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A concept for generating nuclear fusion power and converting the kinetic en-

ergy of aneutronic fusion products into electric energy is proposed, and simulations

are developed to design and evaluate this concept. The presented concept is a spher-

ical fusor consisting of linear ion acceleration channels that intersect in the sphere

center, where the converging ions form a high-energy, high-density fusion core. The

geometry is that of a truncated icosahedron, with each face corresponding to one end

of an ion beam channel. Walls between the channels span radially from the outer

fusion fuel ionization source to an inner radius delimiting the fusion core region.

Voltage control is imposed along these walls to accelerate and focus the recirculat-

ing ions. The net acceleration on each side of the channel is in the direction of the

center, so that the ions recirculate along the channel paths. Permanent magnets

with radial polarization inside the walls help to further constrain the ion beams

while also magnetizing electrons for the purpose of neutralizing the fusion core re-

gion. The natural modulation of the ion beams along with a proposed phase-locked



active voltage control results in the coalescence of the ions into “bunches”, and thus

the device operates in a pulsed mode. The use of proton-boron-11 (p-11B) fuel is

studied due to its terrestrial abundance and the high portion of its energy output

that is in the form of charged particles.

The direct energy converter section envelopes the entire fusion device, so that

each fusion fuel channel extends outward into a fusion product deceleration region.

Because the fusion device operates in a pulsed mode, the fusion products will enter

the energy conversion region in a pulsed manner, which is ideal for deceleration using

a standing-wave direct energy converter. The charged fusion products pass through

a series of mostly-transparent electrodes that are connected to one another in an

oscillating circuit, timed so that the charged fusion products continuously experience

an electric field opposite to the direction of their velocity. In this way the kinetic

energy of the fusion products is transferred into the resonant circuit, which may

then be connected to a resistive load to provide alternating-current energy at the

frequency of the pulsed ion beams.

Preliminary calculations show that a one-meter fusor of the proposed design

would not be able to achieve the density required for a competitive power output

due to limits imposed by Coulomb collisions and space charge. Scaling laws suggest

that a smaller fusor could circumvent these limitations and achieve a reasonable

power output per unit volume. However, ion loss mechanisms, though mitigated

by fusor design, scale unfavorably with decreasing size. Therefore, highly effective

methods for mitigation of ion losses are necessary. This research seeks to evaluate

the effectiveness of the proposed methods through simulation and optimization.



A two-dimensional axisymmetric particle-in-cell ion-only simulation was devel-

oped and parallelized for execution on a graphics processing unit. With fast com-

putation times, this simulation serves as a test bed for investigating long-timescale

thermalization effects as well as providing a performance output as a cost function

for optimization of the electrode positions and voltage control.

An N -body ion-only simulation was developed for a fully 3D investigation

of the ion dynamics in an purely electrostatic device. This simulation uses the

individual time-step method, borrowed from astrophysical simulations, to accurately

model close encounters between particles by slowing down the time-step only for

those particles undergoing sudden high acceleration.

A two-dimensional hybrid simulation that treats electrons as a fluid and ions

as particles was developed to investigate the effect of ions on an electrostatically

and magnetically confined electron population. Electrons are solved for at each

time-step using a steady-state iterative solver.

A one-dimensional semi-analytic simulation of the direct energy conversion

section was developed to optimize electrode spacing to maximize energy conversion

efficiency.

A two-dimensional axisymmetric particle-in-cell simulation coupled with a res-

onant circuit simulation was developed for modeling the direct energy conversion of

fusion products into electric energy.

In addition to the aforementioned simulations, a significant contribution of

this thesis is the creation of a new model for simulating Coulomb collisions in a

non-thermal plasma that is necessary to account for both the low-angle scattering



that leads to thermalization as well as high-angle scattering that leads to ion de-

parture from beam paths, and includes the continuous transition between these two

scattering modes.

The current implementation has proven problematic with regard to achieving

sufficiently high core densities for fusion power generation. Major modifications

of the current approach to address the space charge issues, both with regard to

the electron core population and the ion population outside of the core would be

necessary.
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Chapter 1

Introduction

This thesis introduces and evaluates a new concept for powering spacecraft via

nuclear fusion named the Continuous Electrode Inertial Electrostatic Confinement

(CE-IEC) fusor. Through a lightweight design and efficient direct conversion of

fusion energy into electrical power, this fusor is studied as a possible breakthrough

alternative to existing space power technology. The fusor consists of intersecting

beam channels, each of which confines a population of recirculating ionized fusion

fuel. The beam channels intersect at a common open center point where each ion

has kinetic energy suitable for a fusion event with an ion traveling in the opposite

direction.
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1.1: Outline of material to be presented

� The remainder of this chapter gives a top-level introduction of the CE-IEC

Fusor design and summarizes the contributions of this thesis.

� In Chap. 2 the classification of the CE-IEC is put in context within the field

of nuclear fusion. Then, more specifically, the lineage of the CE-IEC concept

is presented.

� In Chap. 3 some preliminary order-of-magnitude calculations are made to

roughly define the operating conditions necessary for a useful space-based CE-

IEC Fusor. Limitations on operating conditions due to the relevant plasma

physics are then evaluated, and scaling laws are defined.

� In Chap. 4 a parallelized 2D3V axisymmetric particle-in-cell (PIC) simulation

is presented, and the use of the simulation as an optimization tool is presented.

The results of optimization and long-timescale simulation are presented and

discussed.

� In Chap. 5 an individual time-step (ITS) N -body simulation is presented and

used for observing bunching synchronization among beamlines, detecting ion

transfer between beamlines, simulating electron confinement, and profiling ion

and electron surface impact points.

� In Chap. 6 a Scharfetter-Gummel electron fluid simulation is presented and

evaluated against a particle-in-cell simulation of an identical scenario.
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� In Chap. 7 the Coulomb collision model that was developed for use in the PIC

simulation in Chap. 7 is presented.

� In Chap. 8 the Standing Wave Direct Energy Converter (SWDEC) is pre-

sented, and simulations are used to optimize electrode spacing and evaluate

energy conversion performance.

1.2: A conceptual introduction to the CE-IEC

The CE-IEC design provides a means to confine both ions and electrons using

a carefully structured electric potential well geometry and permanent magnets. The

following features are designed to maximize confinement time and minimize energy

losses. The features can be roughly summarized as follows:

� Electrostatic focusing is employed to minimize ion collisions with electrodes

and other surfaces.

� Permanent magnets assist ion confinement along the beam channels, and mag-

netic cusps in the center help confine electrons.

� Operation of the ions in a “pulsed”, or “bunched” manner limits ion counter-

streaming to only the fusion area, minimizing the thermalization process of

the ions.

� A mostly transparent (as seen from the center of the device) structure and the

use of direct energy conversion result in a lightweight, high efficiency device.
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Figure 1.1: Conceptual diagram of the continuous electrode inertial electrostatic
confinement fusor (CE-IEC): Feed-throughs inside the walls must be supplied for
the (a) cathode and the (b) inner anode. The voltage at other points along the wall
can be controlled by (c) radially varying resistance along the walls. Along the (d)
center of the beamline the (e) electric potential has a “W”-shape

1.2.1 Geometry

The geometry chosen for this study is that of a truncated icosahedron, modified

to increase the area of the pentagonal faces at the expense of the hexagonal faces, so

that all faces have near-equal area, which is best for symmetry between beamlines.

The truncated icosahedron shown in Fig. 1.2 has a transparency (as seen from

the center of the device) of about 80%. Other symmetric geometries are possible:

removing the hexagonal faces reveals a dodecahedron, while further subdivision of

an icosahedron adds additional rings of hexagons around each pentagon (Fig. 1.3).

With fewer faces, a higher transparency (as seen from the center of the device)

is possible. A high transparency is desirable for two reasons: ions undergoing a

high-angle scatter may scatter onto a different beamline rather than striking the

inner edge, and fusion products have a higher chance of making it to the direct
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Figure 1.2: Modified truncated icosahedron with a wall thickness of 0.08 radians.

Figure 1.3: Possible geometries
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energy conversion unimpeded. On the other hand, larger numbers of faces decrease

the transparency but allow closer control of the beamline potential (because of the

narrower beamlines) and also provide more beamlines to contribute to fusion.

1.2.2 Electrostatic focusing

A static-voltage linear ion accelerator is an inherently defocusing device, be-

cause the low-voltage electrode (cathode) necessary for accelerating the ions will

accelerate these ions towards the surface and away from the central beamline. This

is most easily remedied by placing electrodes before and/or after the cathode, biased

positively relative to the cathode, to direct ions back towards the beamline.

1.2.3 Pulsed operation

Pulsed operation, also referred to as the “bunching” of the ions, occurs natu-

rally, and has been observed in electrostatic ion traps [1] and in the multi-grid IEC

experiments [2]. The bunching arises when the kinematic criterion is satisfied:

dT

dE
> 0 (1.1)

where E is the energy of a particle and T is the the oscillation period of that particle

if it were the only particle in the system, absent from space-charge or collisional

effects from other particles. When Eq. 1.1 is satisfied, the geometry of the potential

well is such that increasing the energy of an ion will increase the oscillation period

of the ion. In such a potential well geometry the bunching will naturally form
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Figure 1.4: Illustration of the “bunching effect” when the kinematic criterion
(dT/dE > 0) is satisfied.

from a continuous beam by the following process: If there is a perturbation or non-

uniformity in the ion beam that results in a slight increase in ion density, the ions

near the front of this perturbation (where the “front” is in the direction the ions

are moving) will be accelerated by the space charge of the perturbation, thereby

gaining energy. With the extra energy, these ions will travel farther up the well

in the turnaround region, and their period will increase (Eq. (1.1)), causing them

to take more time to traverse the beam line, thereby moving them towards the

rear of the perturbation. The ions near the rear of the perturbation undergo the

opposite process: they are decelerated by the space charge of the bunch and lose

energy, they don’t travel as far up the potential well as the ions in front of them so

that their period is shortened, causing them to traverse the beam path in less time,

moving them to towards the front of the bunch. In this way, the so-called “trap

kinematics” are causing ions to move towards regions of higher density, so that any

small perturbation will grow.
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Figure 1.5: Frame-by-frame diagram of acceleration of charged particles using time-
varying voltages rather than a potential well. The reverse process must be used to
decelerate the particles so that particles don’t escape the potential well.

1.2.4 Active voltage control

Another dimension of control over the ion dynamics is achieved with time-

varying electrode voltages. Voltages could be modulated as the bunches pass by

electrodes for added bunch compression to increase peak density before entering the

core. In an extreme version of active bunch control, the electrodes are operated

in the fashion of a particle accelerator, with ions accelerated towards the core and

decelerated when traveling away from the core. In this case, a potential well may

not even be necessary if all ion acceleration is performed by oscillating voltages, but

may require a separate voltage feed to each electrode, as illustrated in Fig. 1.5.
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Figure 1.6: The radially polarized permanent magnet (maroon) shown in a cut-away
of the IEC

1.2.5 Permanent magnet geometry

The walls of the CE-IEC are proposed to contain (or be constucted of) radially

polarized permanent magnets, which can be fabricated with a magnetic field strength

of approximately M ≈ 1 T. If it is assumed that the magnets occupy half of the

walls (see Fig. 1.6) then the transparency of the bare magnets in this case will be

approximately tm ≈ 90%. Due to the conservation of magnetic flux, the magnetic

field strength along the beamlines will be approximately B ≈ 1−tm
tm

M = 0.11 T.

1.2.6 Core electron confinement

The “W”-shape of the beamline potential of the CE-IEC, along with the

cusped magnetic structure of the permanent magnets, lends itself to an electron

confinement region. Electrons that are in the fusion core region are prevented from

escaping along the beam paths by the strongly negative cathode grid and are pre-
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Figure 1.7: Conceptual diagram of electron confinement in the CE-IEC. (a) An
electron in the fusion core region is (b) prevented from escaping along the beamline
by the negative potential of the cathode and the magnetic mirror effect and (c)
prevented from striking the inner anode by the magnetic mirror effect.

vented from directly hitting the inner anode grid by the magnetic mirror effect of

the field cusps (see Fig. 1.7). The complete CE-IEC prototype with the electric po-

tential and magnetic field lines is shown in Fig. 1.8, plotted using methods described

in Chap. 5.

1.2.7 Direct energy conversion

The primary draw of using p-11B fuel over D-T (deuterium-tritium) fuel is

that p-11B fusion produces only charged α-particles rather than neutrons. Not only

are high-energy α-particles much more easily stopped by matter than neutrons are,

but their charge also allows for a more efficient conversion of energy than is possible
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Figure 1.8: Cutaway of the CE-IEC with electric potential plotted in the x-y plane
and 3D magnetic field lines drawn.
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Figure 1.9: Schematic of a static direct energy convertor

with thermodynamic energy conversion.

1.2.7.1 Static direct energy conversion

Energy of the α-particles may be captured by biasing the entire fusor to a

negative potential, so that escaping α-particles are decelerated by the potential

difference (Fig. 1.9) , and in doing so raise the potential difference by a small amount

which can then be used to power an electric load. However, such an approach

requires a very high (≈ 4 MV) potential to fully decelerate all fusion products.

1.2.7.2 Standing-wave direct energy conversion

Direct energy conversion for the CE-IEC is proposed to be acheived through

the standing-wave direct energy converter (SWDEC) [3]. A series of mostly-transparent

electrodes surround the CE-IEC (either ring electrodes that extend the beamlines,
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Figure 1.10: Schematic of an SWDEC array surrounding the CE-IEC

or gridded electrodes) and an oscillating potential is induced between the alternat-

ing even and odd electrodes, which are connected via an inductor and resistor. The

oscillation is timed so that the passing α-particles are decelerated by the electrodes,

thereby driving the oscillation, which must be damped by a resistor to maintain

steady-state. The resistor in this case is the power load of the spacecraft and electric

propulsion system, to which the SWDEC provides alternating-current electricity.

1.3: Summary of contributions

The contributions of this thesis to the area of inertial electrostatic confinement

research may be summarized as follows:

� The CE-IEC concept was developed as a natural evolution of the previous

generation device, the Multi-grid IEC.

13



� A 2D3V axisytmmetric particle-in-cell (PIC) simulation of a single channel of

the CE-IEC was developed using MATLAB, C, and CUDA for execution on

a general purpose graphics processing unit (GPU) and may be used by other

researchers studying this or related concepts. In this research, it was used for

two purposes:

– Optimization of the ion channel voltage profile was performed using a cost

function to maximize the bunching behavior of the ions and minimize ion

losses. Successful optimization demonstrated long ion lifetimes on the

order of 3000 oscillation periods when the ion density was under the

space-charge limit.

– Long time-scale simulation of the IEC to reach an oscillatory steady

state to evaluate the effect of thermalization on ion behavior. These

simulations concluded that thermalization of the ion bunches appears to

continue despite kinematic constraints on the system that formed the

bunches initially. Active control of thermalization was an intended path

of investigation, but it is not included in the current work.

� A fully 3DN -body simulation was developed using methods borrowed from the

field of astrophysical systems, allowing for analysis of the interaction between

beamlines and effects of a non-uniform cylindrical beamline potential profile.

This simulation reached the following conclusions:

– Ions can transfer between beamlines due to high-angle scattering, though

newly transfered ions are often lost shortly thereafter due to their trajec-
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tories being far off-axis.

– Electron simulation demonstrated a steady state density close to that

of the core ion density, though neither density was high enough for a

significant fusion power output.

– Ion impacts are mostly limited to the inner edge of the device, and elec-

tron impacts are exclusively limited to the inner edge of the device.

� A Scharfetter-Gummel simulation was developed to simulate electrons as a

thermal fluid under the influence of a static external magnetic field. This may

be used in future research for investigating the effect of the electron pressure on

the magnetic field in the CE-IEC. However, comparisons between an electron

fluid simulation and an electron particle simulation for a test problem did not

agree well enough to continue along this path.

� A Coulomb collision model was developed to account for both low-angle Coulomb

scatters that lead to thermalization as well as high-angle scatters that throw

ions off of beamlines.

� A 1D1V semi-analytic simulation of the Standing Wave Direct Energy Con-

verter (SWDEC) was developed to optimize electrode spacing for optimal di-

rect energy conversion efficiency.

� A 2D3V PIC code was developed for the SWDEC to test the optimized results

and demonstrated the direct conversion of fusion products into electricity at a

50% conversion efficiency, based on a design that was optimized via the 1D1V
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model to operate at a 65% efficiency.

16



Chapter 2

Background and Previous Research

2.1: Fusion for energy production

Nuclear fusion is the process by which two atomic nuclei unite, and the energy

gained or released in this process is related by the difference in mass of the product(s)

with that of the mass of the reactants by

E = (mproducts −mreactants) c
2 (2.1)

where c is the speed of light. This process is exothermic (E > 0) for light nuclei

(when the product is lighter than Iron-56). Fusion is contrasted with nuclear fission

which is the splitting of a nucleus. Fission is exothermic for heavy nuclei, and has

been utilized with success for terrestrial energy production.

Fusion reactions occur naturally in stars, where gravity confines and heats
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matter (mostly hydrogen and other light atoms). Nuclei are repelled from one

another by the electrostatic force and attracted to one another by the strong nuclear

force. The electrostatic force is dominant at long distances, down to within a few

femtometers of the nucleus, requiring a significant relative kinetic energy for nuclei

to overcome this repulsive barrier. At sufficiently high temperatures, a significant

fraction of the fusion fuel ions will be energetic enough to reach this close proximity,

aided by the process of quantum tunneling.1 The energy produced by a fusion event

in a star provides heat to the surrounding matter and in this way the process is self-

sustaining. The Sun produces power via nuclear fusion at a rate of approximately

one watt per cubic meter. In any fusion scenario, the energies are high enough that

the fusion fuel atoms are completely ionized, and the fuel ions and electrons together

form a quasineutral plasma.

Efforts to generate energy through terrestrial fusion reactions require both a

method of energizing the fusion fuel plasma so that a significant fusion reaction rate

is present, and a method of confining the plasma to prevent energy loss of the fuel.

The ionizing and energizing of fuel is generally easily achievable in the laboratory,

but the simultaneous confinement of such a fusion fuel plasma at a sufficient density

remains elusive. Thus, terrestrial methods of fusion for energy production are often

classified according to their confinement schemes.

The largest share of investment in fusion power research for electricity gen-

eration resides in magnetic confinement. The charged particles of a plasma are

1This thesis is not concerned by the physics of this process, but will use instead the simplified
notion of a fusion cross-section for the calculation of fusion events
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Figure 2.1: A hierarchy of fusion plasma confinement methods.

inhibited from moving perpendicular to a magnetic field by the Lorentz force, and

so a magnetic confinement fusion reactor consists of magnetic fields either parallel

to the walls of the chamber or in a cusped configuration to reflect particles back into

the plasma. The magnetic fields are typically generated by strong electric currents,

either applied externally or appearing internally within the plasma. The fusion

reactions heat the plasma, and excess heat from the reactor is converted thermo-

dynamically to electricity in the same manner as nuclear fission and hydrocarbon

power plants.

Inertial confinement involves a multi-directional transfer of momentum to the

fusion fuel to direct nuclei onto collision paths with one another, resulting directly in

fusion reactions and/or thermalized heating that produces fusion reactions. What
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can be considered the only successful macro-scale fusion reaction for local energy

production, the hydrogen bomb, belongs in this category, but notably requires a

fission reaction to bring the hydrogen and/or lithium to the required fusion energy.

Laser fusion involves a similar implosion of a fuel pellet, using short, high-energy

focused laser pulses to heat a shell surrounding a fusion fuel core.

Inertial electrostatic confinement is one of few confinement schemes that at-

tempts a completely non-thermal approach to confining ionized fuel. High electric

fields accelerate ions moving in opposite directions to fusion energies. Since the fusor

of this work falls into this category, a more detailed look at the history, methods,

and challenges of this confinement scheme follows.

2.1.1 Calculation of fusion power

The fusion power per unit volume produced by a plasma consisting of ions of

species 1 and 2 is

P

Vol
= E

∫
v1

∫
v2

f1(x,v)f2(x,v) |v1 − v2|σ(|v1 − v2|)d3v1d
3v2 (2.2)

where E is the energy released when an ion of species 1 fuses with an ion of species

2, and σ(v) is the velocity-dependent fusion cross section. The fusion cross section

σ(v) is unique for each fuel species pair, and is determined primarily experimentally.

For species pairs of interest to the field of laboratory fusion, σ(v) typically peaks at

center-of-mass energies of 50 to 3000 keV, and so laboratory devices must produce

voltages on this scale to achieve fusion. The cross section for proton-boron-11 fusion
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(p-11B) has two primary peaks, at 150 keV and 600 keV, the latter of which is

considered for the majority of this work.

Eq. 2.2 may be simplified for thermal plasma through the use of an integrated

mean velocity and cross section product, 〈σv〉

P

Vol
= n1n2 〈σv〉1-2 E (2.3)

and approximated for a non-thermal plasma with species 1 and 2 both monoenergetic

and moving at a relative speed v1-2 from one another as

P

Vol
= n1n2v1-2σ(v1-2)E (2.4)

which is the method that will be used for parameter estimation in this chapter.

2.1.2 Thermal plasma vs. non-thermal plasma for fusion

A thermal plasma is one in which the species all have the same mean energy

and have energies and velocities that follow Maxwellian distributions. Any non-

thermal plasma will “thermalize” over time unless there is some process to actively

keep it in a non-thermal state. The primary driver of plasma thermalization is

Coulomb collisions. A non-thermal plasma fusor must produce more fusion energy

than the energy required to maintain the non-thermal state.
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Figure 2.2: A diagram of the IEC ion acceleration mechanism.

2.2: The two-grid inertial electrostatic confinement fusor

The first inertial electrostatic confinement (IEC) experimental fusor was built

and tested by Hirsch and Farnsworth in 1967 [4]. This device, along with many fol-

lowing ones, consisted of two spherically concentric, mostly transparent electrodes,

with the inner cathode biased to a negative voltage relative to the outer anode

(Fig. 2.2.) At the center, the ions have enough energy to overcome their mutual

electrostatic repulsion and fuse. The probability of fusion at each pass is low. Ions

that do not fuse are decelerated on the other side of the potential well, turning

around just prior to reaching the anode, to be accelerated towards the cathode grid

once again.

In the two-grid IEC, the following phenomena preclude net power generation:

� The cathode grid defocuses the ion beams, causing ions to stray off of the beam
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paths onto trajectories that are not likely to result in fusion, often striking the

cathode grid wires instead.

� Coulomb collisions tend to scatter ions off of beam paths as well. These

collisions happen along the entirety of each beam path, while fusion events

may only happen in the high-energy core. The result is that scatter collisions

greatly outnumber fusion events and plasma thermalization becomes problem-

atic.

� If ion lifetimes are not limited by collisions with the cathode, they are typically

limited by collisions with neutrals within the vacuum chamber.

� The voltage feed stalks of the cathode create an asymmetry in the potential

well, so beam paths tend to be curved in the direction of these feeds.

Despite these barriers to net power generation, the Hirsch Farnsworth two-grid IEC

remains the canonical fusor, and has been built in many research universities such

as the University of Wisconsin-Madison, USA, University of Sydney, Australia, Ky-

oto University, Japan, and Tokyo Technical Institute, Japan; the private company

Phoenix Nuclear Labs in Madison, Wisconsin; and even in the garages and base-

ments of hobbiests. The end-goal of this type of fusor is typically for the safe and

compact generation of high-energy neutrons from fusion reactions for purposes such

as medical isotope production and neutron imaging. The majority of the neutrons

produced in these fusors are due to ion-neutral (“beam-background”) rather than

ion-ion (“beam-beam”) fusion events.
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Figure 2.3: Images from Ref. [8] (a) The Multi-grid electrodes in the vacuum cham-
ber. (b) low-vacuum operation of the Multi-grid IEC

Researchers of the two-grid IEC have concluded that the only pathway to net-

power generation in an IEC fusor is through sustained beam-beam fusion [5]. This

requires a high vacuum for long mean free paths to reduce collisions with neutrals,

and a way to limit ion collisions with the cathode grid. One method of reducing

ion-grid collisions is to replace the physical cathode with a “virtual cathode” of

confined electrons (e.g. the Polywell [6] or the Penning Trap [7]). Another method

is the multi-grid IEC, described in the next section.

2.3: The multi-grid inertial electrostatic confinement fusor

To overcome the defocusing nature of the accelerating cathode grid, the “multi-

grid” approach of Sedwick, Dietrich, McGuire, and Eurice [2,8,9], shown in Fig. 2.3

was to introduce additional electrode grids inside and outside of the cathode grid,

biased positively relative to the cathode grid, to push ions back towards the beamline

axis after being accelerated and pulled away from the axis by the cathode grid.

The multi-grid research demonstrated an improvement in ion confinement times of

up to thousands of passes before loss. The increase of the average ion lifetime due to
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Figure 2.4: Schematic of the multi-grid IEC. Additional grids biased positively
relative to the cathode to counteract the defocusing nature of the cathode.

electrostatic focusing revealed another phenomenon: the tendency of ions to coalesce

into bunches so as to operate in a pulsed manner rather than as time-invariant

recirculating beams. This arises when the “kinematic criterion” is satisfied [1], that

is, when an increase in ion energy results in a lengthening of the ion’s oscillation

period, which was discussed in Sec. 1.2.3.

2.4: From the multi-grid to the continuous electrode

If an additional two electrodes inside and outside the cathode were found to

be beneficial for ion confinement, a next logical step is to continuously experiment

with higher numbers of electrodes to obtain fine-grain control of the potential well

structure. At this extreme the grids become so close together that connecting them

radially becomes beneficial. This is how the concept of the CE-IEC was born, by

replacing radially-spaced grids with continuous electrode walls. While it may seem

disadvantageous to introduce more surfaces in an environment that is sensitive to
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ion loss, ions that strike the walls separating the channels were most likely already

on non-radial paths that would not result in fusion. Following from the multi-grid

findings, voltage feeds inside the walls to both the cathode and inner anode would

be necessary, while radially varying resistance between grids can provide additional

control over the radial potential profile, as illustrated in Fig. 1.1. This would also

avoid the feed-stalk asymmetry problem, and would likely require additive manu-

facturing of the electrodes, magnets, resistors and insulators, though it is possible

that the electrodes and their feeds could be manufactured from Neodymium-based

ferromagnetic material.
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Chapter 3

Preliminary Calculations for a CE-IEC

3.1: Required fuel density for a useful fusor

The purpose of this research is the advancement of a space-based fusor for

low-α propulsion systems, where α is the mass of the power systems divided by the

energy produced, usually expressed in kg/kW. NASA’s technology roadmap cites

the need for a specific mass “well under 3 kg/kW” for enabling sustained trips to

and from Mars at a cost comparable to NASA’s budget [10]. As a baseline, a 1

meter radius IEC producing 1 MW of energy will be considered. For this, the 600

keV peak cross section of p-11B is chosen. Some useful constants for this fuel and

peak are as follows:
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Properties of p-11B at peak fusion cross section

Property Symbol Value

Fusion cross section σ 1.2× 10−28 [m2]
Fusion output energy E 8700 [keV]
Center-of-mass energy ECOM 600 [keV]
Center-of-mass velocity vCOM 1.12× 107 [m/s]
Proton energy Ep 550 [keV]
Boron energy EB 50 [keV]

Using Eq. 2.4, the average plasma density n required for a given fusion power

P is

n =

√
P

4
3
πR3

cvCOMσE
. (3.1)

Using P = 106 W and Rc = 5 cm, the required density is on the order of np, nB ≈

1021 m−3. The required density may be lowered by an order of magnitude due to the

multiple beamlines all contributing to fusion. The density in the acceleration and

turnaround regions may be lowered by perhaps two orders of magnitude due to the

converging nature of the fusion core, so these regions may only need to accommodate

a density of 1019 m−3. The electron confinement region is two orders of magnitude

larger than the fusion core, so unless the electrons are regenerated anew at each

cycle, the electron density must be on the order of ne ≈ 1019 m−3.

3.2: Bremsstrahlung radiation loss analysis

Energy losses due to Bremsstrahlung radiation, if the radiation is not converted

into usable energy, renders impossible the use of p-11B for thermonuclear fusion, as

the Bremsstrahlung radiation power density exceeds the fusion power density for
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any plasma temperature and plasma density. In this section, the ratio of fusion

power density to Bremsstrahlung power density for electrons in thermal equilibrium

with monoenergetic ions (rather than thermalized ions) is considered.

When the electrons are in thermal equilibrium with monoenergetic ions, the

energy radiated by the electrons through Bremsstrahlung is equal to the energy

transfer from ions to electrons:

PBrem = Pi→e. (3.2)

Bremsstrahlung radiation power density for relativistic electrons, normalized by the

square of the electron density, is

PBrem

n2
e

= 1.69×10−38
√
Te

{
3√
2

Te
mec2

+
∑
i

Z2
i ni
ne

[
1 + 0.7936

Te
mec2

+ 1.874

(
Te
mec2

)2
]}

(3.3)

where Te and mec
2 are in eV. The ion to electron collisional power transfer density,

normalized by the square of the electron density, is given by Ref. [11].

Pi→e
n2
e

= 7.61× 10−34 log Λ

T
3
2
e

(
1 +

0.3Te
mec2

)∑
i

Z2
i gi
m̄i

(
1 +

me

mi

2
3
Ei

Te

)− 3
2
(

2

3
Ei − Te

)
(3.4)

where Ei, Te and mec
2 are in eV, log Λ = 24− log

√
ne
Te

, m̄i is the ion mass in AMU,

and gi is the ratio of ion density to electron density. The fusion power produced by
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two species of monoenergetic ions is

Pfusion

n2
e

= g1g2σv1−2E . (3.5)

The fuel mixture ratio is defined as M ≡ n1

n2
. For a fully neutralized plasma, the

condition ne =
∑

i Zini must be met, resulting in the ratios g1 = 1
Z1+Z2/M

and

g2 = 1
MZ1+Z2

. It is assumed for the following analysis that all fuels will be fully

ionized. The ratio of fusion power to Bremsstrahlung power is calculated by finding

the electron temperature that satisfies Eq. 3.2, and then calculating Pfusion/PBrem.

This power ratio is given for different mixture ratios of different fuels in Fig. 3.1.

At the 150 keV resonance, Bremsstrahlung radiation power exceeds fusion power,

however, at the 600 keV resonance, fusion power is approximately three times that

of Bremsstrahlung power at a mixture ratio of 5.4 parts hydrogen to 1 part boron

and an electron temperature of Te = 120 keV.

For the CE-IEC, Bremsstrahlung not only happens during the fusion-producing

counterstreaming inside the core, but also when the ion bunches are within the elec-

tron neutralization area and approaching the core. The distance over which they

would travel through electrons would need to be limited to the size of the fusion

core. Alternatively, conversion of Bremsstrahlung radiation energy would loosen

these limitations.
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Figure 3.1: The ratio of fusion power to bremsstrahlung radiation power for various
mixture ratios of monoenergetic ions and thermally equilibrated electrons. n1 is the
first species of each fuel as written in the legend, and n2 is the second. The depen-
dence of the power ratio on electron density only occurs in the Coulomb logarithm,
and so changing the electron density has little effect (increases in the electron den-
sity moves the power ratios to slightly more favorable values.) An electron density of
1022 m−3 was chosen for this plot. Maxima occur at the following points: (a) p-11B
(150 keV), M = 7.4, Te = 54.4 keV, Pfusion

PBrem
= 0.3; (b) p-11B (600 keV), M = 5.4,

Te = 120 keV, Pfusion

PBrem
= 3.1; (c) D-3He, M = 2.2, Te = 56.2 keV, Pfusion

PBrem
= 24.7; (d)

D-T, M = 0.9, Te = 19.6 keV, Pfusion

PBrem
= 430.
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3.3: Space-charge limitation of ion bunch density in the

non-neutralized regions

Outside of the fusion core, there is no electron neutralization, so the density

of the ions in these regions is space-charge limited. Space-charge causes the ions to

warp the acceleration electric field along the beamline and also causes expansion of

the ion bunches towards the electrode walls.

3.3.1 Limitation of density due to bunch expansion parallel to the

beamline

The maximum bunch density limited by expansion parallel to the direction of

acceleration of the fuel ions is analyzed using the Child-Langmuir current law:

nv =
4

9
ε0

√
2

qm

V 3/2

d2
(3.6)

For protons, using V ≈ 550 kV and d ≈ 1 m, the limitation is nv ≈ 1021 m−2s−1. At

a velocity of 106 m/s, the maximum density that can be accelerated by the IEC is

approximately 1015.
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3.3.2 Limitation of density due to bunch expansion transverse to the

beamline

The maximum bunch density is also limited by the transverse expansion in

the acceleration and turnaround regions. Eq. (A.16) is the time for expansion of the

bunch from an initial to final radius:

τ =

√
3

2

miε0
q2
i n

{
rτ
r0

√
1− r0

rτ
+

1

2
ln

[
2
rτ
r0

(
1 +

√
1− r0

rτ

)
− 1

]}
. (3.7)

The turn-around time for an ion bunch in a 1 meter IEC is on the order of 10−7 s.

For a bunch size on the order of 5 cm radius, an expansion of up to 10 cm may be

acceptable, which limits the bunch density to approximately 1014. This limit could

be increased by the axial magnetic field, but likely not to more than 1015.

The estimated limit of 1015 is for the acceleration and turnaround regions.

Methods of increasing the density limit above 1015 include a decrease in acceleration

distance, and a neutralization of the acceleration region (similar to the Multiple

Ambipolar Recirculating Beam Line Experminent [12]).

3.4: Limitation on core density due to the two-stream in-

stability

While counter-streaming ion bunches are passing through one another in the

fusion core, they can be analyzed as uniform counter-streaming ion beams over
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a time scale of t = v0/Rc where v0 is the peak cross-section velocity and Rc is

the radius of the fusion core. A two-stream instability grows exponentially, and

so a situation in which the argument of the exponential is above unity should be

considered problematic, while if it is below unity the instability should not be so

significant that the perturbations are not smoothed out during the transit of the

bunch out to the turnaround point and back inwards once again.

3.4.1 Derivation of the two-stream instability dispersion relation

Consider two streams of identical ions with uniform densities (n0) moving with

opposite velocities (±v0) in one dimension. A perturbation is introduced in the

density, velocity, and electric field with a temporal frequency ω [rad/s] and spatial

frequency k [rad/m]. The functions for the densities, velocities, and electric field for

the −v0 and +v0 populations are

n− = n0 + ñ−e
i(kx−ωt) (3.8a)

n+ = n0 + ñ+e
i(kx−ωt) (3.8b)

v− = −v0 + ṽ−e
i(kx−ωt) (3.8c)

v+ = v0 + ṽ+e
i(kx−ωt) (3.8d)

E = Ẽei(kx−ωt) (3.8e)
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where (ñ−, ñ+) � n0 and (ṽ−, ṽ+) � v0. The equations of mass conservation,

momentum conservation, and electric field are

∂

∂t
n− +

∂

∂x
(n−v−) = 0 (3.9a)

∂

∂t
n+ +

∂

∂x
(n+v+) = 0 (3.9b)

∂

∂t
v− + v−

∂

∂x
v− =

q

m
E (3.9c)

∂

∂t
v+ + v+

∂

∂x
v+ =

q

m
E (3.9d)

E =
q

ε0
(n− + n+) . (3.9e)

Inserting the values of Eqs. 3.8 into Eqs. 3.9, discarding second-order small terms,

and simplifying, results in

ñ− =
kn0

ω + kv0

ṽ− (3.10a)

ñ+ =
kn0

ω − kv0

ṽ+ (3.10b)

ṽ− =
iq/m

ω + kv0

Ẽ (3.10c)

ṽ+ =
iq/m

ω − kv0

Ẽ (3.10d)

Ẽ =
q/ε0
ik

(n− + n+) . (3.10e)

Inserting Eqs. (3.10c) and (3.10d) into Eqs. (3.10a) and (3.10b) respectively and

then inserting the resulting forms of Eqs. (3.10a) and (3.10b) into (3.10e) results in
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the dispersion relation of the counter-streaming instability:

1 =
q2n0

ε0m

(
1

(ω + kv0)2 +
1

(ω − kv0)2

)
(3.11)

where the coefficient is the square of ion plasma frequency ω2
i ≡ q2n0

ε0m
. Eq. 3.11

produces four solutions for ω(k):

ω(k) = ±ωi

√√√√(kv0

ωi

)2

+ 1±
√

4

(
kv0

ωi

)2

+ 1 (3.12)

The signs of ω and k only correspond to a phase difference (thus the symmetry

among the four quadrants of the ω-k plane), and so there are two unique solutions

of interest, a purely real solution, ωr and a complex solution, ωc:

ωr = ωi

√√√√(kv0

ωi

)2

+ 1 +

√
4

(
kv0

ωi

)2

+ 1 (3.13a)

ωc = ωi

√√√√(kv0

ωi

)2

+ 1−
√

4

(
kv0

ωi

)2

+ 1 (3.13b)

A plot of ωr and the real and imaginary components of ωc are shown in Fig. 3.2.

The maximum of the imaginary component of ω is i
2
ωi at k =

√
3

2
ωi
v0

. This

defines the maximum instability growth rate, which from Eqs. 3.8 goes as e(ikx−iωt).

Discarding phase information, the growth rate is e(
ωi
2
t), and making the substitution

for ωi, the maximum instability occurs at

ωmax =
1

2

√
q2n0

ε0m
at kmax =

√
3

2v0

√
q2n0

ε0m
(3.14)
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Figure 3.2: Dispersion relation ω(k)

3.4.2 Application of the dispersion relation to a density constraint

For timescales of t < ω−1
max the growth rate of an instability is considered to

be negligible, and for t > ω−1
max a small perturbation of spatial frequency near kmax

will cause a significant disruption of the counter-streaming state. Thus the time

constraint on the counter-streaming state is

t < 2

√
ε0m

q2n0

. (3.15)

Using the relation t = Rc/v0, the upper limit on the allowed density of the ion

bunches:

n0 < 4
ε0mv

2
0

R2
cq

2
. (3.16)

For a fusion core radius of Rc = 5 cm, the counter-streaming time is about 5 ns.

This puts a limit on bunch density of approximately n < 1016 with the strongest
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instability occurring at ω ≈ 108 rad/s and k ≈ 104 rad/m, corresponding to an

instability wavelength of about 0.5 mm.

3.5: Coulomb collisions

Coulomb collisional effects can be split into two types: the continuously occur-

ring low-angle collisions that are principally responsible for thermalization, and the

rare-event high-angle collisions between two ions that can suddenly and radically

change the trajectory of a particle. Both kinds of collisions push ions off of the

desired trajectories by some amount. It is assumed that the ions only collide while

streaming through the device center. The opening angle of the beamline from the

device center as measured from the beam axis is approximately 0.3 rad (17◦), so

scatters in this range are considered problematic.

3.5.1 High probability, low-angle Coulomb collisions

Literature on low-angle collisional processes is vast and well-established [13].

The rate of change of momentum in the x-dimension for an ion encountering a

counter-streaming beam is

m
dvx
dt

= n

(
q1q2

4πε0

)2
4π log Λ

µv2
(3.17)

It is assumed that the center-of-mass frame of the collisions is that of the device,

and the scope is limited to investigating only small cumulative changes in angle

over each pass through the fusion core so that energy exchange is negligible. In
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this way, dvx
dt
→ ∆vx

∆t
where ∆t = Rc

v
is the amount of time the ion bunches spend

passing through the fusion core. The change in x-velocity can be expressed as

∆vx = v(1− cos θ) where θ is the average cumulative scattering angle of an ion over

an amount of time ∆t, and so Eq. (3.17) can be expressed as

mv2 (1− cos θ)

Rc

= n

(
q1q2

4πε0

)2
4π log Λ

µv2
(3.18)

which can be rearranged into an expression for the maximum allowable density:

n <

(
4πε0
q1q2

)2
µmv4 (1− cos θ)

Rc4π log Λ
(3.19)

Using a maximum tolerable scattering angle of θ = 0.03 rad (1% of the wall angle)

and a value of log Λ = 22, the maximum allowable density is n = 6× 1021 m−3.

3.5.2 Low probability, high-angle Coulomb collisions

High-angle scattering events are similar to fusion events in that the interactions

are binary, have a very low probability of happening to any single ion during a single

pass, but nonetheless have a significant impact on device operation. Thus the ratio

of the frequency of high-angle scatters to the frequency of fusion for a single ion is

investigated. The frequency of a fusion event for an ion is

νfusion = nvσ. (3.20)

39



The frequency of low probability, high-angle collisions follows from the Rutherford

scattering probability (Eq. 3 of Ref. [14])

νθ =

(
q1q2

4πε0µ

)2
πn

v3 tan2 (θ/2)
. (3.21)

The ratio of high-angle scatters to fusion events is

νθ
νfusion

=

(
q1q2

4πε0µ

)2
π

v4 tan2 (θ/2)σ
. (3.22)

Since these are low probability events, the maximum tolerable angle is chosen to

be the wall angle of θ = 0.3 rad. The 600 keV peak of p-11B results in a ratio

of νθ
νfusion

= 80, i.e. for every fusion reaction there are 80 high-angle scatter events

in which an ion certainly leaves the beam path. Note that this ratio is density-

independent. The expected value of energy output of a fusion event is tEfusion which

accounts for the portion t of alpha particles that strike the inner surface. The

expected value of energy loss due to a high angle scatter of θ > 0.3 rad is (1−t)ECOM

which accounts for the portion 1−t of ions that may scatter into a different channel.

If there were no other energy losses present, and it is assumed that the ratio of ions

that scatter onto different channels rather than striking the wall is equal to t, then

Q (ratio of power output to power input) would be

Q =
νfusion

νθ

Efusion

ECOM

1

1− t . (3.23)
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Setting Q = 1 and rearranging for t results in the minimum allowable transparency

of a truncated icosahedron CE-IEC

t >
1

1 + Efusion

ECOM

νfusion

νθ

(3.24)

which, for νfusion

νθ
= 1

80
and θ = 0.3 rad results in t > 0.84, which is independent of

device size and fuel density.

3.6: Power deposited on the electrodes and thermal man-

agement

The maximum power deposited on the electrodes will happen on the inside-

facing surface, where the walls meet the fusion core area. If all the fusion energy is

produced at a single point at the device center, the power deposited on the walls

per unit area will be

Pf
A

=
P

4πR2
i

(3.25)

where Ri is the inner radius of the device. With a transparency as seen from the

device center of t ≈ 0.8, the total power radiated on the inner surface is simply

Pf = (1− t)P . The inner surface will radiate with power according to the Stephan-

Boltzmann law

Pi
A

= eσT 4
i . (3.26)
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where Ti is the temperature of the inner surface, e is the emissivity of the surface,

and σ = 5.67 × 10−8 W
m2K4 is the Stefan-Boltzmann constant. However, some of

the inner surface radiates onto other parts of the inner surface, and so a fraction

approximately equal to t escapes, so that the effective emissivity of the inner surface

is te, so that the actual power radiated per unit area will more accurately be

Pi
A

= teσT 4
i . (3.27)

Assuming that the inner surface is of a high emissivity material and is thermally in-

sulated from the innermost electrode, then
Pf
A

= Pi
A

and the equilibrium temperature

of the inner surface will be

Ti =

(
P

teσ4πR2
i

) 1
4

. (3.28)

Some fraction f1 of the power radiated by the inner surface will impinge on the

channel walls, so the power per unit area received by the walls is

Pw = f1(1− t)P. (3.29)

Of this power absorbed by the walls, some fraction f2 will be radiated into other

parts of the walls, and so the effective emissivity of the channel walls will be (1−f2)e.

The equilibrium temperature of the walls then will be

Tw =

(
f1(1− t)Pf

(1− f2)eσAw

) 1
4

. (3.30)
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where Aw is the area of the channel walls. The edge length of a unit regular truncated

icosahedron is 0.4, and so the approximate area of one wall is (0.4)(R0 −Ri)
R0+Ri

2
.

There are 90 edges, and two walls per edge, so Aw ≈ (180)(0.4)(R0 − Ri)
R0+Ri

2
=

36(R0 − Ri)(Ro + Ri). For Pf = 106 W, Ri = 0.25 m, R0 = 1 m, e = 1, t = 80%,

f1 = 0.5, and f2 = 0.9, the equilibrium temperatures of the inner surface and channel

walls are Ti = 2300 K and Tw = 850 K. To limit thermal conduction from the inner

surface to the walls, insulation could separate the two. The thermal conduction

power per unit area through the insulation of thickness a and thermal conductivity

k between the inner surface and the wall is

Pt
A

=
k(Ti − Tw)

a
. (3.31)

In order to limit the power transfer through the walls to a fraction f3 of the power

radiated by the inner surface requires that the length a be

a =
k (Ti = Tw)

f3

4πR2
i

P
(3.32)

which, for f3 = 1% and k = 0.05 W
m K

requires an insulation thickness of 5 mm.
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3.7: Power balance between protons, boron ions, and elec-

trons

The power transfer between ions of species 1 and 2 at different energies is given

by [15]

P1→2

n2
e

= 4.208× 10−44

√
m1m2Z

2
1Z

2
2g1g2 log Λ(E1 − E2)

(m1E1 +m2E2)3/2
. (3.33)

where E is in eV and gi ≡ ni/ne. This is likely an overestimation of power transfer

for purely counterstreaming beams, since the center-of-mass velocity in the lab frame

is ideally zero, but may be a good estimator for cross-streaming beams in the CE-

IEC, and so is used as an order-of-magnitude estimator here. The power balance is

found by numerical integration of the following equations

∂Ep+

∂t
=
−Pp+→e − Pp+→B5+

negp+

(3.34a)

∂EB5+

∂t
=
−PB5+→e + Pp+→B5+

negB+

(3.34b)

∂Te
∂t

=
Pp+→e + PB5+→e − PBrem

ne
. (3.34c)

Using a fuel mixture ratio of M = 5.4, the numerical results are plotted in Fig. 3.3.

For the nominal IEC system, the time over which the ion bunches are in transit is

on the order of t = Rc/vfusion ≈ 5 × 10−9 s. At an electron density of 1022 m−3 the

product tne = 5 × 1013 over which the equilibration time-scale is negligible. After

hundreds to thousands of passes, however, the energy transfer becomes significant,

but this would be naturally mitigated by introducing new fuel ions to replaced lost
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Figure 3.3: With starting energies of Ep+ = 550 keV and EB5+ = 50 keV and Te = 0,
the ion temperatures equilibrate with one another on a faster time-scale than with
the electrons. As t ne →∞ the energies are depleted to Bremsstrahlung radiation.

or fused ions. The probability of fusion at each pass through the fusion core is

P1 = g2neσv (3.35)

which for ne = 1022 m−3, P is on the order of 10−8, meaning that on average, 108

passes are required for a fusion event to occur, and for break-even energy production

approximately 107 passes of an ion are required to happen before ion loss or ion

fusion. Over this many passes through the core, the product t ne = 5 × 1020 now

appears prohibitively large in Fig. 3.3, and so some active method of draining energy

from the boron ions and transferring that energy to the proton ions is necessary,

which is conceivably possible through active voltage control.
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3.8: Limits on electron confinement

Effective electron confinement in the core region faces three challenges: space

charge limitation when ions are not present in the core, thermal leakage of electrons

along beamline point cusps, and loss of electrons to the inner surface line cusps. Lost

electrons must be replaced, and the power required for replenishment is proportional

to the energy of the lost electrons. The energy of the lost electrons comes from both

the electron source and the energy transfer from ions to electrons, the latter of which

is an issue for long electrons lifetimes (see Fig. 3.3.)

3.8.1 Space charge limitation on confined electrons

The density of the electrons in the fusion core is limited by the space charge

of electrons relative to the potential difference between the confining cathode and

the inner anode Vc. The potential of a sphere of electrons of radius Ri is

Φe =
R2
ine

3ε0
. (3.36)

and so the density is limited to

ne < Vc
3ε0
R2
i e

(3.37)

which, for an electron confinement potential on the order of Vc = 25 kV, limits

the electron core density to ne = 1014 m−3 for cold electrons. Higher temperature
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electrons will eject from the core more frequently.

3.8.2 Number of electrons required for complete neutralization

As opposed to all electrons staying in the core region while the ions are not

present, some electrons could be newly generated in pulses synchronized with the

passing ion bunches. As previously estimated, the electron density required for core

neutralization for a useful fusor is ne ≈ 1022 m−3. In a fusion core of radius Rc = 5

cm, the number of electrons needed is Ne = 5×1018. If each electron must be created

anew each time the bunches pass through the fusion core, the power required for

electron neutralization is

Pe = TeNef (3.38)

where Te is in joules, and f ≈ 106 Hz is the oscillation frequency of the device. To

limit the electron neutralization power to 1 MW, the temperature of the electrons

must be held to approximately 1 eV. To maintain this power loss limit with electrons

of energies up to 10 keV, then 1014 (0.01%) of the neutralizing electrons may be lost

at each pass.

3.8.3 Electron line cusp loss frequency

Assuming the electrons are prevented from escaping along the beamlines by

the cathode potential, the electron loss frequency is calculated from the mirror ratio

of the cusps. Theoretically the mirror ratio is infinite, since the magnetic field is

zero at the device center. An effective mirror ratio can be calculated from the point
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where the electrons become magnetized, which is taken to be the point at which the

Larmor radius is equal to the fusion core radius, where the magnetic field will be

B = mv
eRc

and so the mirror ratio R is estimated as

R = M
eRc

mevth
(3.39)

And an electron is lost to a cusp if its velocity vector has an angle less than θ

measured from the magnetic field, where θ is defined by

sin θ =
1√
R

(3.40)

The cusps in this configuration are line cusps (rather than the more commonly

analyzed point cusps) so rather than a loss cone, there is the two-dimensional loss

sector (or loss arc). For a random electron velocity direction, the probability P that

the electron is in a loss cone is the area of a spherical sector of height 2 sin θ divided

by the surface of the sphere, which simplifies to P = sin θ At an electron density

of 1014 m−3 and at a temperature on the order of a keV or above, the electrons are

collisionless, and so the frequency at which an electron has a “chance” to escape is

based on its transit time across the core region, which is vth/Rc. This frequency

multiplied by the loss probability is gives an estimation of the loss frequency:

νloss =
vth
Rc

√
mevth
eMRc

. (3.41)
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At a temperature of Te = 120 keV and magnetization of M = 1 T, the loss proba-

bility will be 7% and the loss frequency will be νloss = 6 × 107 s−1 which is slightly

higher than the oscillation frequency of the ions. Lower temperatures will lower this

loss rate, but 120 keV is the expected temperature for long-lifetime electrons (see the

analysis in Sec. 3.2). Note that this result does not take into account space charge

effects, and so is only applicable when the density of electrons is low (ne < 1014 m−3).

3.8.4 High-β loss rate along beamline cusps

If the temperature and space charge of the electrons is high enough such that

some electrons would overcome the potential barrier of the cathode, leakage of these

electrons is limited by the point-cusp nature of the magnetic fields along the beam-

lines. The portion of ions that have enough energy to exit along the cusps is given by

the Boltzmann Factor, and accounts for the space-charge potential of the electrons:

B = exp

(
Vc − Φe

Te

)
(3.42)

where Vc is the voltage of the cathode relative to the fusion core and Φe is the

potential spike of the electrons. In the best-case scenario, the electrons will be in

a high-β state (β = neTe
B2/2µ0

≈ 1) and the cusp-rate ion loss for a high-β plasma is

given by [6]

I

e
=
π2

9
nevthr

2
l (3.43)
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where rl = mevth
eB

is the Larmor radius of electrons. In the point cusps, the strength

of the magnetic field is approximately 1−tm
tm

M and so the loss rate, accounting for

the limiting potential of the cathode, is

I

e
= nev

3
th

(
me

eM

tm
1− tm

)2

exp

(
Vc − Φe

Te

)
(3.44)

where M is the magnetization of the permanent magnets and tm is the transparency

of the device if only the permanent magnets were present (i.e. tm is the fraction of

the spherical surface area of the CE-IEC that is not magnetized and tm > t.)

For tm = 0.9 and M = 1 T, and at a temperature of Te = 10 keV and

Vc − Φe = 25 kV, and a density of ne = 1022 m−3, the electron loss rate at a point

cusp is 1034 electrons per second. For Ne = 5×1018 the loss rate for a single electron

over the 32 point cusps of the CE-IEC is ν = 32× 1034/Ne = 5× 1016 s−1. To lower

this number to the ion oscillation frequency of approximately 107 s−1, the ratio Vc−Φe
Te

must be lowered by a factor of 10.

3.9: Scaling laws of the CE-IEC

In this section, a change in the device length scale L denotes a change in each

part of the device by the same ratio. The nominal scale for the preceding sections

was based on L ≈ 1.
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3.9.1 Overcoming space-charge limitations by scaling down

The limitation on a human-sized IEC or larger is due to the space-charge of

recirculating ions in non-neutralized regions. If the figure-of-merit for an IEC device

is net power output per unit volume P ≡ P
Vol.

rather than net power output, an IEC

device can overcome space charge limitations by a reduction in size. Vol. = 4
3
πR3

0 is

the volume of the fusor. The electric potential of an unneutralized ion bunch goes

as

Φbunch ∝ nL2 (3.45)

(this can be seen by taking the potential difference between the center and edge

of a uniformly charged sphere: Φ = Q
8πε0Rc

and expressing the charge as density

times volume Q = qn4
3
πR3

c .) A space charge limitation implies that a device has a

maximum ratio of bunch potential to device voltage

Φ

V
< constant (3.46)

where the constant is likely on the order of 1
100

. Since V is determined by the

maximum fusion cross section, it is constant, and so the potential of the bunch

must also be limited by a constant, and so Eq. 3.45 can be re-written as

n ∝ 1

L2
(3.47)
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which is the same trend found in Eqs. (3.6) and (3.16). The fusion power per unit

volume in the device core is

Pfusion = n2vσE (3.48)

where v is the center-of-mass velocity between the counter-streaming proton and

boron ions, which is constant at the peak value of σ, and so Eq. (3.48) can be

written as

Pfusion ∝ n2 (3.49)

and combining Eqs. (3.47) and (3.49) results in

Pfusion ∝
1

L4
(3.50)

which can be rephrased as

PfusionL
4 = constant. (3.51)

To reiterate, this trend holds only when space charge is the limiting factor, and works

on the principal that reducing the size of an ion bunch allows for an increase in ion

bunch density without an increase in space charge, such that the potential from the

ion bunch remains at the same ratio to the accelerating potential at various scales.

To think of it another way, decreasing the size of the CE-IEC while maintaining the

same voltage increases the electric field, and decreasing the size of the ion bunch

decreases the electric field of the space charge, allowing the density of the bunch

more room for increase.

It should also be noted that at small sizes, the effect of the magnetic field
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becomes negligible. The magnitude of the magnetic field is independent of scale,

which means the Larmor radius is also independent of scale. At large scales, the

ions and electrons are effectively very tightly bound to magnetic field lines, but at

small scales the Larmor radius can become large relative to the scale length.

3.9.2 Scaling of energy input

Energy input, is estimated here to scale as the rate of ion loss, commonly

referred to as conduction loss, or Pcond. The ion loss frequency per unit volume

scales as the density of the ions (n) multiplied by the collision frequency of a single

ion (n, Eq. 3.17) multiplied by the frequency of oscillation f (because each pass

through the system is another “chance” to hit an electrode). Since f ∝ 1
L

and again

using Eq. 3.47 the power input scales as:

Pcond ∝
1

L5
(3.52)

which is not favorable to small scaling unless the electrostatic focusing can be im-

proved such that ion collisions with the electrodes are an extremely rare occurrence

over each pass through the system.

3.9.3 Scaling of surface erosion

The operational lifetime of a CE-IEC fusor will be limited by erosion of the

surfaces due to impacts from both ionized fuel straying from beampaths as well as

fusion products. The lifetime will scale as the inverse of the erosion rate relative to
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the scale length of the device. The erosion rate r will scale as the sum of the fusion

power and the input power per unit area at the location of the inner surface with

area A = 4πR2
i

r ∝ Pfusion + Pcond

A
. (3.53)

The lifetime of the fusor is related to the erosion rate by

Tlife ∝
L

r
(3.54)

and so, making the substitution P ≡ P Vol. ∝ PAL the fusor lifetime is given by

Tlife ∝
1

Pfusion + Pcond

. (3.55)

No estimate is made here on the actual erosion rate due to the complexity of the

process.

3.9.4 Size of a small CE-IEC with significant power density

From the simulations of Chap. 4 it was found that the maximum achievable

density in the core for long-lifetime ions was on the order of n = 1014 m−3. This

results in a fusion power density of approximately Pfusion = 10−6 W
m3 . Using Eq. 3.51,

the CE-IEC size L̃ required for a power density of P̃fusion = 106 W
m3 (one megawatt

per cubic meter) is given by the relation

L̃ = L

(Pfusion

P̃fusion

) 1
4

(3.56)

54



which results in L̃ = 1 mm.

3.9.5 Structural limitations of a small CE-IEC

Practical reduction of the size of a fusor is limited chiefly by three possible

factors. To analyze these factors, diamond is proposed as an inter-electrode insulator

within the CE-IEC walls due to its high compressive strength and high dielectric

strength.

The first possible limitation is that the electric force between electrodes will

cause structural failure of the fusor at small scales. The force per unit area between

two electrodes within an CE-IEC wall is approximated as the force between two

parallel electrodes

F = 2εrε0
V 2

d2
(3.57)

where εr is the dimensionless relative permittivity of the inter-electrode material

and d ∝ L is the space between the electrodes. For a wall thickness of 0.04 radians,

d ≈ 0.04L/4, and for L = 1 mm, and using an inter-electrode medium of diamond

(εr ≈ 7) the attractive force between the electrodes is F = 300 GPa (gigapascals)

whereas the maximum pressure of diamond is 600 GPa, so it appears that inter-

electrode pressure does not immediately make a 1 mm fusor impossible.

The second limitation is the dielectric breakdown of the interelectrode medium.

This could be theoretically limited by operating only in the vacuum of space, as well

as using a very high dielectric strength material (e.g. diamond) as an insulator. The
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electric field between electrodes in a CE-IEC wall will be

E =
V

d
(3.58)

which, again using diamond, is 5×1010 V
m

, whereas the dielectric strength of diamond

is 2× 109 V
m

, suggesting that a fusor of this size would cause dielectric breakdown of

the diamond spacing.

The third limitation is that the manufacturing of a very small fusor could be

limited by the precision of the manufacturing process.

3.9.6 Lawson criterion estimation

The Lawson criterion is met when the electric power generated by the fusor

and energy converter exceeds the power required to operate the fusor. The Lawson

criterion can be estimated as

Pnet = (t ηDECPfusion − Pcond − Pbrem) (3.59)

where once again P is power density, t is the transparency of the device as viewed

from the center point, and ηDEC is the efficiency of the direct energy converter.

The criterion is met when Pnet > 0. From section 3.2 it was found that the best

case scenario for bremsstrahlung radiation is Pbrem = Pfusion

3
. Eq. 3.59 can then be

expressed as

Pnet =

[(
t ηDEC −

1

3

)
Pfusion − Pcond

]
. (3.60)
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In order for t ηDEC − 1
3
> 0, for t = 0.8 the energy conversion efficiency ηDEC must

be at least 42%. A suboptimal Standing Wave Direct Energy Converter was shown

in Chap. 8 to have a conversion efficiency of 50% for mono-energetic α-particles.

At 50% conversion efficiency, the raw fusion power output of the core would

only need to exceed the input power by a factor of 10.

Unfortunately, from simulations that will be discussed in Chap. 4, space charge

limits the fusion power output of the current approach on the order of a microwatt.

These issues would need to be addressed if any variants on the current approach are

to yield success.
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Chapter 4

Particle-in-cell Modeling

A 2D3V (two spatial dimensions and three velocity dimensions) axisymmetric

particle-in-cell (PIC) simulation was created for the Continuous Electrode Inertial

Electrostatic Confinement (CE-IEC) Fusor. The simulation models one half of a

single beamline, approximated as axisymmetric, and is run in parallel on a general

purpose graphics processing unit (GPU) for fast execution, enabling both high-

resolution simulation as well as optimization.

4.1: Domain

The simulation domain exists in two-dimensional axial-radial cylindrical co-

ordinates with azimuthal symmetry assumed. The axis of symmetry extends along

the center of a single IEC beamline. Ions move primarily along the axial dimension

(x). The radial dimension (r) is transverse to the beamline center, and is not to be
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confused with the spherically radial dimension of a three-dimensional IEC. Planar

symmetry exists at x = 0 where the ion bunches pass through the device center.

A single channel of the continuous electrode IEC has greatest width (radial

extent) at the outer radius (axial extent) and tapers down to a minimum width at

the inner radius, where it then opens up in the central fusion region. The angle

of the domain boundary wall is calculated as the angle of the wall of a pentagonal

channel aligned with the x-axis where it intersects with the x-y plane when the

wall thickness is 0.08 radians. This geometry is represented on a structured grid by

increasing the grid spacing both axially and radially with increased x. In the IEC,

the ions tend to be more spread out in the turnaround region near the outer radius,

and so a lower grid resolution is needed in this area. This is contrasted with the

fusion core region (near the axis origin) in which the grid resolution is greatest. An

extra region of cells is added in the radial direction to emulate the open region in

the center of the IEC.

For the cell spacing formulae below, indices i and j refer to the axial index of

the axial and radial address of the cell respectively, and the coordinates x and r are

the axial and radial locations of the cell nodes respectively. Index values start at

zero, with the origin point at i = 0 and j = 0.

4.1.1 Axial cell spacing

A non-constant spacing in the axial dimension is used to avoid the overuse

of computational cells in the turnaround region where the inter-particle spacing is
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generally larger. The cell spacing algorithm is required to be simple to calculate,

and the inverse calculation (finding the non-integer cell location of a particle) should

not be computationally intensive and should not require a lookup table. The cell

spacing formula chosen is:

xi = xb + k
(
(ci+ 1)2 − 1

)
(4.1)

where x is the location of cell i, xb is the value at which the cell spacing becomes

non-constant, and k and c are constants that determine the scale and the rate of

change of cell spacing respectively. The user inputs the desired cell spacing for

the beginning as well as the end of this region, along with the beginning and end

points, and k and c are found using MATLAB’s lsqnonlin function to match the

beginning and end cell spacings as close to those specified by the user as possible,

while maintaining the exact endpoints specified by the user.

4.1.2 Radial cell spacing

To generate the angled wall of the IEC beampath without losing the structured

nature of the grid, the radial cell spacing is a function of axial position. The function

for radial cell spacing is

r(i, j) =


xi

j
Nr−1

tan (θ) xi > xb

xb
j

Nr−1
tan (θ) xi ≤ xb

(4.2)
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where Nr is the number of radial cell locations and θ is the angle of the wall with

respect to the axis of symmetry, which is set to 17.7◦. For a given location xi, the

radial cell spacing is constant, and will be denoted as ∆ri. The formula for ∆ri

follows:

∆ri =


xi

1
Nr−1

tan (θ) xi > xb

xb
1

Nr−1
tan (θ) xi ≤ xb

(4.3)

4.1.3 Cell volumes

The three-dimensional volume of each cell is found by extruding each cell

around the axis of symmetry. Eqs. (4.1) and (4.2) specify the cell locations. The

cell locations are typically the center of each cell, except for the boundary cells in

which case the cell location is on the domain boundary. Calculation of cell volumes

requires the positions of cell boundaries as well. Evaluating Eqs. (4.1) and (4.2) at

the half-index values results in the cell boundary locations. These boundaries are

used to determine if a particle is inside of a particular cell. The volume of each cell

is a sum of the four or fewer “sub-cells” that make up each cell. A sub-cell is only

used for finding cell volumes, and is made by extending sub-cell boundaries from

the cell location point to the cell boundary lines. The volume of the sub-cell is given

by the four nodes that make up the corners of the sub-cell, where the four nodes,

clockwise from the bottom-left corner, are (x1, r1a), (x1, r1b), (x2, r2b), and (x2, r2a):

Volsub =
π (x2 − x1)

3

(
r2

2b + r2
1b − r2

2a − r2
1a + r2br1b − r2ar1a

)
(4.4)
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Figure 4.1: Cell locations (dots) and cell boundaries (lines) for the particle-in-cell
domain. A low number of cells is used for this figure for the purpose of clear
illustration. The resolution used in the simulation is about four times greater, for a
factor of 16 increase in the number of cells as compared to this figure.

and the volume of a cell is Vol =
∑

Volsub. The cell volumes are used for calculating

charge density in the particle-in-cell simulation.

4.2: Particle-in-cell algorithm and parallelization

Setup of the simulation domain and initial parameters is performed in the

MATLAB language and environment. The time-stepping portion of the simulation is

written in C and is compiled and executed by MATLAB using the MEX (MATLAB

executable) interface. The C routine contains all memory allocation on the GPU

and all transfer of memory between the CPU and GPU. During each time-step, the

CPU manages calls to CUDA kernels, which execute functions on the particles and

cells using the GPU’s processors.
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4.2.1 Particle-to-cell interpolation to find charge density

Particle charges are deposited at the cell centers using linear interpolation. In-

terpolation in the x-dimension is straightforward. Interpolation in the r-dimension is

accomplished using the “cylindrical cloud-in-cell” linear interpolation from Ruyten [16].

For particle p located at (xp, yp) between nodes i and i+ 1 in the x-dimension and

between nodes j and j + 1 in the r-dimension, the weighting in each dimension

determines the portion of the particle that is scattered towards the i side or j side

respectively, and are calculated as follows

wx =
xi+1 − xp
xi+1 − xi

(4.5a)

wr =

(
ri,j+1 − rp

∆ri

)(
3 + ri,j/rp

4

)
(4.5b)

and so the contribution of particle p to the charge density at the four nearest cells

is  ρi,j ρi,j+1

ρi+i,j ρi+i,j+1


p

= qp

 wxwr
Voli,j

wx(1−wr)
Voli,j+1

(1−wx)wr
Voli+1,j

(1−wx)(1−wr)
Voli+1,j+1

 (4.6)

where qp is the charge of the particle (accounting for both the macroparticle weight-

ing and the ionization level). This task is parallelized by particle, which could result

in a “race condition” whereby two or more processes read the same value and at-

tempt to increment that value one after another, but the second process reads the

original value before the first process incremented it, and then writes a new value

that does not contain the incrementation applied by the first process. The net effect
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Figure 4.2: Modification of the discrete Poisson equation on a skewed grid

is that the algorithm will and sum the contributions of processes to a erroneously low

value. To overcome this, the atomicAdd CUDA function is used for each evaluation

of Eq. 4.6 so that the contribution of each particle p to the density ρ is correctly

summed without errors due to the race condition.

4.2.2 Calculation of electric potential from charge density

The electric potential is found through discretization and Jacobian iteration

of the axisymmetric form of Poisson’s equation:

∂2Φ

∂x2
+

1

r

∂Φ

∂r
+
∂2Φ

∂r2
= − ρ

ε0
(4.7)

The skewed nature of the grid requires modification of the calculation of the x-

derivative, since the cell centers are no longer aligned in the x-dimension. The

x-derivative requires the two closest cells in the x-direction. As shown in Fig. 4.2,
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the second derivative of x can be approximated as

[
∂2Φ

∂x2

]
i,j

=
1

∆x2

(
−2Φi,j +

aΦi−1,j + bΦi−1,j+1

a+ b
+
cΦi+1,j + dΦi+1,j−1

c+ d

)
(4.8)

where a, b, c, and d are the distances illustrated in Fig. 4.2, and it is assumed (for

this expression only) that ∆x = xi+1 − xi = xi − xi−1. Further modification of

Poisson’s equation is warranted by the non-uniform spacing in the x-dimension of

the cells. The modification of the second derivative with non-uniform grid spacing

is given by Sfakianakis [17]:

[
∂2Φ

∂x2

]
i

= − 2

(xi+1 − xi) (xi − xi−1)
Φi +

2

(xi − xi−1) (xi+1 − xi−1)
Φi−1

+
2

(xi+1 − xi) (xi+1 − xi−1)
Φi+1 (4.9)

By combining the effects of Eq. 4.8 and Eq. 4.9, the discrete form of Eq. 4.7 becomes

2

(xi+1 − xi) (xi − xi−1)
Φi +

2

(xi − xi−1) (xi+1 − xi−1)

aΦi−1,j + bΦi−1,j+1

a+ b

+
2

(xi+1 − xi) (xi+1 − xi−1)

cΦi+1,j + dΦi+1,j−1

c+ d
+

1

ri,j

Φi,j+1 − Φi,j−1

2∆ri

+
Φi,j − Φi,j−1 − Φi,j+1

∆r2
i

= −ρi,j
ε0

(4.10)

On the x = 0 and r = 0 boundaries, the derivative of the potential perpendicular to

the boundary vanishes due to symmetry (Neumann boundary conditions). This is

enforced by replacing Φ−1,j with Φ1,j, and Φi,−1 with Φi,1 in Eq. 4.10 on nodes where
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i = 0 and/or j = 0. On the other (Dirichlet) boundaries, the boundary potentials

are known values and do not need to be solved for. The coefficients in Eq. 4.10 can

be rewritten as

AΦi−1,j+BΦi−1,j+1+CΦi,j−1+DΦi,j+EΦi,j+1+FΦi+1,j+GΦi+1,j+1 = −ρi,j
ε0

(4.11)

At each location (i, j), the coefficients of Eq. 4.11 makes of a row of the linear system

A~Φ = ~b (4.12)

where ~Φ is a column vector of the unknown potentials of the cells in the simulation

domain, A is the matrix of coefficients, and ~b is the source term −ρ/ε0 added to any

known boundary (Dirichlet) potentials. Solution of Eq. 4.12 is accomplished using

a Jacobian iteration method, which is chosen due to its straightforward paralleliza-

tion. An initial guess of the potential ~Φ0 is chosen, and the potential is solved for

iteratively:

~Φk+1 = D−1~b−
(
D−1N

)
~Φk (4.13)

where k is the iteration index, D is the diagonal of A and N is the non-diagonal part

of A so that A = D + N. Both D−1 and D−1N can be precalculated. Each row of

D−1N has at most 7 entries, so the maximum amount of memory needed is on the

order of 7 multiplied by the number of cells, which is easily achievable on a GPU.

Each row of Eq. 4.13 is evaluated in parallel. After each iteration, the GPU must

be synchronized (all processes allowed to complete) so that at the next iteration
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each process has access to the updated data. Since many iterations of Eq. 4.13

must be performed, this part of the PIC algorithm takes a significant portion of the

computation time.

4.2.3 Calculation of electric field from electric potential

The electric field components are calculated in a similar manner to the electric

potential, but the method is explicit rather than implicit, and therefor faster and

more simple. The electric field is the negative gradient of the potential

Ex
Er

 = −

 ∂
∂x

∂
∂r

Φ (4.14)

Once again, because of the non-uniform cell spacing in x and the skewed nature

of the grid, the numerical derivatives must be modified using the numerical first

derivative of Sfakianakis [17] and the same skewed grid modification as Eq. 4.8

[Ex]i,j = −aΦi−1,j + bΦi−1,j+1

a+ b

xi+1 − xi
(xi − xi−1)(xi+1 − xi−1)

+Φi,j

(
1

xi − xi−1

− 1

xi+1 − xi

)
+
cΦi+1,j + dΦi+1,j−1

c+ d

xi − xi−1

(xi+1 − xi)(xi+1 − xi−1)
(4.15a)

[Er]i,j =
Φi,j+1 − Φi,j−1

2∆ri
(4.15b)

Eqs. 4.15a are easily parallelized by cell on the GPU and so this part of the PIC

algorithm takes only a small portion of the simulation time.
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4.2.4 Cell-to-particle interpolation of electric and magnetic field

The acceleration of particles due to the electric and magnetic fields are inter-

polated from the cell values first by recalling the particle weights from Eq. 4.5, then

weighting the fields to the particles:



aEx

aEr

aBx

aBr


p

=
qp
mp


wxwr



Ex

Er

Bx

Br


i,j

+ (1− wx)wr



Ex

Er

Bx

Br


i+1,j

+wx(1− wr)



Ex

Er

Bx

Br


i,j+1

+ (1− wx)(1− wr)



Ex

Er

Bx

Br


i+1,j+1


(4.16)

Like in Sec. 4.2.1, there is an issue of multiple processes attempting to access the

same data on GPU memory, but in this case it is read access. No explicit coding

is necessary to resolve this conflict, and the GPU performs this part of the PIC

algorithm quite quickly.

4.2.5 Particle position and velocity updates

Particle positions and velocites are updated at each timestep, in a method

equivalent to the leapfrog method with constant value time-steps. Particle velocities
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are first updated using the Boris method [18] for particle movement in a magnetic

field and are then updated using the Birdsall method [19] for moving particles in

curvilinear coordinates. Together, these methods are as follows, where a superscript

k refers to the time-step.

vm = vk +
∆t

2
aE (4.17a)

vt =
∆t

2
aB (4.17b)

vc = vm − (vm × vt) (4.17c)

vs =
2vt

1 + |vt|2
(4.17d)

vl = vm + (vc × vs) (4.17e)

v′
k+1

= vl +
∆t

2
aE (4.17f)

x′ = xkr + v′
k+1
r ∆t (4.17g)

y′ = v′
k+1
θ ∆t (4.17h)

r′ =
√
x′2 + y′2 (4.17i)

θ = sin−1 y
′

r′
(4.17j)

vk+1 =


v′k+1
x

cos θvkr + sin θvkθ

− sin θvkr + cos θvkθ

 (4.17k)

xk+1 = xk + vk+1∆t (4.17l)

Eqs. 4.17a are independent for each particle, and so are easily parallelized, and this

part of the PIC algorithm takes a small portion of overall computation time.
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4.2.6 Particle-particle collision modeling

Collisions are modeled in the pair-matching Monte-Carlo scheme of Takizuka

and Abe [20]. Particles are sorted into cells (performed in the density scattering of

Sec. 4.2.1) and each cell is assigned a thread for GPU execution. First the particle

list in each cell is shuffled into a random order using the Fisher-Yates algorithm.

A loop through each neighboring pair of particles in the list is performed, and the

scattering angle θ is calculated using the method outlined in Chap. 7. The relative

velocity vrel for calculating θ is the velocity difference of the particle pair, and the

density n used for the calculation of θ is the density of the cell, so that in this

way each particle gets a random sampling of the velocity space of the cell and over

many time steps the collisional effects are approximately integrated over the entire

velocity space. Once θ is calculated, a random animuthal angle φ is generated

uniformly between 0 and 2π. In the center-of-mass frame of the particle pair, one

particle has its velocity changed by these two angles and the change in velocity of

the other particle is calculated such that the post-collision momentum of the pair is

unchanged. The changes in velocity are then applied back to the laboratory frame.

4.2.7 Particle-boundary interactions

Particles that cross the domain boundary on either the axis symmetry at

r = 0 or the plane of symmetry at x = 0 are reflected (as if “bouncing” off of

these boundaries) by checking each particle for a negative position value in each

dimension, and in the case of a negative value, changing it to positive value, as well
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as switching the sign of the velocity in that dimension.

Particles that cross any other boundaries are removed from the domain, and

the kinetic energy of the removed particles is summed for the calculation of power

input of the fusor. Lost particles are replaced a the beginning of the next period, in

the fusion core with fusion velocity.

Calculation of which particles need to be removed from the domain is accom-

plished by parallel process on the GPU. The algorithm for removing particles from

the simulation requires a GPU-to-CPU memory transfer of boolean values. The

CPU then loops through the array of particles, and upon encountering a particle

in need of removal, replaces that particle’s data on the GPU with the data of the

last active particle in the array via the cudaMemcpyDeviceToDevice option in the

cudaMemcpy function.

4.3: Fusion calculation

The pair-matching algorithm used for collision modeling doubles as a fusion

calculation tool. The contribution of each particle pair to the fusion rate is calculated

using the relative velocity of the particles, the ion densities in the cell, and the

number of macroparticles in the cell using the fusion rate equation for fusion between

species i and j

Rfusion =
ninjσ(vrel)vrel

Np

[
#

m3 s

]
(4.18)

where Np is the number of particle pairs in the cell contributing to fusion so that the

fusion rate is averaged over the each pair. The contribution from each pair in the cell
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is summed and then multiplied by the volume of the cell, then the contribution from

each cell is summed and multiplied by the energy per fusion reaction and divided

by the simulation time-step to get the overall fusion power:

Pfusion =
E

∆t

Nk∑
k

Volk
Np

Np∑
p

ninjσ(vrel)vrel [W] (4.19)

Fit equations for the fusion cross section of p-11B as a function of the center-of-mass

energy are are given by Nevins and Swain [21]. More useful for simulation is the

cross section as a function of the relative velocities of the particles, which, using the

Nevins and Swain equations, are produced below. Because a pair of ions from the

fictional species s (Eq. 4.23) has the same relationship between relative velocity and

center of mass as a proton and boron nucleus pair, the cross section as a function

of velocity is the same for p-11B as it is for species s.

σ(v) =
1

v2
exp

(
−vGamow

v

)

×



a0 + a1v
2 + a2v

4 +
a3

(v2 − u2
148)2 + w4

2.35

u20 < v < u400

b0 + b1

(
v2 − u2

400

)
− b2

(
v2 − u2

400

)2 − b3

(
v2 − u2

400

)5 u400 < v < u642

c0 +
c1

(v2 − u2
581.3)

2
+ w4

85.7

+
c2

(v2 − u2
1083)

2
+ w4

234

+
c3

(v2 − u2
2405)

2
+ w4

138

+
c4

(v2 − u2
3344)

2
+ w4

309

u642 < v < u3500

(4.20)

vGamow is the Gamow velocity

vGamow = 2cπαZ1Z2 (4.21)
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a0 4.118× 10−26
[

m4

(10−7 s)2

]
a1 2.400× 10−26 [m2]

a2 1.105× 10−26
[
(10−7 s)

2
]

a3 1.662× 10−29
[

m8

(10−7 s)6

]
b0 6.898× 10−26

[
m4

(10−7 s)2

]
b1 6.610× 10−26 [m2]

b2 9.711× 10−26
[
(10−7 s)

2
]

b3 8.275× 10−25

[
(10−7 s)

8

m6

]
c0 9.156× 10−28

[
m4

(10−7 s)2

]
c1 2.347× 10−27

[
m8

(10−7 s)6

]
c2 5.179× 10−28

[
m8

(10−7 s)6

]
c3 1.224× 10−28

[
m8

(10−7 s)6

]
c4 5.188× 10−28

[
m8

(10−7 s)6

]

Table 4.1: Coefficients for Eq. (4.20).

where c is the speed of light and α is the dimensionless fine structure constant

(α ≈ 0.007297). For p-11B, vGamow = 6.87 × 107 m/s. The constants uE and wE

are relative velocities at center-of-mass energy E expressed in keV, i.e. uE, wE =√
2E[keV]

µ
1

1000e
. Some of the coefficients in SI units are too small to be represented in

single-precision floating-point format. Instead, all units of seconds (s) are converted

to units of 10−7 s. The coefficients have approximate values as shown in Table 4.3. In

the simulation, use of this conversion only requires on additional step of multiplying

the relative velocity v by 10−7, while the output σ (Eq.(4.20)) remains in units of m2.

The cross section as a function of center-of-mass velocity (valid for both p-11B and

s-s) is shown in Fig. 4.3.
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Figure 4.3: Fusion cross section as a function of center-of-mass velocity for p-11B fuel.
The three sections of Eq. (4.20) are delineated by vertical dashed lines.

4.4: Fuel species

The present PIC simuation uses a single species of ions as a stand in for

p-11B fuel. As a stand in, the single ion species s is defined such that two such ions

have the same argument of the Rutherford scattering formula at a given energy, and

the same fusion rate production for counter-streaming beams (assuming that the

proton and boron ions are moving exclusively in opposite directions).

ZpZB

µpB(vp + vB)2
=

Z2
s

µs-s(vs + vs)2
(4.22a)

σpB

(
µpB(vp + vB)2

)
(vp + vB) = σpB

(
µs-s(vs + vs)

2
)

(vs + vs) (4.22b)
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Because of the complex nature of the fusion cross section as a function of center-

of-mass energy σpB(ECOM), it follows that the only solution is Zs =
√
ZpZB, and

ms = 2µpB so that vs = (vp + vB) /2 for a given energy. For the values Zp = 1,

ZB = 5, mp = 1 AMU, and mB = 11 AMU, the following values satsify Eqs. (4.22):

Zs =
√

5 (4.23a)

ms =
11

6
[AMU] . (4.23b)

The voltage required to accelerate to the velocity vs = 5.56×106 (so that the relative

velocity between two ions is the peak fusion cross sectional relative velocity 2vs is

Vs =
1

2

ms

eZs
v2
s = 132 [keV]. (4.24)

4.5: Optimization routine

The goal of the optimizer is to choose the voltage profile along the IEC wall

that results in the best bunching of the ions. The cost function is evaluated when

the particles are passing through the fusion core and is defined as

C =
1

N


√√√√ N∑

i

∣∣∣xi
L

∣∣∣2 +

√√√√ N∑
i

∣∣∣∣vi − vfusion

vfusion

∣∣∣∣2 +Nloss

 . (4.25)

Particles are born into the system “pre-bunched”, that is, they are generated in

the fusion core with a random normal distribution of offsets in both position and

velocity. Over one period of oscillation within the simulation the particles travel
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from the fusion core to the turnaround region and back into the core, returning to

near their original positions. The pre-bunched particles, however, are not inherently

in a steady-state structure, and the phase space distribution of the bunch changes

quite drastically over its first few passes through the core. Therefore it is not useful

to only optimize over a single period because after the first period the ions will almost

surely behave sub-optimally. It is also not feasible to optimize over a large number

of periods since the final state of the ions is extremely sensitive to the electrode

voltages. The routine for optimizing the CE-IEC instead starts with optimization

over one period and then builds up to larger numbers of periods, to better mimic

steady-state operation.

4.5.1 Algorithm for the optimization wrapper

Starting with a value of P = 1, and initializing the wall voltage Vbest and the

particle positions and velocities fbest (x,v) to initial-guess values do the following:

1. Initialize the best-cost for P periods CP = 1. Run the optimization routine

with initial guess Vbest, and initialize the particle positions with fbest (x,v),

evaluating the cost function C after P periods of oscillation at each run. For

each evaluation of C if C < CP , set CP ← C and record Vbest and fbest (x,v).

2. If steady-state of the cost function has been reached (i.e. CP ≈ CP−1), the

optimization is complete. Otherwise, set P ← P + 1, and go to step (1).

The reasoning for storing fbest (x,v) for each optimization period is to more quickly

approach steady-state operation than if the bunches were re-initialized to a purely
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monoenergetic state at each run. The optimization routine is a hybrid global-local

optimizer. Each optimization starts using MATLAB’s bounded simulated annealing

function simulannealbnd. The optimal point from the simulated annealing routine

is then used as the starting point for a MATLAB’s Nelder-Mead simplex local op-

timizer fminsearch which was modified to include bounds and to specify an initial

simplex size (so that smaller simplexes can be initialized when P is large).

4.6: Optimization results

The optimization method was tested on a CE-IEC with inner radius 0.25 m,

outer radius 1 m, wall angle 17.7◦ and a total number of confined ions of species

s per half-beamline of 2× 109 which are grouped into 5000 appropriately weighted

macroparticles. The computational grid consists of 3722 computational cells. The

optimizer was then tested both without a magnetic field and with a magnetic field.

4.6.1 Without magnetic field

A frame of the optimization without a magnetic field is shown in Fig. 4.4.

The optimization visualization is designed to be intuitive for the user by supplying

important information on both the state of the simulation as well as the state of

the optimization algorithm. The optimizer The plot of the cost function output

at each iteration is shown in Fig. 4.5, plotted against the number of periods over

which the optimization was performed. Long term simulation can be used to study

thermalization of the CE-IEC. The components of the temperature of the bunch,
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Figure 4.4: Frame of the output of the optimization routine of the 2D3V CE-IEC
optimizer.

Figure 4.5: The cost function output as a function of periods completed, with red
circles denoting the iterations where the simulated annealing algorithm found a new
optimum.
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Figure 4.6: Frame of a long-timescale simulation of the CE-IEC beamline without
a magnetic field.

normalized by the bunch energy, are calculated as follows:

Tx = mean

{
[|vx| −mean (|vx|)]2

v2
fusion

}
(4.26a)

Tr = mean

{
v2
r

v2
fusion

}
(4.26b)

Tθ = mean

{
v2
θ

v2
fusion

}
(4.26c)

T = Tx + Tr + Tθ (4.26d)

Fig. 4.6 shows the increase in temperature over 527 oscillations of the IEC to where

it approaches steady-state operation. The Tθ temperature in this case is the most
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“pure” metric of thermalization, as this simulation contains no magnetic field and

so the only way a particle can obtain a θ component of velocity is through collisions.

Both Tx and Tr are subject to the shape of the electric potential in the space that

the ions occupy. The long steady increase in Tx in Fig. 4.6 is due to the spreading

of the ion bunch along the beamline.

4.6.2 With magnetic field

With a magnetic field, the optimizer has less difficultly in maintaining a lower

cost function. Fig. 4.7 shows a frame from an optimization with a magnetic field,

which also results in better ion bunching behavior than the optimization without

the magnetic field. The simulated annealer also has better success in finding op-

tima. This is likely due to the role of the magnetic field in lessening the transverse

expansion of the ion bunches. The cost function is most heavily penalized by lost

particles, so when particle loss is mitigated by the magnetic field, the simulated an-

nealer can “focus” more on reducing the cost associated with position and velocity

spread, as shown in Fig. 4.8 The simulated annealer also demonstrated the ability

to leave a local optimum, which was the purpose of including simulated annealing

in the hybrid optimizer. Fig. 4.9 shows that the optimal voltage from the 5th to

the 6th period of optimization made a drastic change, especially in the sign of the

voltage difference between the first two electrodes.

The results of the optimization are tested up to a time of 210 microseconds,

or 655 periods of oscillation, and a frame from this simulation is shown in Fig. 4.10.
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Figure 4.7: Frame from an optimization of the CE-IEC with a magnetic field.

Figure 4.8: The cost function output as a function of periods completed, with red
circles denoting the iterations where the simulated annealing algorithm found a new
optimum.
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Figure 4.9: The optimal voltage output of the hybrid optimizer moving from the 5th

to the 6th period.

This simulation used 50,000 macroparticles each having the mass and charge of

40,000 real particles of species s. The computational grid is 3722 cells. With a

time-step of 50 picoseconds, and a oscillation period of 0.32 microseconds, the entire

simulation consisted of four million time-steps, with pair-matching collisions at each

time-step, over an execution time of 4 days on a Nvidia c2070 GPU. Even at this

time-scale, the simulation has not reached an oscillatory steady state, as evidenced

by the changing temperature components up until the simulation end time.

4.7: Conclusions of the particle-in-cell optimizer

The particle-in-cell optimizer was successful insofar as the optimal voltages

demonstrated long confinement times such that the limitation on ion lifetimes was

due to thermalization rather than space-charge. This work shows that ion loss due

to thermalization can not be contained by static voltage control, due to the fact that

thermalization is cumulative over many passes through the system. Active control

of CE-IEC voltages may provide greater control over the thermalization process.
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Figure 4.10: Frame from the long-timescale simulation of the optimization results
with a magnetic field.
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Chapter 5

N-body Simulation

In Chap. 4, the PIC simulation domain consisted of one half of one beamline.

However, an important aspect of the CE-IEC is that the beamlines intersect at

various angles at a center point, and so the interaction between beamlines must

be studied in a 3D model. A fully 3D PIC simulation would be infeasible for two

reasons. First, solving Poisson’s equation on a 3D grid at high-enough resolution to

accurately simulate the IEC would be quite computationally intensive. Second,

the geometry of the channel walls would require significant modification to the

computational grid geometry, or likely the use of an unstructured grid. Instead,

an N -body simulation is used, with electric and magnetic fields calculated via point

charge and dipole discretizations respectively. Inter-particle forces are calculated

directly using Coulomb’s law, avoiding the need for a Poisson solution at each time-

step.
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5.1: Calculation of the electric field due to electrode volt-

ages

The electrodes are modeled as conductive surfaces with a radial position but

no radial thickness (like a spherical shell with holes for the beam channels). The

voltage on the edges of one of these electrodes (on the surfaces of the beam channel

walls) is of interest, so these edges are discretized into point charges. The vertices

of the channel wall edges are
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


Φ2,1

Φ2,2

...

Φ2,Np


...

ΦNe,1

ΦNe,2

...

ΦNe,Np





=
1

4πε0
S





q1,1

q1,2

...

q1,Np




q2,1

q2,2

...

q2,Np


...

qNe,1

qNe,2

...

qNe,Np





(5.1)
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where S is the elastance matrix (the inverse of the capacitance matrix). The entries

of the elastance matrix are

S(e1,p1),(e2,p2) =


1

|xe1,p1−xe2,p2| , e1 6= e2 ∨ p1 6= p2

1

| 12 ∆rmin,e1,p1| , e1 = e2 ∧ p1 = p2

(5.2)

where the second case of Eq. 5.2 (diagonal entries of S) represent the self-capacitance

of each point, modeled as a conducting sphere of radius 1
2
∆rmin,e1,p1 where ∆rmin,e,pi =

minpi 6=pj
∣∣xe,pi − xe,pj

∣∣ is the distance to the closest neighboring point charge on the

same electrode.

Eq. 5.1 for the unknown charge vector is performed using MATLAB’s backslash

operator. From the charge vector, the electric potential at each point is calculated

from

Φ(x) =
1

4πε0

Ne∑
e

Np∑
p

qe,p
1

|x− xe,p|
. (5.3)

and the electric field at each point is calculated from

E(x) =
1

4πε0

Ne∑
e

Np∑
p

qe,p
x− xe,p

|x− xe,p|3
. (5.4)

The electric potential in the x-y plane of the IEC is plotted in Fig. 5.1, with half the

CE-IEC represented as structure and the other half represented by the discretized

point charges, drawn as spheres with the radius 1
2
∆rmin,e1,p1 .
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Figure 5.1: Point charge values of the discretized electrodes for electrode voltages
(from inner radius to outer radius) of -50 kV, -75 kV, -10 kV, and +10 kV. The
electric potential in the x-y plane due to these point charges is shown as well.
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5.2: Calculation of the magnetic field due to permanent

magnets

The permanent magnet structure is discretized into Np dipole points, where

the strength of each dipole is the magnetization M of the magnet multiplied by

the volume Volp of the part of the magnet that the dipole is responsible for. Since

the magnets are radially polarized, the dipole vectors always point in the radial

direction. Choosing the origin to be at the center of the device, the dipole m of the

discretized point p is

mp = M Volp
xp
|xp|

. (5.5)

The magnetic field at any other point in the domain is given by

B(x) =
1

4π

Np∑
p

(
3x (mp · x)

|x|5
− mp

|r|3
)
. (5.6)

The magnetic field in the x-y plane is shown in Fig. 5.2, where on half of the CE-

IEC is displayed as structure while on the other side the dipoles are represented as

spheres. The electric and magnetic fields are calculated over a 3D grid of points

encompassing the entire IEC domain (typically of size 300 × 300 × 300) and the

values are interpolated to the particles as necessary using the 3D version of Eq. 4.16

with linear weighting from the 8 nearest points. Though the evaluation of fields

in this way is quite computationally intensive, it only must be calculated once at

the beginning of the simulation (or loaded from saved values on the disk) and only
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Figure 5.2: Visualization of the discretization of permanent magnets in the calcu-
lation of the CE-IEC magnetic field. The volume of the sphere representing each
dipole is the same as the Volp term in Eq. 5.5.
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needs to be referenced throughout the simulation. This makes the approximation

that the fuel ions have no effect on the point charge distribution in Eq. 5.1. If this

approximation could not be made, the contribution of ion charges to the potential

on the electrodes would need be accounted for by means of another matrix-vector

product in Eq. 5.1, and this equation would need to be solved and the electric field

re-solved at each time-step, rendering the simulation computationally intractable.

5.3: The N -body individual time-step method with Her-

mite integrator

N-body methods are widely used for astrophysical gravitational simulations

[22] but are applied here to charged particles in a plasma. In a global time-step

method, all particle trajectories over the time-step are calculated simultaneously,

and the global time-step must remain small enough to accurately capture the motion

for all particles. Any particles undergoing close encounters with other particles

(Coulomb collisions) will require the global time-step to be reduced accordingly,

which can become computationally burdensome. To remedy this, the individual

time-step method [23] evaluates particles in a queue. When it is time for a particle

to be updated, the simulation calculates the trajectory of that particle over that

particle’s time-step, updates the particle’s time, and calculates a new time-step for

that particle. The trajectories are calculated using a high-order predictor-corrector

method. [24]

The remainder of this section outlines the procedure by which each particle is
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updated. It is assumed that the following parameters in the simulation are known

for each particle j ∈ {1 . . . N}: position (~xj), velocity (~vj), acceleration due to inter-

particle forces (~aj), jerk due to inter-particle forces (~kj ≡ d~aj/dt), electric field at

the particle position ( ~Ej), magnetic field at the particle position ( ~Bj), the particle

time-step (∆tj), and the time (in simulation time) at which all these parameters are

known for each particle (tj). In the first step, the particle with the lowest value of

tj + ∆tj (referred to now as particle i) is chosen.

i = minj (tj + ∆tj) (5.7)

The global simulation time is then updated

t = ti + ∆ti (5.8)

The time difference between the current time and the time at which the position of

each particle is known is defined as

δtj := t− tj. (5.9)

Note that δtj will always be positive for all j and that δti = ∆ti. The position of

each particle is predicted at the particle’s current time using the leapfrog method

and the Boris method [18] as used in standard particle-in-cell methods [19], modified

slightly to account for the inter-particle force terms. First, the positions of all the

particles are predicted at a time halfway between their last known time and the
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current time.

x′j = xj + vj

(
δtj
2

)
(5.10)

Then the 3-D magnetic and electric field values that are known at discrete nodes

over the domain are linearly interpolated to the position of particle i. The velocity

is updated using the Boris method (Eqs. 5.11, 5.12, 5.13 and 5.14) including the

acceleration contribution from the inter-particle forces as well as those from the

externally applied E and B fields.

v′j = vj +

(
aj +

qj
mj

Ej

)(
δtj
2

)
(5.11)

ej =
qj
mj

Bjδtj (5.12)

v′′j =
(
v′j + v′j × ej

)
×
(

2ej
1 + |ej|2

)
(5.13)

v′′′j = v′′j +

(
aj +

qj
mj

Ej

)(
δtj
2

)
. (5.14)

The predicted positions from the Boris method are updated

x′′j = x′j + v′′′j

(
δtj
2

)
(5.15)

and finally, the contributions to the position and velocity due to the jerk are added,

resulting in the predicted position and velocity of all particles at the time at which

particle i is to be updated.

xj = x′′j +
1

6
kj (δtj)

3 (5.16)
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vj = v′′′j +
1

2
kj (δtj)

2 (5.17)

The next step is to calculate the acceleration and jerk on particle i based on the

predicted positions of all other particles. The relative position of particle i with

respect to all other particles is rj := xi − xj and the relative velocity of particle i

with respect to all other particles is uj := vi−vj. The acceleration of particle i due

to the force from all other particles is

ai =
qi

4πε0

N∑
j 6=i

qjrj
|rj|3

(5.18)

and the jerk of particle i, ki = dai/dt is

ki =
qi

4πε0

N∑
j 6=i

(
qjuj
|rj|3

− (uj · rj)rj
|rj|5

)
. (5.19)

The higher order derivatives of acceleration are estimated from the jerk and accel-

eration

äi =
6 (ai − ao)−∆ti (2ki + 4ko)

∆t2i
(5.20)

k̈i =
12 (ao − ai) + 6∆ti (ki + ko)

∆t3i
(5.21)

where ao and ko are the acceleration and jerk of particle i that were previously known

before the values that were calculated in Eqs. 5.18 and 5.19 respectively. Finally,

the new position and new velocity of particle i is updated from the predicted values
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that were found in Eqs. 5.15 and 5.14 respectively.

xi = xi +
1

24
äi(∆ti)

4 +
1

120
k̈i(∆ti)

5 (5.22)

vi = vi +
1

6
äi(∆ti)

3 +
1

24
k̈i(∆ti)

4 (5.23)

The next time-step for particle i is updated according to the formula

∆ti =

√√√√η
|ai| |äi|+ |ki|2

|ki|
∣∣∣k̈i∣∣∣+ |äi|2

(5.24)

where η is a chosen dimensionless parameter. The process then repeats, returning

to Eq. 5.7 to select the next particle to be updated.

5.4: Overestimation of Coulomb scattering due to macropar-

ticle weighting

The Coulomb scattering angle θ of a particle in a plasma of density n scales

as

θ ∝ √nq
2

m
(5.25)

If particles in the plasma are replaced by macroparticles of weight w such that the

charge density and mass density stay the same, then the new number density ñ is

related to the old number density by ñ = n/w, and the new charge and mass of each

particle are related to the unweighted values by q̃ = wq and m̃ = wm respectively.
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Substituting these values into Eq. 5.25 results in

θ̃ ∝ √wnq
2

m
. (5.26)

And so Coulomb scattering angles are over-calculated by a factor of
√
w. A correc-

tion to this is not straightforward, since the space-charge effect is well captured by

weighted particles in an N -body simulation. In the simulation results that follow,

the macroparticle weighting is on the order of one million, and so the Coulomb

scatters are overestimated by a factor of one thousand. This means that high-angle

scatters that transfer particles between beamlines happen one thousand times more

often, and that thermalization happens one thousand times faster. However, this is

not completely detrimental to the research, since the CE-IEC is chiefly space-charge

limited, the overestimation of Coulomb scatter makes the observation of Coulomb

scattering more feasible on shorter time-scales.

5.5: Testing on two particles with a known scattering angle

To find an appropriate value for η, two equally charged particles are simulated

undergoing a binary Coulomb collision. The solution to this collision is known

analytically, and the results from simulations over a range of values of η can then

be compared in both scattering angle and conservation of energy. The results of

this test for a 90◦ scatter are shown in Fig. 5.3. For most values of η tested a

scattering angle of close to 90◦ is calculated. However, for η = 0.6 the simulation

“misses” this scatter by using time-steps that are too large. The computational
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Figure 5.3: Testing of the Hermite integrator individual time-step method on a
known 90 degree scatter for different values of η. Left: Simulation of a 90◦ scatter
with equal scaling of the x and y axes. Right: Same simulation with the x and y
axes of different scaling to the illustrate differences between trajectories.

performance of this method is also compared to the more basic leapfrog method

with individual time-steps, where scattering accuracy and conservation of energy

are plotted vs computational time (Fig. 5.4).

5.6: Ion simulation results

Rather than creating ions in a pre-bunched configuration as was done in

Chap. 4, ions are instead created continuously in time at points near the end of

the channel, and are removed from the simulation when striking a wall. The bunch-

ing behavior is shown by this simulation not only to arise naturally, but also to be

synchronized between beamlines. A frame of this simulation is shown in Fig. 5.5.

A frame-by-frame of the particle phase space (projected onto one beam line), core

beam current, and core density is shown in Fig. 5.6. The velocity distribution func-

tion of the ions in the fusion core region is shown in Fig. 5.7. The impact points of
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Figure 5.4: Left: Comparison of final scattering angle vs. computation time for
different values of η. Right: Comparison of the percentage change in total energy
vs. computation time for different values of η.

Figure 5.5: A frame from simulation of ions in a truncated icosahedron IEC.
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Figure 5.6: Frame-by-frame plots of data from an ion simulation. Top: The phase
space of all particles projected onto one beam line. Middle: The ion density in the
x-y plane. Bottom: The beam current along one beam line through the center of
the device.

Figure 5.7: Velocity distribution in the x-dimension of ions in the core region, with
one beamline aligned with x.
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Figure 5.8: Impact points of ions onto the surface of the CE-IEC over the course of
a simulation.

ions on the CE-IEC surfaces can be mapped by saving the last position of a particle

before it is deleted from the simulation due to being found inside the walls of the

device. The ion impact points are shown in Fig. 5.8. The primary region of impact

is clearly the inner edge of the device, with some impacts occurring on the wall

surfaces near the inner radius and very few impacts occuring near the outer radius.

Finally, the simulation demonstrates that ions are transferred between beam-

lines due to high angle collisions in the core. Transfers were detected qualitatively
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Figure 5.9: Impact points of ions onto the surface of the CE-IEC over the course of
a simulation.

by coloring all the particles of a particular beamline red, so that any red particles

that show up in a different beamlines and any non-red particles that show up in

the beamline of red particles are known to have arrived there via high-angle scatter.

Fig. 5.9 shows an ion scattered onto a different beamline, but quite far off of the

beamline axis, resulting in its impact with the surface soon after. In fact, all the

ions that were observed to transfer onto a different beamline were observed to be

lost soon after, typically not even lasting another oscillation period, due to not being

scattered into the “bulk” of the on-axis particle beam.

5.7: Electron simulation results

Ions and electrons move over drastically different time-scales and so the only

barrier to simulating ions and electrons simultaneously is the constraint of com-

putation speed, i.e. the electron evolution is easily captured but the ions cannot

100



be evolved to steady-state over reasonable computation times when electrons are

present in the simulation.

Confined electrons are simulated and a frame of this simulation is shown in

Fig. 5.10. For an electron input of approximately 8 amperes, the electron density

in this simulation is approximately 1012 m−3 over a radius of 0.25 m and produces

a potential drop of 400 V in the center. The electron density displays the expected

spherical shell-like distribution due to the space charge of the electrons and the

mirror effect of the magnetic line cusps. The electron impacts primarily happen

in the line cusps and in this simulation no electrons were observed to have exited

the simulation along the beamlines. In this simulation the electrons are generated

at source points along each beamline, and are deposited at a higher voltage at

the surfaces so that the power input is quite high (10 kW). To lower this power

requirement, a better path may rely on thermionic emission of electrons from the

inner edge so that the emitted voltage and the absorbed voltage of the electrons are

identical. The electrons impact points are shown in Fig. 5.11.

5.8: Conclusions of the N-body simulation

The N -body simulation was used to investigated aspects of the CE-IEC that

were not able to be investigated by the 2D simulation. The conclusions drawn from

the N -body simulation are:

� High-angle collisions that transfer ions between beamlines do occur, but typ-

ically the newly transferred ions do not last more than half an oscillation
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Figure 5.10: Electrons simulated under the influence of electric and magnetic fields
in the CE-IEC showing the relation between power input, electron density, and
electron mean lifetime.
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Figure 5.11: Impact points of electrons onto the surface of the CE-IEC over the
course of a simulation.
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thereafter. The short lifetimes of newly transferred ions is theorized to be due

to the trajectories being close to the wall that separates the old beamline and

the new beamline, rather than being close to the axis of the new beamline.

� Most ion-surface collisions occur on the inner edge of the CE-IEC. It is also

theorized that the majority of the α-particles would strike the inner edges. An

effective sputter shield stand-off would need to be implemented to maximize

the lifetime of the CE-IEC, and thermal insulation between the shield and the

rest of device would be required to more effectively radiate waste heat directly

from the inner edge.

� Electron losses are primarily to the inner edge rather than along beamlines,

which means that magnetic mirror effect along the inner line cusps is the

limiting factor on electron confinement.
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Chapter 6

A Fluid Treatment of IEC Electrons

Simulating both ions and electrons as particles simultaneously in the CE-IEC

is impractical because of the exceedingly small time-step (∆t ≈ 10−10 s) required for

electron simulation. An alternative is to assume the electrons are thermalized and

magnetized (Larmor radius much smaller than the scale length of the simulation)

and to simulate them as a fluid via the Sharfetter-Gummel method [25]. Not only

could the time-step for electron simulation be increased, but a steady-state solution

may also be calculated at each ion time-step, such that the electrons are continuously

in a steady-state that slowly evolves with the movement of the ions.
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6.1: Governing equations

The electron conservation equation [26] is

∂ne
∂t

+∇ · ~Γ = S. (6.1)

where S is the electron source term, and the electron flux ~Γ which arises due to the

drift (due to the electric field ∇Φ) and thermal diffusion (∇neTe) of the electron

population

~Γ = ¯̄µ [ne∇Φ−∇(neTe)] (6.2)

where ¯̄µ is the electron magnetic mobility tensor such that the electron mobility

parallel to the magnetic field is µ0 = e
meν

and the electron mobility perpendicular

to the magnetic field is µ0

1+Ω2 where ~Ω = q ~B
mν

is the vectorized Hall parameter. To

simplify the derivation of ¯̄µ, the flux term is written as

~Γ = ¯̄µ∇E (6.3)

where E is the effective energy-per-unit-volume that is the source of electron flux.

~Γ can be broken up into components parallel and perpendicular to the magnetic

field: ~Γ‖ and ~Γ⊥ respectively. The flux parallel to the magnetic field is the mobility

parallel to the magnetic field multiplied by the directional derivative of E in the

direction of magnetic field

~Γ‖ = µ0Ω̂
(

Ω̂ · ∇
)
E . (6.4)
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The flux perpendicular to the magnetic field is the mobility perpendicular to the

magnetic field multiplied by the gradient of E with the component parallel to the

magnetic field subtracted out

~Γ⊥ =
µ0

1 + Ω2

[
∇E − Ω̂

(
Ω̂ · ∇

)
E
]
. (6.5)

Therefore the electron flux is

~Γ = ~Γ‖ + ~Γ⊥ = µ0

[ ∇E
1 + Ω2

+

(
1− 1

1− Ω2

)
Ω̂
(

Ω̂ · ∇
)
E
]

(6.6)

and simplifying, becomes

~Γ =
µ0

1 + Ω2

[
∇E + ~Ω

(
~Ω · ∇

)
E
]
. (6.7)

where the equivalence can be made that

∇E + ~Ω
(
~Ω · ∇

)
E ≡

[
¯̄I + ~Ω⊗ ~Ω

]
∇E (6.8)

where ¯̄I is the identity tensor and ⊗ is the vector outer product. It can then be

deduced that

¯̄µ ≡ µ0

1 + Ω2

(
¯̄I + ~Ω⊗ ~Ω

)
(6.9)

and so

~Γ =
µ0

1 + Ω2

(
¯̄I + ~Ω⊗ ~Ω

)
[ne∇Φ− µ∇(neTe)] (6.10)
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which, in Cartesian coordinates, is

~Γ =
µ0

1 + Ω2


1 + Ω2

x ΩxΩy ΩxΩz

ΩxΩy 1 + Ω2
y ΩyΩz

ΩxΩz ΩyΩz 1 + Ω2
z

 [ne∇Φ− µ∇(neTe)] . (6.11)

In this work, the electron temperature is considered constant over the domain, and

the simulation is limited to two dimensions, with d/dz = 0 and Bz = 0. Poisson’s

equation for the electric potential due to the electron and ion densities is

∇2Φ =
e

ε0
(ne − ni). (6.12)

which, for a static magnetic field, closes the system and makes a solution possible.

6.2: The numerical model

The numerical model presented here is in two dimensions (∂/∂z = 0) with no

z-component of the magnetic field (Bz = 0 and Ωz = 0). The derivatives in Eq. 6.1

are discretized through the Scharfetter-Gummel scheme [25]. The domain is thus

limited to the x-y plane, and is discretized into equally spaced nodes, with xi = i∆x

and yj = j∆y. The discretization of the second term in Eq. 6.1 at point [i, j] is

∇ · ~Γi,j =
Γx;i+ 1

2
,j − Γx;i− 1

2
,j

∆x
+

Γy;i,j+ 1
2
− Γy;i,j− 1

2

∆y
(6.13)
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with

Γx;i+ 1
2
,j = − eTe

meν

1

∆x

(
(1 + Ω2

x)Π[i+1,j];[i,j] + ΩxΩyΠ[i+ 1
2
,j+ 1

2
];[i+ 1

2
,j− 1

2
]

)
(6.14a)

Γx;i− 1
2
,j = − eTe

meν

1

∆x

(
(1 + Ω2

x)Π[i,j];[i−1,j] + ΩxΩyΠ[i− 1
2
,j+ 1

2
];[i− 1

2
,j− 1

2
]

)
(6.14b)

Γy;i,j+ 1
2

= − eTe
meν

1

∆y

(
(1 + Ω2

y)Π[i,j+1];[i,j] + ΩxΩyΠ[i+ 1
2
,j+ 1

2
];[i− 1

2
,j+ 1

2
]

)
(6.14c)

Γy;i,j− 1
2

= − eTe
meν

1

∆y

(
(1 + Ω2

y)Π[i,j];[i,j−1] + ΩxΩyΠ[i+ 1
2
,j− 1

2
];[i− 1

2
,j− 1

2
]

)
(6.14d)

and defining

Π[A],[B] ≡ ne;A

ΦA−ΦB
Te

exp
(

ΦA−ΦB
Te

)
− 1
− ne;B

ΦB−ΦA
Te

exp
(

ΦB−ΦA
Te

)
− 1

. (6.15)

Poisson’s equation is discretized in the usual way

−2Φi,j + Φi+1,j + Φi−1,j

(∆x)2
+
−2Φi,j + Φi,j+1 + Φi−1,j−1

(∆y)2
=

e

ε0
(ne; i,j − ni; i,j). (6.16)

6.3: The time-stepping and steady-state models

The method by which Eq. 6.1 is advanced over time-steps defined by the

electron movement time-scale is referred to as the time-stepping model. In this

method, the electron conservation term is discretized in time as

nk+1
e + (∆t)∇ ·

(
µnk+1

e ∇Φk − µ∇(nk+1
e Te)

)
= nke + (∆t)S. (6.17)
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with nk+1
e solved for implicitly. In the steady-state model, it is assumed that the

electrons are in a steady-state that slowly evolves with the changing ion positions. In

this case, the time-dependence is considered negligible (dne/dt = 0). Stability in this

model most easily achievable when the system is solved implicitly and simultaneously

for both ne and Φ. The equations that describe the system are not all linear, so the

system is solved via iteration using a method [27] that starts by taking the Jacobian

of the system. First, two variables are defined:

g1 = ∇2Φ− e

ε0
(ne − ni) (6.18a)

g2 = ∇ · ¯̄µ (ne∇Φ−∇(neTe))− S (6.18b)

The solutions to ne and Φ are found when g1 → 0 and g2 → 0. g1 and g2 are

defined at all points on the computational mesh and Eqs. 6.18 are discretized in an

identical manner to Eqs. 6.13 and 6.16. The Jacobian of the system is

−

 g1

g2

 =

 ∂g1

∂Φ
∂g1

∂ne

∂g2

∂Φ
∂g2

∂ne


 δΦ

δne

 . (6.19)

Solving for δΦ and δne, a new iteration is found by

Φk+1 = Φk + δΦ (6.20a)

nk+1
e = nke + δne (6.20b)

Eq. 6.19 is then redefined using the values from Eqs. 6.20 and the process is repeated
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Figure 6.1: Test problem for the 2D hybrid PIC simulation. Six wires, three of which
have positive current perpendicular to the plane and three of which have negative
current create a confining magnetic field. A electron source function replenishes
electrons in the center of the domain.

until convergence is reached.

6.4: Test problem and results

To observe a 2D implementation of this model in a pseudo-IEC setting, a test

problem was developed. In the test problem, electrons are produced at a constant

rate in the center of the domain, and six current-carrying wires create a magnetic

field to limit the movement of the electrons from the source to the boundaries (see

Fig. 6.1). Dirichlet conditions are imposed at the boundaries, with ne = 0 and

Φ = 0.

The results from both the time-stepping model and the steady-state model

using the same initial conditions are shown in figure 6.2. Despite using an im-

plicit Scharfetter-Gummel scheme, the time-stepping simulation produces spurious

oscillations near steep gradients and thus produces negative electron densities in

some locations. While this problem does decrease with increased grid resolution,

the steady-state solution avoids these spurious oscillations, even at low grid resolu-
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Figure 6.2: Comparison between the time-stepping method (left) and steady-state
method (right) solutions of the electron density in the test problem.

Figure 6.3: Comparison between computation times for the time-stepping model
and steady-state model. “∆t” is the length of the time step used as determined
by the CFL number, the grid spacing, and the characteristic velocity of either the
electrons (time-stepping model) or the ions (steady-state model).

tions. Additionally, for the parameters used, there appeared to be little difference

between the time-stepping and steady-state behaviour when the fluid model was

implemented into the PIC model.

The computation time for both the time-stepping and steady-state hybrid PIC

models is shown in Fig. 6.3, for two different grid sizes. In both cases, the computa-

tion time for the steady-state model is approximately one fifth of the computation

time of the time-stepping model. Due to the lack of spurious oscillations, as well
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as the shorter computation times, the hybrid PIC model will be pursued with the

steady-state solution for the electron continuity equation and Poisson’s equation.

The results of the simulation for the test problem are shown in Fig. 6.4.

Figure 6.4: Test problem for the 2D hybrid PIC simulation. Top row, l-r: The
electron source term, steady-state state density solution, electric potential created
by the electrons. Bottom row, l-r: The drift term (µne∇Φ), the diffusion term
(µ∇(neTe)), positions of the ion macroparticles.

6.5: Comparison of the fluid model to a particle model

The fluid model was tested by creating a particle-in-cell model simulated with

an identical electron source and magnetic field as the fluid model. The side-by-side

results of this test are shown in Fig. 6.5. Discrepancies are clear, likely due to the

necessity of a background density in the fluid simulation of neutrals to keep the fluid

simulation stable. The fluid simulation considers the electrons to be inertialess,
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while the PIC simulation models them with the correct mass. Additionally, the

fluid treatment does not allow for a non-thermal velocity distribution, while the

PIC simulation does. Future work on the electron fluid model should continually

Figure 6.5: Side-by-side comparison of the electron fluid simulation with a particle-
in-cell simulation of electrons using equivalent conditions.

verify results through comparison to a particle-in-cell model, and if the results do

not agree, one or both simulations should be modified until agreement is reached

so that the limitations and approximations that each simulation makes are well

understood.
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Chapter 7

A Coulomb Collision Model for Nonthermal

Plasma Simulation

7.1: An overview of Coulomb collisions in plasma simula-

tions

The velocity of a single charged particle in a population of other charged

particles is affected by the Coulomb electric force between that particle and all other

charged particles. In the simulation of charged particle plasmas, well-established

methods for accounting for the Coulomb force include the following:

� The plasma fluid approximation [25], outlined in Chap. 6 is suited for plasmas

in which the particle velocities follow a Maxwell-Boltzmann distribution, the

velocity of any one particle changes quickly relative to the time-scale of the
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plasma, and the spacing between particles is small in comparison to the length

scale of the plasma. In this way, the bulk velocity and thermal velocity of each

plasma species are well-distinguished.

� Poisson’s equation, typically as part of a particle-in-cell approach [19], as dis-

cussed in Chap. 4, is effective at calculating the long-range force between

particles by weighting these particles to a spatial grid, but the resolution of

short-range forces is limited by both the magnitude of particle weighting as

well as the resolution of the spatial grid.

� The N -body simulation method [22], used in Chap. 5 is the truest method of

calculating both short-range and long-range forces between particles, however

the resolution is severely limited by particle weighting for systems in which

the real particle count is high, and the treatment of boundary conditions in

N -body simulations typically requires a separate approach.

7.1.1 A cumulative Coulomb collision model

This chapter is dedicated to the study of short-timescale changes in the veloci-

ties of charged particles in a non-thermal plasma. To this end, a single non-weighted

charged particle (hereafter referred to as the “test particle”) moving through a uni-

form population of non-weighted charged particles (hereafter referred to as the “field

particles”) is examined in order to develop an approximation for Coulomb scattering

that can be applied to kinetic plasma simulations. The change in velocity angle of

the test particle is referred to as a “scattering,” and the probability distribution
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of such a scattering is dependent on the field particle density, the relative velocity

between the test particle and field particle, and the amount of time over which the

scattering occurs. In the development of the present method, it is assumed that

there is no change in the density or the velocity distribution function of the field

particles over the scattering time. It is also assumed that the center-of-mass frame

stays constant over the scattering time, so that there is no energy exchange between

the test particle and field particles. The energy exchange between the test particle

and field particles is realized through the conversion from the center-of-mass frame

to the laboratory frame.

For application to the PIC simulation of Chap. 4, the model presented here is

implemented by randomly pairing macroparticles at each time step. In the center-

of-mass frame of a pair, the first macroparticle is represented by the test particle

and the second macroparticle by the field particles. The field particles are assumed

to all have velocity equal to that of the second macroparticle, and density equal

to the local density of the field particle species. After applying the present model

to the first macroparticle (the test particle), the second macroparticle receives the

reverse of the same collision and in this way momentum and energy are conserved.

If the simulation time-step is small compared to the time-scale of the plasma evolu-

tion, then collisions implemented this way will collectively model the collision-driven

thermalization of the plasma.

This chapter is organized as follows:

� In Sec. 7.2 other collision models used for non-thermal plasma simulations are
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reviewed.

� In Sec. 7.4 the “cumulative binary collision approximation” is presented and

a method for efficiently calculating a cumulative scattering angle from a large

number of binary collisions without energy transfer is outlined. These calcu-

lations serve as the basis for which the heuristic model is later derived.

� In Sec. 7.5 the validity of the cumulative binary collision approximation is

evaluated by comparing its results to the results of N -body simulations of

identical scenarios.

� In Sec. 7.6 heuristic formulae are presented for recreating the effect seen in

Sec. 7.4 for a plasma simulation. This section contains the complete collision

model that is the focus of this chapter.

� In Sec. 7.7 results obtained from the present collision model are compared to

those obtained by other collision models.

� In Sec. 7.8 the collision model is implemented in a particle-in-cell simulation of

a highly non-thermal, weakly collisional plasma and the results are compared

to a true N -body simulation of an identical scenario.

� In Sec. 7.9 a discussion on low impact parameters is presented in the context

of commonly used formulae for calculating a minimum impact parameter.
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7.2: Relevant previous research on Coulomb collision mod-

els

A method for simulating Coulomb collisions of macroparticles was first pro-

posed by Takizuka and Abe [20] and included details on a pair-matching Monte

Carlo implementation, but no comparison to direct calculation of binary collisions

was performed.

The effect of a series of binary collisions on a charged particle was first ad-

dressed by Nanbu [28] who used direct calculations of binary collisions to find the

scattering angle distribution functions and created a collision model to replicate it.

This work included an analytical derivation for the scattering angle to approximate

the effect of low-angle collisions.

Dimits et al. [29] argued that Nanbu’s binary collision method was identical

to the Lorentz collision operator and assessed Nanbu’s analytical model as such.

However, both Nanbu and Dimits failed to identify the heavy tail of the probability

distribution of the scattering angle that is clearly present from the results of Nanbu’s

data from simulating a series of binary collisions. Additionally, none of the refer-

enced works offer an analysis of the validity of simulating a cumulative Coulomb

scatter as a series of binary collisions.

Rutherford’s famous discovery of the nucleus [14] involved a derivation of the

probability distribution for high-angle scattering of light ions off of gold nuclei.

Conte [30] applied this formula to counter-streaming charged particle beams and
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used it to calculate beam particle loss due to high-angle Coulomb collisions but did

not apply it to cumulative low-angle scatters.

7.3: Improvements of this model over previous models

The model presented in this chapter seeks to identify both the cumulative ef-

fect of many small-angle scatters as well as the effect of a single high-angle scatter

and to recover both in a piecewise continuous heuristic model. This model is the

first to identify that the probability distribution of a cumulative Coulomb scatter-

ing angle Θ transitions from an exponential form fΘ(θ) ∼ exp (−θ2) to a power-law

form fΘ(θ) ∼ θ−3 as θ increases. Additionally, the present model differs from pre-

vious models in that it is based entirely on the results of numerical experiments,

rather than relying on the Coulomb logarithm which is not well defined for highly

non-thermal and non-neutral plasmas. Like previous models, this model uses the

assumption that when the distance between two particles is large, they can be con-

sidered to have no interaction at all. The cut-off distance at which this assumption

is applied is denoted as bmax and physically symbolizes either the distance at which

space charge is accounted for via another calcuation such as Poisson’s equation [19],

or the distance at which Debye shielding [13] is significant. The present work also

benefits from the general advancements in computing that have taken place in the

twenty years since the publication of Nanbu’s work. At the time of Nanbu’s publi-

cation, the computational resources required to calculate the number binary colli-

sion calculations used in the present work were simply not available. Despite this,
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Nanbu’s model is still used in contemporary charged particle simulation [31] though

it is the aim of this work to present a more accurate model.

7.4: The cumulative binary collision approximation

A test particle of species α traveling through a field of N randomly positioned

charged particles of species β will have its velocity vector changed by some angle Θ

after an amount of time τ . The interactions that cause this change in angle may

be approximated as the cumulative effect of independent binary collisions between

the test particle and each field particle. The angle of scatter for a Coulomb collision

between the test particle and a single field particle in the center-of-mass frame is [14]:

θ = 2 tan−1

(
qαqβ

4πε0µαβv2
αβb

)
(7.1)

where qα and qβ are the particle charges, µαβ ≡ (m−1
α + m−1

β )−1 is the reduced

mass, vαβ ≡ |vα − vβ| is the relative speed between the particles, and b is the

impact parameter (the perpendicular distance between the initial paths of the two

particles in the center-of-mass frame). Because a collision model is typically only

applied over a local region, only field particles with impact parameters b < bmax are

considered. Over an amount of time τ of a particle simulation (usually equal to

the simulation timestep), a particle of species α moving at a velocity vαβ relative to

a population of particles of density nβ, will undergo a number of binary Coulomb
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collisions approximately equal to

N = nβvαβτπb
2
max (7.2)

which is the field particle density nβ multiplied by the volume of a cylinder with

radius bmax and length equal to the relative distance the test particle travels over

time τ .

Let the initial velocity of a test particle be aligned with the z-axis, and let

the axis rest in the center-of-mass frame of a single test particle/field-particle pair.

The final velocity after N binary collisions will have a final scattering angle of Θ

with respect to the z-axis. Because of the azimuthal symmetry of the problem,

the final azimuthal angle is uniformly distributed between 0 and 2π. Let θi be the

angle of the velocity vector before the ith collision, [∆θ]i be the change in the angle

of the velocity vector due to the ith collision given by Eq. (7.1), and [∆φ]i be the

azimuthal angle of this change, randomly selected between 0 and 2π. The azimuthal

angle before the ith collision, φi, has no effect on the final probability distribution

function and so may be chosen to equal zero for the purpose of this derivation. The

velocity vector after the ith collision is found by rotating ẑ about the y-axis by [∆θ]i,

then rotating the resultant vector about the z-axis by [∆φ]i and lastly rotating that

result about the y-axis by θi to effectively give ẑ the correct “starting position”. In
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summary, the new velocity vector after the ith collision is

v̂i+1 =


cos (θi) 0 sin (θi)

0 1 0

− sin (θi) 0 cos (θi)



×


cos ([∆φ]i) − sin ([∆φ]i) 0

sin ([∆φ]i) cos ([∆φ]i) 0

0 0 1



×


cos ([∆θ]i) 0 sin ([∆θ]i)

0 1 0

− sin ([∆θ]i) 0 cos ([∆θ]i)

 ẑ. (7.3)

The z-component of v̂i+1 is equal to cos (θi+1), and so the new angle is found in a

simple manner by evaluation of the z-component of Eq. (7.3):

cos (θi+1) = cos(θi) cos([∆θ]i)

+ sin(θi) sin([∆θ]i) cos([∆φ]i). (7.4)

To randomly distribute the field particles uniformly in a cylinder of radius bmax, the

impact parameter of each particle is calculated as bi = bmax

√
Ui where each Ui is

independently and uniformly distributed in (0, 1) and so the angle of scatter from

Eq. (7.1) becomes

[∆θ]i = 2 tan−1

(
a√
Ui

)
(7.5)
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with the dimensionless parameter a introduced as

a ≡ qαqβ
4πε0µαβv2

αβbmax

. (7.6)

The azimuthal angle is equally likely to take any value between 0 and 2π and so is

calculated as

[∆φ]i = 2πVi (7.7)

where each Vi is independently and uniformly distributed in (0, 1). Combining

Eqs. (7.4), (7.5) and (7.7), and making the definition Ci ≡ cos(θi), the recursive

relation is

Ci+1 =
Ui − a2

Ui + a2
Ci

+
2a
√
Ui

Ui + a2

√
1− C2

i sin (2πVi) (7.8)

where C0 = 1 and the final cumulative scattering angle is Θ ≡ cos−1 (CN). In this

formulation, the probability distribution of Θ is dependent only on the dimensionless

variables a and N (defined in Eqs. (7.6) and (7.2) respectively). Eq. (7.8) is used

for generating numerical data for cases in which a is large enough that evaluation

of Ui + a2 is not limited by machine precision.

124



7.4.1 The limit for small a

For small values of a, the evaluation of Ui + a2 in floating point arithmetic

may result in significant error. It is found that a . 10−6 generates noticeable error

in the evaluation of Eq. (7.8) in double-precision floating-point format. Taking the

limit as a→ 0, Eq. (7.5) becomes

lim
a→0

[∆θ]i =
2a√
Ui
. (7.9)

With Eq. (7.7) unchanged by this limit, the scattering is now equivalent to a random

walk in a 2D plane with step length 2a/
√
Ui. By separating this 2D walk into the x

and y components of the now flat θ-plane, the final scattering angle can be expressed

as the magnitude of the summation of each component:

lim
a→0

Θ = 2a

√√√√( N∑
i=1

cos (2πVi)√
Ui

)2

+

(
N∑
i=1

sin (2πVi)√
Ui

)2

. (7.10)

The scattering angle in the a → 0 regime now scales linearly with a, though the

dependence on N remains non-trivial. To avoid calculating scattering angles greater

than π, Eq. (7.10) can be replaced with

lim
a→0

Θ = 2 tan−1

a
√√√√( N∑

i=1

cos (2πVi)√
Ui

)2

+

(
N∑
i=1

sin (2πVi)√
Ui

)2
 (7.11)

which reduces to Eq. (7.5) for N = 1 but avoids the machine precision limitation

inherent in Eq. (7.8) for small values of a.
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7.5: The validity of the cumulative binary collision approx-

imation

The validity of equation Eq. (7.8) in calculating the angle of the change in

velocity of a particle over a time-step is examined by comparing it to an N -body

simulation using identical parameters. For this validation to remain numerically

tractable, the field particles are held in fixed locations (mβ =∞, vβ = 0, vαβ = vα).

The field particles are randomly and uniformly distributed throughout a sphere of

radius R at a density of nβ and the test particle starts at the sphere center moving

with an initial velocity of vα parallel to the z-axis. At each time-step the test

particle is accelerated only by those field particles that lie within a distance bmax

of the test particle. To ensure that the simulated domain is large enough to keep

the bmax sphere fully populated at all times, the radius of the simulation domain is

R = vατ + bmax so that Ñ = nβ
4
3
πR3 field particles must be generated. A diagram

of this method is shown in Fig. 7.1.

The N -body method used here is similar to that used in previous research [32]

which is in turn based on the work of Aarseth [22]. The test particle trajectory is

calculated using the following steps starting with t0 = 0 and repeating until tk = τ

(where tk ≡
∑k

k′=0[∆t]k′):

1. Advance the position of the test particle over the first half of the time-step:

xα(tk+1/2) = xα(t) + vα(t)[∆t]k/2. (7.12)
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Figure 7.1: A 2-dimensional cross-sectional schematic of the N -body simulation for
testing the cumulative binary collision approximation. The test particle travels a
distance of vτ = 2 mm through a sphere of field particles but only experiences a
force from field particles within a distance of bmax = 1 mm.
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2. For each i of Ñ field particles, find if it lies within a sphere of radius bmax

centered on the test particle:

1αβ,i = [|xαβ,i| < bmax] (7.13)

where xαβ,i ≡ xα(tk+1/2)− xβ,i.

3. Calculate the acceleration of the test particle due to the force from all field

particles within the sphere of radius bmax:

aα(tk+1/2) =
qαqβ

4πε0mα

Ñ∑
i=1

1αβ,i
xαβ,i
|xαβ,i|3

. (7.14)

4. Advance the velocity of the test particle over the full time-step:

vα(tk+1) = vα(t) + aα(tk+1/2)[∆t]k. (7.15)

5. Advance the position of the test particle over the second half of the time-step:

xα(tk+1) = xα(tk+1/2) + vα(tk+1)[∆t]k/2. (7.16)

6. Calculate the value of the next time-step using the minimum of a method of

Aarseth [22] or a maximum timestep:

[∆t]k+1 = min

(
[∆t]max,

√
η1

|aα(tk+1/2)|
|ȧα(tk)|

)
(7.17)
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where ȧα(tk) =
(
aα(tk+1/2)− aα(tk−1/2)

)
/[∆t]k and the maximum allowed

timestep is [∆t]max = η2/(n
1/3
β vα). η1 and η2 are chosen such that further

decreasing either value does not significantly change the results of the simula-

tion.

When tk = τ the simulation stops and the cumulative scattering angle Θi is recorded

as the angle between the initial velocity and the final velocity of the test particle.

This process is repeated M times for a set of input parameters, where M is chosen

such that the probability distribution function fΘ(θ) is smooth enough for confident

comparison with other probability distribution functions.

Typically in a particle simulation, the time-step will be held to a value such

that τ < Cd/v, where C is the Courant number [33], and the distance d is either the

distance between grid points or the Debye length. For these cases, the distance a

particle travels in a given time step τ will almost always be less than the value bmax,

so tests of this method need not explore the parameter space where bmax � vαβτ .

The probability distributions of the scattering angles for different values of bmax

(holding constant vτ = 1 mm) are shown in Fig. 7.2.

7.5.1 Shortcomings of the cumulative binary collision approximation

The cumulative binary collision approximation tends to overestimate scatter-

ing angles because it assumes a complete collision between the test particle and all

field particles. But if the assumption is that particle interactions should be neglected

at distances greater than bmax, field particles with an impact parameter b close to
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Figure 7.2: Probability distribution functions for varying values of bmax with vα =
103 m/s, m = 1 AMU, n = 1011 m−3 and τ = µs. Top: Results of the N -body
simulation with fixed field particles. Bottom: Results of the cumulative binary
collision approximation.
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the value of bmax will only impart a partial collision to the test particle and so the

effect of long-range Coulomb collisions becomes lessened.

Another shortcoming of the cumulative binary collision approximation is that

it assumes a random distribution of field particles, but in an actual plasma, particles

are not randomly distributed. Rather, the randomness of particle positions is a func-

tion of temperature. At a high temperature, where the trajectories of particles are

relatively straight compared to the inter-particle distance, the instantaneous posi-

tions of particles can be close to truly random. At a lower temperature the particles

of the system must stay organized in a low-energy state and so the particle positions

are distinguished from a random distribution. To test the effect of the randomness

of field particle positions on the scattering angle, the same N -body test was per-

formed with field particles positioned using MATLAB’s haltonset function [34] to

uniformly fill the test volume in a quasi-random distribution (a lower-energy state

than a random distribution). It was found that this uniformity had a significant

effect on shifting the peak of the probability distribution to a lower angle, while

the high-angle portion of the distribution remained unchanged. The probability

distribution results of this test are also shown in Fig. 7.2.

Finally, it can be noted that the cumulative binary collision approximation

has only two degrees of freedom, a and N , while the N -body fixed field particle

simulation has three: a, N , and a third quantity: nβb
3
max, which scales as the number

of particles within a sphere of radius bmax. Because of the higher computational

cost of the N -body fixed particle simulation as well as the additional degree of

freedom it requires, the remainder of this article uses the cumulative binary collision
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approximation, in spite of its shortcomings, as a baseline for which to compare the

formulated heuristics of the collision model that follows.

7.6: Heuristic formulae for the cumulative scattering angle

With the assumption that the cumulative binary collision approximation can

be made, calculations are feasible enough such that the probability distribution

function of Θ can be found over a range of a and N (from Eqs. (7.6) and (7.2)).

The collision model outlined in this section takes a single random number input U ,

uniformly distributed on (0, 1), and produces a scattering angle output with a proba-

bility distribution function that approximates that of the cumulative binary collision

approximation. The convention has been chosen so that decreasing (increasing) the

random number input results in an increasing (decreasing) of the output scattering

angle. Though at times counterintuitive, this convention is preferable both for plot-

ting purposes and because the randomly generated numbers have finer resolution

when closer to zero [35].

7.6.1 Functional fits for numerical data

Three regions of behavior based on the scattering angle after a large number

of Coulomb collisions have been identified:

� The high-probability low-angle region is the collective effect of all scattering

events over the time-step. It contains the angle of highest probability and is

described by an exponential function.
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� The low-probability, high-angle region is the result of the effect of one high-

angle collision that is large in magnitude compared to all other scatters in

that time-step. This region is well described by the analytically-determined

probability distribution function for the closest expected Coulomb collision. In

other words, it is the result of a single collision so large that all other collisions

over the time-step are negligible.

� The mid-range transition region bridges the low-angle region with the high-

angle region. It is best described by a linear fit of the logarithms of the

variables involved, resulting in a power law.

For a single binary Coulomb collision, the cumulative distribution function of the

scattering angle, or the probability that the resulting angle Θ will be greater than or

equal to θ, (FΘ(θ) ≡ P (Θ ≥ θ)) is found in a straightforward manner from Eq. (7.5)

by recognizing that U1 is identical to 1− FΘ, N=1:

FΘ, N=1(θ) =


0 θ < 2 tan−1(a)

1− a2

tan2( θ2)
θ ≥ 2 tan−1(a)

. (7.18)

Eq. (7.18) is suitable for the N = 1 case, but for large N there is no analytical

solution, and so a heuristic model is formulated instead.
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7.6.1.1 High-angle region

The high-angle region is found to be well described by choosing a dummy

value of bmax such that N = 1 in Eq. (7.2), i.e. b̃max ≡ (nvτπ)−1/2 = bmax/
√
N . A

dummy version of a is defined using Eq. (7.6) with b̃max in place of bmax: ã ≡ a
√
N .

The high-angle region of the cumulative distribution function then follows from

Eq. (7.18) and results in

FΘ,high(θ) = 1− a2N

tan2
(
θ
2

) . (7.19)

Note that bmax is not present in the term a2N . The probability distribution function

fΘ(θ) ≡ d
dθ
FΘ(θ) for the high angle region is

fΘ,high(θ) =
a2N

sin2
(
θ
2

)
tan
(
θ
2

) (7.20)

which is equivalent to Eq. (2) in Ref. [14] (known as Rutherford Scattering). It is

important to note that this equation demonstrates that the probability distribution

of the scattering angle is a heavy-tailed distribution, and that any collision model

that produces only an exponential probability distribution of scattering angles will

tend to drastically underestimate the frequency of high-angle collisions. Inclusion of

Eq. (7.20) in a collision model ensures that the collision model accurately produces

high-angle scatters with the correct probability.

The continuous independent variable u ∈ (0, 1) is introduced as the domain

134



of possible values of the discrete random number input U . With this convention

it follows that u ≡ 1 − FΘ(θ) and so θ(u) for the high-angle region is found from

Eq. (7.19) and is quite similar to Eq. (7.5):

θhigh(u) = 2 tan−1

(
a
√
N√
u

)
. (7.21)

7.6.1.2 Low-angle region

The low angle region is described by the work of Nanbu [28] and modified

here to include a newly defined constant κ (dependent on a and N) which is less

than unity to account for the fact that this region is not independently normalized.

Additionally, a constant σ is used which corresponds to the most probable scat-

tering angle, i.e. the maximum value of fΘ(θ), and scales generally as a/
√
N , but

asymptotes to a value of π/2 when the effects of collisions approach isotropy (high a

and/or high N). Using the formulation of Nanbu as a starting point, the probability

distribution function of the low-angle region is found to be well-described by

fΘ, low(θ) = κ
ς sin(θ) exp (ς cos(θ))

2 sinh(ς)
(7.22)

where ς is defined as

ς ≡ cos(σ)/ sin2(σ). (7.23)
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The cumulative distribution function can be found by integrating the probability

distribution function of Eq. (7.22), i.e. FΘ(θ) ≡
∫ θ

0
fΘ(θ′)dθ′:

FΘ, low(θ) = κ

[
1− exp (ς cos(θ))− exp (−ς)

2 sinh(ς)

]
(7.24)

and the scattering angle as a function of u is

θlow(u) = cos−1

{
1

ς
log

[
exp(−ς) + 2 sinh(ς)

(
u− 1

κ
+ 1

)]}
. (7.25)

For values of ς & 100 the evaluation of Eq. (7.25) results in exponential overflow, so

the following can be used for these cases:

θlow, ς>100(u) = cos−1

{
1 +

1

ς
log

(
u− 1

κ
+ 1

)}
. (7.26)

7.6.1.3 Transition region

In between the low-angle and high-angle regions is a transition region that is

not easily defined but is continuously monotonic. The transition region is chosen to

be a linear fit in logarithmic space that minimizes the error when compared to the

cumulative binary collision approximation. The bounds of the transition region are

defined as ulow and uhigh. The transition region is chosen to be a linear fit of the

logarithms of θ and u, i.e. a power law. The chosen fit is

θtransition(u) = θlow(ulow)

[
u

ulow

]
∧

 log
{

θlow(ulow)
θhigh(uhigh)

}
log
(
ulow

uhigh

)
 . (7.27)
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7.6.2 Scattering angle as a function of a random seed

A piecewise function is created from Eqs. (7.21), (7.25) (or (7.26)), and (7.27):

θChap(u) =



θhigh(u) u < uhigh

θtransition(u) uhigh < u < ulow

θlow(u) u > ulow

. (7.28)

A single scattering angle is calculated from a single random number input U in the

this model as Θ = θChap(U).

7.6.3 A comparison of function fits with numerical data

Numerical data is produced using Eq. (7.8). All calculations are performed

in MATLAB and executed in parallel on an NVIDIA Tesla c2070 in double-precision

floating-point format, which performs at an effective rate of approximately 1 nanosec-

ond per binary collision evaluation including random number generation. M trials

are performed, and in each trial, Eq. (7.8) is evaluated N times. The result is a

collection of independently produced values Θi, i = 1 . . .M . The cumulative distri-

bution function from these trials is

FΘ(θ) =
1

M

M∑
i=1

1Θi≤θ. (7.29)
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Defining Θ̃ as an ordering of Θ such that Θ̃1 ≥ Θ̃2 ≥ ... ≥ Θ̃M , a function that

relates a random number input to a scattering angle in a manner that replicates the

numerical cumulative distribution function Eq. (7.29) is

θbinary(u) = Θ̃dM ue (7.30)

where d·e is the ceiling function. These functions imply a probability of 1/M for

each Θi. By choosing the constants σ, κ, ulow, and uhigh such that the error is

minimized between Eq. (7.30) and Eq. (7.28), then the scattering angles produced

by Eq. (7.28) will have similar probability distributions to those produced by N

evaluations of Eq. (7.4). The cost function for the optimization of the fit function is

C =
M∑
i=1

[
Θ̃i − θChap( i−1/2

M
)
]2

. (7.31)

By adjusting the values of σ, κ, ulow, and uhigh so that the cost function is minimized,

Eq. (7.28) becomes a good approximation for Eq. (7.30).

For the values of a = 10−3 and N = 103, and using M = 107, the resulting

plot of θbinary(u) (smoothed for clarity) is shown in Fig. 7.3. The cost function

was minimized using MATLAB’s nonlinear least squares solver lsqnonlin [34] and

resulted in values of σ = 0.132 rad, κ = 0.912, ulow = 0.194, and uhigh = 0.00481

which are used to plot the three pieces of Eq. (7.28).
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Figure 7.3: Comparison of scattering angles produced by the cumulative binary colli-
sion approximation with scattering angles produced by the three pieces of Eq. (7.28).

7.6.4 Trends for σ, κ, Ulow, and Uhigh

To be useful for a plasma simulation, the values of σ, κ, ulow, and uhigh need

to be easily approximated for a given pair of a and N . These parameters can be

found by repeating the process outlined in Sec. 7.6.3 for a range over both a and N

and then finding fit functions that closely follow the values found.

7.6.4.1 Low-angle regime

For low values of a and/or N the peak scattering angle is low (σ → 0, ς →∞)

and the values of σ̃ ≡ σ
a
√
N

, κ, ulow, and uhigh have logarithmic dependence on N ,

and no dependence on a. The functional fits chosen for these four parameters, using
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the shorthand x
a→0
≡ lima→0 [x(a,N)] are

σ̃
a→0

= −K(1)
σ exp

(
−K(2)

σ NK
(3)
σ

)
+K(4)

σ (7.32a)

κ
a→0

= −K(1)
κ exp

(
−K(2)

κ NK
(3)
κ

)
+ 1 (7.32b)

ulow
a→0

= K(1)
ulow

exp
(
−K(2)

ulow
NK

(3)
ulow

)
(7.32c)

uhigh
a→0

= K(1)
uhigh

exp
(
−K(2)

uhigh
NK

(3)
uhigh

)
(7.32d)

where all values of K are positive. Only values of N ≥ 1000 are used for finding

the best-fit parameters, and so the equations are only to be considered valid in this

range. In cases where N is large, M must be small so that computation time (which

is approximately MN × 10−9 s per data point) remains reasonable. Numerical data

for different values of M are shown alongside plots of Eqs. (7.32) in Fig. 7.4. Best-

fit values for K were found using again MATLAB’s nonlinear least squares solver

lsqnonlin.

7.6.4.2 High-angle regime

When a and/or N are not low, σ̃, σ, κ, ulow, and uhigh have dependence on both

a and N . The functional fits chosen for extending Eqs. (7.32) into the high-angle
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Figure 7.4: Trends for σ, σ̃, κ, ulow, and uhigh for cases in which the scattering angle
is very small and the results depend only on N .
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regime are

σ(a,N) = a
√
N σ̃
a→0

1 +

(
2

π
a
√
N σ̃
a→0

)K(5)
σ


1

K
(5)
σ

(7.33a)

κ(a,N) = min
[
1, κ

a→0
exp

(
K(4)
κ σK

(5)
κ

)]
(7.33b)

ulow(a,N) = min

[
1, ulow

a→0
exp

(
−K(4)

ulow
σK

(5)
ulow

)]
(7.33c)

uhigh(a,N) = min

[
1, uhigh

a→0

exp
(
−K(4)

uhigh
σK

(5)
uhigh

)]
. (7.33d)

Note that Eqns (7.33b), (7.33c), and (7.33d) are dependent on (7.33a). The best-fit

values for the functional fits are:

Kσ =



1.040× 106

11.76

3.289× 10−3

10.41

4.17


, Kκ =



6.776× 107

19.92

3.803× 10−3

0.4890

2.576


,

Kulow
=



1.926× 109

20.72

3.164× 10−4

166.5

6.193


, Kuhigh

=



5.307× 107

22.61

1.720× 10−3

6.248

1.618


. (7.34)

The fits for these equations are plotted in Fig. 7.5. The discrepancy in the case of

ulow is likely due to differences in the implementation of the optimizer between the
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low-angle and high-angle regimes, but this difference is not large enough to cause a

significant change in scattering angles generated by the this model.

7.7: Comparison to previous methods

Previous methods include the work of Takizuka and Abe [20] and Nanbu [28].

Takizuka and Abe define a scattering angle variance which can be rewritten in terms

of the parameters a and N as

〈δ2〉 = 2a2N log

(
1

2a

)
. (7.35)

A normally distributed random number, δ, is produced with variance 〈δ2〉 and the

scattering angle is calculated as

θTakizuka-Abe(δ) = 2 tan−1 (δ) . (7.36)

Nanbu defines an isotropy parameter, s, which may be written in terms of the

parameters a and N as

s = 4a2N log

(
1

2a

)
(7.37)

and the parameter A is defined in terms of s as

cothA− A−1 = exp(−s). (7.38)
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Figure 7.6: A comparison of the probability distribution functions for the scattering
angle between the cumulative binary collision approximation (Sec. 7.4), the N -body
simulation (Sec. 7.5), the Nanbu method, the Takizuka-Abe method, and the present
method (Sec. 7.6)

From this value of A, the scattering angle as a function of u is

θNanbu(u) = cos−1
{
A−1 log [exp(−A) + 2u sinh(A)]

}
. (7.39)

It is worthwhile to note that Nanbu’s parameter A has a similar role to the pa-

rameter ς defined in Eq. 7.23. Results from Nanbu’s formulation can be compared

to the present model as well as with the results of the cumulative binary collision

approximation. The results of this comparison are shown in Fig. 7.6. The results of

the Nanbu method are slightly upshifted from the results of the cumulative binary

collision approximation, which in turn was shown to be upshifted from the N -body

simulation of Sec. 7.5. Most glaringly, however, neither the Takizuka-Abe method

nor the Nanbu method recreate the low-probability, high-angle scattering above 0.5
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Figure 7.7: The relative discrepancy of the mean scattering angle for the Nanbu
method and the present method as compared to the results of the cumulative binary
collision approximation.

radians seen in both the binary and N -body collision data, as well as the present

model. For comparison over a range of a and N , the errors of the average scattering

angle relative to the results of the cumulative binary collision approximation for

both the Nanbu method as well as the present method are shown in Fig. 7.7.

7.8: Implementation and comparison to an N -body simula-

tion

The present collision model is tested by implemention into a 2D3V axisym-

metric particle-in-cell (PIC) similar to that used in Chap. 4. This simulation was

then compared to the results of an N -body simulation of an identical scenario, as

shown in Fig. 7.8. The scenario chosen is that of counterstreaming ion beams, to
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Figure 7.8: A frame from the counter-streaming N -body simulation used for testing
the collision model.

demonstrate the effect of high-angle scatters in a situation that is illustrative of the

conditions encountered in inertial electrostatic confinement fusion [4]. Two beam

sources are placed facing one another at a distance of 10 mm apart, each produc-

ing monoenergetic protons with an initial axial velocity of 104 m/s, at a density of

1013 m−3 in an initial beam radius of 0.1 mm. Such a small-scale scenario is chosen

so that the N -body simulation can simulate real particles rather than macroparti-

cles. After the simulations reach steady-state, the densities are time-averaged over

a long enough duration (t ≈ 0.5 ms) so that the density plot is smooth.

The collision model is implemented into the PIC simulation using the Monte-

carlo approach described by Takizuka and Abe [20], in which particles are randomly

matched pairwise with other particles in the same simulation cell. For comparison,

this PIC simulation was run using the present collision model, Nanbu’s collision

model, as well as a baseline case of no collision implementation at all. The particles

in the PIC simulation are oversampled (w = 0.1) to ensure that simulation cells
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within the beam envelope are well populated.

The N -body simulation for this scenario uses the method of Ref. [32] which

in turn is based on Aarseth [22] and is similar to the N -body method described

in Sec. 7.5. It uses a particle weighting of unity so that the macroparticle approx-

imation is avoided. The results from these simulations are compared in Fig. 7.9.

Some inherent differences in these simulations preclude exact agreement. Due

to limitations in computational power, the chosen beam radius is quite small com-

pared to the beam density, such that the mean inter-particle spacing (≈ 0.03 mm)

is not small compared to the beam radius, meaning that the beam is not as axially

symmetric as the initial conditions may suggest, and may also be the reason that

the beam envelope is less sharply defined in the density profile of the N -body sim-

ulation as compared to the PIC simulation. Another inherent difference is that the

N -body simulation has completely open boundary conditions, which is not feasible

within a PIC simulation. To reduce unwanted boundary effects, Dirichlet boundary

conditions in the PIC simulation were placed at twice the axial extent (x = 10 mm)

and twice the radial extent (x = 2 mm) so that the boundaries would not have a

significant effect on the beam envelope.

7.9: Discussion of small impact parameters

Collision models generally make use of a minimum impact parameter, below

which collisions are not considered. In the development of this model, charged
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particles are treated as points with no spatial extent, and no minimum impact

parameter is assumed. In actuality, the scattering angle is limited by the size and

nature of the participating particles. As an example, collisions between protons and

boron-11 are considered under IEC fusion conditions. The following considerations

are present in relevant literature concerning the lower limit of impact parameters:

� A fusion event occurs if the impact parameter between any two particles is

below the experimentally determined maximum fusion impact parameter.

� The particles may come within a de Broglie wavelength of each other, sug-

gesting that their matter waves have overlapped to such an extent that the

point-charge Coulomb force is no longer an accurate representation of the in-

teraction between them. The distance at which this occurs is used in some

models as the minimum impact parameter [37].

� The potential energy of a particle pair may exceed the kinetic energy of the

particle pair in the center-of-mass frame. The distance between particles at

this limit is used as a minimum impact parameter for some collision models [38]

though it serves only as a relevant scale and has no immediately obvious

physical significance. Many other models use similar scales pertaining to the

potential energy of the particle pair [39,40].

In assessing these conditions, it is assumed that a high cumulative scattering angle

results from a single high-angle scatter that makes all low-angle scatters negligible

over the time-step, i.e. U � uhigh. The scattering angle for this region is given by

Eq. (7.21). In this limit, the minimum impact parameter experienced by the test
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particle is the impact parameter that would result in this scattering angle from a

binary collision with one field particle:

bmin (U � uhigh) =

√
U

nβvαβτπ
. (7.40)

The distance of closest approach r0 during a single binary collision as a function of

the impact parameter and scattering angle is

r0 (θ, b) = b
cos
(
θ
2

)
1− sin

(
θ
2

) . (7.41)

Combining Eqs. (7.21), (7.40), and (7.41) reveals the minimum of r0 among all binary

collisions, i.e. the minimum of the closest approaches between the test particle and

all field particles:

rmin (U � uhigh) = abmax

(
1 +

√
1 +

U

a2N

)
. (7.42)

7.9.1 Fusion event

The maximum impact parameter for a fusion event is bfusion =
√

σfusion

π
, so a

randomly generated scattering angle that suggests a lower impact parameter than

bfusion can be assumed to have resulted in the fusion of the test particle with a field

particle. The range of u for which U results in a fusion event is defined as

ufusion ≤ nβvαβτσfusion. (7.43)
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ufusion is equivalent to the probability of the test particle fusing with a field particle

during an amount of time τ .

7.9.2 de Broglie wavelength

The de Broglie wavelength of a particle is

λde Broglie =
h

p
(7.44)

where h is the Planck constant and p is the particle momentum. The criterion of

interest is if at any time the distance between the test particle and any field particle

becomes less than the sum of their de Broglie wavelengths. This criterion is satisfied

if and only if the minimum of the distances of closest approach given by Eq. (7.42)

is less than or equal to the sum of the de Broglie wavelengths of the particles:

rmin (U � uhigh) ≤ λde Broglie. (7.45)

From the difference of the initial kinetic energy and the potential energy at closest

approach, the momentum of the particle pair at closest approach can be found:

p = 2µαβ

√
v2
αβ −

e2

4πε0µαβrmin

. (7.46)

Combining Eqs. (7.42), (7.45) and (7.46), the range of values for which U results in

the test particle coming within a distance of any field particle less than or equal to
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the sum of their de Broglie wavelengths is defined:

ude Broglie ≤ a2N

1

4

√1 +

(
4πε0vαβh

qαqβ

)2

− 1

2

− 1

 . (7.47)

7.9.3 Potential energy equal to kinetic energy

The potential energy of the particle pair exceeds its kinetic energy when its

potential energy at closest approach exceeds half its initial kinetic energy:

qαqβ
4πε0rmin

≥ 1

4
µαβv

2
αβ. (7.48)

Combining Eqs. (7.42) and (7.48) results in the range of values for which U results

in a test particle field particle pair having a higher potential energy than kinetic

energy at closest approach:

upotential ≤ 8a2N. (7.49)

For comparison of ufusion, ude Broglie, and upotential under p-11B fusion conditions,

either species can be assigned as the α species and the other assigned to the β

species. The velocities are chosen such that the center-of-mass energy is equal to

the resonant center-of-mass peak fusion cross-section that occurs at approximately

148.3 keV [41] where the fusion cross section is approximately σfusion = 10−29 m2.

The densities are chosen to be np = nB = 1016 m−3 with τ = 10−8 s. To avoid

electron shell effects, boron nuclei are simulated (qB = 5e.) The values of ufusion,

ude Broglie, and upotential are plotted in Fig. 7.10. It is clear that above these limits,
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Figure 7.10: A comparison of scattering angle probabilities with the probabilities
of ufusion (a fusion event), ude Broglie (significant interaction of matter waves), and
upotential (potential energy exceeding kinetic energy) occuring.

high angle scattering beyond that which is predicted by Nanbu’s model is present

in this particular IEC fusion scenario.

7.10: Concluding remarks on the Coulomb collision model

A collision model for non-thermal plasma simulation has been formulated

based on data obtained by numerical experimentation on the effect of repeated

binary collisions on a test particle. The work presented in this chapter expands on

previous efforts by accounting for low-probability, high-angle scatters and by limit-

ing the model input to two parameters: a and N (Eqs. (7.6) and (7.2) respectively).

From these two parameters, the values σ, κ, ulow, and uhigh are calculated from

Eqs. (7.32) and (7.33). Finally, the scattering angle is calculated from a random

number input using Eq. (7.28). Numerical experiments show that this model recov-
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ers high-angle scatters not seen in previous models, and conforms well to numerical

data produced by the cumulative binary collision approximation. Lastly, a signif-

icant range of high-angle scatters was shown to be present at impact parameters

above commonly defined forms of a minimum impact parameter bmin in a highly

non-thermal plasma.
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Chapter 8

The Standing Wave Direct Energy Converter

Direct energy conversion, or the conversion of the kinetic energy of charged

fusion products directly into electricity, is necessary for keeping the specific mass

(mass per unit power) of a space power system low enough provide a game-changing

alternative to current space-based power systems.

The Traveling Wave Direct Energy Converter (TWDEC) [42] was conceived

as a way of direct energy conversion that produced alternating current power and

did not require megavolt voltage levels. This chapter introduces the Standing Wave

Direct Energy Converter (SWDEC) as a simplified version of and possible milestone

towards the TWDEC and to facilitate a general understanding of the physics of the

TWDEC as well as to simplify the modeling and results. The SWDEC may also

stand alone as an alternative to the TWDEC.
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8.1: SWDEC overview

An SWDEC or a TWDEC is a linear particle decelerator that may consist

of two sections of electrodes, a modulator section and a decelerator section. An

experimental TWDEC setup is shown in Fig. 8.1, with an ion beam source as a

stand-in for charged fusion products. The modulator section is only necessary for

Figure 8.1: Schematic for TWDEC test article at NASA Johnson Space Center.

a continuous beam input. In the modulator section the α-particles pass through a

series of electrodes with time-varying voltages, accelerating some of the α-particles

and decelerating others, so that the density of the beam becomes modulated and

the ions become bunched.

Downstream from the modulator section, the decelerator electrodes use the

kinetic energy of the ion bunches to excite an oscillating circuit, from which power

can be drawn. The TWDEC differentiates itself from other direct energy conver-
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sion methods [43] in that it provides its electric power in alternating current —

advantageous for the direct drive of proposed radio frequency (RF) space propul-

sion systems [44–46] — and can operate at a lower voltage relative to the ion energy

than a direct charge capturing system [47]. The mechanism of energy conversion in

a TWDEC is analogous to a linear particle accelerator operating in reverse. Rather

than imparting electric field energy to a particle in order to accelerate a group of

ions, the ions are decelerated while exciting an oscillating resistor-inductor-capacitor

(RLC) circuit, thereby providing an alternating current power source. The impend-

ing particle bunches and the oscillation of the circuit are synchronized so that the

particle bunches consistently experience a positive potential gradient, as shown in

Fig. 8.2 for the case of a standing wave. Though the time-varying electric field due

to the passing ion bunches is what causes the oscillation of the RLC circuit, the

decelerator electrodes at peak oscillation are the dominant source of electric field,

able to impart a significant deceleration on the ions.

8.1.1 Past research

Past work on the TWDEC includes a study on a concept for a D-3He fusion

reactor incorporating the TWDEC [48] and a system level study on the effect of

TWDEC implementation on the specific mass of a variety of theoretical fission

and fusion powered spacecraft [49]. The physics of particle deceleration in the

TWDEC has been studied numerically in [50] which found significant differences

between the 1D and 2D models. The approach used for these models was that of
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an externally imposed voltage on the decelerator electrodes. These studies did not

directly model the conversion of kinetic energy into electric energy. The goal of the

research presented in this chapter is to directly model the conversion.

8.1.2 SWDEC vs. TWDEC

The SWDEC differentiates itself from the TWDEC in that the SWDEC oper-

ates with an electrode spacing equal to one half the wavelength, while the TWDEC

has an increased number of electrodes per wavelength so that the waveform imposed

by the voltages of the decelerator electrodes can travel with the moving particles in

order to increase the deceleration efficiency. The electrode spacing in both systems

must be adapted (tapered) to match the changing particle velocity. While most

basic principles are common to each, the SWDEC has a more simple circuitry and

is chosen for study to facilitate understanding, computation, and analysis.

8.2: SWDEC simulation overview

Two simulations were created for optimizing and studying the SWDEC. The

first simulation is a 1D1V semi-analytical method, that takes advantage of fast sim-

ulation times for optimizing the electrode spacing. It is semi-analytical in the sense

that it does not use a computational grid but instead calculates the electric interac-

tion between on-axis point particles and ring electrodes using analytical expressions,

and then advances the simulation time-step numerically. This model simulates the

bunches of α-particles as point charges.
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The second simulation is a 2D3V axisymmetric particle-in-cell simulation from

which the code in Chap. 4 was developed. This model assumes that α-particles gen-

erated from the CE-IEC have been collimated into a beam and are near-monoenergetic.

While the CE-IEC would produce pulses of fusion products, this chapter investigates

both a pulsed beam of α-particles as well as a continuous beam, so that the results

are applicable to a variety of fusors. In the case of a continuous beam, a modulator

electrode section is needed in front of the decelerator electrode section in order to

first change it into a pulsed beam.The 2D3V PIC model is used to study the physics

of the conversion of the kinetic energy of the ions into electrical power, study the

beam modulation process, validate the simplifications made in the 1D1V model, and

test the optimization results.

Both the 2D3V and 1D1V model simulate the electrodes at floating potentials

connected through a simple resistive circuit, allowing the direct measurement of

converted power while maintaining conservation of energy. Particle-in-cell methods

are inherently computationally intensive and not suited to optimization schemes in

which the simulation must iterate over a parametric sweep. For the purposes of

parametric studies and optimizations, a fast method of SWDEC simulation with

direct applicability to TWDEC simulation is presented in the following section.
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Figure 8.2: Frame-by-frame illustration of the SWDEC deceleration mechanism
using four ring-shaped electrodes. Each electrode has an alternating electric charge,
creating a standing wave along the axis. A correctly timed ion will consistently
experience a positive potential gradient, resulting in the deceleration of the ion.

8.3: A 1D1V semi-analytical simulation of the SWDEC

8.3.1 Point-charge description of the ion bunches

To expedite simulation and make quick optimization schemes possible, the ion

bunches that result from a modulated ion beam are approximated as point charges
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traveling along the axis of the device. These point charges have the same charge and

mass as the number of ions they represent and have a spacing equal to the wave-

length of the modulated beam. Some of the physics of the ion bunches is lost to this

approximation, and some considerations need to be made to account for discrepan-

cies between the point-charge description and a full particle-in-cell simulation:

1. There are differences in potential due to a finite-sized ion bunch and an equally-

charged point charge placed at the center of the bunch. These differences are

investigated in section 8.3.2.

2. The velocity modulation of the beam that takes place in the modulator section

limits the lifetime of the ion bunches. It is shown in section 8.3.3 that this

limitation can be overcome by lowering the modulator voltage and increasing

the distance between modulator and decelerator sections.

3. The space charge expansion of the ion bunches limits their lifetime. This

is accounted for in the model by an analytical approximation to the bunch

expansion in section 8.3.4.

4. In the decelerator section, the finite size of the bunches causes non-uniform de-

celeration of the ions, which generally leads to the point-charge approximation

overestimating the energy conversion. This is investigated by a particle-in-cell

simulation of the deceleration process in section 8.3.14.

5. The kinetic energy of the ions from radial and azimuthal velocities that arises

due to the bunch expansion, the axial magnetic field, and other irreversibilities,
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cannot be converted by the decelerator and leads to a decrease in converted

energy when these velocities are present.

8.3.2 Comparison between the particle-in-cell simulation of the ion

bunches and the point-charge approximation

The focus of this study is energy conversion, and so the chief concern of this sec-

tion is the discrepancy of the electric potential at the electrode radius between that

due to the particle-in-cell ions and that predicted by the point-charge approxima-

tions of those bunches. The discrepancy is due to two factors. First, the modulation

process is not perfect and not all of the ions are moved into the bunched regions.

Some ions will stay in the space between bunches and will not be decelerated and

their energy will not be converted. This will cause the simulation to overestimate

the amplitude of alternating voltage induced on the decelerator electrodes. Second,

the point-charge ion bunches exist only on the axis of the device, and do not pass as

close to the electrode rings as off-axis ions. This causes the simulation to underesti-

mate the potential induced on the decelerator electrodes. How these two opposing

errors offset one another is chiefly a relation between the scale length of the device

as compared to the radius of the electrodes. These effects are shown in Fig. 8.3.

The results obtained by the model will therefore have increased error for very large

or very small ratios of electrode spacing to electrode radius. Coincidentally, this

is the same regime within which the space-charge expansion model presented in

section 8.3.4 is valid. This does not mean that designs outside of this regime are
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necessarily suboptimal but it does imply that there is some parameter space which

this study does not enter.

Figure 8.3: A frame-by-frame comparison of the point-charge description of the
modulated ion beam with the 2D axisymmetric particle-in-cell simulation of the
modulation process. Particles are moving from left to right. The two methods are
simulated separately and then superimposed upon one another for comparison. The
modulator electrodes do not have any effect on the point-charge bunches. Axial and
radial axes are of different scales for clarity.

8.3.3 Effect of velocity modulation on ion bunch lifetime

The modulator section of a TWDEC or SWDEC imparts a velocity broad-

ening to the beam, which transforms the continuous input beam into a series of
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ion bunches. The velocity modulation that creates the bunches also limits their

lifetime. Simulations using a low beam density were performed to investigate this

effect. Using a low beam density ensures that the bunch lifetime is limited only by

the velocity spread due to the modulation process rather than by the space charge

expansion of the ion bunch. Fig. 8.4 shows two simulations using different mod-

ulation voltages. The higher modulation voltage results in a quick formation of

bunches upon exit of the deceleration region, though their lifetime is short due to

their high velocity spread. A lower modulation voltage results in a greater bunch

lifetime, though there is also a longer distance required for the bunches to form

before they are useful for energy conversion. While staying in the realm of tractable

domain sizes, the simulations showed that for low beam densities there is no limit

on increasing ion bunch lifetime by reducing modulation voltage and increasing the

device length, though sometimes increasing the number of modulator electrodes was

also necessary to maintain good bunch formation at low voltage amplitudes. For

this reason, the model does not account for bunch lifetime limitation due to the

modulation process.

8.3.4 Effect of space-charge expansion on ion bunch lifetime

The previous section used low beam currents to isolate the velocity spread

effect. When the beam density is raised the limiting factor on bunch lifetime is space-

charge expansion. This is accounted for in the model by an analytic approximation

to bunch expansion. In the decelerator section, the radial expansion will be limited
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Figure 8.4: A comparison of the effect of modulation voltage on ion bunch formation.
A higher voltage (top) results in quick formation of bunches, while a lower voltage
(bottom) leads to longer bunch lifetimes. The simulation uses a low beam current
(1 ampere) so that the expansion of the bunches due to space charge is low.

by the axial magnetic field, preventing ions from striking the ring electrodes. The

axial expansion will be affected (and likely limited) by the decelerator electrodes but

the full extent of this effect is not known. Thus, in this model the axial expansion

of the bunch is assumed to have no limitation. Because of this, as the ion bunches

decelerate, the spacing between the bunches decreases. Once the bunches overlap,

the effectiveness of the electrodes in decelerating the ion packets will diminish. A

limitation on the maximum ion bunch size is set to the instantaneous wavelength,

λ = v
f
. The wavelength correlates to the electrode spacing; there are two electrodes
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per wavelength in the SWDEC, greater than two electrodes per wavelength in the

TWDEC, and the wavelength decreases with the decreasing velocity of the particles.

The analytical approximation determines the lifetime of the bunches as a function

of the beam current and other parameters; a higher beam current leads to increased

space-charge expansion. To formulate the approximation for expansion, a spherical

ion bunch is considered. Acceleration of a single ion on the edge of an ion bunch due

to the bulk charge of the bunch is calculated. The acceleration will be dependent

on the ion charge, the bunch charge, the ion mass, and the time-dependent radius

of the bunch:

r̈ =
F

mi

=
1

mi

1

4πε0

QiQb

r2
(8.1)

where Qi is the charge of a single ion and Qb is the total charge of the bunch.

Assuming all ions have an ionization level of Z the differential equation can be

written in terms of the number of ions in the bunch Nb as

r̈ =
1

mi

1

4πε0

Nb (Ze)2

r2
. (8.2)

The solution to this differential equation in terms of the initial radius r0 and radius

rτ at time τ is

√
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1
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1

4πε0
Nb (Ze)2 τ = r0

3
2

{
rτ
r0

√
1− r0

rτ
+

1

2
ln

[
2
rτ
r0

(
1 +

√
1− r0

rτ

)
− 1

]}
(8.3)

and shows the trade-off between the number of ions in each bunch and the time

over which the bunch may be decelerated subject to the initial and final bunch
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sizes which are correlated to the electrode spacing. The derivation of Eq. (8.3) is

detailed in Appendix A. The approximation assumes a spherically expanding bunch.

Figure 8.5: 2D axisymmetric particle-in-cell simulation developed in [51] of the
expansion of an initially spherical ion bunch. Left: symmetric expansion in the
absence of a magnetic field. Middle: radial expansion limited by an axial magnetic
field increases the rate of axial expansion. Right: comparison with the theoretical
ion bunch radius.

However, the radial expansion of the bunch is limited by the axial magnetic field.

A comparison between the expansion as modeled by Eq. (8.3) with particle-in-cell

simulations of the expansion with and without an axial magnetic field are shown in

Fig. 8.5. Early on in the expansion (up until the bunch radius has grown by a factor

of about 2.5) the spherically symmetric and radially limited cases agree to within

10%. Typically the bunch spacing is on the order of 4 times that of the bunch

length, so though the analytical model for bunch expansion becomes inaccurate
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(off by approximately 20%) near the end of the expansion process, it provides an

estimate on the bunch lifetime for the purpose of quick simulation. Additionally,

the decelerator electrodes can have a compressing effect on the bunches (evident

in simulation of the deceleration process in Fig. 8.14) thereby increasing ion bunch

lifetimes. Considering the time at which the ion bunch enters the decelerator region

as t = 0 and the time at which it leaves the region as t = τ , τ is related to number of

electrodes and the oscillation frequency as τ = Ne
2f

for two electrodes per wavelength,

where Ne is the number of decelerator electrodes. The number of ions per bunch is

related to the beam current Ib by Ib = NbZef , where f is the both the frequency of

oscillation as well as the frequency of the passing ion bunches. Finally, rτ is replaced

with rf , the final radius of the bunch upon leaving the decelerator region. Making

these substitutions into Eq. (8.3) results in

√
2

1
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1

4πε0
Ib Ze
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f
3
2

= r0

3
2
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rf
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1

2
ln
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2
rf
r0

(
1 +

√
1− r0

rf

)
− 1

]}
.

(8.4)

Eq. (8.4) relates the beam current to the oscillation frequency, the initial and final

radii of the expanding ion bunches, and the number of decelerator electrodes. This

expression is used in the optimization scheme to ensure the model stays in a region

of realistic ion bunch lifetimes in section 8.3.13.

8.3.5 1D1V simulation overview

In the SWDEC, electrodes are connected in an “even/odd” fashion (Fig. 8.6).

The simulation is performed via a discrete time-stepping scheme. Prior to the
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Figure 8.6: The circuitry schematic for an SWDEC with eight electrodes. The sys-
tem is an RLC circuit with the odd/even electrodes acting as a capacitor. Converted
energy from the decelerating ions is stored in the inductor and capacitive electrodes,
and dissipated in the resistor.

simulation start, the capacitance matrix is calculated, as outlined in section 8.3.6.1.

From the capacitance matrix, the aggregate capacitance between the odd and even

electrodes is calculated, also outlined in section 8.3.6.1. After the simulation start,

the following steps are performed during each discrete time-step:

1. The capacitance between the ion bunch and each electrode is calculated, as in

outlined section 8.3.6.2.

2. The capacitive voltage (i.e. the voltage difference between the odd and even

electrodes) is calculated from the ion bunch–electrode capacitance as well as

any capacitive charge, also in section 8.3.6.2.

3. The current and charge of the RLC circuit are advanced over the time-step

using the circuit equation as outlined in section 8.3.7.

4. The charge on each individual electrode is calculated using known voltages
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and the capacitance matrix equation (found in section 8.3.6.1).

5. The electric potential along the axis is calculated from the charge on each

electrode as outlined in section 8.3.8.

6. The acceleration of an ion bunch from the electric potential is calculated, also

outlined in section 8.3.8. The velocity and position are advanced over the

time-step accordingly.

8.3.6 Determination of electrode charge distribution

8.3.6.1 Charge on each electrode from a voltage difference

To determine the quantity of charge manifested on each electrode when the

capacitor system is charged to a voltage, the capacitance of every possible electrode

pair must be calculated. These capacitances form a capacitance matrix C which

corresponds to the capacitance equation q = CV, where q and V are vectors con-

taining the respective charges and voltages of each electrode, Cij is the capacitance

between the ith and jth electrode, and Cii is the self-capacitance of electrode i. The

non-diagonal values of C−1 (also known as the elastance matrix) can be found by

assuming a charge on ring i and finding the resulting potential on ring j. The thick-

ness of each ring is assumed to be negligible in comparison to the distance between

rings. This is not just a simplifying assumption: decreasing the thickness of the

rings increases their coupling with the ion bunches while decreasing their coupling

with each other. The potential on any point of ring j resulting from a charge dq on
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an infinitesimal segment of ring i is:

dΦj =
1

4πε0rij
dqi (8.5)

where rij is the distance from the charge on ring i to an arbitrary point on ring j

as shown in Fig. 8.7, and is defined by

r2
ij = (zi − zj)2 + 2R2(1− cos θ). (8.6)

Plugging this value for r into Eq. (8.5) and integrating around ring i results in

Figure 8.7: An infinitesimal increase in potential dΦ on ring j due to a charge dq
on an infinitesimal segment of electrode ring i. Due to axial symmetry and the
assumption that each electrode ring is equipotential, the position of dΦ can be
chosen for convenience.
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Φj =
qj

4πε0

∫ 2π

0

[
(zi − zj)2 + 2R2(1− cos θ)

]− 1
2dθ (8.7)

and the non-diagonal elements of the elastance matrix are then

Sij =
1

4πε0

∫ 2π

0

[
(zi − zj)2 + 2R2(1− cos θ)

]− 1
2dθ (8.8)

with Sij = Sji for all i and j. These integrals are best calculated numerically. The

self-elastance of each electrode can be found using the analytical expression [52]

Sii =
ln(8R

a
)

(4πε0)(πR)
(8.9)

where a is the radius of thickness of the electrode. This expression is valid for

R� a. The odd and even electrodes form a capacitor. The following steps outline

the calculation of the total capacitance from the capacitance matrix of the two sets

of equipotential electrodes in the SWDEC. The matrix system q = CV can be

ordered such that  qo

qe

 =

 X Y

Y Z


 Vo

Ve

 (8.10)

where a subscript o denotes odd electrodes and a subscript e denotes even electrodes:

qo = [q1, q3 · · · ]T and qe = [q2, q4 · · · ]T; X, Y, and Z correspond to the quadrants

of the symmetric capacitance matrix; and Vo = [Vo, Vo · · · ]T and Ve = [Ve, Ve · · · ]T.
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Summing equipotential rows results in

∑
qo = xVo + yVe∑
qe = yVo + zVe

(8.11)

where x ≡ ∑
X, y ≡ ∑

Y, and z ≡ ∑
Z. Because

∑
qo = −∑qe ≡ q, a

capacitance matrix for the odd and even electrodes is revealed:

 q

−q

 =

 x y

y z


 Vo

Ve

 (8.12)

This determines the voltage difference between the odd and even electrodes as

Vo − Ve =
x+ 2y + z

xz − y2
q (8.13)

which defines the capacitance as

C =
xz − y2

x+ 2y + z
. (8.14)

8.3.6.2 Voltage difference between the electrodes induced by a nearby

ion bunch

The introduction of a positively charged ion bunch, approximated as a point

charge on the axis, will raise the voltage of nearby electrodes. This effect can be
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represented as

V = C−1q + C−1
Q Q (8.15)

where CQ = [C1Q, C2Q, · · · ]T is a column vector containing the capacitance between

the ion bunch and the electrodes and Q is the charge of the ion bunch. The ion

bunches are always on-axis, thus all parts of the electrode ring are equidistant from

the ion bunch. The voltage induced on any electrode by an ion bunch of charge Q

is therefore given by

Φi =
Q

4πε0riQ
(8.16)

Where riQ, the distance between the ion bunch and a point on the electrode ring,

is defined by

r2
iQ = (zi − zQ)2 +R2 (8.17)

so the elastance between a ring electrode and the ion bunch becomes

SiQ =
1

4πε0

[
(zi − zQ)2 +R2

]− 1
2 (8.18)

and the capacitance is found by taking an element-wise inverse of the elastance

vector (i.e. CQ = [S1Q
−1, S2Q

−1, · · · ]). For reasons that will become apparent later,

Eq. (8.15) is rearranged as

q = CV −CC−1
Q Q. (8.19)
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The rows are rearranged in the same manner as Eq. (8.10)

 qo

qe

 =

 X Y

Y Z


 Vo

Ve

−
 Γo

Γe

Q (8.20)

defining Γ ≡ CC−1
Q , with Γo designating the odd rows of Γ and Γe designating the

even rows of Γ. A summing of equipotential rows and a rearrangement results in

 Vo

Ve

 =

 x y

y z


−1

 q

−q

+

 γo

γe

Q
 (8.21)

with γo ≡
∑

Γo and γe ≡
∑

Γe. The voltage difference between the odd and even

electrodes can then be expressed as

∆V =
q

C
+ f(CQ) (8.22)

with C defined in Eq. (8.14) and

f(CQ) ≡

 x y

y z


−1  γo

γe

Q. (8.23)

8.3.7 The circuit equation

The differential equation describing an RLC circuit is

Lq̈ +Rq̇ + ∆V = 0 (8.24)
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where ∆V is the potential difference between the two terminals of the capacitor. In

the SWDEC, the terminals of the capacitor are the even and odd electrodes, and

the potential difference is a result of both the total electrode charges (+q and −q)

as well as any potential difference induced by an ion bunch:

Lq̈ +Rq̇ +
q

C
+ f(CQ) = 0 (8.25)

where L and R are the inductance and resistance of the circuit, with q̇ ≡ dq/dt

and q̈ ≡ d2q/dt2. For multiple ion bunches the last term will be replaced by a term

for each bunch. This modification is trivial, so for simplicity this derivation will

continue to assume the presence of only one ion bunch. A vector that determines

the state of the circuit and its time derivative are

x =

 q

q̇

 , ẋ =

 q̇

−R
L
q̇ − 1

LC
q + 1

L
f(CQ)

 . (8.26)

In a time-stepping simulation the state vector can be updated at each time-step by

xn+1 = xn +
ẋn+1 + ẋn

2
∆t (8.27)

and from this the solution to the state vector at each new time-step is

 q

q̇


n+1

=

 1 −∆t
2

∆t
2LC

1 + ∆tR
2L


−1

 1 ∆t
2

− ∆t
2LC

1− ∆tR
2L


 q

q̇


n

+

 0

f(CQ)n

∆t


(8.28)
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where the assumption f(CQ)n+1 ≈ f(CQ)n, has been made for simplicity, which is

a valid approximation for small values of ∆t.

8.3.8 Ion bunch deceleration due to charged electrodes

When the voltage difference between the electrodes is known, the charge on

each electrode can be calculated as described in section 8.3.6.1. Because the system

q = CV is linear, the charge distribution over the electrodes can be calculated just

once for a given electrode setup and a test charge and then scaled for later use.

The calculation of the electric potential at a point along the axis due to the charged

electrodes is similar to the steps taken in Eq. (8.16), Eq. (8.17), and Eq. (8.18).

The potential at an axial point z from a charge dq on an infinitesimal segment of

electrode i is (see Fig. 8.8)

dΦ(z) =
dqi

4πε0

[
(z − zi)2 +R2

]− 1
2 . (8.29)

Integrating each side of the equation is trivial due to the symmetry of the problem,

Figure 8.8: A potential increase dΦ at location z due to a charge dq on an infinites-
imal segment of electrode ring i.
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and so the potential from all electrodes is

Φ(z) =
Ne∑
i=1

qi
4πε0

[
(z − zi)2 +R2

]− 1
2 (8.30)

where Ne is the total number of electrodes. The electric field at point z is related to

the derivative of the electric potential, and assuming there is an ion bunch at this

location the acceleration of the ion bunch is

a = − Q

mi

d

dz
Φ(zbunch) (8.31)

where Q is the charge of the ion bunch and Φ(zbunch) is the potential due to all

electrode rings at the location of the ion bunch as found in Eq. (8.30). The velocity

and displacement of the bunch are then updated accordingly.

8.3.9 Partial validation of the model through demonstration of con-

servation of energy

Sections 8.3.6 through 8.3.8 have outlined the method by which the SWDEC

is simulated. As a partial validation of these methods, the conservation of energy

in the system is demonstrated. In a test case (Fig. 8.9) a single bunch traverses

the decelerator electrode region. The decelerator electrodes are initially uncharged

but the capacitance between the moving ion bunch and electrodes induces a charge

in the electrodes which starts an oscillation in the RLC circuit. The oscillation is

dampened by the resistor, and the total energy dissipated in the resistor is equal to

179



the loss in kinetic energy of the ion bunch. Though the conversion efficiency in this

test case is low due to the lack of an initial oscillation of the circuit, accurate energy

conservation is demonstrated.

Figure 8.9: Demonstration of the conservation of energy: The ion bunch enters a
region of eight equally spaced decelerator electrodes shortly after 4 microseconds into
the simulation, and excites the RLC circuit, where the bunch energy is transferred
into an oscillation alternating between the inductor and capacitor. The bunch leaves
the decelerator region shortly before 6 microseconds into the simulation, and the
oscillating circuit energy is dampened and dissipated by the resistor. The total
energy remains unchanged throughout the simulation.

8.3.10 1D1V electrode spacing optimization

During the optimization of the electrode positions, the effect of the charged

bunch on the RLC circuit is disregarded and circuit amplitude damping due to the

resistor is removed. The physics that remains is the deceleration of a single test ion,

with a prescribed charge-to-mass ratio, by a constant amplitude LC circuit. This

test ion has negligible charge relative to the oscillating charge on the electrodes, so

the effect of the ion on the circuit is negligible. However, the effect of the circuit

and electrodes on the ion is non-negligible, and any energy lost by the ion must be

180



gained by the circuit (since there is no other mechanism for loss in this closed, ide-

alized system). This single-ion simplification is an imitation of the electric field that

ions will experience when the SWDEC is operating in steady-state. The expected

outcome is the need for the downstream electrodes to be more closely spaced so that

the circuit oscillation remains synchronized with the transit of the decelerating ions.

The goal is to reach a situation for which the ions only experience an “uphill”

potential while in the decelerator section. Starting with a nominal electrode spacing

(a constant electrode spacing based on initial ion velocity and operating frequency)

an ion is decelerated slightly by a small amplitude LC circuit. The position of the

test charge each time the polarity of the capacitor charge switches (from positive

to negative or vice versa) is noted, and on the next iteration the electrodes are

moved to these positions. The new positions will be only slightly shifted from the

old positions if the process is stable. Through this process, the circuit amplitude

required to achieve this deceleration is specified and can be chosen freely. The

determination of optimal resistance requires no further simulation, only calculation.

During the optimization of the electrode spacing, the circuit equation, Eq. (8.25)

with the resistor removed and neglecting any effect of the ion bunches on the circuit,

reduces to

Lq̈ +
q

C
= 0. (8.32)

A solution to Eq. (8.32) is

q̇ = q̇0sin(2πft) (8.33)

where q̇0 is the amplitude of the circuit (in amperes) at which the electrode spacing
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Figure 8.10: All units arbitrary. A demonstration of the electrode spacing opti-
mization. Over each iteration the circuit amplitude is increased, and the electrode
spacing is modified to correspond with the deceleration of the test particle. By the
84th iteration, the conversion efficiency has achieved approximately 90%.

was optimized in section 8.3.10 and f is the frequency of both the incoming bunches

and the frequency of oscillation of the circuit, 2πf = (LC)−1/2. This is the solu-

tion to the circuit oscillation with no resistance and no influence from passing ion

bunches.
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8.3.11 Circuit resistance calculation for steady-state operation

Now a system with the resistor in place as well as the influence of passing

ion bunches is considered. In steady-state the energy lost by the decelerating ions

is transferred into the circuit and dissipated by the resistor. This means that in

Eq. (8.25) Rq̇ = −f(Cq), so that Eq. (8.25) simplifies to Eq. (8.32) and therefore

Eq. (8.33) is a valid solution for the full system as well. The next step is to find

the resistance which results in Rq̇ = −f(Cq), so that the system will operate at the

amplitude specified in section 8.3.10. To find this resistance, the relation between

resistance, power, and current is used:

P = q̇2R. (8.34)

Plugging in the solution to the LC differential equation (Eq. (8.33)) which is also

desired as the solution to the steady-state RLC system, results in

P = q̇0
2sin2(2πft)R (8.35)

and time-averaging over one period simplifies to

〈P 〉 =
q̇0

2

2
R. (8.36)
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Here the time-averaged circuit power is (neglecting other energy losses) beam power

multiplied by the efficiency

〈P 〉 = ηPbeam (8.37)

and so the resistance required for the energy conversion efficiency specified by the

optimization process is

R =
2ηPbeam

q̇2
. (8.38)

8.3.12 Demonstration of a self-consistent steady-state simulation

To demonstrate a working system in steady-state, a series of ion bunches

representing the modulated ion beam is sent through the decelerator electrodes.

To reach steady-state, the oscillations of the circuit must initially be externally

established, at a one-time start-up energy cost. Once the first of the series of ion

bunches passes through the decelerator electrodes, the power source can be turned

off and the simulation will become self-sustaining with only the ion beam power as

the input. In steady-state the energy lost by the decelerating ions is transferred into

the RLC circuit and balances the energy dissipated in the resistor. In reality, the

converted energy only comes from the decrease in kinetic energy associated with a

decrease in the axial velocity of the ion bunches. Any kinetic energy associated with

radial or azimuthal velocity of the ions (which can arise due to an axial magnetic

field) as well as any thermal energy, will not be converted by this process.
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Figure 8.11: A frame-by-frame demonstration of the steady-state operation of the
simulation, with asterisks denoting the axial positions of the ion bunches. The op-
eration of the SWDEC in this simulation is self-sustaining, in that the only power
input is the incoming ion bunches. The energy gained by the circuit from the deceler-
ating bunches is offset by the energy dissipated in the resistor, and so the amplitude
stays constant. This simulation demonstrates what is illustrated in Fig. 8.2: the ion
bunches only experience “uphill” potentials while in the decelerator.

8.3.13 Analytical efficiency optimization accounting for ion bunch

expansion

The model may be deemed valid insofar as the bunches do not expand to

the extent that the leading edge of one ion bunch overtakes the trailing edge of

the preceding ion bunch. In other words, the final distance between bunch centers,

(equivalent to wavelength) λf , may not be less than twice the final bunch radius, rf

(from Eq. (8.4)), or

λf ≥ 2rf . (8.39)
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Assuming that optimal cases are reached when Eq. (8.39) is an equality, the final

bunch velocity is related to the oscillation frequency and final bunch radius by

vf = λf f = 2rf f. (8.40)

The energy conversion efficiency is then

η =
Ei − Ef
Ei

= 1− vf
2

vi2
(8.41)

where Ei and Ef are the initial and final ion energies respectively and vi is the initial

ion velocity, so then

η = 1− 4 rf
2 f 2

vi2
. (8.42)

For a given ion energy, beam radius, and beam current there exists an optimal

operating frequency which can be found from the preceding equations. The steps for

analytically finding the optimal operating frequency are briefly summarized below:

1. For a chosen beam current, beam energy and beam radius, choose a range of

frequencies over which the optimal frequency is expected to be found. It is

assumed that the beam radius corresponds to the initial bunch radius and is

maintained by an axial magnetic field.

2. Sweep over all frequencies and solve Eq. (8.4) implicitly for the final bunch

radius at each frequency.

3. Use Eq. (8.42) to find the efficiency at each frequency. Choose the frequency
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that results in the highest efficiency.

The maximum efficiency for a given beam current, beam energy, and beam radius is

now known. The electrode spacing can then be optimized to achieve this efficiency

using the analytical-numerical method outlined in section 8.3.10.

8.3.14 1D1V optimization results

Three important approximations that may have an effect on the validity of

the model were made:

1. In the interaction between the ion bunches and electrodes, the bunches are

treated as point charges when in reality the bunches will occupy a finite vol-

ume. The reduced radial extent of the bunch that results from this approx-

imation tends to underestimate the bunch-electrode capacitance, while the

reduced axial extent results in an overestimate.

2. The ion bunches are assumed to be initially spherical with a radius equal

to the beam radius, but as previously discussed the ion bunches will have

shapes dependent on the ratio of the device length to the beam radius in any

particular SWDEC/TWDEC. This may invalidate the model in regimes where

the wavelength to beam radius ratio is far from unity.

3. In the analytical model of ion bunch expansion, the bunches were assumed to

expand spherically but will actually expand primarily axially due to the axial

magnetic field. This results in the expansion possibly being underestimated.
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However, this expansion also does not take into account the electric field from

the decelerator electrodes which may tend to compress the ion bunch, possibly

resulting in the expansion being overestimated.

Fig. 8.12 shows the optimization results for a beam energy of 3 MeV and a

beam radius of 10 cm. For each beam current, the oscillation frequency is chosen

so as to optimize the efficiency. To ensure stability of the model, the maximum

allowable efficiency is set to 90%. In the plot for converted power, a maximum for

each number of electrodes exists. This maximum corresponds to the ideal beam

current at which the SWDEC should operate for maximum power output. The

Figure 8.12: Optimization of efficiency as a function of beam current. Efficiency is
capped at 90% to allow accurate calculation of the decelerator region length and
other parameters.

fact that increasing the beam current above a certain value decreases the power

output warrants explanation. A larger beam current corresponds to higher ion bunch

densities, which increases the rate of ion bunch expansion. The increased ion bunch
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expansion rate requires the length of the decelerator region to be decreased so that

the ion bunches spend less time decelerator region. This shorter decelerator region

length corresponds to a smaller difference between the initial electrode spacing and

the final electrode spacing (because there is a lower limit on final electrode spacing)

which corresponds to a smaller decrease in the velocity of the ion bunches. A smaller

decrease in velocity is equivalent to a lower deceleration efficiency. Above a certain

value for beam current this decreasing efficiency overcomes the benefit of increasing

the beam power input (beam current) such that the power output decreases.

The electrode spacing, while variable, is on the order of the decelerator region

length divided by the number of decelerator electrodes. As long as the electrode

spacing is on the order of the electrode radius, the model may be deemed valid.

The case shown (Fig. 8.12) remains in this regime. To accommodate larger beam

currents (and larger output powers) the electrode radius may be increased.

In Fig. 8.12 a trade-off between output power and circuit amplitude (operating

voltage) becomes apparent. While a lower number of electrodes corresponds to a

larger output power, this also results in an increase in circuit amplitude. Addition-

ally, increased output power can also mean increased oscillation frequency. Trends

for other beam energies and radii can be calculated as well, and while they are sim-

ilar to what is shown, the electrode spacing does not always remain comparable to

the bunch radius.

189



8.4: A 2D3V particle-in-cell simulation of the SWDEC

The details of the 2D3V PIC method covered in Chap. 4 will not be repeated

here. The components of the PIC method unique to this chapter are the addition of

an RLC circuit equation to the solution of Poisson’s equation, and the calculation

of the magnetic field due to a solenoid.

8.4.1 Modeling of floating electrodes

The discrete Poisson equation for a particle in cell simulation is

A~Φ =
−~ρ
ε0
. (8.43)

The specifics of this equation in a 2D3V domain are discussed in Sec. 4.2.2, and

this section introduces the concept and modeling of floating electrodes. In the

SWDEC, the decelerator electrodes are not at a known potential, nor can they be

solved for as a standalone potential point like the rest of the unknown potentials

on the simulation grid. Instead, each grid point on a single floating electrode is

constrained to a single voltage, and the charge at each point varies to maintain this

voltage, though the net charge stays the same. For the case of the SWDEC, there

are two unknown potentials Ve and Vo corresponding to the even and odd electrodes

respectively, and there are also unknown charges at each point on each electrode,

which can be represented as column vectors ~qe and ~qo. Without considering an
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electrical connection between Ve and Vo, Eq. 8.43 takes the following form:



[ A ]NΦ×NΦ
[ S ]NΦ×(Ne+No)

[ Ee ] (Ne−1)×NΦ
[ 0 ] (Ne−1)×(Ne+No)

[ Eo ] (No−1)×NΦ
[ 0 ] (No−1)×(Ne+No)

[ 0 ]2×NΦ
[ C ]2×(Ne+No)





[ ~Φ ] NΦ×1

[ ~qe ] (Ne)×1

[ ~qo ] (No)×1


=
−1

ε0



[ ~ρ ]NΦ×1

[~0 ]Ne×1

[~0 ]No×1


(8.44)

where the sizes of sub-matrices and sub-vectors are denoted for convenience,

A is taken from Eq. 8.43, S has the form (ε0Vol)−1 and accounts for the effect of

the ~q’s on ~Φ, Ee and Eo ensure the equipotential condition on the parts of ~Φ that

are equal to Ve and Vo respectively, and C ensures conservation of charge on the

electrodes:
∑
~qe = 0.

8.4.2 Implementation of the circuit equation

When the even and odd electrodes are connected with an inductor and resistor

(neither of which is modeled physically within the domain) the circuit equation is

given once again by Eq. 8.24. This equation is implemented directly into the Poisson

matrix system (Eq. 8.44) by the addition of two more degrees of freedom: the charge

difference between the electrodes q ≡ ∑ ~qe ≡
∑
~q0 and the current between the

electrodes q̇ where the voltage difference is ∆V ≡ Ve − Vo. Once again using the

form Eq. 8.26 and Eq. 8.27, the expressions for q and q̇ at the new time-step are
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labelqqdot

qn+1 − ∆t

2
q̇n+1 = qn +

∆t

2
q̇n (8.45a)

q̇n+1 − ∆t

2

(
−R
L
q̇n+1 −∆V n+1

)
= q̇n +

∆t

2

(
−R
L
q̇n −∆V n

)
(8.45b)

which simplifies to the matrix form

 0 0 1 −∆t
2

∆t
2
−∆t

2
0 1 + ∆tR

2L





Ve

Vo

q

q̇



n+1

=

 0 0 1 ∆t
2

−∆t
2

∆t
2

0 1− ∆tR
2L





Ve

Vo

q

q̇



n

(8.46)

which is then implemented directly into Eq. 8.44 where Ve and Vo may refer to

any two nodes on an even or odd electrode respectively. The top two rows of each

matrix are blank because the coefficients for determining Ve and Vo are already held

in Eq. 8.44. The left hand side of the bottom two rows of Eq. 8.46 are inserted into

the bottom two rows of A and ~Φ with correct references to Ve and Vo nodes, and the

right hand side is evaluated and inserted into the bottom two entries of b of Eq. 8.43

using information from the previous time-step.

8.4.3 Calculation of the magnetic field due to a solenoid

The SWDEC/TWDEC may require the use of a magnetic field to limit the

expansion of bunches into the ring-shaped electrodes. The magnetic field is gen-
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erated by a solenoidal current wire outside of the electrodes, and is calculated by

discretizing the current wire into discrete current elements and using the Bio-Savart

law to calculate the magnetic field. The solenoid is defined by the number of loops

Nl, the radius R, the axial extent d and the current I. The solenoid is first dis-

cretized axially into Nr individual current rings, where the current of each ring is

I Nl
Nr

. Each current ring is then discretized azimuthally into Nd current elements,

where the strength of each current element is

ii,j = I
2πR

Nd

Nl

Nr

(x̂ sin θi + ŷ cos θi) (8.47)

where i ranges from 1 to Nd and j ranges from 1 to Nr and θi = 2πi
Nd

. The locations

of the elements are

xi,j = ẑ

(
z0 + j

d

Nr

)
+R (x̂ cos θi + ŷ sin θi) . (8.48)

The magnetic field at any point x is found by summing the contributions of each

current element using the Bio-Savart law:

B(x) =
µ0

4π

Nr∑
j

Nd∑
i

ii,j × (x− xi,j)

|x− xi,j|3
(8.49)

and in this way is used to calculated the magnetic field over the SWDEC domain,

and example of which is shown in Fig. 8.13
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Figure 8.13: A magnetic field resulting from two solenoids, discretized according to
the black dots plotted in the domain

8.4.4 2D3V simulation results

The electrode spacing optimization that resulted from the 1D1V simulation

of Sec. 8.3 was tested in the 2D3V axisymmetric SWDEC particle-in-cell code. A

frame from this simulation is shown in Fig. 8.14. The electrodes were optimized

for a conversion efficiency of 75%. In the particle-in-cell code, the actual conversion

efficiency is 66%. The conversion efficiency is lower because the ions in the center

of the beam experience a lower decelerating electric field than the ions closer to

the electrodes. Compression of the ion bunches near the exit of the decelerator is

evident. In this case the effect of the decelerating electric field is stronger than

the force of space-charge expansion from the ion bunches, resulting in some axial

compression of the bunches.
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Figure 8.14: A frame from a particle-in-cell simulation of the decelerator electrodes
of the SWDEC. This simulation served as a test of the electrode deceleration opti-
mization using the particle-in-cell method. Particles are moving from left to right.
The axial and radial axes are of different scales for clarity.
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Chapter 9

Conclusion

This thesis contributes to the field of inertial electrostatic confinement fu-

sion by introducing the Continuous Electrode IEC fusor as an advancement upon

previous fusor concepts. Particle-in-cell, N -body, and fluid simulations were all

developed specifically for investigating the CE-IEC and related fusors. The most

successful simulation was the 2D3V axisymmetric skewed-grid PIC simulation that

was parallelized for execution on a GPU and used for electrode voltage optimization.

The optimizer “re-discovered” a voltage profile similar to that of the Multi-grid IEC

that is the predecessor to the CE-IEC, and output a wall voltage profile tuned to

maximize ion bunching behavior while minimizing ion losses.

The calculations and simulations of this thesis showed that the ion density in

the acceleration region was space charge limited to the extent that the theoretical

maximum fusion power output for a one-meter radius CE-IEC fusor was on the order
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of one microwatt. Though the ion lifetimes averaged thousands of passes through

the device, thermalization was found to continue, despite the kinematic constraints

imposed by the optimal potential profile. It would appear that a passive mechanism

for halting thermalization has not been achieved. The possibility of actively halting

this process may still exist, however for the current design, this is not the limiting

factor for fusion power generation.

9.1: Summary of contributions

The work of this thesis contributes to the fields of IEC fusion, non-thermal

plasma simulation, and ion acceleration optimization. The conclusions drawn from

each contribution may be summarized as follows:

� The calculations in Chap. 3 show that a megawatt CE-IEC is impossible due

primarily to space charge limitations. However a low power CE-IEC aimed

at neutron production for non-power source application (neutron imaging or

medical isotope production) could mark an improvement in the rate of neu-

trons produced per unit power input. Further, scaling laws show that the

space charge effects might be mitigated by scaling the CE-IEC to a small size

to reach the desired power-per-unit volume. However, an acceptable power

output is not reached until the device radius is on the order of 1 millimeter,

which presents difficulties in manufacturing due to the high voltages involved.

� The 2D3V axisymmetric particle-in-cell simulation features:

– a fully parallel execution on a GPU with minimal memory transfer be-
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tween the CPU and GPU including pair-wise collision implementation

– an original Coulomb collision model that takes into account high-angle

scatters

which enabled use of the simulation for:

– optimization of the voltages along the CE-IEC acceleration channels for

minimizing ion loss

– simulation of the long timescale thermalization of the ion bunches using

optimized voltages.

� The N -body simulation, which successfully demonstrated the full 3D simula-

tion of the CE-IEC with 16 beamlines, is a tool for:

– electron confinement simulation in a spherical cusped magnetic field,

demonstrating a spherical-shell electron distribution

– a method of investigating the interaction between CE-IEC beamlines,

which showed that ions transferred between beamlines have short life-

times.

– a method for visualizing the points of ion and electron impact on the CE-

IEC surfaces, showing that the majority of impacts happen on the inner

surface, necessitating a sputter shield in this location thermally insulated

from the rest of the device.

� The Scharfetter-Gummel electron simulation method described in Chap. 6 pro-

vides a capability for calculating the steady-state electron distribution at each
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ion time-step, and is a first step in the simulation high-β electron confinement

in the CE-IEC core.

� The standing-wave direct energy converter (SWDEC) was presented, and two

simulations served a dual purpose:

– A 1D1V semianalytical simulation was developed for optimizing the elec-

trode spacing in the SWDEC, which is necessary for an effective energy

conversion efficiency

– A 2D3V PIC simulation used the optimized electrode spacing to demon-

strate the direct conversion of kinetic energy into electricity at an effi-

ciency of more than 50% for mono-energetic fusion products.

9.2: Problems that still need solutions

Some inherent limitations were discussed in Chap. 4, mostly due to the space

charge limitation and the difficulties of ion beam neutralization via electrons. The

most prominent problem is the Child-Langmuir limitation on the acceleration of ions

in the acceleration region. The limitation on density is also seen in the simulations,

where the maximum density reached by a one-meter radius CE-IEC is on the order

of 1014 m−3.

Concerning the simulation methods, an obvious improvement that must be

made is the simulation of two fuel species instead of one. While it is not difficult to

add a new species, the optimization becomes more complicated due to the different

reactions to the electrostatic potential geometry of each species, and so optimizations
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might become significantly more computationally intensive.

9.3: Recommendations for future work

Since every thesis must come to an end, there remain many ideas that never

made it to fruition. These ideas are discussed below:

9.3.1 3D simulation

A 3D simulation of the IEC could be performed by taking advantage of the

symmetry of the truncated icosahedron. The truncated icosahedron, even when

modified so that the pentagonal and hexagonal faces have close to equal area, may

be split into 120 symmetric pieces, as shown in Fig. 9.1. Simulation of a single

Figure 9.1: The truncated icosahedron can be split into 120 symmetric slices. One
symmetric slice (raised area) contains part of a hexagon and part of a pentagon.
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symmetric slice, then, would effectively simulate the entire domain requiring only

1/120th of the grid size and particle count of a full simulation. The geometry of the

domain does not easily permit a structured grid, so the best method would likely be

an unstructured particle-in-cell simulation using the finite element method for field

value solutions. A diagram of the 3D domain of this proposed simulation is shown

in Fig. 9.2.

Figure 9.2: A single symmetric slice of the truncated icosahedron IEC with the wall
sections shown.

9.3.2 Introduction of optimization degrees-of-freedom

Full exploration of optimization options was forgone in the interest of finishing

this thesis, but the degrees of freedom in the CE-IEC are vast and a full optimization
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over all of them is a formidable task. Possible optimization degrees-of-freedom

include:

� Ion density, or total number of confined ions

� Optimization of the overall size of the device — The effects of changing the

size scale were investigated in Sec. 3.9 but other effects could be present. A

limitation would need be placed from below perhaps by maximum allowable

electric field, and from above by maximum structural size.

� Ratio of the inner radius to the outer radius

� Wall angle — Though considering this as a continuously-free parameter is not

valid, it may help decide which geometry (see Fig. 6.18) is best

� Fuel ratio — Two-species fuel has not been implemented in this simulation

but if it is in the future, the fuel ratio will be another degree of freedom. The

simulation will also need to take into account Bremsstrahlung radiation power

loss if applicable.

9.3.3 Possible fast optimization by finding an unchanging initial par-

ticle distribution

The optimizer solved the problem of the effect of the initial particle positions

on the cost function output by optimizing over a large number of oscillation periods

until it was reasonable that the initial particle positions were no longer having any

significant effect on the final particle positions, that is, the simulation had reached an
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oscillatory steady state. As an alternative to this workaround, the optimizer could

also optimize the initial particle phase-space distribution, with the cost function

being the change in the particle distribution over one period. Though this would

require many more degrees of freedom due to the complexity of the 5D (x,r,vx,vr,vθ)

phase space distribution in addition to the electrode voltages, the optimizer would

only be required to execute one oscillation period for each iteration, making many

more iterations possible. As another alternative, some combination between the

method just described and the existing method could be concocted.

9.3.4 Global simplex method

Currently, the PIC code optimizes by alternating between the simulated an-

nealing global optimizer and the Nelder-Mead simplex local optimizer, using MAT-

LAB’s optimization tools. As an alternative to this, a custom-built optimizer may

be able to find a global minimum more quickly and more reliably. A starting point

may be investigation into a multi-path global simplex optimizer, such as that in

Ref. 53.

9.4: Summary on the difficulties of achieving net-power fu-

sion in a CE-IEC

The primary issues preventing net-power generation in the IEC are the space-

charge and thermalization issues. The CE-IEC space-charge issue is particularly

difficult due to the pulsed nature of the device, which was introduced to mitigate the
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thermalization issue. However in order to achieve the density required for fusion,

either significant neutralization is required, or a shrinkage of the non-neutralized

regions must occur. The long-term simulation of the device showed that though the

beam-beam thermalization is slow due to the short amount of time that ions spend

in the counter-streaming state, the effects of thermalization nonetheless accumulate

over time and contribute to significant long-timescale ion loss even at low densities.

Thermalization and fusion power both scale as the square of ion density, and so

these trends can expect to continue even if the space charge problem is solved.
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Chapter A

Derivation of ion bunch expansion

Consider a sphere of radius r0 randomly and uniformly populated with ions of

density n, with all ions initially at rest Ti = 0. The radial electric field at the initial

state (t = 0) and at any radius r ≤ r0 is

Er(r ≤ r0) =
qin

3ε0
r (A.1)

which causes the sphere to expand. Since the electric field (and therefore the acceler-

ation of each ion in the sphere) inside the sphere depends on r linearly, the distance

that each ion travels will have a linear dependence on that ion’s initial distance r

from the center of the sphere, so in this way the density of the expanding sphere will

remain spatially uniform. For the rest of the derivation, r will be the radial position

of an ion on the edge of the sphere, and is equivalent to the time-dependent radius
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of the sphere. The electric field at the edge of the sphere is dependent on the total

charge of the sphere Q

Er(r) =
Q

4πε0r2
(A.2)

and substituting in Q = qin
4
3
πr3

0 results in

Er(r) =
q2
i r

3
0n

3ε0mi

1

r2
(A.3)

The acceleration of an ion at the edge of the sphere (and therefore the acceleration

of the radius of the sphere) is

r̈ =
qi
mi

Er(r) (A.4)

and combining Eqs. (A.3) and (A.4) results in

r̈ =
q2
i r

3
0n

3ε0mi

1

r2
. (A.5)

Note that n is the initial density of the sphere (not the time-dependent density)

and so by definition of the constant k ≡ q2
i r

3
0n

3ε0mi
the second order non-linear ordinary

differential equation to be solved is

r̈ =
k

r2
. (A.6)
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Because it was assumed that there was no radial bunch velocity at time t = 0

(ṙ(0) = 0) r̈ can be expressed as

r̈ =
dṙ

dt

dr

dr
= ṙ

dṙ

dr
(A.7)

and so the differential equation becomes

ṙdṙ = k
1

r2
dr. (A.8)

Integrating each side ∫ ṙ

0

ṙdṙ = k

∫ r

r0

1

r2
dr (A.9)

results in a first order differential equation

ṙ2

2
= k

[
1

r0

− 1

r

]
(A.10)

which, when rearranged, yields

dr =

√
2k

[
1

r0

− 1

r

]
dt. (A.11)

Integrating again, ∫ rf

r0

1√
2k
[

1
r0
− 1

r

]dr =

∫ τ

0

dt (A.12)
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and rearranging the integral results in

√
2k

∫ τ

0

dt =

∫ rf

r0

(
1

r0

− 1

r

)− 1
2

dr (A.13)

where τ is the amount of time the bunch takes to traverse the decelerator electrode

region. Performing the integration on each side of Eq. (A.13) results in

√
2k τ = r0

3
2

{
r

r0

√
1− r0

r
+

1

2
ln

[
2r

(
1 +

√
1− r0

r

)
− r0

]}∣∣∣∣rτ
r0

(A.14)

which, evaluated at the limits of integration, becomes

√
2k τ = r0

3
2

{
rτ
r0

√
1− r0

rτ
+

1

2
ln

[
2
rτ
r0

(
1 +

√
1− r0

rτ

)
− 1

]}
. (A.15)

Substituting in the value of k and rearranging results in the time for an expansion

of the sphere from radius r0 to rτ :

τ =

√
3

2

miε0
q2
i n

{
rτ
r0

√
1− r0

rτ
+

1

2
ln

[
2
rτ
r0

(
1 +

√
1− r0

rτ

)
− 1

]}
. (A.16)

208



Bibliography

[1] D. Zajfman, O. Heber, L. Vejby-Christensen, I. Ben-Itzhak, M. Rappaport,
R. Fishman, and M. Dahan. Electrostatic bottle for long-time storage of fast
ion beams. Phys. Rev. A, 55(3):R1577–R1580, mar 1997.

[2] T. J. McGuire and R. J. Sedwick. Improved confinement in inertial electrostatic
confinement for fusion space power reactors. Journal of Propulsion and Power,
21(4):697–706, jul 2005.

[3] Andrew M. Chap and Raymond J. Sedwick. One-dimensional semianalytical
model for optimizing the standing-wave direct energy converter. Journal of
Propulsion and Power, 31(5):1350–1361, sep 2015.

[4] Robert L. Hirsch. Inertial Electrostatic Confinement of Ionized Fusion Gases.
Journal of Applied Physics, 38(11):4522–4534, Oct 1967.

[5] George H. Miley and S. Krupakar Murali. Inertial Electrostatic Confinement
(IEC) Fusion: Fundamentals and Applications. Springer, 2013.

[6] Jaeyoung Park, Nicholas A. Krall, Paul E. Sieck, Dustin T. Offermann, Michael
Skillicorn, Andrew Sanchez, Kevin Davis, Eric Alderson, and Giovanni Lapenta.
High-energy electron confinement in a magnetic cusp configuration. Phys. Rev.
X, 5:021024, Jun 2015.

[7] D. C. Barnes, T. B. Mitchell, and M. M. Schauer. Beyond the brillouin limit
with the penning fusion experiment. Physics of Plasmas, 4(5):1745–1751, 1997.

[8] Carl Dietrich, Raymond Sedwick, and Leslie Eurice. Experimental Veri-
fication of Enhanced Confinement in a Multi-Grid IEC Device. In 44th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Hartford,
CT, 2008.

209



[9] Thomas J. McGuire and Raymond J. Sedwick. Improving iec particle confine-
ment times with multiple grids. In US-Japan IEC Workshop on Small Plasma
and Accelerator Neutron Sources, Argonne National Laboratory, 2007.

[10] NASA technology roadmaps TA 3: Space power and energy storage. Technical
report, 2015.

[11] Todd H. Rider and Peter J. Catto. Modification of classical spitzer ion electron
energy transfer rate for large ratios of ion to electron temperatures. Physics of
Plasmas, 2(6):1873–1885, 1995.

[12] Alex Klein. Marble: Multiple ambipolar recirculating beam line experiment.
13th US-Japan Workshop on Inertial Electrostatic Confinement Fusion, 2011.

[13] Lyman Spitzer. Physics of Fully Ionized Gases: Second Revised Edition. Dover
Publications, 2013.

[14] E. Rutherford. The scattering of α and β particles by matter and the structure
of the atom. Philosophical Magazine Series 6, 21(125):669–688, may 1911.

[15] Todd H. Rider. Fundamental limitations on plasma fusion systems not in ther-
modynamic equilibrium. PhD thesis, Massachusetts Institute of Technology,
1995.

[16] Wilhelmus M. Ruyten. Density-conserving shape factors for particle simulations
in cylindrical and spherical coordinates. Journal of Computational Physics,
105(2):224 – 232, 1993.

[17] Nikolaos Sfakianakis. Finite Difference schemes on non-Uniform meshes for
Hyperbolic Conservation Laws. PhD thesis, University of Crete, 2009.

[18] Jay P. Boris. Relativistic plasma simulation optimization of a hybrid code. In
Proceedings of the Conference on the Numerical Simulation of Plasmas (4th),
Novermber 1970.

[19] C. K. Birdsall and A. B. Langdon. Plasma physics via computer simulation.
New York: Taylor and Francis, 2005.

[20] Tomonor Takizuka and Hirotada Abe. A binary collision model for plasma
simulation with a particle code. Journal of Computational Physics, 25(3):205–
219, nov 1977.

[21] W.M. Nevins and R. Swain. The thermonuclear fusion rate coefficient for p- 11
b reactions. Nuclear Fusion, 40(4):865, 2000.

[22] S.J. Aarseth. Gravitational N-Body Simulations: Tools and Algorithms. Cam-
bridge Monographs on Mathematical Physics. Cambridge University Press,
2003.

210



[23] J. Makino. Optimal order and time-step criterion for Aarseth-type N-body
integrators. Astrophysical Journal, Part 1, 369:200–212, March 1991.

[24] J. Makino and S. J. Aarseth. On a Hermite integrator with Ahmad-Cohen
scheme for gravitational many-body problems. Publications of the Astronomical
Society of Japan, 44:141–151, apr 1992.

[25] D.L. Scharfetter and H.K. Gummel. Large-signal analysis of a silicon read diode
oscillator. Electron Devices, IEEE Transactions on, 16(1):64–77, Jan 1969.

[26] G J M Hagelaar. Modelling electron transport in magnetized low-temperature
discharge plasmas. Plasma Sources Science and Technology, 16(1):S57, 2007.

[27] L. Andor, H.P. Baltes, A Nathan, and H.G. Schmidt-Weinmar. Numerical
modeling of magnetic-field-sensitive semiconductor devices. Electron Devices,
IEEE Transactions on, 32(7):1224–1230, Jul 1985.

[28] K. Nanbu. Theory of cumulative small-angle collisions in plasmas. Physical
Review E, 55(4):4642–4652, apr 1997.

[29] Andris M. Dimits, Chiaming Wang, Russel Caflisch, Bruce I. Cohen, and
Yanghong Huang. Understanding the accuracy of nanbus numerical coulomb
collision operator. Journal of Computational Physics, 228(13):4881 – 4892,
2009.

[30] M. Conte. Beam loss by single coulomb scattering in collider rings. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment, 228(2-3):236–239, jan 1985.

[31] D. Wu, X. T. He, W. Yu, and S. Fritzsche. Monte carlo approach to calcu-
late proton stopping in warm dense matter within particle-in-cell simulations.
Physical Review E, 95(2), feb 2017.

[32] Andrew M. Chap and Raymond J. Sedwick. Simulation of an inertial electro-
static confinement device using a hermite n-body individual time-step scheme.
In 51st AIAA/SAE/ASEE Joint Propulsion Conference. American Institute of
Aeronautics and Astronautics (AIAA), jul 2015.

[33] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen differenzengle-
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