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This thesis consists of two major components, Gremlin++ and BitGraph.  

Gremlin++ is a C++ implementation of the Gremlin graph traversal 

language designed for interfacing with C++ graph processing backends.  

BitGraph is a graph backend written in C++ designed to outperform 

Java-based competitors, such as JanusGraph  and Neo4j .  It also offers 

GPU acceleration through OpenCL . 

 

Designing the two components of this thesis was a major undertaking 

that involved implementing the semantics of Gremlin in C++, and then 

writing the computing framework to execute Gremlin’s traversal steps in 



 

  

BitGraph, along with runtime optimizations and backend-specific steps.  

There were many important and novel design decisions made along the 

way, including some which yielded both advantages and disadvantages 

over Java-Gremlin.  BitGraph was also compared to several major 

backends, including TinkerGraph, JanusGraph, and Neo4j.  In this 

comparison, BitGraph offered the fastest overall runtime, primarily due 

to data ingest speedup. 
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Chapter 1: Introduction & Background 

 

Gremlin 

Origin of Gremlin 

The Gremlin language [1] came out of the Apache TinkerPop project.  

Initially, it was part of the Pipes subproject, but TinkerPop 3 merged 

Pipes with several other subprojects to create Gremlin, the primary 

product of Apache TinkerPop [2].  In this thesis, Gremlin usually refers to 

the Gremlin language rather than the combined project, which includes 

other features related to but separate from the language itself. 

 

The Gremlin Language 

Gremlin is a domain-specific language for interacting with property 

graphs [1].  A property graph (Figure 1) is an extension of traditional 

digraph 𝐺 = (𝑉, 𝐸) that includes a special function  ∶ ((V ∪ E) × Σ∗) →

(𝑈 \ (𝑉 ∪  𝐸)) [1].   maps each element in the graph onto an object in the 

universal set (excluding graph elements), forming the final property 

graph 𝐺 = (𝑉, 𝐸, 𝜆) [1].  Property graphs are used to express various 

networks in a compact structure friendly to traditional databases.  The 

fundamental unit of computation in Gremlin is the traverser, a structure 
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that can hold any object in the universal set [1].  Each traverser also has 

a bulk, a number representing its multiplicity, and a sack, a collection of 

temporary variables stored in the traverser [1].  Mainstream property 

graph databases (backends) supporting Gremlin include Neo4j1 [3], 

Amazon Neptune [4], and JanusGraph [5].  TinkerGraph is the reference 

implementation of a Gremlin-supporting backend [6], and is maintained 

by the authors and maintainers of the Gremlin language. 

 

                                                 
1 Neo4j is a registered trademark of Neo4j Inc. 
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Figure 1: The Crew, an example of a Property Graph [7]. 

Why use Gremlin? 

There are two key reasons for adopting Gremlin.  Firstly, Gremlin is 

designed to support many host languages while still remaining first-

order.  A first-order DSL is one that can use the constructs of the host 

language.  Figure 2 shows a comparison to SQL, which is not first-order.  

Secondly, Gremlin is general enough to support many backends, from 

the simplest in-memory backends to massive distributed databases.  

This comes from the use of just-in-time compilation (known as traversal 

strategies) [1] to optimize Gremlin code at runtime and convert it to 

backend operations. 

 

 

 

Figure 2: Gremlin vs. SQL 
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Contributions of the Thesis 

Gremlin++ 

Overview 

Gremlin++ is the first low-level implementation of a Gremlin interpreter.  

I created it in 2018 and continue to develop and maintain it.  Gremlin++ 

is designed to be as compatible with Gremlin++ as possible while 

adhering to C++14 standards and requirements.  This includes allowing 

the user to use any property value in the universal set, and supporting 

traversal strategies (just-in-time compilation).  This year, I released 

Gremlin++ as an open-source product (Apache 2.0 License) and made it 

available on GitHub2. 

Motivation 

There are substantial advantages to writing a Gremlin interpreter in C++, 

including the speed benefits of a low-level language and support for C 

and C++ backends.  Prior to Gremlin++, the only Gremlin interpreter was 

Java-Gremlin, which could be interacted with through many languages 

via the Gremlin server, but which fundamentally operated in the JVM. [7]  

Gremlin++ is a huge step forward in this regard.  Additional motivations 

for choosing C++ included its ubiquity on HPC systems and mature 

support for GPUs through CUDA [8] and OpenCL [9]. 

                                                 
2 Gremlin++ on GitHub: https://github.com/bgamer50/gremlin-  

https://github.com/bgamer50/gremlin-
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BitGraph 

Overview 

 

Alongside Gremlin++, I also developed BitGraph, the first-ever low-level 

language backend for Gremlin.  Its purpose is to store and manage a 

graph structure, and interface with Gremlin through Gremlin++ (Figure 

3).  BitGraph interfaces with Gremlin++ through its own interpreter, 

which runs on top of the Gremlin++ interpreter.  It also offers support for 

GPU acceleration through OpenCL [9], which it is also a pioneer in.  I 

have made BitGraph open-source (Apache 2.0 License) and available on 

GitHub3. 

 

Figure 3: Relationship between Gremlin, Gremlin++, and BitGraph 

Motivation 

 

The motivations for BitGraph are similar to those for Gremlin++.  Firstly, 

serving as a backend for Gremlin++ demonstrates its utility.  Secondly, 

because BitGraph is written in a low-level language, it has the potential 

                                                 
3 BitGraph on GitHub: https://github.com/bgamer50/bitgraph  

BitGraph 

https://github.com/bgamer50/bitgraph
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to outperform existing JVM backends.  Additionally, BitGraph’s support 

for GPUs opens the door to innovations in parallelism and optimization of 

Gremlin code. 
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Chapter 2: Design & Development of Gremlin++ 
 

 

Initial Design 

Language 

As discussed previously, I chose C++ as the language for Gremlin++.  

While C offered many of the same features and benefits as C++, it did not 

offer function chaining, a key requirement to implement Gremlin.  Thus 

C++ was the clear choice.  The C++14 standard was selected with the 

needs of BitGraph in mind.  There are some key syntactical differences 

between C++ and Java; in Gremlin++ the most evident of these 

differences is the use of pointers. 

Boost Library 

The Boost Library was used primarily for the <boost/any.hpp> header, 

which includes the boost::any container and boost::any_cast function 

[10].  These were used to handle dynamic types in order to support 

properties of any type in Gremlin++.  It is left up to backends whether to 

offer support for specific types. 

Structure API 

The structure API is based off the TinkerPop 3 structure API [11], which 

is technically not part of Gremlin.  However, some basic structure is 
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needed to support steps that specifically deal with graph elements such 

as Vertices, Edges, and Properties.  The Gremlin language is designed to 

avoid use of the structure API by the user, but within the interpreter, it 

allows more steps to have a “default” implementation, meaning that less 

work has to be done by the backend.  Today, Gremlin++ translates raw 

Gremlin to an intermediate representation, relying on backends like 

BitGraph to provide an interpreter.  However, my eventual goal is to 

include a fully-functional default interpreter in Gremlin++ to simplify 

backends and allow backend implementers to focus on specific 

optimizations.  This goal would not be possible without a structure API. 

 

The structure API in Gremlin++ covers two graph elements (Vertex, Edge) 

and one higher-level abstraction (Element).  Vertex and Edge inherit from 

Element, mirroring the Java API.  At this time, Gremlin++ only supports 

properties on Vertices (VertexProperty).  VertexProperty inherits from the 

generic Property interface, which any future edge properties will also 

implement.  Having an interface for properties is crucial since it allows 

them to be stored predictably in Traversers by the Gremlin’s various 

property steps. 
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Implementation of Gremlin Semantics 

Handling of Dynamic Types 

Dynamic types, variables whose type is unknown at compile time, are a 

significant challenge to implement in a statically-typed language like 

C++.  However, they are key to supporting Gremlin’s support for virtually 

any property value. 

 

An illustration of how Gremlin uses dynamic typing is in how the various 

Property and Id steps allow a diverse range of backend behavior.  

TinkerGraph, for example, supports nearly any valid Java type, including 

user-defined types [6].  TinkerGraph also allows several types of Ids, 

including Strings, Longs, Ints, or UUIDs [6].  Java-Gremlin uses Java 

generics to support this feature [12]. 

 

Dynamic types are also key to Gremlin’s traversers.  Java-Gremlin 

supports traversers that can contain any object, and does not construct 

new traversers when avoidable [12].  Once again, this feature is 

supported by Java generics [12]. 

 

Templates in C++14 do not support dynamic types.  Unlike Java 

generics, which use type erasure, templates actually generate a separate 

class for each type.  This makes it difficult, if not impossible to use them 
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to implement properties, since there is no such thing in C++ as a variable 

of a class whose template specification is unknown.  The typical answer 

to this problem has been to use a void* pointer, but this results in nearly 

unreadable code due to the number of casts required and lack of type 

information.  It also gives up type safety, which is an important feature of 

statically-typed languages.  Therefore, use of void* is a non-ideal 

solution. 

 

Thankfully, the Boost Library [13] offers a powerful solution for handling 

dynamic types.  The Any container in Boost is a container that can hold 

primitives, objects, and pointers [10].  It offers type safety through the 

boost::any_cast() method, and also supports empty containers (an 

extremely useful feature when indexing properties).  boost::any also 

supports safe argument passing and safe copying [10].  

 

My initial version of Gremlin++ relied on void* pointers, which resulted in 

a long development time for individual traversal steps, since these had to 

be managed carefully.  After switching to boost::any to store property 

values and objects held by traversers, development time for new traversal 

steps was cut dramatically.  The code was also much easier to 

understand, especially for end-users, who would no longer have to worry 

about potential undefined behavior when casting void* pointers. 
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Function Chaining 

Function chaining (Figure 4) is a technique in object-oriented 

programming languages where the output of a function is an object with 

immediately-callable functions [14].  As stated previously, function 

chaining is required to write a Gremlin interpreter.  One roadblock to 

using function chaining in C++ is that C++ references come with more 

restrictions regarding their creation.  Users must be able to dynamically 

allocate Graph Traversals in order to support anonymous traversals.  

Different types of backends must also be allowed to have their own 

traversals, whose type is unknown at compile time to Gremlin++ (as it is 

backend-agonstic).  As a result, one key change from Java-Gremlin is the 

use of pointers with traversals instead of references.  For instance, 

g.V().out().has(“name”, “joe”).next() in Java-Gremlin becomes g->V()->out()-

>has(“name”, “joe”)->next() in Gremlin++, where g is a graph traversal 

source. 

Without Function Chaining 
b = a.foo(); 
c = b.bar(); 
d = c.foo(); 
 
With Function Chaining 
b = a.foo().bar().foo(); 

Figure 4: Function Chaining Illustration 

Anonymous Traversals 

Anonymous traversals, sometimes called recursive traversals, are a key 

feature of Gremlin.  They are necessary when implementing the language 

to handle steps whose arguments might be valid Gremlin [1].  Take, for 
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instance, the Gremlin traversal g.V().property(“d”, out().count()).iterate(), 

which finds and saves the out-degree of each vertex in the graph.  In 

Gremlin-Java, this becomes g.V().property(“d”, __.out().count()).iterate().  

The __ in that traversal is a generator that produces anonymous Graph 

Traversals, which are themselves interpreted and optimized. 

 

Gremlin++ deals with anonymous traversals by providing its own version 

of __.  Instead of using a specialized class, Gremlin++ uses a macro that 

produces a Graph Traversal using the default constructor.  The resulting 

traversals are not attached to a graph, and can be passed as arguments 

to steps, leaving the attachment to be handled at runtime by the 

backend.  Due to the current implementation of traversal strategies, 

attachment to the graph and optimization of the traversal can only be 

done in an ad-hoc manner by the backend. 

 

Implementation of the Interpreter 

Traversal Strategies 

Traversal strategies are translations that “rewrite a traversal (with 

typically, though not necessarily, the same semantics as the original 

traversal)” [1]. Gremlin relies on traversal strategies to handle backend-

specific code and just-in-time optimizations [1].  The Java 

implementation of Gremlin allows backends to register their backend-
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related strategies with the compiler.  In Gremlin++, the process is 

currently more ad-hoc.  Rather than specific strategies, a Graph 

Traversal executes the getInitialTraversal() method, which applies all 

strategies known to the traversal.  Through polymorphism, different 

backends (with their own Graph Traversals) can extend the behavior of 

the default getInitialTraversal() method. 

 

The Default Graph Traversal 

Gremlin++’s “default” Graph Traversal is the core of the library.  It 

provides all functionality of the Gremlin language.  Each step has one or 

more corresponding methods that can be chained together to form valid 

Gremlin.  This is analogous to the default Graph Traversal in Java-

Gremlin.  The various methods often make use of boost::any, especially 

for steps that deal with properties.  Graph Traversals in Gremlin++ also 

hold a list of steps which are ultimately executed after 

getInitialTraversal() is called by the backend. 

 

Graph Traversals also have finalization steps, such as the iterate(), 

forEachRemaining() and next() methods.  These steps bring about the 

execution of the traversal.  Unlike Gremlin-Java, Gremlin++ leaves it to 

the backend to handle the execution process.  This will likely be fixed as 

the library matures. 
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Implementation of Key Steps 

Has Step 

The Has Step supports a variety of predicates, including equals, less than 

or equal to, greater than, etc [15].  Each of these predicates operates on a 

Vertex or Edge and returns true if the Traverser should continue, and 

false if it should not.  In Gremlin-Java, the P class acts as a generator for 

these predicates.  It automatically produces predicates for any object, 

usually by calling methods from the Object or Comparable interfaces in 

Java [16].  In C++, these interfaces don’t exist.  Furthermore, the use of 

boost::any hold any property type complicates predicate testing since 

there needs to be a function that handles the comparison ready at 

compile time.  To get around this issue, Gremlin++ uses its own P class, 

but returns lambda expressions rather than non-executable bytecode as 

in Java.  This makes it easy for users to use their own comparison 

functions with the Has Step.  The downside of this approach is that it 

makes Has Steps harder to inspect at runtime, complicating the 

optimization process.  In the future, Gremlin++ might switch to a Java-

style non-executable predicate for the Has Step and better support the 

Filter Step for dealing with user-created classes. 

Add Property Step 

The Add Property step modifies a Graph by adding a property to a Vertex 

or Edge [17].  If the property already exists, it is modified or replaced 
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depending on its cardinality (single, list, or set) [17].  Only Vertices 

support cardinalities other than single [18].  Add Property Steps in 

Gremlin++ work directly on Elements, taking in an Element pointer and 

modifying the Element accordingly.  It is possible to create a backend-

specific Add Property Step which extracts the key, value, and cardinality 

of the Add Property Step and replaces it with a new backend-specific 

step. 

 

Gremlin++ also supports property addition using anonymous Graph 

Traversals.  Support of this feature is left to the backend interpreter 

since it requires dynamic creation of backend-specific traversal objects. 

Property Step 

Property Steps access either a Property container or the actual value of a 

Property [19].  Much like the Add Property Step, the Property Step 

directly accesses an Element.  Property Steps contain a type (value or 

property) and list of property keys.  Currently, Gremlin++ does not 

provide a default execution of the Property Step.  Instead, it leaves its 

execution to the backend interpreter.  This will change when standalone 

traversal strategies are properly implemented. 

Graph Step 

 

Graph steps access specific vertices or edges in the graph [20].  In 

Gremlin++, this is left up to the backend since Gremlin++ has no way of 
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knowing how to access Vertices on a backend without the Structure API.  

In the future, a default implementation using the Structure API will likely 

be provided along with the option of replacing it using traversal 

strategies.  The default Graph Step in Gremlin++ holds the type (vertex or 

edge) and requested elements, if any. 

 

Add Edge Step 

 

The Add Edge Step in Gremlin++ supports all features of the Java-

Gremlin implementation of this step, including modulation with from() 

and to() [21].  Like the Graph Step and Property Step, it is largely a 

container in Gremlin++, with the backend interpreter doing most of the 

work. 
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Chapter 3: Design & Development of BitGraph 

 

Graph Structure 

Overview 

Gremlin++ only provides interfaces for the various graph elements and 

properties, leaving it to the backend to handle their storage and 

management.  Determining how the graph structure was stored was the 

first part of designing BitGraph.  BitGraph uses a vertex-centric 

approach to graph storage, meaning that most data is stored in the 

vertices, including edge information.  It also uses sequential identifiers as 

opposed to randomly-generated UUIDs for differentiating elements in the 

graph. 

 

However, although most data lives on the vertices, BitGraph supports 

indexing on properties, a key feature of nearly all property graph 

backends.  Indexing allows fast querying and filtering by property values 

through a lookup table instead of a full vertex scan, reducing property 

filter and query time from 𝑂(𝑁) to 𝑂(1).  All indexes are stored at the 

graph level. 
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Vertices 

BitVertexes, the BitGraph Vertex implementation, are the core of the 

graph in BitGraph.  Each BitVertex has a unique 64-bit ID, along with a 

property store and edge list.  The edge list is broken into two lists, one for 

incoming edges and the other for outgoing edges.  Both lists are 

implemented with C++’s std::list. 

Edges 

BitEdges are the BitGraph Edge implementation.  They contain two 

pointers (one to the out-vertex and one to the in-vertex).  They also have 

a unique 64-bit id.  BitEdges do not currently support properties or 

labels, but this is planned in the future. 

Properties 

Each BitVertex stores a map of properties, keyed by the property key, 

using the C++ std::map container.  The values of these properties are 

contained in VertexProperty objects provided by the Gremlin++ API.  

BitGraph does not support multiproperties (property key with multiple 

values) or metaproperties (properties of properties).  In order to support 

any property type, the VertexProperty objects are specialized with 

boost::any.  This means the user will need to cast the properties when 

directly accessing them.  It is assumed the user knows what type their 

properties are; if not, boost::any provides methods for determining type 

[13]. 
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Indexes 

Indexes are an important feature of most property graph backends.  

Property graph support diverse graphs with elements that may represent 

very different objects.  Take for instance the “Modern” graph [22] that 

ships with TinkerGraph [23] (Figure 5)4.  This graph connects people with 

the software they created and the people they know.  It has two types of 

vertices and two types of edges.  Suppose a user wants to know the 

languages created by each user.  They would use the traversal in Table 1, 

which outputs a map of each person to the software they created (Table 

2). 

g.V().hasLabel('person') 
.project('person', 'software created') 
.by(values('name')) 
.by(out('created').values('name').fold()) 

Table 1: Person to Software Traversal. 

 
Figure 5: The Modern Graph. 

                                                 
4 Created with Cytoscape.  [28] 
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==>[person:marko,software created:[lop]] 
==>[person:vadas,software created:[]] 
==>[person:josh,software created:[ripple,lop]] 
==>[person:peter,software created:[lop]] 

Table 2: Traversal output on Modern Graph. 

The above example shows the utility of property and label querying in 

Gremlin.  For a small graph, it is trivial to check the label and property of 

each edge, but on the CPU, it is an 𝑂(𝑁) operation.  Indexes, along with a 

backend-specific index step, can reduce this to an 𝑂(1) operation 

through a lookup table.  Instead of looking at each element to be filtered, 

a lookup table of each property value to the list of elements with that 

property allows this to be done in a single step.  The only exception to 

this rule is when path information or side effects need to be preserved 

after a filter.  In this scenario, each element needs to be matched with a 

Traverser, which is still an 𝑂(𝑁) operation, but is a good target for 

parallelism. 

 

As mentioned previously, indexing in BitGraph is implemented using a 

lookup table and backend-specific step.  The lookup table is a custom 

hash table5 that can index any property using the boost::any container 

so long as the user provides a hash function.  For most common types of 

properties (numbers, strings), this is very simple as C++ has default 

implementations for these functions.  For custom classes, the user can 

                                                 
5 The table is implemented using a dynamic array (std::vector) and resolves collisions through linear 

probing. 
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write their own hash function and pass it to BitGraph upon index 

creation.  Each key value is also associated with any elements with that 

value.  Indexes are element-specific; they can lookup either vertices or 

edges, not both.  This is done to allow future support for multiproperties 

on vertices [18], an optional feature of Gremlin not currently supported 

by BitGraph.  There is also an id index that allows lookup of Vertices by 

unique id; this is implemented using the default C++ unordered map 

rather than a BitGraph index. 

Backend-Specific Interpreter 

Backend-Specific Steps 

Backend-specific steps and just-in-time optimizations are tightly coupled 

in Gremlin, just as they are in Gremlin++.  BitGraph uses several such 

steps, most notably the Index Step, which performs Has Steps using the 

index if it exists for the property being filtered on.  Backend-specific 

steps are also used to handle GPU operations if the user is using a GPU 

Traversal.  Currently, the three supported GPU operations are Filter, 

Min, and Has. 

Just-In-Time Optimizations 

BitGraph’s just-in-time optimizations convert certain steps to Index 

Steps and the traversal g.E() to the vertex-centric traversal g.V().outE(), in 

addition to the optimizations provided by Gremlin++.  The Index Step in 
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BitGraph directs the interpreter to search for graph elements using 

indexes.  This is a constant-time operation.  When the optimizer detects 

a Graph Step followed by a Has Step, and knows there is an index on the 

property examined by the Has Step, it replaces the two steps for a single 

Index Step.  The replacement of the Edge Graph Step with a Vertex 

Graph Step and Vertex Step is done since BitGraph is vertex-centric and 

uses Vertices to manage edges. 

Traversal Execution 

In Java-Gremlin, nearly all the interpretation is done in the default 

traversal [11].  Since Gremlin++ does not currently have a means of 

using standalone traversal strategies with the default interpreter, 

BitGraph does most interpretation.  This is likely to change as Gremlin++ 

matures.  When the user calls one of the finalization steps (iterate, next, 

etc.), interpretation begins.  Each Graph Traversal begins with some sort 

of start step, which accesses the starting elements of the Traversal.  The 

interpreter begins by getting the elements requested by the start step and 

putting them into Traversers.  Those Traversers are then passed to the 

next step.  Calls to the various functions associated with step execution 

are aggressively inlined using the inline keyword and the O3 compile 

option in gcc. 

 

Some Traversal Steps may contain their own traversals, such as the Add 

Property Step, which allows the property to be added to come from a 
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Traversal.  In this case, BitGraph’s Traversals provide special methods 

for converting an anonymous default traversal into an executable 

backend Traversal at runtime.  The Traversal that is created matches the 

type of the creator Traversal (either a CPU or GPU Graph Traversal).  

Just-in-time optimizations are applied to these traversals as well, 

although in some cases not all optimizations can be applied (i.e. start 

step optimizations).  Special methods also exist to properly copy 

Traversers to hand off to the newly created Traversals, and properly 

delete Traversers once the new Traversals have finished. 

GPU Traversals 

Relationship to CPU Traversals 

In BitGraph, there are two types of Graph Traversals, CPU Graph 

Traversals and GPU Graph Traversals.  Because not all operations can be 

done on the GPU, GPU Graph Traversals inherit from CPU Graph 

Traversals.  GPU Graph Traversals rely on the CPU interpreter, but 

override some of the execution methods.  There are also GPU-specific 

steps which replace the default steps during the just-in-time 

optimization process6.  GPU Graph Traversals must be created from a 

GPU Traversal Source.  To get a GPU Traversal Source, the user first gets 

a CPU Traversal Source using graph.traversal(), then calls withGPU() to 

                                                 
6 GPU Graph Traversals have their own getInitialTraversal() method that first calls the CPU’s optimization 

method, then does GPU optimizations. 
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convert it to a GPU Traversal Source.  GPU Traversal Sources handle the 

setup and bookkeeping operations needed for GPU access, and should be 

reused whenever possible to avoid the overhead associated with creating 

them.  Figure 6 illustrates the relationship between the graph and 

various traversal sources and traversals in BitGraph. 

 

Figure 6: BitGraph Organization 

 

Overhead Reduction 

The overhead of accessing a GPU can be a hassle; as a result, BitGraph 

tries to save as much of a GPU context as possible in the traversal source 

so that repeated uses of the traversal source do not require additional 

kernel compilation.  Each GPU Graph Traversal Source contains 

compiled kernel code and references to the current GPU context and 

device.  These are all obtained upon creation of the traversal source.  

Because BitGraph is not transactional, there are few if any use cases for 

creating multiple traversal sources. 
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GPU-Specific Steps 

The GPU currently supports the Filter and Min steps through the 

OpenCL library [1].  The Filter Step is similar to the Has Step, but 

supports any predicate.  The Min Step finds the minimum of the 

contained objects in a Traversal and passes through its value in a new 

Traverser.  To execute Has Steps on the GPU, the Q class exists as an 

analogue of the P class on the CPU.  This deviation from Java-Gremlin 

exists due to the earlier design decision to promote the arguments to the 

Has Step to full predicates.  The Q class generates predicates that run on 

the GPU, such as Q::eq, which produces a predicate that compares 

equality. 

 

The two steps that currently exist as special GPU steps, the Filter Step 

and Min Step, have pre-written GPU kernels that get compiled when the 

traversal source of the current traversal is created.  Table 3 shows the 

code for the Filter Step. Table 4 shows the code for the Min Step.  Figure 

7 shows how traversers on the CPU are sent to the GPU for execution. 

__kernel void filter(__global ulong* expected, __global ulong* values, __global bool* result) { 
     const int i = get_global_id(0); 
     result[i] = values[i] == expected[0];  
} 

Table 3: Filter Step Kernel Code 
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 __kernel void minimum(__global ulong* sz, __global ulong* values) {  
     ulong size = sz[0];             
     const int i = get_global_id(0); 
     int j;                           
     for(j = 1; j < size; j=j*2) {   
          if(i \% (2*j) == 0) {            
               int m = values[i];            
               if(!(i + j >= size || m < values[i+j])) m = values[i+j];   
               values[i] = m;            
          }                            
         barrier(CLK_GLOBAL_MEM_FENCE); 
    } 
} 

Table 4: Min Step Kernel Code 

 

 
Figure 7: GPU Step Execution 
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Chapter 4: Benchmarks & Evaluation Environment 

 

Overview 

Algorithms 

The connected components algorithm is a key algorithm in the field of 

graph analytics.  The goal of the algorithm is to identify each set of 

vertices in a graph such that each contained vertex can reach any other 

in the set [24].  The Apache TinkerPop project recognized this and 

recently added an OLAP implementation of connected components 

directly callable using Gremlin [25]; however, not all backends support 

OLAP.  The version of connected components used to test and 

benchmark BitGraph and the other backends is written in Gremlin and 

does not use OLAP.  It initializes the component id to the current Vertex 

id, then repeatedly finds the minimum of the current component id and 

neighbors’ components ids until there is no change.  Because each 

iteration is identical, the benchmarks in this paper use a single iteration, 

referred to as “cc1x”.  The Gremlin code for this traversal is shown in 

Table 5. 

g.V().property('cc', id()).iterate() 
g.V().property('cc', coalesce(both(), identity()).values('cc').min()).iterate() 

Table 5: The cc1x Traversal 
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The degree centrality algorithm is another common graph algorithm used 

to identify important nodes in a network.  It is an 𝑂(|𝑉|) algorithm that 

counts the number of edges on each vertex.  There are three variations of 

this algorithm, in-degree, out-degree, and total degree [26].  In-degree 

measures the number of incoming edges on each vertex [26].  Out-degree 

measures the number of outgoing edge on each vertex [26].  Total degree 

measures the number of edges in either direction on each vertex [26].  

The out-degree algorithm was benchmarked in this paper.  The Gremlin 

code for its traversal is shown in Table 6. 

g.V().property("d", out().count()).iterate() 

Table 6: Gremlin Traversal for Degree Centrality (out-degree) 

Datasets 

Two datasets were chosen for comparison across backends.  Both came 

from the Stanford Large Network Dataset Collection, a product of the 

Stanford Network Analysis Project (SNAP) [27].  The first was the ego-

Facebook dataset, which contains 4,000 vertices and 90,000 edges.  The 

second was the ego-Twitter dataset, which contains 80,000 vertices and 

2,000,000 edges. 

Backends 

For the purposes of benchmarking, BitGraph using CPU traversals and 

BitGraph using GPU traversals were treated as separate backends.  

Three other major backends were selected to compare against BitGraph.  

The first was TinkerGraph, which is the reference implementation of a 
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Gremlin backend [23].  TinkerGraph is in-memory, primarily relying on 

Java’s HashMap class.  The second was JanusGraph, a Gremlin backend 

designed for large data which supports several database backends and 

an in-memory backend [5].  Only the in-memory backend was 

benchmarked in this paper.  The third was Neo4j [3], one of the most 

well-known graph backends in the industry, which has support for 

Gremlin through the Neo4j-Gremlin library. 

System 

The system used for the benchmarks was powered by an AMD Ryzen 7 

2700x 3.7 GHz 8-core processor, 32 Gigabytes of DDR4 RAM, and an 

AMD Radeon RX 580 GPU with 8 GB of internal memory.  All datasets 

tested fit into both the CPU RAM and GPU internal memory.  JVM 

startup time was not included in total runtime.  The C++ programs were 

compiled to native code and did not have any startup time. 
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Chapter 5:  Results & Analysis 
 

Data Ingest 

Results 

The ego-Twitter and ego-Facebook datasets are simple edge lists.  The ids 

in the dataset were treated as properties, and ingested into the graph 

under the “name” property.  Each backend used a series of Gremlin 

traversals to ingest the data.  Figure 8 and Figure 9 show the results on 

each backend for ego-Facebook and ego-Twitter, respectively.  Appendix 

A contains the entire table of results. 

 
Figure 8: Facebook Data Ingest Time Comparison 
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Figure 9: Twitter Data Ingest Time Comparison 

 

Analysis 

BitGraph stands out as the leader in data ingest, both on the CPU and 

GPU.  It delivers roughly 2x speedup over its closest competitor, 

TinkerGraph, which is a mature product.  Two key reasons for this 

include the performance of BitGraph’s indexes and BitGraph’s reliance 

on C++ vectors for bookkeeping.  BitGraph’s indexes are built from the 

ground up and designed to be graph indexes, unlike those that rely on 

higher-level constructs.  This by itself offers significant speedup.  The use 

of vectors for bookkeeping was not an initial design decision, but after 

profiling with gprof, I discovered that storing the BitVertex table in a 

dynamic array was up to 10x faster than using a linked list.  The 

dynamic array implementation of choice, std::vector, is highly optimized 

and delivers impressive performance. 
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Connected Components 

Results 

The results of the cc1x algorithm (Table 5) for each backend on the ego-

Facebook and ego-Twitter datasets are in Figure 10 and Figure 11.  

Because it is wasteful to use the GPU when processing small amounts of 

data, BitGraph-GPU allows a limit on the number of traversers that 

trigger the GPU Min Step, falling back to the CPU when this limit is not 

met.  On the ego-Facebook data, this limit was set to 250 traversers; on 

the ego-Twitter data, this limit was set to 1000 traversers.  These limits 

were chosen to ensure the GPU executed only on the most strenuous 

computations for each dataset.  Without the limit, the slowdown due to 

data transfer dominated computation time, resulting a slowdown by at 

least one order of magnitude.  Appendix B contains the entire table of 

results. 
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Figure 10: Facebook Data cc1x Time Comparison 

 

 
Figure 11: Twitter Data cc1x Time Comparison 

 

Analysis 

BitGraph did not perform as well on the cc1x traversal, losing to both 

TinkerGraph and Neo4j.  TinkerGraph was particularly fast, completing 
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data and 4x the speed of BitGraph-CPU on the ego-Twitter data.  

BitGraph-GPU did not perform well at all on either dataset, losing out to 

the CPU, JanusGraph, and Neo4j.  The cc1x traversal was the best test 

of GPU acceleration, utilizing the Min Step on the GPU.  However, it did 

not deliver speedup as the sparsity of the graph resulted in small vectors 

being sent to the GPU; these small vectors weren’t large enough to make 

the data transfer time worth it.  These results do not rule out the GPU as 

a viable acceleration option, but more work needs to be done to find the 

right use case.  A different algorithm using the Has Step and Filter Step 

might be a good future test of the GPU’s capabilities. 

Degree Centrality 

Results 

The results of the degree centrality algorithm (Table 6) for each backend 

on the ego-Facebook and ego-Twitter datasets are shown in Figure 12 

and Figure 13.  Appendix C contains the entire table of results. 
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Figure 12: Facebook Data Degree Centrality Time Comparison 

 

 
Figure 13: Twitter Data Degree Centrality Time Comparison 
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Degree Centrality did not test the GPU (it does not use any GPU steps).  
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backends, delivering over 5x speedup over TinkerGraph, the second-

fastest backend.  However, on the ego-Twitter data, TinkerGraph once 

again performed the best, followed by Neo4j, then BitGraph-CPU.   
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Chapter 6:  Conclusions & Future Work 
 

 

Conclusions 

Strengths 

BitGraph is a powerful tool for data ingest, offering the fastest load times 

of any current Gremlin backend.  While it does not offer the same 

speedup on connected components or degree centrality, it still has the 

fastest overall runtime due to the time saved in the data ingest step.  

Needless to say, this is a huge win for BitGraph, especially since it is not 

yet mature. 

Limitations 

At this time, BitGraph does not offer scalable speedup on connected 

components or degree centrality. This is likely because Java-Gremlin is 

able to extract parallelism from the traversal using Java streams, 

something which BitGraph currently does not do on CPU traversals.  I 

experimented using OpenMP with BitGraph, but the traversals proved 

too complicated for OpenMP to parallelize.  In the future, I will certainly 

explore parallelism on the CPU, as well as better use of the GPU. 

 



 

 

38 

 

Future Work 

Overview 

There are many potential improvements for Gremlin++ and BitGraph, 

including adding support for more traversal steps and simplifying how 

Gremlin++ handles predicates under the hood once OpenCL supports 

C++17.  The clearest need is to implement standalone traversal 

strategies, which would greatly simplify the interpreter and make it 

easier to add new Gremlin++ supporting backends.  Gremlin++ also 

needs support for common property graph file types such as graphml 

and graphson, which Java-Gremlin currently offers. 

Traversal Steps 

Today, BitGraph implements a small fraction of the many traversal steps 

of Gremlin.  While many are equivalent, they do a great deal to make the 

language more expressive and convenient for users.  One of the most 

important steps currently not implemented by BitGraph is the Repeat 

Step, which allows repetition of traversal elements without needing a new 

traversal.  This would significantly the just-in-time compilation overhead 

when executing repeating traversals.  Other priority steps would be the 

Dedup Step, a good target for GPU execution, and the Path Step, which 

facilitates an entire world of pathfinding algorithms, such as 

Betweenness Centrality.  When OpenCL supports C++17, I also want to 
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refactor the Has Step and Filter Step to make their predicates more like 

those in Java-Gremlin. 

Better Traversers 

At this time, BitGraph does not store any path or side effect information 

in its traversers, largely because Gremlin++ does not yet support those 

features.  These are necessary for the Path Step, as well as other steps 

that refer backwards.  When OpenCL supports C++17, I might also 

revisit the idea of templated traversers, which are type-specific rather 

than generic objects relying on boost::any. 

Standalone Traversal Strategies 

Traversal strategies in Gremlin++ and BitGraph are largely ad-hoc at the 

moment.  In Java-Gremlin, backends can register strategies with the 

Java-Gremlin interpreter.  These strategies handle backend-specific 

optimizations and any needed access to data in the backend.  Gremlin++ 

only provides an interface method, getInitialTraversal(), which each 

backend implements to modify the user-supplied code as needed.  Each 

backend also has to handle most of the interpretation, which is a barrier 

to developing new backends.  In the future, I intend to fix these issues by 

allowing some form of standalone traversal strategies, which the backend 

passes to Gremlin++, instructing it on how to run backend-specific steps. 
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Data I/O 

Java-Gremlin supports two common graph data formats, graphml and 

graphson.  It also supports its own data format, gryo.  At some point, 

Gremlin++ should also start to support these formats to facilitate usage 

with other graph systems and graph visualization engines. 

Summary 

Gremlin++, BitGraph, and this thesis represent a major step forward for 

the Gremlin language and the graph analytics community.  As the first 

low-level language implementations of Gremlin and a Gremlin backend, 

they have encountered many previously-unknown pitfalls and bumps in 

the road to achieving a viable product.  BitGraph has delivered on its 

promised speedup, but more work needs to be done in making it usable 

and extensible. 
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Appendices 
 

Appendix A: Data Ingest Results 

 

FACEBOOK RESULTS  
BitGraph 

(CPU) 

BitGraph 

(GPU) 

TinkerGraph JanusGraph Neo4j 

Run 1 1.02046 1.01329 3.117 12.548 6.122 

Run 2 1.04571 1.01084 3.141 12.656 4.931 

Run 3 1.01208 1.01799 3.063 12.613 5.04 

Run 4 1.02889 1.02009 3 13.874 5.156 

Run 5 1.0102 1.01592 3.128 11.891 5.203 

Run 6 1.0262 1.01722 3.031 13.149 5.04 

Run 7 1.0087 1.01189 3.078 13.509 5.283 

Run 8 1.00785 1.02531 3.055 12.14 5.153 

Run 9 1.02033 1.01223 3.001 13.968 4.956 

Run 10 1.01085 1.02026 3.031 12.319 5.017 

Mean 1.019127 1.016504 3.0645 12.8667 5.1901 

 

TWITTER RESULTS  
BitGraph 

(CPU) 

BitGraph 

(GPU) 

TinkerGraph JanusGraph Neo4j 

Run 1 27.8411 27.8502 50.248 189.165 87.426 

Run 2 27.9611 27.869 51.123 188.391 87.227 

Run 3 27.919 28.0246 52.706 195.332 86.83 

Run 4 27.966 27.9818 52.115 189.071 87.975 

Run 5 28.0027 28.0038 52.727 195.307 88.593 

Run 6 27.9773 28.004 52.414 191.043 87.72 

Run 7 27.9754 27.9476 51.776 191.667 86.16 

Run 8 27.6131 27.8146 51.359 192.735 86.14 

Run 9 27.7475 27.7415 52.465 186.516 84.614 

Run 10 27.9323 27.9127 52.324 190.672 84.569 

Mean 27.89355 27.91498 51.9257 190.9899 86.7254 
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Appendix B: Connected Components Results 

 

FACEBOOK RESULTS  
BitGraph 

(CPU) 

BitGraph 

(GPU) 

TinkerGraph JanusGraph Neo4j 

Run 1 0.2081 0.436067 0.203 4.16 0.532 

Run 2 0.20953 0.429677 0.223 3.914 0.484 

Run 3 0.206442 0.428253 0.187 4.026 0.562 

Run 4 0.205557 0.429988 0.187 4.03 0.59 

Run 5 0.208029 0.43358 0.203 4.04 0.479 

Run 6 0.209636 0.431179 0.203 3.9 0.5 

Run 7 0.215564 0.4323 0.203 4.17 0.534 

Run 8 0.209926 0.43604 0.187 4.17 0.53 

Run 9 0.206598 0.432103 0.187 4.3 0.469 

Run 10 0.209045 0.432801 0.172 4 0.513 

Mean 0.2088427 0.4321988 0.1955 4.071 0.5193 

 

TWITTER RESULTS  
BitGraph 

(CPU) 

BitGraph 

(GPU) 

TinkerGraph JanusGraph Neo4j 

Run 1 6.1655 16.1637 1.963 17.476 6.971 

Run 2 6.05749 16.1726 1.795 17.131 6.715 

Run 3 6.03707 16.0375 1.795 21 6.746 

Run 4 6.02782 16.0978 1.983 22.424 6.38 

Run 5 6.10379 16.118 1.983 22.724 6.683 

Run 6 6.08907 16.1091 1.805 20.266 7.428 

Run 7 6.09618 16.1055 1.775 21.088 6.108 

Run 8 6.11078 16.036 1.789 22.269 6.747 

Run 9 6.0098 16.026 1.802 20.943 6.465 

Run 10 6.04139 16.1673 1.773 21.277 6.372 

Mean 6.073889 16.10335 1.8463 20.6598 6.6615 
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Appendix C: Degree Centrality Results 

FACEBOOK RESULTS  
BitGraph 

(CPU) 

BitGraph 

(GPU) 

TinkerGraph JanusGraph Neo4j 

Run 1 0.0408664 0.0573766 0.217 0.586 0.342 

Run 2 0.0414136 0.0565604 0.223 0.613 0.288 

Run 3 0.0410476 0.056404 0.223 0.577 0.322 

Run 4 0.0411623 0.0564312 0.225 0.59 0.307 

Run 5 0.0413689 0.0566073 0.221 0.584 0.292 

Run 6 0.0416842 0.0577357 0.225 0.581 0.308 

Run 7 0.0414839 0.0569546 0.222 0.585 0.302 

Run 8 0.0414839 0.0575295 0.221 0.598 0.288 

Run 9 0.0416105 0.0552968 0.212 0.593 0.302 

Run 10 0.0412464 0.0566469 0.214 0.606 0.306 

Mean 0.04133677 0.0567543 0.2203 0.5913 0.3057 

 

TWITTER RESULTS  
BitGraph 

(CPU) 

BitGraph 

(GPU) 

TinkerGraph JanusGraph Neo4j 

Run 1 1.32073 1.78519 0.505 7.635 1.128 

Run 2 1.31869 1.75379 0.512 6.46 1.38 

Run 3 1.32263 1.75355 0.556 6.576 1.196 

Run 4 1.32174 1.74542 0.675 6.098 1.129 

Run 5 1.35315 1.74807 0.511 6.995 1.124 

Run 6 1.32639 1.74853 0.516 6.566 1.122 

Run 7 1.31124 1.75508 0.542 8.083 1.117 

Run 8 1.32842 1.75964 0.521 6.219 1.146 

Run 9 1.3124 1.83258 0.558 6.862 1.329 

Run 10 1.30031 1.79979 0.518 6.11 1.406 

Mean 1.32157 1.768164 0.5414 6.7604 1.2077 
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