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Department of Civil and Environmental Engineering 

This dissertation addresses three important optimization problems arising during 

the phases of pre-disaster emergency preparedness and post-disaster response in 

time-dependent, stochastic and dynamic environments.   

The first problem studied is the building evacuation problem with shared 

information (BEPSI), which seeks a set of evacuation routes and the assignment of 

evacuees to these routes with the minimum total evacuation time. The BEPSI incorporates 

the constraints of shared information in providing on-line instructions to evacuees and 

ensures that evacuees departing from an intermediate or source location at a mutual point in 

time receive common instructions. A mixed-integer linear program is formulated for the 

BEPSI and an exact technique based on Benders decomposition is proposed for its 

solution. Numerical experiments conducted on a mid-sized real-world example 

demonstrate the effectiveness of the proposed algorithm. 

The second problem addressed is the network resilience problem (NRP), involving 



 

an indicator of network resilience proposed to quantify the ability of a network to recover 

from randomly arising disruptions resulting from a disaster event. A stochastic, mixed 

integer program is proposed for quantifying network resilience and identifying the 

optimal post-event course of action to take. A solution technique based on concepts of 

Benders decomposition, column generation and Monte Carlo simulation is proposed. 

Experiments were conducted to illustrate the resilience concept and procedure for its 

measurement, and to assess the role of network topology in its magnitude.  

The last problem addressed is the urban search and rescue team deployment 

problem (USAR-TDP). The USAR-TDP seeks an optimal deployment of USAR teams to 

disaster sites, including the order of site visits, with the ultimate goal of maximizing the 

expected number of saved lives over the search and rescue period. A multistage 

stochastic program is proposed to capture problem uncertainty and dynamics. The 

solution technique involves the solution of a sequence of interrelated two-stage stochastic 

programs with recourse. A column generation-based technique is proposed for the 

solution of each problem instance arising as the start of each decision epoch over a time 

horizon. Numerical experiments conducted on an example of the 2010 Haiti earthquake 

are presented to illustrate the effectiveness of the proposed approach. 
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Chapter 1   Introduction 

1.1 Motivation and objectives 

Large-scale (area-wide) disasters, e.g. natural (e.g. hurricane, tornado, earthquake, 

flooding, or fire) or human-induced (riot, accidental or terrorist), impose extensive 

physical, social and economic losses, and cause large death tolls and injuries every year. 

Such extreme events have exposed the vulnerability of lifeline systems and the need to 

mitigate the consequent risk to disruption of these systems. The transportation system, the 

focus of this effort, is of utmost importance in the event of a physical disaster. The 

functionality and performance of this system in a disaster-impacted area can directly 

affect the level of success in coping with the disaster. Evacuation of survivors to safer 

locations, on-site provision of medical assistance and movement of injured people to 

medical facilities, access by emergency personnel and delivery of supplies to a disaster 

zone are just a few examples that illustrate the importance of the transportation system in 

the aftermath of a disaster. Recovery and restoration of any lifeline system will very 

much depend on the ability of the transportation system to provide effective transport 

services (Nicholson and Du, 1997). For example, following the May 12, 2008 earthquake 

in Sichuan, China, widespread disruptions to the transportation system caused by the 

actual seismic event, its aftershocks and resulting mudslides greatly obstructed 

emergency response activities, resulting in unnecessary lost lives. Additionally, an 
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operating transportation system is crucial to disaster recovery and continued substandard 

operating levels can have long-term economic impact (Chang, 2000). 

Recent recognition that the transportation system not only supports the daily 

movement of people and goods from one place to another, but also provides accessibility 

to a disaster region and the ability to escape from the region, and supports recovery after 

the disaster, has lead to increased attention by researchers to the role of transportation in 

disaster preparedness and response. A number of publications have appeared in the 

literature that, with specific concern for the role of transportation, document experience 

gained from previous disaster events (e.g. Schiff, 1995; Giuliano and Golob, 1998; 

Willson, 1998; Chang and Nojima, 2001; U.S.DOT, 2002; Nyman et al., 2003) and 

propose methodologies for creating strategies to improve coping mechanisms for future 

events (e.g. Cho et al., 2001; Bryson et al., 2002; Okasaki, 2003; Johnston, 2004; Ham et 

al., 2005). These latter works consider evacuation and emergency response aimed at 

mitigating the impact of the event on society.  

Optimal decision-making in preparing for and mitigating the impact of disaster is 

impeded by the complexity and intractability of the underlying problems. This is, in part, 

because the transportation system involves multiple transport modes with complex 

systems of interdependent passageways, large geographic regions, large demand for 

assistance or resources, uncertain intensity of disruptions, and uncertain consequences. 

Although some problems are tactical (e.g. pre-disaster evacuation planning), other 

problems are operational, requiring solution in real time (e.g. dispatching search and 
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rescue teams post-disaster). Thus, optimization-based methods may be beneficial. 

Optimization techniques are particularly useful to decision-makers when quick 

decisions must be taken given large quantities of input data. Such methods have been 

successfully applied in schedule recovery in the aftermath of disruptions in both air and 

rail industries (e.g. Clarke, 1997; Lettovsky et al., 2000; Thengvall et al., 2001 & 2003; 

Rosenberger et al., 2003). Given that future disasters are expected to increase in 

frequency and consequence (as noted in numerous writings, e.g. Turner and Pidgeon, 

1997), additional research is required in creating disaster-resilient transportation systems 

and in mitigating ensuing damage. This dissertation proposes optimization-based 

methodologies in terms of problem formulation and solution techniques for pre-event 

disaster planning, post-event response and recovery, and building disaster-resistant 

transportation systems.  

Driven by the needs and research challenges described above, this dissertation 

research has the following objectives: 

Address vital aspects in optimization of transportation systems in pre- and post- disaster 

situations. Due to the intrinsic uncertain nature of disasters in terms of both their causes 

and consequences, damage to the transportation system and required response actions are 

difficult to forecast in advance. This research seeks to provide fundamental insight into 

aspects of the following comprehensive questions: (1) How resilient is the transportation 

network to disaster? (2) How best to evacuate people to safety? (3) How to optimally 
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deploy emergency personnel and allocate supplies in a large-scale disaster involving 

multiple disaster sites.  

Develop models for these identified optimization problems. Mathematical models of the 

optimization problems addressed within this dissertation are formulated and their inherent 

uncertain and time-dependent characteristics are considered. The output of the models is 

(1) the measurement of the transportation system’s recovery capability and optimal 

selection of recovery activities, (2) pre-disaster evacuation plans, and (3) post-disaster 

emergency workforce and equipment deployment actions. 

Provide conceptual frameworks and specific methodological procedures for solution of 

identified optimization problems. A variety of algorithmic approaches, including, for 

example, Benders decomposition and other exact or approximation integer programming 

techniques, are developed for solving these problems. No prior work in the literature has 

addressed these problems with the inherent complexities considered herein. The 

developed methodologies were employed on real-world and carefully created fictitious 

networks to examine and demonstrate their effectiveness. 

1.2 Specific problems addressed 

This dissertation work has arisen from the increasing concerns, both nationally and 

internationally, for securing existing transportation systems. This work seeks to address 

important aspects of pre-disaster emergency preparedness and post-disaster response and 
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recovery. While it is widely recognized that transportation systems are critical to 

preserving mobility and general functionality of society and its economy, systematic and 

quantitative research in this arena has been limited. This section provides a concise 

statement of each of the problems addressed within this dissertation, the analytical 

approach employed for their solution, and their import to reducing the negative 

consequences of a disaster. Formal definitions, together with detailed description of the 

problem formulations and solution approaches, are given in Chapters 3 through 5.  

1.2.1 The Building Evacuation Problem with Shared Information 

(BEPSI) 

The BEPSI is addressed in this dissertation. Its objective is to determine a set of evacuation 

routes and the assignment of evacuees to these routes for a large burning building or a 

building that has come under attack by enemy or natural catastrophe such that the total 

evacuation time is minimized. Resulting routes can be updated in response to new 

information ascertained about the operational capacity of the building’s circulation 

systems (i.e. the means of egress) and updated evacuation instructions can be provided in 

real-time to the evacuees. Given existing technologies that can be employed for this 

purpose, instructions that are provided at a particular location in the building will likely be 

simultaneously received by many evacuees. If multiple options are provided, confusion 

and/or chaos could ensue. Existing optimization approaches in the literature cannot 

guarantee that common instructions will be generated at intermediate locations at any 
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given point in time. 

In this dissertation, the BEPSI is formulated as a mixed-integer linear program, 

where the objective is to determine the set of routes along which to send evacuees 

(supply) from multiple locations throughout a building (sources) to the exits (sinks) such 

that the total time until all evacuees reach the exits is minimized. The formulation 

explicitly incorporates the constraints of shared information in providing on-line 

instructions to evacuees, ensuring that evacuees departing from an intermediate or source 

location at a mutual point in time receive common instructions. Arc travel time and 

capacity, as well as supply at the nodes, are permitted to vary with time and capacity is 

assumed to be recaptured over time. The BEPSI is shown to be NP-hard. An exact 

technique based on Benders decomposition is proposed for its solution. This work is 

expected to impact other functional areas as well, including evacuation of a geographic 

region due to military attack, human-made accident, or natural disaster. Details of the 

formulation, together with the proposed algorithmic approach and results of its 

application on a real-world example representing a four-story building, are given in 

Chapter 3. 

1.2.2 The Network Resilience Problem (NPR) 

Individuals and companies have become increasingly dependent on the freight transport 

system to deliver their goods, and thus, significant increase in demand for freight 

transport in coming years is anticipated. However, the freight transport sector is operating 
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at or near its capacity in many regions of the world, including the United States, and yet 

an increase in the capacity of such systems is not anticipated. Simultaneously, risks from 

accidents, weather-induced hazards, and terrorist attack on freight transport systems have 

dramatically increased. Thus, trucking companies, rail carriers, infrastructure managers, 

and terminal and port operators must invest in security measures to prevent or mitigate 

the effects of disasters resulting from such incidents. Thus, there is increased pressure on 

the freight transport industry to balance conflicting objectives of providing high service 

and security levels while simultaneously offering low cost transport alternatives.  

An indicator of network resilience is proposed that quantifies the ability of an 

intermodal freight transport network to recover from random disruptions due to natural or 

human-caused disaster. The indicator explicitly considers recovery activities that might 

be taken in the immediate aftermath of a disruption, as well as the duration of time, 

investment and other resources required to undertake related actions.  

A stochastic integer program is proposed for quantifying network resilience and 

identifying the optimal course of action (i.e. set of activities) to take in the immediate 

aftermath of a disaster given target operational levels and a fixed budget. To solve this 

mathematical program, a technique that accounts for dependencies in random link 

capacities based on concepts of Benders decomposition, column generation and Monte 

Carlo simulation is proposed. The technique is illustrated on the Double-Stack Container 

Network. Formulation of the Network Resilience Problem and the technique proposed for 

its solution are presented in Chapter 4. 
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1.2.3 The Urban Search and Rescue Team Deployment Problem 

(USAR-TDP) 

The problem of determining the optimal deployment of USAR teams to disaster sites 

within the disaster region, including the order of site visits, with the ultimate goal of 

maximizing the expected number of saved lives over the search and rescue period, 

referred to herein as the USAR team deployment problem (USAR-TDP), is addressed in 

Chapter 5. The problem is motivated by the need to quickly respond to a disaster to 

mitigate negative impacts. In an urban area that has been struck by disaster, where the 

impact area contains numerous sites, such as where buildings or other structures 

suspected of housing people stood prior to the disaster, it is crucial that urban search and 

rescue (USAR) teams be quickly deployed. In such situations, there is a need for quick 

decision-making despite the inherent unstable and uncertain nature of circumstances 

immediately following disasters of this type. 

USAR-TDP seeks to identify a set of non-overlapping tours for USAR teams so 

as to maximize the total expected number of people that can be saved by attending to all 

or a subset of disaster sites within the disaster region. To address the probabilistic and 

dynamic nature of conditions following a disaster, the on-site service times are assumed 

to be uncertain and sites requiring assistance are identified dynamically over the decision 

horizon. A multistage stochastic, integer program is formulated to model the sequential 

stochastic information process.  
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To overcome the expensive computational effort associated with the solution of a 

multistage stochastic program, a column generation-based methodology is developed to 

solve a sequence of interrelated two-stage stochastic programs with recourse within a 

shrinking-horizon framework. Interactions among teams are considered and set 

partitioning-type formulations are developed in terms of different recourse actions. Such 

solution will aid the incident commander in determining the best deployment strategy for 

available USAR task forces by directing crucial assets to sites within the impact area, 

where the most good can be done in the first days of the emergency period. To illustrate 

the feasibility and efficiency of applying the proposed solution technique in support of 

USAR operations in real-world applications, experimental results from a test case are 

developed to replicate events of the 2010 Haiti earthquake.  

1.3 Contributions 

Three important problems associated with evacuation, network vulnerability and 

emergency response operations, none of which was previously conceived in the literature, 

are conceptualized and mathematically formulated. Such formulations provide precise 

problem definitions and permit quantitative analyses of real-world problem instances. 

The inherent probabilistic and dynamic nature of real-world conditions following a 

disaster is explicitly addressed. Exact or approximation solution methodologies are 

proposed to address these problems. Such solution techniques provide support to 

decision-makers faced with difficult, urgent decisions arising in emergency preparedness 
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planning and post-disaster response. The problems addressed in this dissertation research 

are either shown to be NP-hard or their deterministic versions are NP-hard, and thus, are 

known to be difficult problems. Computational experiments are conducted to test the 

effectiveness and efficiency of the proposed solution procedures. 

In addition to the mathematical and methodological contributions associated with 

strategies for evacuation, response and recovery, an exposition of security concerns 

associated with transportation systems, including the role of transportation in emergency 

management and in supporting other critical lifelines, as well as the transportation 

network as the target of natural or terrorist attack, is provided. This focused discussion 

provides a viewpoint for considering how the issues tackled within this dissertation fit 

within the larger concerns of security and the movement of people and critical resources 

and supplies.    

Natural and accidental events, as well as terrorist attacks, can impose extensive 

damage to society. Such events are increasing in frequency (e.g. FEMA, 2008) and the 

likelihood that the impact of such adverse events will be disastrous has been rising (e.g. 

Bureau for Crisis Prevention and Recovery, 2004). Thus, it is critical that governments, 

related non-governmental organizations (NGOs) and local citizen groups be prepared for 

large-scale disasters. Lack of appropriate preparedness and response actions could lead to 

needless injuries, lost lives and property loss. This dissertation research takes into 

account society’s need for safety in the case of disaster or terrorism resulting in 

region-wide destruction and will support emergency preparedness and response by 
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providing tools to aid in pre- and post-disaster decision-making.  

1.4 Dissertation organization 

The remainder of this dissertation proposal is organized in five chapters. Chapter 2 

presents a discussion of the role of the transportation system in emergency preparedness 

and response and includes insights into emergency preparedness and response pertaining 

to events that impact the transportation system itself. Chapters 3 through 5 address the 

BEPSI, NRP and USAR-TDP discussed in this chapter. Finally, in Chapter 6, conclusions 

and extensions for future research are given. 
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Chapter 2   Disaster and the Transportation 

System 

This chapter presents general background literature for this dissertation and is divided 

into three sections. In the first section, a general overview of previous studies pertaining 

to disasters and the transportation system’s unique role in disaster is presented. The next 

two sections are devoted to emergency preparedness and disaster response associated 

with disaster events affecting the transportation system.  

2.1 Transportation Systems in Disaster 

Disasters are the result of interactions between the earth’s physical systems, human 

systems and the constructed environment (Mileti, 1999a). Turner and Pidgeon (1997), 

among others, posit that many of the hazards that society faces today are the result of 

human intervention in environmental processes (e.g. through depletion of the ozone layer, 

deforestation, and genetic modification of organisms), manufacturing of hazardous 

substances, and the creation of engineered systems with the potential for accidental 

catastrophic destruction. The development of such engineered systems and associated 

technologies, e.g. nuclear power, biological chemistry and computers, as well as 

increased globalization, have amplified human vulnerability to disaster. The Center for 

Research on the Epidemiology of Disasters (CRED) reported that there were more than 
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16,000 mass disasters that impacted human society from 1900 to the present. Under a 

different definition of disaster, Alexander (2005) estimates that in recent years, the annual 

rate of natural catastrophe and technological disaster has been on the order of 220 and 70, 

respectively, around the world. 

Disasters, by definition, impose extensive damage to society and the likelihood 

that the impact of an adverse event will be disastrous continues to rise. This increasing 

destructive power of disaster events is due in large part to increases in world population 

and dense concentration of that population in vulnerable areas, such as along the coast, 

raising the likelihood that any major hazardous event will adversely affect societies with 

large numbers of people and significantly advanced civil infrastructure (see Turner and 

Pidgeon (1997) for additional insights). As evidence of this increase, in the U.S., the 

average number of declared disasters has risen from 10 per year in the 1950’s to over 40 

per year at the beginning of this century (Figure 2-1, FEMA, 2008). Additionally, the 

economic impact of these events continues to rise in absolute terms (see Figure 2-2) 

without considering the indirect costs caused by business disruptions (Bureau for Crisis 

Prevention and Recovery, 2004). The Munich Re Group estimates that annual worldwide 

losses due to disaster in the 1990s were eight times greater than in the 1960s (United 

Nations Development Programme, 2004). 



 

 14

Number  of  Decl ar ed Di sast er s

0

15

30

45

60

75

1953 1958 1963 1968 1973 1978 1983 1988 1993 1998 2003 2008

Year

Number of Declared disastersNumber  of  Decl ar ed Di sast er s

0

15

30

45

60

75

1953 1958 1963 1968 1973 1978 1983 1988 1993 1998 2003 2008

Year

Number of Declared disasters

 

Figure 2-1 Annual number of declared disasters 
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Figure 2-2 Global economic losses due to natural disasters (in 2002 values)  

Source: The Munich Re Group 

Recent events, including the Southeast Asian Tsunami (2004), Hurricane Katrina 

(2005), Pakistani earthquake (2005), Myanmar cyclone (2008) and the earthquake in 

China (2008), have made the first decade of this century the costliest on record. Disasters 

present an extraordinarily complicated and incredibly challenging problem for human 

societies in planning for and managing such negative occurrences. Better understanding 
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of disasters and improved preparedness and response capabilities has the potential to save 

an enormous number of lives and to significantly reduce economic losses. 

Consequences from disaster  

Characteristics of disaster 

Conditions for disaster 

Vulnerability 

� Fragile physical environment 

� Vulnerable community 

� Fragile local economy 

� Lack of preparedness 

Hazard 

An event that produces death and injuries, 

and causes considerable physical, social 

and economic disruptions 

Disaster 

� Natural events, e.g. flooding,  

earthquake, hurricane, fire 

� Technical events, e.g. chemical 

leak, computer system failure 

Physical damage Socio-economic losses 

� Lifeline systems, e.g. 

water, electric power, and  

transportation systems  

� Structural damage, e.g. 

buildings 

� Business interruption 

� Change of normative 

behaviors 

� Increase in tensions 

Death and injuries 

� Death tolls 

� Public health issues 

� Psychological issues  

Countermeasures 

Mitigation 

Preparedness 

Response 

Recovery 

 

Figure 2-3 Dimensions of Disaster Research 

Disaster research began in the 1950s (Perry, 2007). This research has covered 

such topics as case studies, human behavior and governmental activity in disasters, 

modeling of infrastructure development, and systematization of disaster management 

services. Alexander (1997) has claimed that some 30 disciplines, including sociology, 

geography, anthropology, politics and engineering, have an interest in the disasters field. 

Only recently, but rarely, have quantitative studies been conducted. Figure 2-3 provides a 
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conceptual framework of disaster research, which shows the dimensions characterizing a 

disaster and describes the disaster countermeasures. 

In past decades, the development of new technologies, e.g. nuclear power, 

biological chemistry and computers, as well as social and economic transformations, e.g. 

increasing population density and aggregation, international trade competition and 

globalization, and industrial change in production and distribution of goods and services, 

have increased human vulnerability to disaster. Moreover, recent escalation in terrorist 

attacks and the potential lethality of weapons obtained by terrorist organizations have 

created new threats. Thus, in recent years, our civilizations have become increasingly 

susceptible to nontraditional disaster events as compared to the past (Quarantelli et al., 

2007). New efforts to understand and cope with disasters are crucial. 

The transportation system plays a critical role in coping with disasters. This 

system is composed of numerous modes (highway, rail, air, marine, and pipeline), is a 

vast, open, interdependent networked system that moves vast numbers of passengers and 

quantities of goods nationally and globally. While the transportation system is critical to 

coping with disasters, the transportation system may be seriously impacted during a 

disaster. For example, the 1994 earthquake on the Hayward Fault in the San Francisco 

area resulted in more than 1,600 road closures and damage to most toll bridges and major 

highways (Okasaki, 2003). However, systematic study of the role of the transportation 

system in disasters has only recently begun to be considered. The study of disasters and 

physical structures and concerns of behavioral and social sciences are far more mature 
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fields of study. The majority of relevant transportation related research has focused on 

such topics as performance analysis, disaster impact evaluation, and evacuation.  

The transportation system is a critical lifeline system that affects any nation’s way 

of life, economic vitality and society, in general. In the U.S., the transportation system 

connects cities, manufacturers, and retailers, moving large volumes of goods and people 

through a network of 3.8 million miles of roadways, more than 143,000 miles of rail, 

over 582,000 bridges, through numerous sea ports, and over 500 public airports (U.S. 

Department of Homeland Security, 2007). Destruction of and damage to transportation 

systems results in, not only direct disruptions of transportation services, but also in 

indirect economic losses and sociological effects. After the attack of September 11, 2001, 

one of the largest terrorist-caused disasters, more than $5.5 billion was required to rebuild 

the transportation system in lower Manhattan (Waugh, 2007).  

In the aftermath of a disaster, transportation systems provide essential access for 

emergency personnel carrying critical resources to disaster sites and allow for the 

evacuation of people and property from those sites. On September 11, 2001, public 

transportation in New York City, New Jersey, Washington, D.C. and throughout the 

country helped to safely evacuate citizens from city centers. Around 750,000 people were 

evacuated by water transportation from lower Manhattan (Kendra and Wachtendorf, 

2003).  

Transportation systems are essential for individuals, households, and communities 

as they attempt to recover from disasters. Recovery and restoration of any lifeline system 
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will depend on the ability of the transportation system to provide effective transport 

services (Nicholson and Du, 1997). Chang (2000) pointed out the significance of an 

operating transportation system in disaster recovery and the long-term economic impact 

of substandard operations through empirical data from the 1995 Kobe earthquake and 

other disasters. Giuliano and Golob (1998) examined behavioral data collected in two 

heavily damaged corridors following the Northridge earthquake of 1994. They found that 

the transportation system’s redundancy and a variety of short-term changes in 

individual’s travel choices made rapid recovery possible even from major disasters. 

Willson (1998) examined the impacts of the 1994 Los Angeles County earthquake on 

trucking firms and how they responded to the earthquake. The author pointed out that 

quick restoration of transportation capacity significantly impacted goods movement.  

Meanwhile, the possibility of attack on transportation systems and the use of 

transport vehicles as tools for terrorist attack have increased. Incidents include not only 

the September 11, 2001 attacks on the World Trade Center and the Pentagon, but also 

more recent attacks on transportation targets, such as the coordinated attack on four 

commuter trains in Madrid in 2004, the 2005 London underground bombings, the 2006 

plot uncovered in the United Kingdom targeting airlines bound for the United States, and 

the 2010 Moscow metro bombings. These recent attacks provide evidence that the 

transportation system remains an attractive target for terrorists. As suggested by Johnston 

(2004), perhaps our civilization should focus less on maximizing efficiency and more on 

increasing security and safety of the transportation systems.  
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Thus, the importance of transportation systems for responding to and recovering 

from a disaster, and the possibility of future events involving transportation systems, 

presents new challenges and tasks for transportation practitioners. Recently, researchers 

have begun to consider the ramifications of disaster impact on transportation systems. 

Disaster events can negatively impact the transportation system, affecting mobility and, 

ultimately, the economy. Disruptions in transportation services further negatively impact 

disaster response. A number of publications have appeared in the literature that, with 

specific concern for the role of transportation, document experience gained from previous 

disaster events and propose methodologies for creating strategies to improve coping 

mechanisms for future events. These latter works consider evacuation and emergency 

response aimed at mitigating the impact of the event on society. In the next sections, 

pre-event disaster planning and post-event response are discussed in greater detail. 

2.2 Preparing for Disasters  

To mitigate the negative consequences to society and the physical infrastructure that 

might be caused by a disaster, preparedness plans can be developed and protective actions 

can be taken a priori. Preparation for disaster events includes a broad range of activities, 

such as vulnerability assessment, implementation of risk-reducing measures, 

development of disaster plans, and training. A large body of research has been conducted 

on emergency preparedness from various perspectives (e.g. families and households, 

communities, engineering systems, and states and nations) to increase the ability of such 
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social and physical units to respond when a disaster occurs. The preparedness process 

begins with vulnerability assessment that seeks to identify sources of risk and associated 

consequences that are likely to occur in the aftermath of a disaster event. Risk-reducing 

measures can be employed and plans for coping with disaster consequences that may not 

be avoided can be developed. 

2.2.1 Vulnerability analysis 

All societies regularly face negative events that reveal their physical and social 

vulnerabilities (Tierney et al., 2001). Substantially better understanding of the 

vulnerability of transportation systems is required to achieve a more disaster-resistant 

transportation system. Vulnerability of transportation systems to disasters stems from a 

variety of interrelated factors that include network configuration, topology, physical 

location, the conditions under which the system operates, and other system 

characteristics. Consistent with the social vulnerability paradigm, transportation system 

vulnerability can be thought of as stemming from not only exposure to the potential 

physical impacts of disasters, but also from societal conditions and trends that cause 

certain systems to be less able to cope with disasters. Vulnerability, thus, has both 

physical and social dimensions. For example, urbanization has induced greater traffic 

activity and placed increasing demands on the transportation infrastructure at the same 

time as this infrastructure is aging and in need of major investments for maintenance 

and/or modernization, increasing the vulnerability of transportation systems. 
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Sources of vulnerabilities of transportation systems are threefold: 1) concentration 

of populations in dense regions, high levels of vehicular traffic and high public 

transportation ridership; 2) inadequate capacity of transportation systems; and 3) 

hazardous materials transport. These sources of vulnerability are interrelated. Reduction 

in these vulnerabilities remains difficult, because it would place hefty costs on the 

transportation industry. Thus, the improvements that have been made in reducing these 

vulnerabilities have been small and society has chosen to remediate and mitigate damage 

once incurred, rather than seek to prevent it (Perrow, 2007). Srinivasan (2002) pointed 

out that the absence of a quantitative vulnerability analysis at both component and 

system-wide levels remains a serious, if not the most significant, challenge to developing 

insights and systematic methods to improve transportation security.  

2.2.2 Risk reduction 

The risk of a hazard is the product of the probability of the hazard occurring and the 

consequence of its occurrence (i.e. the expectation of the hazard or threat). Risk reduction 

is a well-established process for identifying hazards, identifying their probabilities and 

consequences, assessing the acceptability of the risks, and taking action to address 

unacceptable risks (Dalziell et al., 1999). Risk reduction is a broad concept including all 

aspects that will help to reduce the risks of damage, such as risk identification and 

assessment, risk reduction, and risk transfer. Many actions could be thought of as risk 

reduction.  Including safety features in the design of bridges to strengthen them against 
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collapse during future earthquakes or building alternative routes to move traffic from 

some origin to destination are examples of risk-reducing actions that can be taken. 

Risk identification and assessment can be applied to identify the critical 

components of the transportation system. These methods require information about the 

severity of hazard and the probability of hazard occurrence. Such information is difficult 

to obtain and may require a substantial data collection effort and detailed knowledge of 

the processes underlying these hazards. Mainly, the risk to the transportation system is 

evaluated from direct damage to critical system components, such as bridges, and the 

indirect costs due to travel delays in the disrupted system (e.g. Basoz and Kiremidjian, 

1996; Werner et al., 2000; Kiremidjian et al., 2007).  

2.2.3 Pre-disaster planning 

While it is costly to implement other risk reduction measures to sufficiently reduce 

vulnerability and possible consequences of disaster events, it is widely accepted that 

pre-disaster planning has a positive effect on the system’s ability to respond effectively 

once a disaster occurs (Tierney et al., 2001). Pre-disaster planning provides a 

cost-effective way to reduce disaster risks and potential losses. Such plans pertain to 

evacuation, recovery, emergency response, and sheltering. Development of plans to 

address these various stages of emergency management aid in the system’s ability to cope 

with adversity and are vital to the creation of a disaster-resilient system (Mileti, 1999b).  

Evacuation planning is one important component of pre-disaster planning. 
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Optimization-based approaches are widely use to produce evacuation plans that identify 

routes and schedules to evacuate impacted people to safety in the event of disaster within 

an acceptable evacuation time (see, for example, Hamacher and Tjandra, 2001; 

Miller-Hooks and Stock Patterson, 2004; Lu et al., 2003; Mamada et al., 2003; Baumann 

and Skutella, 2006; Kamiyama et al., 2006). Recovery planning is another important 

component. Vocca (1992) recommends that several issues associated with redundancy be 

considered when developing an effective network recovery plan, i.e. that alternate routes, 

backup strategies, contingency plans, and people plans be included. Semer (1998) 

proposed six basic areas for disaster recovery planning, including impact analysis, risk 

assessment analysis, risk mitigation strategy development, recovery planning, alternate 

site consideration, and routine training. Bryson et al. (2002) proposed the use of 

mathematical modeling as a decision support tool for successful development of a 

disaster recovery plan. Dekle (2005) used a covering location model to identify optimal 

disaster recovery center locations, which will provide long-term recovery assistance 

subsequent to a declared disaster.  

2.3 Responding to Disasters  

Figure 2-4 shows the different phases of the disaster life cycle that take place in the 

aftermath of a disaster. When a disaster occurs, police, fire, emergency medical service 

personnel, as well as emergency managers and numerous others, are involved in the 

response and recovery processes within the disaster zone. These first responders partake 
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in the provision of warning, emergency sheltering, search and rescue, ongoing situation 

assessment, emergency resource management, and implementation of other emergency 

measures. The response process has been the most studied phase of disaster (Tierney et 

al., 2001). The quality of the preparedness and response effort is likely to be interrelated 

and the effectiveness of one affects and is affected by the other. Mileti (1999b) has 

concluded that high levels of preparedness would enhance the system’s ability to respond 

effectively at the time a disaster strikes. 
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Figure 2-4 Timeline of different phases post- disaster 

2.3.1 Initial response 

Once a disaster has taken place, the first concern is effective relief, i.e. helping all those 

affected to recover from the immediate effects of the disaster. This is known as initial 

response and usually lasts for several weeks. Initial response includes various actions, 

such as assessing the conditions of transportation infrastructures, determining evacuation 
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requirements, assisting with evacuation of people to safe places, dispatching materials, 

personnel, and supplies in support of emergency activities, deploying transportation 

agency response personnel, and adapting traffic control strategies. 

Effective response to a disaster using transportation assets has the effect of 

minimizing the loss of life and damage to property and maintaining the basic 

transportation services that are needed to decrease the magnitude of negative 

consequences of disasters. 

2.3.2 Recovery 

New models of recovery have been developed since the 1970s (Mileti, 1999b). Recovery 

covers a variety of very complex activities that need to be addressed after a disaster, such 

as quick return to normalcy; reduction of future vulnerability; or opportunity for 

improved efficiency, equity, and amenities (see, for example, Berke et al., 1993; Batho et 

al., 1999; Mileti, 1999b; Hecker et al., 2000; Smith and Wenger, 2007). Recovery is not a 

linear phenomenon with a specific set of stages, but rather is a probabilistic and recursive 

process addressing decision-making associated with restoration, reconstruction, 

rehabilitation, and redevelopment activities. Recovery may take as long as years. 

The recovery process is complex, often involving the civil infrastructure, 

engineered systems, the overall economy, and society, and the impact on each varies 

greatly with the disaster event. Thus, it may be difficult to develop a standardized 

recovery framework or a single model applicable to all types of disasters and impacted 
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regions. For impacted transportation systems, recovery includes not only repairing some 

subset of the existing infrastructure’s components, but also prioritizing and/or allocating 

resources necessary to maintain and restore the transportation system, and adding new 

components to a transportation network with the goal of creating a less vulnerable 

post-event network configuration. Thus, it is not only important to bring the system to 

normalcy in terms of providing transportation services, but it is also critical to change 

traveler behavior and develop a sustainable, less vulnerable and disaster resistant network 

for the future.  

2.4 Conclusions  

While extensive literature exists that addresses the subjects of preparing for and 

responding to disaster at various levels (e.g. households, organizations, communities, and 

states and nation), limited research has been conducted that is specifically related to 

transportation systems. While it is clearly recognized that a disaster-resistant 

transportation system is a critical issue in reducing injuries and death tolls, mitigating the 

socio-economic losses and property damage, and minimizing a myriad of disruptions, 

there is a dirth of works pertaining to transportation systems that mathematically model 

the problems arising in the preparation and response phases in support of optimal 

decision-making. This dissertation seeks to fill a piece of that void. 
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Chapter 3   The Building Evacuation Problem 

with Shared Information 

3.1 Introduction 

The Building Evacuation Problem with Shared Information (BEPSI) is addressed in this 

chapter. The objective of the BEPSI is to determine a set of evacuation routes and the 

assignment of evacuees to these routes for a large burning building or a building that has 

come under attack by enemy or natural catastrophe such that the total evacuation time is 

minimized. The term building is used generically throughout this work and refers to any 

structure that houses people and other assets, such as a high-rise residential building, a 

military complex like the Pentagon, or a large ship. Resulting routes could be updated in 

response to new information ascertained about the operational capacity of the building’s 

circulation systems (i.e. the means of egress). Such routes and updates to these routes 

during the course of the evacuation could be provided in the form of instructions to the 

evacuees via changeable message signs, photoluminescent signage, voice evacuation 

systems, or other technologies that would support real-time public information updates in 

substandard conditions. Thus, any instructions that are provided at a particular location in 

the building will likely be simultaneously received by many evacuees. That is, evacuees 

departing from an intermediate or source location at a particular point in time receive 

common instructions as to how to proceed (i.e. shared information). If multiple options are 
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provided, confusion could ensue. The potential for providing such updated evacuation 

instructions given real-time information and predictions of the condition of the building’s 

structures and circulation systems based on data from sensor systems is described in 

Miller-Hooks and Krauthammer (2007). Existing optimization approaches in the literature 

cannot guarantee that common instructions will be generated at intermediate locations at 

any given point in time. 

Typical building evacuation plans are developed pre-disaster for no specific threat 

and these plans are posted throughout the building. Such plans could, in an actual 

evacuation, route evacuees into harms way (e.g. to a stairwell with untenable conditions), 

leaving evacuees to their own devices to find alternative (safer) routes. Past experience has 

demonstrated that two main hindrances to the movement of evacuees in a building 

evacuation exist: (1) inappropriate selection of escape pathways and (2) congestion along 

the safest pathways (Lovas, 1998). Instructions generated for the specific circumstances 

leading to the need for the evacuation can lead to significant improvements in escape 

pathway selection. Moreover, explicit consideration of the number of people that such 

pathways can support in developing real-time evacuation instructions can lead to reduced 

congestion throughout the building and greater likelihood of successful egress. 

In this chapter, the BEPSI is formulated as a mixed integer linear program, where 

the objective is to determine the set of routes along which to send evacuees (supply) from 

multiple locations throughout the building (sources) to the building exits (sinks) such that 

the total time required of  all evacuees to reach the exits is minimized. The formulation 
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explicitly incorporates the constraints of shared information; thus, feasible solutions must 

not contain more than one path from a node at a given departure time. Arc travel time and 

capacity, as well as supply at the nodes, are permitted to vary with time (i.e. the network is 

permitted to be time-varying) and capacity is assumed to be recaptured over time (i.e. the 

network is dynamic). Thus, the formulation can be viewed as a time-dependent, dynamic 

transshipment problem with side constraints. A similar distinction between 

time-dependence and problem dynamics is made in Miller-Hooks and Stock Patterson 

(2004). An exact solution technique based on Benders decomposition is proposed for 

solution of the BEPSI.  

Optimization techniques have been proposed for use in determining optimal 

evacuation routes for both building and regional evacuation over the past few decades and 

a number of these works develop network flow-based solution techniques that consider the 

dynamic and, in some cases, the time-dependent network properties. See Hamacher and 

Tjandra (2001) and Miller-Hooks and Stock Patterson (2004) for a review of relevant 

works in the literature. Additional relevant works published in the past couple of years 

include Lu et al. (2003), Mamada et al. (2003), Baumann and Skutella (2006) and 

Kamiyama et al. (2006). All of these works assume that when two or more units of flow 

(i.e. the evacuees) arrive at an intermediate node, instructions can be provided that permit 

the flow to split among various routes. Thus, the instructions may, for example, send a 

subset of flow units along one route and the remaining units along another route. The 

provision of such instructions that require evacuees to separate at intermediate locations 
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despite that they have arrived at this location together would not likely be palatable and 

could lead to confusion, or worse, chaos.  

To corroborate this concept of a need for shared instructions, research has shown 

that in a crisis, such as would arise in an evacuation, people look to each other for cues in 

making decisions as to how to proceed (Johnson, 1974; Helbing et al., 2000). Helbing et al. 

(2000), for example, noted a strong tendency towards collective behavior, where people 

follow the actions of others in evacuations involving crowds. An emergent norm that 

guides the group’s behavior forms as people seek coordinated, collective action (Wenger et 

al. 1994). In addition, Sime (1985) stated that during a fire, people will gravitate to familiar 

people and if groups are split, they seek to reunite during the evacuation. Wenger et al. 

(1998) postulated that preexisting and emergent social relationships impact collective 

behavior. Observations from these works support the need for providing instructions that 

do not require a group of evacuees arriving at an intermediate location to split apart, i.e. 

that support a group’s desire for collective action.   

A similar concept of “unsplittable flow” has been employed in formulating 

bin-packing, virtual-circuit routing, scheduling and load balancing problems (see, for 

example, Dinitz et al., 1999; Chakrabarti et al., 2002; Kolliopoulos and Stein, 2004). The 

unsplittable flow problem seeks to route numerous commodities each along a single route 

from a source to a desired sink while respecting arc capacity limitations. In the limit, if only 

one commodity is considered, this problem would be identical to a static version of the 

BEPSI with one sink and supply at only one origin. Of greater relevance, perhaps, is work 
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by Lu et al. (2003). Their work proposed a heuristic for evacuating all evacuees who begin 

at a particular source node along a single route such that arc capacity limitations are 

respected. Multiple sources are considered. If such routes cross (i.e. are not independent), 

such a solution could require evacuees simultaneously arriving at an intermediate node 

from different origins to take different routes out of that intermediate node. 

In the next section, a mathematical formulation is proposed for the BEPSI that 

explicitly considers the inherent dynamic and time-varying nature of the evacuation 

problem. By explicitly considering these characteristics, resulting solutions will avoid 

sending evacuees to corridors or stairwells when conditions at these locations are 

expected to be untenable or difficult to traverse. The author know of no works in the 

literature that address the issue of shared information that arises in this building 

evacuation problem. In addition, in the next section, the BEPSI is shown to be NP-hard. 

In Section 3.3, a Benders decomposition approach for solving the BEPSI is proposed and 

is illustrated on an example 5-node network. Computational results from numerical 

experiments on a real-world network representing a four-story building are given in 

Section 3.4. Conclusions and directions for future work are discussed in Section 3.5.  

3.2 The evacuation problem with shared information 

The evacuation problem with shared information exploits a network representation of a 

building. In such a representation, the network represents the layout of the circulation 

systems of the building, where nodes correspond with locations inside the building (such 
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as offices, meeting rooms, lobbies, lavatories, building exits, and corridor intersections) 

and arcs correspond with the passageways that connect these locations (such as staircases, 

elevator shafts, doorways, corridors and ramps). A cost is often associated with the use of 

an arc. In evacuation problems, the cost is typically given in terms of the time it takes to 

traverse the arc, known as the arc traversal time. When large numbers of people must be 

evacuated from the building simultaneously, issues concerning capacity of the network 

arcs arise. The capacity of an arc is the number of people that can pass through the 

associated passageway per unit of time. The arc capacities are dependent upon the size 

and type of passageway that the arcs represent. Arc traversal times are a function of the 

arc capacities and the number of people simultaneously using the arcs. The nodes at 

which the people are located when the evacuation begins are called source nodes and the 

exits are referred to as sink nodes. 

3.2.1 Preliminaries 

Consider a time-dependent, dynamic network represented by ( ), ,G u τℑ = , 

{ }( ), , 0,...,G N A T= , where { }1,...,N n=  is the set of nodes, ( ){ }, ,A i j i j N= ∈  is the set 

of directed arcs, and T is the analysis period of interest discretized into small time 

intervals { }0,...,T . It is assumed that all evacuees can egress before time T; although, 

one can set a tighter bound on the evacuation time. Note that T may be an 

expert-generated bound to model physical processes, such as the time by which 

conditions are expected to become untenable due to smoke or fire spread or complete 
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collapse of the building’s structures. Alternatively, T may be set simply to ascertain the 

number of people that will escape in a given time interval. One could also seek an 

optimal T, i.e. the minimum time by which every evacuee could exit the building. From 

this latter perspective, Miller-Hooks and Stock Patterson (2004) have developed an 

approach for determining a bound on T that could be employed in obtaining such a bound 

for the problem studied herein. We focus, though, on minimizing total time, instead of 

minimizing T, because solutions to this latter problem can include rather poor paths for 

many of the evacuees. That is, there is no incentive to reduce the evacuation time of any 

evacuee, as long as that time is below the optimal T-bound.  

Each arc ( ),i j A∈  has associated with it a positive time-varying capacity and a 

nonnegative time-varying traversal time. The capacity of arc ( ),i j  at departure time t  

is denoted by ( )iju t  with integral domain and range. Instead of representing the actual 

flow at any given time, the capacity of an arc is the maximum flow released on the arc at 

a given departure time. That is, the capacity limits the rate of flow into an arc. As flow 

leaves node i  at some departure timet , the time it takes to reach nodej , i.e. the travel 

time along arc ( ),i j , is given by positive valued ( )ij tτ . The arc travel time is defined 

upon entering an arc, and is assumed to be constant for the duration of travel along that 

arc. Thus, it is possible for a unit of flow to leave node i  ahead of some other flow, but 

arrive later. Travel time estimates can be obtained via historical data, sensor technologies 

or from a function of capacity. The methodology is general enough to support all such 

estimation methods.  



 

 34

Holdover arcs ( ), , i i i N∀ ∈ , are introduced at the nodes to allow evacuees to 

arrive at intermediate locations and wait for capacity to become available on outgoing 

arcs. Traversal times and capacities of the holdover arcs are set to one unit and infinity, 

respectively, i N∀ ∈  at each departure time { }0, ,t T∈ K . The traversal time of the 

holdover arc at the sink node is set to zero for all departure time intervals, because there 

is no penalty for arriving at the sink beforeΤ .  

The number of source nodes is denoted by M and the set of source nodes and 

sink node are denoted by { }1 2, ,..., MK k k k=  and l , respectively. The supply at any 

source node mk  at time t  is denoted by ( )
mkb t  and can take on positive values for any 

{ }0, , 1t T∈ −K . The supply of any intermediate node is assumed to be zero. Without loss 

of generality, it is assumed that only one sink exists. One can model additional sinks by 

adding a super sink to the network and connecting each actual sink to this node with arcs 

of zero travel time and infinite capacity. It is assumed that at t T= , the supply at node l  

will be equal to the total supply, 
1

( )
i

T

t
k K

ikB b t
=

∈

= ∑∑ , so that ( )lb T B= − . This does not 

prevent the flow from arriving at the sink at an earlier time. When flow arrives before 

time T, it simply waits without penalty until time T to satisfy the demand. Supplies at 

transshipment nodes are zero at all times. It is assumed that the arc travel time and 

capacity and supply at the source nodes are known a priori.  

3.2.2 Mixed integer programming formulation 

The BEPSI is formulated as a mixed integer linear program. Decision variable ( )ijx t  
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represents the rate of flow that leaves node i at time t along arc ( ),i j , and is a continuous 

variable, while binary variable ( )ij tλ  determines the arcs to be selected. The flow ( )ijx t  

arrives at node j  at time ( )ijt tτ+ . The set of arcs directed in and out of a node i are 

given by { } ( ) ( , )i j j i A−Γ = ∈  and { }( ) ( , )i j i j A+Γ = ∈ , respectively. The BEPSI is 

formulated as follows.                                                   

P: 
( , ) {0,..., }

min ( ) ( )ij ij
i j A t T

t x tτ
∈ ∈

∑ ∑  (1) 

 subject to:  

 
( ) ( ) { ( ) }

( ) ( ) ( ),     , {0,..., }  
ji

ij ji i
j i j i t t t t

x t x t b t i N t T
τ+ −∈Γ ∈Γ + =

− = ∀ ∈ ∈∑ ∑ ∑  
(2) 

 ( ) ( ) ( ) ( ),        ( , ) , {0,..., }ij ij ij ijt x t t u t i j A t Tλ λ≤ ≤ ∀ ∈ ∈  (3) 

 
( ),

( ) 1,       \ , {0,..., }ij
j i j i

t i N l t Tλ
+∈Γ ≠

≤ ∀ ∈ ∈∑  (4) 

 ( ) 0, ( ) ,                                ( ,) , {0,..., } ij ijx t t binary i j A t Tλ≥ ∀ ∈ ∈  (5) 

In this model, the objective function (1) seeks to minimize the total time to send 

all flow from the source nodes to the sink. The mapping { } 0: 0,...,x A T Z +× →  is said to 

be a feasible solution if it satisfies four sets of constraints, i.e. flow conservation 

constraints (2), capacity constraints (3), shared information constraints (4), and 

nonnegativity constraints (5). Constraints (2) were first proposed by Miller-Hooks and 

Stock Patterson (2004) to model flow conservation constraints for the time-dependent 

quickest flow problem (TDQFP) (where flows are permitted to split at all nodes). Similar 

constraints are proposed in Tjandra (2003) for addressing the multi-source version of the 

TDQFP. Constraints (3) are logical constraints that impose lower and upper bounds on 
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the flow that can pass through each arc at a given departure time. The bounds depend on 

the choice of arcs that will contribute to the solution paths and aid in prohibiting 

splittable flows. Constraints (4) allow splittable flows if the flow is split between a single 

outgoing arc and the holdover arc at that node. Problem (P) can be viewed as the 

multi-source version of the TDQFP with side constraints. Solution of the TDQFP may 

result in split flows at source and intermediate nodes. 

3.2.3 Complexity 

In this section, it is shown that problem (P) corresponding to the BEPSI is NP-hard.  

Theorem 1. The evacuation problem with shared information, with or without storage of 

flow at intermediate nodes, is NP-hard in the strong sense ( 1M > ). 

Proof. We prove this by a reduction from the Three-Partition problem, which is 

NP-complete in the strong sense (Garey and Johnson, 1979). 

Three-Partition Problem (3-Partition): Given a set of 3n  items, n +∈Ζ , with associated 

sizes 1 3,..., nb b Z +∈  that satisfy 
4 2i

B B
b≤ ≤  and 

3

1

n

ii
b nB

=
=∑  for some bound B +∈Ζ . 

The task is to decide whether or not the set can be partitioned into n disjoint sets 

1 2, ,..., nS S S  such that for { }1,...,j n∈ , i
ji S b B∈ =∑ .  

Given an instance of 3-Partition, a network can be constructed with multiple 

sources 1 3,..., na a  and single sink l, as shown in Figure 3-1, in polynomial time.  
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Figure 3-1 Reduction from 3-Partition 

Supply associated with each source node ia  is ib  such that 
3

1

n

ii
b nB

=
=∑ . Note 

that supply is assumed to be available at time 0. All arcs in the network have unit transit 

time. Without loss of generality, time bound : 2T = . 

Arc capacities are defined by: iki b:)c,a(u =  for { }1,...,3i n∈ and { }1,...,k n∈  

and B:)l,c(u k =   for { }1,...,k n∈ . 

It is shown that a set of routes along which nB  units of flow can be shipped from 

sources 1 3,..., na a  to sink l within T , given that flow cannot be split at nodes 1 3,..., na a , 

exists iff there is a yes solution to the 3-Partition instance. 

If: If the underlying instance of 3-Partition is a “yes” instance, then there is a 

partition 1,..., nS S  of { }1,...,3n  such that for { }1,...,j n∈ , i
ji S b B∈ =∑ . The set of routes 

can be generated by shipping ib  units along arc ( )ki c,a  for every ki S∈ . Then B  

units of flow will be sent on to the sink from node kc . Thus, nB  units of flow arrive at 

sink l at time 2. 

Only if: It remains to be shown that the existence of a flow that satisfies the 

conditions that all units of flow leaving the same node can take only one direction and 

1a

na

2na

3na

1c

kc

nc

l
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that the last unit of flow arrives at the sink no later than time T yields a feasible solution 

to the corresponding 3-Partition problem instance. Denote flow on any arc ( , )i ka c  at 

time t by ( , )( )
i ka cx t . The binary variable ( , ) ( )

i ka c tλ  represents that if the arc ( , )i ka c  is 

contained in the solution to the special instance of BEPSI problem, then 

{ } { }
1,...,3 ( , ) ( , )(0)  and (1) ,        1,...,

ki ki n a c c lx B x B k n
∈

= = ∀ ∈∑  

and 
{ } { }
1,..., ( , )(0) 1, 1,...,3

i kk n a c i nλ
∈

= ∀ ∈∑ . 

It follows that 

{ } { }
( , ) (0) 1

, 1,...,
a ci k

ii i
b B k n

λ∈ =
= ∀ ∈∑  

{ }{ }( , ) (0) 1, 1,...,3
i kk a cS i i nλ∴ = = ∈  { }, 1,...,k n∀ ∈  

Hence, n sets of arcs that carry a positive amount of flow into node 

{ }, 1,...,kc k n∀ ∈  induce the partition of n disjoint sets satisfying { }, 1,...,i
ji S b B j n∈ = ∀ ∈∑ . 

Note that since all the arcs in the network have unit traversal time and the time bound is 2, 

no flow will be shipped along any holdover arc in a feasible solution of problem (P). 

While no holdover arcs are employed, such arcs are available, and therefore, the 

reduction works for both models, with and without storage. □ 

3.3 Exact solution technique based on Benders decomposition 

The formulation (P) contains a set of integer variables representing the selection of arcs, 

and a set of continuous variables representing the flow along each arc. The number of 

variables is large, even for mid-size instances; however, this structure is suitable for 

mathematical decomposition.  An exact algorithm based on Benders decomposition to 
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solve Problem (P), i.e. the BEPSI, is proposed herein. Benders decomposition (Benders, 

1962) has been successfully applied to solve many mixed integer programs. See, for 

example, Cordeau et al. (2000) and Costa (2005), both of which successfully employed 

Benders decomposition to solve difficult network design problems.  

The original problem is reformulated using Benders decomposition into a 

sub-problem, a pure network flow problem containing the continuous flow variables, and 

a master problem containing the binary arc selection variables. Benders cuts are 

generated by solution of the sub-problem and are added to the relaxed master problem at 

each iteration, progressively constraining the relaxed master problem. The cuts reduce the 

number of flow variables that must be considered, even at the expense of increasing the 

number of constraints. 

3.3.1 Benders sub-problem 

Let λ  be the 0-1 vector satisfying the shared information constraints (4) and let Λ be the 

set of valid λ . To obtain the primal sub-problem, the values of λ  must be fixed. For 

some fixed λ∈Λ%  and variables ( )ijx t , the primal sub-problem can be given as follows.  

pS ( )λ%: 
( , ) {0,..., }

min ( ) ( )ij ij
i j A t T

t x tτ
∈ ∈

∑ ∑  (6) 

 subject to:  

 
( ) ( ) { ( ) }

( ) ( ) ( ),     , {0,..., }  
ji

ij ji i
j i j i t t t t

x t x t b t i N t T
τ+ −∈Γ ∈Γ + =

− = ∀ ∈ ∈∑ ∑ ∑  
(7) 

 ( ) ( ) ( ) ( ),        ( , ) , {0,..., }ij ij ij ijt x t t u t i j A t Tλ λ≤ ≤ ∀ ∈ ∈% %  (8) 

 ( ) 0 and integer                                    ( , ) , {0,..., }ijx t i j A t T≥ ∀ ∈ ∈  (9) 
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Since ( )ij tλ% is a constant in this formulation, constraints (8) become simple lower 

and upper bounds on the ( )ijx t  variables. The selection of arcs is made in solving the 

relaxed master problem. Thus, all that remains is to determine the amount of flow to ship 

along these arcs. The lower bounds on ( )ijx t  variables can be dropped without impacting 

the optimal solution of problem (P). Due to the fact that the objective function does not 

contain the ( )ij tλ  variables, the optimal solution * *( , )xλ  for the relaxed problem 

(without lower bounds) can be used to construct an optimal solution * *ˆ( , )xλ  for problem 

(P) with the same objective function value. It was observed in preliminary experiments 

that computational complexity is reduced by dropping the lower bounds. In addition, arc 

set ( ){ }, ,A i j i j N= ∈  can be partitioned into the following three disjoint sets: 

( ){ }+
1( ) , ,  and ( ) 2 ,I A i j i j N i= ∈ Γ ≥  

( ){ }+
2( ) , ,  and ( ) 1 ,I A i j i j N i= ∈ Γ =  and  

( ){ }3( ) ,I A i i i N= ∈ . 

Thus, 1 2 3( ) ( ) ( )A I A I A I A= ∪ ∪ . The sub-problem (pS ( )λ%) can be rewritten as: 

pRS ( )λ%: 
( , ) {0,..., }

min ( ) ( )ij ij
i j A t T

t x tτ
∈ ∈

∑ ∑  (6) 

 subject to:  

 
( ) ( ) { ( ) }

( ) ( ) ( ),     , {0,..., }  
ji

ij ji i
j i j i t t t t

x t x t b t i N t T
τ+ −∈Γ ∈Γ + =

− = ∀ ∈ ∈∑ ∑ ∑  
(7) 

 1( ) ( ) ( ),        ( , ) ( ), {0,..., }ij ij ijx t t u t i j I A t Tλ≤ ∀ ∈ ∈%  (8a) 

 2( ) ( ),                ( , ) ( ), {0,..., }ij ijx t u t i j I A t T≤ ∀ ∈ ∈  (8b) 

 ( ) 0 and integer                       ( ,) , {0,..., }ijx t i j A t T≥ ∀ ∈ ∈  (9) 
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Sub-problems ( pRS ( )λ%) and ( pS ( )λ%) are equivalent mathematical descriptions; 

however, significant improvement in computational performance of the Benders 

decomposition approach can be obtained by using (pRS ( )λ% ) in place of ( pS ( )λ%). 

Sub-problem ( pRS ( )λ%) has a pure network flow structure and the constraint matrix is 

totally unimodular. Hence, the optimal solution can be obtained by solving the linear 

programming (LP) relaxation or its dual.  

The dual of the LP relaxation of the primal sub-problem, called the dual 

sub-problem, is given as problem ( pDRS ( )λ%) as follows. 

pDRS ( )λ%

: 
( ) ( ) ( )

( )
( ) ( ) ( )

( ){ } 2 10,..., , ( ) , ( )

Max ( )i i ij ij ij ij ij
t T i N i j I A i j I A

t b t u t m t t u t m tπ λ
∈ ∈ ∈ ∈

 
+ +  

 
∑ ∑ ∑ ∑ %  (10) 

 subject to:  

 ( ) ( ) ( ) ( ) 3( ) ,     ( , ) \ ( ), {0,..., }i j ij ij ijt t t m t t i j A I A t Tπ π τ τ− + + ≤ ∀ ∈ ∈  (11) 

 ( ) 30,                                               ( , ) \ ( ), {0,..., }ijm t i j A I A t T≤ ∀ ∈ ∈  (12) 

Here, ( )i tπ  for i N∈  and t T∈  are the dual variables associated with 

constraints (7) and ( )ijm t for i N∈  and t T∈  are the dual variables associated with 

constraints (8a) and (8b). Let D denote the polyhedron defined by constraints (11) and 

(12), and let DP  and DR  be the complete sets of extreme points and extreme rays of D, 

respectively. The null vector 0 satisfies constraints (11) and (12); thus, the dual 

sub-problem is always feasible. By the weak duality theorem, the primal sub-problem is 

either infeasible or feasible and bounded if the dual is feasible. To exclude the possibility 

of primal infeasibility, the following inequality must hold: 
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( ) ( ) ( )
( )

( ) ( ) ( )
( ){ } 2 10,..., , ( ) , ( )

( ) 0i i ij ij ij ij ij
t T i N i j I A i j I A

t b t u t m t t u t m tπ λ
∈ ∈ ∈ ∈

 
+ + ≤  

 
∑ ∑ ∑ ∑ % , ( ),  Dm Rπ∀ ∈ . 

If the dual sub-problem is bounded and the primal sub-problem is feasible, the optimal 

value of both problems is then given by  

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( ){ } 2 1
,

0,..., , ( ) , ( )

Max ( )
D

i i ij ij ij ij ij
m P

t T i N i j I A i j I A

t b t u t m t t u t m t
π

π λ
∈

∈ ∈ ∈ ∈

 
+ +  

 
∑ ∑ ∑ ∑ % . 

3.3.2 Benders relaxed master problem 

The Benders master problem is obtained by replacing constraints (2), (3) and (4) by 

Benders cuts (14) and (15). Constraints (14) are optimality cuts that ensure corresponding 

non-optimal solutions are excluded. Constraints (15) are feasibility cuts that ensure the 

resulting primal sub-problem is feasible. Introducing the additional free variable Z, 

problem (P) can be reformulated as the following equivalent problem (P). 

( P): min Z  (13) 

 subject to:  

 ( ) ( ) ( )
( ){ }

( ) ( ) ( )
( ){ }1 20,..., , ( ) 0,..., , ( )

( )ij ij ij i i ij ij
t T i j I A t T i N i j I A

Z u t m t t t b t u t m tλ π
∈ ∈ ∈ ∈ ∈

 
− ≥ +  

 
∑ ∑ ∑ ∑ ∑ ,  

 ( ), Dm Pπ ∈  (14) 

 ( ) ( )
( )

( )
{ }

( ) ( ) ( )
( ){ }1 20,..., , ( ) 0,..., , ( )

( )ij ij ij i i ij ij
t T i j I A t T i N i j I A

u t m t t t b t u t m tλ π
∈ ∈ ∈ ∈ ∈

 
≤ − +  

 
∑ ∑ ∑ ∑ ∑ ,  

 ( ),  Dm Rπ ∈  (15) 

 
( ),

( ) 1,       \ , {0,..., }ij
j i j i

t i N l t Tλ
+∈Γ ≠

≤ ∀ ∈ ∈∑  (16) 

 ( ) ,                                               ( , ) , {0,..., }ij t binary i j A t Tλ ∀ ∈ ∈  (17) 
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Constraints (14) and (15) need not be enumerated exhaustively, because most of the 

constraints will be inactive in the optimal solution. Thus, a relaxation of problem (P) can 

be obtained by dropping constraints (14) and (15) and iteratively adding them to the 

relaxation until optimality is achieved. Results of preliminary experiments show that 

when beginning with DR = ∅ , resulting sub-problems are likely to be infeasible and 

Benders decomposition may be very slow to converge. This concern is addressed by 

augmenting the relaxed master problem with valid, stronger inequalities that can reduce 

the number of iterations required to reach optimality. 

Proposition 1. In FIFO1 networks, if in the optimal solution to the BEPSI, flow is 

shipped from node i ( i l≠ )at time t along a holdover arc, then  

( ),

( ) 1, {0,..., 1}ij
j i j i

t t Tλ
+∈Γ ≠

= ∀ ∈ −∑ . 

Discussion. Let { }
{ }

{ }
{ }( , ) , 0,..., 1 ( , ) , 0,..., 1

( ) and ( )ij iji j A t T i j A t T
x t tλ

∀ ∈ ∈ − ∀ ∈ ∈ −
 be the optimal solution. 

Suppose that in this solution, ( ) 1 ii tλ = and 
( ),

( ) 0ij
j i j i

tλ
+∈Γ ≠

=∑  for some node i ( i l≠ ) at 

time t. Without loss of generality, suppose that ( 1) 1, ( ) and ij t j i j iλ ++ = ∈Γ ≠ . Then a new 

solution can be constructed where ( ) 0ii tλ = ,  ( ) 1ij tλ = , ( ( )) 1jj ijt tλ τ+ = , constraints 

(2)-(5) are satisfied and the objective function value is lower than in the optimal solution 

(because the arc traversal times cannot improve over time), contradicting the assumption 

that the original solution is optimal. □ 

According to proposition 1, for any node i ( i l≠ ) at time t, 
( ),

( ) ( )ij ii
j i j i

t tλ λ
+∈Γ ≠

≥∑  holds. 

                                                        
1 A FIFO (First-In, First-Out) network ensures that one can never arrive earlier by departing later when traveling along 
the same path. 
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Constraints (18a) and (18b) represent the relationship between inflow and outflow in the 

FIFO network (capacities are usually deteriorating in the evacuation problem), where σ  

is the maximum in-degree for any i in N. 

( ), ( ) { ( ) }

( ) ( ) 0 
ji

ij ji
j i j i j i t t t t

t t
τ

σ λ λ
+ −∈Γ ≠ ∈Γ + =

− ≥∑ ∑ ∑ , \ , {0,..., }i N l t T∀ ∈ ∈ ,  and      (18a) 

( ), ( ) { ( ) }

( ) ( ) 0 
ji

ij ji
j i j i j i t t t t

t t
τ

λ λ
+ −∈Γ ≠ ∈Γ + =

− + ≥∑ ∑ ∑ , \ , {0,..., }i N l t T∀ ∈ ∈ ,            (18b) 

In addition, the concept of Pareto-optimal cuts is employed. Similar to other 

network flow problems, sub-problem (pRS ( )λ%) is often degenerate and there may exist 

multiple optimal solutions which lead to different optimality cuts. Pareto-optimal cuts 

were defined as any cut that is not dominated by any other cut in Magnanti and Wong 

(1981). By employing a Pareto-optimal cut in place of an optimality cut obtained from 

any optimal solution that is identified, a stronger cut may be obtained. As applied to 

solving sub-problem ( pRS ( )λ%), the Pareto-optimal cuts can be generated by solving the 

following auxiliary dual sub-problem: 

 ( ) ( ) ( )
( )

( ) ( ) ( )
( ){ } 2 1

0

0,..., , ( ) , ( )

Max ( )i i ij ij ij ij ij
t T i N i j I A i j I A

t b t u t m t t u t m tπ λ
∈ ∈ ∈ ∈

 
+ +  

 
∑ ∑ ∑ ∑  (19) 

 ( ) ( ) ( )
( )

( ) ( ) ( )
( ){ } 2 10,..., , ( ) , ( )

. .       ( ) ( )i i ij ij ij ij ij
t T i N i j I A i j I A

s t t b t u t m t t u t m t Zπ λ λ
∈ ∈ ∈ ∈

 
+ + =  

 
∑ ∑ ∑ ∑ % % (20) 

 ( ),mπ ∈Ω  (21) 

where { }0( )ij tλ  is a core point of Λ and ( )Z λ% is the optimal objective value of 

problem ( pDRS ( )λ%). Constraint (20) ensures that the Pareto-optimal solution determined 

by solving this dual sub-problem corresponds with an alternative optimal solution to 
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sub-problem ( pDRS ( )λ%). Constraint (21) is equivalent to constraints (11) and (12).  

Instead of solving the auxiliary dual problem directly, one can solve its primal 

problem, which is equivalent to primal sub-problem ( pRS ( )λ%) with an additional variable 

and minor changes in the right-hand side values. This approach is due to Magnanti and 

Wong (1981). 

3.3.3 Benders decomposition algorithm 

Once problem (P) has been reformulated as in Section 3.3.2, the Benders decomposition 

algorithm can be applied iteratively over the relaxed master and sub-problems until 

convergence. The algorithm begins by solving the relaxed master problem to determine 

those arcs along which flow will be shipped, i.e. the necessary input for solution of the 

sub-problem. Let s represent the iteration number. Let sDP ⊂ DP  represent a restricted set 

of extreme points and sDR ⊂ DR  a restricted set of extreme rays. Problem (Ps ) is obtained 

by replacing DP  and DR  with sDP  and sDR  in iteration s. Sets sDP  and sDR  are 

determined from solution of the sub-problem from iterations 1 to s. Each of these extreme 

points or extreme rays produces a Benders cut. These cuts are iteratively added to the 

relaxed master problem during the execution of the Benders decomposition algorithm. 

Problem (P) can be relaxed further: It is not necessary to generate all constraints 

(16). If constraints (16) in problem (P) were relaxed, a subset of nodes may contain flow 

that splits in the optimal solution to this relaxed problem. For many problem instances, 

this subset is relatively small in comparison to the number of nodes. Since computational 
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effort significantly increases with the number of constraints (16), and since many of these 

constraints will be inactive at optimality, those constraints that are violated in an iteration 

can be added to the relaxed master problem iteratively. This procedure is summarized in 

step 3 of the BD algorithm, which is described next. 

Algorithm BD 

Step 1: Set  : 1t = . Solve problem pRS ( )λ%, where λ% is a 1’s vector. Let 1Ω  be the set 

of nodes where flow splits. 

Step 2: Set s :=1, 1
1  :DP = ∅ , 1

1  :DR = ∅ .  

Step 2.1: Solve problem (tsP ). If it has no feasible solution, stop; otherwise, let t
sλ  be 

an optimal solution of objective function value tsZ . 

Step 2.2: Solve problem pRS ( )t
sλ .  

If the problem is finite, let t
sx  be a primal optimal solution, let ( ),

t

s
mπ  be a 

dual optimal solution, and let ( )t
sz λ  be the objective function value of 

sub-problem. If ( )t t
s sZ Zλ ≤ , then ( ),t t

s sx λ  is an optimal solution to the 

master problem with constraints set 1Ω , and go to step3; otherwise, set 

( ){ }1, : ,
tt t

s D sD s
P P mπ+ = U , 1, :t t

s D sDR R+ = , : 1s s= + , and return to step 2.1. 

If the sub-problem is infeasible, let ( ),
s

mπ  be a dual extreme ray such that 

( ) ( )
( )

( )
{ }

( ) ( ) ( )
( ){ }1 20,..., , ( ) 0,..., , ( )

( )ij ij ij i i ij ij
t T i j I A t T i N i j I A

u t m t t t b t u t m tλ π
∈ ∈ ∈ ∈ ∈

 
≤ − +  

 
∑ ∑ ∑ ∑ ∑  

Set ( ){ }1, : ,
tt t

s D SD s
R R mπ+ = U , 1, :t t

s D sDP P+ = , : 1s s= + , and return to step 2.1. 

Step 3: If ( ),t t
s sx λ  satisfies constraints (16), ( ),t t

s sx λ  is the optimal solution to the 
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original problem (P), stop; Let tN  be the set of nodes where shared information 

constraints (16) are violated. Set 1 :t t tN+Ω = Ω ∪ ， : 1t t= + , and go to step 2. 

The BD algorithm terminates with the optimal solution (pZ ) to problem (P). Step 

2 ensures that ( ),t t
s sx λ  is a feasible solution to problem (P), such that ( )t

s pZ Zλ ≥  will 

hold. ( ),t t
s sZλ  is an optimal solution to the relaxation of problem (P). Hence, t

s pZ Z≤  

and if ( )t t
s sZ Zλ ≤ , then ( )t t

s s pZ Z Zλ = = . Thus, as long as problem (P) is feasible, the 

algorithm will always terminate with an optimal solution ( ),t t
s sx λ . It is well known that 

such Bender’s decomposition algorithms have exponential worst-case computational 

complexity, because it is possible that in the worst-case all the extreme points and 

extreme rays of D will be enumerated.  

3.3.4 Example to illustrate nature of solution 

The solution of a small problem instance is shown to illustrate the nature of solutions to 

the BEPSI and to distinguish such solutions from typical solutions of other related 

network flow problems.  

1

2

3

4

5

1

2

3

4

5

 

Figure 3-2 Example network 

Specifically, solution to the BEPSI by the BD algorithm presented in Section 
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3.3.3 is compared with solution to the TDQFP by the extension of the TDQFP algorithm 

for multiple sources on a small time-dependent network given in Figure 3-2. 

Table 3-1 Time-dependent travel times and capacities of example in Figure 3-2 

 (i, j) (1, 3) (1, 4) (2, 3) (2, 4) (3, 5) (4, 3) (4, 5) 

( )ij tτ

 

5,t = 0 

6,1≤t≤20 

4, 0≤t≤5 

6, 6≤t≤20 

4, 0≤t≤4 

6, 5≤t≤20 

4, 0≤t≤1 

5, 2≤t≤10 

7, 11≤t≤20 

5, 0≤t≤6 

7, 7≤t≤19 

9, t = 20 

1, 0≤t≤14 

3, 15≤t≤20 

6, 0≤t≤3 

8, 4≤t≤20 

( )iju t

 

20, 0≤t≤2 

15,3≤t≤20 

20, 0≤t≤1 

15, 2≤t≤6 

10, 7≤t≤20 

20, 0≤t≤1 

10, 2≤t≤20 

20, 0≤t≤2 

15, 3≤t≤20 

25, 0≤t≤2 

20,3≤t≤20 

20, 0≤t≤9 

18, 10≤t≤17 

15, 18≤t≤20 

25, 0≤t≤12 

20, 13≤t≤20 

Assume that 20T = , 10)0(1 =b , 15)0(2 =b , 20)3(1 =b , 25)3( 2 =b , 

70)( 5 −=Tb  and 0)( =tbi , otherwise. A holdover arc, ),( ii , exists at each i N∈ . The 

time-dependent link traversal times and capacities are given in Table 3-1. Recall that for 

all { }0,...,t T∈ and \i N l∈ , ( ) 1ii tτ =  and ( )iiu t = ∞ . 

10

20 24

34 37 38
3935

47 48

59 510 514 515 516

13

23

(a) Solution to the multi-source TDQFP

10

20 24

35 3834

47 48

59 515
516

13

23

(b) Solution to the BEPSI

510

14

25

37

410

514

39

518

 

Figure 3-3 Final solutions to the time-dependent evacuation problem with and without 
shared information constraints 

518 
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The resulting solution to the BEPSI and related TDQFP are illustrated in Figure 

3-3 on a time-expanded network. The time-expanded network is created by making 

copies of the original network for each discrete interval of time. The numbers correspond 

to physical node numbers and their subscripts represent the departure time intervals, e.g. 

24 represents node 2 at time 4. Waiting arcs are shown as dashed lines and are defined at 

every node between every consecutive pair of departure times. The example illustrates 

that the TDQFP solution may be infeasible for the BEPSI. In the solution to the BEPSI 

(Figure 3-3(b)), the last unit of flow exits the network at time 18. Since a solution exists 

for which it is possible that, for a greater total time, the time by which the last unit of 

flow exits the network can be reduced (i.e. from 18 to 17 units of time via 49 from node 

24), it can be shown that triple optimization results given in Jarvis and Ratliff (1982) for a 

set of dynamic flow problems do not hold for the BEPSI. Specifically, optimal solution of 

the BEPSI is not necessarily optimal for an equivalent problem that seeks the minimum 

time by which the last unit exits the network in place of minimizing total time. 

The evacuation time (i.e. the time until the last unit egresses) is 16 units for the 

multi- source TDQFP and 18 units for the BEPSI. The TDQPF solution contains three 

nodes (nodes 13, 23 and 47) at which flow is split and is, therefore, an infeasible solution 

to the BEPSI. 

Proposition 2. The value of the optimal solution to the multi-source TDQFP provides a 

lower bound on the value of the optimal solution to the BEPSI. 

Discussion. The feasible region of the BEPSI is contained in the feasible region of the 
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multi-source TDQFP and, is thus, more restrictive than that of the multi-source TDQFP. 

Hence, the value of the optimal solution to the multi-source TDQFP provides a lower 

bound on the value of the optimal solution to the BEPSI. □ 

3.4 Computational experiments 

Results of computational experiments conducted on a network representation of an 

existing, four-story building, the A. V. Williams Building, on the University of Maryland 

campus are given in this section. Data for the building was collected on-site, taking actual 

measurements of doorways, corridor widths and lengths, stairwell widths, and other 

dimensions. The layout of the four floors was similar; thus, data was only collected on the 

second floor and was replicated to create the network model of the four-story building. 

The layout of the second floor is shown in Figure 3-4. 

 

Figure 3-4 The A. V. Williams Building second floor layout 
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3.4.1 Experimental design 

A network representation of the A. V. Williams Building was developed by placing nodes 

on each side of each doorway connected by an edge to allow the movement of people 

between rooms and corridors, into and out of stairwells and through the exits and by 

placing nodes at the intersection of corridors. The nodes in the corridors were connected 

by edges. Edges were also used to represent stairwells. Elevators were ignored, because 

use of elevators in this building is prohibited during an evacuation. It was further 

assumed that escape from the first floor was only possible through doorways; no window 

egress was modeled. This resulted in a 612-node, 1,480-edge network with five exit 

nodes. The maximum occupancy related to the classrooms, offices, laboratories and 

lavratories permitted by fire codes were estimated with the use of the 2000 edition of the 

NFPA 101 Life Safety Code (2001). 

The amount of supply (i.e. evacuees) at each node is set based on variations of the 

maximum occupancies of the rooms in the building as per the NFPA Life Safety Code. 

Three levels of supply are considered (average, maximum and maximum plus), where the 

maximum plus category introduces exceptional supply levels at a subset of critical nodes.  

Two approaches were considered for estimating flow rates that can be translated 

to travel times and capacities associated with the edges. The first is to calculate the 

saturated flow rate from empirical formulae that have been proposed in the literature (see, 

for example, Chalmet et al., 1982). The second is to use values related to pedestrian 
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movement characteristics provided in the SFPE Handbook of Fire Protection Engineering 

(1988). The latter approach was employed in estimating these values for the A. V. 

Williams Building. These estimates are provided in Table 3-2. 

Table 3-2 Crowd movement parameters for various facilities* 

Facility 
Density 

(person/ft2) 
Speed 

(ft/min) 
Flow 

(person/min/ft) 
Doorway 0.22 120 26 
Pathway 0.20 120 24 
Stairwell 0.19 95 18 

* DiNenno et al. (1988) 

Edge capacities were set to the maximum flow rate as computed from rates given 

in Table 3-2. The time interval duration for time discretization was assumed to be one 

minute. Speeds were employed to estimate edge travel times.  

Six scenarios were considered in tests of the BD algorithm for solving the BEPSI 

that were conducted on the network representation of the A. V. Williams Building. The 

factors that were considered in the construction of these scenarios include the number of 

people present at the time of the initiation of the evacuation (i.e. supply at the source 

nodes), whether or not corridors and stairwells were blocked or impaired (i.e. whether or 

not edges were operating at maximum capacity and maximum speeds could be reached), 

and the type and location of the event triggering the evacuation.  

In the first two scenarios, conditions were assumed to be ideal, as would be the 

case in a fire drill as opposed to an actual fire. Conditions were, therefore, assumed to be 

time-invariant. Multiplication factors were applied to this ideal scenario in the remaining 
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three scenarios to replicate conditions that were worsening over time. The multiplication 

factors are cumulatively applied from one time interval to the next to both capacities and 

travel times and are given in Table 3-3. The application of these factors is designed to 

replicate conditions that are worsening over time, i.e. that are FIFO in nature (there is no 

benefit in terms of egress time to wait for better conditions at later time intervals).  

Scenarios are designed such that the scale of the hazard that initiated the need for 

the evacuation and its impact increase with increasing scenario identification number. In 

scenarios 3 to 5, conditions are assumed to be worse than those of the ideal scenarios 

(scenario 1 and 2), but no specific hazard location is simulated. However, in scenario 6, 

the hazard is assumed to occur at a location that results in untenable conditions or 

blockages along major escape pathways. In this scenario, it is assumed that a fire begins 

in the west wing of the fourth floor. Conditions deteriorate rapidly. One corridor in the 

west wing is blocked and the nearest stairwell is impassable. 

Table 3-3 Characteristics of test scenarios 

Scenario Capacities 
Travel 
times 

Supply 
level 

Severity of Conditions 

1 1 1 1 Ideal conditions 
2 1 1 3 Ideal conditions 
3 0.98 1.02 1 Slightly impacted 
4 0.98 1.02 2 Slightly impacted 
5 0.96 1.04 3 Impacted 
6 0.95 1.06 3 Severely impacted, some links disabled 

In all six scenarios, time horizon T was assumed to be 20 minutes and stairwells 

and corridors were assumed to be empty at initiation of the evacuation. Results from 

application of the BD algorithm on the A. V. Williams Building under these six scenarios 
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are discussed next.  

3.4.2 Result Analysis 

The BD algorithm was implemented in Microsoft Visual Studio C++ 6.0 language with 

the ILOG CPLEX callable library 9.1 (2005) and was run on a personal computer with 

Pentium (4) CPU 3.20 GHz and 2.00 GB of RAM. 

Valid cuts (18) are added to the Benders master problem (P ) to accelerate 

convergence to the optimal solution. At each step, where an optimality cut is desired, a 

Pareto-optimal cut is generated. It was observed in the experiments that these cuts led to 

quick convergence on the optimal solution. For most of the problem instances that were 

tested, the number of iterations and computation time were reduced considerably by the 

inclusion of the Pareto-optimal cuts as compared with runs in which these cuts were not 

employed. Additional computational improvements might be obtained by relaxing 

integrality constraints on the variables of the relaxed master problem and generating 

Benders cuts from fractional solutions as was proposed by McDaniel and Devine (18). 

McDaniel and Devine showed that exact solution of the relaxed master problem was not 

required at each step and noted that any feasible solution can generate Benders cuts.  

The results of experiments showed that there is a significant reduction in 

computational time obtained by using sub-problem (pRS ( )λ%) instead of ( pS ( )λ%). CPU 

times were reduced by a factor of at least 10 for all tested cases. Either a generic MIP 

solver or specially designed algorithms, such as the TDQFP algorithm, can be employed 
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to solve ( pRS ( )λ%).  

An alternative to the BD algorithm is to employ a branch-and-cut algorithm based 

on a similar concept to the relaxation step employed in the BD algorithm (i.e. step 3). As 

illustrated in the example in Section 3.3.4, solution of TDQFP may result in split flows at 

one or more locations. Let the set of the nodes where flow splits in the TDQFP solution 

be 0( )S N N⊂ . A set of constraints can be generated to enforce unsplittable flow as 

follows.  

0

( ),

/ 1,         ( )ij ij
j i j i

x u i S A
+∈Γ ≠

≤ ∀ ∈∑ .                                    (21) 

If the current solution violates cuts (21), then the cuts are valid. Repeat the 

process until no valid cut can be generated. Once a solution is obtained that does not 

violate cuts (21), branch on the ijx  variables that violate the shared information 

constraints (4), i.e. impose the disjunction ( ) ( ) ( )1 20 0 ... 0
ijij ij

sx x x= ∨ = ∨ ∨ = , where 

0
1 2, ,..., { 0, ( )}ij ijijij ij

sx x x x x i S A∈ > ∀ ∈ . The number of branches s is equal to the number 

of arcs with positive flow departing from the same node at the same time.  

Table 3-4 Computational results on the real network 

Scenario 

 

( )BEPSI TDQFPZ Z∆ −  Number 
of cuts 

Computational time (CPU seconds) 
BD 

Branch-and-Cut To 95% 
optimality 

To 
optimality 

1 0 4 - 3.0 4.6 
2 0 4 1.6 3.3 21.7 
3 0 12 1.9 30.8 80.0 
4 32 36 6.0 31.2 178.7 
5 0 32 19.6 58.5 221.3 
6 224 44 17.7 94.8 >0.5h 
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The computational time required by the BD algorithm, as well as the 

branch-and-cut technique, for solving the BEPSI in the A.V. Williams Building is 

provided in Table 3-4. The scenario number as defined in Table 3-3 is given in the first 

column. The second column reports the difference between the optimal objective function 

value to the BEPSI, containing shared information constraints, and the TDQFP (extended 

for multiple origins), where the shared information constraints are dropped. The third 

column reports the number of iterations, i.e. number of Benders cuts. The fourth and fifth 

columns report the computational time in CPU seconds used by the BD algorithm to 

reach 95% of optimality and optimality, respectively. The sixth column reports the 

computational time required by the branch-and-cut algorithm to reach optimality. All 

reported times include all input and output time.  

Results show that as the problem becomes more difficult and waiting arcs are 

required, the required computational time to solve the problem to optimality by either 

approach increases. The more frequent flow splits in the TDQFP solution, the greater the 

computational effort required by the BD and branch-and-cut algorithms. It is also 

postulated that the performance of both algorithms will be impacted by the degree of each 

node, as the larger the degree, the more likely flow is to split. The required computational 

time of the BD algorithm increases less than linearly with increasing supply and 

deteriorating network conditions. Moreover, the computational time required to achieve 

95% of optimality is significantly less than that required to achieve optimality. Since the 

BD algorithm can be prematurely terminated with a feasible solution, stopping the 
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algorithm after a short period of time may be a viable alternative. In all scenarios, the BD 

algorithm outperforms the branch-and-cut method. Note that step 3 of the BD algorithm 

is specialized for this particular application. It was observed that the addition of step 3 to 

the BD algorithm, where only a subset of constraints (16) of problem (P) are enforced, 

led to significant reductions in computation time. Additional experiments would be 

required to assess the impact of network size on the computational performance of these 

techniques. 

In building evacuation, as new information about the current state of the 

building’s structures and circulation systems are obtained, updates to the network model 

in terms of supply, arc capacities and arc traversal times will be made and a new BEPSI 

will need to be solved. Rather than starting from scratch, it is possible to employ the 

Benders cuts generated in the prior problem instance as the initial cuts in employing the 

BD algorithm to solve the new problem instance if the supply increases and/or arc 

capacities decrease. Decreases in arc capacities are expected in circumstances warranting 

an evacuation, as fire and smoke will spread throughout the building and collapse of the 

structural components will occur progressively. That is, conditions worsen with time and 

capacities accordingly decrease with time. Additional experiments were conducted to 

assess the magnitude of improvement that results from employing the Benders’ cuts 

generated in the prior problem instance in solving the updated problem. 

Changes to arc capacities and supply in Scenario 3 were considered in these 

additional experiments. Specifically, four updates were considered: (1) supplies at 
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randomly chosen nodes increase, (2) supply at all supply nodes increase, (3) capacities of 

randomly chosen arcs decrease, and (4) capacities of all arcs decrease. One might also 

assess the benefits of such a reoptimization approach where changes in supply and 

capacities occur simultaneously. Results of runs on these versions of scenario 3 are given 

in Table 3-5. 

The results of Table 5 show that significant (on the order of 60-70%) reductions in 

computational time result from solving the updated problem instance starting with the 

Benders’ cuts generated in solving the prior problem instance (i.e. the reoptimization time) 

as compared with solving the new problem instance from scratch (i.e. with no 

information from the prior problem instance). 

Table 3-5 Reoptimization results of the BD Algorithm 

 
Increase of supply Decrease of Capacity 

Select nodes 
Entire 

network 
Select arcs 

Entire 
network 

Computational time 
required with reoptimization 

(CPU seconds) 
33.4 33.5 30.5 24.6 

% of time required as 
compared to resolving from 

scratch 
41.5% 42.0% 37.9% 30.5% 

3.5 Conclusions and future research 

In this chapter, the building evacuation problem with shared information (BEPSI) is 

formulated as a mixed integer linear program. The problem is shown to be NP-hard. An 

exact algorithm based on Benders decomposition is proposed for its solution. 

Computational experiments performed on a network representation of an actual 
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four-story building were conducted to illustrate how the proposed procedure can be 

applied to solve for the optimal evacuation instructions in an actual building and to 

demonstrate the feasibility of its application. The solution technique is designed in such a 

way that it can be prematurely terminated and feasible solutions can be obtained. 

Experimental results show that significantly less time is required to obtain solutions that 

are within 95% of optimality.  

By restricting flows to a single arc at each point in time and explicitly considering 

the inherent dynamic nature of future conditions, the resulting evacuation plans are more 

likely to be followed in light of our understanding of group dynamics in evacuation and 

to aid the evacuees in avoiding potentially high risk situations. Traditional evacuation 

planning techniques ignore the dynamics of a fire moving through a corridor or through a 

stairwell and existing optimization techniques would not prevent solutions from 

suggesting groups to split at the nodes. Consequently, implementation of evacuation 

plans developed by the proposed technique for a large building, ship or military complex 

can result in a reduction in the number of lost lives, trapped evacuees or rescue workers, 

and risk of exposure. Further, shorter egress times may result, permitting recovery efforts 

to begin quickly. 

As presented, solution of the proposed formulation may result in flows that arrive 

at an intermediate location at a given point in time, but depart along different paths by 

departing at different departure time intervals, i.e. by definition, the flow is not split, but 

in practice, the flows take different paths. This type of splitting of flows is permitted 
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through the introduction of holdover arcs that are modeled to ensure feasibility. If such 

holdover arcs were not permitted, it would be difficult to model situations where there is 

an excess of evacuees waiting to enter a chosen path with insufficient capacity to handle 

all evacuees who arrive in a single time interval. In an evacuation, conditions typically 

worsen with time; that is, the arc traversal times are FIFO, Thus, it is always best to leave 

as early as possible and waiting will not be chosen if it can be prevented. Additionally, 

capacity of the holdover arcs may be restricted and the discretization interval size can be 

set to a sufficiently large value to minimize the occurrence of such splitting of flows.  

One might argue that arc traversal times are in reality a function of flow, similar 

to travel time estimation models for vehicular traffic flows. This concept of selecting 

paths such that flows are not split can be extended to consider flow-dependent traversal 

times. A similar concept is described in Köhler and Skutella (2005) with respect to the 

quickest flow problem.” 

The procedures developed through this research activity will impact many other 

functional areas as well, including, for example, evacuation of a geographic region due to 

military attack, human-made accident, or natural disaster, such as an accident involving a 

nuclear power plant or escape of hazardous chemicals, collapse of a structure such as dam 

walls, hurricane, earthquake, flooding, volcanic eruption, or tsunami. Evacuation 

instructions can be provided to vehicles via changeable message signs, radio, the internet, 

or on-board devices in suitably equipped vehicles with further development of Intelligent 

Transportation Systems. Moreover, as with other network flow-based techniques, it is 
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expected that the techniques proposed herein will have application in many diverse arenas, 

such as production-distribution systems, fleet management, and communications. 

Many theoretical and practical aspects of this problem remain to be explored. For 

some problem instances, or building layouts, it may be feasible to employ the TDQFP 

algorithm or something similar that allows splitting of flow, if the solutions are unlikely 

to contain split flows. Heuristic repair operators can be applied to locations of split flow 

to obtain feasible and potentially near-optimal solutions. Experiments on additional 

building designs could be conducted to assess the negative impact on total evacuation 

time that results from enforcing solutions that do not permit splittable flows. Finally, 

heuristics could be developed to more quickly obtain feasible and, hopefully, 

near-optimal solutions for large-size networks. The exact procedure proposed herein for 

this difficult problem can be used to obtain benchmark solutions, enabling evaluation of 

quicker, heuristic techniques. 

Evacuees may not prefer the solution that optimizes functions of time, e.g. 

evacuation time, but instead may prefer a path with high likelihood of leading to 

successful escape. Alternative objectives that consider these and other issues of equity 

that arise in solutions for the evacuation problem have been proposed in the literature (e.g. 

Lin, 2001; Opasanon and Miller-Hooks, 2009). Regardless of the objective that is chosen 

for the determination of the optimal instructions, the issue of shared information arises. 

One may extend this work to address the issue of unsplittable flows in the context of 

other objectives, such as those related to minimization of risk. 
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Chapter 4   Resilience: An Indicator of 

Recovery Capability in Intermodal Freight 

Transport 

4.1 Introduction 

The rapid development of e-commerce, economic globalization, just-in-time production, 

and logistics and supply chain systems over past decades has lead to significant need for 

efficient and effective management of freight movements. Individuals and companies 

have become increasingly dependent on the freight transport system to deliver their goods. 

In fact, U.S. domestic freight moved by air, truck, and railroad increased by 24% between 

1996 and 2005 (Bureau of Transportation Statistics, 2007). Furthermore, international 

trade is projected to increase by 2.8 percent annually through 2020 (Leinbach & Capineri, 

2007) and freight demand is projected to increase 89 percent by 2035 as compared with 

2005 (FHWA, 2008). Consequently, significant increase in demand for freight transport 

in coming years is anticipated. However, the freight transport sector is operating at or 

near its capacity in many regions of the world, including the United States (AASHTO, 

2007). Despite this, there has been little increase in the capacity of the freight transport 

system. In fact, in the United States, the capacity of the rail freight network has decreased 

in past years (Larson and Spraggin, 2000). Simultaneously, risks from accidents, 

weather-induced hazards, and terrorist attack on the freight transport systems have 
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dramatically increased. Thus, trucking companies, rail carriers, infrastructure managers, 

and terminal and port operators must invest in security measures to prevent or mitigate 

the effects of disasters resulting from such incidents. Even less monumental incidents, 

such as derailment of cars from tangent track, can lead to network-wide disruptions in 

service and ensuing delays. The Hatfield accident in Great Britain of 1993 provides 

evidence of this (Commission for Integrated Transport, 2002). The demand for high 

quality service at reasonable cost and with adequate protection from these various 

external forces has placed a heavy burden on the freight transport industry. There is 

increased pressure on this sector to balance these conflicting objectives of providing high 

service and security levels while simultaneously offering low cost transport alternatives.  

A characteristic of a secure and highly functioning transport network, i.e. a 

resilient network, is its ability to recover from disruptions. This ability depends on the 

network structure and activities that can be undertaken to preserve or restore service in 

the event of a disaster or other disruption (For example, Chrysler used expedited truck 

service to backup air freight transport for transporting critical components from Virginia 

to Mexico immediately after September 11, 2001 (Martha and Subbakrishna, 2002)). In 

this chapter, an indicator of network resilience is defined that quantifies the ability of an 

intermodal freight transport network to withstand and quickly recover from a disruption. 

Recovery activities that might be taken in the immediate aftermath of a disruption, as 

well as the duration of time and investment required to undertake related actions, are 

considered a priori.  
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To quantify a network’s level of resilience, a solution technique based on 

concepts of Benders decomposition, column generation and Monte Carlo simulation is 

proposed. In addition to quantifying the network’s level of resilience, this technique 

determines an optimal course of action (i.e. set of activities) to undertake in the 

immediate aftermath of a disaster given target operational levels and a fixed budget. 

Research has been conducted on steps that can be taken to quickly restore system 

performance following a disaster (e.g. Daryl (1998), Williams et al. (2000), and Juhl 

(1993) consider recovery actions in the aftermath of tornados, tropical storms and 

bombings). Quick identification of the appropriate actions to take can play a crucial role 

in mitigating ensuing post-disaster economic and societal loss. For example, repair 

activities can be undertaken to restore critical infrastructure damaged in the disaster to 

pre-disaster conditions, traffic can be rerouted, equipment and personnel can be 

rescheduled, efficiencies in operations can be enhanced, and logistics providers can 

collaborate. That is, the performance of a network post-disaster depends not only on the 

inherent capability of the network to absorb externally induced changes, but also on the 

actions that can be taken in the immediate aftermath of the disaster to restore system 

performance. The resilience indicator can aid in pre-disruption network vulnerability 

assessment and making pre-disaster, vulnerability-reduction investment decisions.  

In the next section, related studies on the measurement of network performance 

under uncertainty are described. Network resilience is defined and a stochastic, mixed 

integer program based on an intermodal freight network representation is presented for 
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computing resilience in Section 4.3. In Section 4.4, Monte Carlo simulation is proposed 

for generating possible network states for given problem scenarios with dependencies. 

Benders decomposition is employed in the exact solution for a given network state. The 

network resilience definition, solution technique and resulting resilience levels, along 

with recovery activities, are illustrated on the Double-Stack Container Network (Morlok 

and Chang, 2004; Sun et al., 2006) under a variety of scenarios, including scenarios 

meant to replicate conditions under flooding, earthquake and terrorist attacks, in Section 

4.5. Results from additional experiments designed to uncover the role network structure 

plays in resilience level are also presented. The last section summarizes the contributions 

of this work and discusses future potential extensions. 

4.2 Related studies 

Events that cause disruptions in nearly all human-made systems are often unpredictable, 

and, at some level, are inevitable. Thus, to prepare for such events, significant effort has 

been spent to predict system performance under disruption, identify critical functions and 

vulnerabilities, and develop means of reducing these vulnerabilities. Measures of 

network-level vulnerability have been employed widely across a host of arenas, including 

telecommunications, water and other critical lifelines. In this review of related studies, 

those works with greatest relevance are discussed.  

A number of works consider vulnerability of transportation systems (see, for 

example, Taylor and D’Este (2003); Lleras-Echeverri and Sánchez-Silva (2001); Berdica 
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(2000)), where a sudden event may occur that reduces the performance of the network 

components or significantly impacts demand for use of services offered. Berdica (2002) 

defines vulnerability as susceptibility to disruptions that could cause considerable 

reductions in network service or the ability to use a particular network link or route at a 

given time. Networks that cannot quickly recover from a disruption with minimal 

reduction in service are deemed more vulnerable than those with quicker recovery time 

and lower overall experienced disruption. No method for the quantification of this 

measure is provided. Srinivasan (2002) discussed the potential of developing a 

quantitative framework for vulnerability assessment. Jenelius et al. (2006) argued that 

road network vulnerability is composed of the probability and consequences (represented 

by increased generalized travel cost) of single or multiple link failures. Although 

numerous attempts to measure vulnerability exist in the literature, vulnerability for 

transportation networks is still a rather ambiguous term, lacking a clear definition and 

methodology for its quantification. 

Because vulnerability is often employed only qualitatively, quantitative measures 

of reliability have been used to gain insight into a system’s level of vulnerability. Berdica 

(2002) argued that vulnerability is reliability in the road transportation system. Husdal 

(2004) linked vulnerability and reliability from a cost-benefit perspective, with 

vulnerability the cost and reliability the benefit value. Husdal argued that vulnerability is 

equivalent to “non-reliability” in certain circumstances. Dayanim (1991) argued that it 

was mandatory to incorporate reliability criteria into network design processes so as to 
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meet disaster recovery requirements. A variety of reliability measures have been 

implemented for transportation systems to measure their intended functions under 

uncertainties. For example, connectivity reliability is defined as the probability that the 

network nodes remain connected (Iida, 1999). Travel time reliability is concerned with 

the probability that a trip can reach its destination within a given period (Bell and Iida, 

1997)). Clark and Watling (2005) computed system-wide travel time reliability based on 

the probability distribution of network travel time under variable demand. Capacity 

reliability (Chen et al., 2002) is defined as the probability that the network can adapt to 

external changes while maintaining a given service level. Elefteriadou and Cui (2007) 

provided a review of a host of definitions of travel time reliability proposed in the 

literature. 

Another relevant measure is flexibility. Goetz and Szyliowicz (1997) suggested 

that flexibility can be useful in coping with uncertainty. While primarily used in 

manufacturing systems analysis, several works have considered its application in 

assessing transportation systems. Feitelson and Salomon (2000) discussed flexibility from 

the infrastructure manager’s perspective and define flexibility as the network’s ability to 

adapt to changing circumstances and demands. Cost and ease of building additional 

network capacity are considered. Cho (2002) defined capacity flexibility as the ability of 

a traffic network to expand its capacity to accommodate changes in demand for its use 

while maintaining a satisfactory level of performance. Morlok and Chang (2004) 

extended this definition from the perspective of external changes in both travel demand 
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(traffic volume and pattern) and network capacities. Sun et al. (2006) further measured 

flexibility in a more complicated problem setting, where future traffic patterns, service 

deterioration and stochastic demand are considered.  

Diverse measures of resilience have been proposed for measuring the 

performance of engineering systems. For example, resilience is defined as the number of 

failures that a computer network can sustain to remain connected (Najjar and Gaudiot, 

1990). For supply networks, resilience is described as the ability to cope with 

externalities and restore normal operations (Rice and Caniato, 2003). Konak and 

Bartolacci (2007) used traffic efficiency, defined as the expected percent of the total 

traffic that a network can manage, as a measure of resilience for telecommunication 

networks. McManus et al. (2007) define organizational resilience as a function of 

system-awareness, identification and management of the most critical system components, 

and adaptability. A measure of resilience is introduced by Murray-Tuite (2006) in the 

context of transportation. In her work, resilience is viewed as a network characteristic 

that indicates how well the traffic network performs under unusual circumstances. 

Resilience is seen as having ten dimensions (redundancy, diversity, efficiency, 

autonomous components, strength, collaboration, adaptability, mobility, safety, and the 

ability to recover quickly) which are individually computed based on results of 

simulation runs.  

One can view the measures of reliability, flexibility and resilience as indicators of 

vulnerability. Such measures from prior works have wide interpretation, are often 
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intertwined, and are sometimes interchangeable. Their definitions vary, although, the 

majority involve some element of risk, as they are defined based on a combination of the 

probability of the occurrence of the disruptive event, the negative impacts of the 

disruption, and aspects of network performance under disruption. 

In this chapter, resilience is defined as a network’s capability to resist and recover 

from a disruption or disaster. This definition reflects both the network’s inherent ability 

to cope with disruptions by means of its topological and operational attributes and 

potential immediate actions that may be taken in the aftermath of the disruption that 

would otherwise not be considered. For example, a link may be constructed that did not 

exist in the original network. As recovery is the process of reconstructing, restoring, and 

reshaping the physical, social, economic, and natural environment through pre-disaster 

planning and post-disaster actions (Havidán et al., 2007), the proposed resilience measure 

considers both pre-disaster planning through consideration of the existing network 

topology and attributes and immediate post-disaster actions (i.e. potential recovery 

activities). Although numerous definitions of indicators of network performance exist in 

the literature, only qualitative measures of resilience related to business contingency 

planning exist that explicitly consider the impact of such post-disaster actions (Havidán et 

al., 2007). No prior work exists that provides the means of quantifying such a measure.  

4.3 Definition and problem formulation 

While the proposed definition of resilience and method for its quantification can be 
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applied widely, the focus herein is on assessment of an intermodal freight transport 

system. Such systems involve multiple modes (truck, rail, and marine) in the movement of 

cargo between their origins and destinations. In this section, a definition of resilience for 

intermodal freight transport networks is introduced and a mathematical formulation that 

seeks an optimal set of recovery activities to undertake in the immediate aftermath of a 

disaster such that the network’s resilience is maximized and budget constraints are met is 

proposed. Formulation and solution of this mathematical program relies on a multi-modal 

network representation described in this section.  

4.3.1 The resilience indicator 

Measurement of network resilience of an intermodal freight transport system should take 

into consideration the level of effort (cost, time, resources) required to return the network 

to normal functionality (or a fixed portion thereof, e.g. 90% functionality) or the impact of 

a given level of effort (in terms of cost, time, resources) on restoring the network to its 

original level or fraction thereof of functionality (ability to handle demand D by time T0). 

Rose (2004) describes resilience as consisting of two components: inherent and adaptive. 

In this regard, the network resilience indicator defined herein consists of inherent network 

properties, e.g. redundancies, and a set of adaptive actions, i.e. recovery activities. With 

this in mind, network resilience, α , is defined in equation (1) as the post-disaster expected 

fraction of demand that, for a given network configuration, can be satisfied within 

specified recovery costs (budgetary, temporal and physical). 
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where wd  is the maximum demand that can be satisfied for origin-destination (O-D) pair 

w post-disaster and wD  is demand that can be satisfied for O-D pair w pre-disaster. This 

definition also recognizes that arc capacities depend on the characteristics of the 

disruption-causing event and, therefore, cannot be known a priori with certainty. Thus, if 

any network attribute that impacts its computation is random, as is the case with arc 

capacities, wd  is a random variable. The set of conceivable disaster events, each with 

stochastic outcomes in terms of network attributes, is considered in the computation of α . 

4.3.2 Network representation 

A network representation of the intermodal system is used, given by ),( ANG = , where 

{1,..., }N n=  is the set of nodes, {( , ) , }A i j i j N= ∈  is the set of directed arcs. G 

consists of sub-networks, one for each mode. One can view each sub-network on a plane, 

where transfers between modes take place along transfer arcs connecting designated nodes 

(representing intermodal terminals) of the various planes, as shown in Figure 4-1. The 

transfer arcs are represented as vertical arcs in the figure.  

 

Figure 4-1 Intermodal network representation (Zhang et al., 2008) 



 

 72

Each modal or transfer arc Aa∈  has associated with it a positive capacity, 

denoted by ac , with integral domain and range, and a positive traversal (or transfer) time 

aτ . The capacity of each modal arc represents the number of shipments that can be 

transported along the arc and the capacity of each transfer arc represents the number of 

shipments that an intermodal terminal can handle. Note that because the type and timing 

of the event and its impact cannot be known a priori with certainty, ac  and aτ  are 

random variables.  

A set of O-D pairs, W , is also given. Each O-D pair Ww∈  has an origin ( )wr , 

a destination ( )ws , and a given demand, i.e. number of shipments, wD  to be shipped 

between its origin and destination. A path is defined as an acyclic chain of arcs. A 

shipment can only be transported along a path with the same origin and destination as the 

shipment. Let wP  be the index set of all paths that start from )(wr  and end at )(ws . 

The time for traversing path wp ∈ wP  is computed from the sum of traversal times of its 

constituent arcs.  

Additional notations employed in the mathematical formulation of the network 

resilience problem are defined as follows. 

K/  = the set of candidate recovery activities, { }KkK ,...,2,1==/  

akc∆  = change in capacity of link a if recovery activity k is implemented 

akt  = 
travel time of link a could be reached if recovery activity k is 
implemented 

akq  = time needed to implement recovery activity k on link a  
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R
pQ  = maximum implementation time of recovery activities taken along path p 

max
wT  = maximum allowable travel time for O-D pair w 

akb  = cost of implementing recovery activity k on arc a 

B  = maximum allowable cost of recovery activities 

apδ  = 
in path-link incidence matrix; apδ =1, if path p uses link a and apδ =0, 

otherwise   

Decision variables: 

pf  = number of shipments transported on path p  

py  = binary variables indicating whether or not shipments use path p  

wd  = number of shipments that cannot be satisfied for O-D pair w 

akγ  = 
binary variables indicating whether or not recovery activity k  is 
undertaken on arc a 

4.3.3 Problem formulation 

The network resilience problem can be formulated as a stochastic, mixed integer program 

shown in (P): (2) – (11), where ω  is a given realization of random arc capacities ω~ . Any 

realization of all ω~  is referred to as a network state. Program (P) contains integer 

variables, representing the selection of recovery activities on corresponding arcs and the 

selection of paths carrying flow, and continuous variables, representing the flow along 

each path and demand that cannot be satisfied for each O-D pair. 

( )P  






 ∑
∈Ww

wdE )(min~ ωω     (2) 

..ts  ( ) ( ) ,WwdDf ww
Pp

p

w

∈∀−=∑
∈

ωω  (3) 
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( ) ( ) ( ) ,0 Aaccf
k

akaka
Ww Pp

pap

W

∈∀≤∆−− ∑∑ ∑
∈ ∈

ωγωωδ  (4) 

( ) ( )

WwPp

yMTQt

w

pw
R
p

Pa k
akaak

Pa
a

∈∈∀

−+≤+−+ ∑∑∑
∈∈

,

)(1)()()()()()( max ωωωωγωτωωτ
, (5) 

( ) ,,)( WwPpyDf wpwp ∈∈∀≤ ωω  (6) 

,,0)()( KkpaqQ akak
R
p ∈∈∀≥− ωγω  (7) 

( ) ,Bb
a

ak
k

ak ≤∑∑ ωγ  (8) 

( ) ,1 Aa
k

ak ∈∀≤∑ ωγ  (9) 

( ) ( ) ,,0, WwPpdf wwp ∈∈∀≥ωω  (10) 

( ) { } .,,,1,0, WwPpKkAay wpak ∈∈∈∈∀∈ωγ  (11) 

The objective (2) of program (P) seeks to minimize the expected portion of demand 

that cannot be accommodated, i.e. it maximizes the expected number of shipments that can 

be sent from their origins to their destinations. To compute this expectation, w

w W

d
∈
∑  is 

evaluated over all possible realizations of random arc attributes.  

Constraints (3) are flow conservation constraints. Constraints (4) are capacity 

constraints, restricting flow on each arc to be less than the capacity resulting from the 

impact of the event and recovery actions that are taken. Constraints (5) and (6) are level of 

service (LOS) constraints requiring that the time each shipment spends traversing a path 

wPp∈  not exceed a given maximum duration ( )ωmax
wT  and specific circumstances (i.e. 

network state ω). M is a sufficiently large positive constant. The time for traversing each 

path wPp∈  is composed of three parts: constituent link travel times under post-disaster 

conditions, the maximum time required to implement recovery activities along constituent 
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links (defined by Constraints (7)), and reductions in link travel times due to recovery 

actions. It is assumed that all recovery activities begin simultaneously, immediately after 

the event and any link chosen to undergo a recovery action will be out of service during the 

action’s implementation. Constraints (5) and (6) provide a linear implementation of the 

equivalent complementarity constraint: ( ) .0max ≤







−+−+∑∑∑

∈∈
w

R
p

Pa k
akaak

Pa
ap TQtf γττ  

Constraint (8) requires that the total cost of the selected recovery actions does not exceed a 

given budget. Constraints (9) require that only one recovery activity, representing a set of 

recovery actions, can be selected for each arc. This ensures that conflicting actions will not 

be simultaneously chosen. Non-negativity and integrality restrictions are given in 

constraints (10)-(11). Constraints (3)-(11) are evaluated for a given network state ω. 

It is assumed that the revenue (including future revenue) from completing shipment 

deliveries in a timely manner in post-disaster circumstances significantly outweighs any 

savings that might be achieved in selecting optimal paths based on operational costs, and 

therefore, operational costs are not included in the model. If desired, an additional set of 

constraints with similar form as constraints (5) can be incorporated in the formulation to 

limit total operating expenses. This will increase the complexity of the problem, but can be 

solved with the same solution technique. 

While the formulation does not include pre-event decision variables, a network’s 

resilience level under a given network state and set of potential remedial actions (if any) 

can be quantified by employing the formulation under one or more chosen scenarios 
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pre-event. Remedial actions that may be taken pre-event include, for example: adding 

additional links to the network; ordering spare parts or backup equipment; prepositioning 

resources in anticipation of potential recovery activities; implementation of advanced 

technologies; training; and other pre-event actions that can reduce the time required to 

complete potential recovery activities should they be required post-event. Such pre-event 

use of the formulation facilitates network vulnerability assessment and further informs the 

decision-maker in taking pre-event action to improve network resilience.  

One will note that program (P) includes no first-stage variables. All decisions are 

taken once the outcome of the random disaster event is known. Thus, the problem can be 

directly decomposed into a set of independent scenario-specific deterministic problems 

and the focus of the solution approach presented in the succeeding section is on the 

sampling methodology and exact solution of each independent deterministic problem that 

results for a given realization of the capacity random variables (i.e. a network state). 

Denote the deterministic problem for a given network state by problem (DP). Proof that the 

recognition version of problem (DP) is NP-complete is given in Proposition 1. It follows 

that problem (DP) is NP-hard. 

Proposition 1. The recognition version of problem (DP) is NP-complete.  

Proof. To prove that the recognition version of problem (DP) is NP-complete, a 

transformation from the recognition version of the knapsack problem, a well-known 

NP-complete problem (Garey and Johnson, 1979), to the recognition version of problem 
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(DP) is constructed. 

An instance of the recognition version of the knapsack problem is given by a finite 

set { }niiiI ,...,, 21=  of items, each with a nonnegative weight iw  and value iv . The 

problem is to determine if there exists a subset of items II ⊂′  with total weight 

( ) WIw ≤′ and total value ( ) VIv ≥′ . 

Assume that max
wT  is set sufficiently large so that LOS constraints (5) will not be 

binding. Construct a network G with only one O-D pair ( )ts,  connected by n  parallel 

arcs. Each arc has a capacity ac . Suppose only one recovery activity is available for each 

arc and will increase the arc capacity by av  with an implementation cost aw , a fraction of 

the budget W. Then, each arc a  in G can be transformed into two parallel arcs 1a  with 

capacity ac  and cost 0, and 2a  with a capacity av  and cost aw . Thus, the instance of the 

knapsack problem has a solution if and only if there is a flow that sends at least ∑+
a

acV  

shipments from s to t with a cost of at most W . This transformation can be achieved in 

polynomial time. This, together with the fact that the recognition version of problem (DP) 

is in NP, proves that problem (DP) is NP-complete. ♦   

4.4 Solution technique 

To measure network resilience for a given network topology and associated operating 

characteristics, as well as a given set of potential recovery activity options, problem (DP) 

can be solved directly; however, this may require extraordinary effort. The number of 

variables is large, even for mid-size instances. Thus, a framework employing Benders 
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decomposition, column generation and Monte Carlo simulation is proposed that considers 

a manageable number of network states. For a given scenario (i.e. event), the joint 

probability distribution of the random arc capacities is assumed to be known. For each 

scenario considered, Monte Carlo simulation is used to generate the values of random arc 

capacities required to specify the set of possible network states, while preserving 

distribution properties (Subsection 4.4.2). A Benders decomposition technique that 

employs column generation in the solution of a set of sub-problems is developed to find the 

maximum demand that can be satisfied for the given network state. Network resilience is 

computed from the expected value of the weighted sum of the maximum level of satisfied 

demand achieved for each replication as in equation (1). The solution technique is 

discussed in detail next. 

4.4.1 Solving problem (DP) 

4.4.1.1 Benders decomposition 

Benders decomposition (Benders, 1962) is performed on program (DP), a mixed integer 

program over binary variables akγ  and py . The original problem is reformulated into a 

sub-problem containing the continuous path flow variables and a master problem 

containing the binary recovery activity selection variables and path selection variables. 

Benders cuts are generated by solution of the sub-problem and are added to the relaxed 

master problem at each iteration, progressively constraining the relaxed master problem. 

The cuts reduce the number of flow variables that must be considered, even at the 
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expense of increasing the number of constraints.  

For simplicity, program (DP) can be transformed into a network flow problem 

with a single source and single sink by adding a super source r connecting to each source 

node )(wr  with capacity wD  and travel time ( )maxmax
wTT − , where maxT  is the 

maximum allowable travel time for any r-s path with positive flow, and a super sink s 

connected to each sink node )(ws  by arcs with capacity ∑
∈Ww

wD  and zero travel time. 

Denote the path set between r and s by P . The exact algorithm presented hereafter is 

applied in solving this r-s network flow problem.    

Let γ  be a 0-1 vector satisfying constraints (8) and (9), and let Λ be the set of 

valid γ . For given Λ∈γ̂ , the primal sub-problem can be stated as follows.  

)ˆ(γSP : ∑
p

pfmax  (12) 

..ts  ,ˆ Aaccf
k

akaka
Pp

pap ∈∀∆+≤ ∑∑
∈

γδ  (13) 

( ) ( ) PpyMTqt pakak
pa

Pa k
akaak

Pa
a ∈∀−+≤+−+

∈
∈∈
∑∑∑ 1ˆmaxˆ maxγγττ , (14) 

,PpDyf pp ∈∀≤  (15) 

{ } .1,0,0 Ppyf pp ∈∀=≥  (16) 

Problem )ˆ(γSP  is a path-flow based formulation of a maximum flow problem with side 

constraints. 

For a given γ̂ , the path set P  can be separated into two disjoint subsets: 

( )








∈∀≤+−+=
∈

∈∈
∑∑∑ PpTqtpP akak

pa
Pa k

akaak
Pa

a ,ˆmaxˆ max
1 γγττ , the set of paths between r 



 

 80

and s that satisfy LOS constraints, and   

( )








∈∀>+−+=
∈

∈∈
∑∑∑ PpTqtpP akak

pa
Pa k

akaak
Pa

a ,ˆmaxˆ max
2 γγττ ,  

the set of paths between r and s that do not satisfy LOS constraints. By considering only 

1P , sub-problem ( )γ̂SP  can be reformulated with only continuous decision variables 

given by sub-problem ( )γ̂LSP : 

( )γ̂LSP : ∑
p

pfmax  (17) 

..ts  ,ˆ
1/

Aaccf
k

akaka
Pppa

p ∈∀∆+≤ ∑∑
∈∈

γ  (18) 

 .,0 1Ppf p ∈∀≥  
(19) 

The dual sub-problem is given as follows. 

)ˆ(γDSP : ∑ ∑
∈









∆+

Aa
a

k
akaka cc πγ̂min  (20) 

..ts  ,1 1Pp
pa

a ∈∀≥∑
∈

π  (21) 

 .0 Aaa ∈∀≥π  (22) 

where aπ  are the dual variables associated with constraints (18). The primal 

sub-problem ( )γ̂LSP  is always feasible, because 0 is always a feasible solution, and a 

feasible solution for )ˆ(γDSP  can be readily obtained. Thus, by the weak duality 

theorem, the primal and dual sub-problems are bounded.  

The Benders master problem is obtained by replacing constraints (4) - (7) by 

Benders cuts (24). Constraints (24) are optimality cuts that ensure that affected 

non-optimal solutions are excluded. Let D denote the polyhedron defined by constraints 
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(21) and DP  be the set of extreme points of D. Introducing the additional free variable Z, 

program (DP) can be reformulated as the following equivalent problem MP .  

MP : Zmax  (23) 

..ts  ∑∑∑
∈∈ ∈

≤∆−
Aa

aa
Aa Kk

akaak ccZ πγπ , DP∈∀π  (24) 

(8), (9), (11) 

Constraints (24) need not be exhaustively enumerated, because most of the 

constraints will be inactive in the optimal solution. Thus, a relaxation of problem (MP), 

denoted as (RMP), can be obtained by dropping constraints (24) and iteratively adding 

them to the relaxation until optimality is achieved. 

To improve (RMP), constraints (8) can be replaced by (8’):  

( ) BbB
a

ak
k

ak ≤<− ∑∑ ωγσ ,                             (8′ ) 

where σ  is the maximum implementation cost over all recovery activities. One can 

show that constraints (8’) are more restrictive than (8) for problem (RMP), thus, creating 

a smaller feasible region. Moreover, the optimal solution will not be cut off by this 

inequality. This can be shown by considering the following. Suppose an optimal solution 

( )*** ,, fyγ  to program (P) with objective function value *z  exists such that 

( ) σωγ ≥−∑∑
a

ak
k

akbB * , then there exists at least one arc a  for which σ≤akb  and 

∑ =
k

ak 0*γ . The corresponding recovery activity with cost σ≤akb  can be undertaken 

without violating constraints (3)-(11). The resulting solution is a feasible solution with 

objective function value no greater than *z .  
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4.4.1.2 Column generation for sub-problem solution 

Primal and dual sub-problems are solved by iteratively generating Benders optimality 

cuts that constrain problem (RMP). Both sub-problems ( )γ̂LSP  and )ˆ(γDSP  are 

path-flow based formulations. The number of path-flow variables grows exponentially 

with the size of the network, making both problems difficult to solve. Thus, a column 

generation-based technique (see Wolsey (1998) for general background) is applied that 

narrows in on a limited set of paths. The column generation algorithm presented in this 

section is an iterative method, which takes advantage of sub-problem ( )γ̂LSP ’s structure 

and constructs a series of sub-problems, each increasingly more restricted. At each step, 

new paths (i.e. columns) are generated, expanding the restricted subset of 1P , defined in 

the previous subsection. The algorithm terminates when no new path (i.e. column) can be 

identified for inclusion in this subset.  

The column generation process starts with an initial subset of path variables. The 

reduced cost of pf  is computed as ∑
∈

−=
pa

apc π1 . The optimality condition is given 

by 1,0 Ppcp ∈∀≤ . If there exists a path 1Pp∈  such that 0>pc , then pf  should be 

chosen as the variable that enters the limited path set. The new column will be identified 

by considering which constraints in the dual sub-problem are most violated. If the 

constant 1 is ignored in computing reduced costs, the problem of choosing the entering 

column is a shortest path problem with a path traversal time constraint. A variety of 

algorithms have been proposed in the literature to address this problem (e.g. Aneja et al., 
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1983; Handler and Zang, 1980; Desrosiers et al., 1995). In implementations described in 

section 4.5, a label-setting algorithm based on concepts of dynamic programming 

concepts that can be attributed to Dumitrescu and Boland (2003) is used.  

4.4.1.3 Upper and lower bounding 

The Benders relaxed master problem (RMP) becomes increasingly constrained as 

Benders cuts are added, providing an upper bound on the objective value of the original 

problem that is non-increasing with every iteration. Moreover, a feasible solution is 

obtained, generating a lower bound, and possibly improving the best lower bound, at each 

iteration. The algorithm stops when upper and lower bounds meet. Thus, tight bounds are 

important to accelerating the convergence of the algorithm. 

An initial upper bound on problem (RMP) is obtained by relaxing binary variables 

kaak ,∀γ  in problem (DP) and solving the corresponding relaxed problem, a constrained 

optimal capacity expansion problem with linear cost functions. If path constraints are 

relaxed, the capacity expansion problem can be solved in polynomial time. Thus, a 

similar technique as used to solve the Benders sub-problem, sub-problem ( )γ̂LSP , is 

applied to solve this relaxed problem and generate the initial upper bound.  

To generate an initial feasible solution, and an initial lower bound, to problem 

(RMP), the following lexicographic ordering rules can be applied, where akγ  is obtained 

during the process of determining an initial upper bound on problem (RMP): 1) rank all 

the akγ  variables by their values, giving priority to those with the largest capacity when 
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ties exist and 2) obtain a limited set of akγ  variables from the order produced in (1) with 

the maximal value of ∑
ka

akb
,

 such that Bb
ka

ak ≤∑
,

 and set 1=akγ  for all variables in 

the set.  

The lower bound does not follow an increasing trend, because the objective 

function value obtained from consecutive iterations may vary significantly. To address 

this issue, local branching proposed by Fischetti and Lodi (2003) is applied to identify a 

feasible solution that results in an improved lower bound. Rei et al. (2009) discussed the 

possibility of using local branching to increase the speed of Benders decomposition. 

Their idea is to seek an improved feasible solution (and improved lower bound) by 

considering a small sub-region of the feasible space surrounding the previously identified 

feasible solution. Given feasible solution { } kaak ,
~γ  of problem (RMP) and a positive 

integer parameter k, the local branching constraint can be written as: 

( ) ( ) k
akak

akak ≤+−=∆ ∑∑
== 0~1~

1~,
γγ

γγγγ .                             (25) 

The local branching constraint divides the feasible region into two branches. 

Branching strategies are used continuously to generate better solutions until no improved 

solution can be found or a prescribed computational time limit is reached. Through local 

branching, multiple Benders cuts can be generated at each iteration. 

4.4.1.4 Benders decomposition algorithm 

Details of the Benders decomposition algorithm built on concepts described in previous 

subsections and proposed for solution of problem (DP) are described next. 
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1. Set  : 1t = and ∅=:1
DP . Solve the relaxation of problem (DP) (γ  is relaxed) to 

generate an upper bound, UB. Generate a feasible solution according to lexicographic 

ordering rules.  

2. Solve the Benders master problem and sub-problems. 

2.1. Solve problem ( tRMP ). Let tγ  be an optimal solution of objective function 

value tZ . { }tZUBUB ,min= . Use local branching to identify feasible solutions. 

2.2. Solve sub-problem )ˆ( tLSP γ  via column generation.  

2.2.1. Let the initial column be given by the shortest r-s path. If the LOS 

constraint is not satisfied for the shortest path, stop.  

2.2.2 Construct the restricted master problem using identified paths (i.e. columns) 

and solve to generate dual prices. 

2.2.3 Use the dual prices obtained in Step 2.2.2 to solve the constrained shortest 

path problem. If 1,0 Ppcp ∈∀≤ , stop; otherwise, identify columns (i.e. 

paths) for which 0>pc , add the new column to the master problem, and 

return to step 2.2.2. 

3. Let { }tpf  be a primal optimal solution and tz  be the sub-problem objective function 

value. Lower bound, { }tzLBLB ,max= . If LBUB = , then ( )t
p

t f,γ  is an optimal 

solution to problem (DP), stop; otherwise, set ( )t
p

tt
D

t
D fPP ,1 γΥ=+  and 1+= tt . Return 

to step 2. 

The algorithm terminates with an optimal solution to problem (DP).  



 

 86

4.4.2 Monte Carlo simulation 

In the previous subsection, an exact Benders decomposition technique is proposed for 

solution of problem (DP), the deterministic equivalent problem of stochastic program (P). 

To compute network resilience, Monte Carlo simulation is employed to generate a 

manageable number of samples (each sample creates an instance of problem (DP)) from 

random variates defined on the probability space to approximate the expectation of 

equation (1). This idea of sample average approximation has been suggested by numerous 

authors (e.g. Shapiro and Philpott, 2007). 

Monte Carlo methods are widely used to simulate the random behavior of systems 

through repeated sampling from random variables with given probability distributions. In 

an intermodal transport network, dependency among random arc capacities can be 

expected. For example, an earthquake will impact all transportation facilities in the same 

area at the same time. Correlation in arc capacity among these adjacent facilities should 

be expected and the correlation structure will differ considerably for varying types of 

events. To preserve the specified correlation structure among the random variables 

associated with the given event, the employed Monte Carlo method must generate 

random variates that maintain the same probabilistic characteristics. The approach 

developed by Chang et al. (1994) is applied to generate multivariate correlated random 

variates of arc capacities (see Appendix A for additional detail). This method has been 

previously applied in the context of transportation systems to generate random 
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interdependent link capacities (Chen et al., 2002). After a realization of the random 

parameters is generated, the exact method proposed in the previous subsection can be 

applied to solve each program (DP) for the given realization. The individual objective 

function values are collected to compute the resilience indicator α . 

4.5 Numerical experiments 

In this section, results of two sets of numerical experiments are presented. The first set of 

experiments involved an intermodal freight network in the Western U.S. These 

experiments were designed to illustrate the resilience concept proposed herein. The second 

set of experiments was conducted on four carefully designed hypothetical networks to 

study the role a network’s structure plays in resilience. The proposed solution technique 

described in Section 4.4 was implemented in Microsoft Visual Studio C++ 6.0 language 

with the ILOG CPLEX callable library 9.1 (2005). Experiments were run on a personal 

computer with Pentium (4) CPU 3.20 GHz and 2.00 GB of RAM. 

4.5.1 Illustration on Double-Stack Container Network 

The solution technique is applied to the 8-node, 12-arc Double-Stack Container Network 

as depicted in Figure 4-2. This rail network covers a wide area in the Western U.S. It 

involves 17 potential O-D pairs and includes nodes representing such cities as Chicago, 

Los Angeles, and Houston. In double-stack operations, containers are stacked one on top of 

another in layers of two. Additional detail concerning the network topology can be found 
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in (Morlok and Chang, 2004; Sun et al., 2006). Container travel times, including travel 

time along arcs and handling in railway terminals, are defined for each O-D pair. While 

not depicted in Figure 4-2, intermodal connections exist at every node (i.e. city) in the 

network, connecting the rail terminals with the highway network. A virtual highway link 

between every O-D pair was employed to model highway operations. Their travel times 

were set using estimates from GoogleMap and capacity was assumed to be sufficient to 

handle all freight transport demand for the region.  
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Figure 4-2 Western U.S. Double-Stack Container Network. 

Five types of scenarios were considered in these experiments as described in 

Table 4-1. Factors considered in the construction of these scenarios include the disaster 

classification, consequences of the disaster in terms of impact on arc capacities and 

intermodal operations, and an appropriate correlation matrix for the given disaster 

classification. In all scenarios considered, it was assumed, for simplicity, that only rail 

links were impacted or can be addressed through recovery activities. 
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Table 4-1 Characteristics of test scenarios 

Scenario Description Details on arc dependencies 

1 Bombing Randomly selected links in the network are nonfunctioning 

2 Terrorist attack 
Negative impact on arc capacities, large negative impact 
close to the emergency scene, less impact away from the 
emergency scene 

3 Flood Multiple connected links nonfunctioning over a large area 

4 Earthquake 
Randomly selected links over a large area are negatively 
impacted 

5 
Intermodal 

terminal attack 
Flow into and out of terminals in Chicago and Los Angeles 
significantly impacted due to an attack 

For area-wide disasters, as might arise under scenarios involving an earthquake 

(i.e. scenario 4), highway links may suffer similar disruption as rail links in affected 

subregions. For simplicity, in the experiments the duration required to traverse the 

highway links where a terminal exists in an affected subregion is increased by 30% from 

the average to account for likely delays incurred along the highway links. Greater 

increases might be considered, where devastation due to the disaster event is found to be 

very significant, and more detailed modeling of traffic impacts can be employed for 

greater accuracy. 

Dependencies among capacity random variables, which specify each scenario, are 

a function of the disaster classification. For instance, a snow storm will simultaneously 

affect all network components in the same area, leading to strong correlation among arc 

capacity random variables of adjacent arcs. And a terrorist attack on some location within 

the network will cause serious damage to one or more network components in a small 

area. Monte Carlo simulation is used to generate the realization of interdependent arc 
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capacities (specifying a network state) for a given scenario. Different correlation matrices 

are applied for each distinct scenario. In this chapter, the arc capacity, Aaca ∈∀, , is 

assumed to be a uniform random variable with a specified range [ ],a al u . 

Several recovery activities, defined as activities that can be taken in the 

immediate aftermath of a disaster to mitigate the disaster’s negative impacts and restore 

network capacity, are considered for implementation. Examples of potential recovery 

activities include, among others, rerouting shipments employing alternative transport 

modes (e.g. from rail to truck); restoring and repairing damaged infrastructure; building 

temporary roadways; instituting access control to an impacted area; utilizing spare parts 

or equipment, as well as extra personnel; and employing advanced traffic management 

strategies. Six hypothetical recovery activities were considered in the experiments, each 

with different duration, cost and effect as delineated in Table 4-2. While the recovery 

actions are generically defined, these actions are consistent with activities that might be 

undertaken to mitigate the impact of the specific disasters considered in scenarios 1 

through 5. For example, the changes created through recovery activity 2 are consistent 

with high-cost, short duration construction actions associated with capacity restoration 

along links of the network. Improvements rendered through recovery activity 3 may be 

consistent with the use of spare equipment, thus, the low cost, but relatively moderate 

impact.  

Intermodal networks may be more vulnerable than single-mode networks in terms 

of exposure to risk, but intermodal options provide greater opportunity for recovery in the 
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immediate aftermath of disaster. Recovery option 6 was designed to illustrate the impact 

of recovery opportunities that exist by virtue of intermodal connections, though needed as 

a consequence of an attack on intermodal terminals or other network link (scenario 5). An 

attack on an intermodal terminal would impact the ability to process intermodal 

containers. To accommodate affected shipments, containers that were to be shipped 

within the rail network through the impacted terminal can be rerouted along alternative 

railway lines or might be handled through truck transport along the highway links. 

Changes in arc capacity, implementation duration and costs resulting from and required 

for implementation of recovery activity 6 are consistent with a mode shift from rail to 

truck as might be required in response to a scenario like scenario 5. The high cost of 

transfer is expected due to the cost of terminal operations and the additional expenses 

associated with the last-minute hiring of trucking companies for what might be 

considered emergency circumstances. This last recovery activity assumes that capacity 

for transfer to truck is sufficient to meet all new demand. Alternate recovery actions 

might be considered under scenarios in which this is not the case.  

Assumptions regarding the durations and costs of recovery activities are given in 

Table 4-2. For each railway arc, it was assumed that pre-event arc travel times and 

capacities are known. Post-event capacities are randomly generated in accordance with 

the characteristics of the event and changes in travel times resulting from reduced 

capacity are determined as a function of change in capacity. Any change in arc travel time 

that results from a recovery activity is assumed to be directly correlated with 
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improvements in arc capacity resulting from that activity. For example, under the first 

scenario, if a recovery activity results in x percent increase in capacity along an arc, it is 

assumed that the arc travel time decreases by 0.1x percent. The total budget is assumed to 

be 30 units and travel time limitations are set for individual O-D pairs to a value slightly 

larger than the time required by the shortest path.  

Table 4-2 Characteristics of recovery activities 

Recovery 
activities 

Recovery 
activity 
duration 
(units) 

Cost 
(units) 

Recovery activity effect 
(% increase in affected 

capacity) 
Applicable for arcs 

1 2 6 10 1-12 
2 1 10 10 1-6 
3 6 1 5 7-12 
4 4 4 10 1,3,5,7,9,11 
5 3 8 15 2,4,6,8,10,12 
6 3 10 Return to original capacity 1-12 

To determine an appropriate sampling size for the Monte Carlo technique, 10,000 

iterations were run for a test case from which the objective function value was collected 

for each iteration. It is noted that the average objective function value steadily increases 

in the early iterations of the simulation and was determined to stabilize after 

approximately 5,000 iterations. Thus, a stopping criterion of 5,000 iterations was 

employed in all remaining tests. One might alternatively consider the mean square error 

and maximum error differences in the resilience distribution in determining an 

appropriate iteration in which to terminate the procedure.  

Computational results of the experiments are given in Figure 4-3. To compare the 

impact of recovery activities on resilience level under varying scenarios, post-event 
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resilience is measured assuming that post-event conditions will remain if no recovery 

activity is taken. Note that the resilience indicator proposed herein was designed for 

pre-event analyses. Thus, one could compute resilience of the Double-Stack Container 

Network as defined in prior sections, where all potential scenarios are considered in the 

computation.  
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Figure 4-3 Computational results for different scenarios 

The results show that recovery activities can lead to significant improvement in 

resilience level, indicating the importance of recovery activities in terms of network 

performance in the aftermath of a disaster. Over all tested scenarios, an average 

improvement in resilience of approximately 57% (with a range of 10 to 141%) was found 

as a consequence of considering recovery activities. It is worth noting that the resilience 

level is much smaller for scenario 4, where an earthquake is presumed to have occurred, 

than for other scenarios. This is due both to the greater link capacity degradation 

experienced in the scenario and presumed effectiveness of recovery activities. For 
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example, in an earthquake, it is presumed that the impact of the disaster event on both rail 

and highway is similarly significant. The wide difference between resilience levels with 

and without recovery activity options associated with scenario 5, involving attacks on 

intermodal terminals in Chicago and Los Angeles (perhaps the busiest terminals in the 

network), illustrates the magnitude of the potential role of recovery activities on system 

performance. 

To further illustrate the proposed concept of resilience, intermodal network 

implementations of network reliability and flexibility as defined in (Chen et al., 1999; 

Chen et al., 2002; Morlok and Chang, 2004; Sun et al., 2006) are computed under each 

scenario for the illustrative rail network and are compared with resilience. Chen et al. 

(1999 and 2002) define reliability as the probability that the network can accommodate 

the demand while maintaining a given service level and Morlok and Chang (2004) (also 

adopted in Sun et al., 2006) define flexibility as the ability to efficiently utilize the 

capacity of a traffic network to accommodate variations in demand while maintaining a 

satisfactory LOS.  

To compute these measures of reliability and flexibility, a bi-level optimization 

model was constructed in which lower-level decisions involve the assignment of traffic to 

the network and upper-level decisions involve the determination of the maximum demand 

multiplier (referred to as the reserve capacity) permissible given problem constraints. 

Similar constraints employed to measure resilience are employed in these models. 

Reliability is equal to the probability that the maximum multiplier can be set to a value 
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greater than the base demand level given random link capacities. Flexibility, on the other 

hand, is set to the difference between the maximum multiplier and base demand level 

divided by the base demand level. In Morlok and Chang’s work on flexibility, capacities 

are assumed to be fixed. Here, the expected value was determined.  

While, like resilience, reliability and flexibility are typically measured with no 

knowledge of a particular disaster event, to illustrate the impact of recovery activities on 

these network performance measures, post-event values are computed. The values of 

post-event reliability and resilience (considered with and without recovery activities) 

obtained from the experimental results are recorded in Table 4-3. While post-event 

flexibility was computed, the values were very similar to those obtained for reliability 

and, thus, are omitted. 

 Table 4-3 Comparison by performance metric 

Scenario 
Post-Event 
Reliability 

Post-Event Resilience 
Without recovery 

activities 
With recovery 

activities 
1 0.65 0.7 0.95 
2 0.6 0.65 0.90 
3 0.51 0.53 0.85 
4 0.48 0.5 0.55 
5 0.39 0.39 0.94 

The values of the network performance metrics given in Table 4-3 indicate that 

the measure of resilience when no recovery activities are considered provides similar 

information to its reliability and flexibility counterparts in all scenarios. When effective 

recovery activities are available, the reliability measure does not adequately capture a 

network’s resilience level. For example, to mitigate the impact of a disaster caused by a 



 

 96

bombing or terrorist attack (scenarios 1, 2 and 5), where highway links are relatively 

unaffected by the incident, shipments can be shifted from rail to truck. In such 

circumstances, a network’s reliability may be quite low, but its resilience may be quite 

high. That is, resilient networks are not necessarily reliable. The cost of making a 

network highly reliable may be much greater than making it highly resilient, because 

resilience accounts for actions that can be taken in the aftermath of disaster once the 

disaster’s impact is known. To achieve greater reliability, on the other hand, a priori 

actions must be considered to address all plausible disaster events. Thus, intermodal 

freight networks, as with other transportation networks, should be designed to meet 

acceptable levels of both reliability and resilience.  

One can construct networks and circumstances for which there is even greater 

disparity in relative performance (as measured by reliability, flexibility and resilience) 

over the various scenarios. For example, it is possible that the resilience of a network 

under scenario A could be higher than for the network under scenario B, but the reliability 

of the network under scenario B is higher than it is under scenario A. This may arise, for 

example, where effective recovery activities under scenario B require greater investment 

than the budget allows. 

4.5.2 Role of network structure in resilience level 

Casey (2005) found that topologies of infrastructure sensor networks have a great impact 

on the networks' vulnerabilities to disruptions. In this section, additional experiments 
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were developed to gain insight into the role of a network’s topology in its resilience level 

given the possibility of disaster occurrence. Network structure and operating 

characteristics were carefully designed for this purpose. Arcs were treated generically to 

maintain a maximum level of consistency in all experiments so as to isolate network 

structure from other features that could impact resilience level. Four network structures 

were considered: a complete network, where each node pair is connected by two oriented 

directed arcs with opposite direction; a random network with average degree two and 

indegree (and outdegree) of each node ranging between one and three; a grid network 

with a regular grid structure; and a network with multiple hubs, i.e. with three completely 

connected hubs into which traffic from outlying nodes feed. All networks were created 

with symmetry, i.e. if an arc originates from node i that is incident on node j, another arc 

originates at node j that is incident on node i.  

Table 4-4 Network structures 

Networks # of nodes # of arcs  
Average 
indegree 

Complete network 10 90 9 
Random network 10 20 2 

Grid network 10 30 3 
Hub-based network 10 30 3 

Table 4-4 synopsizes the characteristics of these different network topologies. All 

arcs in all networks were assumed to have capacities of four units that if impacted by 

disaster either decreased by 50 or 100 percent, determined randomly assuming a binomial 

distribution. Travel times were assumed to increase by 100 or 400 percent, consistent 
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with the chosen capacity reduction.  

Three sets of recovery activities were considered under all runs. In the first set, 

each activity raises the capacity of the arc to which it is applied by one unit, decreases the 

arc’s travel time by two units, requires one unit of time for its implementation and costs 

$10. The second set results in increased capacity of two units and decreased travel time of 

four units. Each activity in this set requires two units of time for its implementation and 

costs $25. The third set results in increased capacity of three units and decreased travel 

time of six units. Each activity requires two units for its implementation and costs $50. 

Three disaster scenarios were considered, the first impacting a randomly chosen 

set of five arcs, the second impacting a randomly chosen set of half the network arcs and 

the third impacting all network arcs. Four budget levels were applied: $0, $200, $500 and 

$1500. In addition, it is assumed that 16 units of flow (each unit of flow corresponding to, 

for example, a train) seek the use of the network. These units are evenly distributed 

across possible O-D pairs. The maximum allowable travel time, max
wT , is assumed to be 

50 percent above path travel time requirements under normal conditions for all O-D pairs. 

Results of these experiments are given in Table 4-5. Five hundred runs were made 

for each specification. Each run required less than one minute of computational time. 

Table 4-5 Computational results 

Networks 
# of arcs 
impacted 

Budget 
Resilience level 

(%) 

Complete 
5 $0 100 
5 $200 100 
5 $500 100 
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5 $1500 100 
Half $0 99.1 
Half $200 100 
Half $500 100 
Half $1500 100 
All $0 36.0 
All $200 50.9 
All $500 84.1 
All $1500 98.5 

Random 

5 $0 72.1 
5 $200 98.7 
5 $500 100 
5 $1500 100 

Half $0 54.0 
Half $200 59.7 
Half $500 83.4 
Half $1500 100 
All $0 10.1 
All $200 35.3 
All $500 83.8 
All $1500 98.3 

Grid 

5 $0 85.5 
5 $200 98.7 
5 $500 100 
5 $1500 100 

Half $0 62.3 
Half $200 72.5 
Half $500 92.1 
Half $1500 100 
All $0 15.3 
All $200 47.7 
All $500 71.6 
All $1500 99.0 

Hub-based 

5 $0 95.2 
5 $200 98.8 
5 $500 100 
5 $1500 100 

Half $0 65.6 
Half $200 86.8 
Half $500 93.5 
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Half $1500 100 
All $0 12.4 
All $200 75.0 
All $500 94.2 
All $1500 100 

The results show that for each network, the level of network resilience decreases 

dramatically with the severity of disruptions and increases with the growth of recovery 

budget. If a significant number of arcs in the network are impacted and no recovery 

activities can be undertaken, all networks exhibit poor performance. That is, the LOS 

constraints cannot be met for most O-D pairs. With an appropriately set budget, network 

resilience levels greatly improve. These findings are consistent with those from tests of 

the Double-Stack Container Network. 

The experimental results also indicate that complete networks are very resilient. 

Such networks exhibit high levels of redundancy. Random networks with average 

indegree or outdegree of two were found to be the least resilient among the four tested 

network classes. The tested random network included few alternative routes between O-D 

pairs. Random networks with higher average degree will likely be more resilient. In 

nearly all tests, the hub-based network was more resilient than the grid network, 

especially when recovery activities could be undertaken. It appears that the nature of hubs, 

which are associated with the majority of network connections, plays a role in the 

network’s resilience level. Unless critical links connecting pairs of hubs are impacted, 

connectivity is maintained for most node pairs even when many links are impacted. If 

recovery activities can be undertaken, critical links in the hub-based network will 
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consistently be chosen for repair, restoring normalcy with narrowly focused recovery 

actions. 

4.6 Conclusions and extensions 

From the perspective of both researchers and practitioners, disaster recovery is considered 

by some to be the least understood aspect of emergency management (e.g. Berke et al., 

1993). In this chapter, a quantitative, system-level indicator of network recovery capability 

was proposed. A definition of resilience for intermodal freight networks was developed 

and a stochastic, mixed integer program was formulated. Concepts of Monte Carlo 

simulation and Benders decomposition were integrated to produce a technique for its 

solution. The solution methodology was employed in a set of computational experiments 

performed on the Double-Stack Container Network in which recovery activities that could 

be undertaken immediately, requiring relatively short implementation time, were 

considered. These experiments illustrate the resilience concept and show that post-disaster 

activities can greatly improve resilience levels, and thus, mitigate the negative impact of 

disasters. The results also indicate that recovery activities are critical to a network’s ability 

to recover and cannot be neglected. Competing measures, such as reliability and flexibility 

that do not consider recovery actions may underestimate the network’s ability to cope with 

unexpected events. In fact, a network may not be very reliable or flexible, but may be 

resilient or may be reliable or flexible, but not sufficiently resilient.  

The resilience concept was also applied in experiments involving four carefully 
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designed networks with dissimilar topological structures, including complete, hub-based, 

grid and random structures. Results of these experiments indicate that topological 

structures with limited redundancies faired worst given a lack of available funds for taking 

recovery actions; however, even with limited or more modest budgets, improvements in 

network resilience levels could be obtained. Additionally, greatest improvements were 

achieved in those networks where few actions might lead to restoration in connectivity 

between the largest number of O-D pairs, as is the case in a network with hubs. Thus, these 

experiments indicate that network structures that traditionally fair poorly when reliability 

is considered can, with only limited recovery action, perform reasonably well, as recovery 

actions can be focused on highly critical links. This also indicates that pre-disaster 

planning might be warranted for such networks to ensure that such actions can be quickly 

and inexpensively taken in the aftermath of disaster. 

Modifications to the problem formulation and solution approach may be desired to 

consider recovery activities that are available only under specific scenarios. Such 

modifications would entail adding a dimension to the recovery activity selection variables 

within the formulation. The proposed solution technique could be immediately adapted for 

this purpose. 

This work was motivated by security and mobility concerns in the Washington, 

D.C.-New York freight corridor, one of the nation’s most critical freight transport lifelines. 

New York is home to one of the largest concentrations of transportation facilities in the 

world, including three major airports, dozens of container and intermodal yards and more 
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than 11,000 miles of highways (Holguin-Veras, 2000). With both the nation’s capital and a 

global financial center, this corridor is particularly susceptible to terrorist attack. 

Moreover, as the corridor runs along the coast, it is susceptible to natural hazards. The 

proposed solution framework employs an exact procedure over a set of network states for 

each disaster scenario. As the network resilience problem given only one possible network 

state is NP-hard, exact solution for large, real-world networks, such as the Washington, 

D.C. – New York corridor, will be difficult to obtain. To decrease the computational effort 

required, one might consider only the highest priority O-D pairs. Such consideration would 

require only a nominal change in the objective function. Additionally, in this work, 

recovery activities associated with individual arcs are considered. Instead of considering 

all possible combinations of recovery activities associated with all arcs, a subset of these 

combinations can be considered. Alternatively, a heuristic may be employed for computing 

the resilience of large networks. The proposed technique can be used to provide exact 

solution on a set of benchmarks to which the heuristic solutions can be compared. 

Specific details of the types of resilient-building activities that can be undertaken 

prior to, or in the immediate aftermath of, a disaster, such as increasing transportation 

system diversity and promoting intermodalism, increasing network redundancy and 

connectivity, hardening facilities to withstand extreme conditions, and preparing backup 

fleets and personnel, should be further explored. Through sensitivity analysis, it may be 

possible to identify critical system components and obtain valuable information that can be 

used in prioritizing activities to be undertaken. Additional efforts may also be expended to 



 

 104

extend the proposed resilience concept for use in passenger transport systems. 

The focus of this work is on measuring network resilience as it concerns network 

performance in the immediate aftermath of a disaster. It is presumed that all actions will be 

reactive, require relatively limited time for implementation, can be implemented 

immediately and are taken in the aftermath of disaster. It may be beneficial, however, to 

take some preparedness actions, i.e. proactive measures, prior to disaster occurrence and 

before the random attributes of the disaster scenario are realized. Such actions may include 

changes that impact network structure, such as added capacity or redundancies, or that 

enhance opportunity for quick recovery, such as relocation of supplies for more immediate 

access in the event of disaster. These actions would be determined in the first stage. 

Program (P) can be modified for this purpose.  

While not the focus of this work, one might extend this work to consider long-term 

recovery and reconstruction. Such considerations would require a dynamic network model, 

where capacity is recaptured over time, and time-dependent arc traversal times and 

capacities that reflect changes in network performance as post-disaster conditions improve. 

This can be the subject of future research. Additionally, one might consider travel time as a 

function of link flows; however, the resulting formulation will likely be nonlinear. 
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Chapter 5   Optimal Team Deployment in 

Urban Search and Rescue 

5.1 Introduction 

In this chapter, the problem of optimally deploying federal, state and/or local urban 

search and rescue (USAR) teams with required equipment and other resources to disaster 

sites in post-disaster circumstances is studied. USAR equipment includes: cranes, 

bulldozers, tow trucks, bracing, generators, boats, helicopters and other large heavy 

equipment; cutting tools; canine units; robots, infrared detection devices, heat sensors, 

sonar, probes, microphones, remote fiber-optic cameras, and other technologies; and 

medical supplies (Olson and Olson, 1987; Alexander, 2002). USAR teams must locate, 

extricate and provide emergency medical assistance to people who have become trapped 

or wounded in the disaster and are in need of either medical assistance or assistance in 

escaping (FEMA, 2006). The primary focus of this work is in USAR for large-scale 

(area-wide) urban disasters caused by natural (e.g. hurricane, tornado, earthquake, or 

flooding) or human-induced (accidental or terrorist) events, where key decisions relating 

to search and rescue must be made quickly. In such large-scale disasters, local response 

capabilities are often overwhelmed and state and national, and sometimes international, 

resources are required to serve the acute demand for response and rescue. 

It is often the case where an urban area has been struck by disaster that the impact 
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area contains numerous sites, such as where buildings or other structures suspected of 

housing people stood prior to the disaster, where survivors may be trapped. Lessons 

learned from first-hand experience in USAR activities following three natural disasters in 

1985 and 1986 are presented in (Olson and Olson, 1987): the Mexico City earthquake 

that involved hundreds of failed buildings; the Nevado de Ruiz volcanic eruption and 

ensuing lahar in Colombia that buried approximately 80 percent of the city; and the San 

Salvador earthquake involving the collapse of eight major structures. Similar experience 

was noted following each of two earthquakes with epicenters in Turkey that occurred in 

1999 to which U.S. FEMA task forces were deployed (FEMA, 2006). More recently in 

2008, the Wenchuan earthquake in China caused 80% of the buildings in the earthquake 

zone, which included multiple cities, to collapse, burying thousands of people. Numbers 

of local, national and international search and rescue teams joined the rescue efforts in 

the days following the disaster (Zhang and Jin, 2008). 250,000 residences and 30,000 

commercial buildings collapsed or were severely damaged as a result of an earthquake in 

the Haitian capital of Port-au-Prince in 2010. The extent of structural damage is depicted 

in Figure 5-1 (UNOSAT, 2010). USAR support was sent from around the globe. These 

area-wide disasters involved numerous structural failures, hundreds to tens of thousands 

of difficult to locate victims requiring extrication and emergency care, damaged 

infrastructure, and disrupted societies. When the number of sites requiring emergency 

response assistance outnumbers the number of USAR teams that can be deployed, 

decisions must be made on the ordering of site visits and team assignment to the sites.  
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Figure 5-1 The building damage map of Port-au-Prince, Haiti following the 2010 
earthquake  

Statistics show that 90% of all survivors of disaster are saved within the first few 

hours of an incident. Following the 1976 Tangshan earthquake, the survival rate declined 

from 81% to 7.4% between the first and fifth day (Olson and Olson, 1987) post-disaster. 

Given the fact that the likelihood of finding survivors at any location decreases over time 

(Olson and Olson, 1987; Noji, 1997; Poteyeva et al., 2007; Barton, 1969), decisions on 

which disaster sites to visit and the order in which to visit the sites will impact the 

number of survivors who can be saved. Generally, one would prefer to visit a site where 

many people with a high likelihood of survival are present than a site where few people 

are present and the likelihood that any of them are alive and can be saved is low so as to 

save the largest number of people. This sentiment is well captured in the following 
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statement. 

“Indeed, as cruel as it may sound, local decisionmakers in a disaster may 

have to engage in what might be called ‘structural triage’; that is, because 

the demand for urban heavy rescue will certainly exceed capabilities, UHR 

resources will have to be concentrated on those sites where the lifesaving 

‘payoff’ appears highest (Olson and Olson, 1987).” 

FEMA supports 28 federal USAR task forces across the U.S. When a governor 

requests the assistance of the FEMA task forces and FEMA grants the request, the closest 

task forces and those on rotation are sent. Each task force consists of specially trained fire 

and rescue personnel, physicians, paramedics, structural engineers, canine handlers, crane 

operators, and other personnel and each task force is supplied with heavy- and 

light-rescue equipment. State-level USAR task forces with similar training exist in some 

states. In addition, numerous voluntary organizations whose members are specially 

trained for USAR operations exist in all states within the U.S. (Poteyeva et al., 2007). For 

simplicity, these organizations are classified as state USAR resources herein. Should an 

event require the response of both state and federal USAR task forces, each task force is 

treated as a resource for the incident commander. The incident commander, a local fire 

chief, if a fire is active, or even the mayor, collects real-time information, communicates 

with the task forces and manages the response.  

Determining an effective team deployment strategy for managing the response is 

challenging. Circumstances immediately following disaster are often physically hostile 
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and mentally confusing, making well reasoned decisions difficult. Moreover, decisions 

must be taken quickly despite that the number of possible actions/policies that must be 

considered can be quite large. An effective response, though, is crucial to saving lives. 

For example, following the 2003 earthquake in Bam, Iran, hundreds of teams from 

national governmental agencies, 44 foreign countries, the United Nations, and other 

non-governmental organizations arrived at the disaster region. Despite the tremendous 

response, significant fatalities were incurred due to delays in the deployment of available 

USAR resources as a result of a lack of coordination (Ramezankhani and Najafiyazdi, 

2006).  

In this chapter, the problem of determining the optimal deployment of USAR 

teams to disaster sites within the disaster region, including the order of site visits, with 

the ultimate goal of maximizing the expected number of saved lives over the search and 

rescue period, referred to herein as the USAR team deployment problem (USAR-TDP), is 

addressed. The need to model the uncertain nature of conditions inherent in situations 

requiring USAR stems from a multitude of factors, the most significant of which is the 

uncertainty in the time required to extricate survivors from each site and knowledge of 

site locations. The USAR-TDP is formulated as a multistage stochastic program (MSP). 

The demand site and time for extrication are random quantities and new sites containing 

additional demand for help (referred to herein as demand arrivals) may emerge randomly 

over time. USAR teams arrive at the scene over the decision horizon. Finally, survival 

rates diminish with the passage of time. Decisions are taken dynamically over the 
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decision horizon as situational awareness improves. At the beginning of the decision 

horizon, a subset of disaster sites with a positive number of survivors is known. The 

incident commander determines sets of tours based on the available demand information, 

travel times, and stochastic on-site service times. The tours must be rapidly determined. 

When new demand arrivals become known, and service times are revealed at visited sites, 

the incident commander will update the tours with the aim of increasing the expected 

number of served lives. 

This depiction of the USAR-TDP, in addition to considering problem dynamics, 

explicitly addresses the inherent variability encountered in situations requiring USAR 

operations. Uncertainty in demand and time for extrication is due to the fact that little is 

known at the onset of the disaster about the number, location, or medical condition of the 

victims. The likelihood of finding and extricating survivors at a particular site can only be 

known probabilistically prior to arrival at the site.  

A column generation-based methodology employed to solve a sequence of 

interrelated two-stage stochastic programs with recourse is proposed for the solution of 

USAR-TDP. Such solutions can aid the incident commander in determining the best 

deployment strategy for available USAR task forces by directing crucial assets to sites 

within the impact area, where the most good can be done in the first days of the 

emergency period.  

Related works are discussed in the next section. This is followed by problem 

definition and discussion of related properties. Details of the proposed solution procedure 
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are presented in Section 5.4. The technique is applied on an illustrative example, results 

from which are discussed in Section 5.5. Finally in Section 5.6, contributions and 

potential extensions are discussed. 

5.2 Related Research 

Few works in the literature consider optimization in search and rescue operations (see, for 

example, Gal, 1979; Alpern, 2005; Jotshi et al., 2008) and these works propose random 

search techniques for military and maritime applications, where the objective is to locate 

a missing person or object. Such formal search theory does not provide direct benefit for 

solving the USAR-TDP, because the potential search locations (i.e. the sites) can 

typically be quickly identified. The dynamic resource allocation problem related to the 

initial search and rescue period with the goal of minimizing fatalities over the time 

horizon was considered in Fiedrich et al. (2000). A integer program was developed with a 

nonlinear objective function in which fatalities are calculated over a time horizon and 

assignment constraints. Heuristics using concepts of both simulated annealing and tabu 

search were implemented for its solution. No other optimization-based works in the 

literature were found with direct application to the USAR problem addressed herein. 

While there is rather extensive literature related to other emergency response 

applications, more commonality exists with other, seemingly unrelated problem classes. 

Thus, this review focuses on the more related areas of dynamic routing and scheduling, 

and dynamic resource allocation. Problem dynamics must be considered because 
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consideration of uncertainty alone can only facilitate pre-planned solution (Kenyon and 

Morton, 2003). Finally, routing problems with rewards, including the time-dependent, but 

deterministic team orienteering problems, are also reviewed as, if appropriately modified 

to handle random inputs and employed within a dynamic framework, solution methods 

developed for this class of problems may have applicability in solving the USAR-TDP. 

Dynamic routing and scheduling problems have been studied extensively. They 

fall into the class of on-line routing problems. Such problems are characterized by 

dynamics associated with service requests that arise over the problem horizon and 

stochasticity in information pertaining to, for example, customer presence, customer 

demand, travel times and service times, that cannot be known at the time of planning, or 

are only revealed as time progresses. Such information can be described by random 

variables with known probability distributions. An overview of works addressing 

dynamic routing and scheduling problems can be found in (Psaraftis, 1995; Bertsimas 

and Simchi-Levi, 1996; Gendreau and Potvin, 1998; Ghiani et al., 2003; Laporte, 2009). 

Powell (1995), in addition to reviewing these works, described the advantages of 

dynamic models over comparable static models for these problems and discussed various 

approaches to dealing with uncertainty.  

In the related literature, problem dynamics are tackled either by myopic 

approaches (e.g. Mahmassani et al., 2000; Larson et al., 2002; Chen and Xu, 2006) or by 

look-ahead procedures (e.g. Larson et al., 2004; Mes et al., 2008). In the more myopic 

approaches, routing plans are developed based only on available information at time of 
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decision; the possibility of new customers arriving in the future is, thus, ignored. Such 

methods are suitable for situations where future events are difficult to forecast. On the 

contrary, look-ahead procedures take probabilistic information concerning the future into 

account so as to improve performance over the time horizon. Mitrovi´c-Mini´c and 

Laporte (2004), and Branke et al. (2005) show that pre-positioning vehicles in 

anticipation of future demand can lead to greater probability of servicing future potential 

customers. Bent and Hentenryck (2004) found that significant gains were produced by 

considering the possibility of randomly arriving customers over the future with respect to 

the dynamic vehicle routing problem. These approaches require estimates of arrival 

process probability distribution functions. 

A special case of dynamic, stochastic vehicle routing problems is the dynamic 

traveling repairperson problem (DTRP) originally proposed by Bertsimas and Van Ryzin 

(1989). In this problem, vehicles must service customers that arrive according to a 

Poisson process. Customers require stochastic on-site service time. Bertsimas and Van 

Ryzin (1991) considered the system as a spatially distributed queueing system and looked 

for a single routing policy that minimizes the expected time customers must wait for 

service completion given known probability distributions of random service times. 

Larsen et al. (2002) examined routing policies for the partially dynamic DTRP in which 

some customers are known in advance while others arrive while the vehicle is en route.  

Two general modeling frameworks that account for sequential realized random 

variables are commonly used: multistage stochastic programs with recourse (e.g. 
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Frantzeskakis and Powell, 1990; Chueng and Powell, 1996) and Stochastic dynamic 

programs with discrete time (e.g. Gendreau et al., 1999; Yang et al., 2004; Chen and Xu, 

2006). A number of techniques are applied for the solution of multistage stochastic 

programs with recourse. These techniques can be classified into one of several categories: 

solution of the deterministic equivalent formulation (a computationally intractable 

approach often resulting in unnecessarily expensive solutions), sampling methods (which 

explicitly enumerate the space of possible outcomes), the deterministic mean method 

(replacing every random variable with its mean value), approximation methods 

(approximating the recourse function as a set of linear functions or as a piecewise linear 

and convex function), and decomposition methods (which decompose the original 

problem into a collection of deterministic sub-problems usually governed by a master 

problem). The majority of solution techniques found in the literature that build on these 

general classes of approaches are, however, heuristic. Various heuristics have also been 

proposed in the literature to address stochastic and dynamic program, including 

rule-based heuristics, metaheuristics such as tabu search and genetic algorithms, 

approximation dynamic programming, scenario-based methods and mathematical 

programming-based methods. 

In the dynamic resource allocation problem (DRAP), tasks arriving over time 

must be covered by a set of indivisible and reusable resources of different types. The 

arrival process of tasks is known only through a probability distribution. Each task 

requires a certain amount of resources and produces an associated reward. Such problems 
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are often modeled as either dynamic assignment problems or dynamic and stochastic 

knapsack problems (DSKP).  

The dynamic assignment problem can be viewed as an instance of the dynamic 

resource allocation problem, where a complex resource (e.g. a vehicle) must be 

dynamically assigned to tasks (loads) that arise randomly over time. Powell (1996) 

formulated the dynamic assignment problem in the context of load-matching for 

truckload trucking using a nonlinear approximation of the future value of resources. 

Powell et al. (2000) proposed a myopic model and algorithm for the dynamic assignment 

problem of routing a driver through a sequence of customers with loads in the context of 

truckload trucking. Spivey and Powell (2004) proposed a more general class of dynamic 

assignment models and developed an adaptive algorithm to iteratively solve a series of 

interrelated assignment problems.  

Kleywegt and Papastavrou, among others, have proposed solution techniques for 

the DSKP (1996, 2001). Demand (constraining the problem) arises randomly over time 

and resources for serving the demand (i.e. items to pack in the knapsack) become 

available over time. Each unit of demand requires a specific amount and type of resource 

and has an accompanying reward that is unknown before arrival. The objective is to 

determine an optimal policy for serving demand so that the expected total reward 

achieved is maximized. The problem was formulated as a Markov decision process. 

Properties of the value functions proposed in each of the works were presented and 

optimal policies and stopping rules were provided. Lin et al. (2007) studied a set of 
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myopic policies for the DSKP and found that of the studied policies, the best policy is to 

wait (and not assign resources) until demands with the highest price.  

While DRAPs share some properties with the USAR-TDP, the need to route 

resources is not considered. Time (resources) consumed by items in the DRAP does not 

depend on the order in which the items are served. Thus, the USAR-TDP, while similar 

in many respects to the DRAP, has the added complicating factor associated with 

order-dependent resource needs. To apply solution techniques designed to address the 

DRAP in solving the USAR-TDP, the solution techniques would need to consider the 

arrangement of items within the knapsack, as how the items are arranged will affect the 

space they occupy (i.e. the time required to complete the route). Moreover, the capacity 

filled by these items would be time-dependent (as travel time is time-dependent in the 

USAR-TDP). Similarly, the exact and heuristic techniques for solving dynamic routing 

and scheduling problems cannot be applied directly in solution of the USAR-TDP, 

because they do not account for the need to visit only a subset of identified customers so 

as to maximize the rewards gained by visiting each customer. The DVRP can be 

considered as a special, less complicated case of the USAR-TDP. Incorporating the 

decreasing survival likelihood endemic in the USAR-TDP cannot be addressed by 

techniques devised for either dynamic resource allocation or dynamic routing and 

scheduling problems.  

Another class of problems with possible relation to the USAR-TDP is the class of 

selective routing problems. The Team Orienteering Problem (TOP) is a well-known 
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reward-collecting problem (a type of selective routing problem) that seeks a set of m 

vehicle tours restricted by a pre-specified limit such that the total reward received from 

visiting a subset of customers is maximized. A number of heuristics have been proposed 

for the TOP: a greedy construction procedure (Butt and Cavalier, 1994), the 5-step 

heuristic (Chao et al., 1996), a tabu-search based heuristic (Tang and Miller-Hooks, 2005) 

and an ant colony optimization approach (Ke et al., 2008). The only two exact algorithms 

that address the TOP are based on column generation (Butt and Ryan, 1999) and 

branch-and-price (Boussier et al., 2007). A closely related problem, with greater 

relevance to the USAR-TDP, is the maximum collection problem with time-dependent 

rewards (MCPTDR). In the MCPTDR, the sequence of customers to be visited for one 

vehicle over multiple days is determined so as to maximize the total collected rewards 

(Tang et al., 2007). Erkut and Zhang (1996) addressed a related problem in which 

rewards are assumed to be monotonic decreasing functions of time. They developed a 

branch-and-bound-based heuristic for its solution. Other related routing problems in the 

literature include the prize collecting traveling salesman problem (TSP), TSP with profits, 

and selective vehicle routing problem (SVRP). These reward collecting problems are 

more complicated than the well-known TSP or VRP in the sense that not only tour must 

be planned, but also a subset of customers must be selected for routing and assignment. 

The USAR-TDP considered herein can be modeled as a MCPTDR with multiple 

vehicles (i.e. USAR teams) and rewards that strictly decrease over time (due to 

decreasing likelihood of survival). Each customer in the MCPTDR represents a disaster 
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site. To capture problem dynamics (i.e. evolving information concerning demand arrivals 

and estimated on-site service times), the technique developed by Tang and Miller-Hooks 

can be embedded within a rolling horizon framework to capture problem dynamics 

(minor modifications would be required to incorporate multiple teams). Uncertainty in 

site service times cannot be easily addressed, however. 

To the best of the author’ knowledge, no other work in the literature with greater 

relevance than those reviewed herein exists and no work in the literature can be directly 

applied to solve the USAR-TDP. 

5.3 USAR team deployment problem 

In this section, the USAR-TDP is defined and a multistage stochastic formulation of the 

problem is presented. The USAR-TDP is characterized by the fact that demand arises 

continuously and randomly over a decision horizon, often at a pace that exceeds available 

resources. Thus, this requires the incident commander to make life-and-death decisions as 

to how these limited resources are to be deployed in an environment where every minute 

counts.   

5.3.1 Stochastic, dynamic search and rescue networks 

A network representation of the disaster-impacted area is exploited to formulate the 

USAR-TDP. In such a network representation, nodes represent potential sites, where 

survivors who are in need of assistance are likely to be located. The network arcs 
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represent the passageways (e.g. roadways) connecting the sites. Let ( )AVG //= ,  serve as 

a model of the disaster-impacted region, where vertex set { } LV Υ0=/  represents the 

origin (vertex 0, from which USAR teams are dispatched) and a set of geographically 

dispersed disaster sites { }LL ,...,2,1= , and arc set ( ){ } ,,, jiVjijiA ≠/∈=/ , representing 

connections between all pairs of locations. Thus, a complete graph is assumed; the 

shortest path length between each pair of nodes is employed. 

The network is considered at a set H/  of discrete time periods (i.e. stages) 

{ }δht +0 , where Hh ,...,2,1,0= , and δ is a constant increment of time. δHt +0 , defines 

the last time interval in H and, thus, the decision horizon. It is reasonable to set Hδ to the 

number of days beyond which there is no hope of finding victims alive. Thus, there are 

1+H  number of periods in the decision horizon, and { }HH ,...,1,0=/  are the times at 

which decisions are made. The travel time between sites and on-site service times are 

assumed to require at least one period that would be half an hour or one hour. 

The demand (i.e. the number of survivors requiring assistance) at site i in stage h 

is denoted by h
id . It is assumed herein that the demand size is known deterministically 

once the demand location is realized because demand forecasts can be made based on the 

size and use of buildings, as well as materials from which they are constructed, building 

occupancy. As situational awareness improves with time, new information impacting 

forecasts of demand arrivals will be received over the course of the search and rescue 

period and new demand sites will be recognized. It is assumed that no new demand will 

be generated at a site that is already served, because a USAR team will only leave a site 
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after ensuring there is no remaining demand to serve at the site. The amount of demand 

generated at such later times relative to the total demand generated over the decision 

horizon reflects the degree of dynamism of the post-disaster system as defined by Larson 

(2000) in the context of dynamic vehicle routing problems. Specifically, a probability 

space ( )ΡΩ ,F,  under which a Poisson arrival process ( ) 0≥ttN  with intensity λ is 

defined. The sequence of demand arrival epochs corresponds to the Poisson process 

arrival times. It is assumed that demand arrivals only occur at the beginning of a stage.  

As the likelihood of survival diminishes over time, there will be a reduction in the 

number of people seeking assistance (i.e. demand) over time. Consequently, demand 

decreases with increasing stage number. It is assumed that once a site is visited, all those 

alive upon the team's arrival on site will require extrication and the number of people to 

survive will be a function of the arrival stage even if extrication is completed in a later 

stage. The demand reduction ratio for different stages is given by { }Hγγγ ,...,, 10 , where 

0...1 210 =>>>≥ Hγγγγ . Thus, for demand h
id  carried from the previous stage, 

1−⋅= h
ih

h
i dd γ . 

Associated with each vertex Li ,...,2,1=  is an on-site service time, is , for 

completing search and rescue operations at this site. The on-site service times cannot be 

known a priori as the exact time required for extrication of even one person cannot be 

known a priori of certainty. Service time depends on the number of survivors located on 

site, working conditions, team make-up and equipment, as well as many other factors. It 

is not always the case that a larger number of survivors will require longer service time, 
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as one difficult to extricate case may require more time than efforts associated with a 

number of less difficult to extricate cases. Thus, service time is  at site i is is a random 

variable with a finite number of discrete, positive and integral support points and is 

independent of the site demand and time stages. Actual service times are revealed only 

when USAR team arrives at the site. It is assumed that service can not be disrupted; that 

is, a team will complete its service at a site before moving on to a new site and any work 

on site begun prior to the end of the decision horizon will be completed.  

A travel time matrix { }( ) HhAji

h
ijtT

/∈/∈
=

,,
 is defined on HA /×/ . Travel times are 

assumed to be constant over the decision horizon. This assumption is supported by events 

of the 2010 Haitian earthquake, where few resources were available during the first few 

days following the earthquake for roadway repair. Moreover, there is no evidence in the 

reviewed literature that helicopters or other forms of transportation that would quicken 

the travel times became available for wide use over the decision horizon.  

A set of homogeneous USAR teams are available at the depot for deployment 

over the decision horizon, { },...,K,K 21=/ , where K is fixed and indicates the number of 

available USAR teams. While a portion of these teams will be ready for deployment at 

the beginning of the decision horizon, some teams may arrive at later stages. It is 

assumed that the time of arrival of USAR teams over the course of the decision horizon is 

known a priori and any team to arrive to the disaster region over the decision horizon 
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does so at the beginning of a stage. The number of teams available in stage h is denoted 

by hk  and ∑
=

=
Hh

hkK
,...,0

.  

Regardless of the magnitude of the disaster, it is expected that the number of sites 

requiring response is significantly larger than the number of available teams; that is, L > 

K. Thus, it is not advantageous for any team to sit idle at any point in the decision horizon. 

A team can only receive new instructions upon completion of service at a site. A team 

can change its destination while en route, but cannot leave a site before completing its 

work. No more than one team will be assigned to a given site and no site will be visited 

more than once. 

Each team follows a tour, i.e. a sequence of sites ],...,,0[ ji , beginning from the 

depot. The tours need not return to the depot. It is anticipated that each designed tour will 

cover the span of the decision horizon and no team returns to the depot until USAR 

operations are complete and the decision horizon has elapsed. That is, the duration of 

each tour is no greater than H. So that reasonable working conditions are maintained, 

rescue workers must be provided with opportunities to rest and obtain basic sustenance. 

Such periods of rest can be accommodated by idling teams at regular periods, but, for 

simplicity, are not explicitly considered herein. The USAR-TDP seeks a set of K tours 

through all or a subset of known demand sites located at geographically dispersed 

locations within the disaster region such that the expected total number of survivors 

extricated by available USAR teams is maximized.  
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An important dimension of the USAR-TDP is the evolution of information. As 

time progresses, the decision-maker gradually comes to know more about the true state of 

the situation. That is, the sites to be served, new sites entering the system, the time 

required to extricate survivors become known. Additionally, improved situational 

awareness can lead to improved future estimates. It is even possible that surveillance 

teams are deployed within the region to gather information that is then shared with the 

decision-maker. It is assumed that decisions in stage h must be made using the 

information available at the time the decision is taken (i.e. prior to stage h). Forecasts for 

future stages can also be updated based on such information. The reality of the disaster 

impact is fully realized only at the end of stage H. With the assumptions and definitions 

in mind, the USAR-TDP is formulated next.  

5.3.2 Multistage stochastic formulation 

To model the process of decision making given uncertainty in disaster site locations and 

service times at known locations over a finite decision horizon, a multistage stochastic 

program is developed. Such multistage stochastic programs capture the information 

structure that can be represented by scenario trees. At each time period in the decision 

horizon, each USAR team is either serving a site or en route to a site. When a team 

completes its work at a site, it becomes available for repositioning to a new site. Whether 

it will follow the previously planned tour or a new tour is determined. That is, sites can 
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be reassigned between teams and the order of visits can be altered. The following 

decision variables are defined related to these decisions. 

h
ijkx  = 





otherwise,,0

, stageat   site fromdirectly   site  to travels  teama if,1 hijk
 

h
iky  = 





otherwise,,0

, stageat   siteat  service its starts   teama if,1 hik
 

Parameters of the model not previously defined are given as follows. 

h
id̂  = demand at site i that is first revealed at stage h, Li

h
i

h dd ∈= }ˆ{ˆ   

h
id  = demand at site i that was carried over from a previous stage 

h
id

~
 = demand for USAR service at site i at stage h, 1ˆ~ −+= h

ih
h
i

h
i ddd γ  

Let ( )Hξξξ ,...,1= be a discrete-time stochastic information process over a finite 

probability space { }PF,Ω, . An outcome hξ
~

 sets the realization of random variables for 

all sites visited (or identified in stage one or higher) prior to stage h. Thus, the history of 

realizations and decisions can be captured by a state variable 

{ }),,
~

(),...,,,
~

(),,( 11
1

11
1

00 −−
−= hh

hh yxyxyxS ξξ . A decision ),( 00 yx is made to satisfy the 

constraints in stage zero. Thus, a decision vector ( ) ( )h
hhh SXyxz == ,  is made then for 

stage h, where X  is a mapping from states to a finite number of decisions. Generally, 

for any stage h, decisions ( )hh yx ,  have to be adapted to the sequential information 

process hS . The USAR-TDP can be written as the following multistage stochastic 

program.  
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h
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{ } { } hkjiyx h
ik

h
ijk ,,,1,0,1,0 ∀==  (7) 

The objective function (1) seeks to maximize the expected number of people that 

can be saved over the decision horizon. Constraints (2) require that available USAR 

teams are immediately deployed from the depot. Constraints (3) and (4) are flow 

conservation constraints, defining the time upon which each team arrives at the assigned 

site and the time that team is repositioning to other site. As the objective is to maximize 

total reward, when a team becomes available, it will be assigned to a new site. 

Constraints (5) require that only one team will serve each site. Constraints (6) enforce the 

tour length for any team k no greater than H. Constraints (7) are binary restrictions.  

The multistage stochastic programming formulation provides a concise 

representation of the USAR-TDP. The formulation is anticipative in nature; although, a 

solution requires forecasts of demand arrival distribution functions for the entire decision 

horizon. Approximation techniques have been proposed for multistage stochastic, linear 
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programs. These techniques reduce the multistage program to a problem with only a 

single stage by approximating the series of recourse functions by a single convex 

function. The MSP formulation of the USAR-TDP employs binary integer variables and 

recourse functions associated with each stage are nonconvex. Consequently, such an 

approximation of the recourse function in a single convex function is not possible. 

Approaches for multistage stochastic, integer programs are few and are generally 

heuristic or scenario-based. In the next section, a technique that decomposes the 

multistage stochastic, integer program into a series of two-stage stochastic, integer 

programs is presented. While solution of each two-stage stochastic program is exact, the 

solution approach is myopic. That is, it is nonanticipative. As a consequence, the 

approach can be considered as an approximation approach for the MSP formulation of 

the USAR-TDP. Such an approximation, however, is reasonable for the considered 

application, where situational awareness, and thus the ability to forecast demand arrivals, 

continuously improves with time. Obtaining a single forecast at the beginning of the 

decision horizon is unrealistic. 

5.4 Algorithm 

In this study, the proposed solution approach tackles the multistage stochastic 

programming formulation (1)-(7) by solving a series of inter-related two-stage stochastic 

programs with recourse, each arising at the beginning of a decision epoch and each 

exploiting information from solution of the problem at the prior epoch.  
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5.4.1 The stochastic problem at each decision epoch 

The time horizon is divided into M equal-size decision epochs, and ,,...,,,...,, 1110 Miii tttttt +−  

with 0= Httt M =<<< ...10 , where it ≥δ. Thus, decision epochs are composed of 

[ ) [ ) [ ]MM tttttt ,,...,,,, 12110 − . Without loss of generality, it is assumed that the length of a 

decision epoch, [ )ii tt ,1− , can be a multiple of increment δ . The number of survivors at a 

site in a given decision epoch is assumed to remain constant over the epoch. That is, the 

reduction factor is only applied at the beginning of the epoch in estimating the number of 

survivors at a given site. 

The system state is defined by the locations of the teams (including those teams 

first arriving at the depot as scheduled, and those en route), remaining on-site service 

times at these locations, sequences of remaining sites to be visited that are already 

scheduled, and the locations and estimates of demand arrivals. New information 

concerning the system state arrives over time. At the beginning of each decision epoch, 

solution of the two-stage stochastic program given the current system state, provides 

updated tours for each of the teams. Solutions may involve decisions to add, drop, or 

resequence sites in tours developed in the previous epoch. Swapping sites among tours is 

also permitted. Moreover, teams may be diverted from a tour while en route to a site. 

Future demand arrivals and service times of future site visits are known only with 

uncertainty at the start of an epoch. Thus, tours are dynamically updated over the decision 

horizon.  
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A prototypical multistage stochastic program for the USAR-TDP is given as 

follows. 

max ]...[
1211 ,...,,

11

−
++

MM
EzDE ξξξξξ  

subject to bAz ≤  

 { } AVz /×/∈ 1,0  

Thus, at time 0, the two-stage stochastic problem is as follows. 

max [ ]DZEξ  

subject to bAz ≤  
 { } AVz /×/∈ 1,0  

At each time epoch it  thereafter, i.e. for 1,...,2,1 −= Mi , given realizations of 

random variables from prior decision epochs 10

~
,...,

~
−iξξ  and decisions taken 10

~,...,~
−izz , 

the two-stage stochastic problem can be written as follows. 

max ]
~

,...,
~

,
~

[ 112211 −− === iiDZE ξξξξξξξ  

subject to ( ) ,~~

1,...,0
11∑

−=
−− ⋅−≤

im
ii zAbAz ξ  

 { } AVz /×/∈ 1,0  

The stochastic program at decision epoch it  is denoted by [SPi], for 1,...,2,1,0 −= Mi . 

Each [SPi] is defined over the period [ ]Hti , . At time it , given demand arrivals and 

service times revealed at or before time it , [SPi] seeks to generate a set of tours to 

maximize the expected number of people that can be saved over [ ]Hti , . The solution will 

be implemented for the decision epoch [ )1, +ii tt  and the system state is revealed at the end 

of the decision epoch. Solution of each succeeding [SPi] will yield a higher expected 

reward compared with using the tours developed with information from a previous 
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decision epoch, because the optimal solution from a prior decision epoch is guaranteed to 

be feasible for future decision epochs. Under perfect information, the solution generated by 

[SP0] is equivalent to the solution of the multistage stochastic formulation. The complexity 

of the proposed solution technique grows linearly with the number of stages and is found 

to be reasonably fast in computational experiments. The general approach of solving a 

multistage stochastic program by reducing the problem to a series of two-stage stochastic 

programs with diminishing decision horizon was discussed by Chen and 

Homem-de-Mello (2008) in the context of airline revenue management.  

Future demand arrivals that may be revealed in a future decision epoch are not 

considered in the current epoch. The set of disaster sites in need of assistance at time it  is 

composed of the set of unvisited disaster sites with positive demand at or before it  and 

the set of demand arrivals occurring in the time interval ( ],1 ii tt − , denoted by iB . This 

problem does not account for the potential impact of its solution on future demand 

arrivals. It is noted that not all USAR teams are available in the disaster region at the 

decision epoch it . Some teams will arrive later with a known arrival time. However, all 

the teams can be considered as available at the depot from time 0, but travel times to 

disaster sites can be increased to account for the arrival time of teams arriving later. Thus, 

for each decision epoch, all K teams are considered and K tours will be constructed so as 

to maximize the expected number of people saved.  

Alternatively, one can consider updating the solution as teams become available 

for reassignment rather than at fixed intervals of time. There are tradeoffs in 
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computational requirements between resolving when each team completes each job and 

resolving at fixed time increments. The solution technique described in the following 

section can accommodate either representation. Moreover, it is not required that decision 

epochs be of equal length. 

5.4.2 The set-partitioning-based formulations 

In this section, a column generation-based approach is proposed for solving the 

USAR-TDP by reduction to a series of interrelated two-stage stochastic programs with 

diminishing decision horizon. This technique builds on findings from work by Chen and 

Xu (2006), where similarities between solutions of consecutive decision epochs are 

exploited in a reoptimization-like approach. That is, a solution from decision epoch i 

provides a starting place for a solution in decision epoch i+1. Chen and Xu applied this 

technique for solution of the dynamic vehicle routing problem. Experimental results 

showed the efficiency of this technique. 

The problem to be solved at each decision epoch, [SPi], is a two-stage stochastic 

mixed-integer program with recourse. In stage one, each team follows its planned tour 

until either all the site visits on this tour are completed, or upon reaching the end of the 

decision horizon H. It is assumed that all the random variables pertaining to on-site 

service times are revealed, i.e. scenarios are considered, and stage two begins with the 

implementation of a set of recourse actions that maximize the expected reward associated 

with serving the remaining disaster sites for the given scenario. Thus, a priori tours are 
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sought that perform best given the set of considered stage two scenarios. Such solutions 

are said to be robust. One can view decisions taken in future epochs as a form of recourse 

action as considered in stage two.  

[SPi] must be reformulated by Dantzig-Wolfe decomposition to construct 

specially-structured sub-problems suitable for solution by a column generation-based 

technique. A decision variable is associated with each feasible tour. Each tour is 

associated with a column in the formulation and the objective is to select a set of columns 

to generate the maximum reward such that each disaster site is covered by exactly one 

column. Thus, [SPi] is formulated as a set-partitioning-based program, as described in the 

following subsection. 

5.4.2.1 Two models with/without recourse 

The objective of the two-stage stochastic problem, [SPi], that arises at each decision 

epoch is to construct a set of k planned tours with maximum expected reward. The 

maximum expected reward is computed from the sum of uR  from first-stage decisions 

and scenario-dependent probability-weighted rewards achieved through second-stage 

recourse actions all totaled over the decision horizon. 

As the random on-site service times are revealed, it may be found that it will not 

be possible to complete some tours. When this arises, the tour is said to fail. Such failure 

occurs, thus, whenever the realized cumulative tour length in terms of travel times and 

service times exceeds the end of the decision horizon H. Failure is not an indication of 
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infeasibility, but rather notification that actual rewards will be less than expected and 

recourse actions that reassign unvisited sites along failed tours may be advantageous. A 

recourse strategy that assigns unvisited sites from failed tours or incorporates unassigned 

sites when teams become available earlier than expected is implemented in the second 

stage.  

Given the planned set of disaster sites to be visited on a tour, the stochastic 

program is augmented with a set W of scenarios, where each scenario represents a 

realization of the random on-site service times. Let ( )ik tU  be the set of feasible tours for 

team k, with ( ) ( )iikKk tUtU =∈Υ . Under different realizations, all or a subset of 

pre-planned sites will be served during stage one. The model is further augmented by 

inclusion of partial tours with additional sites that can be served by augmenting the 

original assigned tour ( )ik tUu∈  if the team k completes its assigned tour before H given 

the realization of service times in scenario w.  

Each tour ( )itUu∈  is defined as an ordering of visits to a select set of sites. The 

objective of [SPi] is to maximize the expected number of people saved over the decision 

horizon [ ]Hti , . Each such person is referred to as a reward. Thus, one can view this 

problem as that of maximizing the total expected rewards. Because service times at each 

site are uncertain, one cannot know a priori the reward that will be obtained upon 

completion of a tour. Instead, one can compute the expected reward, uR , associated with 

a tour ( )itUu∈  over all possible service time scenarios. 

To formulate the USAR-TDP as a set partitioning problem, the following 
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additional notation is employed. 

ξ = 
A vector of random on-site service times with a finite number of realizations, 
ξ1,ξ2,...,ξW , where W is the number of realizations (i.e. scenarios) of vector ξ; 

pw  = The probability that the random vector ξ takes on the scenario Ww∈ ;  

w
uC  = Set of partial tours designed to augment tour u under scenario Ww∈ ; 

wC  = Set of all partial tours developed for scenario w, wuu
w CC ~Υ= ; 

iuδ  = 

 1 if a site iBi∈  is covered by a planned tour u ; 

 0 otherwise; 

w
iuα  = 

 1 if a site iBi∈  is covered by the realization of tour u  in scenario w; 

 0 otherwise; 

w
icuβ  = 

1 if a site iBi∈  is covered by a partial tour w
uCc∈  in scenario w, 0 

otherwise;  

uR  = Expected reward of tour ( )itUu∈ ;  

w
cur  = Reward associated with partial tour w

uCc∈  in scenario w; 

k
ux  = 1 if the planned tour ( )ik tUu∈  is selected for team k, 0 otherwise; 

w
cuy  = 1 if w

uCc∈  is selected under scenario w, 0 otherwise. 

The USAR-TDP for a given decision epoch considering recourse operations is 

formulated as follows.  

[SPi] 
( )

( )[ ]w

k tUu

k
uu xQExRMax

ik

ξξ ,+⋅∑ ∑
∈

 (8) 

subject to   

 ( )
( )

∑ ∑
∈ ∈

∈∀≤⋅
Kk t

i
k
u

k
iu

i

tBix
kUu

,1δ , (9) 

 
( )

∑
∈

∈∀=
it

k
u Kkx

kUu

,1 , (10) 

 { } ( ) KktUux ik
k
u ∈∈∀= ,,1,0 . (11) 
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where, the conditional recourse function is given by, 

( )=wxQ ξ,  
( )

∑ ∑
∈ ∈i

w
utUu Cc

w
cu

w
cu yrMax  (12) 

subject to   

 
( ) ( )

,,,1 wiyx
i

w
ui tUu Cc

w
cu

w
lcu

tUu

k
u

w
iu ∀≤⋅+⋅ ∑ ∑∑

∈ ∈∈

βα
 

(13) 

 ( )i
Cc

w
cu

k
u tUuyx

w
u

∈∀≥− ∑
∈

,0 ,

 
(14) 

 { } ( ) WwtUuCcy i
w
u

w
cu ∈∈∈∀∈ ,,,1,0 . (15) 

The objective function (8) is to maximize the expected reward of the planned 

tours plus the expected second-stage reward gained by optimally visiting additional 

disaster sites given each scenario. Since all the uncertainty is revealed at the end of stage 

one, the expected reward of the extra tours can be computed from the expected sum of 

the reward at the additional sites that can be served for each scenario. Constraints (9) 

requires that each disaster site is covered by at most one tour, while constraints (10) 

ensure one and only one tour is selected for each team. The conditional recourse function 

(12) is to maximize the reward gained by visiting additional sites for each scenario. 

Constraints (13) ensure that each site is served by at most one team for each scenario. 

Constraints (14) require that one and only one additional tour is selected if one an a prior 

tour is implemented. Binary integrality constraints are given in constraints (11) and (15). 

[SPi] is a two-stage stochastic program with simple recourse. The first-stage 

variables are k
ux  and second-stage variables are w

cuy . At the end of the first stage, the 

visited sites, final position and remaining service times associated with each team are 

known. Partial tours (i.e. second-stage variable) can be generated to improve the objective 
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function value. The formulation takes the possible interactions between teams into account 

through recourse actions. Such interactions might involve the swapping of sites between 

tours of two teams, or perhaps the move of a site from one team’s tour to another team’s 

tour. Thus, changes in one tour may impact the other. The impact of such interactions or 

interchanges is evaluated through consideration of recourse actions.  

If when setting all random service times to their expected values, the total 

completion time of the tour is greater than H, this tour is considered to be infeasible in 

expectation. In this study, it is assumed that the formulation does not include tours in the 

first stage that are infeasible in expectation. If including tours that are infeasible in 

expectation, it is very likely that most teams cannot complete their tasks or teams 

finishing earlier will not have enough time to cover additional sites. In this case, the 

impact of considering recourse actions will be marginal. On the other hand, if tours are 

generated conservatively by, for example, assuming that site service times will be long, as 

would be the case if the upper bounds on the service times were employed in generating 

feasible tours, recourse actions are likely to be needed. In fact, very few sites will be 

included in the tours developed in the first stage. By postponing future routing decisions 

to the second stage, the problem is effectively reduced to solving a set of 

scenario-dependent, deterministic problem instances. 

This problem can be simplified if recourse actions are not considered and, instead, 

a priori tours are determined assuming that the tours will be followed without change. 

The simplified formulation is obtained by dropping the recourse function.  
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[SSPi] 
( )

∑ ∑
∈

⋅
k tUu

k
uu

ik

xRMax  (16) 

subject to   
 (9),(10),(11)  

The objective function (16) is to select a set of columns with maximal expected 

reward. Any tour ( )ik tUu∈  will include as many sites as possible to improve the 

expected reward of the tour. Thus, tour can be generated by using the lower bounds of 

service times. Such tours fail in expectation and could fail under a specific realization of 

service times. Any solution to [SSPi] is a feasible solution to [SPi]; that is, [SPi] provides a 

better plan of the expectation of saving more people's lives by taking teams' interactions 

into account. 

The set partitioning-based formulations contain a vast number of tour variables. 

To solve the problem to optimality, all possible feasible tours would need to be generated. 

The number of possible tours increases exponentially with increasing number of sites, 

making it difficult to solve real-world size problems. To address the difficulty associated 

with this feasible tour generation, a column generation-based approach is proposed and 

described in the Section 5.4.3. 

5.4.2.2 The expected reward of an a priori tour 

Suppose that a tour { }nLLL ,...,21,,0
 
is assigned to a team. It will be followed in numerical 

order, njj →+→→→ ...1...210 . Let ia
 
be the arrival time at site i. ia

 
is important 

for evaluating the expected reward of an a priori tour because the number of people 
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requiring service at site i diminishes over time. The earlier a site is visited, the larger the 

number of people that can be saved. Let ig  represent whether or not a site i is served 

given first-stage decisions and revealed service times at the end of the first stage. ig
 

equals one if the site has been served and zero otherwise. On-site service time at site i, is , 

is a random variable with known distribution function ( )11 sf  that is independent of other 

service times. 

The probability that site 1L  is visited is a function of travel time 01τ . Site 2L  is 

visited with probability 

( ) ( ) ( ) ( ) ( )∫
−−

⋅<=≤++=≤==
1201

0 111011201122 1
ττ

τττ
H

dssfHpHspHapgp . 

Similarly, site iL  is visited with probability  

  ( ) ( ) ( ) ( ) ( )∫ ∫
−−

−

−−

−
∑ ∑

⋅<=≤== = −=
−1201

,...,1 2,...,0
,1

0 110 11101 .........1
ττ τ

τ
H

i

sH

iiii dsdssfsfHpHapgp ij ij
jjj

.  

Let Oo∈  represent an individual outcome from the set O  of all possible 

outcomes, where an outcome is defined as the state of completion of an a priori tour. 

Thus, each outcome Oo∈  can be represented by { }nggg ,...,,,1 21 . Let ip  be the 

probability associated with a given outcome Oo∈ , representing the probability that 

disaster sites { }iLL ,...,,0 1  are visited and disaster sites { }ni LL ,...,1+  are unvisited. Thus, 

op  is given by ( ) ( ) ii g
i

g
i

ni
i HapHapp −

=
>⋅≤Π= 1

,...,1
. This computation assumes that a site 

is served if and only if the team arrives at the site before the end of the decision horizon 

H. For a given tour, the expected value of the number of sites that can be served is given 

by ( ) i
ni

piLE ∑
=

=
,...,1

. 
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The probability that site 2L  is visited in decision epoch it  is given by 

( ) ∫∑
∑−

∑−+
=

−+
=

−+

=
−

=





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<+≤=<≤ 2,1

,11

2,1
,1

11111
2,1

,111 )(i
iii

i
iii

t
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i

iiiii dssftstptatp
τ

τ
τ . 

Similarly, the probability that site jL  is visited in the decision epoch it  is given 

by 

( ) ( ) ( )∫ ∫
− ∑ −−

∑ −− −−+

+
= −=

−+

= −=
−−

∑
∑

=<≤
011

,...,1 2,...,1
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,...,1 2,...,1
,110 111111 .........

τ τ

τ

i
jn jn

nnni

jn jn
nnni

t st

st jjiiji dsdssfsftatp . 

Consider the most general case in which the number of survivors at a site i at time 

ia , ( )ii aD
~

, is a nonlinear, decreasing function of the team arrival time. Such a function 

can be approximated by a decreasing step function. Under this assumption, the expected 

reward associated with a given tour can be computed by 

( ) ( ) ( )jj
i j

iji
ni

ii aDtatpaDER
~

)(
~

1
,...,1

⋅<≤== ∑∑∑ +
=

. 

The worst-case computational complexity required for evaluating the expected 

reward of an a prior tour, R, is ( )nm×Ο 2 . Thus, the effort required for the computation of 

R, in the worst-case, increases exponentially with the number of decision epochs and 

number of sites included in a tour. Thus, it will be difficult to generate the expected 

reward of an a prior tour using analytical methods for large size networks.  

An upper bound on R can be obtained by assuming that demand is a linear 

decreasing function of time. By this assumption, 

( )( ) ( )( )∑∑
==

==
ni

ii
ni

ii aEDaDER
,...,1,...,1

~~
. 

If demand actually diminishes exponentially over time, then  
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( ) ( ) ( )jj
i j

j
ni

ii aDHapaDER
~

)(
~

,...,1
∑∑∑ ⋅<==

=

 and ( )( ) ( )( )∑∑
==

≥
ni

ii
ni

ii aEDaDE
,...,1,...,1

~~
. 

It may also be beneficial to explore alternative approximations with reduced 

complexity. Schaefer et al. (2000) applied a Monte Carlo simulation method to estimate 

the expected cost of a round-trip itinerary for airline crew scheduling. Similar approaches 

can be also considered here.  

5.4.3 The column generation-based approach 

The number of feasible tours through one or more sites in need of assistance required as 

input to [SPi] increases exponentially with increasing number of sites and number of 

scenarios. Thus, the computational effort required for direct and exact solution of [SPi] 

for large problem instances may be very significant even for a single decision epoch. 

Moreover, a solution is required at each decision epoch. Recent works (Silva and Wood, 

2006) have shown that column generation, a well-known integer programming solution 

method, is a viable approach for addressing two-stage stochastic programs. In the context 

of this work, such a methodology is found to be effective in reducing the number of tours 

that must be considered in solution of [SPi] as compared with more traditional exact 

stochastic program solution techniques. And, while exhaustive in the worst-case, rarely is 

it necessary to consider all feasible tours.  

 To apply column generation in solution of a given instance of [SPi],  [SPi] must 

be reformulated as a restricted master problem and sub-problem. The restricted master 

problem is formulated with only a subset of variables, or tours, of the original 
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formulation. Inclusion of a variable, or tour, in the formulation results in the addition of a 

column if considered in a tableau format, where each column is associated with a 

decision variable (i.e. a possible tour). At each iteration of the column generation 

technique, the sub-problem is solved producing one or more additional columns with 

attractive reduced costs. These columns are added to the restricted master problem. This 

procedure iterates until no additional column can be added with negative reduced cost. In 

the worst-case, it is possible that every tour will be considered, i.e. every potential 

column will be added. However, in practice, it is often the case that the procedure will 

terminate having generated only a subset of feasible tours. 

Thus far, solution by column generation of [SPi] for only a single decision epoch 

has been considered. To solve the larger USAR-TDP, [SPi] must be solved at each 

decision epoch. As solutions associated with consecutive decision epochs will be very 

similar, a column-generation-based technique using concepts posed by Chen and Xu 

(2006) for addressing a deterministic, but dynamic vehicle routing problem is proposed 

herein that exploits these similarities. 

For a given decision epoch, it , and each team, Kk ∈ , this technique generates a 

set of feasible tours over [it ,H], given by ( ) ( )iikKk tUtU =∈Υ . Each tour serves a subset 

of the sites with known positive demand. The objective in updating the solution to the 

USAR-TDP for the current decision epoch is to determine the optimal combination of 

tours over select remaining sites. This solution will contain one tour for each starting 
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location. Let ( ) ( )iikKk tUtU ′=′∈Υ  represent a limited set of feasible tours in [it ,H]. The 

restricted master problem associated with [SPi] for the USAR-TDP, denoted by [RMPi], 

is given by replacing ( )itU  with a subset ( )itU ′ . The solution of the linear relaxation of 

[RMPi] yields dual variables, which provide input to the sub-problem. Solution of the 

sub-problem then can be used to identify one or more new columns with favorable reduced 

costs or prove that no such column exists. The sub-problem for team k is given as follows. 

 k
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where iπ̂  is an optimal dual variable associated with constraints (9) for each site i and 

kµ̂  is an optimal dual variable associated with constraints (10) associated with each team 

k.  

The reduced cost for any tour u is as following: 
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where kµπ ˆˆ0 = . Let ( ) ( ) iiiii adad π̂
~

−= , representing the adjust reward of node i. Thus, the 

sub-problem seeks a tour for team k with the maximal expected adjust rewards given the 

tour length no greater than H. It is a NP-hard problem because its deterministic 
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counterpart, the team orienteering problem, is shown to be NP-hard in Golden et al. 

(1987).     

An exact column generation ends when the sub-problem cannot generate any 

column with positive reduced cost. If one or more new columns can be found with 

positive reduced costs, the current solution is nonoptimal and the corresponding tours 

must be added into the limited set of tours ( )itU ′  considered in [RMPi]. [RMPi] must be 

resolved with this updated set of tours. The process continues iteratively until no more 

columns with positive reduced cost can be found. 

The proposed column generation technique employing such a local search heuristic 

is summarized as follows.  

Column generation algorithm to solve problem [SPi] 

Step 1: Generate an initial set of columns 

For i=0: 

Initialize [RMP0] with a set of columns generated from solving the deterministic version of 

[SP0] with mean value. All the tours generated are feasible in expectation.  

For i≥1: 

Begin with all columns used in the last iteration when solving [RMPi-1]. For such columns, 

remove all the site that has been visited. Then, check whether or not the column is feasible 

in expectation. If the column is not feasible, remove the site one by one from the end of the 

column until it becomes feasible in expectation.  

Step 2: Solve the linear relaxation of the restricted master problem [RMPi] 
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For all previously generated columns, solve the linear relaxation of [RMPi]. Obtain optimal 

value z  and dual solution ( )µπ , . 

Step 3: Identify columns with positive reduced cost 

Solve the pricing sub-problem to generate columns with positive reduced cost. The 

problem is NP-hard, thus, a local search heuristic is applied herein. A guided local search 

heuristic is performed as described in Vansteenwegen et al. (2009). Note that every column 

operated here is infeasible in expectation, but feasible in lower bound value of the service 

times. The sites are ranked according to their adjust rewards.  

If any columns have negative reduced costs that exceed a given threshold, they can 

be eliminated from further consideration. If new columns are generated, add them to the 

[RMPi] and return to step 2. Otherwise, terminate. 

In typical USAR operations requiring response by government-sponsored USAR 

teams, service times at each site can be substantial and certainly greater than an hour. Thus, 

the number of sites included in construction of each column will be relatively small. Thus, 

columns can be generated quickly and a column generation-based approach can be 

computationally effective. The effectiveness of this approach is illustrated on an example 

problem in the next section.  

5.5 Computational Experiments 

The purpose of the numerical study is to demonstrate the feasibility of the proposed 

solution technique in quickly deploying USAR teams in the aftermath of a large-scale 
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disaster. The solution approach is illustrated on a problem instance derived from data 

concerning structural failure following the 2010 earthquake in Port-au-Prince, Haiti. The 

test instance and parameter values are described in Section 5.5.1. In Section 5.5.2, 

implementation issues are discussed. This is followed by computational results that are 

presented in Section 5.5.3. 

5.5.1 Problem instance setting and experimental design 

On January 12, 2010, a 7.0-magnitude earthquake struck Port-au-Prince, the densely 

populated Haitian capital with more than two million residents. Untold numbers of 

people remained trapped under rubble following the disaster. Over 200,000 people 

perished and another roughly 300,000 were injured. Aid packages and organized USAR 

teams were rushed to Haiti immediately following the disaster from around the globe. 

The first USAR team arrived from Iceland in Port-au-Prince within 24 hours of the 

earthquake. By early afternoon, January 15, 1,067 foreign search and rescue workers 

searched for survivors with 114 dogs. Over the first weekend, there were nearly 2,000 

search and rescue workers from 43 different organizations with 161 search dogs. Because 

of the overwhelming magnitude of damage to buildings and other civil infrastructure, it 

would take days to get help to all building sites in which survivors might have been in 

need of assistance. The search and rescue operations were called off on January 23. 

However, as late as February 8, survivors were still being found in the rubble. In total, 

more than 110 people were pulled from the rubble by USAR teams.   
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Figure 5-2 shows the damage assessment for major buildings and urban facilities 

in Port-au-Prince with a focus on hospitals, government and United Nations offices, 

schools, churches and industrial complexes. This map was generated by UNOSAT (The 

Union Nation Institute for Training and Research Operational Satellite Applications 

Programme). It should be noted that sites marked as "No Visible Damage" do not 

necessarily mean that such sites were not impacted by the earthquake. The damage levels 

were estimated based on visual interpretation of available satellite imagery and, thus, 

buildings with major structural damage, including building that may have collapsed, may 

not be identifiable. Damage, therefore, may be underestimated.  

 

Figure 5-2 Damage assessment for major buildings/infrastructure in Port-au-Prince, Haiti 

Immediately following the earthquake, UNOSAT identified 110 sites as the sites 

in most significant need of response. 58 sites of the 110 selected sites (i.e. 53% of the 

total), including 50% of the schools, 88% of the government-related buildings and 40% 
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of the hospitals, were visibly damaged or destroyed. Bridge and roadway conditions were 

quickly surveyed via satellite imaging and maps depicting damage were developed to aid 

in decision-making (UNOSAT, 2010).  

The test instance developed herein was established using the 110 identified sites. 

The 58 sites with visible damage were assumed to be identified by time 0. Further, it was 

presumed that the remaining 52 identified sites were discovered over the decision horizon. 

These 110 sites are depicted in Figure 5-3. Depot is supposed to be Toussaint Louverture 

International Airport in Port-au-Prince, Haiti, located at the upper right corner of the map.  

Sites discovered at beginning 

of decision horizon

Sites discovered over the 

decision horizon

Depot

Sites discovered at beginning 

of decision horizon

Sites discovered over the 

decision horizon

Depot

Sites discovered at beginning 

of decision horizon

Sites discovered over the 

decision horizon

Depot

 

Figure 5-3 Disaster sites locations 

Each decision epoch is set to be six hours in duration. Each team can work twelve 

hours per day. The decision horizon is set to five days, or ten decision epochs. USAR 



 

 147

teams can consist of over 100 personnel. For example, the Virginia USAR Task Force, 

one of the FEMA task forces that responded to the Haitian event, consists of 131 

members. Assuming 60 members per USAR team and given that many of the teams 

focused on sites of special interest, it is assumed that there are 15 USAR teams available 

over the decision horizon in total. Five of the teams were assumed to be available at the 

beginning of the decision horizon, five were assumed to arrive at the beginning of the 

second decision epoch, and the remaining five were presumed to arrive at the beginning 

of the fourth decision epoch.  

The likelihood of finding survivors decreases with time. This likelihood depends 

on the building materials and survivors’ physical conditions. The survival probability 

function from past earthquakes is summarized by Coburn et al. (1991). For simplicity, it 

is assumed that all 110 considered buildings were composed of weak brick or stone 

masonry. A discrete function is used herein to approximate the function developed by 

Coburn et al. This function is shown in Figure 5-4. The maximum time of surviving is set 

to be five days, consistent with estimates of four to seven day post-disaster survival 

periods (Coburn et al., 1991). The survival rate drops dramatically after the first three 

days. Alternatively, the survival rate can be approximated by an exponentially decreasing 

function ( ) ia
iii eDaD 375.0
0

~~ −= . Such a function would be convex. Thus, as noted 

previously in Subsection 5.4.2.2, ( )( ) ( )( )∑∑
==

≥=
ni

ii
ni

ii aEDaDER
,...,1,...,1

~~
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provides a lower bound on the expected reward of an a priori tour. Such a bound can be 

exploited in the local search heuristic for generating attractive columns.  
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Figure 5-4 Real (left, taken from Coburn et. al, 1991) and approximated (right) survival 
rates  

For simplicity, and due to a lack of data on pre- and post-earthquake roadway 

conditions, Euclidean distances over the plane are employed in estimating travel time. 

Thus, given the map scale of 1:15000 and the measured Euclidean distance between any 

two points in the space, travel times between sites can be calculated by the distance 

divided by a constant travel speed (assumed to be 40 miles/hour).  

Three demand-related attributes are needed to generate the problem instance: 

estimated number of survivors at each site at the time the site is identified, the demand 

arrival process, and probability density functions of on-site service times. As it is difficult 

to acquire the additional data required to develop the problem instance, simulated data 

were generated from discrete uniform distributions for these factors based on limited real 

information. For example, if the site is known to be a moderately damaged school, the 

number of potential survivors might be quite high, while the number of potential 

survivors in a collapsed complex may be rather small.  

Considering the different damage levels and uses associated with each building in 
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Figure 5-2, the number of survivors present upon site identification is generated from a 

uniform distribution ranging between 0 and a specific upper bound. The upper bound is 

calculated by the demand generation ratio, as given in Table 5-1, times 100. For demand 

arrivals, new demand sites were generated dynamically according to a Poisson 

distribution with parameter 100=λ . Then, the upper bound for the new demand will be 

determined by the product of the demand generation ratio given in Table 5-1 and the 

survival rate at the time that the site is identified. The size of the new demand, thus, will 

be generated from the uniform distribution between 0 and the upper bound.  

Table 5-1 Parameters associated with survivor generation 

Ratio School Hospital 
Government 

-related 
Other use of 

buildings 
Destroyed 0.60 0.54 0.48 0.42 

Severe damaged 0.80 0.72 0.64 0.56 
Moderate damaged 1.00 0.90 0.80 0.70 

No visible 0.50 0.45 0.40 0.35 

The impacts of modeling stochasticity in service time on solution quality are 

explored through comparisons of various assumptions of service time distributions. Four 

such assumptions are enumerated next, creating four instances in the computational 

experiments. 

1) All service times are independent and identically distributed random variables, 

following a discrete uniform distribution with ( ) 14,...,6,9/19; == ssf ; 

2) For any site i, service time is uniformly distributed between [ ]ii ul , , where il  

is randomly generated from a discrete uniform distribution ( ) 8,...,4,5/15; == llf , and 
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8+= ii lu .  

3) The same as assumption 2, but il  is not generated from a distribution. Instead, 

it is determined by 







×=

80

at  people ofnumber 
6

i
li . 

4) All service times are independent and identically distributed random variables, 

characterized by a truncated discrete normal distribution with 0=µ  and 52 =σ . 

The proposed algorithm and two other algorithms are used to solve the test 

instance for comparing the quality of the solution, i.e. the total expected rewards from all 

the visited sites. The other algorithms include a similar column generation-based 

approach in shrinking-horizons but based on solving the problem with mean values of the 

random variables, and a similar column generation-based approach in shrinking-horizons 

but based on solving two-stage stochastic models without recourse as shown in (16). 

5.5.2 Implementation issues 

Proposed solution techniques were implemented in Microsoft Visual Studio C++ 6.0 

language with ILOG CPLEX callable library 9.1 (2005). Experiments were performed on 

a Windows XP personal computer with one 3.20 GHz CPU processor and 2.00 GB RAM.  

The two-stage stochastic model, [SPi], at the beginning of decision epoch it , can 

be easily constructed from [SPi-1] by appropriately modifying the parameter values in the 

constraint matrix and coefficients within the objective function. Columns from the last 

iteration of solution in the previous decision epoch and related dual values serve as the 
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initial set of columns and dual values for [SPi]. These dual values are applied in computing 

reduced costs of the columns given updated information concerning demand arrivals and 

experienced service times. Columns with positive reduced cost will be considered for 

inclusion in the next iteration. 

A branch-and-price method can be used in place of solving the linear relaxation 

[LSPi] of the restricted master problem [RMPi] when solution of [LSPi] is non-integral. 

Based on findings from prior works (Johnson, 1989), if there is a fractional tour variable 

ux , there must be a fractional variable )( ijk ty  which defines whether or not site j is 

visited by any team k in the solution of [SPi]. Thus, instead of branching on the tour 

variable ux , it is more efficient to branch on )( ijk ty . Branch-and-price scheme 

guarantees optimality. However, it is often the case that exact solutions are not necessary. 

Near optimal solutions with fast computational times are sufficient. An alternative is to 

solve the [RMPi]  directly with the MIP solver in CPLEX, despite that by such direct 

solution, a column with positive reduced cost may not be in [RMPi] currently. Thus, this 

implementation does not guarantee optimality. 

5.5.3 Computational results  

The test instance contains ten stages, resulting in ten interrelated two-stage stochastic 

programs. Table 5-2 provides the computational performance associated with solution of 

the program at each stage.  

Table 5-2 Computational performance of two-stage stochastic programs 
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Stage 
Problem size 

Solution time 
(seconds) 

# of columns # of 
teams 

# of 
sites 

Remaining 
time (hours) 

1 5 58 60 453.5 7905 
2 10 59 54 380.5 7925 
3 10 62 48 244.5 8120 
4 15 66 42 187.5 5900 
5 15 70 36 70 4465 
6 15 75 30 69.5 3965 
7 15 80 24 46.5 1720 
8 15 84 18 56 2332 
9 15 87 12 94 599 
10 15 88 6 56.5 443 

As shown in Table 5-2, the performance of the proposed column generation-based 

approach improves nonlinearly with each stage, as fewer sites remain for possible 

inclusion and remaining time for action decreases. The approach is shown to be very 

effective in addressing the USAR-TDP problem instance of Haiti. Such problems are 

amenable to solution by this approach, because of the relatively large on-site service 

times. Initial tours contain few sites and recourse actions involve the addition of only one 

or two sites to any tour in most cases.  

Table 5-3 provides the computational results for the test instance with different 

service time distributions. Three different modeling techniques are considered within the 

dynamic solution framework: deterministic (D); stochastic, but no recourse (SSP, 

Subsection 5.4.2.1); and stochastic with simple recourse (SP, Subsection 5.4.2.1). In the 

first approach, random variables are replaced by their mean values, creating a 

deterministic version of the problem. In the second approach, the SSP described in 
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Subsection 5.4.2.1 is solved. Finally, in the last approach the SP is solved directly. Four 

service time distributions are considered, as described in Section 5.5.1. 

Table 5-3 Computational performance of two-stage stochastic programs 

Service time 
distribution 

Objective function 

Deterministic  
Stochastic without 

recourse 
Stochastic with 
simple recourse 

Distribution (1) 1294 1616 1650 
Distribution (2) 1307 1537 1649 
Distribution (3) 1388 1594 1738 
Distribution (4) 1294 1470 1472 

Results of these experiments indicate that the values of modeling stochasticity and 

permitting recourse actions are significant. On average, the objective function value 

improved by 23.2% between (D) and (SP), indicating that stochastic factors may 

significantly affect the optimality of the problem. Additionally, on average, the objective 

function value improved by 4.6% between (SPP) and (SP), showing that incorporating 

team interactions can result in improved solutions.  

5.6 Conclusions and Extensions 

In this work, the USAR-TDP for addressing the need to quickly respond to disaster to 

mitigate its negative impacts is conceptualized. The problem seeks to identify a set of 

non-overlapping tours for USAR teams so as to maximize the total expected number of 

people that can be saved by attending to all or a subset of disaster sites within the disaster 

region. To address the probabilistic and dynamic nature of conditions following a disaster, 

the on-site service times are assumed to be known only with uncertainty and sites 
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requiring assistance arrive dynamically over the decision horizon. A multistage stochastic, 

integer program is formulated to model the sequential stochastic information process. To 

overcome the expensive computational effort associated with the solution of a multistage 

stochastic program, a column generation-based strategy that consists of solving a series 

of interrelated two-stage stochastic programs with recourse within a shrinking-horizon 

framework is developed. Two types of recourse are considered and set-partitioning-type 

formulations for both are developed. Consistent with information availability in disaster 

applications, the algorithm relies only on information available at each decision epoch. 

 Experimental results from a test case developed to replicate events of the 2010 

Haiti earthquake illustrate the feasibility and efficiency of applying the proposed solution 

technique in support of USAR operations in real-world applications. Moreover, the value 

of considering stochasticity in on-site service times is shown to be significant. 

In post-disaster scenarios, conditions change rapidly with time. USAR strategies 

must adapt to ground realities, including new information from reconnaissance efforts, 

new resources, and progress made by deployed teams. This work addresses this by 

developing tools for robust decision support. For example, a particular site may require 

more time than anticipated, depriving potential survivors at other sites. In light of such 

information, routing and resource allocation decisions made previously must be quickly 

evaluated to see if improved strategies or reprioritization is required. Such real-time 

decisions must be made quickly and USAR teams must be immediately informed of their 

new tasks. In this study, uncertain service times and the dynamic arrivals of new demands 
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are considered. Models and solution techniques to address other uncertainties, e.g. 

roadway conditions, will be a future research direction.  

This research will provide logistical support to incident commanders charged with 

deploying USAR teams in the event of a large-scale disaster, where victims have become 

trapped in collapsed buildings or in flooded streets and are in immediate need of rescue. 

By explicitly considering the inherent stochastic and dynamic nature of the hazard 

conditions, and potential location of survivors in need of assistance, and by further 

employing real-time communications from the on-site USAR personnel and 

reconnaissance teams in updating the routing of teams and allocation of resources to sites 

in on-line operations, the resulting decisions can aid USAR teams in expeditiously 

locating and extricating survivors, and thus, saving more lives. The proposed 

methodologies can be used off-line for a posteriori analyses to assess decisions that were 

taken in-situ. These tools can be used to obtain exact, updated solutions, providing 

benchmark solutions for development of heuristics or simple protocols for USAR 

personnel deployment and resource allocation that can be used on-line to provide 

real-time decision support. The potential impact of decisions resulting from the tools 

developed in this work on equity, fairness and other ethical concerns will need further 

investigation. 

This research effort is a first step in bringing state-of-the-art optimization 

techniques – similar to those already in use by private enterprises for other applications – 

to aid USAR operations. Few works have addressed the optimization of USAR 
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operations or related problems and none of these has considered the probabilistic and 

dynamic nature of conditions surrounding a disaster. Traditional optimization techniques 

that may have utility in this context cannot address the complexities of USAR operations 

or conditions in which USAR teams work. Consequently, existing procedures will likely 

result in suboptimal decisions. If the dynamic and uncertain nature of conditions present 

in such situations is considered and real-time updates to this information are employed, 

more efficient operations will result. The procedural steps for identifying optimal 

decisions for USAR operations in such dynamically changing environments will permit 

the identification of robust solution strategies in solving problems of a scale seen in 

real-world applications. These improved solutions will result in greater payoff in 

exchange for the risk endured by the rescuers. A decision support tool that takes into 

account society’s need for safety in the case of disaster or terrorism resulting in 

region-wide destruction increases the public’s faith in the government entities responsible 

for USAR.  

Emergent groups of volunteers who immediately respond post-impact of a 

disaster to help with reconnaissance and rescue, disaster relief, medical aid, transport and 

other key emergency response functions are a critical component of any community’s 

emergency response capability. In the immediate aftermath of a disaster, the local 

community is isolated and must rely on locally available resources (Noji, 1997). It may 

take many hours for state and national emergency response organizations to arrive on 

location once the acute need for external assistance is recognized and a request for their 
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help is made. Thus, every community must have the capability and capacity to help itself 

(Noji, 1997; Barton, 1969) at least in the immediate term. Since a significant portion of 

the victims require medical aid in the first hours after the disaster impact(Noji, 1997; Noji, 

1989), these volunteers and local agencies must be the first line of response. Many works 

in the literature describe events where the majority (even as high a 90 or 95%) of 

survivors who were rescued, were saved by unskilled, untrained volunteers and other 

uninjured survivors (Barton, 1969; Noji, 1989; Wenger, 1991; Noji 1997; Tierney et al., 

2001). In some documented disasters, by the time the special forces arrived on site, only 

technical rescues, requiring special training and equipment necessary for disassembling 

collapsed structures and extricating trapped victims, remained (Noji, 1989; Poteyeva, 

2007). Since such technical rescues require enormous human-power and can take hours 

each (Noji, 1989), it is critical that these special teams spend the majority of their effort 

on the more difficult technical rescues requiring special skills and equipment that 

ordinary and even relatively well trained civilians could not assist with. In events where 

the victims outnumbered the volunteers, as in the aftermath of Hiroshima (Barton, 1969), 

the death tolls were enormous. Undoubtedly, the mass assault and emergence of groups 

or multi-organizational networks that are described and conceptualized in, for example, 

(Drabek et al., 1981; Drabek, 1983; Kreps and Bosworth, 1993; Ross, 1980; Wenger and 

Thomas, 1994; Stallings and Quarantelli, 1985; Quarantelli et al., 1977) are required for a 

community’s response to disaster. The proposed formulation and solution technique do 

not diminish the role of the volunteers and emergent groups in disaster response.  
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While every community should be prepared, a centralized process, as could be 

provided by the federal government, is appropriate for serving certain emergency 

response functions, where local, decentralized systems fail. It would be inefficient for 

every local community to independently develop emergency response capabilities for all 

conceivable disasters (Drabek, 1985). This work aids in mobilizing the specially trained 

task forces and could be extended to aid in deploying groups of volunteers, should a 

community be well organized enough to make effective use of its volunteers. 

Consequently, results of this effort can aid in mitigating some of the difficulties that arise 

in coordinating USAR activities (as described in, for example, Poteyeva et al., 2007). 
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Chapter 6   Conclusions and Extensions 

6.1 Conclusions 

In this dissertation, three important optimization problems associated with evacuation, 

transportation network vulnerability and emergency response are considered in 

time-dependent, stochastic and/or dynamic environments. This dissertation is motivated 

by the increasing need to better secure the transportation system and better prepare for 

unexpected events, thus, mitigating loss due to emergency occurrences. Despite its 

importance and practical applications, it does not appear that any of the problems 

proposed and solved herein has been previously conceived in the literature. 

This dissertation addresses three problems: the building evacuation problem with 

shared information (BEPSI), the network resilience problem (NRP) and the urban search 

and rescue teams deployment problem (USAR-TDP). These models can aid in 

decision-making during pre-disaster preparedness and post-disaster response, as 

discussed in Chapters 3 through 5. The focus of this dissertation is to conceptualize, 

formulate and provide algorithmic approaches (exact and approximate) to tackle these 

problems. 

In addition to the mathematical and methodological contributions associated with 

strategies for evacuation, response and recovery, an exposition of security concerns 

associated with transportation systems, including the role of transportation in emergency 
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management and in supporting other critical lifelines, as well as the transportation 

network as the target of natural or terrorist attack, is provided. This focused discussion 

provides a viewpoint for considering how the issues tackled within this dissertation fit 

within the larger concerns of security and the movement of people, critical resources and 

supplies.   

The BEPSI is formulated as a mixed-integer program and is solved by an exact 

algorithm based on Benders decomposition. The NRP is formulated as a stochastic 

program with only second-stage variables and is solved by a solution technique 

composed of Monte Carlo simulation, Benders decomposition and column generation. 

The USAR-TDP is formulated as a multistage stochastic program and an approximation 

method involving exact solution of a sequence of interrelated two-stage stochastic 

program with recourse is developed. The formulations proposed in this dissertation 

provide precise problem definitions and permit quantitative analyses of real-world 

problem instances. The problems are either shown to be NP-hard or are stochastic and/or 

dynamic, and thus, are known to be difficult problems.  

Computational experiments were conducted on network representations of an 

actual multi-story building, a double-stack container network representing the Western 

United States and building failure following the Haitian earthquake. Results of these 

experiments illustrate the potential of applying the proposed procedures to realistic-size 

problems. The results show that these exact and approximation algorithms can solve 

small- and moderate-size problems to optimality or near optimality with reasonable 
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computational time for off-line use and demonstrate the feasibility of their applications. 

The solution techniques developed in this dissertation can provide a mechanism for 

developing exact solutions to these difficult problems. While none were designed to be 

fast enough for on-line use, where applicable, simpler heuristics can be developed that 

will support decision-makers faced with difficult, urgent decisions arising in emergency 

preparedness planning and post-disaster response. The quality of the solutions created by 

such heuristics can be assessed through comparison to exact solutions from the 

techniques provided herein.  

6.2 Extensions 

The BEPSI 

The problem is formulated as a mixed-integer linear program. It is proven to be NP-hard 

and is solved exactly by a Benders decomposition method. Although the solution 

technique is shown to be effective in solving a mid-size, real-world problem, heuristics 

could be developed to more quickly obtain feasible and, hopefully, near-optimal solutions 

for large buildings for on-line applications where instructions would be provided to 

evacuees during the evacuation. The procedures developed for this problem may have 

utility in other functional areas as well, such as, for example, evacuation of a geographic 

region where evacuation instructions can be provided to vehicles via changeable message 

signs, radio, the internet, or other advanced Intelligent Transportation Systems 

technologies.  
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The NRP 

A quantitative, system-level indicator of network recovery capability is proposed in 

Chapter 4 for the NRP and the problem is formulated as a stochastic program. Even 

considering only one possible network state, the NPR is shown to be NP-hard. An exact 

procedure over a set of network states for each disaster scenario is proposed and network 

states are approximated by Monte Carlo simulation. Heuristics may be required to 

compute the resilience of large networks. One might also consider modifying the 

objective function to incorporate the priority of demand between O-D pairs. Such 

consideration is especially useful in the situation of a disaster when emergency resources 

need to be sent to the disaster zone as quickly as possible. The stochastic program 

developed in this study contains no first-stage variable because actions will be reactive 

and are taken in the aftermath of disaster. It may be beneficial to incorporate 

preparedness actions, i.e. proactive measures, prior to disaster occurrence, if these actions 

are cost effective and considerably improve the system’s capability to cope with disaster. 

The stochastic program proposed herein can be extended for this purpose to include 

first-stage variables representing actions taken before disaster scenarios are revealed. It is 

also expected that the proposed resilience concept can be applied more widely to other 

networks systems, e.g. computer systems, as a quantitative measure of system 

vulnerability.  

The USAR-TDP 
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The USAR-TDP is formulated as a multistage stochastic program, capturing the 

probabilistic and dynamic nature of conditions immediately following a disaster. An 

approximate solution technique is proposed to solve a series of two-stage stochastic 

programs with recourse. A future extension may consider designing an algorithm to 

directly solve the multistage stochastic program by approximating the recourse functions 

between stages. Circumstances immediately following a disaster are highly uncertain and 

dynamic. The environment may be hostile due to ongoing events, such as aftershocks 

following an earthquake. While stochastic service times and dynamically arising demand 

are considered in this work. Uncertainty in, for example, stochastic travel time and 

number of people in need of assistance at each site might also be considered. Moreover, 

correlation between demand and on-site service time can be explicitly considered. In this 

work, the arrivals of USAR teams in the disaster region is modeled, however, it is 

assumed that teams' arrival times are known at the start of USAR operations. Uncertainty 

in USAR team arrival might be explored in future studies. Instead of maximizing the 

expected number of people that can be saved, one can consider the objective of 

maximizing the probability that the number of people saved is greater than a given 

threshold. Detailed design of a decision support system (DSS) in which USAR-TDP 

solution techniques, or faster heuristics, would be embedded to provide decision support 

for the incident commander in charge of the disaster response is also an interesting area 

of future research. 
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