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Ballast water plays a vital role in the stabilization and operations of modern 

ships, and it is estimated that 3 to 5 billion tons of ballast water are transferred around 

the world each year.  However, the discharge of ballast water has led to the release of 

non-indigenous species, and costly and ecologically damaging biological invasions.  

To combat this serious problem, ballast water discharge is now regulated and ballast 

water management systems (BWMS) have been developed to meet required discharge 

limits for the release of live organisms.  The most common BWMS rely on 

chlorination of ballast water to kill planktonic organisms but also result in the 

formation of disinfection by-products (DBPs) and the potential for aquatic toxicity.  

The research in this thesis was conducted to advance the understanding of treated 

ballast water toxicity, and to document the formation of higher molecular weight 

DBPs using ultrahigh resolution mass spectrometry.  Research was conducted with 

commercial BWMS that were based on either direct chlorination (Ch. 2 & 3) or in-

situ electrochlorination (Ch. 2 & 4).  Ballast water treatment was conducted in 



 
 

estuarine waters of the Port of Baltimore (Patapsco River, Maryland).  In Chapter 2, I 

tested the algal toxicity of discharged ballast water from four BWMS at the time of 

discharge and monthly thereafter, showing the longevity of the toxic effect of treated 

water on micro algae.  In Chapters 3 and 4, I used ultrahigh resolution mass 

spectrometry to identify the molecular composition of dissolved organic matter 

(DOM) and halogenated DBPs after oxidative treatment of ballast water.  By 

comparing samples before and after direct chlorination, I was able to document the 

changes in dissolved organic matter and the formation of numerous halogenated 

DBPs (Ch. 3).  In Chapter 4, I was able to document the change in brominated DBPs 

after a period of 92 days, showing the relative persistence of dibrominated 

compounds.  This work together demonstrates that use of traditional water treatment 

to solve one environmental problem may, in fact, cause other unintended 

consequences to aquatic ecosystems. 
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Chapter 1 
 

Introduction 
 
1.1 Invasive Species and Global Shipping  

The effects of invasive species in many areas of the world have been devastating and 

are causing enormous damage to local biodiversity and natural resources.  Data show that 

the rate of bioinvasions is increasing in both land and aquatic habitats and that new areas 

are being invaded with increased frequency, resulting in instances of extensive economic, 

human health and ecological impacts (Carlton, 1999; Gollasch, 2006; Vila et al., 2010).  

The process of biological invasions can be broken into four primary stages: transport, 

introduction, establishment and spread (Ruiz and Carlton, 2003; Lockwood et al., 2007; 

Blackburn et al., 2011).  Ultimately a species is considered invasive after out-competing 

native species and spreading in the new location, resulting in harmful economic or 

ecological impacts. 

Ballast water is used by modern ships to maintain balance and maneuverability at sea 

and is a necessary element of modern cargo shipping operations throughout the world.  

Although ballast water is required for the safe operation of ships, discharged ballast water 

is recognized as one of the predominant vectors for aquatic non-indigenous species (NIS) 

transportation and introductions (Carlton, 1985; Ruiz et al., 1997; 2000; Pimentel et al., 

2005; Drake et al., 2007; Lovell and Drake, 2009).  The ecological and economic impacts 

of ballast water release arise from the survival of transferred species that may have the 

ability to establish a reproductive population in the new coastal environment (Carlton, 

1999).  Introduced aquatic organisms can be extremely diverse, with invading organisms 

ranging over 15 different animal phyla with a relatively high prevalence of some types of 
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organisms such as mollusks, crustaceans and worms (NRC, 2011).  Many environmental 

factors and species specific traits can affect the ability of a species to become invasive, all 

of which can change depending on seasonal influences.  The establishment of an 

introduced species can also vary in different locations depending on biotic interactions 

(e.g. competition, predation, parasitism and pathogens) and abiotic (i.e. environmental) 

characteristics (NRC, 2011).  Although theories have been developed for predicting 

successful establishment of an introduced species (Elton, 1958; Kolar and Lodge, 2001; 

Freestone et al., 2013), the complexity of the biotic and abiotic factors along with species 

specific traits makes predicting the success of an introduced species challenging. 

Multiple vectors can often be identified for the introduction of NIS in a given 

geographic location (Hulme, 2009).  Aquatic invasive species vectors that have been 

identified include the bait industry, live seafood, ornamental species trade, aquaculture, 

and marine debris.  However, it is clear that commercial shipping (responsible for an 

estimated 90 percent of global trade) is the largest source of aquatic invasions, through 

ballast water release and vessel biofouling (Albert et al., 2013).  The potential risk from 

both of these vectors has increased with increased transport speed of modern ships, 

allowing transported organisms to arrive in healthier condition due to the reduced transit 

time (Holme, 2009).  In recent years, larger ships with larger ballast tanks have also 

increased the number of organisms released per discharge (propagule size), while the 

increased number of ships has resulted in an increase in discharge events, both of which 

contribute to overall increase in the amount of ballast water discharge.  In fact, the global 

input of discharged ballast water has been estimated in several publications at 3 to 10 

billion tonnes (Endresen et al., 2004; Tsolaki and Diamadopoulos, 2010; David, 2015; 
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IMO, n.d.).  Although the greatest number of studies have focused on biotic, abiotic and 

species specific factors of invasive organisms, empirical evidence has established that 

propagule pressure (i.e. propagule number and concentration) may be the most important 

factor in bioinvasions (Simberloff, 2009).  A reduction in propagule pressure by 

decreasing organism concentrations and total numbers in ballast water should result in a 

decrease in the probability of NIS establishment (Lockwood et al., 2005; Albert et al., 

2013), although bioinvasions are a stochastic process and the shape of the risk-release (or 

dose-response) relationship can vary depending on the circumstances (Ruiz and Carlton, 

2003; NRC, 2011; Wonham et al., 2013). 

The establishment of aquatic invasive species is clearly a complex issue, which limits 

our current ability to accuratly predict invasions (Williams et al., 2013).  For this reason, 

recent strategies to prevent invasions resulting from discharged ballast water have 

focused on reducing the number of viable or living organisms delivered by a major vector 

(e.g., ballast water, Miller et al., 2011; vessel biofouling, Davidson et al., 2017), rather 

than adopting species specific approaches to limit successful introductions of NIS. 

1.2 Ballast Water Regulations 

Implementation of vessel ballast water management strategies to address invasive 

species, such as ballast water exchange (BWE) or treatment, have had some documented 

success in limiting the transfer and release of non-indigenous species.  In particular, the 

United Nations’ International Maritime Organization (IMO) and the U.S. Coast Guard 

have implemented ballast water regulations (Casas-Monroy et al., 2015).  These 

organizations have set numeric discharge standards based on the predicted association 

between the concentrations of organisms in discharged ballast water (i.e. inoculum 
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density) and the risk of NIS establishment.  The International Convention for the Control 

and Management of Ships’ Ballast Water and Sediments (BWM Convention) of the IMO 

(IMO, 2004), and national regulations (e.g. USCG, 2012; NZMPI, 2016), require ships to 

treat their ballast water with certified ballast water management systems (BWMS) to 

meet numeric limits for viable organisms and bacteria.  The BWM Convention requires 

ships to conduct ballast water management (BWM) to limit the introduction of potentially 

invasive species (IMO, 2004).  In the short-term, some ships can still comply with 

regulations by conducting BWE with at least a 95% volumetric exchange of ballast water 

(D-1 Standard) or meet discharge standard concentrations for viable organisms depending 

on size class or taxonomic category (D-2 Standard).  However, ultimately all commercial 

vessels will need comply with the D-2 standard, which sets concentrations for classes of 

organisms related to their minimum dimensions: less than 10 viable organisms ≥ 50 µm 

per m3 and less than 10 organisms ≥ 10 µm and < 50 µm per ml.  In addition, the 

discharge of indicator organisms (i.e. Vibrio cholerae, Escherichia coli, intestinal 

Enterococci) cannot exceed specified concentrations (Table 1.1).  As of September 8, 

2017 (IMO, 2016c) new build ships (keel-laid) have to install ballast water treatment 

systems, but existing ships are required to install a BWMS at the time of their next 

International Oil Pollution Prevention (IOPP) survey. 

 

Table 1.1 The IMO D-2 standard for discharged ballast water. 
 

Organism Category Regulation 
Plankton, >50µm in minimum dimensions <10 cells/m3 
Plankton, 10-50 µm <10 cells/ml 
Toxigenic Vibrio cholera  <1 colony forming unit (cfu)/100 ml 
Escherichia coli <250 cfu/100 ml 
Intestinal Enterococci <100 cfu/100 ml 
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In accordance with the IMO BWM Convention, all BWMS need to go through a 

Type Approval Certification process in accordance with guidelines set out by IMO (IMO, 

2008a).  Testing of the efficacy of BWMS, initially a Guideline (G8), has now been 

replaced by the more enforceable BWMS Code (IMO, 2017a).  Like the IMO, the US 

Coast Guard (USCG) and US Environmental Protection Agency (USEPA) had 

implemented requirements for certification testing BWMS (USEPA, 2010), with similar 

testing requirements and discharge standards to those previously adopted by the IMO.  

Recently, with the passing of the Vessel Incidental Discharge Act (VIDA), the US has 

modified ballast water treatment and discharge policies to increase consistency 

domestically, and modified the BWMS approval policy to more closely align with the 

IMO. 

1.3 Ballast Water Management Systems 

The requirement for the treatment of ballast water to minimize the release of non-

indigenous species has led to the development of a variety of technologies, many of 

which use chemical biocides (i.e., active substances).  Many of the technologies and 

methods have an origin in water purification or wastewater treatment including chemical 

processes; flocculation, electrochlorination and ultraviolet light (UV); and physical 

separation techniques such as filtration and hydrocyclone separation.  Some of these 

methods have been adapted for use in ballast water treatment, in addition to a few novel 

methods specific to ballast water treatment.  Ballast water treatment technologies can be 

broken into primary treatment of physical separation that is followed by secondary 

mechanical or chemical treatment of ballast water either at uptake or during a ship’s 

voyage (Tsolaki and Diamadopoulos, 2010; Ren, 2018).  Filtration is the most common 
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form of physical separation which is usually combined with other methods such as UV or 

oxidant biocide treatment.  Filtration is typically based on screen or disk filters with pore 

sizes commonly in the range of 30-50 µm. 

1.3.1 Mechanical Treatment 

Mechanical treatment methods include ultraviolet radiation (UV), cavitation, de-

oxygenation, ultrasound and magnetic fields.  UV is the by far most common mechanical 

treatment method and is used to damage normal cellular functions, including their DNA, 

so that they are unable to reproduce (Kolkman et al., 2015). The effectiveness of UV 

treatment is dependent on transmittance so that high turbidity can be problematic.  For 

this reason most UV-based systems are combined with some form of physical separation 

(e.g. filtration, cyclonic separation). 

1.3.2 Chemical Treatment 

Chemical treatment methods used in ballast water disinfection are diverse with 

the use of chemicals that are stored and prepared onboard, as well in-situ production of 

the biocide as in the case of electrochlorination.  Active substances are chemicals that are 

used for disinfection, while other chemicals can also be found in treated water as part of 

the active substance preparation, or as by-products of the disinfection process.  The most 

common BWMS treatment is chlorination with dose measured as total residual oxidant 

(TRO) with less frequent use of ozone, chlorine dioxide, naphthoquinones (menadione 

and juglone), peracetic acid and hydrogen peroxide.  This dissertation is based on data 

collected on discharge water collected after treatment by BWMS with total residual 

oxidant (TRO) as the active substance either produced by electrochlorination or a 

solution of sodium dichloroisocyanurate dihydrate (DICD) that is prepared on-board and 
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injected back into the ballast water.  In BWMS using electrolysis, the process can occur 

directly in the main ballast water line (i.e. full flow) or in a side stream that produces 

concentrated TRO which is then injected into the main ballast water line.  When fresh 

water needs to be treated, a BWMS using electrochlorination will rely on reserve tanks of 

brine or previously collected sea water. 

1.4 Approval of Ballast Water Management Systems 

In addition to the IMO BWMS Code regulating efficacy of BWMS, there is a 

companion regulation (Procedure G9) which is invoked to evaluate the safety of BWMS 

employing active substances (IMO, 2008b).  In this context an active substance is defined 

as a substance that has a general or specific action (chemical or biological) on or against 

harmful aquatic organisms and pathogens.  When active substances are part of the 

treatment process the possibility of residual chemical release into the environment is 

taken into consideration.  Procedure (G9) "Procedures for the Approval of Ballast Water 

Management Systems That Make Use of Active Substances" (IMO, 2004), calls for an 

overall safety review and risk assessment during the development of the BWMS.  This 

includes safety of the environment, human health and ships.  Under IMO Procedure (G9), 

evaluations are conducted following the “Methodology for information gathering and 

conduct of work of the GESAMP-Ballast Water Working Group (BWWG)”, specifically 

designed for evaluating BWMS (IMO, 2012).  Reviews of chemical-based ballast water 

treatments are also conducted in the USA by the US Environmental Protection Agency 

(USEPA), with approval of specific compounds for application to ballast water based on 

Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) registration certificate from 

the USEPA.  However, no comprehensive framework for evaluating the environmental 
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acceptability of biocide treated and discharged ballast water has been implemented by 

any United States agency.  As of January, 2019 the GESAMP-BWWG recommended 

Final Approval (FA) for 42 BWMS using active substances (IMO, 2018a).  

Approximately 26% of the IMO approved BWMS use some form of chlorination (e.g. 

electrochlorination, dichloroisocyanurate dihydrate, sodium hypochlorite) resulting in the 

production of disinfection by-products (DBPs).  At present, approximately half of the 

BWMS that are Type Approved for use on ships use an active substance (IMO, 2015) and 

approximately 70% of installed BWMS use active substances (ABS, 2019). 

Although the IMO Ballast Water Convention (BWC) has entered into force making 

ballast water treatment mandatory on most vessels, the number of ships that will install 

oxidant based BWMS is unknown.  Considering the number of ships that will require 

ballast water treatment, the discharge of oxidant treated ballast water with associated 

DBPs has become a global concern.  However, because BWMS installation requirements 

are based on an IMO timeline, it may take many years to assess the total number of ships, 

and total volume of oxidant treated water that will be discharged into the environment. 

1.5 Assessing the Environmental Impact of Discharged Treated Ballast Water 

The environmental acceptability of treated and discharged ballast water has been 

analyzed in few peer-reviewed published articles (Werschkun et al., 2012; Delacroix et 

al., 2013).  In addition to this limited amount of published data, there is a substantial 

quantity of treated ballast water information available from BWMS evaluations under 

IMO Procedure G9, as conducted by the GESAMP-BWWG (Bowmer and Linders, 

2010).  Evaluations of BWMS have identified a list of the 43 chemicals most commonly 

associated with treated ballast water, the majority of which are DBPs produced after 



9 
 

treatment with strong oxidants.  Two of these treatment methods were employed by the 

BWMS studied in this dissertation, namely electrochlorination and dichloroisocyanurate 

dihydrate (DICD) injection.   

The list of the 43 most common ballast water chemicals is compiled in Appendix 1.  

The majority of chemicals are small DBPs that are analyzed by GC-MS or LC-MS.  The 

largest DBP in the database is a tribrominated halophenol (HP), 2,4,6-Tribromophenol 

(IMO, 2017b).  As part of this dissertation, an extensive search was conducted to identify 

the lowest ecotoxicological values for each of the 43 substances.  These ecotoxicity 

values were extracted from published research, research that was evaluated by national 

and international organizations (USEPA, OECD, WHO, etc.), as well as data acquired 

from quantitative structure activity relationship (QSAR) databases when no ecototoxicity 

data was available.  Predicted no effects concentrations (PNECs), based on the lowest 

ecotoxicity value identified for organisms in 3 trophic levels (plant, invertebrate and 

vertebrate), and an assessment factor (chosen based on the quality and quantity 

ecotoxicity data) were also calculated for each of the 43 chemicals.  This data is available 

as an online database (GESAMP-BWWG-Database of Chemicals Most Commonly 

Associated with Treated Ballast Water) at the IMO Global Integrated Ship Information 

System (GISIS) website (IMO, 2017b).  The BWWG-Database, also includes physico-

chemical properties and toxicological information on the 43 chemicals, where available. 

The BWWG-Database is useful for an overview of potential environmental concerns 

by comparing the PNECs to model based predicted environmental concentrations (PECs) 

for individual chemicals.  However, a comparison of measured DBP discharge 

concentrations and algal ecotoxicity data is also useful to ascertain the cause of toxicity 
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observed in algal toxicity testing of oxidant treated ballast water.  In Chapter 3 of this 

dissertation, a comparison of the highest DBP concentrations and available algae-specific 

ecotoxicity data is presented for ballast water from the four tested BWMS.  This 

comparison assures that effects are relevant to algae, although typically microalgae are 

the most sensitive trophic level with regard to DBPs, and algae usually accounts for the 

lowest ecotoxicity value used in calculating PNECs. 

The predicted environmental concentration (PEC) of all DBPs in a harbor situation 

can be estimated using the discharged ballast water concentration and a ballast water 

model of a commercial harbor, MAMPEC 3.1.0.3 (Van Hattum et al., 2016), with the 

assumption that all ships will use a particular ballast water treatment system (Zipperle et 

al., 2011).  MAMPEC is a mathematical model originally developed for antifouling paint 

biocides, which has been adapted for use in ballast water discharge situations.  The 

MAMPEC modeling has been performed extensively by the BWWG in a Port of 

Rotterdam scenario, and has also been used to calculate PECs of DBPs in other port 

scenarios (David et al., 2018; IMO, 2018b).  The ratio of the PEC and PNEC is calculated 

to characterize the risk of a given DBP in the environment when discharged at a given 

concentration.  If the PEC/PNEC is greater than 1, the possibility of environmental 

impact cannot be ruled out for that particular chemical (IMO, 2017c).   

In addition to PEC/PNEC ratios, the toxicity of discharged ballast water after BWMS 

treatment is evaluated during IMO Procedure G9.  A review of data from G9 submissions 

collected since research on this dissertation began shows that discharged ballast water 

from oxidant-based BWMS is frequently toxic to microalgae, while typically no toxicity 

is revealed in vertebrate and invertebrate testing. 



11 
 

1.6 Chemistry of Chlorination Based Treatment Methods 

Chlorination has been used by the majority of BWMS using active substances and a 

large proportion of certified BWMS overall.  Chlorine has been used routinely in the 

treatment of drinking water and wastewater for decades, resulting in water chlorination 

technologies that are mature compared to other potential biocides for use in ballast water 

treatment.  The biocidal action of chlorine, and other oxidants, is explained by multiple 

mechanisms including protein denaturation, oxidation, attack and modification of the cell 

membrane, and hydrolysis (Hawkins et al., 2003).  Chlorine-produced oxidants are also 

effective against the majority of ballast water organisms, although oxidants may not be as 

effective against eggs and resting stages of some organisms (e.g. cysts), or aquatic 

viruses. (Hallegraeff and Bolch, 1991; Blackburn and Parker, 2005; Rubino et al., 2013).  

This is particularly relevant as manufacturers face increasing pressure to develop BWMS 

that are effective against all life stages of organisms (Hess-Erga et al., 2019), potentially 

leading to increased doses of oxidants in ballast water treatment.  Chlorination of ballast 

water is characterized by either the addition of active substance or the electrolysis of 

seawater resulting in oxidants consisting of active chlorine (primarily HOCl and OClˉ) 

and active bromine (primarily HOBr and OBrˉ).  Because the chemicals comprising the 

pool of oxidants are extremely fast reacting, the exact speciation of chemicals is difficult 

to resolve so the oxidant concentration is quantified as total residual oxidant (TRO) 

expressed as Cl2 equivalents (i.e. mg TRO lˉ as Cl2).  The dose of TRO in most BWMS is 

measured in samples taken from the ballast water line by either DPD colorimetric meters 

or amperometric based analyzers, although ORP analyzers have also been used in a few 

BWMS for adjusting the oxidant dose. 
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This dissertation research was conducted on two types of BWMS based on either 

electrochlorination or direct chlorination by injection of a DICD solution.  In fresh water, 

a rapid hydrolysis of molecular chlorine takes place in ballast water to form hypochlorous 

acid (HOCl) which rapidly equilibrates with OCl- as shown in reactions 1 and 2 below. 

 

 Cl2 + H2O HOCl + H+ + Clˉ (1) 

 HOCl OClˉ + H+  (2) 

 HOCl + Brˉ HOBr  + Clˉ (3) 

 OClˉ + Brˉ  OBrˉ + Clˉ  (4) 

 

The combined HOCl and OClˉ species are referred to as free available chlorine 

(FAC).  The predominant chlorine species is driven by the pH of the water (Figure 1.1), 

with HOCl dominating around pH 6 followed by an increase in the proportion of OClˉ at 

higher pH values eventually dominating near pH 8.

 

Figure 1.1 Chlorine and bromine species at differing pH values 

 

Although bromide, an inorganic ion, does not react directly with natural organic 
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matter (NOM), it is oxidized by chlorine to hypobromous acid (HOBr).  When oxidants 

are used in brackish and seawater, HOCl reacts with naturally present bromide which is 

oxidized to form HOBr (eq. 3), which then undergoes an acid base speciation to form 

hypobromite (OBrˉ) (eq. 4).  The combined HOBr and OBrˉ species comprise the bulk of 

active bromine pool with other lesser bromine species (Br2, BrCl, Br2O) that can also 

react with inorganic and organic compounds (Heeb et al., 2014).  A similar primary 

oxidant speciation curve is seen with chlorine and bromine species (Figure 1.1).  

However, the curve for HOBr dominance is shifted to the right so that HOBr is dominant 

at pH 7, where a relative increase in OBrˉ starts and becomes dominant closer to pH 9.  

Both active chlorine and active bromine are extremely reactive with cell components and 

microorganisms making them effective disinfectants.  The amount of active bromine will 

depend on the content of bromide ion, which varies proportionally to the salinity natural 

waters (Table 1.2).  Fresh water concentrations of bromide range from trace to 

approximately 0.5 mg l-1.  The oxidant chemistry in marine waters is largely controlled 

by the high content of chlorine (Clˉ: 19,000 mg l-1) and bromine (Brˉ: 65 mg l-1).  At the 

mesohaline salinities of ballast water in this dissertation research (i.e. 5.2 – 7.1), the TRO 

distribution is theoretically comprised predominantly of active bromine (Table 1.2). 

 
 Table 1.2 Summary of active oxidants for a dose of 10 mg l-1 available chlorine 

 

Water Salinity (PSU)  Active biocidal agent 

Seawater 32  Completely available bromine 

Brackish mesohaline 5 – 18  Predominantly available bromine 

Brackish  3 – 5  Mostly available bromine 

Slightly brackish < 3  Mixed available bromine/chlorine 

Fresh water < 0.3  Completely available chlorine 
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1.6.1 DICD Chemistry  

In Chapters 2 and 3 of this dissertation, a BWMS was tested that was based on 

injection of a solution of DICD, to produce HOCl, followed by direct injection of DICD 

solution into ballast water during uptake.  It is well established that dichloroisocyanurate 

or DICD (C3N3O3Cl2) equilibrates with HOCl in solution (Wojtowicz, 1993) as seen 

below in Figure 1.2. 

 

 
 
Sodium dichloroisocyanurate 
dihydrate (DICD) 
 
   Cl2CyNa + 2 H2O 

   

 
   Isocyanuric acid  
 
         H2CyH 
 

 
 
 
 
 
 
 
 

 
 
 
+     HOCl 
 
 
 
Hypochlorous acid 
 

 

Figure 1.2 Release of free available chlorine (HOCl) from DICD in solution. 

 

In fresh water systems with high demand from microorganism and chemical 

species, DICD equilibrates as HOCL is consumed by a rapid hydrolysis reaction (Jensen 

and Johnson, 1990).  However, in low chlorine demand fresh water applications, the 

cyanurate ring on DICD holds chlorine until needed for disinfection.  Therefore with high 

chlorine demand, conversion of chloroisocyanurates to HOCl is thought to be very rapid 

and complete (eq. 5 and 6) (Wojtowicz, 1993), with disinfection accomplished using only 

free available chlorine (HOCl and OClˉ).  Like other chlorination techniques (e.g. 

electrochlorination), in the presence of bromide ion in an aqueous solution (e.g. brackish 

or seawater) the bromide ion is oxidized rapidly to available bromine (HOBr and OBrˉ) 

and if enough bromide ion is present all available chlorine is converted to available 

This image cannot currently be displayed.
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bromine.  Although complete conversion to available bromine is assumed, there is no 

published data on the effects of cyanuric acid (H2Cy-) or isocyanurates on the oxidation 

of the bromide ion by HOCl (eq. 7) (Farkas et al., 1949). 

 

Cl2Cyˉ + H2O  →  HClCyˉ + HOCl  (5) 

HClCyˉ + H2O  →  H2Cyˉ + HOCl   (6) 
Cl2Cyˉ = dichloroisocyanurate, HClCyˉ = chloroisocyanurate, and H2Cyˉ = cyanurate  

HOCl + Brˉ → HOBr + Clˉ   (7) 

 

1.6.2 Electrochlorination Chemistry 

Electrochlorination has the advantage of using seawater to produce HOCl on 

demand, without the need for loading and holding chlorine in a concentrated liquid (e.g. 

sodium hypochlorite) or solid crystalline or powder form (e.g. DICD).  In Chapter 2, 

three BWMS were tested that were based on electrochlorination of incoming ballast 

water to produce HOCl.  The general method of electrochlorination is the production of 

TRO by running an electrical current through saltwater.  Although details of the BWMS 

studied in this dissertation research are confidential, the electrochlorination of seawater is 

a well described technology and is widely used in treatment of seawater for swimming 

pools, desalination membrane fouling control, and biofouling control in industrial and 

power plant cooling waters.  The chemical reactions take place in an electrolyzer unit 

which applies direct current to the ballast water.  The electrolyzer is composed of anodes 

and cathodes potentially made of different electrode materials.  Newer units are 

composed of titanium anodes with metal oxide coatings (e.g. iridium or rubidium oxides) 

with the Ti/RiO2 combination producing the highest level of free chlorine (Jeong et al., 

2009).  The water flows between an anode (eq. 8) and a cathode (eq. 9), producing 
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chlorine on the anode, and hydrogen and sodium hydroxide by hydrogen-generation 

reaction on the cathode.  The reaction in the solution is shown below (eq. 10 and 11) with 

the overall reaction (eq. 12) showing the final production of sodium hypochlorite (Black 

and Veatch Corporation, 2010). 

 
      (Anode):       2Clˉ  → Cl2 + 2eˉ    (8) 
    (Cathode):      2H2O + 2eˉ → 2OHˉ + H2   (9) 
 
       Solution:     NaOH+ Cl2 → NaClO + NaCl + H2O         (10) 
                          NaClO + H2O → HOCl + Na+ +OHˉ  (11) 
 
Overall Reaction:  2Clˉ + 2H2O → 2HOCl + H2  (12) 
 
The formation of HOCl is directly proportional to the salinity (i.e. chloride concentration) 

and the applied specific charge (Jeong et al., 2009). Because the electrolysis voltage 

increases with low water temperature, a minimum water temperature is typically assessed 

to alleviate problems with electrode degradation and the need for increased power supply.  

As seen with DICD chlorination in brackish water, any HOCl or OClˉ produced is rapidly 

converted HOBr or OBrˉ (eq. 3 & 4) due to the natural presence of the bromide ion, and 

the active substance is considered the combined effect of residual oxidants (i.e. TRO). 

1.7 Formation of Disinfection By-products (DBPs)  

The initial detection of DBPs was with small chlorinated DBPs in chlorinated 

drinking water (Rook, 1974).  The discovery of chlorinated DBPs was followed by the 

identification of analogous brominated DBPs in marine waters (Rook et al., 1978).  It is 

now recognized that bromide containing compounds represent the largest group of DBPs 

in marine waters (Helz et al., 1984; Werschkun et al., 2012).  Although approximately 

700 DBPs have been characterized in drinking water (Richardson, 2018), the GC-MS and 
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LC-MS quantified DBPs only account for a portion of TOX formed after chlorination 

(Krasner et al., 2006; 2009; Chen et al., 2015), and the additional TOX is presumed to be 

from the incorporation of halogens into higher molecular weight dissolved organic matter 

(DOM) (Zhang and Minear, 2002; 2006). 

As stated previously, the active substance TRO is the same for DICD treatment 

and electrochlorination, and in mesohaline water the oxidant primarily consists of active 

bromine (HOBr and OBr-).  In mesohaline water, the reaction kinetics are dominated by 

the protonated form of bromine, HOBr, as the stronger electrophile compared to OBr- and 

other lesser contributors of active bromine (e.g. Br2, BrCl, Br2O).  The TRO species 

combine with natural organic matter (NOM) to form halogenated organic compounds 

(Figure 1.3), while also disinfecting the ballast water.  In addition to being the primary 

oxidant in saline water (Table 1.2), HOBr is also more likely to participate in substitution 

reactions with DOM compared to HOCl (Uyak and Toroz, 2007; Sharma et al., 2014).  

Electrophilic substitution reactions on DOM moieties reacting with HOBr (Criquet et al., 

2015) form primarily brominated DBPs (Br-DBPs) in saline waters (Langsa et al. 2017).  

Humic substances in DOM are the primary target of halogenation reactions as they 

contain unsaturated structures with double bonds and aromatic rings.  Additional moieties 

such as hydroxyl and amino groups further increase reactivity (Criquet et al., 2015).  

Additional halogenation can result in ring opening and saturation of bonds with halogens 

forming HAAs and THMs.  A comprehensive review of HOBr reactions with organic 

compounds and micro pollutants was carried out by Heeb et al. (2014).  Because the 

majority of ballast water treatment takes place in estuarine and marine waters, the 

formation of Br-DBPs has been the focus of research on oxidant treated ballast water. 
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Figure 1.3 Overview of small traditional DBPs forming during chlorination of natural fresh water 

and sea water.  

 

It is estimated that close to 99% of the applied oxidant dose reacts with DOM and 

the majority of DBPs are generally formed as a reaction with humic substances in DOM 

including primarily humic and fulvic acids.  However, the structure of these natural 

biopolymers are complex, and are not definitively characterized.  The chemical oxidants 

react with various DOM moieties via electrophilic substitution forming a diverse pool of 

small traditional DBPs and higher molecular weight DBPs, the sum of which is estimated 

by sum parameters of organohalogens (Hua and Reckhow, 2006; Langsa et al., 2017).  

Unlike the formation of other compounds, the lack of well-characterized DBP precursors 

hinders the prediction of DBPs by applying oxidant reaction pathways.  For this reason, 

the study of DOM and high molecular weight DBPs is primarily limited to analytical 

chemists who have used increasingly sensitive methods to analyze DOM precursors and 

DBPs.  Throughout this dissertation, the term high molecular weight DBPs is used for 

DBPs identified by high resolution MS and is used as a relative term in comparison to 

lower molecular weight DBPs that have been studied rather extensively and are identified 
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by GC-MS or LC-MS.  As discussed in Chapters 3 and 4, the actual molecular weight of 

what is identified as high molecular weight DBPs is 160 – 600 Da. 

Because the active substance, TRO, is the same for DICD treatment and 

electrochlorination, the production of DBPs is thought to be similar between BWMS 

employing chlorination.  This similarity can be seen in Chapter 2 of this dissertation for 

small traditional DBPs that were quantified in treated ballast water.  Although similar 

DBPs will be produced, the quantity and specific DBP production will vary with factors 

such as treatment type and dose, reaction time, temperature, and characteristics of the 

uptake water (Hua and Reckhow, 2008; Padhi et al., 2012; Shah et al., 2015).  While 

formation of DBPs in drinking water is complicated, several additional factors increase 

this complexity in ballast water treatment, especially with regard to brackish water and 

seawater.  These factors include lack of filtration, presence of bromide, higher DOM 

content and higher doses of oxidant.  As previously discussed, the presence of bromide in 

brackish water leads to more abundant brominated DBPs with the possibility of some 

chlorinated and mixed halogenated DBPs (Shah et al., 2015).  Unlike drinking water, the 

ballast water intake is not pretreated before adding oxidant, other than the possibility of 

course filtration (approximately 40-50µm), resulting in the presence of algae in the 

uptake water that can lead to nitrogen-containing DBPs.  The chlorination of NOM 

during drinking water treatment uses rather low oxidant concentrations (approximately 

0.5 mg l-1) compared to ballast water treatment which can be as high as 20 mg l-1 TRO.  

Research has shown that the type of oxidant or the increased dose of oxidant alone can 

result in higher DBP concentrations and different patterns of both small traditional DBPs 

(Padhi et al., 2012; Shah et al., 2015) and high molecular weight DBPs (Lavonen et al., 
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2013).  Lastly, a myriad of DBPs can form from reaction with additional precursors such 

as pharmaceuticals, personal care products (PCPs), polyaromatic hydrocarbons (PAHs) 

and pesticides (Richardson, 2018), all of which are potentially found in uptake water 

from urban centered ports and harbors where ballast water treatment is typically 

conducted. 

Over the past decade, a large data set for small traditional DBPs (e.g. HAAs, 

THMs, oxyhalides and HANs) formed in ballast water treatment has been gathered by the 

BWWG from BWMS manufacturers applying for IMO Procedure (G9) approval (i.e. 

Procedure for approval of ballast water management systems that make use of Active 

Substances).  Although valuable, this information has been criticized because details of 

test conditions and DOC in test water are often lacking (Werschkun et al., 2012), and 

methods of DBP analysis of treated water have been called into question especially for 

DBPs in saline waters (Lee et al., 2018).  Unfortunately, very little of the IMO approved 

testing has compared the differences in DBP profiles between water treated with different 

oxidant-based disinfection methods (e.g. DICD, electrochlorination, sodium 

hypochlorite) used in ballast water treatment.   

In Chapter 2 of this dissertation, a DICD solution was used by the BWMS in the 

treatment of estuarine ballast water, and treated water was analyzed for small traditional 

DBPs.  In fresh water use of DICD (e.g. swimming pools), the cyanurate ring on 

chloroisocyanurates can serve as a reservoir for available chlorine (Tachikawa et al., 

2002; Yang et al., 2016), thereby moderating formation of traditional small DBPs (Scotte, 

1984; Feldstein et al., 1985).  However, Feldstein et al. (1985) determined that cyanurate 

would only be expected to inhibit DBP formation if the process was chlorine-dose 
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dependent because the presence of cyanurate would change the HOCl concentration.  It 

was also determined that in river water with a chlorine dose of 13 mg l-1, and 

corresponding cyanurate concentration of 175 mg l-1, the total THM concentration was 

reduced by 24% after 7 days.  The authors concluded that even at high concentrations of 

cyanurate, only minor effects on THM formation can be expected because only a small 

portion of THM formation reactions are affected (Feldstein et al., 1985).  In recent 

aquaculture research, the total organic bromine (TOBr) concentrations were similar after 

treatment with two cyanurate-based disinfectants, trichloroisocyanuric acid (TCCA) and 

sodium dichloroisocyanurate (DICD), although no comparison to direct chlorination with 

sodium hypochlorite was conducted (Wang et al., 2017).  The authors noted that total 

organic bromine (TOBr) increased over a five day hold time in the dark, after initial 

chlorination, and suggested that Br-DBPs were formed continuously over 5 days due to 

slow release of HOCl from cyanurates.  No other research was identified to further 

support the concept of slow release of active chlorine from cyanurates in marine/brackish 

waters.  In typical ballast water with high oxidant demand, chloroisocyanurates in 

solution are assumed to rapidly release HOCl and equilibrate with HOBr, making the use 

of DICD for disinfection functionally equivalent to other methods using strong oxidants.  

However, in water with a lower oxidant demand, or high concentration of 

chloroisocyanurates, residual cyanurates may hold available chlorine, thereby potentially 

affecting formation of both small traditional DBP and high molecular weight DBPs. 

1.7.1 Nitrogenous DBPs 

The formation of nitrogen-containing DBPs is of increasing concern as research 

has shown that they are generally more toxic than Br-DBPs without nitrogen (Plewa et 
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al., 2008; Wagner and Plewa, 2017).  It has been recognized that nitrogenous DBPs can 

form in oxidation reactions with proteins and peptides (Diehl et al, 2000; Sivey et al., 

2013).  In both drinking water and ballast water treatment the primary source of nitrogen-

containing Br-DBPs may be precursors derived from algae present in the water before 

treatment.  Algal organic matter (AOM) has lower aromaticity than other components of 

NOM, reducing THM formation, but also has higher organic nitrogen, as shown by the 

higher DOC/DON ratio of AOM (Zhou et al., 2014), leading to nitrogen-containing 

DBPs (Li and Mitch, 2018).  In ballast water treatment with strong oxidants, high algae 

concentrations in uptake water increases the source of organic nitrogen leading to 

increased nitrogen-containing Br-DBPs.  Although most research on DBP precursors has 

concentrated on allochthonous sources of DOM, such as the previously mentioned humic 

substances, precursors from algae such as those found in algal cell exudates and 

intracellular organic matter released after cell lysis (Bond et al., 2012; Chen et al., 2015) 

will be significant in eutrophic systems with the extreme conditions found during algal 

blooms (Yang et al., 2011; Tomlinson et al., 2016; Hua et al., 2017).  In the water, these 

nitrogenous biopolymers can be found in extracellular organic matter (EOM) from algal 

cell exudates, or intracellular organic matter that that can be released during cell lysis as a 

result of oxidative treatment (Bond et al., 2012; Chen et al., 2015).  The characterization 

of AOM from different algal species has revealed that DBP formation potentially changes 

with species and growth phase (Pivokonsky et al., 2014), and that diatoms specifically 

contribute substantially to production of nitrogen-containing DBPs (Goslan et al., 2017).  

In other research, chlorination (NaDDC) of artificial seawater resulted in only 2 nitrogen-

containing Br-DBPs, versus 32 nitrogen-containing Br-DBPs in chlorinated raw seawater 
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with algae showing the importance of naturally present algae as a source for DBP 

precursors. 

1.8 Analytical DBP Methods 

1.8.1 Sum Parameters of Organohalogens (OX) 

Total organic halogen (TOX) and other sum parameters of halogenated DBP are 

measures of a combination of operationally defined halogenated organic species in a 

water sample which can include quantified low molecular weight halogenated 

compounds, and unquantified halogenated compounds of low and high molecular weight.  

The small traditional DBPs that are normally measured account for only 30-60% of the 

halogens as measured by TOX in chlorinated water (Richardson, 2002; Krasner et al., 

2006; 2009; Chen et al., 2015), and with the diversity and complexity of precursors the 

total number of DBPs in drinking water alone will likely exceed 1,000 (Li and Mitch, 

2018).  For this reason, the sum parameters are used to measure the sum of organic 

halogen in a water sample as measured by a given analytical technique.  The difference in 

quantified DBPs and TOX is most likely due to chlorination products that are not 

amenable to GC-MS or are not stable enough to survive sample preparation procedures.  

A large portion of unquantified DBPs are likely high molecular weight halogenated DBPs 

that are the focus of Chapters 3 and 4 of this dissertation.  This is due to the fact that high 

molecular weight DBPs are not amenable to chemical analysis methods used for smaller 

DBPs (e.g. HANs, HAAs, THMs, oxyhalides), such as gas chromatography/mass 

spectrometry (GC-MS) or GC-electron capture detector (GC-ECD) techniques which 

cannot detect large or polar Br-DBPs (Richardson, 2002; Zhai and Zhang, 2011).  

Interestingly, research has shown that for the same source water, the TOX level is 
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positively correlated with toxicity (Hua and Reckhow, 2007; Li and Mitch, 2018) 

suggesting an additional contribution to toxicity by unquantified DBPs. 

All sum parameters of halogens are based on an electro-chemical method called 

micro-coulometry, although extraction procedures differ for each method.  Adsorbable 

organic halogen (AOX) designates organohalogens that are adsorbable on activated 

carbon and includes both polar and non-polar DBPs, but is not well suited for marine 

waters as high amounts of inorganic halogens (e.g. chloride) disturb the adsorption of 

organic chlorine.  Purgeable Organic Halogen (POX) includes all volatile compounds a 

large portion of which are THMs.  The sum of AOX and POX comprises TOX 

(Khalanski and Jenner, 2012).  Sum parameters adapted to marine waters are: POX and 

Extractable Organic Halogen (EOX).  EOX, initially designed for salt water sediments, 

designates organohalogens extracted in an organic solvent (Jenner et al., 1997), but is 

hampered by the significant loss of organic halogens during the extraction process (Han 

et al., 2017). 

1.8.2 Quantification of Traditional DBPs 

The quantification of traditional DBPs formed with the oxidation of natural 

waters is complicated by the diversity of DBPs including differences in volatility, number 

and type halogens, types of moieties, and molecular weight.  As a result of this diversity, 

many methods are required for the extraction/concentration, separation and detection of 

DBPs.  A summary of analytical methods for small traditional DBPs that are often 

regulated in drinking water is given in Figure 1.4. 
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Figure 1.4 Analytical methods used for the determination of the different classes of relatively 

low molecular weight DBPs. 

 

Because DBPs are found at rather low concentrations, samples are usually 

concentrated before DBP detection.  Early DBP research focused on the identification of 

small halogenated DBPs identified by using GC-MS and then LC-MS.  The progression 

of analytical techniques from GC/MS, LC/MS and GC/IR for identifying unknown polar 

and nonpolar DBPs in drinking water is thoroughly reviewed in Richardson (2002).  

Because of their volatile nature, compounds such as THMs are analyzed by purge and 

trap method directly without extraction.  Semipolar and polar DBPs can be extracted with 

resin (e.g. polypropiolactone (PPL), C-18) or by liquid-liquid extraction prior to analysis.  

Spectroscopic methods such as gas chromatography/mass spectrometry (GC/MS) are 

used to obtain a mass spectra followed by unknown compound identification by 

comparing their spectra with those in mass spectral libraries.  However, many 

unregulated DBPs are not present in any databases.  Early analytical improvements 

coupled high resolution MS to GC to provide exact mass data which can be used to 

determine empirical formulas for unknown structures, and fragments of unknown 

structures, of small volatile or semi-volatile compounds (Richardson, 2002).  Also, 

derivatization techniques are often added to include some polar classes of compounds 
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(carboxylic acid, polar aldehydes) before GC/MS analysis.  LC-MS techniques were later 

developed to include the separation and detection of non-volatile DBPs, including DBPs 

with higher molecular weights that were previously unquantified by GC-MS (Richardson, 

2002).  The analysis of small traditional DBPs is still performed using GC-MS (or GC -

ECD), or possibly newer LC-MS methods, for measuring most of the 18 DBPs that are 

typically regulated in drinking water including five haloacetic acids (HAA5), four THMs, 

chloral hydrate, dichloroacetonitrile, dibromoacetonitrile, trichloroacetonitrile, cyanogen 

chloride, formaldehyde, 2,4,6 –trichlorophenol, bromate and chlorate.  However, human 

risk assessments based on epidemiologic studies have shown that the toxic potential of 

only regulated DBPs such as THMs does not add up to the magnitude of health risks 

observed (Costet et al., 2011; Neale et al., 2012).  The additional toxicity that was 

unaccounted for by regulated DBPs led to interest in discovering new DBPs, and 

development of techniques that could identify DBPs that may contribute to the overall 

toxicity of oxidant treated waters.  Research has also shown that a large number of 

emerging DBPs are cytotoxic, neurotoxic, mutagenic, genotoxic, carcinogenic and 

teratogenic (Richardson et al., 2007; Wagner and Plewa, 2017). 

In addition to DBPs with natural organic precursors, DBPs that have precursors of 

anthropogenic origin have also been identified as summarized in the annual literature 

review of emerging contaminants (Richardson and Ternes, 2018).  These DBPs 

precursors include many pharmaceutical and personal care products (PCPPs), herbicides, 

artificial sweeteners, estrogens and PAHs.  Many of these anthropogenic precursors are 

expected to be more problematic in certain applications such as treatment of fresh and 

saline wastewater effluents, or possibly ballast water treatment when water is taken from 
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industrialized ports with urban surroundings. 

1.8.3 Detection of High Molecular Weight DBPs 

The vast majority of DBP analysis on oxidant treated water have been conducted 

with gas chromatography/mass spectrometry (GC-MS), a method which cannot detect 

large or polar DBPs (Richardson, 2002; Zhai and Zhang, 2011).  However, the difference 

in TOX and quantified individual DBPs is substantial, and a large portion of the 

difference is likely due to high molecular weight halogenated DBPs.  The primary DBP 

precursor in natural waters is humic substances in DOM, which are comprised of large 

complex biopolymers that are not definitively characterized.  A possible structure for 

humic acid (Figure 1.5) shows the complexity of humic substances and is representative 

of the overall complexity of DOM (Stevenson, 1994).  Chemical oxidants can combine 

via electrophilic substitution with DOM moieties forming high molecular weight 

halogenated DBPs that are largely uncharacterized, in addition to relatively small 

characterized DBPs. 

 
 

Figure 1.5 Proposed structure of humic acid including quinone and phenol moieties as well as 

other components. 
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As a result, a significant portion of TOX formed in chlorinated water was not 

identified until recently with new analytical techniques.  These techniques include 

ultrahigh resolution FT-ICR MS (Zhang et al., 2014; Gonsior et al., 2015), electrospray 

ionization-triple quadrupole mass spectrometry (UPLC/ESI-tqMS) (Zhai and Zhang, 

2011; Zhai et al., 2014) and Orbitrap MS (Postigo et al., 2016).  The development of 

these new analytical techniques has continued to close the gap between identified DBPs 

and TOX.  One emerging method ultrahigh resolution FT-ICR MS uses non-target 

analysis which is able to identify numerous DBPs in water samples despite the presence 

of high DOM concentrations.  FT-ICR MS is the most powerful HR mass spectrometer, 

with sufficient resolution to identify the molecular composition of DBPs by mass 

measurement alone (Stenson et al., 2003).  This allows the determination of molecular 

formulas of numerous DBPs, as well as the chemical structure of single halogenated 

DBPs up to eight carbons and even larger multiple halogenated DBPs.  The use of FT-

ICR MS in DBP research was pioneered by Zhang et al. (2012) initially to investigate 

high molecular weight chlorinated DBPs, and later used to characterize brominated DBPs 

(Zhang et al., 2014).  The technique has since been reported in other studies for use in 

monitoring the incorporation of chlorine (Lavonen et al., 2013; Gonsior et al., 2014b), 

and bromine (Gonsior et al., 2015) into DOM. 

Recently, LC-Orbitrap instruments have been used to detect halogenated DBPs 

(Postigo et al., 2016; Wang and Helbling, 2016; Shao et al., 2018).  Although FT-ICR 

MS sensitivity (i.e. resolution and mass accuracy) is unparalleled, Orbitrap MS is similar 

in many respects and can more easily be coupled to chromatography systems. 

Liquid direct infusion using electrospray ionization with tandem mass 



29 
 

spectrometry (ESI-MS/MS) and triple quadrupole MS detection (ESI-tqMS) have been 

used extensively for DBPs in drinking water and wastewater.  The ESI-MS/MS technique 

was initially developed by Zhang et al. (2005) to identify high molecular weight 

chlorinated DBPs in drinking water and was later modified to ESI-tqMS in order to 

selectively detect brominated and iodinated DBPs by using paired precursor ion scans of 

m/z 79 or 81 (Zhang et al., 2008) and m/z 126.9 (Ding and Zhang, 2009) for bromine and 

iodine, respectively.  The ESI-tqMS technique has also been coupled with ultra-

performance liquid chromatography (UPLC) to help determine structures of newly 

identified DBPs (Zhai and Zhang, 2011; Pan and Zhang, 2013; Zhai et al., 2014; Pan et 

al., 2016a), including cyclic or aromatic brominated and iodinated DBPs (Ding and 

Zhang, 2009; Pan and Zhang, 2013; Pan et al., 2017).  Most relevant to this dissertation, 

the ESI-tqMS technique has been successfully employed to identify and provide 

structures for brominated DBPs in chlorinated saline wastewater (Ding et al, 2013; Gong 

and Zhang, 2015). 

The exploration of methods such as FT-ICR MS, Orbitrap MS and UPLC/ESI-

tqMS for identification of higher molecular weight DBPs is an important step towards 

fully evaluating oxidant treated discharge waters and potentially the surrounding 

environment.  The focus of Chapters 3 and 4 are high molecular weight DBPs formed in 

DICD (Chapter 3) and electrochlorination (Chapter 4) treatment of ballast water as 

identified with FT-ICR MS.  As discussed in Chapter 4, these large and potentially 

aromatic DBPs are thought to be more lipophilic with higher logP values and have an 

increased potential to permeate cells and bioaccumulate compared to smaller aliphatic 

DBPs. 
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1.8.4 Degradation and Stability of DBPs 

Knowledge of the stability of DBPs can help determine the likelihood of a DBP to 

persist in the environment and as a result enable accurate exposure assessments to 

humans and aquatic organisms.  Documentation of traditional DBPs in treated waste 

water (Krasner et al., 2009) and drinking water systems (Krasner et al., 2006), including 

some brominated DBPs, is widely available as are mechanisms for DBP degradation.  

However, documentation of high molecular weight DBPs and research on mechanisms of 

degradation and environmental stability are absent.  Most degradation studies of DBPs 

have been conducted with regulated DBPs in freshwater systems where it was shown that 

DBPs are subject to many abiotic and biotic transformation processes, and that hydrolysis 

is an important mechanism of DBP removal (Liang and Singer, 2003; Zhang et al., 2009).  

The degradation information for a variety of DBPs from six different compound classes 

representing both regulated DBPs (i.e. THMs and HAAs) and non-regulated DBPs found 

that the relative importance of hydrolysis, abiotic reductive dehalogenation, and 

biodegradation depends on the DBP structure and environmental conditions (i.e. pH, 

temperature, dissolved oxygen, bacteria present, etc.) (Hozalski et al., 2008).  Most 

brominated DBPs are susceptible to abiotic reductive dehalogenation, some are 

susceptible to hydrolysis, and brominated HAAs are readily biodegraded under aerobic 

conditions (Chen et al., 2008; 2011).  In fact, the primary mechanism of small HAA 

transformation is through aerobic biodegradation, with larger HAAs less vulnerable to 

these mechanisms (Landmeyer et al., 2000; Hozalski et al., 2008).  THMs, although 

universally volatile, are relatively recalcitrant to aerobic biodegradation but degrade 

extensively in anaerobic conditions (Vogel, 1993).  Importantly, although most bacteria 



31 
 

that degrade multi-halogenated DBPs can also degrade mono-halogenated DBPs, the 

opposite is not true so that a greater number of bacteria are available for transformation 

of less halogenated DBPs.  Similar to the mechanisms of DBP formation, the degradation 

mechanisms for high molecular weight DBPs are complicated because of their highly 

complex structure. 

1.9 Rationale for Dissertation Research 

 At the start of this research, limited toxicity test data suggested that ballast water 

treated with oxidants had only minor impacts on toxicity test organisms from three 

trophic levels; vertebrates, invertebrates and algae.  However, algal toxicity testing was 

mostly limited to two diatom species, Skeletonema costatum and Phaeodactylum 

tricornutum, which did show some minor toxic effects from oxidant treated ballast water.  

With an understanding that toxicity of many compounds can vary widely between species 

of algae, I started testing ballast water with a new species, Isochrysis galbana.  In past 

years I had had some experience cultivating this species as a food for bivalve larvae and 

recognized that it would be a good candidate species for toxicity testing.  Initially, I also 

attempted to use several other species of algae that I was less familiar with, but hoped 

that they would be acceptable for toxicity testing.  However, these other species were 

eliminated as candidates for toxicity testing for several reasons including primarily slow 

growth and an inability to thrive at the estuarine salinities required for testing waters from 

Baltimore, USA.  The Tahitian Isochrysis (T-ISO) strain of Isochrysis galbana proved to 

be robust at a wide range of salinities, and could easily achieve the minimum growth 

requirements that were standard in other fresh water and marine algal toxicity test 

methods (USEPA, 2002; OECD, 2011; ISO, 2016).  Although several test methods were 



32 
 

considered, the USEPA (2002) method for fresh water algae was selected and adapted for 

estuarine/marine algae testing.  Once Isochrysis galbana was selected for toxicity testing, 

I became immediately aware that this species was substantially more sensitive to oxidant 

treated ballast water compared to previously tested species. 

 Preliminary research conducted in 2009 and 2010 at the Wye Research and 

Education Center (WREC) showed algal toxicity using Isochrysis galbana in ballast 

water after treatment by a BWMS employing electrochlorination (Figure 1.6; Ziegler et 

al., 2010).  All toxicity tests were conducted on samples that were electrochlorinated and 

stored for five days in ballast tanks, followed by dechlorination at the time of discharge.  

Statistical analyses were based on algal cell counts, after conversion into cell densities, 

using ToxCalc™ 5.0 software (Tidepool Scientific Software, McKinleyville, CA, USA).  

Mean cell density values were tested for growth reductions compared to the control 

treatment with a one-tailed Dunnett’s test and a p value of 0.05 was used for all 

hypotheses testing.  The BWMS used relatively high levels of chlorination with TRO 

values measured between 8 - 12.2 mg/L.  The dechlorination of treated water after the 

five day storage time was accomplished with either bisulfite (Trials 1and 2) or thiosulfate 

(Trials 3-5), resulting in final measured TRO values below the detection limit of 0.02 mg 

L-1 as measured by colorimetric assay using a handheld Hach Pocket Colorimeter™ II 

(Hach, Model No. 58700, U.S.A).  Toxicity was found in water samples from all 5 trials 

(Figure 1.6).  Initially, only control and 100% treated water samples were toxicity tested 

(Trials 1 and 2), followed by tests with dilution series v/v of treated water consisting of 

either a 32 – 100% series (Trials 3 and 4) or a full 0.56 dilution series (10, 18, 32, 56 and 

100%). 
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Figure 1.6. Algal toxicity (Isochrysis galbana) of ballast water (5 trials) after electrochlorination, 

and de-chlorinated (sulfur compounds) after 5 day ballast tank holding time. 

* Statistically different from control. 
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 Toxicity testing of chlorinated (sodium hypochlorite) and dechlorinated (bisulfite 

or thiosulfate) estuarine water also revealed that toxicity is species specific with 

Isochrysis galbana exhibiting decreased growth when TRO was below the limit of 

detection (Figure 1.7A).  In contrast, the same treated and dechlorinated water samples 

were non-toxic to the diatom Phaeodactylum tricornutum (Figure 1.7B).   

 

             Isochrysis galbana             Phaeodactylum tricornutum 

 
 
Figure 1.7 Algal toxicity of chlorinated estuarine water after five days holding time and de-

chlorination.  Initial TRO = 6.9 mg l-1.  Test species are A) I. galbana and B) P. tricornutum.  

Sulfur dechlorinating agents are bisulfite (3 and 6 mg l-1) and thiosulfate (2.8 and 5.6 mg l-1). 

* Statistically different from control. 

 

A literature review of available toxicity test data revealed that most of the algal 

toxicity testing on oxidant treated water used either P. tricornutum or another diatom 

species Skeletonema costatum as the test species.  In 2010, these were the preferred algal 

species recommended by the GESAMP-Ballast Water Working Group to satisfy the 

toxicity testing requirement for approval of BWMS under IMO guideline G9 

"Procedures for the Approval of Ballast Water Management Systems That Make Use of 
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Active Substances".  The BWWG Methodology (IMO, 2012) recommended algal toxicity 

testing according to ISO-10253, Water quality – Marine algal growth inhibition test with 

Skeletonema sp. and Phaeodactylum tricornutum.  This recommendation by the BWWG 

resulted in the availability of algal toxicity test data for only these two algal species, 

which revealed that oxidant treated ballast water is occasionally toxic to S. costatum 

(Delacroix et al., 2013), while P. tricornutum is mostly resistant (Figure 1.6; Ziegler et 

al., 2010). 

1.10 Dissertation Framework 

BWMS have been developed to minimize the release of potential invasive species 

in discharged ballast water.  The most common ballast water treatment methods rely on 

strong oxidants which form numerous small DBPs and can result in toxicity to 

microalgae.  The research presented in this dissertation was conducted to advance the 

understanding of treated ballast water toxicity and to document the formation of high 

molecular weight DBPs using ultrahigh resolution mass spectrometry.  Commercial 

BWMS that are based on treatment with strong oxidants, either DICD addition or 

electrochlorination, were used to produce the treated water that was studied in this 

dissertation.  The BWMS were tested in estuarine waters with a salinity range of 5.2 – 7.1 

PSU.  Chapters 2, 3 and 4 of this dissertation are research chapters written and organized 

as manuscripts for publication in scientific journals.  Chapter 2 of this dissertation reports 

on the longevity of toxic effects of treated ballast water from four oxidant-based BWMS 

to a sensitive marine microalgae species (Isochrysis galbana), and is published in Marine 

Pollution Bulletin (Ziegler et al., 2018).  Three of the BWMS used electrochlorination of 

ballast water for treatment, while the other BWMS was based on direct injection of a 
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DICD solution.  Chapter 3 focuses on the transformation of DOM and formation of high 

molecular weight DBPs after treatment with a DICD-based BWMS, and is published in 

Environmental Science and Technology (Ziegler et al., 2019).  Chapter 4 reports on the 

relative persistence of some dibrominated high molecular weight DBPs formed after 

ballast water treatment by electrochlorination.  Finally, Chapter 5 gives some final 

thoughts and direction for future research. 
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Chapter 2 

 

Long-term Algal Toxicity of Oxidant Treated Ballast Water 

 

Ziegler, G.; Tamburri, M. N.; Fisher, D. J., 2018.  Long-term algal toxicity of oxidant 

treated ballast water. Marine Pollution Bulletin 133, 18-29. 

DOI: 10.1016/j.marpolbul.2018.05.013 

© Elsevier 

Abstract 

National and international regulations require that ships' ballast water is treated to 

minimize the risk of introducing potentially invasive species.  A common approach 

employed by commercial ballast water management systems is chlorination.  This study 

presents the algal toxicity findings for three chlorination-based BWMS and their 

implications to environmental safety of port waters receiving treated ballast water from 

ships.  Discharged treated ballast water from all three BWMS was toxic to algae with 

IC25s (25% growth inhibition) ranging from 9.9% to 17.9%, despite having total residual 

oxidant concentrations below 0.02 mg l-1, based on Whole Effluent Toxicity assays.  

When held at 4 °C, some of the ballast water samples continued to exhibit toxic effects 

with no observed effect concentrations as low as 18% after a 134 day holding time.  

Thirteen individual disinfection by-products were measured above the detected limit at 

the time of discharge.  No correlation between DBPs and algal toxicity was observed. 

2.1 Introduction 

Ballast water is used by modern ships to maintain balance, maneuverability and 

structural integrity.  However, the discharge of ballast water can lead to the release of a 
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variety of non-indigenous species (NIS) at ports around the world (Ruiz et al., 1997).  

Introduced NIS propagules can lead to invasions and result in extensive economic, 

ecological, and human health impacts (Carlton, 1985; Ruiz et al., 1997, 2000; Drake et 

al., 2007).  Although there are a number of unquantified variables (NRC, 2011), the 

implementation of ballast water management strategies, such as open ocean ballast water 

exchange (BWE) and ballast water treatment, can limit invasion success by reducing the 

number of propagules discharged in ballast water.  Assuming a dose-response 

relationship for propagule pressure and establishment success, a reduction in 

establishment of new invasive species is expected with reduced propagule supply (Ruiz 

and Carlton, 2003; Lockwood et al., 2005). 

To address this significant environmental and economic problem, the U.S. Coast 

Guard and the International Maritime Organization (IMO) have established ballast water 

regulations to minimize the introduction of potentially invasive species from ships.  The 

International Convention for the Control and Management of Ships’ Ballast Water and 

Sediments (BWM Convention) of the IMO (IMO, 2004, 2008a, 2017a), and similar 

regulatory instruments implemented by individual countries (e.g. USCG 33 CFR 151, 

2012; USEPA, 2013a; 2013b; NZMPI, 2016), require ships to treat their ballast water 

with certified Ballast Water Management Systems (BWMS) and to meet numeric 

discharge standards for live organisms in different size classes.  To date, over 70 BWMS 

have been Type Approved by IMO, and the USCG has Type Approved six systems.  

Approximately 26% of the 69 IMO Type Approved BWMS use some form of 

chlorination (e.g. electrochlorination, dichloroisocyanurate dihydrate, hypochlorite), and 

almost all of these systems have the ability to neutralize treated water before discharge.  
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Procedure (G9) of the BWM Convention, "Procedures for the Approval of Ballast Water 

Management Systems That Make Use of Active Substances" (IMO, 2004), calls for an 

overall review of BWMS including environmental safety of discharged ballast water.  

Under Procedure (G9), BWMS are evaluated following a methodology specifically 

designed for evaluating BWMS (IMO, 2012).  The Methodology calls for toxicity testing 

of discharged ballast water with a vertebrate, invertebrate and algal species according to 

internationally accepted toxicity test methods (e.g. OECD, ISO, USEPA).   

Toxicity test results from scientific presentations (Ziegler et al., 2010) and peer-

reviewed journal articles (Delacroix et al., 2013; Park et al., 2017), as well as toxicity test 

data submitted by BWMS manufacturers for Procedure G9 review (www.imo.org), show 

frequent algal toxicity of discharged ballast water when strong oxidants are employed as 

the treatment biocide.  Algal toxicity testing outside of the ballast water realm has also 

shown that chlorinated water can remain toxic to micro algae after the loss or 

neutralization of TRO (Gentile et al., 1976; Sanders, 1984; Ziegler et al., 2010; Lee et al., 

2015; Rhie, 2016). 

The chemistry of chlorinated fresh water is complicated, involving a cascade of 

reactions which can lead to small, well defined disinfection by-products (DBPs), as well 

as larger halogenated organic molecules that are not typically identified during DBP 

analysis (Richardson, 2003).  The production of DBPs results from the interaction 

between oxidants and natural organic matter (NOM) in water (Westerhoff et al., 2004).  

The addition of chlorine to fresh water results in rapid hydrolysis, forming active chlorine 

(HOCl and OCl-) and leading to chlorinated DBPs in fresh water, with the inclusion of 

brominated DBPs (after reaction with HOBr and OBr-) in estuarine and marine waters 
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(Ichihashi et al., 1999; Nokes et al., 1999; Werschkun et al., 2012; Shah et al., 2015).  

The quantity and type of DBPs can vary and is related to multiple factors including 

oxidant type/dose, contact time, dissolved organic matter (DOM) concentration and 

composition, temperature, bromine content and pH (Chowdhury et al., 2009; Shah et al., 

2015; Hao et al., 2017).  Research has identified smaller traditional DBPs as well as over 

600 higher molecular weight DBPs in drinking water (Richardson, 2011; Zhai and Zhang, 

2011; Ding et al., 2013), and 462 brominated DBPs in ballast water following treatment 

by electrochlorination (Gonsior et al., 2015).  There is also the possibility of oxidant 

reactions with other pollutants found in urban waters which can result in additional 

halogenated compounds (Benitez et al., 2011; Acero et al., 2013; Heeb et al., 2014). 

The vast majority of available information on toxicity of chlorination based 

BWMS is from dossiers submitted to IMO (IMO, 2016a) during the IMO approval 

process under Procedure G9 (IMO, 2008b).  Typically, DBP analysis and toxicity testing 

of treated ballast water is conducted at 0, 1 or 2 days, and 5 days (to link with IMO G8 

Guidelines for efficacy testing), and is assumed to incorporate the “worst case scenario” 

for DBP concentrations.  Ballast water risk assessments include possible toxic effects of 

individual DBPs measured in ballast water, while combined effects of DBPs and any 

residual oxidant are addressed with whole effluent toxicity (WET) testing, which is 

considered a more realistic measure of mixture toxicity of effluents (Johnson et al., 

2006). 

The persistence of algal toxicity in discharged ballast water after 5 days has not 

been addressed scientifically.  A review of available data revealed that there can be an 

increase in some DBPs over a 5-day holding time (IMO, 2014), presumably as a result of 
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the continuing interaction between organics and TRO, or as breakdown products of larger 

halogenated molecules.  To the authors’ knowledge, no long-term (i.e. >5 days) toxicity 

testing or DBP analysis of treated ballast water has been conducted.  Here, we present the 

results of algal toxicity tests conducted in 2015 and 2016 from 3 different oxidant-based 

BWMS, investigating the longevity of treated ballast water toxicity after storage at 4°C.  

BWMS tests were conducted in accordance with the collaborative USEPA/USCG, 

Environmental Technology Verification (ETV) Protocol (USEPA, 2010).  Smaller 

traditional DBP compounds (haloacetic acids (HAAs), haloacetonitriles (HANs) and 

trihalomethanes (THMs)) were only measured at the time of discharge in an attempt to 

correlate observed toxicity to the initial concentration of DBPs. 

2.2 Materials and Methods 

2.2.1 Test Site Facility 

The test site facility was located in Port Covington, Baltimore, Maryland, USA, 

adjacent to a large commercial port in an industrial area of Baltmore City.  Estuarine 

salinities at this location are typically in the range of 5 – 11 PSU.  The testing of each 

BWMS was carried out following USCG performance standards outlined in the ETV 

protocol (Table 2.1).  Control and treated ballast tanks were thoroughly cleaned by 

pressure washing between all treatment events, and all piping was flushed with potable 

water from a municipal source. 

2.2.2 Uptake 

Test waters were drawn from the surface of Winans Cove (Baltimore, MD, USA) 

through a flexible inlet pipe allowing uptake from different depths.  There was no 

manipulation or addition to the natural plankton community.  However, dissolved organic 
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carbon (DOC), total suspended solids (TSS), and particulate organic carbon (POC) were 

enhanced to coincide with ETV challenge water conditions.  Amendment of uptake water 

included the addition of sodium citrate dihydrate (Fisher Scientific, USA), Arizona fine 

test dust (Arizona Powder Technology, Inc.; Burnsville, Minnesota) and Micromate-

micronized humate (Mesa Verde Resources; Placitas, New Mexico) for increasing DOC, 

TSS, and POC, respectively (Table 2.1).  A slurry containing TSS, POC and DOC 

amendments was injected during ballast water uptake before separating into untreated 

and BWMS treated ballast water lines.  The slurry was mixed with a propeller mixer 

(Brawn™ Mixer Inc., model MD75-870) in a cone-bottom HDPE tank (1.1 m3).  

Delivery of slurry into the ballast water uptake line was by peristaltic pump (Eccentric 

Pumps LLC, model SLP-218).  The exact slurry recipe was based on estimates of 

ambient water conditions, targeted flow rate through the intake pipe, and tank volume.  

Water was taken from the surface with no manipulation of ambient salinity.  Control and 

treated waters were delivered to independent control and treated water ballast tanks, and 

held for 48 h (Systems 1B, 2 and 3), or 72 h (System 1A) in closed ballast tanks. 

 

Parameter ETV IMO G8 
System 1 System 1 System 2 System 3 

A B 
Amb Adj Amb Adj Amb Adj Amb Adj 

TSS mg l-1 ≥ 24 ≥ 50 4.9 31.6 3.3 33.6 18.5 57.1 11.7 34.5 
POC  mg C l-1 ≥ 4 > 5 1.1 4.8 1.2 5.3 8.0 14.7 1.2 4.7 
DOC  mg C l-1 ≥ 6 > 5 3.1 7.7 3.3 7.9 4.6 8.2 3.9 8.2 
 

Table 2.1 Minimum USCG and IMO concentrations for DOC, POC and TSS compared to 

ambient (Amb) and adjusted (Adj) concentrations of uptake water for each ballast water treatment 

event.  Amendments of uptake water included sodium citrate, Arizona fine test dust, and 

Micromate for increasing DOC, TSS and POC, respectively. 
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2.2.3 Discharge 

At discharge, untreated water samples were collected in 20-L polycarbonate 

carboys directly from a hatch on the untreated ballast tank for use as control and dilution 

water in toxicity tests.  A continuous, time-integrated sample of treated ballast water was 

collected by an in-line sample port and delivered to a 100-L fiberglass sample container.  

The treated water sampling was conducted during the entire treated water discharge 

process of approximately 1 h.  When necessary to meet the local TRO discharge standard, 

treated water was neutralized by the BWMS before sample collection.  Treated samples 

were collected from the 100-L container by gravity flow into 20-L glass carboys, which 

were immediately transferred to ice filled coolers for transport to the University of 

Maryland Wye Research and Education Center (WREC) for toxicity testing. 

2.2.4 Ballast Water Management Systems 

Three BWMS (Systems 1, 2 and 3) were tested that employed filtration and 

treatment with strong oxidants (Table 2.2).  Systems 1 and 3 employed in-situ 

electrochlorination, and System 2 used sodium dichloroisocyunarate dihydrate (DICD) 

granules dissolved in water with direct injection of the disinfecting solution.  Each 

BWMS had a target TRO dose, or an initial TRO dose range, for treatment of ballast 

water during uptake.  System 1 was tested at two different target TRO doses, 6 mg l-1 

(System 1A) and 8 mg l-1 (System1 B).  System 2 had a target TRO dose between 11 and 

13 mg l-1, and System 3 had a target TRO dose of 15 mg l-1 (Table 2.1).  After treatment, 

water was held in ballast tanks for 2 d (Systems 1B, 2 and 3) or 3 d (System 1A).  Each 

system had the ability to add neutralizer during discharge to keep the TRO below 0.1 mg 

l-1, the local maximum acceptable discharge limit, in accordance with the local discharge 
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permitting authority, the Maryland Department of the Environment (MDE).  

Neutralization of TRO in discharged ballast water with sodium sulfite (System 1A) or 

sodium bisulfite (Systems 1B, 2 and 3) injection was adjusted by the BWMS. 

 

 BWMS Type Target TRO 
Dosage (mg l-1) 

Discharge 
TRO (mg l-1) 

System 1A Electrochlorination 6 0.01 
System 1B Electrochlorination 8 0.00 
System 2 DICD 11-13 0.02 
System 3 Electrochlorination 15 0.00 
 

Table 2.2 Ballast water management systems with target TRO dose and average TRO measured 

in ballast water discharge samples.  Discharge TRO is the average of measurements taken at 

beginning, mid-point and end of the discharge event. 

 

2.2.5 Chemical Analysis 

2.2.5.1 POC, DOC and TSS 

Chemical analyses of POC, DOC and TSS were carried out for each BWMS on 

water collected at uptake, both before and after the addition of compounds, to reach ETV 

minimum POC, DOC and TSS concentrations (Table 2.1).  Water samples were collected 

and shipped according to the analytical laboratory’s instructions.  Analysis was 

conducted according to USEPA Standard Methods: Method 160.2 for TSS (USEPA, 

1979), and Method 415.1 for POC and DOC (USEPA, 1999). 

2.2.5.2. Total Residual Oxidant 

Measurements of the TRO concentration in discharged ballast water were made 

with a handheld colorimetric TRO meter based on the DPD (n,n-diethyl-p-phenylene 

diamine) method.  The DPD method is recommended by the USEPA (method 330.5) for 

monitoring oxidants in wastewater discharge (USEPA, 1983).  TRO measurements were 



45 
 

taken in triplicate on samples collected at the beginning, middle and end of the overall 

discharge period (approximately 1 h).  The DPD reagent reacts with oxidants to form a 

magenta solution (i.e. WÜrster dye), proportional to total oxidant concentration, and the 

DPD WÜrster dye is measured at 530 nm.  The TRO of discharged ballast water was 

measured with a handheld Hach Pocket Colorimeter™ II (Hach, Model No. 58700, 

U.S.A) in Low-Range mode (0.02-2.0 mg l-1 TRO as Cl2), following the manufacturer’s 

instruction manual (Hach Company, 2013; USEPS, 1983).  When TRO was measured in 

untreated uptake water (considered interference), the treated water TRO value was 

adjusted by subtracting the TRO value of untreated water to obtain the final reported 

TRO concentration.  TRO is a measure of combined and free oxidants including 

hypochlorite ion, hypochlorous acid, hypobromite ion and hypobromous acid.  Although 

TRO can include chlorine and bromine, TRO values are reported in chlorine equivalents 

(i.e. as Cl2). 

2.2.5.3 Disinfection By-products 

Chemical analysis for 24 DBPs (Table 2.3) was conducted on control ballast tank 

water and treated ballast water (after neutralization where indicated) at the time of 

discharge.  Treated water samples for DBP analysis were collected from the time 

integrated sample container (100-L fiberglass) that was also used for collecting algal 

toxicity test samples.  Samples for DBP analysis were collected and handled according to 

directions provided by the analytical laboratory conducting the analysis.  All DBP 

analyses were conducted at National Environmental Laboratory Accreditation Program 

(NELAP) accredited laboratories according to USEPA methods (Table 2.3). 
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Chemical Group USEPA 
Method 

Compounds 

Halogenated 
Methanes 

524.2 Trichloromethane, Dichlorobromomethane, 
Dibromochloromethane, Tribromomethane 

Halogenated 
Hydrocarbon 

524.2 1,2,3-Trichloropropane 

Halogenated 
Acetic Acids 

552.2 Monochloroacetic acid, Dichloroacetic acid, Trichloroacetic 
acid, Monobromoacetic acid, Dibromoacetic acid, 
Bromochloroacetic acid, Dibromochloroacetic acid, 
Tribromoacetic acid, total HAAs 

Halogenated 
Acetonitriles 

551.1 Monobromoacetonitrile, Dibromoacetonitrile, 
Bromochloroacetonitrile, Chloroacetonitrile, 
Dichloroacetonitrile, Dichlroacetonitrile, Tricloroacetonitrile  

Inorganics 300.0 Chlorate, Bromate 
Halogenated 
Propionic Acid 

515.3 Dalapon 

Halogenated 
Nitroalkane 

551.1 Chloropicrin 

 
Table 2.3 List of analytes, with chemical group and method of analysis, for land-based BWMS 

testing. 

2.2.6 Toxicity Test Methods and Experimental Design 

2.2.6.1 Algal Cultures 

The microalgal strains used were Isochrysis aff. galbana (UTEX LB 2307), a 

marine haptophyte, and Phaeodactylum tricornutum (UTEX 646), a marine diatom.  Both 

species were obtained from University of Texas (UTEX) Culture Collection of Algae.  

Isochrysis galbana is in the subclass prymnesiophycidae and the specific strain is often 

referred to as Tahitian Isochrysis (T-ISO).  Algae was cultured at 20 °C in f/2 medium 

(Guillard and Ryther, 1962), with the addition of sodium silicate for P. tricornutum, 

under continuous fluorescent lighting.  The algal growth media for stock cultures was 

prepared by the addition of f/2 micro nutrients, macro nutrients, and vitamins to filtered 

(0.22 µm) estuarine water (Wye River, MD, USA).  The salinity was adjusted in stock 

cultures with CrystalSeas Marine Mix Bioassay Formula® salts to approximately match 

the toxicity test salinity. 
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2.2.6.2 Algal Growth Inhibition Tests 

Algal toxicity tests were conducted at the University of Maryland WREC.  

Algal toxicity testing protocols followed the method given in “Short-term Methods for 

Estimating the Chronic Toxicity of Effluents and Receiving Water to Freshwater 

Organisms” (USEPA, 2002), with several adaptations for testing estuarine water 

samples.  Briefly, the freshwater USEPA method was adapted for estuarine water by 

changing the algal growth media to f/2 (Guillard and Ryther, 1962), running tests at 

20°C, and conducting tests with appropriate algal species (I. galbana and P. 

tricornutum) that were able to meet minimum growth criteria for estuarine salinities. 

A summary of the toxicity test method and performance criteria is given in 

Table 2.4.  For ballast water testing with I. galbana, a dilution series (0.56) of treated 

and untreated ballast water samples was prepared in 250-ml beakers after warming 

ballast water samples to 20°C.  All beakers received equal quantities of micro- and 

macronutrients that make up f/2 algal growth media.  Six replicate flasks (150-ml) were 

prepared for control water, and 4 replicate flasks were prepared for each treated water 

dilution.  Test flasks were inoculated with algae from a stock culture in log growth 

phase to obtain an initial cell density of 2 x 104 cells ml-1 in each test flask.  The algal 

toxicity tests were carried out under controlled conditions consisting of 20 ± 1 °C and 

continuous illumination (cool white light of 11,000 lux).  During toxicity testing, flasks 

were continuously agitated on a compact rotator (Thermo Scientific, Model 88880025) 

at 100 rpm.  Water quality data was taken on Day 0 and included pH, dissolved oxygen 

and salinity for each test treatment.  Toxicity tests were conducted for either 72 or 96 

hours, depending on the time needed for control replicates to reach a minimum density 
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of 1.0 x 106 cells ml-1.  At test completion, 20 µl of hydrochloric acid was added to a 1 

ml sample of algae to stop cell movement and assist in counting.  Final cell counts were 

done using a hemacytometer (Bright-Line, Reichert) or a Sedgewick-Rafter counting 

chamber (Graticules Ltd., England) on a compound light microscope (Leitz-Laborlux 

D, Germany).  Average cell counts from four discreet samples were used to determine 

the cell density in each replicate as needed for statistical analysis.  A minimum growth 

requirement of 1 x 106 cells ml-1 for control replicates was applied to all toxicity tests. 

Test type: Static, non-renewal 
Test duration: 72 or 96 hours  
Temperature: 20 ºC ± 1ºC 
Light quality “Cool white” fluorescent lighting 
Light intensity: 86 ± 8.6 µE/m2/s 
Photoperiod: Continuous illumination 
Salinity: 12 psu 
Test chamber size: 250-ml Erlenmeyer flasks 
Test solution volume: 100 ml 
No. replicate chambers per concentration: 4, 6 control replicates 
Renewal of test solutions: None 
Age of test organisms: Log growth phase 
Initial cell density in test chambers: 2 x 104 cells ml-1 
Shaking rate: 100 rpm, continuous on an orbital shaker  
Aeration: No 
Nutrient solution: f/2 culture media  
Dilution water:  Untreated ballast water 
Test concentrations: At least 4 concentrations and a control 
Dilution factor: 0.56 dilution series 
Endpoint: Population growth (cell counts) 

Performance criteria: ≥ 1 x 106 cells ml-1 control mean. Cell density 
variability (CV%)  ≤ 20% among control reps. 

 

Table 2.4 Summary of test method for the algae Isochrysis galbana and Phaeodactylum 

tricornutum growth tests. 
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2.2.7 Statistical Analyses 

Algal growth (cell density) estimates were based on final cell counts.  USEPA 

recommended statistical tests (USEPA, 2002) were used as a means of quality control 

for toxicity test results.  The homogeneity of variance was determined by Bartlett’s test, 

and the normality by the Shapiro-Wilk’s test.  Inhibition concentration percentage (ICp) 

values (IC25 = 25% reduction in cell count compared to control) for algal tests were 

estimated using the USEPA suggested Linear Interpolation Method (USEPA, 2002, 

Appendix M).  All statistical tests were performed using ToxCalc™ 5.0 software 

package (Tidepool Scientific Software, McKinleyville, CA, USA). 

2.2.8 Laboratory Toxicity Tests 

Different species of algae may have varying susceptibilities to toxicity from 

oxidant treated water.  To assess the potential differences, laboratory tests were 

conducted with I. galbana and P. tricornutum using sodium hypochlorite as an oxidant.  

Culturing and testing of P. tricornutum followed I. galbana protocols, but with the 

addition of sodium silicate to the f/2 medium used for culturing and toxicity testing. 

Reagent grade sodium hypochlorite (Fisher Sci., 5% total Cl) was added to 

filtered (0.45 µm) estuarine water in an acid washed 15-L glass carboy to attain an 

initial TRO of 6.9 mg l-1.  Treated water was held at room temperature in the dark for 5 

days followed by neutralization with sodium thiosulfate or sodium bisulfite.  After 5 

days, the 15-L sample was split into four glass beakers (2-L).  Each beaker received a 

dose of neutralizer for final concentrations of thiosulfate (2.8 and 5.6 mg l-1) or bisulfite 

(3 and 6 mg l-1).  Only undiluted samples of treated and neutralized water were tested 

with statistical comparison to untreated control water.  Algal nutrients were added into 



50 
 

control and each treatment (2-L beakers) before distribution into test flasks (150-ml) 

and inoculation with algae.  Final TRO concentrations were measured before the 

addition of algae to test flasks. 

2.3 Results and Discussion 

2.3.1 Toxicity of Discharged Ballast Water 

Basic water quality parameters of discharged ballast water are given in Table 2.5.  

Day 0 algal toxicity tests were started within 2 hours of a ballast water discharge event. 

Parameter System 1A System 1B System 2 System 3 

pH 7.41 8.21 7.96 M 
DO (mg l-1) 8.6 5.7 8.5 6.8 
Salinity (PSU) 6.5 5.2 7.1 5.4 
Temp. (°C) 22.4 27.2 23.8 29.1 

M = missing data 

Table 2.5 Basic water quality of uptake water for ballast water testing events conducted on 

BWMS test barge in Baltimore, Maryland, USA. 

 

Discharged ballast waters from all four discharge events, including three different 

chlorination based BWMS, were toxic to Isochrysis galbana in algal toxicity tests based 

on inhibition of population growth (Table 2.6).  IC25 values for initial tests were 17.9%, 

10.7%, 9.9% and 11.9% for Systems 1A, 1B, 2 and 3, respectively (Table 2.6).  Toxicity 

testing included discharge water from two electrochlorination based systems, one of 

which (System 1) was tested at two different TRO target doses, and a system based on 

injection of a DICD solution (System 2).  Although the algal toxicity test is designed to 

quantify a reduction in population growth compared to control, we also observed 

negative population growth due to mortality in higher concentrations of treated water 

from all systems.  This resulted in lower final algal cell densities compared to initial cell 
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densities.  Enumeration of algal cells at lower densities was conducted on a Sedgwick-

Rafter counting chamber instead of a hemocytometer.  Comparison of the cell density 

data collected by these two counting methods is thought to be problematic as the 

determination of algal cell vitality leads to an uncertainty in final cell counts.  Because 

there was no definitive way of determining cell viability, and the endpoint in the algal 

toxicity tests was a reduction in population growth, all intact algal cells were counted.  

Ultimately, however, IC25 values were unaffected by the negative population growth 

counts because the IC25 endpoint is based on treatments producing only 25% reductions 

in cell density. 



52 
 

 

BWMS  
Treatment Type 
TRO Target dose 

Discharge TRO* 
(Neutralization) 

Days after 
neutralization IC25 (%) 

System 1A 
Electrochlorination 
6 mg l-1 as Cl2 

0.01 mg l-1 as CL2 
(Sulfite neutralization) 

0 17.9 
35 36.2 
59 36.9 
97 66.7 
126 >100 
161 >100 

System 1B 
Electrochlorination 
8 mg l-1 as Cl2 

0.00 mg l-1 as CL2 

(Sulfite neutralization) 

0 10.7 
32 15.9 
60 20.61 
92 29.0 
131 28.2 

System 2 
DICD 
11-13 mg l-1 asCl2 

0.02 mg l-1 as CL2 

(Bisulfite, 5 min. start-
up neutralization only) 

0 9.9 
36 >100 
64 >100 

System 3 
Electrochlorination 
15 mg l-1 as Cl2 

0.00 mg l-1 as CL2 

(Bisulfite neutralization) 

0 11.9 
34 10.5 
102 20.9 
134 16.4 

 

Table 2.6 Algal toxicity test results from 3 BWMS (Systems 1 – 3).  Tests were conducted on 

day of discharge, followed by approximately monthly toxicity testing, until treated water sample 

was exhausted.  * Discharge TRO corrected for interference (i.e. background TRO measurement 

in control tank). 

 

The majority of toxicity research with oxidants in water, and all research with 

chlorination based BWMS, has been conducted with short hold times after treatment (i.e. 

toxicity tests are started after 5 days or less).  Although an attempt is made to compare 

these oxidant toxicity tests, in some instances it is complicated because of differences in 

how the tests were conducted, the endpoints that are estimated (cell density, ATP, 

inhibition of photosynthesis, cell division), and how the results are presented (e.g. NOEC, 

LOEC, ECX, ICx, relative growth, percent reduction in endpoints).  With these limitations 
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in mind, the initial algal toxicity observed in the current research seems more severe than 

algal toxicity reported in other oxidant-based BWMS studies, including results presented 

at meetings, in published papers, and in BWMS dossiers submitted to IMO for Procedure 

(G9) approval.  Research conducted by Delacroix et al. (2013) and Park et al. (2017) 

showed varying results for algal toxicity tests of oxidant-based BWMS.  Toxicity testing 

of five chlorination based BWMS with Skeletonema costatum was conducted by 

Delacroix et al. (2013).  Results showed that 75% of discharged ballast water samples 

were toxic, with 25% of these toxic samples having what was considered an acute effect 

(50% reduction in growth or EC50), and the remainder having only a chronic effect 

(EC10).  Park et al. (2017) used I. galbana to test the toxicity of electrochlorinated 

seawater that included organic carbon additives to increase DOC.  Electrochlorinated 

water was held for one day and neutralized before toxicity testing.  The sample 

containing lignin as the organic carbon additive showed a toxic effect with a complete 

inhibition of algal growth in the undiluted sample.  The potential for increasing algal 

toxicity with organic carbon additives used to boost DOC is discussed further in section 

3.3. 

2.3.2 Algal Toxicity and TRO Concentrations 

TRO concentrations in all discharged ballast waters were below 0.1 mg l-1, the 

limit required by the local jurisdictions’ toxic materials discharge permit.  After 

subtracting the background control tank TRO, the final reported TRO measurements were 

0.00 for two discharges (System 1B and System 3), and 0.01 mg l-1 and 0.02 mg l-1 for 

System 1A and System 2, respectively (Table 2.2).  Systems 1A, 1B and 3 added 

neutralizer during the entire discharge process, while System 2 only neutralized during an 
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initial startup period of 3 minutes.  Algal toxicity was similar for all treated discharge 

waters with IC25 values ranging from 9.9% to 17.9% (Table 2.6).  Notably, the lowest 

IC25 was observed with System 2 (IC25 = 9.9) which had the highest calculated discharge 

TRO of 0.02 mg l-1, and was only neutralized during the initial 3 minutes of discharge.  

Delacroix et al. (2013) observed no correlation between residual oxidant (i.e. FRO) and 

algal toxicity in oxidant-based BWMS testing of brackish waters (R2 < 0.01). 

Although published results of BWMS toxicity testing are limited, algal toxicity 

results from specific oxidants are available.  As with oxidant treated ballast water, the 

rapid decay of oxidants complicates the toxicity testing procedures, and results are often 

difficult to compare.  The toxicity values found in most published papers are related to 

the initial dose of a specific oxidizing chemical or solution.  In contrast, our results 

measured the TRO of discharged ballast water after several days of reaction time with 

estuarine water in ballast tanks.  Sathasivam et al. (2016) reported a 72h median EC50 

value of 0.071 mg l-1 based on algal cell counts for the green algae, Clostriu ehrenbergii.  

Earlier work by the same group with marine dinoflagellates reported EC50 values of 0.584 

mg l-1 and 1.177 mg l-1 for Cochlodinium polykrikoides and Prorocentrum minimum, 

respectively (Ebenezer and Ki, 2013).  Another study of marine species reported an EC50 

of 2.91 mgl-1 NaOCl for Dunaliella salina, and an EC50 of 1.73 mg l-1 NaOCl for I. 

galbana (López-Galindo et al., 2010).  NaOCl toxicity results for several freshwater 

chlorophytes have also been reported with an EC50 of 1.6 mg l-1 for Pseudokierchneriella 

subcapitata, and 5.1 mg l-1 for Chlorella salina (Pitanga, 2011).  In the current research, 

toxicity was found in all treated ballast waters (Table 2.6) despite adjusted TRO 
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measurements at or below the minimum detection limit for the Hach DPD method (0.02 

mg l-1). 

2.3.3 Disinfection By-products Concentrations 

Overall, for all treated ballast water discharge samples, 13 of the 24 individual 

DBP compounds were measured above the detection limit (Table 2.7).
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System #    1 2 3 
  A B   

Treatment type Electrochlorination DICD Electrochlor 
ination 

Target TRO (mg l-1 as Cl2) 6 8 11 -13 15 

Substance  (ug/l) EPA 
Method 

    

Bromate 300.0 BDL BDL BDL BDL 
Bromoacetonitrile 551.1 BDL 13 8 21 
Bromochloroacetic acid 552.2 1.1 2.4 <1 8.7 
Bromochloroacetonitrile 551.1 BDL BDL BDL BDL 
Chlorate 300.0 BDL BDL BDL BDL 
Chlorodibromoacetic acid 552.2 13 21 19 39 
Dibromoacetic acid 552.2 9.4 31 11 140 
Dibromoacetonitrile 551.1 BDL BDL BDL BDL 
Dibromochloromethane 524.2 40.1 56.2 52.1 67 
Dichloroacetic acid 552.2 <1 <1 <1 <1.0 
Dichloroacetonitrile 551.1 19 BDL BDL BDL 
Dichlorobromomethane 524.2 7.6 9.9 8.6 10.9 
Tribromoacetic acid 552.2 83 200 81 190 
Tribromomethane (bromoform)  524.2 210 31.6 225 684 
Trichloroacetic acid 552.2 1.3 1.8 <1 1.3 
Trichloromethane (chloroform) 524.2 2.1 4.1 2 2 
1,2,3-Trichloropropane 524.2 BDL BDL BDL BDL 
Dalapon  515.3 BDL BDL BDL BDL 
Monobromoacetic acid 552.2 <1 1.3 <1 1.8 
Monochloroacetic acid 552.2 <2 <2.0 <2 <2.0 
Total HAA5 552.2 10.7 34.1 11 143.1 
Chloral Hydrate 551.1 110 0.82 ND ND 
Chloroacetonitrile 551.1 1.5 0.8 0.96 1.3 
Chloropicrin 551.1 BDL BDL BDL BDL 
Trichloracetonitrile 551.1 BDL BDL BDL BDL 
Sum of all DBPs  509 408 419 1310 
      
BDL = Below detection limit      

Highest concentrations of each DBP highlighted. 

Table 2.7 List of disinfection by-products and concentrations found in discharged ballast water 

including analytical methods.  Samples collected from three BWMS during land-based testing 

on barge located in Baltimore, MD, USA. 
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A summary of DBPs with concentrations above 10 µg l-1 as well as total HAA5 is 

shown in Fig. 2.1 for each BWMS treatment event.  The three systems with a TRO target 

dose under 13 mg l-1 (Systems 1A, 1B and 2) had similar overall DBP production, with 

the sum of all DBPs ranging from 408 to 508 µg l-1.  In contrast, System 3 with the 

highest TRO target dose had the highest concentrations of 8 of the 14 measured DBPs.  

Some of the individual DBP concentrations were much higher in System 3 treated water, 

leading to substantially higher values for the sum of all DBPs (1,310 µg l-1) and total 

HAA5 (143 ug l-1) compared to all other treatment systems, with HAA5 values below 35 

µg l-1 and total DBPs below 509 µg l-1 (Table 2.7).  Interestingly, the second highest 

value for the sum of all DBPs was found in System 1A treated water with the lowest 

TRO dose (Target TRO = 6 mg l-1). 

 
 

Figure 2.1 Concentration of 8 DBPs and total HAA5 in discharged ballast waters collected on 

day of discharge (Day 0) from 4 discharge events.  TRO values are target treatment 

concentrations for BWMS presented in order of lowest to highest target TRO dose 

concentration.  Citrate was added to uptake water before treatment to increase DOC content. 
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Discharge waters from all electrochlorination based systems (Systems 1A, 1B and 

3) had DBP concentrations that generally followed a trend of increasing DBP production 

with increasing TRO target dose.  As already stated, System 3 (TRO target = 15 mg l-1) 

contained the highest DBP concentrations for 8 of the measured DBPs (Table 2.7).  

System 1B (TRO target = 8 mg l-1) had the highest concentrations of tribromoacetic acid, 

trichloroacetic acid and trichloromethane.  System 1A, with lowest TRO dose (TRO 

target = 6 mg l-1), had the highest concentrations for chloroacetonitrile and chloral 

hydrate, and was the only treated water with dichloroacetonitrile.  Although the highest 

concentration of tribromomethane was found in System 3 treated water (with the highest 

TRO dose), the concentration of tribromomethane in System 1B treated water was 31.6 

µg l-1, substantially lower than all other systems which were above 210 µg l-1. 

Interestingly, System 2 (the only DICD based BWMS, TRO target = 11-13 mg l-1) 

never contained the highest DBP concentrations, and concentrations of DBPs were often 

lower than those found in System 1B (TRO target = 8 mg l-1) treated ballast water.  Also, 

for 5 DBP compounds (bromoacetonitrile, bromochloroacetic acid, tribromoacetic acid, 

trichloromethane and trichloroacetic acid), concentrations were lower in System 2 than in 

all other systems (Table 2.7).  Although other factors could be involved in the formation 

of DBPs (e.g. concentration and composition of DOC in uptake water), System 2 with 

DICD disinfection and TRO target dose of 11-13 mg l-1 produced discharge water with 

lower concentrations of many DBPs compared to the electrolysis based system (System 

1) with lower target TRO doses of 6 or 8 mg l-1. 

As described in Section 2.1.1, ambient water was amended with sodium citrate, 

Arizona Fine Test Dust, and Micromate for increasing DOC, TSS and POC, respectively.  
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Additives were used to increase ambient levels of these parameters to reach minimum 

concentrations outlined in the ETV Protocol.  The ambient and final adjusted DOC, TSS 

and POC concentrations are given in Table 1.2 for all BWMS test events.  Of the three 

classes of additives, the DOC concentration and content is thought to have the greatest 

impact on the formation of DBPs.  However, in the current research, the concentrations 

of individual DBPs and the sum of all DBPs did not show a correlation with the amount 

of citrate added to the ambient water (Table 2.7, Fig. 2.1).  This is most evident in System 

2 which had the highest citrate concentration and none of the highest measured DBP 

concentrations.  The ambient DOC, and hence the quantity of citrate needed to reach the 

ETV minimum concentration, was similar for all tests ranging from a high of 4.6 mg Cl-1 

for System 2 to a low of 3.1 mg C/l for System 1A (Table 1.2).  These similar initial 

DOC measurements resulted in final citrate additions that increased the DOC by 4.6, 4.6, 

3.6 and 4.3 mg C l-1 for Systems 1A, 1B, 2 and 3, respectively (Table 1.2).   

In a review of dossiers submitted to IMO for BWMS approval, we found that 

chlorinated brackish water typically resulted in higher THM concentrations than 

chlorinated sea water.  Werschkun et al. (2012) reviewed DBP concentrations in brackish 

water (i.e. 18.8 - 22.6 psu) treated by 10 oxidant-based BWMS and, in agreement with 

the current research (Table 2.7) and Delacroix et al. (2013), reported that 

tribromomethane was the primary THM compound.  HAA concentrations, however, were 

dominated by dibromoacetic acid in other publications (Werschkun et al., 2012; 

Delacroix et al., 2013) in contrast to the current research which identified tribromoacetic 

acid as the most abundant HAA for all BWMS (Fig. 2.1). 
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2.3.4 Algal Toxicity and Disinfection By-products Concentrations 

Algal toxicity tests and DBP analyses were conducted on samples collected on the 

day of treated water discharge (Day 0).  Plots of IC25 values versus DBP concentrations 

are shown in Fig. 2.2 for the eight most abundant DBPs (i.e. > 2 µg l-1), total HAA5, and 

sum of all DBPs.  System 1A, with the lowest TRO dose, had the lowest concentration of 

7 DBP categories, and was the least toxic sample (IC25 of 17.9%) in algal tests (Table 

2.6).  Other than System 1A, there is no clear correlation shown between individual 

DBPs, or DBP groups, and initial algal toxicity across the four treated ballast water 

discharges (Fig. 2.2).  Similar to the current research, Delacroix et al. (2013) found no 

correlations between algal toxicity (S. costatum) and measured DBPs in discharge water 

from five oxidant-based BWMS with TRO values below 0.08 mg Cl l-1.
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Figure 2.2 Concentration of DBPs (µg l-1) and the IC25 value (as percentage of treated 

water) for algal toxicity in treated discharge samples from ● System 1A, ● System 1B, ● System 2 

and ● System 3.  DBP samples were collected, and toxicity tests started, on the day of discharge 

(Day 0). 
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In order to assess the potential toxicity of individual DBPs to algae, a direct 

comparison was made of DBP concentrations and ecotoxicity values. Table 2.8 lists the 

lowest algal ecotoxicity values identified in the literature alongside the highest 

concentrations of DBPs that were detected in the current research (Table 2.7).  No algal 

ecotoxicity data was identified for five DBPs including: bromoacetonitrile, 

bromochloroacetic acid, chlorodibromoacetic acid, dichloroacetonitrile and 

chloroacetonitrile (Table 2.8).  The ecotoxicity values for three DBPs 

(dichlorobromomethane, tribromomethane, chloral hydrate) were more than one order of 

magnitude greater than the concentrations of DBPs found in treated discharge water.  The 

remaining six DBPs (dibromoacetic acid, dibromochloromethane, tribromoacetic acid, 

trichloroacetic acid, trichloromethane, and monobromoacetic acid) had algal ecotoxicity 

values that were at least two orders of magnitude greater than the highest DBP 

concentrations found in treated ballast water (Table 2.8).
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 Lowest identified ecotoxicity data for algae Highest 
Conc. 

DBP compound Species End point       Conc. (mg l-1) Ref. Mg l-1 
Bromoacetonitrile No data identified 0.021 

Bromochloroacetic acid No data identified 0.0087 

Chlorodibromoacetic acid No data identified 0.039 

Dibromoacetic acid Isochrysis galbana NOEC, 96 h growth salt 
water 

98 3 0.140 

Dibromochloromethane Pseudokirchneriella 
subcapitata 

EC50, 72 h growth fresh 
water 

6.1 2 0.067 

Dichloroacetonitrile No data identified 0.019 

Dichlorobromomethane Pseudokirchneriella 
subcapitata 

NOEC, 72 h growth fresh 
water 

0.8 2 0.0109 

Tribromoacetic acid Isochrysis galbana NOEC, 96 h growth salt 
water 

250 3 0.200 

Tribromomethane Pseudokirchneriella 
subcapitata 

NOEC, 96 h growth fresh 
water 

10 4 0.684 

Trichloroacetic acid Pseudokirchneriella 
subcapitata 

NOEC, 48 h growth fresh 
water 

1.0 5 0.0018 

Trichloromethane Chlamydomonas reinhardii EC10, 72 h growth fresh 
water 

3.6 6 0.0041 

Monobromoacetic acid Scenedesmus subspicatus EC50, 96 h growth fresh 
water 

0.2 7 0.0018 

Chloral hydrate Scenedesmus quadricauda EC3, 7 d growth fresh water 2.8 1 0.110 

Chloroacetonitrile No data identified 0.0015 

(1) Bringmann and Kuhn (1980). (2) Japanese Government (2007). (3) Fisher et al. (2014). (4) USEPA (1978). (5) Garten and Frank 
(1984). (6) Brack and Rottler (1994). (7) Kühn and Pattard (1990). 

Table 2.8.  Lowest algae ecotoxicity values and highest concentration of DBPs found in ballast water discharge (IMO, 2017b). 
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The DBP profile, and potentially its influence on algal toxicity, in treated water 

can vary with multiple factors, including oxidant dose and the concentration and 

composition of DOC (Werschkun et al., 2014).  The algal toxicity of oxidant treated 

water has been shown to increase with rising DOC concentrations (Lee et al., 2015).  

Algal toxicity was also shown to vary with the composition of organic matter (Park et al., 

2017).  Lee et al. (2015) found that the addition of starch before chlorination (sodium 

hypochlorite) caused a reduction in population growth despite neutralization (bisulfite).  

Toxicity testing was conducted on several freshwater (Selenastrum capricornutum and 

Scenedesmus obliquus) and saltwater species (I. galbana and P. tricornutum).  Although 

limited to five days, researchers found that an increase in reaction time between organic 

matter (i.e. starch) and TRO resulted in greater algal toxicity. They also observed a 

greater reduction in I. galbana growth compared to the other species tested.  The authors 

suggested that an increase in ‘reaction products’, resulting from an increase in chlorine 

contact time, was responsible for increased algal toxicity, although no analysis for 

halogenated by-products (e.g. DBPs) was conducted (Lee et al., 2015).  In a follow up 

study at the same laboratory and employing the same chlorination and treatment methods 

(Rhie, 2016), greater algal toxicity was observed with increased storage time (5 days) 

using a different organic matter additive (glucose), and two different species of algae 

(Raphidoceli subcapitata and Chlorella vulgaris).  As with the earlier study (Lee et al., 

2015), Rhie (2016) found that one species was more sensitive noting a greater reduction 

in algal population growth in tests using R. subcapitata as the test species.  A comparison 

of results between these two studies (Lee et al., 2015; Rhie, 2016) shows that the type of 
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organic carbon (e.g. glucose versus starch) present in the uptake water prior to 

chlorination can affect algal toxicity. 

Park et al. (2017) used microalgae, I. galbana, and bioluminescent bacteria, 

Vibrio fischeri, to compare the toxicity of electrochlorinated seawater containing starch 

(to increase POC), and one of several other organic carbon additives (glucose, sodium 

citrate, Metamucil®, lignin, and methyl cellulose) to increase DOC.  When neutralized 

after one day, the only toxicity observed was in the lignin-amended water where the 

researchers found a complete inhibition of algal growth in the undiluted sample.  A 

similar level of algal toxicity (i.e. complete inhibition of growth) was observed in the 

same lignin-amended water, but with a test that started after a treated water holding time 

of 5 days post-neutralization (Park et al., 2017), showing the persistence of toxicity.  

While other studies have shown limited algal toxicity of treated ballast water (Delacroix 

et al., 2013; Lee et al., 2015; Rhie, 2016), the initial toxicity of chlorinated and 

neutralized water observed by Park et al. (2017) is the only instance where toxicity 

(complete algal growth inhibition) seems comparable to that observed in the current 

research.  Park et al. (2017) concluded that algal toxicity was caused by DBPs, but no 

comparison of DBP concentrations with algal ecotoxicity values was conducted.  

Although several studies (Lee et al., 2015; Rhie, 2016; Park et al., 2017) show a change 

in toxicity due to DOC content in oxidant treated water, no direct link has been shown 

between quantified DBPs, or groups of DBPs, and toxicity.  

2.3.5 Longevity of Algal Toxicity 

The initial algal toxicity of treated ballast water was similar for all BWMS (Table 

2.6), and did not correspond to TRO target dose, measured DBP concentrations, or 
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BWMS treatment method (i.e. electrochlorination or DICD solution).  The follow up 

toxicity tests, however, showed substantial differences in toxicity between BWMS 

employing different treatment methods (i.e. electrochlorination or DICD solution).  

System 2 treated ballast water, based on injection of a DICD solution, showed a dramatic 

reduction in algal toxicity in the first follow up toxicity test after a 36 day holding time 

(Fig. 2.3, Fig. 2.4C).  In fact, no toxicity was observed in this first follow up toxicity test 

of DICD treated water, compared to the initial IC25 of 9.9% (Fig. 2.3).  Interestingly, 

System 2 had the second highest TRO target dose (11-13 mg l-1) and the highest 

calculated discharge TRO (0.02 mg l-1).  System 1A, with the lowest TRO target dose and 

a calculated discharge TRO of 0.0 mg l-1, also lost all toxicity in follow up algal testing, 

but not until after a much longer holding time of 126 days (Table 2.6, Fig. 2.3).  Systems 

1B and 3, both electrochlorination based systems, continued to show adverse effects in 

algal growth tests for the duration of follow up testing (Table 2.6, Fig. 2.4), which 

concluded with toxicity tests that started on Day 131 (System 1B), and Day 134 (System 

3).  Target TRO dose and discharge TRO values were 8 mg l-1 and 0.01 mg l-1 for System 

1B, and 15 mg l-1 and 0.0 mg l-1 for System 3 (Table 2.6).  Results show that like initial 

toxicity, there is no correlation between TRO target dose or discharge TRO, and the 

longevity of treated discharge sample toxicity.  Although many other factors may be 

relevant, these results indicate that the treatment method itself could be a factor in the 

longevity of discharge water toxicity. 
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Figure 2.3 Algal toxicity (IC25) of treated ballast water on the day of discharge, and after a 

storage period in the dark at 4 °C, for four discharge events.  Legend includes BWMS and target 

TRO dose concentration. 
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Figure 2.4 Relative growth rate (%) of I. galbana compared to control for dilutions of treated 

ballast water from four discharge events.  Results are shown for algal toxicity tests started on Day 

0, and after storage at 4 °C 
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2.3.6 Laboratory Testing: Algal Species Comparison 

After the addition of neutralizers and f/2 media components, TRO was at the 

detection limit (0.02 mg l-1 as Cl2) for all sodium hypochlorite treated and neutralized 

samples.  Algal toxicity test results on neutralized samples show a substantial difference 

in algal sensitivities (Fig. 2.5).  After neutralization with sodium thiosulfate and sodium 

bisulfite, all samples remained toxic to I. galbana, with significant reduction from control 

density of 4.8 x 106 cells ml-1 (Fig. 2.5A).  Final cell densities for thiosulfate neutralized 

water were 0.51 x 106 cells ml-1 for the low concentration (2.8 mg l-1), and 1.2 x 106 

cells/ml for the high concentration (5.6 mg l-1), while final cell densities were 0.04 x 106 

and 0.15 x 106 cells ml-1 for low (3 mg l-1) and high (6 mg l-1) bisulfite concentrations, 

respectively.  Toxicity tests with P. tricornutum, however, revealed no significant 

reduction in population growth compared to control in any of the treated and neutralized 

water samples (Fig. 2.5B).  Algal toxicity tests with neutralizing agents alone (i.e. 

without prior sodium hypochlorite addition) showed that thiosulfate and bisulfite were 

not toxic to these algal strains at concentrations of 100 mg l-1 (data not presented).  

Interestingly, in hypochlorite treated water algal growth for both species was greater in 

the samples with higher neutralizer concentrations for both bisulfite and thiosulfate, 

suggesting that there may be some unquantified toxic compounds that are lost with the 

higher neutralizer doses. 

 



70 
 

 

 

Figure 2.5 Final cell densities of I. galbana (A) and P. tricornutum (B) in sodium hypochlorite 

treated water (TRO = 6.8 mg l-1) after neutralization with bisulfite or thiosulfate.  * Treatment 

significantly less than control (α=0.05) 

 

2.4 Conclusions 

No definitive cause was identified for the observed algal toxicity in the current 

research.  Toxicity may be caused by halogenated molecules, very low levels of 
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oxidant, or other factors specific to the water source used for BWMS testing.  The 

focus of our research was to measure the persistence of previously observed algal 

toxicity of treated ballast water (Ziegler et al., 2010).  All previous toxicity testing of 

chlorination based BWMS has been conducted immediately after ballast water 

discharge.  Although an attempt was made to compare our Day 0 toxicity test results to 

results from other studies, comparisons are complicated by differences in test 

methodologies and how the results are presented.  Despite these limitations, the initial 

algal toxicity from treated ballast water observed in the current research seems more 

severe than algal toxicity reported in other studies of oxidant treated water. 

In the current research, the short half-life of oxidants and the addition of 

neutralizers to discharged ballast water would seemingly eliminate the possibility of 

oxidant toxicity over the relatively long period of time observed.  However, if all of the 

organic carbon has reacted with oxidants while in the ballast tank, any remaining 

oxidant may have a much longer half-life than expected.  Also, because TRO decay is 

dependent on temperature (Duan et al., 2016), the immediate chilling of treated ballast 

water samples may have helped preserve any remaining oxidant.  In the current 

research, the collection and holding of samples (sealed container in the dark at 4 °C) 

before toxicity testing may have also affected TRO decay and toxicity test results.  On 

the other hand, preparation of the treated ballast sample for toxicity testing involves 

filtration, the addition of algal nutrients, and the process of making treated water 

dilutions, all of which could consume any remaining oxidant before the start of toxicity 

tests.  In fact, earlier research conducted by Sathasivam et al. (2016) found that the 
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addition of algal nutrients (i.e. f/2 algal media) before toxicity testing had a substantial 

oxidant demand. 

Low concentrations of oxidant that may be present in discharged ballast water 

are typically consumed by the interaction with organic matter following discharge into 

a natural body of water.  However, any chemical reactions, including the decay rate of 

any remaining oxidant, are affected by the temperature and DOC (concentration and 

composition) in the receiving water.  In low temperature and low DOC waters, such as 

those found in arctic regions, any remaining oxidant in treated ballast water discharges 

could create a particularly hazardous situation and pose a threat to algae populations in 

the receiving environment.  If the observed algal toxicity in the current research is due 

to TRO concentrations that are below detection, the longevity of toxicity may have 

been extended by cold storage.  To the authors’ knowledge, no algal toxicity tests have 

been conducted on cold water species, and there are currently no toxicity test guidelines 

for use in cold water.  Arctic environments are of particular concern in the future as the 

warming of arctic water reduces ice volumes (NSIDC, 2017), and opens new passages 

allowing for arctic freighter transport, drilling and exploration, and tourism (Miller and 

Ruiz, 2014; IMO, 2016b).  The opening of Arctic trade routes will thereby expose these 

areas to the risks associated with greater nautical activity, such as the introduction of 

non-indigenous species, release of chemicals (e.g. DBPs and biocides from discharged 

ballast water), and oil spills. 

Another possible cause of algal toxicity in oxidant treated water could be 

residual organic chloramines that have shown resistance to neutralization by sulfite 

(Bedner et al., 2004).  This residual chlorine pool can be missed during analysis 
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because the dechlorinating agent itself can interfere with chlorine analysis (Helz and 

Nweke, 1995).  The sulfite resistant fraction is thought to be composed of chlorinated 

amines and peptides formed by the transfer of Cl+ to organic amines, such as protein 

degradation products, nucleic acids, amino sugars, and aliphatic amines (Bedner et al., 

2004).  Yonkos et al. (2001) found that the TRO concentration measured by 

amperometric titration was not a good predictor of Daphnia magna toxicity, and 

suggested that halogenated residuals that were resistant to sulfite neutralization (e.g. 

chlorinated amines) were responsible for observed daphnid toxicity.  Halogenated 

amines that are not detected as TRO by the DPD method may also have played a role in 

the algal toxicity of oxidant treated estuarine water samples in the current research. 

The longevity of algal toxicity in treated ballast water may also be due to a 

combination of traditional DBPs or unquantified larger halogenated organic 

compounds.  In the current research, the lack of correlation between the initial 

concentration of traditional DBPs and algal toxicity (Fig. 2.2) is not a definitive 

rejection of DBPs as a contributing factor to algal toxicity in such a complex mixture.  

While the initial concentrations of commonly identified DBPs were quantified, the 

production of additional, unidentified halogenated compounds is probable.  Like 

traditional DBPs, the production of these large unquantified halogenated compounds is 

also primarily dependent on the uptake water’s DOC composition and concentration 

(Heeb et al., 2014).  However, other chemicals that may be present in uptake water, 

including emerging contaminants (ECs), can also react with oxidants forming 

additional halogenated compounds (Deborde et al., 2004; Benitez et al., 2011; Acero et 

al., 2013).  The possibility of mixture toxicity to algae has been discussed as a way of 
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addressing combinations of chemicals (Petersen et al., 2014) with the potential for 

synergistic toxic effects.  These authors found that algal toxicity tests with S. costatum 

showed synergistic toxic effects when exposed to a combination of contaminants that 

could potentially be present in the commercial harbor water used in the current project. 

Algal toxicity of chlorinated (e.g. sodium hypochlorite) and neutralized water 

has been reported for multiple species in laboratory studies (Gentile et al., 1976; 

Sanders, 1984; Lee et al., 2015; Rhie, 2016).  Currently, there is no unilaterally 

accepted algal species or taxonomic group that is considered more sensitive to chlorine 

toxicity, or to chemical toxicity in general.  Therefore, the main factors in species 

selection for toxicity testing have been rapid growth and ease of culture, with little 

emphasis on species sensitivity.  Results from several studies observed species 

dependent differences in sensitivity of algae exposed to chlorinated and neutralized 

water (Lee et al., 2015; Rhie, 2016).  In the current research, a dramatic difference in 

species sensitivity was demonstrated in algal toxicity tests of neutralized water after the 

addition of sodium hypochlorite (Fig. 2.5).  Toxicity tests with I. galbana showed 

reductions in growth after neutralization with two concentrations of two different 

neutralizers, while P. tricornutum was completely resistant to negative effects in any of 

the treatments.  Lee et al. (2015) also noted greater sensitivity of I. galbana compared 

to P. tricornutum as well as two other algal species, Selenastrum capricornutum and 

Scenedesmus obliquus.  Two diatoms (i.e. S. costatum and P. tricornutum) are most 

frequently used as test species because of their rapid growth rate, ecological relevance, 

and internationally established test guidelines (ISO, 2008; 2016).  Although P. 

tricornutum seems resistant to toxic effects of water chlorination, toxicity tests with S. 



75 
 

costatum have shown susceptibility to oxidant treated discharge water.  However, no 

toxicity tests have been conducted to compare S. costatum and other algal species.  The 

paucity of algal toxicity data is a concern in light of the wide variability in species’ 

sensitivities observed in testing of oxidant treated water. 

The current research was conducted on only three BWMS, representing two 

types of treatment methods employing oxidants: electrochlorination and injection of a 

DICD solution. Future research is needed to more clearly establish the factors that 

influence DBP production and toxicity of treated ballast water.  Despite not identifying 

the cause of algal toxicity, the longevity of toxic effects found in the current study is of 

particular concern.  Although only a small percentage of ships currently treat ballast 

water, this number is likely to increase as maximum discharge regulations are enforced 

and ballast treatment becomes mandatory.  If treatment systems that employ strong 

oxidants are adopted by a large proportion of ships, the environmental impact of 

potentially toxic ballast water could be amplified on a local as well as a global scale.  

Ongoing research is focused on identification of additional halogenated compounds that 

are produced by oxidant-based BWMS.  The ultimate goal of our continued research is 

to identify factors that relate to observed toxicity and the production of DBPs.  

Identification of these factors can be useful in the continued development and use of 

BWMS to help reduce the negative ecological impact of ballast water treatment. 
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Chapter 3 

 

Formation of Brominated Organic Compounds and Molecular Transformations in 
Dissolved Organic Matter (DOM) after Ballast Water Treatment with Sodium 

Dichloroisocyanurate Dihydrate (DICD) 

 

Ziegler, G.; Gonsior, M.; Fisher, D.J.; Schmitt-Kopplin, P.; Tamburri, M. N. 

Submitted to Environmental Science and Technology 17 May 2019 

Abstract 

Estuarine water treated with a ballast water management system (BWMS) using a 

solution of dissolved dichloroisocyanurate dihydrate (DICD) resulted in the formation of 

newly described brominated disinfection by-products (Br-DBPs).  Analysis of dissolved 

organic matter (DOM) in untreated water with ultrahigh resolution Fourier transform ion 

cyclotron resonance mass spectrometry (FT-ICR MS) identified 3,897 m/z ions and their 

exact molecular formulas.  After DICD treatment, a total of 213 halogenated molecular 

ions with relative abundance of at least 1% were assigned and confirmed using isotope 

simulation.  Halogenated ions were assigned in four DBP elemental groups including 

CHOBr (180), CHONBr (13), CHOCl (16), and CHOBrCl (4).  Forty-nine (25%) of the 

197 brominated formulas have not been previously reported.    We also were able to 

tentatively assign possible structures to the formula C3HBr3N2 due to very limited 

isomeric possibilities.  The tentatively assigned compound found at 6.4% relative 

abundance was identified as either tribromoimidazole or tribromopyrazole.  Our results 

show the formation of complex halogenated DBPs that are formed in the treatment of 

water with a novel BWMS that employs granular DICD as a biocide.  The toxicological 
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and mutagenic properties as well as the fate of these newly identified brominated DBPs 

are unknown. 

3.1 Introduction 

The Ballast Water Management Convention of the International Maritime 

Organization (IMO, 2004) and similar regulatory instruments (USCG, 2012) require the 

treatment of ships’ ballast water to minimize the risk of the transfer, release and 

establishment of new invasive species.  The majority of existing ballast water 

management systems (BWMS) use an active substance as a biocide, and the majority of 

these systems make use of strong oxidants (e.g. chlorine, ozone or hydrogen peroxide). 

The use of chlorine in fresh water applications, such as drinking water and 

wastewater treatment, has been extensively employed for decades and is credited for 

reducing the spread of disease, virtually eliminating waterborne dysentery and cholera in 

industrialized nations (Ali et al., 2012; 2015).  However, the undesirable side effects of 

chlorine have been demonstrated including the formation of disinfection by-products 

(DBPs), which are potentially toxic, carcinogenic, and mutagenic (Richardson et al., 

2007; Farré et al., 2013).  The halogenation of DOM, and resulting DBPs, is influenced 

by oxidant dose, temperature, DOM quantity and composition, and potentially by the 

mechanism of disinfection (e.g. liquid hypochlorite, electrochlorination, DICD).  

Research has focused on freshwater DBPs using analytical techniques such as GC-MS 

and LC-MS to determine rather small chlorinated DBPs, such as haloacidic acids 

(HAAs), trihalomethanes (THMs), haloacetonitriles (HANs) and oxyhalides (Richardson, 

2002).  However, as much as 50% of the total organic halogen (TOX) formed after 

chlorination is undefined (Krasner et al., 2006; 2009), and halogens are presumed to be 
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incorporated into higher molecular weight DOM (Zhang and Minear, 2002; 2006).  The 

presence of brominated DBPs (Br-DBPs) in freshwater has also been studied, where 

already relatively low concentrations of bromide lead to Br-DBPs (Ichihashi et al., 1999; 

Nokes et al., 1999; Shah et al., 2015; Zhang et al., 2014).  Compared to chlorine, bromine 

is 20 times more likely to participate in substitution reactions leading to Br-DBPs 

(Westerhoff et al., 2004; Uyak and Toroz, 2007) which are more likely to be carcinogenic 

and mutagenic compared to their chlorinated analogues (Echigo et al., 2004; Sharma et 

al., 2014).  In higher salinity brackish and seawater, any addition of hypochlorite will 

almost instantaneously yield HOBr or OBr – (Westerhoff et al., 2004), and the majority of 

halogenation will be by active bromine (Shah et al., 2015), although some research has 

also revealed chlorinated and mixed halogenated DBPs (Wang et al., 2018). 

In drinking water treatment, the removal of precursors of chlorinated DBPs, 

including dissolved organic matter (DOM), has been demonstrated (Bond et al., 2012; 

Zainudin et al., 2018).  More recently, the use of strong oxidants in estuarine and marine 

waters for purposes such as industrial cooling (Jenner et al., 1997), desalination 

(Kristiansen et al., 1996; Saeed et al., 2019) and treatment of saline wastewater (Ding et 

al., 2013) has led to an increased release of brominated DBPs.  Ballast water treatment 

presents a relatively new application of strong oxidants that can lead to high 

concentrations of DBPs (Werschkun et al., 2012; 2014) due to increased concentration 

and complexity of DOM in uptake water, as well as higher oxidant concentration and 

DOM contact times (Chowdhury et al., 2009; Shah et al., 2015; Hao et al., 2017).  Unlike 

drinking water disinfection, no practical methods have been developed in ballast water 

disinfection to limit the formation of DBPs. 
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Ballast Water Management Systems (BWMS) that employ active substances are 

required to evaluate treated ballast water for environmental acceptability under IMO 

Procedure for approval of ballast water management systems that make use of Active 

Substances (G9) (IMO,2008b).  This requirement has led to a large data set for traditional 

DBPs (e.g. HAAs, THMs, oxyhalides and HANs) with analyses by gas 

chromatography/mass spectrometry (GC-MS), a method unable to detect large or polar 

Br-DBPs (Richardson 2002; Zhai and Zhang, 2011).  As a result, a significant portion of 

the halogenated organic compounds formed in chlorination of natural water have not 

been identified until recently, with the use of emerging techniques such as ultrahigh-

resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) 

with electrospray ionization (Zhang et al., 2014; Gonsior et al., 2015), and electrospray 

ionization-triple quadrupole mass spectrometry (UPLC/ESI-tqMS) (Zhai and Zhang, 

2011; Zhai et al., 2014).  FT-ICR MS has sufficient resolution to identify the molecular 

composition and formulas of DOM and DBPs by mass measurement alone (Stenson et 

al., 2003).  However, not all constituents in DOM and DBPs are efficiently ionized and 

hence the current research focused on the components that are susceptible to solid phase 

extraction by a polymeric resin at low pH, and that can be effectively ionized in negative 

mode electrospray ionization.  Ultrahigh-resolution FT-ICR MS has been used to monitor 

the incorporation of chlorine (Zhang et al., 2012; Lavonen et al., 2013; Gonsior et al., 

2014b) and bromine (Zhang et al., 2014; Gonsior et al., 2015) into DOM.  More 

generally, FT-ICR MS and other high resolution MS techniques, such as Orbitrap, have 

substantially advanced the field of non-targeted analysis of organic compounds in 
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complex mixtures (Schymanski et al., 2015; Yang and Zhang, 2016; Hollender et al., 

2017; Luek et al., 2017). 

The BWMS in this project used a solution of granular DICD in potable water.  

The use of granular DICD as a disinfectant has the advantages of safer storage and a 

longer shelf life (2 y) compared to liquid sodium hypochlorite (1 y, depending on storage 

conditions) enabling ships to make less frequent stops to re-supply with fresh disinfectant 

while also avoiding the potential environmental risk of chlorate production resulting from 

sodium hypochlorite degradation.  The use of DICD also avoids the need for a significant 

power supply that is required for BWMS using electrochlorination to produce 

disinfectant.  To date, only one commercial BWMS using DICD has received Type 

Approval by the IMO which is required before installation on ships. 

Once in solution, dichloroisocyanurate (C3N3O3Cl2) equilibrates with 

hypochlorous acid (HOCl) in solution (Jensen and Johnson, 1990), as described in 

equations 1 and 2 below.  In freshwater ballast treatment with high chlorine demand, 

conversion of chloroisocyanurates to HOCl is thought to be very rapid and complete, 

with disinfection accomplished using only free available chlorine (i.e. HOCl and its 

conjugate base OCl¯).  The kinetics of this reaction have been previously reported 

(Farkas et al., 1949; Kumar and Margerum, 1987).  In the presence of bromide, available 

chlorine will rapidly oxidize the bromide ion to available bromine (HOBr and OBr¯) (eq. 

3).  The oxidation of bromide by available chlorine is only dependent on the 

concentration of bromide ion and is independent of high chloride concentrations found in 

full strength seawater.  Although complete conversion to available bromine is assumed, 

there are no published data on the effects of cyanuric acid (H3Cy) or chloroisocyanurates 
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on the oxidation of the bromide ion by HOCl (eq. 3) which can potentially influence the 

formation halogenated organic compounds. 

Cl2Cy¯ + H2O  →  HClCy¯ + HOCl  (1) 

HClCy¯ + H2O  →  H2Cy¯ + HOCl   (2) 

Cl2Cy¯ = dichloroisocyanurate, HClCy¯ = chloroisocyanurate, and H2Cy¯ = cyanurate  

HOCl + Br¯ → HOBr + Cl¯   (3) 

 

The primary goal of this research was to identify new halogenated DBPs that are 

formed in ballast water treatment of estuarine water with DICD using non-targeted direct 

infusion FT-ICR MS.  Spectrometric data of un-halogenated DOM and Br-DBPs were 

visualized using van Krevelen diagrams(van Krevelen, 1950), plotting H/C ratio versus 

O/C ratio, as well as modified Kendrick plots of halogenated DBPs to visualize 

homologous series of molecular formulas (Yekta et al., 2012).  In addition, shifts in the 

molecular composition of un-halogenated DOM with DICD treatment were analyzed 

with van Krevelen diagrams.  The DBPs identified by FT-ICR MS are structurally 

complex and halogenated while more traditional and regulated DBPs (e.g. HAAs, THMs 

and oxyhalides) were not evaluated in this study, and were not observed due to either loss 

in the solid phase extraction (SPE) procedure, or are outside the m/z window of FT-ICR 

MS. 

3.2 Materials and Methods 

3.2.1 Ballast Water Sampling and Extraction 

Estuarine water was treated with a BWMS that employed a biocide solution made 

from dissolving sodium DICD granules in potable water, during certification testing by 

the Maritime Environmental Resource Center (MERC).  The land-based test facility used 
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for BWMS testing was located in Port Covington, Baltimore, Maryland, USA, a highly-

productive, mesohaline urban/industrial environment.  Uptake water (salinity of 7 PSU, 

pH 7.9, DO 8.5 and temp. 23.8 °C) was taken from the surface of Winans Cove 

(Baltimore, MD, USA).  Adjustments were made to uptake water to coincide with the 

United States Coast Guard Environmental Technology Verification (ETV) Program 

(USEPA, 2010), which outlines BWMS testing performance standards.  Adjustments to 

DOC and POC, as well as ETV performance standards are provided in Table 3.1.  

Adjustments included addition of sodium citrate dihydrate (Fisher Scientific, USA) and 

Micromate-micronized humate (Mesa Verde Resources; Placitas, New Mexico), to 

increase final DOC (8.2 mg C l-1) and POC (14.7 mg C l-1), respectively (Table 3.1).  

Citrate is an aliphatic acid and is not thought to be a precursor to halogenated DBPs 

identified in the current research using FT-ICR MS.  Micromate, however, is comprised 

of concentrated humic acids and may be a source of precursors in the formation of 

halogenated DBPs.  Although the average particle size of dry micromate is 15 µm, in 

solution the dissolved portion passing through a GF/F filter (0.45 µm) before extraction 

would be included in the uptake DOM profile identified with FT-ICR MS.  Although 

POC of uptake water is increased with micromate, it represents a natural source of DBP 

precursors.  All adjustments were made in uptake water before splitting into untreated 

and treated ballast water lines.  No salinity adjustments or additions to the natural 

plankton community were necessary.  The DICD disinfecting solution was injected into 

the ballast water during uptake with a target total residual oxidant (TRO) dose of 11 mg l-

1.  Control and treated ballast waters were delivered to independent tanks and held for 48 

h in closed ballast tanks at ambient temperature. 
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Table 3.1 Minimum USEPA ETV (2010) and IMO (2004) concentrations for DOC, POC and 

TSS compared to ambient and adjusted concentrations of uptake water.  Amendments of uptake 

water included sodium citrate, Arizona fine test dust, and Micromate for increasing DOC, TSS 

and POC, respectively. 

 ETV IMO G8 Test Water 

Parameter   Ambient Adjusted 

DOC  mg C l-1 ≥ 6 > 5 4.6 8.2 

POC  mg C l-1 ≥ 4 > 5 8.0 14.7 

TSS mg l-1 ≥ 24 ≥ 50 18.5 57.1 

 

All adjustments were made in uptake water before splitting into untreated and 

treated ballast water lines.  No salinity adjustments or additions to the natural plankton 

community were necessary.  The DICD disinfecting solution was injected into the ballast 

water during uptake with a target total residual oxidant (TRO) dose of 11 mg l-1.  Control 

and treated ballast waters were delivered to independent tanks and held for 48 h in closed 

ballast tanks at ambient temperature. 

At discharge, an untreated (i.e. control) uptake water sample was collected in a 20 

L polycarbonate carboy directly from the untreated ballast water tank.  A continuous, 

time integrated sample of discharged treated water was collected during the entire 1 h 

discharge process by an in-line sample port, and delivered to a 100-L polymer fiberglass 

tank.  The BWMS added a dose of neutralizer (sodium bisulfite) for the first five minutes 

of treated water discharge, after which no additional neutralizer was added.  A 19-L 

treated water sample was collected (20-L glass carboy) from the 100-L fiberglass tank by 

gravity flow.  Control and treated water samples were immediately transferred to ice 

filled coolers for transport to the University of Maryland Wye Research and Education 

Center (UMD/WREC) for solid phase extraction (SPE). 
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Isolation of DOM and DBPs was accomplished with SPE followed by methanol 

elution and preservation of sample.  This extraction method for DOM has been published 

previously (Dittmar et al., 2008) and has also been used to extract DBPs from 

electrochlorinated marine water (Gonsior et al., 2015).  Extractions were started within 

two hours of ballast water sample collection.  The SPE method allowed for the 

concentration of DOM and complete desalting of the water samples, required for analysis 

by FT-ICR MS with electrospray ionization (Stenson et al., 2003).  Briefly, water 

samples (1-L) were vacuum filtered (pre-combusted at 500 °C Whatman GF/F, 0.7 µm) 

and acidified to pH 2 with formic acid.  Samples were then gravity-fed through methanol 

activated SPE cartridges (Agilent Bond Elut PPL), containing 1 g of highly 

functionalized styrene-divinylbenzene (SDVB) polymer.  Cartridges were rinsed with 

formic acid acidified water, dried with a gentle stream of nitrogen and eluted with 10 ml 

of LC-MS grade methanol (Chromasolv, Sigma-Aldrich).  Although not quantified in this 

study, previous research has shown that DOM extraction with PPL cartridges is more 

efficient than other SPE methods (e.g. C18, XAD-8), with an extraction efficiency 

between 52 and 74% (Dittmar et al., 2008; Gonsior et al., 2009; 2014a; Green et al., 

2014; Lavonen et al., 2013).  This SPE technique has been frequently used to extract 

DOM from marine waters (Medeiros et al., 2015; Timko et al., 2015) and to evaluate 

DBPs (Gonsior et al., 2015; Lavonen et al., 2013). 

3.2.2 Chemical Analysis 

3.2.2.1 POC and DOC 

Analyses of dissolved organic carbon (DOC) and total organic carbon (TOC) 

were carried out on water collected at uptake, both before and after the addition of 
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compounds to reach ETV minimum concentrations of DOC and POC (Table 3.1).  The 

high temperature combustion method was used to analyze aqueous samples for TOC and 

DOC using the Shimadzu TOC-L carbon analyzer.  Briefly, TOC concentrations were 

derived from unfiltered water, and water used for DOC analysis was filtered through a 

0.7 µm GF/F glass fiber filter.  Samples were acidified with hydrochloric acid and 

sparged with ultrapure air to remove inorganic carbon.  High temperature combustion 

(680 ºC) on a catalyst bed breaks down all carbon compounds into carbon dioxide (CO2).  

The CO2 was then quantified on a non-dispersive infrared detector (NDIR).  The method 

detection limit (MDL) for DOC was 0.24 mg C l-1. 

3.2.2.2 Total Residual Oxidant 

Measurements of the TRO concentration in discharged treated ballast water were 

made using the USEPA recommended DPD (n,n-diethyl-p-phenylene diamine) method53 

with a handheld Hach Pocket Colorimeter™ II colorimetric TRO meter (Hach, Model 

No. 58700, U.S.A.).  TRO measurements were taken in triplicate on samples collected at 

the beginning, middle, and end of the overall discharge period (approximately 1 h).  

Colorimetric TRO measurements were made in Low-Range mode (0.02-2.0 mg l-1 TRO 

as Cl2), following the manufacturer’s instruction manual (Hach Company, 2013).  When 

uptake water indicated the presence of TRO (considered interference), the treated water’s 

TRO value was adjusted by subtracting the TRO value of untreated water to obtain the 

final reported TRO concentration.   

3.2.3 Ultrahigh Resolution Mass Spectrometry (FT-ICR MS) 

Mass spectrometry of SPE isolated samples was performed using a Bruker Solarix 

12 Tesla Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) 
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after negative ion mode electrospray ionization (ESI-).  Methanolic samples were diluted 

1:20 and directly infused into the electrospray at a flow rate of 2 µl min-1.  The dilution of 

the sample was necessary to limit space charge processes, which may lead to 

interferences in the transient spectrum.  To achieve high mass accuracy and precision, 

500 scans were averaged with a time domain of 4 megaword.  The voltage of the ESI- 

was set to -3.6 kV.  A cleaning procedure using 600 μL (50% methanol and 50% water) 

was implemented between each sample to avoid carryover of samples.  Methanolic 

blanks were measured occasionally to make sure that the cleaning procedure between 

samples was effective.  The resolution of FT-ICR MS and the formation of singly 

charged ions by ESI- with a mass accuracy better than 0.2 ppm, allowed unambiguous 

molecular formula assignments (Koch et al., 2007).  The exact molecular formula 

assignments were based on the following number of monoisotopic atoms 12C0-∞, 1H0-∞, 

16O0-∞, 14N0-5, and 32S0-2, 35Cl0-5 and 
79Br.  The corresponding isotopologues of the 

halogens (37Cl and 81Br) were used to cross-validate formula assignments based on 

isotope simulation comparisons.  Unambiguous formula assignments were possible up to 

m/z of 800, however the entire observed m/z range was below this m/z value.  Molecular 

formula assignments were only given to m/z values with a signal to noise ratio greater 

than 10.  Calculation of elemental formulas for each m/z ion was undertaken with the 

NetCalc network approach with details described previously in recent publications 

(Tziotis et al., 2011; Hertkorn et al., 2013).  The NetCalc generated formula assignments 

were further validated by manual formula assignments to check isotope pattern matching 

for high intensity m/z ions.  Final formulas included elemental compositions containing 

C, H, O, N, S, Br and Cl that were divided into elemental groups CHO, CHON, CHOS, 
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CHOBr, CHOClBr, CHONBr and CHOCl, for further analysis.  The Netcalc approach 

does not require limiting atomic numbers prior to formulas assignments because it is 

based on transformations that have to be defined. However, we restricted the atomic 

numbers to C1-60, O1-25, N1-3, S1-2, Br1-5 and Cl1-5 for traditional formula calculations to 

cross-validate that our allowed transformations are indeed capturing all m/z ions that can 

be assigned to molecular formulas. 

Brominated molecular formulas were validated by isotope simulations to cross-

validate assigned formulas, which is very robust due to the almost equal contributions of 

the two stable isotopes 79Br and 81Br.  The MS spectra were pre-calibrated using arginine 

clusters and then again post-calibrated using known DOM molecular formulas (Gonsior 

et al., 2016).  All assigned halogenated DBPs were checked against methanolic blanks 

and with samples extracted prior to the treatment. 

The relative abundance of individual molecular formulas were calculated by 

comparison to the highest DOM m/z ions in each individual mass spectrum.  However, 

the intensities after averaging 500 scans were used to compare samples, because it was 

not clear if highest intensities m/z ions were affected by the DICD treatment.  We are 

well aware that ionization suppression, ionization efficiencies and matrix effects all 

influence the intensity of individual m/z ions, but a relative comparison of intensity of 

samples before and after treatment has been shown valuable in previous studies and can 

be used in a semi-quantitative way (Koch et al., 2005; Sleighter et al., 2012; Lavonen et 

al., 2013; Gonsior et al., 2014b).  Although, it should be noted here that m/z ion intensity 

cannot be related to actual concentrations due to the vastly different ionization 
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efficiencies of different compound classes.  Hence, FT-ICR MS data are not quantitative 

because of the absence of standards and the lack of structural information of m/z ions. 

Multiple parameters were used to interpret FT-ICR MS spectrometric data, 

allowing a comparison of untreated intake water and DICD treated water.  Parameters 

included m/z range, number of hydrogen and oxygen to carbon ratios (O/C and H/C), 

Kendrick mass defect (KMD) and the z-score (z*).  Van Krevelen diagrams (van 

Krevelen, 1950; Kim et al., 2003) were used to characterize molecular formulas by 

plotting H/C ratio against the O/C ratio of assigned formulas (Hertkorn et al., 2006; Hao 

et al., 2017), although this type of diagram is a projection of a number of formulas with 

the same atomic ratios on the same spot, and hence does not reflect the true diversity.  

However, this plot allows visualization of relative oxygen or hydrogen deficiency of 

molecular formulas, resulting in similar types of organic compounds to cluster into 

specific regions on the plot.  Kendrick plots (Kendrick, 1963) were modified and used to 

visualize compositional patterns of molecular formulas along the m/z range (Yekta et al., 

2012).  This was achieved by using the KMD and the z*, and plotting their ratio (-

KMD/z*) against mass (Stenson et al., 2003). 

3.3 Results and Discussion 

3.3.1 Molecular Characterization of Source Water DOM 

The ultrahigh resolution mass spectra of PPL extracts of DOM from untreated 

Baltimore Harbor water is shown in Figure 3.1A.  Numerous m/z ions representing 

unique molecular formulas were identified belonging to three elemental formula groups: 

CHO, CHON and CHOS.  The CHON elemental group was the most abundant with 

2,681 peaks followed by CHO group with 2,187 peaks and CHOS with 511 peaks.  The 
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observed mass range of DOM was approximately 150 – 600 Da, which is consistent with 

previous FT-ICR MS studies of estuarine or coastal DOM (Sleighter and Hatcher, 2007; 

Gonsior et al., 2015).  DOM can be highly variable across salinity gradients and with 

season as previously shown for the Delaware Bay (Powers et al., 2018).  .No halogenated 

formulas were identified in untreated control samples. 

 

 

Figure 3.1 Ultrahigh resolution FT-ICR mass spectra of PPL extracts of DOM from Baltimore 

Harbor, USA in untreated (A) and DICD treated (B) ballast water. The enlarged area shows 

negative m/z ions at nominal mass 303 and their corresponding neutral formula assignments. 

The van Krevelen plots of molecular formulas in DOM containing only C, H and 

O before and after DICD treatment (Figure 3.2) reveal a decrease in the relative 

abundance of ions after treatment, but very little difference in O/C or H/C ratios is 

visible, showing a strong similarity in DOC before and after treatment.   
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Figure 3.2 Van Krevelen diagram of CHO molecular formulas of DOM in untreated (A) and 

DICD treated (B) ballast water.  Bubble size represents abundance. 

For CHO-only formulas before treatment H/C = 1.107 and O/C = 0.463, while 

after DICD treatment H/C= 1.112 and O/C = 0.472 (Table 3.2).  The van Krevelen 

analysis identifies classes of organic compounds in DOM by elemental ratios, where 

similar types of compounds concentrate in particular areas of the plot.  The majority of 
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DOM molecules in uptake water had patterns of elemental ratios that are characteristic of 

phenol-like compounds (Figure 3.1A).  These patterns are often defined in the literature 

as ‘lignin-like’ compounds with H/C = 0.7 to 1.5, and O/C = 0.1 to 0.7 (Hockaday et al., 

2009; Lu et al., 2015; Ohno et al., 2010; Sleighter and Hatcher, 2007), which implies a 

terrestrial origin of DOC.  Because the location in the current research receives a large 

volume of freshwater input, the majority of DOM is most likely of terrestrial origin.  The 

distribution of O/C ratios (between 0.1 and 0.7) is also rather typical for terrestrially-

derived DOM (Table 3.2).  

Table 3.2 Mean values for ratios of oxygen to carbon (O/C) and hydrogen to carbon (H/C) 

formula groups before (CHO group only) and after DICD treatment. 

 

Sample Formula Group Avg. O/C Avg. H/C 

Control CHO 0.46303 1.10670 

DICD Treated CHO 0.471989 1.11201 

DICD Treated CHOBr 0.507733 1.01888 

 

There are also DOM molecules on the van Krevelen diagram with signatures that 

may indicate highly polymerized or even condensed aromatic structures (Figure 3.2) as 

defined by having H/C = 0.2 to 0.7 and O/C = 0 to 0.6 (Ohno et al., 2010).  Notably, all 

of the compounds in this area have relatively low abundance, which is expected due to 

their presumed rather low solubility. 

As stated previously, the majority of DOM consists of organic compounds in the 

CHON and CHO elemental formula classes.  The portion of DOM containing nitrogen 

atoms precludes formation by the simple breakdown of phenol-like compounds and may 

have formed during early stages of the microbial degradation process (Stenson et al., 
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2003), during polyphenol-peptide binding reactions in the soil (Olk et al., 2006) or may 

be derived from algal organic matter present in uptake water. 

3.3.2 Changes in DOM with DICD Treatment  

A substantial change in the DOM pool was seen after DICD treatment with 

differences in molecular composition at each nominal mass (Figure 1B).  Following 

treatment, unique molecular formulas were assigned to the previous elemental formula 

groups CHON, CHO and CHOS, as well as an additional four halogenated DBP groups: 

CHOBr, CHONBr, CHOCl and CHOBrCl.  Figure A2.1 (Appendix 2) shows histograms 

of the heteroatom class distribution for Port Covington NOM before and after treatment 

with DICD.  The same class species of CHO-only compounds are found before and after 

treatment, with the O8 class of compounds most abundant in both samples.  However, 

there is an increase in the abundance of the O9 class of CHO-only compounds after 

treatment (Figure A2.1 B). 

When looking at the entire set of peaks found in the FT-MS spectrum with 

relative abundance as low as 0.23%, there were 2,187 CHO elemental formulas in uptake 

water and 2,207 formulas identified after DICD treatment, an increase of 20 unique 

molecular formulas.  However, when limited to more abundant ions (i.e. relative 

abundance of at least 1%) there were 1,495 CHO formulas before and 1,588 formulas 

after treatment, an increase of 93 formulas, showing the marked increase in the more 

abundant CHO element group ions after DICD treatment.  An increase in intensity of 

lower mass m/z ions in the CHO formula group was also observed after DICD treatment, 

with a corresponding overall decrease in the intensity of higher mass ions (Figure 3.1).  

This is consistent with the ability of strong oxidizing agents like DICD to oxidize 



93 
 

complex organic molecules and break them down into lower molecular weight 

compounds.  The overall shift in molecular weight of DOC is best visualized as the 

absolute intensity change as a function of mass (Figure 3.3). 

 

 
 

Figure 3.3. Absolute intensity change (CHO group only) after DICD treatment. 

 

After DICD treatment, the majority of absolute m/z ion intensity changes in the 

region below 340 Da are in the positive direction, while to a smaller degree m/z ion 

intensity changes above 380 Da are primarily in the negative direction.  This trend can 

also be observed on a finer scale by looking at individual DOM components before and 

after DICD treatment.  The zoomed in view of the mass spectrum at nominal mass (NM) 

329 before and after DICD treatment shows the increase in intensity of these relatively 
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low molecular weight m/z ions after DICD treatment (Figure 3.4), a typical trend seen in 

the full mass spectrum. 

 

 
 
Figure 3.4 Negative-ion ESI-FT-ICR mass spectra between m/z 328 and 332 before and after 

DICD treatment. 

 

3.3.3 DBP Formation with DICD Treatment  

A comparison of the ultrahigh resolution mass spectra of extracted DOM in 

untreated and DICD treated ballast water revealed the formation of numerous Br-DBPs 

(Figure 3.1) with a mass range similar to untreated DOM (approx. 200 – 600 Da).  

Because the salinity of the treated estuarine sample was 7 PSU, the bromide 

concentration was high enough that hypochlorous acid (HOCl) initially present after the 

addition of DICD solution was rapidly converted into hypobromous acid (HOBr).  

Disinfection was therefore primarily accomplished with free bromine (HOBr and OBr¯), 
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resulting in the formation of mostly DBPs containing only bromine comprising 90% of 

determined halogenated DBPs, in addition to fewer chlorinated and mixed halogenated 

DBPs (Appendix 2).  A total of 213 halogenated molecular ions with relative abundance 

of at least 1% were assigned to four DBP elemental groups: CHOBr (180), CHONBr 

(13), CHOCl (16), and CHOBrCl (4).  It is important to point out that despite numerous 

DOM ions containing nitrogen (2,681) in the uptake water, only 13 of the brominated 

ions that were identified at ≥1% relative abundance after DICD treatment contained a 

nitrogen atom out of a total of 213 brominated ions. Hence, the CHO only component of 

DOM was responsible for the majority of observed brominated DBPs.  The majority of 

DBPs of at least 1% relative abundance contained one bromine atom with assignments of 

180 single brominated and 13 double brominated DBPs.  Brominated DBPs were found 

in relative abundances as high as 18%, suggesting that concentrations of some DBPs are 

in the range of naturally occurring compounds within DOM.  The formation of 

brominated versus chlorinated DBPs has been studied extensively in drinking water 

where typically low concentrations of bromide lead to few (Gonsior et al., 2014b) or no 

Br-DBPs (Zhang et al., 2012).  In one instance, the bromide concentration of fresh water 

was increased to a very high 2 mg/L in an attempt to amplify Br-DBPs (Zhang et al., 

2014).  In control water without bromide, at a free chlorine dose of 5.0 mg/L (sodium 

hypochlorite) and contact time of 5 days, no Br-DBPs were identified.  However under 

the same conditions with added bromide, molecular formulas were assigned to 441 single 

brominated, 37 double brominated and 139 chlorinated m/z ions (Zhang et al., 2014).  

Gonsior et al. (2015), using FT-ICR MS analysis of water samples after 

electrochlorination of salinity 30 ballast water, identified 462 brominated DBPs at a 
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relative abundance of at least 1%, and as high as 22%, and no chlorinated or mixed 

halogenated DBPs above 1% relative abundance.  Although the bromide (Br-) 

concentration of the estuarine uptake water was not measured in the current study, 

bromide is conservative and steadily increases with increasing salinity.  The results from 

these studies reveal a consistent increase in the ratio of Br-DBPs to Cl-DBPs with an 

increase in salinity and/or bromide concentration, independent of other differences in 

water chemistry of treated samples.  Also, in all studies, consistently fewer DBPs with 

multiple halogen atoms were formed as predicted by the decreasing electron density of 

DOM structures with halogenation (Heeb et al., 2014). 

Although the majority of DBPs contained only bromine, 4 mixed halogenated and 

16 chlorinated DBPs were also identified in DICD treated ballast water at relative 

abundance of at least 1%, and as high as 2.1% and 2.8% for mixed halogenated and CL-

DBPs, respectively (Appendix 2).  None of the mixed halogenated DBPs have been 

previously described.  In fact, in other research no mixed halogenated DBPs were 

reported after chlorination of bromide boosted water with analysis by FT-ICR MS (Zhang 

et al., 2014).  In marine water research also using FT-ICR MS, electrochlorinated ballast 

water (Gonsior et al., 2015) and chlorinated aquaculture water (Wang et al., 2018) 

revealed several mixed halogenated DBPs at low (<1%) relative abundance.  Our 

research is the first reported data from FT-ICR MS analysis of oxidant treated mesohaline 

(i.e. 5 – 18 PSU) water.  This analysis helps differentiate the proportions of brominated, 

chlorinated and mixed halogenated high molecular weight DBPs that are formed in 

different salinity waters. 
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Formula assignments of m/z ions in the mass spectra also identified four triple-

brominated DBPs, however all were found at a relative abundance between 0.28 – 0.58% 

(Appendix 2).  The triple-brominated DBPs had molecular formula assignments of 

C8H3O4Br3, C14H27O5Br3, C18H27O6Br3 and C18H31O6Br3.  In two studies, triple 

halogenated DBPs appeared rarely or not at all in the mass spectra of oxidant treated 

water (Zhang et al., 2012; Lavonen et al., 2013).  However, in another study the mass 

spectra of PPL extracted DBPs identified four triple brominated DBPs, including one 

highly abundant structure (tribromo HCD) with high relative abundance of 21% (Gonsior 

et al., 2014b). 

The majority of formula assignments for the more abundant DBPs (i.e. with 

relative abundance of at least 1%) in DICD treated water were in the CHOBr elemental 

group with 180 confirmed formulas.  Several of these Br-DBPs were highly abundant 

with relative abundance of 18% and 16% for C15H25O8Br1 and C15H23O8Br1 formulas, 

respectively.  A review of available DBP formulas from previous research found that 27 

of the 180 Br-DBPs in the CHOBr elemental group have not been previously described 

(Appendix 2).  However, four of the CHOBr formulas with relative abundance of at least 

0.99% match previously proposed formulas.   

Gonsior et al. (2015) proposed bromo-trihydroxybenzoic acid for the formula 

C7H5O5Br1; while Wang et al (2018), and Pan and Zhang (2013) proposed 3,5-dibromo-

4-hydroxybenzoic acid for the formula C7H4O3Br2.  Two structures, 

dibromosalicylaldehyde (Wang et al., 2018) and dibromo-4-hydroxybenzaldehyde (Pan 

and Zhang, 2013) have been proposed for the formula C7H4O2Br2.  Wang et al. (2018) 

also proposed 4,5-dibromophthalic acid for the formula C8H4O4Br2.  Importantly, all of 
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these structural assignments contain aromatic structures, in contrast to regulated DBPs 

which contain no aromatic moieties.  Increasingly, larger more complex DBPs with 

cyclic structures, including halogenated MCDs (Gong et al., 2005), HCDs (Pan et al., 

2016a), pyrroles (Yang and Zhang, 2014), benzoquinones (Yang and Zhang, 2013; Wang 

et al., 2014), hydroxybenzaldehydes and hydroquinones (Yang and Zhang, 2014), and 

phenols (Liu and Zhang, 2014), have been identified as DBPs having cytotoxic, 

genotoxic or developmental toxic properties.  In fact, research by Yang and Zhang (2013) 

found that the developmental toxicities of several aromatic halogenated DBPs were 

hundreds or thousands of times more toxic than aliphatic DBPs.  Specifically, the 

structural assignment of bromohydroxybenzoic acid may be of significance as 

halogenated hydroxybenzoic acids were recently identified as having developmental 

toxicity in polychaete (Platynereis dumerilii) embryo bioassays (Pan et al., 2016b).  

Aromatic compounds are generally also more lipophilic (i.e. higher log P values) 

compared to aliphatic DBPs, increasing the chance of cellular uptake and accumulation in 

aquatic organisms (Wang et al., 2018; Yang and Zhang, 2013).  However, structures still 

need to be confirmed for all the suggested compounds in this study, even though isomeric 

possibilities can be constrained by specific reaction pathways of free bromine. 

The Van Krevelen plot of all newly formed Br-DBPs after DICD treatment shows 

a wide range of H/C (0.25 – 1.9) and O/C (0.17 – 0.86) values with a cluster in the area of 

higher H/C values and to a lesser extent lower O/C values (Figure 3.5A).  This is similar 

to the van Krevelen diagram for the CHO elemental group before DICD treatment 

(Figure 3.2A).  The slightly lower average H/C ratio (1.0189) in the CHOBr elemental 

group compared to CHO elemental group before treatment (1.1067) is presumably a 
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result of electrophilic substitution of a hydrogen atom by a halogen atom, in this case 

bromine (Table 3.2).  The bromination of CHO-only structures in this area of the van 

Krevelen diagram, thought to be aromatic phenol-like structures, is in agreement with the 

general correlation between high specific UV254 absorbance (SUVA) values and 

formation of DBPs (Matilainen et al., 2011; Hua et al., 2015; Yan et al., 2018).  A 

modified Kendrick plot of Br-DBPs formed after DICD treatment (Figure 3.5B) shows 

several homologous series of Br-DBPs, suggesting their similarity to CHO-only 

precursors present in uptake water (Zhang et al., 2012).  Other research has also observed 

that changes in DOM after halogenation were diverse, but that many DBPs were similar 

to polyphenolic-like (Harris et al., 2015) or humic-like (Gonsior et al., 2015) compounds.  

However, it has been suggested that part of this phenomenon is a side effect of using FT-

ICR MS, because the halogenated DBPs that retain their structural humic-like character 

are also amenable to FT-ICR MS analysis (Harris et al., 2015).  Furthermore, the 

significant conversion of DOM to smaller halogenated compounds (e.g. HAAs and 

THMs) would result in their loss either during extraction (SPE) or being outside of the 

observable mass range of FT-ICR MS. 
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Figure 3.5 Van Krevelen diagram (A) and Modified Kendrick plot (-KMD/z* vs mass) (B) of 

newly formed Br-DBPs identified after DICD treatment. The bubble sizes represent relative 

abundance. 

A total of 13 nitrogen-containing Br-DBPs with a relative abundance of at least 

1%, and as high as 3.5%, were identified and confirmed in DICD treated ballast water 

(Appendix 2).  None of these 13 formulas have been previously described as DBPs.  
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However, several other nitrogen-containing DBPs found at slightly lower 0.9 % relative 

abundance coincide with two previously identified formulas with suggested structures of 

2-bromo-4-nitrophenol and 2-bromo-1-(5-bromo-2-hydroxy-3-nitrophenyl) ethanone for 

C6H4O3N1Br1 and C8H5O4N1Br2, respectively (Wang et al., 2018).  Nitrogen-containing 

DBPs are of increasing concern as research has shown that they are generally more toxic 

than Br-DBPs without nitrogen (Plewa et al., 2008; Wagner and Plewa, 2017). 

In ballast water treatment with strong oxidants, algae in uptake water may be a 

significant source of organic nitrogen, and serve as one type of precursor leading to 

nitrogen-containing Br-DBPs due to relatively labile biopolymers (e.g. proteins, peptides, 

amino acids) in algal organic matter (AOM).  Precursors from algae such as found in 

algal cell exudates and intracellular organic matter released after cell lysis (Bond et al., 

2011; Chen et al., 2017) can also be significant in eutrophic systems (Hua et al., 2017; 

Yang et al., 2011).  In aquaculture research, chlorination (NaDDC) of raw seawater that 

contained algae resulted in the production of 32 nitrogen-containing Br-DBPs, while 

chlorination of artificial seawater (i.e. contained no algae) resulted in only 2 nitrogen-

containing Br-DBPs (Wang et al., 2018).  Algae in natural fresh waters are also known to 

contribute to the formation of DBPs after chlorination (Hoehn et al., 1980; Liao et al., 

2015; Ge et al., 2018) and chloramination (Yang et al., 2011; Chen et al., 2017).  Diatoms 

can contribute to significant production of nitrogen-containing DBPs compared to other 

classes of microalgae (Goslan et al., 2017).  The dominant species in the current project 

were diatoms of the genera Gymnodinium and Prorocentrum (data not presented), which 

may have contributed to the formation of the large number (244) of nitrogen-containing 

DBPs mostly found at low relative abundance (<1%) in DICD treated ballast water. 
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We also identified a newly discovered nitrogen-containing Br-DBP with formula 

C3HBr3N2, found at a relative abundance of 6.4%, tentatively identified as either 

tribromoimidazole or tribromopyrazole (Figure 3.6).  No ecotoxicity data is available for 

either potential structure.  This compound is most assuredly a DBP generated with DICD 

water treatment, although there is one report of a naturally occurring tribromoimidazole 

(2,4,5-tribromo-1H-imidazole ) found in the literature (Benkendorff et al., 2004).  

Although oxidation products for some amino acids have been characterized (Choe et al., 

2015), no oxidation products for histidine are available in the literature.  The non-

halogenated imidazole is a water soluble aromatic heterocycle with a 5-membered ring 

(Mihajlović et al., 2017).  However, the imidazole in the current research is assumed to 

be incorporated into protein, possibly as a histidine side chain found in many proteins.  

Halogenation reactions between biomolecules and HOBr may form the suggested 

tribromoimidazole structure by an initial electrophilic aromatic substitution reaction 

perhaps on a hydroxyimidazole which further activates the ring to be even more 

susceptible to additional electrophilic aromatic substitutions to reach full substitution 

with bromine.  Another less likely source of imidazole is from the ship itself where 

imidazole derivatives are used as copper corrosion inhibitors (Mihajlović et al., 2017) and 

in epoxy coating formulations (Kirchgeorg et al., 2018).  The other possible structural 

assignment for this new DBP is tribromopyrazole.  Similar to imidazole, the pyrazole is 

an aromatic 5-membered ring comprised of the same atoms, but with adjacent nitrogen 

atoms (Figure 3.6).  Natural pyrazoles in aquatic settings are rare presumably because the 

formation of the N-N bond is not easily accomplished by aquatic organisms. 
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Figure 3.6 Isotope simulation of the newly discovered DBP C3HBr3N2 tentatively identified as 

tribromoimidazole or tribromopyrazole. 

 

A large number of m/z ions with a sulfur atom were found in uptake water.  

However, no sulfur-containing halogenated DBPs were identified and confirmed after 

DICD treatment of estuarine water (7 PSU) contrary to other research which has 

identified sulfur-containing DBPs in electrochlorinated saline ballast water (Gonsior et 

al., 2015) chlorinated saline sewage water (Gong and Zhang, 2015) and aquaculture 

water (Wang et al., 2018). 

The method of oxidant treatment and sampling of ballast water as well as the 

extraction, processing and analysis of DOM can affect the number and type of DBPs that 

are formed and identified.  Previous studies have often used methods that are expected to 

result in the maximum number of a certain group of DBPs, or have created environments 

that are expected to lead to new DBPs.  These methods include adjusting water chemistry 

by artificially increasing specific DBP precursors or bromide.  In the current work with a 
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DICD based BWMS, ballast water was amended with DOC and POC additives before 

treatment, and treated water was held for 48 h before collection of sample, and extraction 

for DBP analysis.  The 48 h hold time simulated the normal operation of a ship’s BWMS 

including ballast water treatment during uptake, followed by transport and then 

discharge.  The TRO was not monitored during the 48 h hold time, although it is assumed 

that the initial oxidant demand of uptake water will have rapidly decreased the active 

halogen concentration resulting in an initial DBP profile.  However, rapidly formed DBPs 

may have had time to further break down into smaller structures during the 48 h hold 

time.  In chlorination of bromine-rich drinking water, aromatic Br-DBPs formed quickly 

and increased for several days, then decreased with continued contact time leading to 

increased concentrations of lower molecular weight (<300 Da) aliphatic Br-DBPs (Zhai 

and Zhang, 2011; Zhai et al., 2014).  In the current project, no attempt was made to 

identify lower molecular weight DBPs because of the methods of extraction (SPE) and 

analysis (FT-ICR MS).  However, in oxidant-based BWMS testing many lower 

molecular weight aliphatic DBPs have been shown to increase with holding time (IMO, 

2014), possibly due to the breakdown of larger molecular weight DBPs. 

Recent research has shown that ballast water treated with strong oxidants can 

remain toxic to algae, even after neutralization of TRO (Delacroix et al., 2013; Ziegler et 

al., 2018).  In one study, only the addition of lignin before electrochlorination resulted in 

algal toxicity with a complete inhibition of growth (Park et al., 2017).  Research on the 

longevity of algal toxicity of treated ballast water from a chlorination-based BWMS 

showed that algal toxicities of DICD and electrochlorinated waters could last up to 134 

days and that toxicity did not correlate to quantified low molecular weight DBPs (Ziegler 
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et al., 2018), suggesting the long-term presence of some unquantified toxic component in 

oxidant treated water. 

The disinfection of seawater with strong oxidants is used in a variety of 

applications including industrial cooling water, desalination, seawater toilets and 

aquaculture, in addition to ballast water treatment.  Although the characterization of 

brominated DBPs formed in saline waters is ongoing, evidence so far suggests these 

saltwater applications increase both the number of more toxic nitrogen-containing DBPs, 

and aromatic DBPs that are more likely to persist in the environment.  The increased use 

of new analytical methods to identify and characterize higher molecular weight DBPs is 

an important step towards evaluating their potential environmental risk. 



106 
 

Chapter 4 

 

Persistence of Brominated Organic Compounds Formed after Ballast Water 
Treatment by Electrochlorination 

 

Ziegler, G.; Gonsior, M.; Fisher, D.J.; Tamburri, M.N. 

 

Abstract 

Estuarine water treated with a ballast water management system (BWMS) using 

in-situ electrochlorination resulted in the formation of numerous brominated disinfection 

by-products (Br-DBPs) that were evaluated on the day of discharge and after 92 days.  

Analysis of electrochlorinated water with ultrahigh resolution Fourier transform ion 

cyclotron resonance mass spectrometry (FT-ICR MS) identified 92 brominated m/z ions 

with relative abundance of at least 1% that were assigned and confirmed using isotope 

simulation.  One hundred and thirty one days after electrochlorination, a total of 150 

brominated molecular ions with relative abundance of at least 1% were identified.  A 

comparison of electrochlorinated water on the day of treatment and after 92 days showed 

a similar pool of Br-DBPs, but with a substantial difference in the most abundant 

assigned formulas.  After 92 day hold time, the two most abundant brominated ions 

contained two bromines, a distinct difference from primarily singly brominated ions that 

were abundant at the time of ballast water discharge.  Previous research has demonstrated 

the ability of FT-ICR MS to provide the molecular composition of complex halogenated 

DBPs in ballast water after treatment with strong oxidants.  This study is the first attempt 

to monitor the persistence of high molecular weight halogenated DBPs.  The persistence 
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of high molecular weight Br-DBPs identified by FT-ICR MS is a critical factor in 

assessing their long-term risk in the aquatic environment. 

4.1 Introduction 

The treatment of ballast water to prevent bioinvasions resulting from transfer of 

non-indigenous species (NIS) is required in accordance with internationally recognized 

Ballast Water Management Convention of the International Maritime Organization (IMO, 

2004).  Under the Convention, and other governmental based regulatory programs, 

discharged ballast water must meet specific discharge standards of organisms in specific 

size classes.  Typical treatment of ballast water on vessels takes place during uptake of 

ballast water through physical or chemical treatment by a ballast water management 

system (BWMS).  The majority of BWMS use an active substance as a biocide, and the 

majority of these systems make use of strong oxidants either stored on board (e.g. sodium 

hypochlorite, hydrogen peroxide) or produced in-situ by electrochlorination of seawater. 

Strong oxidants in the form of chlorine and bromine have been used extensively 

in fresh water applications such as drinking water, swimming pools, desalination 

membranes and wastewater treatment.  However, the use of strong oxidants has the 

undesirable side effect of forming disinfection by-products (DBPs) after reacting with 

primarily dissolved organic carbon (DOC), but also with other components of dissolved 

organic matter (DOM) such as biomolecules (e.g. proteins and nucleic acids).  The 

formation DBPs is influenced by oxidant dose, temperature, pH, DOM quantity and 

composition, and potentially by the mechanism of disinfection (e.g. liquid hypochlorite, 

dichloroisocyanurate dihydrate (DICD), electrochlorination).  Although small chlorinated 

DBPs such as haloacetic acids (HAAs), trihalomethanes (THMs), haloacetonitriles 
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(HANs) and oxyhalides  have been identified by GC-MS and LC-MS for decades 

(Richardson, 2002), as much as 50% of the total organic halogen (TOX) formed after 

chlorination is undefined (Krasner et al., 2006; 2009; Chen et al., 2015).  The majority of 

the unidentified halogenated DBPs are presumed to be complex higher molecular weight 

halogenated DBPs not amenable to analysis by GC- and LC-MS (Zhang and Minear, 

2002; 2006). 

In the current research, estuarine water (salinity 5.2) was treated by a BWMS 

employing filtration (50 µm) and in-situ electrochlorination.  Because of naturally present 

bromine in brackish water, any hypochlorous acid (HOCl) formed during 

electrochlorination treatment will almost instantaneously yield active bromine (HOBr or 

OBr -) (Westerhoff et al., 2004).  The combination of active chlorine and active bromine 

is quantified as the total residual oxidant (TRO) measured in Cl2 equivalents (mg l-1 TRO 

as Cl2).  The electrochlorination process produces HOCl by running an electrical current 

through water containing chloride (e.g. brackish water or seawater).  The 

electrochlorination technology is well developed and is widely used in treatment of 

seawater for swimming pools, desalination membrane fouling control and biofouling 

control in industrial and power plant cooling waters.  Electrochlorination of ballast water 

uses an electrolyzer unit which is composed of an anode and cathode that can be made of 

a variety of materials.  The different electrode materials can vary, with anodes in newer 

units composed of titanium with metal oxide coatings (e.g. iridium or rubidium oxides) 

(Jeong et al., 2009).  The chemical reactions take place in the electrolyzer unit which 

applies a direct current to the incoming ballast water.  The water flows between the anode 

and a cathode, producing chlorine on the anode (eq. 1), and hydrogen and sodium 
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hydroxide on the cathode (eq. 2).  The overall reaction in the solution (eq. 3) shows the 

final production of sodium hypochlorite that can exist as hypochlorous acid (HOCl) or 

hypochlorite ion (CLO-) depending on the pH of the solution (Black and Veatch., 2010). 

 

       (Anode):       2Cl-  → Cl2 + 2eˉ  (1) 

    (Cathode):      2H2O + 2eˉ → 2OH- + H2  (2) 

 

    Overall Reaction:  2Clˉ + 2H2O → 2HOCl + H2 (3) 

 

The formation of HOCl is directly proportional to the applied specific charge and 

salinity (i.e. chlorine concentration) of the water (Ghernaout et al., 2011; Rahmani et al., 

2019).  HOCl is rapidly converted into HOBr in brackish water, so that the majority of 

halogenation will be by active bromine.  Active bromine participates in an increased 

number of substitution reactions compared to chlorine (Uyak and Toroz, 2007), leading 

to numerous brominated DBPs (Br-DBPs).  The use of direct chlorination or in-situ 

electrochlorination of brackish and marine waters is also used for treatment of industrial 

cooling water (Jenner et al., 1997; Allonier et al., 1999), desalination (Kristiansen et al., 

1996) and treatment of saline wastewater (Ding et al., 2013) leading to multiple sources 

of Br-DBPs in the aquatic environment.  Ballast water treatment is a comparatively new 

application of chlorination that can lead to high concentrations of Br-DBPs (Werschkun 

et al., 2012; 2014) due to higher doses of total residual oxidant (TRO) and complexity of 

DOM in uptake water (Shah et al. 2015; Hao et al., 2017).  Research on Br-DBPs has 

revealed that they are more likely to be carcinogenic and mutagenic, compared to their 

chlorinated analogues (Echigo et al., 2004; Richardson et al., 2007) making the analysis 

of brominated compounds formed in ballast water treatment of particular concern. 
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A large data set of relatively small traditional DBPs (e.g. HAAs, THMs, 

oxyhalides and HANs) formed in ballast water treatment with oxidants is available in an 

online database (GESAMP-BWWG-Database of chemicals most commonly associated 

with treated ballast water) located on the Global Integrated Ship Information System 

(GISIS) website (IMO, 2017b).  However, as stated previously, a significant portion of 

the total organic halogen (TOX) formed after water chlorination has not been accounted 

for with GC-MS and LC-MS techniques that were used for quantifying the DBPs 

available in the BWWG Database.  In the current research, we use a combination of solid 

phase extraction (SPE) and ultrahigh-resolution Fourier transform ion cyclotron 

resonance mass spectrometry (FT-ICR MS) to identify higher molecular weight Br-

DBPs.  Ultrahigh-resolution FT-ICR MS has been successfully used to assess the 

halogenation of DOM in drinking water (Lavonen et al., 2013; Zhang et al., 2014) and 

oxidant treated ballast water (Gonsior et al., 2015; Ziegler et al., 2019).  FT-ICR MS has 

sufficient resolution to distinguish individual elemental compositions in DOM and 

halogenated DBPs, and can define the fundamental molecular differences between 

components by mass measurement alone (Stenson et al., 2003).  However, the DOM 

extraction efficiency has been estimated at around 55% due to the loss of highly volatile 

DBPs and DOM during solid phase extraction (Gonsior et al., 2014b).  Also, all DOM 

and DBPs are not equally ionized during negative mode electrospray ionization.  

Therefore, this paper is limited to DOM and complex high molecular weight Br-DPBs 

that are amenable to the extraction method and are efficiently ionized. 

The primary goal of this research was to record the relative persistence of high 

molecular weight halogenated DBPs.  Persistence in the current paper was estimated by 
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holding electrochlorinated ballast water for a period of 92 days, followed by solid phase 

extraction and analysis for DBPs by FT-ICR MS.  Non-targeted direct infusion FT-ICR 

MS was used to determine the molecular ions that were present at the time of ballast 

water discharge (Day 0), as well as the ions that were present in the same treated water 

after 92 days.  Spectrometric data of Br-DBPs was visualized using van Krevelen 

diagrams (van Krevelen, 1950) plotting H/C ratio versus O/C ratio.  The complex high 

molecular weight Br-DBPs identified by FT-ICR MS are within the m/z window of FT-

ICR MS.  Characteristics of DBPs after the 92 day holding time were compared to the 

DBP pool found at the time of treated ballast water discharge. 

4.2 Materials and Methods 

4.2.1 Ballast Water Sampling and Extraction 

Estuarine water (salinity of 5.2) was treated with a BWMS that employed course 

filtration (50 µm) followed by electrochlorination.  The land-based test facility used for 

BWMS testing was located in Port Covington, Baltimore, Maryland, USA.  Uptake water 

(pH 8.2, temp. 27.2 °C) was taken from the surface of Winans Cove (Baltimore, MD, 

USA).  Adjustments were made to DOC of uptake water to coincide with United States 

Coast Guard Environmental Technology Verification (ETV) Program (USEPA, 2010), 

which requires modification of test water to meet minimum values for specific water 

parameters.  Potentially relevant to the formation of DBPs, sodium citrate dihydrate 

(Fisher Scientific, USA) was added to increase the ambient DOC of 3.3 mg C l-1 to a final 

DOC of 7.9 mg C l-1.  Addition of citrate was made in uptake water before splitting into 

treated and untreated ballast water lines.  The TRO target dosage of the BWMS was 8 mg 

l-1 TRO as Cl2 controlled by a continuous feedback loop from in-line TRO meters.  
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Control and treated ballast waters were delivered to independent tanks and held for 48 h 

in closed ballast tanks at ambient temperature. 

An untreated (i.e. control) water sample was collected in a 20-L polycarbonate 

carboy directly from a hatch on the untreated ballast water tank.  A continuous, time 

integrated sample of treated water was collected throughout the entire discharge process 

(approximately 1 h) and delivered to a 100-L polymer fiberglass tank.  Ballast water was 

not treated again upon discharge, but sodium sulfite was added during the entire 

discharge process to neutralize any remaining TRO, after which treated water was 

collected for analysis.  The neutralization of all remaining TRO was independently 

confirmed with a hand-held colorimetric TRO meter (Hach, Model No. 58700, USA) 

based on the DPD method of TRO quantification (USEPA, 1983).  A 19 l treated water 

sample was collected by gravity flow in a glass carboy (20-L) directly from the 100-L 

fiberglass tank.  Control and treated water samples were immediately transferred to ice 

filled coolers for transport to the University of Maryland Wye Research and Education 

Center (UMD/WREC) for solid phase extraction (SPE) of the untreated control and 

treated Day 0 samples.  The remainder of the treated water sample was held in the glass 

carboy sealed with Parafilm™ and stored at 4 °C.  After 92 days, another aliquot of 

treated water was taken from the 20-L carboy for extraction and analysis. 

Isolation of DOM and DBPs was accomplished with solid phase extraction (SPE) 

on small (1 g) cartridges of highly functionalized styrene-divinylbenzene (SDVB) 

polymer beads (Agilent Bond Elut PPL), followed by methanol elution and preservation 

of sample.  This extraction method for DOM has been published previously (Dittmar et 

al., 2008) and has also been used to extract DBPs from dichloroisocyanurate (DICD) 
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treated estuarine water (Ziegler et al., 2019) and electrochlorinated marine water 

(Gonsior et al., 2015).  Extractions of the Day 0 samples were started within three hours 

of ballast water discharge sample collection.  The SPE method allowed for the 

concentration of DOM/DBPs and desalting of the ballast water, required for analysis by 

FT-ICR MS with electrospray ionization (Stenson et al., 2003).  Briefly, water samples (1 

l) were vacuum filtered (pre-combusted at 500 °C Whatman GF/F, 0.7 µm) and acidified 

to pH 2 with formic acid.  Samples were then gravity-fed through methanol activated 

SPE cartridges, rinsed with formic acid acidified water, dried with a gentle stream of 

nitrogen and eluted with 10-ml of LC-MS grade methanol (Chromasolv, Sigma-Aldrich).  

Previous research has shown that DOM extraction with PPL filled SPE cartridges has an 

extraction efficiency between 52 and 74% (Lavonen et al., 2013; Gonsior et al. 2014b; 

Green et al., 2014). 

4.2.2 Chemical Analysis 

4.2.2.1 DOC 

Analyses of dissolved organic carbon (DOC) was carried out on uptake water 

both before and after the water amendments to reach ETV minimum concentration of 

DOC.  The high temperature combustion method was used to analyze samples for DOC 

using the Shimadzu TOC-L carbon analyzer.  Briefly, the water sample was filtered 

through a 0.7 µm GF/F glass fiber filter, acidified with hydrochloric acid and sparged 

with ultrapure air to remove inorganic carbon.  Samples were high temperature 

combusted (680 ºC) on a catalyst bed to break down carbon compounds into carbon 

dioxide (CO2) which was then quantified on a non-dispersive infrared detector (NDIR).  

The method detection limit (MDL) for DOC was 0.24 mg C l-1. 
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4.2.2.2 Total Residual Oxidant 

Measurements of the TRO concentration in discharged ballast water were 

confirmed using the USEPA recommended DPD (n,n-diethyl-p-phenylene diamine) 

colorimetric method (USEPA, 1983) with a handheld TRO meter (Hach Pocket 

Colorimeter™ II, Model No. 58700, U.S.A.).  TRO measurements were taken in 

triplicate on samples collected at the beginning, middle, and end of the overall discharge 

period (approximately 1 h).  TRO measurements on the Hach Pocket Colorimeter were 

made in Low-Range mode (0.02 - 2.0 mg l-1 TRO as Cl2), following the manufacturer’s 

instruction manual (Hach Company, 2013). 

4.2.3 Ultrahigh Resolution Mass Spectrometry (FT-ICR MS) 

Mass spectrometry of extracted samples was performed using a Bruker Solarix 12 

T Fourier transform (FT) ion cyclotron resonance (ICR) mass spectrometer (FT-ICR MS) 

following electrospray ionization in the negative ion mode (ESI-).  Methanolic samples 

were diluted with methanol at a ratio of 1:20 to limit space charge processes, which may 

lead to interferences in the transient spectrum.  Diluted samples were directly infused into 

the electrospray at a constant flow rate of 2 µl min-1 and 500 scans were averaged with a 

time domain of 4 megaword.  The voltage of the ESI- was set to -3.6 kV.  A cleaning 

procedure using 600 μl blank methanol samples (50% methanol and 50% water) was 

implemented between each sample to avoid carryover.  The resolution of FT-ICR MS of 

singly charged ions formed by ESI- resulted in a mass accuracy <0.2 ppm, allowing 

unambiguous molecular formula assignments. The exact molecular formula assignments 

were based on the following atomic numbers: 12C0-∞, 1H0-∞, 16O0-∞, 14N0-5, and 32S0-2, 

35Cl0-5 and 
79Br.  The isotopologues of the halogens (37Cl and 81Br) were used to cross-
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validate formula assignments using simulation comparisons.  Unambiguous formula 

assignments, only given to m/z values with a signal to noise ratio >10, were possible for 

the entire observed m/z range.  Calculation of elemental formulas for each m/z ion was 

undertaken with the previously described NetCalc network approach (Tziotis et al., 2011; 

Hertkorn et al., 2013).  The NetCalc generated formula assignments were also manually 

validated to check isotope pattern matching for high intensity m/z ions.  Manually 

validated formulas included elemental compositions containing C, H, O, N, and Br.  The 

focus in this research is the evaluation of the number and character of Br-DBPs 

remaining in electrochlorinated water after a holding time of 131 days. 

Brominated molecular formulas were validated by isotope simulations using two 

stable isotopes of bromine (79Br and 81Br) to cross-validate assigned formulas.  The MS 

spectra were pre-calibrated using arginine clusters and also checked post-calibrated using 

known DOM molecular formulas (Gonsior et al., 2016).  The relative abundance of 

individual molecular ions were calculated by comparison to the highest DOM ion 

intensity in the mass spectrum for each sample.  The intensities of ions in the mass 

spectra were also used to compare untreated samples to a treated sample collected at the 

day of discharge (Day 0) and after a 92 day hold time.  An additional comparison was 

made between the electrochlorinated water samples collected on Day 0 and Day 92 from 

the same glass carboy of treated water.  Although there is the possibility of ionization 

suppression and matrix effects influencing the intensity of individual m/z ions, a relative 

comparison of ion intensities before and after oxidative treatment (Koch et al., 2005; 

Sleighter et al., 2012; Lavonen et al., 2013), and over time (Gonsior et al., 2013) have 

been used in previous studies in a semi-quantitative way.  Also, it should be noted that 
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m/z ion intensities are not uniformly related to the actual concentration due to the 

ionization efficiencies of different compound classes. 

Several parameters were used to interpret FT-ICR MS spectrometric data, 

allowing for the comparison of initial uptake water, treated water at discharge, and 

treated water after 92 days.  Parameters included m/z range and number of hydrogen and 

oxygen to carbon ratios (O/C and H/C).  Van Krevelen diagrams (van Krevelen, 1950; 

Kim et al., 2003) were used to characterize molecular formulas by plotting H/C ratio 

against the O/C ratio of assigned formulas (Hertkorn et al., 2006; Gonsior et al., 2014b).  

This plot allows visualization of relative oxygen and/or hydrogen deficiency, resulting in 

the clustering of organic compounds into specific regions which can also reflect 

biological signatures of DOM ions (Sleighter and Hatcher, 2007; Hockaday et al., 2009; 

Ohno et al., 2010). 

4.3 Results and Discussion 

4.3.1 Molecular Characterization of Uptake Water DOM 

Figure 4.1A shows the ultrahigh resolution mass spectra of the solid phased 

extracted DOM from Baltimore Harbor water before treatment.  Numerous m/z ions 

representing unique molecular formulas were identified.  These ions fell into three major 

organic groups: CHO, CHON and CHOS.  The CHO elemental group was the most 

abundant with 2,222 m/z ions followed by CHON group with 1,954 m/z ions and CHOS 

with 436. 
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Figure 4.1 Ultrahigh resolution FT-ICR mass spectra of PPL extracts of DOM from Baltimore 

Harbor, USA in A) untreated water B) electrochlorinated water after 92 days.  The enlarged area 

shows negative m/z ions at nominal mass 292.
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The examined mass range of DOM was 160 – 600 Da, which is consistent with 

previous FT-ICR MS studies of Baltimore Harbor DOM (Ziegler et al., 2019) and other 

coastal sources of DOM (Sleighter et al., 2012; Gonsior et al., 2015).  The van Krevelen 

diagram of molecular formulas in DOM containing only C, H and O (Figure 4.2) show a 

similar pattern to recent analysis by Ziegler et al. (2019) on samples taken from the same 

body of water, and using the same solid phase extraction method (PPL) and analysis (FT-

ICR MS).  The van Krevelen diagram clusters organic compounds in DOM by elemental 

ratios (i.e. O/C and H/C), where similar types of compounds are found in close proximity 

on the diagram.  Like previous analysis of Baltimore Harbor water, the majority of DOM 

molecules had elemental ratios that are characteristic of terrestrially-derived DOM 

(Hockaday et al., 2009; Gonsior et al., 2015; Sleighter and Hatcher, 2007; Lu et al., 

2015). 

 

 

Figure 4.2 Van Krevelen diagram of CHO molecular formulas of DOM in untreated ballast 

water.  Bubble size represents abundance. 
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4.3.2 Brominated DBPs after Electrochlorination 

4.3.2.1 DBPs on the Day of Discharge (Day 0) 

The salinity of the estuarine water in the current research was 5.2 with a high 

enough bromide concentration that any hypochlorous acid (HOCl) formed during 

electrochlorination was rapidly converted into active bromine (i.e. HOBr and OBr-), 

resulting in primarily brominated DBPs.  The van Krevelen diagram of all newly formed 

Br-DBPs after electrochlorination (Figure 4.3A) is similar to the van Krevelen diagram 

for the CHO elemental group before electrochlorination (Figure 4.2) with a cluster of ions 

in the area of H/C values between 1 and 1.4 and O/C values between 0.4 and 0.6 (Figure 

4.3A).  The average H/C ratio of the CHO elemental group before treatment was 1.07, 

while the average H/C ratio in the CHOBr elemental group after treatment was 0.95.  The 

lower H/C ratio is presumably due to the electrophilic substitution of a hydrogen atom by 

a bromine atom (Ziegler et al., 2019).  Following electrochlorination, 654 unique 

molecular formulas were assigned in the CHOBr (454) and CHONBr (200) elemental 

groups of Br-DBPs.  Of the 654 halogenated features identified, 193 ions were identified 

at a relative abundance of at least 1% and as high as 2.5% in the CHOBr (190) and 

CHONBr (3) elemental groups. 
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Figure 4.3 Van Krevelen diagram of newly formed Br-DBPs identified after electrochlorination 

of ballast water A) at the time of discharge B) after a 92 days.  The bubble sizes represent relative 

abundance. 

4.3.2.2 Br-DBPs after 92 Days 

A comparison of the ultrahigh resolution mass spectra of extracted DOM in 

untreated water (Figure 4.1A) and electrochlorinated ballast water after 92 days (Figure 

4.1B) revealed a substantial number of Br-DBPs with a mass range similar to untreated 
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DOM (approximately 160 – 600 Da).  A similar number of Br-DBPs were identified in 

treated ballast water at the time of discharge and after a holding period of 92 days.  

Unique molecular formulas were again assigned in the CHOBr and CHONBr elemental 

groups in relative abundances as high as 3.3%.  After the 92 day holding time, a total of 

676 brominated formulas were assigned to ions in the CHOBr (462) and CHONBr (214) 

elemental groups of Br-DBPs.  Of the 676 formulas, 150 brominated ions were identified 

with a relative abundance of at least 1% and as high as 3.3% in the CHOBr (145) and 

CHONBr (5) elemental group categories (Appendix 3). 

The majority of Br-DBPs were singly brominated in treated samples from both 

sample times (Day 0 and Day 92).  Of the 676 brominated ions in the 92 day sample, 

there were 616 ions with one bromine with a smaller number of dibrominated (56) and 

tribrominated (4) ions (Appendix 3).  As observed in other studies using analysis by FT-

ICR MS (Wang et al., 2018; Ziegler et al., 2019), fewer multiple halogenated DBPs were 

formed as predicted by the decreasing electron density of DOM structures with increased 

halogenation (Heeb et al., 2014). 

The total number of DBPs identified by FT-ICR MS analysis was similar in the 

treated sample on Day 0 (654) and on Day 92 (676).  However, the average relative 

abundance of all brominated ions decreased from 1.0% in the Day 0 sample to 0.8% in 

the Day 92 sample.  The overall difference in relative abundance can be seen in the van 

Krevelen diagrams of Br-DBPs in Day 0 (Figure 4.3A) and Day 92 (Figure 4.3B) where 

most of the bubble sizes, representing relative abundance, are significantly smaller in the 

Day 92 van Krevelen diagram.  It should be mentioned that an individual bubble, and 
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bubble size, on the van Krevelen are not necessarily representative of a single molecular 

formula, but rather represent all formulas with the same H/C and O/C ratios. 

The number and composition of the most abundant brominated ions (i.e. at least 

2% relative abundance) changed substantially after 92 days.  Initially in the Day 0 

sample, 17 of the 18 most abundant ions had a single bromine atom with only one 

dibrominated DBP (Figure 4.4A).  Also in the Day 0 sample, all of the 18 DBPs in the 

most abundant group had similar relative abundances of between 2.0% and 2.5%.  In 

contrast, in the 92 day sample the ions with two bromines were far more abundant than 

monobrominated DBPs (Figure 4.4B; Appendix 3).  Analysis of the 92 day sample 

revealed only four Br-DBPs with relative abundance of at least 2%, and two out of the 

four DBPs contained two bromines.  When taking the abundance of individual ions into 

account, dibrominated ions comprised more than half of the total of these four most 

abundant DBPs (Figure 4.4B).  The two dibrominated DBPs in the 92 day sample, with 

formulas of C7H4O3Br2 and C8H4O5Br2, were found at 3.3% and 2.5%, respectively, 

substantially higher than the next ion which was monobrominated (C15H17O8Br1) with 

relative abundance of 2.14% (Figure 4.4B; Appendix 3). 
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Figure 4.4 Distribution of mono- and dibrominated DBPs based on abundance A) at time 

of ballast water discharge B) after 92 days.  Pie chart shows all DBPs with relative abundance 

>2%.  Breakout bar graph chart shows portion comprised of dibrominated DBPs relative to all 

DBPs in pie chart. 
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The higher relative abundance of these two dibrominated ions can also be seen in 

the treated water van Krevelen diagrams as the only bubbles that increase in size in the 92 

day sample (Figure 4.3B) compared to bubbles in the same location on the Day 0 van 

Krevelen diagram (Figure 4.3A).  In this case, bubble size does reflect abundance of 

individual ions because only the mentioned dibrominated DBPs had this specific 

combination of H/C and O/C ratios.  These dibrominated ions are also located in a similar 

position on the van Krevelen diagram characterized by low H/C ratio which is a 

characteristic of aromatic structures.  In fact, the only possible structures identified for 

the most abundant formula C7H4O3Br2 have aromatic moieties.  However, multiple 

potential structures exist for this formula including two rather common structures in the 

literature, 3,5-Dibromo-4-hydroxybenzoic acid (Wang et al., 2018; Chemspider, 2019a) 

and 3,5-Dibromosalicylic acid (Chemspider, 2019b).  The most commonly referenced 

structure for this formula is 3,5-Dibromo-4-hydroxybenzoic acid (BrAC) which is known 

as a persistent breakdown product of bromoxynil (3,5-dibromo-5-hydroxybenzonitrile), a 

nitrile herbicide. However, theoretical isomeric possibilities are very high for these 

formulas. The second most abundant brominated ion identified (C8H4O5Br2) had a similar 

ratio of H/C (0.5), but with a higher O/C ratio of 0.62.  No potential structure is suggested 

for this second dibrominated ion. 

The high relative abundance of dibrominated DBPs after 92 days (Figure 4.4B) 

supports the general rule that persistence of a compound is increased with halogenation 

(Howard and Muir, 2010).  Also the aromatic nature of all structures proposed for 

C7H4O3Br2 predicts that this DBP would be relatively persistent in contrast to regulated 

DBPs which contain no aromatic moieties and can be quite volatile as in the case of 
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THMs.  Large complex DBPs with cyclic structures, have been identified in recent 

publication using new analytical techniques.  These cyclic compounds include HCDs 

(Pan et al., 2016a), halogenated MCDs (Gong et al., 2005), pyrroles (Yang and Zhang, 

2014), benzoquinones (Wang et al., 2014), phenols (Liu and Zhang, 2014), 

hydroxybenzaldehydes and hydroquinones (Yang and Zhang, 2014), all of which were 

identified as DBPs having genotoxic, cytotoxic or developmental toxic properties.  

Interestingly, developmental toxicities of aromatic halogenated DBPs were found to vary, 

and could be hundreds or thousands of times more toxic than aliphatic DBPs (Yang and 

Zhang, 2013).  This increased toxicity has been explained in part by the higher log P 

values, a measure of lipophilicity which correlates with cell permeability.  Aromatic 

DBPs tend to have higher log P values (range of 2.4 – 5.0) compared to aliphatic DBPs, 

increasing the chance of cellular uptake and bioaccumulation (Wang et al., 2018). 

In addition to these two abundant Br-DBPs, many other higher molecular weight 

brominated DBPs with low H/C ratios were identified with FT-ICR MS.  As stated 

above, the low H/C ratio is characteristic of DBPs with aromatic moieties.  Generally 

larger halogenated DBPs with cyclic structures are also thought to be more persistent 

than smaller aliphatic DBPs (Howard and Muir, 2010; Yang and Zhang, 2013).  The 

current research has identified two dibrominated ions with relative abundance increases 

after 92 days compared to other halogenated ions that were less abundant after the 92 day 

holding time.  This seems to support the premise that increased halogenation results in an 

increase in persistence.  On the other hand, the relatively low mass of these two 

dibrominated DBPs, relative to other high molecular weight DBPs identified by FT-ICR 

MS, does not support the premise of increased persistence with an increase in size. 
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A review of available brominated formulas presented in previous published 

research revealed that all of the Br-DBPs in the CHOBr elemental group with abundance 

of at least 1% have been previously described as DBPs.  In contrast, 4 out of the 5 DBPs 

in the CHONBr elemental group have not been described in the literature.  The only 

nitrogenated Br-DBP that has been reported has the formula C6H3O3N1Br2 with proposed 

structure of 2,6-Dibromo-4-nitrophenol (Wang et al., 2018).  The number of research 

projects and publications using ultrahigh resolution MS techniques has grown to the point 

that fewer high molecular weight DBPs are newly identified.  However, most published 

research limits the list of identified formulas to DBPs with relative abundance of at least 

1%.  Because the structure of most of the high molecular weight DBPs identified by FT-

ICR MS are unknown, even DBPs at low abundance may be relevant as DBPs have 

shown a wide range of developmental toxicities (Yang and Zhang, 2013) and in some 

cases toxicity seems to be dependent on the entire pool of high molecular weight DBPs in 

oxidant treated water (Lv et al., 2017).  Furthermore, m/z ion intensity is not necessarily 

related to concentration due to drastic differences in ionization efficiencies of compounds 

with varying functional groups. 

Formula assignments in the mass spectra of treated water at Day 0 and after 92 

days holding time identified four tribrominated DBPs with molecular formula 

assignments.  However, relative abundances of all identified formulas were below 0.8%, 

with only one formula with greater than 0.4% relative abundance.  In some research 

trihalogenated DBPs appear rarely in the mass spectra of oxidant treated fresh water 

(Zhang et al., 2012; Lavonen et al., 2013).  However, data reported by Ziegler et al. 

(2019) and Gonsior et al. (2014) reported four and three tribrominated DBPs, 
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respectively, using the same methods of extraction (PPL) and analysis (FT-ICR MS) as 

employed in the current research.  Like the current paper, Ziegler et al. (2019) found that 

relative abundances of tribrominated DBPs were low, falling below 0.58% for all 

identified formula assignments.  In contrast, Gonsior et al. (2014b) identified tribromo 

HCD in electrochlorinated seawater as a highly abundant structure with relative 

abundance of >22%.  The number and abundance of trihalogenated DBPs may be 

dependent on some unidentified precursors in the water before treatment.  In the current 

research, the abundance of the tribrominated Br-DBPs was lower after 92 days, similar to 

singly brominated DBPs and contrary to the idea that persistence is increased with 

halogenation.  

At time of discharge, 200 nitrogen containing brominated molecular ions 

(CHONBr) were identified and confirmed in electrochlorinated ballast water.  The 

number of ions in this category increased slightly to 214 molecular ions after 92 days 

presumably as breakdown products of larger peptides that were then halogenated and 

presumably formed bromoamines.  However, very few nitrogen-containing Br-DBPs 

were identified with a relative abundance of at least 1%, with a total of three ions at the 

time of discharge and two ions after 92 days (Appendix 3), which might reflect that 

bromoamines are not stable over time.  Interestingly, and similar to Br-DBPs without 

nitrogen, the most abundant nitrogenated Br-DBP ion (relative abundance 3.2%) 

identified after 92 days contained two bromines (C10H5O4N1Br2).  The number and 

abundance of nitrogen-containing Br-DBPs were higher in previous FT-ICR MS research 

on oxidant (DICD) treated ballast water (Ziegler et al., 2019) and aquaculture seawater 

(Wang et al., 2018).  In both studies the abundant nitrogen-containing Br-DBPs were 
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attributed to high algae concentrations present in the water before treatment.  This 

correlation between increase in nitrogenous Br-DBPs and algal density seems to indicate 

that algae and algal organic matter (AOM) serve as a significant source of precursors for 

nitrogenous DBPs, which is consistent with bromoamine formation from peptides.  This 

is important because nitrogenous DBPs are generally more toxic compared to DBPs 

without nitrogen (Plewa et al., 2008; Wagner and Plewa, 2017).  There is also the 

possibility of reducing the formation of toxic nitrogen-containing DBPs by limiting the 

oxidative treatment of water with high algae concentrations. 

The ultimate fate of any persistent DBPs found in discharged ballast water may be 

anoxic sediments that are found in urban/industrial environments that are typical of large 

ports worldwide, including the port of Baltimore location studied in the current research.  

No research using FT-ICR MS or similar techniques has been conducted to identify high 

molecular weight brominated DBPs in the environment.  However, research has been 

conducted on sediment DOM using the same techniques as those employed in the current 

research (i.e. SPE and FT-ICR MS).  Research has shown that the composition of DOM 

and DBPs formed after halogenation are similar, and resemble polyphenolic-like or 

humic-like compounds (Gonsior et al., 2015; Harris et al., 2015) found in coastal DOM, 

and breakdown may be achieved by similar mechanisms.  FT-ICR MS has been used to 

investigate sediment pore water from freshwater, estuarine and marine sediments 

(Schmidt et al., 2009, 2017; Tremblay et al., 2007; Valle et al., 2018).  Monitoring of the 

anaerobic transformation of DOM in sediment pore waters with FT-ICR MS has shown 

DOM transformation characterized by a loss of nearly saturated CHO substances with a 

corresponding increase in oxygenated aromatics (Valle et al., 2018).  In the current 
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research, there was an increase in two brominated ions with low H/C ratios, a 

characteristic of ions with aromatic moieties, suggesting a similarity in the 

transformations of DOM (Valle et al., 2018) and Br-DBPs. 

Another mechanism for breakdown of DOM that could be relevant to high 

molecular weight DBPs is exposure to sunlight which can degrade complex aromatic 

DOM compounds (Gonsior et al., 2009; 2014a), substantially decreasing concentrations 

of lignin within just a few days (Opsahl and Benner, 1998).  The photodegredation of 

high molecular weight Br-DBPs using FT-ICR MS analysis has been demonstrated in 

chlorinated aquaculture seawater (Wang et al., 2018).  Similarly, the reduction of 

cytotoxicity from all DBPs in a high molecular weight DBP fraction (> 1 kDa), and 

assumed degradation of high molecular weight DBPs, has been demonstrated with UV 

exposure (Lv et al., 2017).  However, if DBPs are in the sediment, as suggested in the 

previous paragraph, any exposure to sunlight will be extremely limited and is unlikely to 

be a factor in DBP degradation. 

Because the structures of most of the brominated formulas found in the current 

research are unknown, the ability to predict environmental concentrations is difficult.  

However, there are mechanisms to predict the concentration of smaller quantified DBPs 

including DBPs as large as halogenated phenols.  Models have been used for the 

predicted environmental concentration (PEC) of common ballast water DBPs using a 

simulated port scenario (IMO, 2012) which takes into consideration the physicochemical 

properties and environmental fate parameters of individual DBPs, when data is available.   

Other than a few phenols, the absence of structural and physicochemical data for 

high molecular weight DBPs also results in a lack of persistence data from standard 



130 
 

biodegradation screening tests, which could be used in environmental fate modeling.  

Although models have been used for smaller DBPs, actual monitoring of DBPs in the 

environment (e.g. water or sediment) to ground truth PECs has not been conducted, and 

the reliability of some PECs have been called into question (David et al., 2018).  To date, 

the actual measurements of DBP concentrations for oxidant treated ballast water 

(Werschkun et al., 2012; Delacroix et al., 2013; Ziegler et al., 2018), and most of the data 

for chlorinated cooling water effluents (Jenner et al., 1997; Allonier et al., 1999; 

Khalanski and Jenner, 2012) has been taken from effluent streams, rather than from the 

surrounding environments.  The measurement of a variety of traditional DBPs in 

receiving waters and sediments is limited to a few published studies (Boudjellaba et al., 

2016; Manasfi et al., 2018) with an additional study where only halogenated phenols 

were measured (Sim et al., 2009).  A comprehensive study of halophenols (HPs) in the 

area near a chlorinated cooling water discharge found only two bromophenols, 2,4-

dibromophenol (2,4-DBP) and 2,4,6- tribromophenol (2,4,6-TBP), in both water and 

sediment samples, while sediment samples contained six different bromophenols (2/3/4-

BP; 2,6-DBP; 2,4-DBP and 2,4,6-TBP), suggesting the natural production of mono- and 

dibrominated phenols in sediments (Sim et al., 2009).  In an investigation of a wide-range 

of DBPs (i.e. THMs, HAAs, HANs, trihaloacetaldehydes, HPs) in the area close to the 

discharge of chlorinated cooling water, only the largest DBPs (i.e. HPs) were found in 

sediments (Manasfi et al., 2018).  This is consistent with the calculation that 2,4,6-TBP is 

most likely to adsorb to sediment (PubChem, 2019; WHO, 2005) compared to the other 

quantified DBPs.  An investigation of 15 DBPs in conger eel muscle (Boudjellaba et al., 

2016) identified only 2,4,6-TBP (10 out of 15 samples) in muscle samples, which was 
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consistent with its’ relatively high bioconcentration factor (BCF) for fish of 513 (Sacan et 

al., 2004), suggesting the potential for bioconcentration in aquatic organisms.  These 

studies analyzed for a wide range of DBPs, and ultimately found that all of the persistent 

DBPs identified in sediment and fish tissue (Sim et al., 2009; Boudjellaba et al., 2016; 

Manasfi et al., 2018) were the larger halogenated aromatic compounds (i.e. halophenols) 

that are similar to the DBPs found using FT-ICR MS in the current study. 

One halophenol, (2,4,6-TBP), found in the environment in several of the studies 

described above (Sim et al., 2009; Manasfi et al., 2018), is also included in the BWWG-

Database of the most common ballast water chemicals (IMO, 2017b).  However, as stated 

previously, the Database only lists DBPs that have been targeted in chemical analysis for 

quantification by common analytical methods such as GC-MS (HANs and HPs) and GC-

ECD (THMs and HAAs).  Unfortunately the limitations of techniques to analyze for 

higher molecular weight Br-DBPs, and the lack of structural information, has resulted in 

a total lack of data for the presence of these complex Br-DBPs in the environment. 

The lack of structural information for the numerous halogenated DBPs found by 

FT-ICR MS in oxidant treated water also makes it impossible to screen compounds in 

databases for persistence and bioaccumulation, or to monitor the environment with 

targeted analytical techniques (Brown and Wania, 2008).  Analytical screening 

techniques for extraction by conventional methodologies and analysis by GC-MS have 

been developed to monitor for specific halogenated man-made chemicals where 

structures are known (e.g. polybrominated diphenyl ethers (PBDEs), polychlorinated 

biphenyls (PCBs) and pesticides).  Although sophisticated techniques would be needed, 

targeted analysis could be developed for large halogenated DBPs after the structures of 
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the more persistent DBPs are identified.  In fact, advanced targeted analytical techniques 

such as ultra-performance liquid chromatography (UPLC) coupled to electrospray 

ionization-triple quadrupole mass spectrometry (ESI-tqMS) have already been developed 

for a few higher molecular weight DBPs (Ding and Zhang, 2009; Ding et al., 2013; Pan 

et al., 2017) in drinking water. 

It is recognized that the storage conditions of electrochlorinated water in the 

current research (i.e. 4° C in the dark) is different from conditions after release into the 

environment.  Specifically the longevity of DBPs will have been influenced by cold 

storage, lack of dilution, and potentially by additional biotic and abiotic processes.  

However, similar low temperature conditions that would affect any biotic or abiotic 

degradation processes would also be found in cold-water regions where many 

commercial shipping ports are located.  Research has also shown the potential for toxic 

effects of oxidant treated water (e.g. electrochlorination) that could not be accounted for 

by the concentration of traditional small DBPs, suggesting the presence of some 

unidentified toxic component such as the high molecular weight DBPs identified in the 

current research.  In these studies oxidant treated water; remained toxic to algae after 

neutralization of TRO (Delacroix et al., 2013) and storage for several months at 4° C 

(Ziegler et al., 2018), and that toxicity increased with lignin addition before oxidative 

treatment (Park et al., 2017). 

The use of strong oxidants for the disinfection of seawater is used in a variety of 

applications with the highest oxidant doses used in ballast water treatment, and the 

greatest quantity of treated water contributed by industrial cooling water applications.  

The formation and release of potentially persistent and toxic Br-DBPs warrants the 
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continued research into the characteristics of higher molecular weight Br-DBPs.  

Identifying the structure of the more common high molecular weight Br-DBPs can be 

followed with the development of analytical methods to screen the environment for their 

presence.  The non-targeted FT-ICR MS analysis of pore waters from sediments collected 

near chlorinated seawater discharge points such as chlorinated saline waste water (Ding 

et al., 2013), industrial cooling water (Sim et al., 2009; Manasfi et al., 2018) and oxidant 

treated ballast water (Ziegler et al., 2019) could confirm the persistence of the DBP types 

identified in the current research.  These are important steps towards evaluating the 

potential environmental risk of higher molecular weight brominated DBPs. 
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Chapter 5 

 

Conclusions and Future Research 
 

The potential for undesired environmental effects of biocide treated ballast water 

has long been recognized.  However, prior to this dissertation, limited toxicity testing had 

been conducted on discharged ballast water.  Initial toxicity testing found only occasional 

toxicity of ballast water treated with oxidants.  Nevertheless, some minor toxic effects of 

oxidant treated ballast water were being observed by ballast water test facilities around 

the world.  This research, conducted at the Wye Research and Education Center in 

collaboration with the Maritime Environmental Resource Center, showed significant 

algal toxicity of electrochlorinated ballast water to a new test species, Isochrysis galbana.  

Thus, the initial questions addressed were the cause(s) of toxicity and longevity of the 

toxic effect.  These questions led to the series of algal toxicity tests (Ch. 2) and DBP 

analysis (Ch. 3 & 4) presented in this dissertation. 

Research presented in Chapter 2 demonstrates consistent algal toxicity of 

discharged ballast water after treatment by commercial BWMS employing either 

electrochlorination or direct chlorination with a solution of DICD.  Initial (Day 0) IC25 

values were similar for all treatments ranging from 9.9% to 17.9% of treated ballast 

water.  Treated water was analyzed for 24 individual DBPs of which 17 were found 

above the detection limit.  However, initial toxicity was not correlated to DBP 

concentrations, target TRO dose, or treatment method suggesting another unquantified 

factor was causing toxicity.  I was also able to show the longevity of this toxic effect in 

Chapter 2 with treated waters from two electrochlorination-based BWMS lasting greater 
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than 130 days. 

The variable susceptibility of different species of algae to the toxic effects of 

oxidant treated ballast water was shown in preliminary research, conducted in 2010 (Ch. 

1).  Research presented in Chapter 2 of this dissertation indicates that Isochrysis galbana 

is the most sensitive species of algae among the limited algal species that have been 

tested.  However, the majority of marine/brackish algal toxicity data is based on only two 

species of diatoms, S. costatum and P. tricornutum.  Also, toxicity testing with different 

species of algae has shown the phylogenetic basis for inhibitory effects of chemicals 

(Larras et al., 2014) and that these effects can vary widely with up to 50 times differences 

observed between species with some contaminants (Bi et al., 2018).  In light of the large 

differences in species sensitivities, future research should focus on using new and 

multiple test species to gain a broader perspective on how diverse phytoplankton 

communities in coastal waters around the world could be impacted by the frequent 

discharge of large volumes of oxidant treated ballast water.  Although no single species 

can represent all species from the same biological classification, testing of several species 

from a diverse group of genera may show a phylogenetic response to oxidant treated 

water.  Identifying species sensitivities at the genera level could help with the 

development of ecological risk assessments of oxidant treated waters.  Ultimately, a wide 

range of species sensitivities could result in driving natural algae assemblages toward 

species which are resistant to toxicity from oxidant treated water.  This diverse multi-

species approach can have broad application for toxicity testing of treated effluent water 

in coastal systems, far beyond ballast water. 

In Chapters 3 and 4, I was able to identify numerous high molecular weight DBPs 
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using ultrahigh resolution FT-ICR MS.  Data presented in Chapter 3 is the first 

demonstration of molecular transformations of DOM and formation of high molecular 

weight DBPs in a BWMS using direct chlorination (i.e. DICD).  Analysis of DOM in 

untreated water identified 3,987 m/z ions and their molecular formulas.  The breakdown 

of complex organic molecules in DOM to lower molecular weight formulas after DICD 

treatment was shown.  After DICD treatment, 213 halogenated ions in four elemental 

groups, CHOBr (180), CHONBr (13), CHOCl (16), and CHOBrCl (4) were identified 

with a relative abundance of greater than 1%.  Twenty-seven of the 180 Br-DBPs have 

not been previously described. 

In DICD treated water (Ch. 3) with high concentrations of diatoms in the genera 

Gymnodinium and Prorocentrum, I was also able to identify 244 nitrogen-containing Br-

DBPs (CHONBr), 13 of which had a relative abundance of at least 1%.  None of these 

nitrogen-containing Br-DBPs have been previously described.  In contrast, in Chapter 4 

electrochlorinated water without high algae concentrations resulted in the formation and 

identification of only 200 nitrogen containing Br-DBPs, with only 3 at higher than 1% 

abundance.  The increased production of nitrogen-containing Br-DBPs in the presence of 

high concentrations of algae is of particular concern as research has shown that nitrogen-

containing DBPs are generally more toxic than DBPs without nitrogen (Wagner and 

Plewa, 2017).  An increase in the number and size of algal blooms has been observed in 

numerous locations around the world in the last decade and is thought to be a significant 

global problem (Hallegraeff, 2014).  Algae blooms have already resulted in the shutdown 

of desalinization plants that use chlorination to treat filtration membranes, and 

precautions have been suggested for other drinking water treatment processes in the 
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presence of algal blooms (Li and Mitch, 2018).  Basic research is needed to determine 

how algal density and species composition effect the production of nitrogen-containing 

Br-DBPs in marine/estuarine waters.  With this basic understanding, it may be possible to 

limit oxidative treatment of waters containing certain species of algae or concentrations 

over a certain threshold. 

In Chapters 3 and 4, I used the relatively new non-targeted technique of ultrahigh 

resolution FT-ICR MS to identify the formulas of numerous high molecular weight 

halogenated DBPs in oxidant treated ballast waters.  This data can be used to identify the 

most common molecular formulas of Br-DBPs that form during chlorination treatment of 

ballast water.  However, in this dissertation only a limited number of structures were 

proposed based on steric interference and limited isomeric possibilities.  The further 

development and application of analytical methods such as UPLC/ESI-tqMS (Ding et al., 

2013; Gong and Zhang, 2015; Zhai et al., 2014) that can assign structural information to 

high molecular weight DBPs is now needed.  Time-of-flight mass spectrometer is already 

capable of providing fragment information as well as exact MW so that structures of 

compounds can be obtained making UPLC/ESI-tqMS-ToF a particularly attractive 

alternative.  Once structures of the more prominent newly identified DBPs are found, it 

should be possible to group DBPs by their structural similarities (Wang and Helbling, 

2016).  This structural information can be used to compare high molecular weight DBPs 

to available quantitative structural activity relationships (QSARs) to identify DBPs which 

are most likely to be of concern for coastal environmental impact (Chen, 2011; 2015). 

In Chapter 4, I was able to show that high molecular weight Br-DBPs formed 

after electrochlorination can persist for at least 92 days under certain conditions (i.e. 4°C 
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in a glass carboy).  Many of the Br-DBPs identified had low H/C ratios, an indication of 

aromatic moieties that tend to be more persistent than smaller aliphatic DBPs.  Currently, 

little fate or persistence data is available for high molecular weight halogenated DBPs 

identified by FT-ICR MS.  The research I conducted in this dissertation is the first 

attempt to show the persistence of higher molecular weight DBPs in a controlled 

environment.  The use of a non-target analytical technique such as ultrahigh resolution 

FT-ICR MS to analyze environmental samples for higher molecular weight DBPs is an 

important next step in evaluating the fate of these compounds in the environment.  In 

Chapter 4, I was able to show that the relative abundance of several dibrominated ions 

increased over time.  I proposed several possible structures for the most abundant formula 

(C7H4O3Br2), all of which have aromatic moieties.  Based on the observed relative 

persistence, I predict that these dibrominated DBPs are the most likely DBPs to be found 

in ports with large numbers of ships discharging oxidant treated ballast water.  Although 

information on the aerobic or anaerobic degradation of these specific dibrominated DBPs 

is unavailable, the potential for burial in anoxic sediments away from UV exposure will 

likely increase the persistence of these DBPs based on the degradation of similar 

compounds (e.g. DOM; Gonsior et al., 2009: Lignin; Opsahl and Benner, 1998: High 

molecular weight DBPs; Wang et al., 2018).  If structures for these two Br-DBP formulas 

can be confirmed, these would also be good candidates for targeted analysis of water and 

sediments.  Generally, the identification of structures of high molecular weight DBPs will 

allow the development of targeted methods that can be used to monitor for their presence 

in the environment. 

This dissertation targeted experiments to test whether treated ballast water may 
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have longer term impacts based on toxicity tests and DBP analysis which were conducted 

for several months after ballast water treatment.  In Chapter 4, I was able to show that 

high molecular weight Br-DBPs can persist in electrochlorinated ballast water for at least 

92 days.  I also used toxicity tests in Chapter 2 to show that toxicity to algae could last for 

at least 134 days after electrochlorination of ballast water.  The next logical step is to 

combine the knowledge that has been gained thus far and attempt to test whether high 

molecular weight DBPs have a role in causing toxicity.  One way to establish this link is 

through the use of a toxicity identification evaluation (TIE) methodology.  TIE methods 

have been developed to identify the toxic component of complex effluents and sediments.  

Initially the TIE method can be used to identify the group of toxicants responsible for 

toxicity, followed by more precise methods to isolate individual toxic compounds.  The 

traditional TIE approach uses a set of guidelines that are broken into phases, and are 

specific to fresh or marine waters.  Phase I isolates different constituents in an effluent 

that may be the cause of toxicity.  Phase II methods attempt to narrow the focus of 

compounds that are causing toxicity to one or a few specific compounds.  TIE Phase III 

methods attempt to confirm the suspected compounds as the cause of toxicity by adding 

the contaminant to a water sample and toxicity testing with the test organism of choice.  

The aquatic TIE methodology has been applied to ambient waters, discharge waters and 

leachates, but has not been applied to treated ballast water samples.  Perhaps the best way 

to adapt the TIE methodology is to use the solid phase extraction (SPE) method that I 

employed in Chapters 3 and 4 of this dissertation.  In research for this dissertation, I used 

Bond Elut PPL cartridges to extract organic compounds from treated ballast water.  

Because high molecular weight DBPs are suspected of causing toxicity, a Phase I method 
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could be accomplished by conducting algae toxicity tests on treated ballast water after 

extraction of halogenated organics on a PPL filled cartridge.  If this removes toxicity, a 

Phase III type approach could be developed with SPE extracts (Ch. 3 and 4) added back 

to water samples before toxicity testing.  This latter option would be substantially more 

complicated, as organic halogens would need to be removed from the methonolic 

solution, but would confirm whether the fraction removed by SPE (e.g. high molecular 

weight DBPs) is contributing to algal toxicity. 

Combined, the proceeding chapters of this dissertation provided critical new 

insights into how a specific approach to addressing a significant ecological and economic 

problem may also have unintended impacts.  Global shipping now transports greater than 

90% of the world’s overseas trade resulting in the transfer of 3 – 10 billion tonnes of 

ballast water (IMO, 2010; Tsolaki and Diamadopoulos, 2010; David, 2015).  It has been 

estimated that globally, anywhere from 50,000 to 60,000 commercial ships will be 

required to install and operate BWMS systems to minimize the risk of invasive species 

(King, 2017; Welschmeyer et al., 2018).  If even just 1/4 of those vessels are 

continuously treating ballast water with a chlorine-based BWMS, this could result in the 

glolobal release of over a billion tonnes of potentially toxic water annually.  Therefore, 

careful consideration, and additional research, is needed on (a) production and impacts of 

DBPs, (b) acute and/or chronic toxicity on diverse and representative algal species, and 

(c) cumulative effects of continuous, large-scale discharges of treated ballast water in a 

single port, to ensure that benefits of biocidal treatment of ballast water (i.e., reduced risk 

of biological invasions) outweigh the costs (i.e., release of DBPs and aquatic toxicity). 
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Appendix 1 
 
Table A1.1 List of 43 Most Common Ballast Water Chemicals
  
Chemical Name CAS Number Chemical Group  
Acetaldehyde 75-07-0 Aldehyde 
Bromate ion 15541-45-4 Inorganic 
Bromochloroacetic acid 5589-96-8 Haloacetic acid 
Bromochloroacetonitrile 83463-62-1 Haloacetonitrile 
Chloral hydrate 302-17-0 Aldehyde hydrate 
Chlorate ion 14866-68-3 Inorganic 
Chloropicrin 76-06-2 Halonitroalkane 
Dalapon 75-99-0 Halopropionic acid 
Dibromoacetic acid 631-64-1 Haloacetic acid 
Dibromoacetonitrile 3252-43-5 Haloacetonitrile 
Dibromochloroacetic acid 5278-95-5 Haloacetic acid 
Dibromochloromethane 124-48-1 Halomethane 
1,2-Dibromo-3-chloropropane 96-12-8 Halopropane 
1,1-Dibromoethane 557-91-5 Haloethane 
Dibromomethane 74-95-3 Halomethane 
Dichloroacetic acid 79-43-6 Haloacetic acid 
Dichloroacetonitrile 3018-12-0 Haloacetonitrile 
Dichlorobromoacetic acid 71133-14-7 Haloacetic acid 
Dichlorobromomethane 75-27-4 Halomethane 
1,1-Dichloroethane 75-34-3 Haloethane 
1,2-Dichloroethane 107-06-2 Haloethane 
Dichloromethane 75-09-2 Halomethane 
1,2-Dichloropropane 78-87-5 Halopropane 
Formaldehyde 50-00-0 Aldehyde 
Isocyanuric acid 108-80-5 Inorganic 
Monobromoacetic acid 79-08-3 Haloacetic acid 
Monobromoacetonitrile 590-17-0 Haloacetonitrile 
Monochloramine 10599-90-3 Haloamine 
Monochloroacetic acid 79-11-8 Haloacetic acid 
Monochloroacetonitrile 107-14-2 Haloacetonitrile 
Sodium hypochlorite 7681-52-9 Inorganic Sodium 
thiosulphate 7772-98-7 Inorganic 
Tetrachloromethane 56-23-5 Halomethane 
Tribromoacetic acid 75-96-7 Haloacetic acid 
Tribromomethane 75-25-2 Halomethane 
2,4,6-Tribromophenol 118-79-6 Halophenol 
Trichloroacetic acid 76-03-9 Haloacetic acid 
Trichloroacetonitrile 545-06-2 Haloacetonitrile 
1,1,1-Trichloroethane 71-55-6 Haloethane 
1,1,2-Trichloroethane 79-00-5 Haloethane 
Trichloroethene 79-01-6 Haloethene 
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Trichloromethane 67-66-3 Halomethane 
1,2,3-Trichloropropane 96-18-4 Halopropane 
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Appendix 2 

 

 
Figure A2.1.  Heteroatom class distributions for Port Covington water DOM (A) before treatment and (B) after DICD treatment. 
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Table A2.1  All newly formed DBPs after treatment of ballast water with DICD 

measured by ultrahigh resolution mass spectrometry with a relative abundance of at 

least 1%.  Possible structures are suggested for molecular formula up to 8 carbon 

atoms and/or multiple halogen atoms, or based on suggestions found in a literature 

review.  Highlighted text identifies previously unreported DBPs. 

 

Possible Structure Mass 
(neutral) 

Formula  
(neutral) 

Rel. 
abundance O/C H/C 

 259.9320 C8H5O5Br1 1.9 0.63 0.63 

Bromo-hydroxy-

nitrobenzoic acid 
260.9273 C7H4O5N1Br1 1.8 0.71 0.57 

 273.9477 C9H7O5Br1 1.1 0.56 0.78 

 274.9429 C8H6O5N1Br1 1.1 0.63 0.75 

Dibromosalicylaldehyde 277.8578 C7H4O2Br2 2.0 0.29 0.57 

 279.9946 C9H13O5Br1 1.4 0.56 1.44 

 282.9480 C10H6O4N1Br1 1.2 0.40 0.60 

 285.9113 C9H3O6Br1 1.0 0.67 0.33 

 289.9790 C10H11O5Br1 1.3 0.50 1.10 

 291.9946 C10H13O5Br1 1.1 0.50 1.30 

 292.8687 C7H5O2N1Br2 1.3 0.29 0.71 

 292.9899 C9H12O5N1Br1 1.5 0.56 1.33 

3,5-Dibromo-4-

hydroxybenzoic acid 
293.8527 C7H4O3Br2 6.9 0.43 0.57 

 294.0103 C10H15O5Br1 1.1 0.50 1.50 

 301.9426 C10H7O6Br1 1.9 0.60 0.70 

 303.9219 C9H5O7Br1 2.5 0.78 0.56 

 305.9739 C10H11O6Br1 1.1 0.60 1.10 

 307.9896 C10H13O6Br1 1.3 0.60 1.30 

 311.9270 C11H5O6Br1 1.2 0.55 0.45 

 313.9426 C11H7O6Br1 1.0 0.55 0.64 

 315.9219 C10H5O7Br1 1.2 0.70 0.50 

 315.9583 C11H9O6Br1 1.1 0.55 0.82 

 317.9375 C10H7O7Br1 1.7 0.70 0.70 

 317.9739 C11H11O6Br1 1.3 0.55 1.00 

 318.0103 C12H15O5Br1 1.2 0.42 1.25 

 320.0259 C12H17O5Br1 1.3 0.42 1.42 
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 320.8636 C8H5O3N1Br2 1.8 0.38 0.63 

 320.9848 C10H12O6N1Br1 1.3 0.60 1.20 

4,5-dibromophthalic acid 321.8476 C8H4O4Br2 1.5 0.50 0.50 

 322.0052 C11H15O6Br1 1.5 0.55 1.36 

 322.0416 C12H19O5Br1 1.2 0.42 1.58 

 324.0209 C11H17O6Br1 1.0 0.55 1.55 

 326.9379 C11H6O6N1Br1 2.3 0.55 0.55 

 329.9375 C11H7O7Br1 1.6 0.64 0.64 

 330.0467 C14H19O4Br1 1.4 0.29 1.36 

 331.9896 C12H13O6Br1 1.4 0.50 1.08 

 332.0259 C13H17O5Br1 1.0 0.38 1.31 

 333.9688 C11H11O7Br1 1.2 0.64 1.00 

 334.0052 C12H15O6Br1 1.9 0.50 1.25 

 335.8633 C9H6O4Br2 1.2 0.44 0.67 

 336.0209 C12H17O6Br1 1.9 0.50 1.42 

 336.8949 C9H9O3N1Br2 1.0 0.33 1.00 

 337.8425 C8H4O5Br2 3.5 0.63 0.50 

 338.0365 C12H19O6Br1 1.3 0.50 1.58 

 338.9954 C10H14O7N1Br1 1.0 0.70 1.40 

 343.9532 C12H9O7Br1 1.5 0.58 0.75 

 343.9896 C13H13O6Br1 1.0 0.46 1.00 

 345.9324 C11H7O8Br1 2.1 0.73 0.64 

 346.0052 C13H15O6Br1 1.3 0.46 1.15 

 346.0416 C14H19O5Br1 1.3 0.36 1.36 

 347.9845 C12H13O7Br1 1.5 0.58 1.08 

 348.0572 C14H21O5Br1 2.7 0.36 1.50 

 349.8425 C9H4O5Br2 1.0 0.56 0.44 

 350.0001 C12H15O7Br1 1.3 0.58 1.25 

 350.0365 C13H19O6Br1 1.7 0.46 1.46 

 352.0158 C12H17O7Br1 1.1 0.58 1.42 

 354.0314 C12H19O7Br1 1.0 0.58 1.58 

 357.9688 C13H11O7Br1 1.3 0.54 0.85 

 358.0416 C15H19O5Br1 1.3 0.33 1.27 

 359.9481 C12H9O8Br1 1.5 0.67 0.75 

 359.9845 C13H13O7Br1 1.2 0.54 1.00 
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 360.0209 C14H17O6Br1 1.5 0.43 1.21 

 360.0572 C15H21O5Br1 1.2 0.33 1.40 

 360.1704 C18H29O5Cl1 1.2 0.28 1.61 

 361.9637 C12H11O8Br1 1.2 0.67 0.92 

 362.0001 C13H15O7Br1 1.7 0.54 1.15 

 362.0365 C14H19O6Br1 1.8 0.43 1.36 

 363.9794 C12H13O8Br1 1.2 0.67 1.08 

 364.0158 C13H17O7Br1 1.8 0.54 1.31 

 364.0522 C14H21O6Br1 2.2 0.43 1.50 

 365.8375 C9H4O6Br2 1.2 0.67 0.44 

 366.0314 C13H19O7Br1 1.4 0.54 1.46 

 371.9481 C13H9O8Br1 1.1 0.62 0.69 

 371.9845 C14H13O7Br1 1.2 0.50 0.93 

 372.0209 C15H17O6Br1 1.3 0.40 1.13 

 373.9637 C13H11O8Br1 1.1 0.62 0.85 

 374.0001 C14H15O7Br1 1.6 0.50 1.07 

 374.0365 C15H19O6Br1 2.4 0.40 1.27 

 375.9794 C13H13O8Br1 1.3 0.62 1.00 

 376.0158 C14H17O7Br1 1.7 0.50 1.21 

 376.0522 C15H21O6Br1 3.1 0.40 1.40 

 376.1653 C18H29O6Cl1 1.9 0.33 1.61 

 377.9950 C13H15O8Br1 1.3 0.62 1.15 

 378.0314 C14H19O7Br1 1.8 0.50 1.36 

 378.0678 C15H23O6Br1 2.5 0.40 1.53 

 380.0471 C14H21O7Br1 1.8 0.50 1.50 

 382.0627 C14H23O7Br1 3.1 0.50 1.64 

 385.9637 C14H11O8Br1 1.1 0.57 0.79 

 386.0001 C15H15O7Br1 1.2 0.47 1.00 

 386.0365 C16H19O6Br1 1.3 0.38 1.19 

 387.9794 C14H13O8Br1 1.3 0.57 0.93 

 388.0158 C15H17O7Br1 1.6 0.47 1.13 

 388.0522 C16H21O6Br1 1.7 0.38 1.31 

 389.9950 C14H15O8Br1 1.5 0.57 1.07 

 390.0314 C15H19O7Br1 2.5 0.47 1.27 

 390.0678 C16H23O6Br1 1.7 0.38 1.44 
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 390.1445 C18H27O7Cl1 2.8 0.39 1.50 

 392.0107 C14H17O8Br1 1.4 0.57 1.21 

 392.0471 C15H21O7Br1 4.4 0.47 1.40 

 392.1602 C18H29O7Cl1 2.2 0.39 1.61 

 394.0263 C14H19O8Br1 1.3 0.57 1.36 

 394.0627 C15H23O7Br1 2.3 0.47 1.53 

 394.1758 C18H31O7Cl1 1.5 0.39 1.72 

 396.0420 C14H21O8Br1 1.4 0.57 1.50 

 397.9637 C15H11O8Br1 1.1 0.53 0.73 

 398.0576 C14H23O8Br1 2.1 0.57 1.64 

 399.9794 C15H13O8Br1 1.2 0.53 0.87 

 400.0158 C16H17O7Br1 1.1 0.44 1.06 

 401.9950 C15H15O8Br1 1.3 0.53 1.00 

 402.0314 C16H19O7Br1 1.7 0.44 1.19 

 403.9743 C14H13O9Br1 1.1 0.64 0.93 

 404.0107 C15H17O8Br1 1.8 0.53 1.13 

 404.0471 C16H21O7Br1 2.3 0.44 1.31 

 406.0263 C15H19O8Br1 2.1 0.53 1.27 

 406.0627 C16H23O7Br1 2.1 0.44 1.44 

 408.0420 C15H21O8Br1 2.6 0.53 1.40 

 408.1551 C18H29O8Cl1 2.1 0.44 1.61 

 410.0576 C15H23O8Br1 16.0 0.53 1.53 

 412.0733 C15H25O8Br1 18.5 0.53 1.67 

 414.0314 C17H19O7Br1 1.1 0.41 1.12 

 415.9743 C15H13O9Br1 1.1 0.60 0.87 

 416.0107 C16H17O8Br1 1.5 0.50 1.06 

 416.0237 C14H22O7Cl1Br1 1.0 0.50 1.57 

 416.0471 C17H21O7Br1 1.4 0.41 1.24 

 416.0835 C18H25O6Br1 1.9 0.33 1.39 

 417.9899 C15H15O9Br1 1.2 0.60 1.00 

 418.0263 C16H19O8Br1 1.9 0.50 1.19 

 418.0627 C17H23O7Br1 1.6 0.41 1.35 

 418.0991 C18H27O6Br1 2.0 0.33 1.50 

 418.1758 C20H31O7Cl1 1.0 0.35 1.55 

 420.0056 C15H17O9Br1 1.4 0.60 1.13 
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 420.0420 C16H21O8Br1 1.8 0.50 1.31 

 420.1148 C18H29O6Br1 1.6 0.33 1.61 

 422.0212 C15H19O9Br1 1.2 0.60 1.27 

 422.0576 C16H23O8Br1 2.7 0.50 1.44 

 424.0369 C15H21O9Br1 1.1 0.60 1.40 

 424.0733 C16H25O8Br1 1.8 0.50 1.56 

 426.0525 C15H23O9Br1 3.1 0.60 1.53 

 427.9743 C16H13O9Br1 1.1 0.56 0.81 

 428.0107 C17H17O8Br1 1.2 0.47 1.00 

 428.0237 C15H22O7Cl1Br1 1.8 0.47 1.47 

 429.9899 C16H15O9Br1 1.1 0.56 0.94 

 430.0263 C17H19O8Br1 1.6 0.47 1.12 

 430.0394 C15H24O7Cl1Br1 2.1 0.47 1.60 

 430.0627 C18H23O7Br1 1.7 0.39 1.28 

 432.0056 C16H17O9Br1 1.2 0.56 1.06 

 432.0420 C17H21O8Br1 1.7 0.47 1.24 

 432.0784 C18H25O7Br1 2.6 0.39 1.39 

 434.0212 C16H19O9Br1 1.5 0.56 1.19 

 434.0576 C17H23O8Br1 1.9 0.47 1.35 

 434.0940 C18H27O7Br1 2.9 0.39 1.50 

 436.0369 C16H21O9Br1 1.8 0.56 1.31 

 436.0733 C17H25O8Br1 1.3 0.47 1.47 

 436.1097 C18H29O7Br1 2.2 0.39 1.61 

 436.1864 C20H33O8Cl1 1.4 0.40 1.65 

 440.0682 C16H25O9Br1 1.9 0.56 1.56 

 442.0263 C18H19O8Br1 1.1 0.44 1.06 

 444.0056 C17H17O9Br1 1.1 0.53 1.00 

 444.0420 C18H21O8Br1 1.5 0.44 1.17 

 444.0784 C19H25O7Br1 1.3 0.37 1.32 

 445.9849 C16H15O10Br1 1.1 0.63 0.94 

 446.0212 C17H19O9Br1 1.3 0.53 1.12 

 446.0576 C18H23O8Br1 1.8 0.44 1.28 

 446.0940 C19H27O7Br1 1.2 0.37 1.42 

 446.2071 C22H35O7Cl1 1.4 0.32 1.59 

 448.0369 C17H21O9Br1 1.4 0.53 1.24 
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 448.0733 C18H25O8Br1 1.9 0.44 1.39 

 450.0525 C17H23O9Br1 1.3 0.53 1.35 

 450.0889 C18H27O8Br1 1.9 0.44 1.50 

 451.0352 C15H20O9N2Br1 1.2 0.60 1.33 

 452.0430 C15H21O9N2Br1 3.5 0.60 1.40 

 452.1046 C18H29O8Br1 2.0 0.44 1.61 

 452.2177 C21H37O8Cl1 1.0 0.38 1.76 

 456.0631 C16H25O10Br1 4.4 0.63 1.56 

 458.0212 C18H19O9Br1 1.3 0.50 1.06 

 458.0940 C20H27O7Br1 1.1 0.35 1.35 

 460.0005 C17H17O10Br1 1.0 0.59 1.00 

 460.0369 C18H21O9Br1 1.5 0.50 1.17 

 460.0500 C16H26O8Cl1Br1 1.3 0.50 1.63 

 460.0733 C19H25O8Br1 1.3 0.42 1.32 

 460.1097 C20H29O7Br1 1.3 0.35 1.45 

 460.1864 C22H33O8Cl1 1.5 0.36 1.50 

 462.0162 C17H19O10Br1 1.1 0.59 1.12 

 462.0525 C18H23O9Br1 1.7 0.50 1.28 

 462.0889 C19H27O8Br1 1.2 0.42 1.42 

 462.1253 C20H31O7Br1 1.5 0.35 1.55 

 462.2020 C22H35O8Cl1 1.8 0.36 1.59 

 464.0682 C18H25O9Br1 1.6 0.50 1.39 

 464.2177 C22H37O8Cl1 1.6 0.36 1.68 

 468.2126 C21H37O9Cl1 1.1 0.43 1.76 

 471.9732 C15H22O7Br2 1.0 0.47 1.47 

 474.0162 C18H19O10Br1 1.0 0.56 1.06 

 474.0525 C19H23O9Br1 1.3 0.47 1.21 

 474.0889 C20H27O8Br1 1.2 0.40 1.35 

 476.0318 C18H21O10Br1 1.1 0.56 1.17 

 476.1046 C20H29O8Br1 1.5 0.40 1.45 

 478.0475 C18H23O10Br1 1.2 0.56 1.28 

 478.0838 C19H27O9Br1 1.0 0.47 1.42 

 478.1202 C20H31O8Br1 1.4 0.40 1.55 

 478.1970 C22H35O9Cl1 1.2 0.41 1.59 

 480.1359 C20H33O8Br1 1.9 0.40 1.65 
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 480.2126 C22H37O9Cl1 1.3 0.41 1.68 

 486.1253 C22H31O7Br1 1.0 0.32 1.41 

 488.1046 C21H29O8Br1 1.0 0.38 1.38 

 488.1410 C22H33O7Br1 1.9 0.32 1.50 

 494.1151 C20H31O9Br1 1.1 0.45 1.55 

 501.0487 C18H31O6Br2 1.0 0.33 1.72 

 502.1202 C22H31O8Br1 1.1 0.36 1.41 

 504.1359 C22H33O8Br1 1.5 0.36 1.50 

 506.1515 C22H35O8Br1 1.9 0.36 1.59 

 514.0202 C18H28O7Br2 1.0 0.39 1.56 

 522.1464 C22H35O9Br1 1.3 0.41 1.59 

 525.1937 C22H40O8N1Br1 1.4 0.36 1.82 
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Appendix 3 
Table A3.1.  All brominated DBPs 92 days after electrochlorination of ballast water 

measured by ultrahigh resolution mass spectrometry with a relative abundance of at 

least 1%.  DBPs are listed in the order of abundance calculated by comparison to the 

highest DOM m/z ion.  Possible structures are based on suggestions found in a 

literature review.  Highlighted text identifies previously unreported DBPs. 

 

Possible Structure Mass 
(neutral) Formula (neutral) Rel. 

Abundance O/C H/C 

3,5-Dibromo-4-
hydroxybenzoicacid 292.8454 C7H4O3Br2 3.3 0.43 0.57 

 336.8351 C8H4O5Br2 2.5 0.63 0.50 

2,6-Dibromo-4-
nitrophenol 293.8406 C6H3O3N1Br2 2.3 0.50 0.50 

 325.9306 C11H6O6N1Br1 2.2 0.55 0.55 

 403.0033 C15H17O8Br1 2.1 0.53 1.13 

 417.0189 C16H19O8Br1 2.0 0.50 1.19 

 389.0241 C15H19O7Br1 2.0 0.47 1.27 

 405.0190 C15H19O8Br1 2.0 0.53 1.27 

 372.9926 C14H15O7Br1 1.9 0.50 1.07 

 360.9926 C13H15O7Br1 1.9 0.54 1.15 

 388.9877 C14H15O8Br1 1.9 0.57 1.07 

 433.0139 C16H19O9Br1 1.9 0.56 1.19 

 415.0033 C16H17O8Br1 1.8 0.50 1.06 

 302.9144 C9H5O7Br1 1.8 0.78 0.56 

 431.0345 C17H21O8Br1 1.8 0.47 1.24 

 387.0083 C15H17O7Br1 1.8 0.47 1.13 

 391.0032 C14H17O8Br1 1.7 0.57 1.21 

 375.0083 C14H17O7Br1 1.7 0.50 1.21 

 418.9982 C15H17O9Br1 1.7 0.60 1.13 

 400.9876 C15H15O8Br1 1.7 0.53 1.00 

 447.0295 C17H21O9Br1 1.7 0.53 1.24 
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 429.0189 C17H19O8Br1 1.6 0.47 1.12 

 430.9982 C16H17O9Br1 1.6 0.56 1.06 

 459.0295 C18H21O9Br1 1.6 0.50 1.17 

 374.9720 C13H13O8Br1 1.6 0.62 1.00 

 386.9721 C14H13O8Br1 1.6 0.57 0.93 

 376.9876 C13H15O8Br1 1.6 0.62 1.15 

 416.9826 C15H15O9Br1 1.5 0.60 1.00 

 401.0240 C16H19O7Br1 1.5 0.44 1.19 

 391.0396 C15H21O7Br1 1.5 0.47 1.40 

 362.9144 C14H5O7Br1 1.5 0.50 0.36 

 445.0502 C18H23O8Br1 1.5 0.44 1.28 

 362.9719 C12H13O8Br1 1.5 0.67 1.08 

 346.9771 C12H13O7Br1 1.5 0.58 1.08 

 443.0345 C18H21O8Br1 1.5 0.44 1.17 

 457.0138 C18H19O9Br1 1.5 0.50 1.06 

 445.0139 C17H19O9Br1 1.5 0.53 1.12 

 461.0089 C17H19O10Br1 1.5 0.59 1.12 

 384.9926 C15H15O7Br1 1.4 0.47 1.00 

 332.9978 C12H15O6Br1 1.4 0.50 1.25 

 403.0397 C16H21O7Br1 1.4 0.44 1.31 

 330.9822 C12H13O6Br1 1.4 0.50 1.08 

 404.9825 C14H15O9Br1 1.4 0.64 1.07 

 375.0449 C15H21O6Br1 1.4 0.40 1.40 

 370.9408 C13H9O8Br1 1.4 0.62 0.69 

 373.0292 C15H19O6Br1 1.4 0.40 1.27 

 461.0451 C18H23O9Br1 1.4 0.50 1.28 

 347.0136 C13H17O6Br1 1.4 0.46 1.31 

 402.9669 C14H13O9Br1 1.4 0.64 0.93 

 359.0133 C14H17O6Br1 1.4 0.43 1.21 

 406.9981 C14H17O9Br1 1.4 0.64 1.21 

 419.0346 C16H21O8Br1 1.4 0.50 1.31 
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 281.9406 C10H6O4N1Br1 1.4 0.40 0.60 

 433.0501 C17H23O8Br1 1.4 0.47 1.35 

 421.0138 C15H19O9Br1 1.4 0.60 1.27 

 396.9563 C15H11O8Br1 1.4 0.53 0.73 

 473.0451 C19H23O9Br1 1.4 0.47 1.21 

 442.9983 C17H17O9Br1 1.4 0.53 1.00 

 458.9931 C17H17O10Br1 1.4 0.59 1.00 

 415.0395 C17H21O7Br1 1.4 0.41 1.24 

 428.9825 C16H15O9Br1 1.3 0.56 0.94 

 363.0083 C13H17O7Br1 1.3 0.54 1.31 

 398.9720 C15H13O8Br1 1.3 0.53 0.87 

 446.9933 C16H17O10Br1 1.3 0.63 1.06 

 444.9775 C16H15O10Br1 1.3 0.63 0.94 

 473.0088 C18H19O10Br1 1.3 0.56 1.06 

 370.9771 C14H13O7Br1 1.3 0.50 0.93 

 412.9877 C16H15O8Br1 1.3 0.50 0.94 

 318.9822 C11H13O6Br1 1.3 0.55 1.18 

 342.9457 C12H9O7Br1 1.3 0.58 0.75 

 358.9772 C13H13O7Br1 1.3 0.54 1.00 

 300.9352 C10H7O6Br1 1.3 0.60 0.70 

 258.9247 C8H5O5Br1 1.3 0.63 0.63 

 372.9564 C13H11O8Br1 1.3 0.62 0.85 

 435.0295 C16H21O9Br1 1.3 0.56 1.31 

 376.9302 C15H7O7Br1 1.3 0.47 0.47 

 371.0134 C15H17O6Br1 1.3 0.40 1.13 

 429.0552 C18H23O7Br1 1.3 0.39 1.28 

 348.9927 C12H15O7Br1 1.3 0.58 1.25 

 417.0552 C17H23O7Br1 1.3 0.41 1.35 

 387.0449 C16H21O6Br1 1.2 0.38 1.31 

 475.0246 C18H21O10Br1 1.2 0.56 1.17 

 414.9669 C15H13O9Br1 1.2 0.60 0.87 
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 459.0658 C19H25O8Br1 1.2 0.42 1.32 

 430.9618 C15H13O10Br1 1.2 0.67 0.87 

 426.9669 C16H13O9Br1 1.2 0.56 0.81 

 407.0345 C15H21O8Br1 1.2 0.53 1.40 

 432.9776 C15H15O10Br1 1.2 0.67 1.00 

 344.9979 C13H15O6Br1 1.2 0.46 1.15 

 399.0084 C16H17O7Br1 1.2 0.44 1.06 

 377.0241 C14H19O7Br1 1.2 0.50 1.36 

 441.0189 C18H19O8Br1 1.2 0.44 1.06 

 356.9615 C13H11O7Br1 1.2 0.54 0.85 

 352.9302 C13H7O7Br1 1.2 0.54 0.54 

 384.9565 C14H11O8Br1 1.2 0.57 0.79 

 358.9406 C12H9O8Br1 1.2 0.67 0.75 

 471.0294 C19H21O9Br1 1.2 0.47 1.11 

 310.9197 C11H5O6Br1 1.2 0.55 0.45 

 427.0033 C17H17O8Br1 1.2 0.47 1.00 

 413.0240 C17H19O7Br1 1.2 0.41 1.12 

 390.9670 C13H13O9Br1 1.2 0.69 1.00 

 457.0501 C19H23O8Br1 1.2 0.42 1.21 

 487.0245 C19H21O10Br1 1.2 0.53 1.11 

 427.0396 C18H21O7Br1 1.1 0.39 1.17 

 449.0089 C16H19O10Br1 1.1 0.63 1.19 

 359.8510 C10H5O4N1Br2 1.1 0.40 0.50 

 394.9406 C15H9O8Br1 1.1 0.53 0.60 

 382.9407 C14H9O8Br1 1.1 0.57 0.64 

 456.9775 C17H15O10Br1 1.1 0.59 0.88 

 312.9353 C11H7O6Br1 1.1 0.55 0.64 

 361.0293 C14H19O6Br1 1.1 0.43 1.36 

 360.9564 C12H11O8Br1 1.1 0.67 0.92 

 431.0708 C18H25O7Br1 1.1 0.39 1.39 

 389.0604 C16H23O6Br1 1.1 0.38 1.44 



155 
 

 455.0345 C19H21O8Br1 1.1 0.42 1.11 

 356.9250 C12H7O8Br1 1.1 0.67 0.58 

 282.9247 C10H5O5Br1 1.1 0.50 0.50 

 434.9932 C15H17O10Br1 1.1 0.67 1.13 

 443.0709 C19H25O7Br1 1.1 0.37 1.32 

 487.0607 C20H25O9Br1 1.1 0.45 1.25 

 447.0658 C18H25O8Br1 1.1 0.44 1.39 

 382.9772 C15H13O7Br1 1.1 0.47 0.87 

 385.0292 C16H19O6Br1 1.1 0.38 1.19 

 463.0247 C17H21O10Br1 1.1 0.59 1.24 

 477.0402 C18H23O10Br1 1.1 0.56 1.28 

 332.9614 C11H11O7Br1 1.1 0.64 1.00 

 356.9978 C14H15O6Br1 1.1 0.43 1.07 

 412.9513 C15H11O9Br1 1.1 0.60 0.73 

 379.0033 C13H17O8Br1 1.1 0.62 1.31 

 489.0401 C19H23O10Br1 1.1 0.53 1.21 

 232.9091 C6H3O5Br1 1.1 0.83 0.50 

 410.9355 C15H9O9Br1 1.0 0.60 0.60 

 474.9883 C17H17O11Br1 1.0 0.65 1.00 

 489.0039 C18H19O11Br1 1.0 0.61 1.06 

 342.9823 C13H13O6Br1 1.0 0.46 1.00 

 377.9254 C14H6O7N1Br1 1.0 0.50 0.43 

 440.9826 C17H15O9Br1 1.0 0.53 0.88 

 470.9932 C18H17O10Br1 1.0 0.56 0.94 

 316.9666 C11H11O6Br1 1.0 0.55 1.00 

 400.9511 C14H11O9Br1 1.0 0.64 0.79 

 454.9982 C18H17O9Br1 1.0 0.50 0.94 

 338.9508 C13H9O6Br1 1.0 0.46 0.69 

 328.9301 C11H7O7Br1 1.0 0.64 0.64 

 354.9821 C14H13O6Br1 1.0 0.43 0.93 

 324.9353 C12H7O6Br1 1.0 0.50 0.58 
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 404.9250 C16H7O8Br1 1.0 0.50 0.44 

 368.9613 C14H11O7Br1 1.0 0.50 0.79 

 405.0553 C16H23O7Br1 1.0 0.44 1.44 

 335.0134 C12H17O6Br1 1.0 0.50 1.42 

 410.9720 C16H13O8Br1 1.0 0.50 0.81 
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