literature.

This dissertation addresses three problems: tHdihgievacuation problem with
shared information (BEPSI), the network resiliepcgblem (NRP) and the urban search
and rescue teams deployment problem (USAR-TDP).s@hmodels can aid in
decision-making during pre-disaster preparednesd paost-disaster response, as
discussed in Chapters 3 through 5. The focus &f digsertation is to conceptualize,
formulate and provide algorithmic approaches (exaxat approximate) to tackle these
problems.

In addition to the mathematical and methodologozadtributions associated with
strategies for evacuation, response and recoveryexposition of security concerns

associated with transportation systems, includiggrole of transportation in emergency
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management and in supporting other critical liflein as well as the transportation
network as the target of natural or terrorist &tas provided. This focused discussion
provides a viewpoint for considering how the isstaskled within this dissertation fit
within the larger concerns of security and the nmoset of people, critical resources and
supplies.

The BEPSI is formulated as a mixed-integer progesn is solved by an exact
algorithm based on Benders decomposition. The NRFormulated as a stochastic
program with only second-stage variables and ivesblby a solution technique
composed of Monte Carlo simulation, Benders decaitipo and column generation.
The USAR-TDP is formulated as a multistage stoethgsbgram and an approximation
method involving exact solution of a sequence dermelated two-stage stochastic
program with recourse is developed. The formulatigmoposed in this dissertation
provide precise problem definitions and permit ditative analyses of real-world
problem instances. The problems are either shoviae tdP-hard or are stochastic and/or
dynamic, and thus, are known to be difficult proe

Computational experiments were conducted on netwepgtesentations of an
actual multi-story building, a double-stack coneimetwork representing the Western
United States and building failure following the itten earthquake. Results of these
experiments illustrate the potential of applying fhroposed procedures to realistic-size
problems. The results show that these exact andoappation algorithms can solve

small- and moderate-size problems to optimalitynear optimality with reasonable
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computational time for off-line use and demonsttate feasibility of their applications.

The solution techniques developed in this dissertatan provide a mechanism for
developing exact solutions to these difficult peyhk. While none were designed to be
fast enough for on-line use, where applicable, mpeuristics can be developed that
will support decision-makers faced with difficulttgent decisions arising in emergency
preparedness planning and post-disaster respohsequility of the solutions created by
such heuristics can be assessed through compatsoexact solutions from the

techniques provided herein.

6.2 Extensions

The BEPS|

The problem is formulated as a mixed-integer lingagram. It is proven to be NP-hard
and is solved exactly by a Benders decompositiothoge Although the solution
technique is shown to be effective in solving a 4sikk, real-world problem, heuristics
could be developed to more quickly obtain feas#nld, hopefully, near-optimal solutions
for large buildings for on-line applications whearestructions would be provided to
evacuees during the evacuation. The proceduredogeekfor this problem may have
utility in other functional areas as well, such fas,example, evacuation of a geographic
region where evacuation instructions can be pravidevehicles via changeable message
signs, radio, the internet, or other advanced ligait Transportation Systems

technologies.
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The NRP

A quantitative, system-level indicator of networkcovery capability is proposed in
Chapter 4 for the NRP and the problem is formulaeda stochastic program. Even
considering only one possible network state, th&NPshown to be NP-hard. An exact
procedure over a set of network states for eacstiis scenario is proposed and network
states are approximated by Monte Carlo simulatidauristics may be required to
compute the resilience of large networks. One miglsb consider modifying the
objective function to incorporate the priority oberdand between O-D pairs. Such
consideration is especially useful in the situatibra disaster when emergency resources
need to be sent to the disaster zone as quicklgoasible. The stochastic program
developed in this study contains no first-stageabdée because actions will be reactive
and are taken in the aftermath of disaster. It nhey beneficial to incorporate
preparedness actions, i.e. proactive measures,tprabsaster occurrence, if these actions
are cost effective and considerably improve théesy’s capability to cope with disaster.
The stochastic program proposed herein can be dedefor this purpose to include
first-stage variables representing actions takdorbalisaster scenarios are revealed. It is
also expected that the proposed resilience corezpbe applied more widely to other
networks systems, e.g. computer systems, as a i@gi@et measure of system

vulnerability.

The USAR-TDP
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The USAR-TDP is formulated as a multistage stoahaptogram, capturing the
probabilistic and dynamic nature of conditions indgmaéely following a disaster. An
approximate solution technique is proposed to salveeries of two-stage stochastic
programs with recourse. A future extension may ic@msdesigning an algorithm to
directly solve the multistage stochastic programapgroximating the recourse functions
between stages. Circumstances immediately followingsaster are highly uncertain and
dynamic. The environment may be hostile due to mggevents, such as aftershocks
following an earthquake. While stochastic servioges and dynamically arising demand
are considered in this work. Uncertainty in, forample, stochastic travel time and
number of people in need of assistance at eacimsifiet also be considered. Moreover,
correlation between demand and on-site service ¢amnebe explicitly considered. In this
work, the arrivals of USAR teams in the disastegiae is modeled, however, it is
assumed that teams' arrival times are known asttire of USAR operations. Uncertainty
in USAR team arrival might be explored in futuredies. Instead of maximizing the
expected number of people that can be saved, oneccasider the objective of
maximizing the probability that the number of peoaved is greater than a given
threshold. Detailed design of a decision suppostesyg (DSS) in which USAR-TDP
solution techniques, or faster heuristics, woulcebdedded to provide decision support
for the incident commander in charge of the disagsponse is also an interesting area

of future research.
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