

ABSTRACT

Title of Thesis: GREMLIN++ & BITGRAPH:

IMPLEMENTING THE GREMLIN

TRAVERSAL LANGUAGE AND A GPU-

ACCELERATED GRAPH COMPUTING

FRAMEWORK IN C++

 Alexander B. Barghi, Masters of

Science, 2019

Thesis Directed By: Professor Manoj Franklin

This thesis consists of two major components, Gremlin++ and BitGraph.

Gremlin++ is a C++ implementation of the Gremlin graph traversal

language designed for interfacing with C++ graph processing backends.

BitGraph is a graph backend written in C++ designed to outperform

Java-based competitors, such as JanusGraph and Neo4j . It also offers

GPU acceleration through OpenCL .

Designing the two components of this thesis was a major undertaking

that involved implementing the semantics of Gremlin in C++, and then

writing the computing framework to execute Gremlin’s traversal steps in

BitGraph, along with runtime optimizations and backend-specific steps.

There were many important and novel design decisions made along the

way, including some which yielded both advantages and disadvantages

over Java-Gremlin. BitGraph was also compared to several major

backends, including TinkerGraph, JanusGraph, and Neo4j. In this

comparison, BitGraph offered the fastest overall runtime, primarily due

to data ingest speedup.

GREMLIN++ & BITGRAPH: IMPLEMENTING THE GREMLIN
TRAVERSAL LANGUAGE AND A GPU-ACCELERATED GRAPH

COMPUTING FRAMEWORK IN C++

by

Alexander Barghi

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Masters of Science

2019

Advisory Committee:
Professor Manoj Franklin, Chair
Yavuz Oruc

Bruce Jacob

© Copyright by

Alexander Barghi

2019

ii

Dedication

I dedicate this thesis to my father, for his unconditional support and encouragement, and

for inspiring me to become an engineer. I could not be here without his guidance.

iii

Table of Contents

Dedication ... ii

List of Tables ... v

List of Figures ... vi

Chapter 1: Introduction & Background .. 1

Gremlin .. 1

Origin of Gremlin... 1
The Gremlin Language .. 1
Why use Gremlin? ... 3

Contributions of the Thesis ... 4
Gremlin++ ... 4

BitGraph ... 5
Chapter 2: Design & Development of Gremlin++..................................... 7

Initial Design .. 7
Language .. 7

Boost Library... 7
Structure API .. 7

Implementation of Gremlin Semantics .. 9

Handling of Dynamic Types ... 9
Function Chaining... 11
Anonymous Traversals .. 11

Implementation of the Interpreter ... 12
Traversal Strategies ... 12

The Default Graph Traversal.. 13
Implementation of Key Steps .. 14

Has Step ... 14

Add Property Step ... 14
Property Step .. 15

Graph Step .. 15
Add Edge Step ... 16

Chapter 3: Design & Development of BitGraph..................................... 17

Graph Structure ... 17
Overview ... 17

Vertices ... 18
Edges .. 18

Properties .. 18
Indexes ... 19

iv

Backend-Specific Interpreter... 21
Backend-Specific Steps ... 21

Just-In-Time Optimizations ... 21
Traversal Execution ... 22

GPU Traversals ... 23
Relationship to CPU Traversals .. 23
Overhead Reduction .. 24

GPU-Specific Steps .. 25
Chapter 4: Benchmarks & Evaluation Environment 27

Overview... 27
Algorithms... 27

Datasets .. 28
Backends .. 28
System .. 29

Chapter 5: Results & Analysis .. 30

Data Ingest ... 30
Results .. 30
Analysis .. 31

Connected Components .. 32
Results .. 32
Analysis .. 33

Degree Centrality .. 34
Results .. 34

Analysis .. 35
Chapter 6: Conclusions & Future Work .. 37

Conclusions ... 37
Strengths .. 37
Limitations .. 37

Future Work ... 38
Overview ... 38

Traversal Steps .. 38
Better Traversers ... 39
Standalone Traversal Strategies ... 39

Data I/O ... 40
Summary ... 40

Appendices .. 41

Appendix A: Data Ingest Results ... 41

Appendix B: Connected Components Results 42
Appendix C: Degree Centrality Results .. 43

Bibliography .. 44

v

List of Tables

Table 1: Person to Software Traversal... 19

Table 2: Traversal output on Modern Graph. .. 20

Table 3: Filter Step Kernel Code ... 25

Table 4: Min Step Kernel Code ... 26

Table 5: The cc1x Traversal.. 27

Table 6: Gremlin Traversal for Degree Centrality (out-degree) 28

vi

List of Figures

Figure 1: The Crew, an example of a Property Graph [7]. 3

Figure 2: Gremlin vs. SQL .. 3

Figure 3: Relationship between Gremlin, Gremlin++, and BitGraph 5

Figure 4: Function Chaining Illustration .. 11

Figure 5: The Modern Graph. ... 19

Figure 6: BitGraph Organization .. 24

Figure 7: GPU Step Execution .. 26

Figure 8: Facebook Data Ingest Time Comparison 30

Figure 9: Twitter Data Ingest Time Comparison.................................... 31

Figure 10: Facebook Data cc1x Time Comparison 33

Figure 11: Twitter Data cc1x Time Comparison 33

Figure 12: Facebook Data Degree Centrality Time Comparison............. 35

Figure 13: Twitter Data Degree Centrality Time Comparison 35

1

Chapter 1: Introduction & Background

Gremlin

Origin of Gremlin

The Gremlin language [1] came out of the Apache TinkerPop project.

Initially, it was part of the Pipes subproject, but TinkerPop 3 merged

Pipes with several other subprojects to create Gremlin, the primary

product of Apache TinkerPop [2]. In this thesis, Gremlin usually refers to

the Gremlin language rather than the combined project, which includes

other features related to but separate from the language itself.

The Gremlin Language

Gremlin is a domain-specific language for interacting with property

graphs [1]. A property graph (Figure 1) is an extension of traditional

digraph 𝐺 = (𝑉, 𝐸) that includes a special function  ∶ ((V ∪ E) × Σ∗) →

(𝑈 \ (𝑉 ∪ 𝐸)) [1].  maps each element in the graph onto an object in the

universal set (excluding graph elements), forming the final property

graph 𝐺 = (𝑉, 𝐸, 𝜆) [1]. Property graphs are used to express various

networks in a compact structure friendly to traditional databases. The

fundamental unit of computation in Gremlin is the traverser, a structure

2

that can hold any object in the universal set [1]. Each traverser also has

a bulk, a number representing its multiplicity, and a sack, a collection of

temporary variables stored in the traverser [1]. Mainstream property

graph databases (backends) supporting Gremlin include Neo4j1 [3],

Amazon Neptune [4], and JanusGraph [5]. TinkerGraph is the reference

implementation of a Gremlin-supporting backend [6], and is maintained

by the authors and maintainers of the Gremlin language.

1 Neo4j is a registered trademark of Neo4j Inc.

3

Figure 1: The Crew, an example of a Property Graph [7].

Why use Gremlin?

There are two key reasons for adopting Gremlin. Firstly, Gremlin is

designed to support many host languages while still remaining first-

order. A first-order DSL is one that can use the constructs of the host

language. Figure 2 shows a comparison to SQL, which is not first-order.

Secondly, Gremlin is general enough to support many backends, from

the simplest in-memory backends to massive distributed databases.

This comes from the use of just-in-time compilation (known as traversal

strategies) [1] to optimize Gremlin code at runtime and convert it to

backend operations.

Figure 2: Gremlin vs. SQL

4

Contributions of the Thesis

Gremlin++

Overview

Gremlin++ is the first low-level implementation of a Gremlin interpreter.

I created it in 2018 and continue to develop and maintain it. Gremlin++

is designed to be as compatible with Gremlin++ as possible while

adhering to C++14 standards and requirements. This includes allowing

the user to use any property value in the universal set, and supporting

traversal strategies (just-in-time compilation). This year, I released

Gremlin++ as an open-source product (Apache 2.0 License) and made it

available on GitHub2.

Motivation

There are substantial advantages to writing a Gremlin interpreter in C++,

including the speed benefits of a low-level language and support for C

and C++ backends. Prior to Gremlin++, the only Gremlin interpreter was

Java-Gremlin, which could be interacted with through many languages

via the Gremlin server, but which fundamentally operated in the JVM. [7]

Gremlin++ is a huge step forward in this regard. Additional motivations

for choosing C++ included its ubiquity on HPC systems and mature

support for GPUs through CUDA [8] and OpenCL [9].

2 Gremlin++ on GitHub: https://github.com/bgamer50/gremlin-

https://github.com/bgamer50/gremlin-

5

BitGraph

Overview

Alongside Gremlin++, I also developed BitGraph, the first-ever low-level

language backend for Gremlin. Its purpose is to store and manage a

graph structure, and interface with Gremlin through Gremlin++ (Figure

3). BitGraph interfaces with Gremlin++ through its own interpreter,

which runs on top of the Gremlin++ interpreter. It also offers support for

GPU acceleration through OpenCL [9], which it is also a pioneer in. I

have made BitGraph open-source (Apache 2.0 License) and available on

GitHub3.

Figure 3: Relationship between Gremlin, Gremlin++, and BitGraph

Motivation

The motivations for BitGraph are similar to those for Gremlin++. Firstly,

serving as a backend for Gremlin++ demonstrates its utility. Secondly,

because BitGraph is written in a low-level language, it has the potential

3 BitGraph on GitHub: https://github.com/bgamer50/bitgraph

BitGraph

https://github.com/bgamer50/bitgraph

6

to outperform existing JVM backends. Additionally, BitGraph’s support

for GPUs opens the door to innovations in parallelism and optimization of

Gremlin code.

7

Chapter 2: Design & Development of Gremlin++

Initial Design

Language

As discussed previously, I chose C++ as the language for Gremlin++.

While C offered many of the same features and benefits as C++, it did not

offer function chaining, a key requirement to implement Gremlin. Thus

C++ was the clear choice. The C++14 standard was selected with the

needs of BitGraph in mind. There are some key syntactical differences

between C++ and Java; in Gremlin++ the most evident of these

differences is the use of pointers.

Boost Library

The Boost Library was used primarily for the <boost/any.hpp> header,

which includes the boost::any container and boost::any_cast function

[10]. These were used to handle dynamic types in order to support

properties of any type in Gremlin++. It is left up to backends whether to

offer support for specific types.

Structure API

The structure API is based off the TinkerPop 3 structure API [11], which

is technically not part of Gremlin. However, some basic structure is

8

needed to support steps that specifically deal with graph elements such

as Vertices, Edges, and Properties. The Gremlin language is designed to

avoid use of the structure API by the user, but within the interpreter, it

allows more steps to have a “default” implementation, meaning that less

work has to be done by the backend. Today, Gremlin++ translates raw

Gremlin to an intermediate representation, relying on backends like

BitGraph to provide an interpreter. However, my eventual goal is to

include a fully-functional default interpreter in Gremlin++ to simplify

backends and allow backend implementers to focus on specific

optimizations. This goal would not be possible without a structure API.

The structure API in Gremlin++ covers two graph elements (Vertex, Edge)

and one higher-level abstraction (Element). Vertex and Edge inherit from

Element, mirroring the Java API. At this time, Gremlin++ only supports

properties on Vertices (VertexProperty). VertexProperty inherits from the

generic Property interface, which any future edge properties will also

implement. Having an interface for properties is crucial since it allows

them to be stored predictably in Traversers by the Gremlin’s various

property steps.

9

Implementation of Gremlin Semantics

Handling of Dynamic Types

Dynamic types, variables whose type is unknown at compile time, are a

significant challenge to implement in a statically-typed language like

C++. However, they are key to supporting Gremlin’s support for virtually

any property value.

An illustration of how Gremlin uses dynamic typing is in how the various

Property and Id steps allow a diverse range of backend behavior.

TinkerGraph, for example, supports nearly any valid Java type, including

user-defined types [6]. TinkerGraph also allows several types of Ids,

including Strings, Longs, Ints, or UUIDs [6]. Java-Gremlin uses Java

generics to support this feature [12].

Dynamic types are also key to Gremlin’s traversers. Java-Gremlin

supports traversers that can contain any object, and does not construct

new traversers when avoidable [12]. Once again, this feature is

supported by Java generics [12].

Templates in C++14 do not support dynamic types. Unlike Java

generics, which use type erasure, templates actually generate a separate

class for each type. This makes it difficult, if not impossible to use them

10

to implement properties, since there is no such thing in C++ as a variable

of a class whose template specification is unknown. The typical answer

to this problem has been to use a void* pointer, but this results in nearly

unreadable code due to the number of casts required and lack of type

information. It also gives up type safety, which is an important feature of

statically-typed languages. Therefore, use of void* is a non-ideal

solution.

Thankfully, the Boost Library [13] offers a powerful solution for handling

dynamic types. The Any container in Boost is a container that can hold

primitives, objects, and pointers [10]. It offers type safety through the

boost::any_cast() method, and also supports empty containers (an

extremely useful feature when indexing properties). boost::any also

supports safe argument passing and safe copying [10].

My initial version of Gremlin++ relied on void* pointers, which resulted in

a long development time for individual traversal steps, since these had to

be managed carefully. After switching to boost::any to store property

values and objects held by traversers, development time for new traversal

steps was cut dramatically. The code was also much easier to

understand, especially for end-users, who would no longer have to worry

about potential undefined behavior when casting void* pointers.

11

Function Chaining

Function chaining (Figure 4) is a technique in object-oriented

programming languages where the output of a function is an object with

immediately-callable functions [14]. As stated previously, function

chaining is required to write a Gremlin interpreter. One roadblock to

using function chaining in C++ is that C++ references come with more

restrictions regarding their creation. Users must be able to dynamically

allocate Graph Traversals in order to support anonymous traversals.

Different types of backends must also be allowed to have their own

traversals, whose type is unknown at compile time to Gremlin++ (as it is

backend-agonstic). As a result, one key change from Java-Gremlin is the

use of pointers with traversals instead of references. For instance,

g.V().out().has(“name”, “joe”).next() in Java-Gremlin becomes g->V()->out()-

>has(“name”, “joe”)->next() in Gremlin++, where g is a graph traversal

source.

Without Function Chaining
b = a.foo();
c = b.bar();
d = c.foo();

With Function Chaining
b = a.foo().bar().foo();

Figure 4: Function Chaining Illustration

Anonymous Traversals

Anonymous traversals, sometimes called recursive traversals, are a key

feature of Gremlin. They are necessary when implementing the language

to handle steps whose arguments might be valid Gremlin [1]. Take, for

12

instance, the Gremlin traversal g.V().property(“d”, out().count()).iterate(),

which finds and saves the out-degree of each vertex in the graph. In

Gremlin-Java, this becomes g.V().property(“d”, __.out().count()).iterate().

The __ in that traversal is a generator that produces anonymous Graph

Traversals, which are themselves interpreted and optimized.

Gremlin++ deals with anonymous traversals by providing its own version

of __. Instead of using a specialized class, Gremlin++ uses a macro that

produces a Graph Traversal using the default constructor. The resulting

traversals are not attached to a graph, and can be passed as arguments

to steps, leaving the attachment to be handled at runtime by the

backend. Due to the current implementation of traversal strategies,

attachment to the graph and optimization of the traversal can only be

done in an ad-hoc manner by the backend.

Implementation of the Interpreter

Traversal Strategies

Traversal strategies are translations that “rewrite a traversal (with

typically, though not necessarily, the same semantics as the original

traversal)” [1]. Gremlin relies on traversal strategies to handle backend-

specific code and just-in-time optimizations [1]. The Java

implementation of Gremlin allows backends to register their backend-

13

related strategies with the compiler. In Gremlin++, the process is

currently more ad-hoc. Rather than specific strategies, a Graph

Traversal executes the getInitialTraversal() method, which applies all

strategies known to the traversal. Through polymorphism, different

backends (with their own Graph Traversals) can extend the behavior of

the default getInitialTraversal() method.

The Default Graph Traversal

Gremlin++’s “default” Graph Traversal is the core of the library. It

provides all functionality of the Gremlin language. Each step has one or

more corresponding methods that can be chained together to form valid

Gremlin. This is analogous to the default Graph Traversal in Java-

Gremlin. The various methods often make use of boost::any, especially

for steps that deal with properties. Graph Traversals in Gremlin++ also

hold a list of steps which are ultimately executed after

getInitialTraversal() is called by the backend.

Graph Traversals also have finalization steps, such as the iterate(),

forEachRemaining() and next() methods. These steps bring about the

execution of the traversal. Unlike Gremlin-Java, Gremlin++ leaves it to

the backend to handle the execution process. This will likely be fixed as

the library matures.

14

Implementation of Key Steps

Has Step

The Has Step supports a variety of predicates, including equals, less than

or equal to, greater than, etc [15]. Each of these predicates operates on a

Vertex or Edge and returns true if the Traverser should continue, and

false if it should not. In Gremlin-Java, the P class acts as a generator for

these predicates. It automatically produces predicates for any object,

usually by calling methods from the Object or Comparable interfaces in

Java [16]. In C++, these interfaces don’t exist. Furthermore, the use of

boost::any hold any property type complicates predicate testing since

there needs to be a function that handles the comparison ready at

compile time. To get around this issue, Gremlin++ uses its own P class,

but returns lambda expressions rather than non-executable bytecode as

in Java. This makes it easy for users to use their own comparison

functions with the Has Step. The downside of this approach is that it

makes Has Steps harder to inspect at runtime, complicating the

optimization process. In the future, Gremlin++ might switch to a Java-

style non-executable predicate for the Has Step and better support the

Filter Step for dealing with user-created classes.

Add Property Step

The Add Property step modifies a Graph by adding a property to a Vertex

or Edge [17]. If the property already exists, it is modified or replaced

15

depending on its cardinality (single, list, or set) [17]. Only Vertices

support cardinalities other than single [18]. Add Property Steps in

Gremlin++ work directly on Elements, taking in an Element pointer and

modifying the Element accordingly. It is possible to create a backend-

specific Add Property Step which extracts the key, value, and cardinality

of the Add Property Step and replaces it with a new backend-specific

step.

Gremlin++ also supports property addition using anonymous Graph

Traversals. Support of this feature is left to the backend interpreter

since it requires dynamic creation of backend-specific traversal objects.

Property Step

Property Steps access either a Property container or the actual value of a

Property [19]. Much like the Add Property Step, the Property Step

directly accesses an Element. Property Steps contain a type (value or

property) and list of property keys. Currently, Gremlin++ does not

provide a default execution of the Property Step. Instead, it leaves its

execution to the backend interpreter. This will change when standalone

traversal strategies are properly implemented.

Graph Step

Graph steps access specific vertices or edges in the graph [20]. In

Gremlin++, this is left up to the backend since Gremlin++ has no way of

16

knowing how to access Vertices on a backend without the Structure API.

In the future, a default implementation using the Structure API will likely

be provided along with the option of replacing it using traversal

strategies. The default Graph Step in Gremlin++ holds the type (vertex or

edge) and requested elements, if any.

Add Edge Step

The Add Edge Step in Gremlin++ supports all features of the Java-

Gremlin implementation of this step, including modulation with from()

and to() [21]. Like the Graph Step and Property Step, it is largely a

container in Gremlin++, with the backend interpreter doing most of the

work.

17

Chapter 3: Design & Development of BitGraph

Graph Structure

Overview

Gremlin++ only provides interfaces for the various graph elements and

properties, leaving it to the backend to handle their storage and

management. Determining how the graph structure was stored was the

first part of designing BitGraph. BitGraph uses a vertex-centric

approach to graph storage, meaning that most data is stored in the

vertices, including edge information. It also uses sequential identifiers as

opposed to randomly-generated UUIDs for differentiating elements in the

graph.

However, although most data lives on the vertices, BitGraph supports

indexing on properties, a key feature of nearly all property graph

backends. Indexing allows fast querying and filtering by property values

through a lookup table instead of a full vertex scan, reducing property

filter and query time from 𝑂(𝑁) to 𝑂(1). All indexes are stored at the

graph level.

18

Vertices

BitVertexes, the BitGraph Vertex implementation, are the core of the

graph in BitGraph. Each BitVertex has a unique 64-bit ID, along with a

property store and edge list. The edge list is broken into two lists, one for

incoming edges and the other for outgoing edges. Both lists are

implemented with C++’s std::list.

Edges

BitEdges are the BitGraph Edge implementation. They contain two

pointers (one to the out-vertex and one to the in-vertex). They also have

a unique 64-bit id. BitEdges do not currently support properties or

labels, but this is planned in the future.

Properties

Each BitVertex stores a map of properties, keyed by the property key,

using the C++ std::map container. The values of these properties are

contained in VertexProperty objects provided by the Gremlin++ API.

BitGraph does not support multiproperties (property key with multiple

values) or metaproperties (properties of properties). In order to support

any property type, the VertexProperty objects are specialized with

boost::any. This means the user will need to cast the properties when

directly accessing them. It is assumed the user knows what type their

properties are; if not, boost::any provides methods for determining type

[13].

19

Indexes

Indexes are an important feature of most property graph backends.

Property graph support diverse graphs with elements that may represent

very different objects. Take for instance the “Modern” graph [22] that

ships with TinkerGraph [23] (Figure 5)4. This graph connects people with

the software they created and the people they know. It has two types of

vertices and two types of edges. Suppose a user wants to know the

languages created by each user. They would use the traversal in Table 1,

which outputs a map of each person to the software they created (Table

2).

g.V().hasLabel('person')
.project('person', 'software created')
.by(values('name'))
.by(out('created').values('name').fold())

Table 1: Person to Software Traversal.

Figure 5: The Modern Graph.

4 Created with Cytoscape. [28]

20

==>[person:marko,software created:[lop]]
==>[person:vadas,software created:[]]
==>[person:josh,software created:[ripple,lop]]
==>[person:peter,software created:[lop]]

Table 2: Traversal output on Modern Graph.

The above example shows the utility of property and label querying in

Gremlin. For a small graph, it is trivial to check the label and property of

each edge, but on the CPU, it is an 𝑂(𝑁) operation. Indexes, along with a

backend-specific index step, can reduce this to an 𝑂(1) operation

through a lookup table. Instead of looking at each element to be filtered,

a lookup table of each property value to the list of elements with that

property allows this to be done in a single step. The only exception to

this rule is when path information or side effects need to be preserved

after a filter. In this scenario, each element needs to be matched with a

Traverser, which is still an 𝑂(𝑁) operation, but is a good target for

parallelism.

As mentioned previously, indexing in BitGraph is implemented using a

lookup table and backend-specific step. The lookup table is a custom

hash table5 that can index any property using the boost::any container

so long as the user provides a hash function. For most common types of

properties (numbers, strings), this is very simple as C++ has default

implementations for these functions. For custom classes, the user can

5 The table is implemented using a dynamic array (std::vector) and resolves collisions through linear

probing.

21

write their own hash function and pass it to BitGraph upon index

creation. Each key value is also associated with any elements with that

value. Indexes are element-specific; they can lookup either vertices or

edges, not both. This is done to allow future support for multiproperties

on vertices [18], an optional feature of Gremlin not currently supported

by BitGraph. There is also an id index that allows lookup of Vertices by

unique id; this is implemented using the default C++ unordered map

rather than a BitGraph index.

Backend-Specific Interpreter

Backend-Specific Steps

Backend-specific steps and just-in-time optimizations are tightly coupled

in Gremlin, just as they are in Gremlin++. BitGraph uses several such

steps, most notably the Index Step, which performs Has Steps using the

index if it exists for the property being filtered on. Backend-specific

steps are also used to handle GPU operations if the user is using a GPU

Traversal. Currently, the three supported GPU operations are Filter,

Min, and Has.

Just-In-Time Optimizations

BitGraph’s just-in-time optimizations convert certain steps to Index

Steps and the traversal g.E() to the vertex-centric traversal g.V().outE(), in

addition to the optimizations provided by Gremlin++. The Index Step in

22

BitGraph directs the interpreter to search for graph elements using

indexes. This is a constant-time operation. When the optimizer detects

a Graph Step followed by a Has Step, and knows there is an index on the

property examined by the Has Step, it replaces the two steps for a single

Index Step. The replacement of the Edge Graph Step with a Vertex

Graph Step and Vertex Step is done since BitGraph is vertex-centric and

uses Vertices to manage edges.

Traversal Execution

In Java-Gremlin, nearly all the interpretation is done in the default

traversal [11]. Since Gremlin++ does not currently have a means of

using standalone traversal strategies with the default interpreter,

BitGraph does most interpretation. This is likely to change as Gremlin++

matures. When the user calls one of the finalization steps (iterate, next,

etc.), interpretation begins. Each Graph Traversal begins with some sort

of start step, which accesses the starting elements of the Traversal. The

interpreter begins by getting the elements requested by the start step and

putting them into Traversers. Those Traversers are then passed to the

next step. Calls to the various functions associated with step execution

are aggressively inlined using the inline keyword and the O3 compile

option in gcc.

Some Traversal Steps may contain their own traversals, such as the Add

Property Step, which allows the property to be added to come from a

23

Traversal. In this case, BitGraph’s Traversals provide special methods

for converting an anonymous default traversal into an executable

backend Traversal at runtime. The Traversal that is created matches the

type of the creator Traversal (either a CPU or GPU Graph Traversal).

Just-in-time optimizations are applied to these traversals as well,

although in some cases not all optimizations can be applied (i.e. start

step optimizations). Special methods also exist to properly copy

Traversers to hand off to the newly created Traversals, and properly

delete Traversers once the new Traversals have finished.

GPU Traversals

Relationship to CPU Traversals

In BitGraph, there are two types of Graph Traversals, CPU Graph

Traversals and GPU Graph Traversals. Because not all operations can be

done on the GPU, GPU Graph Traversals inherit from CPU Graph

Traversals. GPU Graph Traversals rely on the CPU interpreter, but

override some of the execution methods. There are also GPU-specific

steps which replace the default steps during the just-in-time

optimization process6. GPU Graph Traversals must be created from a

GPU Traversal Source. To get a GPU Traversal Source, the user first gets

a CPU Traversal Source using graph.traversal(), then calls withGPU() to

6 GPU Graph Traversals have their own getInitialTraversal() method that first calls the CPU’s optimization

method, then does GPU optimizations.

24

convert it to a GPU Traversal Source. GPU Traversal Sources handle the

setup and bookkeeping operations needed for GPU access, and should be

reused whenever possible to avoid the overhead associated with creating

them. Figure 6 illustrates the relationship between the graph and

various traversal sources and traversals in BitGraph.

Figure 6: BitGraph Organization

Overhead Reduction

The overhead of accessing a GPU can be a hassle; as a result, BitGraph

tries to save as much of a GPU context as possible in the traversal source

so that repeated uses of the traversal source do not require additional

kernel compilation. Each GPU Graph Traversal Source contains

compiled kernel code and references to the current GPU context and

device. These are all obtained upon creation of the traversal source.

Because BitGraph is not transactional, there are few if any use cases for

creating multiple traversal sources.

25

GPU-Specific Steps

The GPU currently supports the Filter and Min steps through the

OpenCL library [1]. The Filter Step is similar to the Has Step, but

supports any predicate. The Min Step finds the minimum of the

contained objects in a Traversal and passes through its value in a new

Traverser. To execute Has Steps on the GPU, the Q class exists as an

analogue of the P class on the CPU. This deviation from Java-Gremlin

exists due to the earlier design decision to promote the arguments to the

Has Step to full predicates. The Q class generates predicates that run on

the GPU, such as Q::eq, which produces a predicate that compares

equality.

The two steps that currently exist as special GPU steps, the Filter Step

and Min Step, have pre-written GPU kernels that get compiled when the

traversal source of the current traversal is created. Table 3 shows the

code for the Filter Step. Table 4 shows the code for the Min Step. Figure

7 shows how traversers on the CPU are sent to the GPU for execution.

__kernel void filter(__global ulong* expected, __global ulong* values, __global bool* result) {
 const int i = get_global_id(0);
 result[i] = values[i] == expected[0];
}

Table 3: Filter Step Kernel Code

26

 __kernel void minimum(__global ulong* sz, __global ulong* values) {
 ulong size = sz[0];
 const int i = get_global_id(0);
 int j;
 for(j = 1; j < size; j=j*2) {
 if(i \% (2*j) == 0) {
 int m = values[i];
 if(!(i + j >= size || m < values[i+j])) m = values[i+j];
 values[i] = m;
 }
 barrier(CLK_GLOBAL_MEM_FENCE);
 }
}

Table 4: Min Step Kernel Code

Figure 7: GPU Step Execution

27

Chapter 4: Benchmarks & Evaluation Environment

Overview

Algorithms

The connected components algorithm is a key algorithm in the field of

graph analytics. The goal of the algorithm is to identify each set of

vertices in a graph such that each contained vertex can reach any other

in the set [24]. The Apache TinkerPop project recognized this and

recently added an OLAP implementation of connected components

directly callable using Gremlin [25]; however, not all backends support

OLAP. The version of connected components used to test and

benchmark BitGraph and the other backends is written in Gremlin and

does not use OLAP. It initializes the component id to the current Vertex

id, then repeatedly finds the minimum of the current component id and

neighbors’ components ids until there is no change. Because each

iteration is identical, the benchmarks in this paper use a single iteration,

referred to as “cc1x”. The Gremlin code for this traversal is shown in

Table 5.

g.V().property('cc', id()).iterate()
g.V().property('cc', coalesce(both(), identity()).values('cc').min()).iterate()

Table 5: The cc1x Traversal

28

The degree centrality algorithm is another common graph algorithm used

to identify important nodes in a network. It is an 𝑂(|𝑉|) algorithm that

counts the number of edges on each vertex. There are three variations of

this algorithm, in-degree, out-degree, and total degree [26]. In-degree

measures the number of incoming edges on each vertex [26]. Out-degree

measures the number of outgoing edge on each vertex [26]. Total degree

measures the number of edges in either direction on each vertex [26].

The out-degree algorithm was benchmarked in this paper. The Gremlin

code for its traversal is shown in Table 6.

g.V().property("d", out().count()).iterate()

Table 6: Gremlin Traversal for Degree Centrality (out-degree)

Datasets

Two datasets were chosen for comparison across backends. Both came

from the Stanford Large Network Dataset Collection, a product of the

Stanford Network Analysis Project (SNAP) [27]. The first was the ego-

Facebook dataset, which contains 4,000 vertices and 90,000 edges. The

second was the ego-Twitter dataset, which contains 80,000 vertices and

2,000,000 edges.

Backends

For the purposes of benchmarking, BitGraph using CPU traversals and

BitGraph using GPU traversals were treated as separate backends.

Three other major backends were selected to compare against BitGraph.

The first was TinkerGraph, which is the reference implementation of a

29

Gremlin backend [23]. TinkerGraph is in-memory, primarily relying on

Java’s HashMap class. The second was JanusGraph, a Gremlin backend

designed for large data which supports several database backends and

an in-memory backend [5]. Only the in-memory backend was

benchmarked in this paper. The third was Neo4j [3], one of the most

well-known graph backends in the industry, which has support for

Gremlin through the Neo4j-Gremlin library.

System

The system used for the benchmarks was powered by an AMD Ryzen 7

2700x 3.7 GHz 8-core processor, 32 Gigabytes of DDR4 RAM, and an

AMD Radeon RX 580 GPU with 8 GB of internal memory. All datasets

tested fit into both the CPU RAM and GPU internal memory. JVM

startup time was not included in total runtime. The C++ programs were

compiled to native code and did not have any startup time.

30

Chapter 5: Results & Analysis

Data Ingest

Results

The ego-Twitter and ego-Facebook datasets are simple edge lists. The ids

in the dataset were treated as properties, and ingested into the graph

under the “name” property. Each backend used a series of Gremlin

traversals to ingest the data. Figure 8 and Figure 9 show the results on

each backend for ego-Facebook and ego-Twitter, respectively. Appendix

A contains the entire table of results.

Figure 8: Facebook Data Ingest Time Comparison

0

2

4

6

8

10

12

14

M
ea

n
 R

u
n

ti
m

e
(s

ec
)

Facebook Data Ingest Time

BitGraph (CPU)

BitGraph (GPU)

TinkerGraph

JanusGraph

Neo4j

31

Figure 9: Twitter Data Ingest Time Comparison

Analysis

BitGraph stands out as the leader in data ingest, both on the CPU and

GPU. It delivers roughly 2x speedup over its closest competitor,

TinkerGraph, which is a mature product. Two key reasons for this

include the performance of BitGraph’s indexes and BitGraph’s reliance

on C++ vectors for bookkeeping. BitGraph’s indexes are built from the

ground up and designed to be graph indexes, unlike those that rely on

higher-level constructs. This by itself offers significant speedup. The use

of vectors for bookkeeping was not an initial design decision, but after

profiling with gprof, I discovered that storing the BitVertex table in a

dynamic array was up to 10x faster than using a linked list. The

dynamic array implementation of choice, std::vector, is highly optimized

and delivers impressive performance.

0

50

100

150

200

250

M
ea

n
 R

u
n

ti
m

e
(s

ec
)

Twitter Data Ingest Time

BitGraph (CPU)

BitGraph (GPU)

TinkerGraph

JanusGraph

Neo4j

32

Connected Components

Results

The results of the cc1x algorithm (Table 5) for each backend on the ego-

Facebook and ego-Twitter datasets are in Figure 10 and Figure 11.

Because it is wasteful to use the GPU when processing small amounts of

data, BitGraph-GPU allows a limit on the number of traversers that

trigger the GPU Min Step, falling back to the CPU when this limit is not

met. On the ego-Facebook data, this limit was set to 250 traversers; on

the ego-Twitter data, this limit was set to 1000 traversers. These limits

were chosen to ensure the GPU executed only on the most strenuous

computations for each dataset. Without the limit, the slowdown due to

data transfer dominated computation time, resulting a slowdown by at

least one order of magnitude. Appendix B contains the entire table of

results.

33

Figure 10: Facebook Data cc1x Time Comparison

Figure 11: Twitter Data cc1x Time Comparison

Analysis

BitGraph did not perform as well on the cc1x traversal, losing to both

TinkerGraph and Neo4j. TinkerGraph was particularly fast, completing

the traversal at the same speed as BitGraph-CPU on the ego-Facebook

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
ea

n
 R

u
n

ti
m

e
(s

ec
)

Facebook Data cc1x Time

BitGraph (CPU)

BitGraph (GPU)

TinkerGraph

JanusGraph (mem)

Neo4j

0

5

10

15

20

25

M
ea

n
 R

u
n

ti
m

e
(s

ec
)

Twitter Data cc1x Time

BitGraph (CPU)

BitGraph (GPU)

TinkerGraph

JanusGraph

Neo4j

34

data and 4x the speed of BitGraph-CPU on the ego-Twitter data.

BitGraph-GPU did not perform well at all on either dataset, losing out to

the CPU, JanusGraph, and Neo4j. The cc1x traversal was the best test

of GPU acceleration, utilizing the Min Step on the GPU. However, it did

not deliver speedup as the sparsity of the graph resulted in small vectors

being sent to the GPU; these small vectors weren’t large enough to make

the data transfer time worth it. These results do not rule out the GPU as

a viable acceleration option, but more work needs to be done to find the

right use case. A different algorithm using the Has Step and Filter Step

might be a good future test of the GPU’s capabilities.

Degree Centrality

Results

The results of the degree centrality algorithm (Table 6) for each backend

on the ego-Facebook and ego-Twitter datasets are shown in Figure 12

and Figure 13. Appendix C contains the entire table of results.

35

Figure 12: Facebook Data Degree Centrality Time Comparison

Figure 13: Twitter Data Degree Centrality Time Comparison

Analysis

Degree Centrality did not test the GPU (it does not use any GPU steps).

As a result, BitGraph-GPU performance is nearly identical to that of

BitGraph-CPU. On the ego-Facebook data, BitGraph outperformed all

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
 R

u
n

ti
m

e
(s

ec
)

Facebook Data Degree Centrality Time

BitGraph (CPU)

BitGraph (GPU)

TinkerGraph

JanusGraph

Neo4j

0

1

2

3

4

5

6

7

8

M
ea

n
 R

u
n

ti
m

e
(s

ec
)

Twitter Data Degree Centrality Time

BitGraph (CPU)

BitGraph (GPU)

TinkerGraph

JanusGraph

Neo4j

36

backends, delivering over 5x speedup over TinkerGraph, the second-

fastest backend. However, on the ego-Twitter data, TinkerGraph once

again performed the best, followed by Neo4j, then BitGraph-CPU.

37

Chapter 6: Conclusions & Future Work

Conclusions

Strengths

BitGraph is a powerful tool for data ingest, offering the fastest load times

of any current Gremlin backend. While it does not offer the same

speedup on connected components or degree centrality, it still has the

fastest overall runtime due to the time saved in the data ingest step.

Needless to say, this is a huge win for BitGraph, especially since it is not

yet mature.

Limitations

At this time, BitGraph does not offer scalable speedup on connected

components or degree centrality. This is likely because Java-Gremlin is

able to extract parallelism from the traversal using Java streams,

something which BitGraph currently does not do on CPU traversals. I

experimented using OpenMP with BitGraph, but the traversals proved

too complicated for OpenMP to parallelize. In the future, I will certainly

explore parallelism on the CPU, as well as better use of the GPU.

38

Future Work

Overview

There are many potential improvements for Gremlin++ and BitGraph,

including adding support for more traversal steps and simplifying how

Gremlin++ handles predicates under the hood once OpenCL supports

C++17. The clearest need is to implement standalone traversal

strategies, which would greatly simplify the interpreter and make it

easier to add new Gremlin++ supporting backends. Gremlin++ also

needs support for common property graph file types such as graphml

and graphson, which Java-Gremlin currently offers.

Traversal Steps

Today, BitGraph implements a small fraction of the many traversal steps

of Gremlin. While many are equivalent, they do a great deal to make the

language more expressive and convenient for users. One of the most

important steps currently not implemented by BitGraph is the Repeat

Step, which allows repetition of traversal elements without needing a new

traversal. This would significantly the just-in-time compilation overhead

when executing repeating traversals. Other priority steps would be the

Dedup Step, a good target for GPU execution, and the Path Step, which

facilitates an entire world of pathfinding algorithms, such as

Betweenness Centrality. When OpenCL supports C++17, I also want to

39

refactor the Has Step and Filter Step to make their predicates more like

those in Java-Gremlin.

Better Traversers

At this time, BitGraph does not store any path or side effect information

in its traversers, largely because Gremlin++ does not yet support those

features. These are necessary for the Path Step, as well as other steps

that refer backwards. When OpenCL supports C++17, I might also

revisit the idea of templated traversers, which are type-specific rather

than generic objects relying on boost::any.

Standalone Traversal Strategies

Traversal strategies in Gremlin++ and BitGraph are largely ad-hoc at the

moment. In Java-Gremlin, backends can register strategies with the

Java-Gremlin interpreter. These strategies handle backend-specific

optimizations and any needed access to data in the backend. Gremlin++

only provides an interface method, getInitialTraversal(), which each

backend implements to modify the user-supplied code as needed. Each

backend also has to handle most of the interpretation, which is a barrier

to developing new backends. In the future, I intend to fix these issues by

allowing some form of standalone traversal strategies, which the backend

passes to Gremlin++, instructing it on how to run backend-specific steps.

40

Data I/O

Java-Gremlin supports two common graph data formats, graphml and

graphson. It also supports its own data format, gryo. At some point,

Gremlin++ should also start to support these formats to facilitate usage

with other graph systems and graph visualization engines.

Summary

Gremlin++, BitGraph, and this thesis represent a major step forward for

the Gremlin language and the graph analytics community. As the first

low-level language implementations of Gremlin and a Gremlin backend,

they have encountered many previously-unknown pitfalls and bumps in

the road to achieving a viable product. BitGraph has delivered on its

promised speedup, but more work needs to be done in making it usable

and extensible.

41

Appendices

Appendix A: Data Ingest Results

FACEBOOK RESULTS
BitGraph

(CPU)

BitGraph

(GPU)

TinkerGraph JanusGraph Neo4j

Run 1 1.02046 1.01329 3.117 12.548 6.122

Run 2 1.04571 1.01084 3.141 12.656 4.931

Run 3 1.01208 1.01799 3.063 12.613 5.04

Run 4 1.02889 1.02009 3 13.874 5.156

Run 5 1.0102 1.01592 3.128 11.891 5.203

Run 6 1.0262 1.01722 3.031 13.149 5.04

Run 7 1.0087 1.01189 3.078 13.509 5.283

Run 8 1.00785 1.02531 3.055 12.14 5.153

Run 9 1.02033 1.01223 3.001 13.968 4.956

Run 10 1.01085 1.02026 3.031 12.319 5.017

Mean 1.019127 1.016504 3.0645 12.8667 5.1901

TWITTER RESULTS
BitGraph

(CPU)

BitGraph

(GPU)

TinkerGraph JanusGraph Neo4j

Run 1 27.8411 27.8502 50.248 189.165 87.426

Run 2 27.9611 27.869 51.123 188.391 87.227

Run 3 27.919 28.0246 52.706 195.332 86.83

Run 4 27.966 27.9818 52.115 189.071 87.975

Run 5 28.0027 28.0038 52.727 195.307 88.593

Run 6 27.9773 28.004 52.414 191.043 87.72

Run 7 27.9754 27.9476 51.776 191.667 86.16

Run 8 27.6131 27.8146 51.359 192.735 86.14

Run 9 27.7475 27.7415 52.465 186.516 84.614

Run 10 27.9323 27.9127 52.324 190.672 84.569

Mean 27.89355 27.91498 51.9257 190.9899 86.7254

42

Appendix B: Connected Components Results

FACEBOOK RESULTS
BitGraph

(CPU)

BitGraph

(GPU)

TinkerGraph JanusGraph Neo4j

Run 1 0.2081 0.436067 0.203 4.16 0.532

Run 2 0.20953 0.429677 0.223 3.914 0.484

Run 3 0.206442 0.428253 0.187 4.026 0.562

Run 4 0.205557 0.429988 0.187 4.03 0.59

Run 5 0.208029 0.43358 0.203 4.04 0.479

Run 6 0.209636 0.431179 0.203 3.9 0.5

Run 7 0.215564 0.4323 0.203 4.17 0.534

Run 8 0.209926 0.43604 0.187 4.17 0.53

Run 9 0.206598 0.432103 0.187 4.3 0.469

Run 10 0.209045 0.432801 0.172 4 0.513

Mean 0.2088427 0.4321988 0.1955 4.071 0.5193

TWITTER RESULTS
BitGraph

(CPU)

BitGraph

(GPU)

TinkerGraph JanusGraph Neo4j

Run 1 6.1655 16.1637 1.963 17.476 6.971

Run 2 6.05749 16.1726 1.795 17.131 6.715

Run 3 6.03707 16.0375 1.795 21 6.746

Run 4 6.02782 16.0978 1.983 22.424 6.38

Run 5 6.10379 16.118 1.983 22.724 6.683

Run 6 6.08907 16.1091 1.805 20.266 7.428

Run 7 6.09618 16.1055 1.775 21.088 6.108

Run 8 6.11078 16.036 1.789 22.269 6.747

Run 9 6.0098 16.026 1.802 20.943 6.465

Run 10 6.04139 16.1673 1.773 21.277 6.372

Mean 6.073889 16.10335 1.8463 20.6598 6.6615

43

Appendix C: Degree Centrality Results

FACEBOOK RESULTS
BitGraph

(CPU)

BitGraph

(GPU)

TinkerGraph JanusGraph Neo4j

Run 1 0.0408664 0.0573766 0.217 0.586 0.342

Run 2 0.0414136 0.0565604 0.223 0.613 0.288

Run 3 0.0410476 0.056404 0.223 0.577 0.322

Run 4 0.0411623 0.0564312 0.225 0.59 0.307

Run 5 0.0413689 0.0566073 0.221 0.584 0.292

Run 6 0.0416842 0.0577357 0.225 0.581 0.308

Run 7 0.0414839 0.0569546 0.222 0.585 0.302

Run 8 0.0414839 0.0575295 0.221 0.598 0.288

Run 9 0.0416105 0.0552968 0.212 0.593 0.302

Run 10 0.0412464 0.0566469 0.214 0.606 0.306

Mean 0.04133677 0.0567543 0.2203 0.5913 0.3057

TWITTER RESULTS
BitGraph

(CPU)

BitGraph

(GPU)

TinkerGraph JanusGraph Neo4j

Run 1 1.32073 1.78519 0.505 7.635 1.128

Run 2 1.31869 1.75379 0.512 6.46 1.38

Run 3 1.32263 1.75355 0.556 6.576 1.196

Run 4 1.32174 1.74542 0.675 6.098 1.129

Run 5 1.35315 1.74807 0.511 6.995 1.124

Run 6 1.32639 1.74853 0.516 6.566 1.122

Run 7 1.31124 1.75508 0.542 8.083 1.117

Run 8 1.32842 1.75964 0.521 6.219 1.146

Run 9 1.3124 1.83258 0.558 6.862 1.329

Run 10 1.30031 1.79979 0.518 6.11 1.406

Mean 1.32157 1.768164 0.5414 6.7604 1.2077

44

Bibliography

[1] M. A. Rodriguez, "The Gremlin Graph Traversal Machine and Language," in ACM

Proceedings of the 15th Symposium on Database Programming Languages,

Pittsburgh, PA, USA, 2015.

[2] Apache Foundation, "Appendix: TinkerPop 2.x," 9 March 2019. [Online].

Available: http://tinkerpop.apache.org/docs/current/upgrade/#_tinkerpop_2_x.

[3] Neo4j Incorporated, "Neo4j," Neo4j Incorporated, 2019. [Online]. Available:

https://neo4j.com. [Accessed 9 March 2019].

[4] Amazon Web Services, "Amazon Neptune: Fast, reliable graph database built for

the cloud," Amazon Web Services, 2019. [Online]. Available:

https://aws.amazon.com/neptune/. [Accessed 9 March 2019].

[5] The JanusGraph Authors, "JanusGraph: Distributed Graph Database," The Linux

Foundation, 2017. [Online]. Available: http://janusgraph.org/. [Accessed 9 March

2019].

[6] Apache Foundation, "TinkerGraph-Gremlin," 2 January 2019. [Online]. Available:

http://tinkerpop.apache.org/docs/3.4.0/reference/#tinkergraph-gremlin. [Accessed 9

March 2019].

[7] Apache Foundation, "Gremlin Server," 2 January 2019. [Online]. Available:

http://tinkerpop.apache.org/docs/3.4.0/reference/#gremlin-server. [Accessed 9

March 2019].

[8] NVIDIA Corporation, "About CUDA," 2019. [Online]. Available:

https://developer.nvidia.com/about-cuda. [Accessed 9 March 2019].

[9] Khronos Group, "OpenCL Overview," 2019. [Online]. Available:

https://www.khronos.org/opencl/. [Accessed 9 March 2019].

[10] K. Henney, "Chapter 4. Boost.Any," 2001. [Online]. Available:

https://www.boost.org/doc/libs/1_69_0/doc/html/any.html.

[11] Apache Foundation, "Provider Documentation," 2 January 2019. [Online].

Available: http://tinkerpop.apache.org/docs/3.4.0/dev/provider/. [Accessed 24

March 2019].

[12] Apache Foundation, "The Traversal," 2 January 2019. [Online]. Available:

http://tinkerpop.apache.org/docs/3.4.0/reference/#traversal. [Accessed 9 March

2019].

[13] Boost Project, "Boost C++ Libraries," 12 December 2018. [Online]. Available:

https://www.boost.org.

[14] J. Bay and A. Ruiz, "An Approach to Internal Domain-Specific Languages in Java,"

19 February 2008. [Online]. Available: https://www.infoq.com/articles/internal-

dsls-java. [Accessed 24 March 2019].

45

[15] Apache Foundation, "Has Step," 2 January 2019. [Online]. Available:

http://tinkerpop.apache.org/docs/current/reference/#has-step. [Accessed 24 March

2019].

[16] Apache Foundation, "A Note on Predicates," 2 January 2019. [Online]. Available:

http://tinkerpop.apache.org/docs/current/reference/#a-note-on-predicates. [Accessed

24 March 2019].

[17] Apache Foundation, "Add Property Step," 2 January 2019. [Online]. Available:

http://tinkerpop.apache.org/docs/current/reference/#addproperty-step. [Accessed 24

March 2019].

[18] Apache Foundation, "Vertex Properties," 2 January 2019. [Online]. Available:

http://tinkerpop.apache.org/docs/3.4.0/reference/#vertex-properties.

[19] Apache Foundation, "Properties Step," 2 January 2019. [Online]. Available:

http://tinkerpop.apache.org/docs/current/reference/#_properties_step. [Accessed 24

March 2019].

[20] Apache Foundation, "Graph Step," 2 January 2019. [Online]. Available:

http://tinkerpop.apache.org/docs/current/reference/#graph-step. [Accessed 24

March 2019].

[21] Apache Foundation, "Add Edge Step," 2 January 2019. [Online]. Available:

http://tinkerpop.apache.org/docs/current/reference/#addedge-step. [Accessed 24

March 2019].

[22] Apache Foundation, "Graph Computing," 2 January 2019. [Online]. Available:

http://tinkerpop.apache.org/docs/current/reference/#graph-computing. [Accessed 24

March 2019].

[23] Apache Foundation, "TinkerGraph-Gremlin," 2 January 2019. [Online]. Available:

http://tinkerpop.apache.org/docs/current/reference/#tinkergraph-gremlin. [Accessed

24 March 2019].

[24] J. Hopcroft and R. Tarjan, "Algorithm 447: efficient algorithms for graph

manipulation," Communications of the ACM, vol. 16, no. 6, pp. 372-378, 1973.

[25] Apache Foundation, "ConnectedComponent Step," 2 January 2019. [Online].

Available:

http://tinkerpop.apache.org/docs/current/reference/#connectedcomponent-step.

[Accessed 24 March 2019].

[26] J. Bisht, "Degree Centrality (Centrality Measure)," 2019. [Online]. Available:

https://www.geeksforgeeks.org/degree-centrality-centrality-measure/. [Accessed 24

March 2019].

[27] J. Leskovec and R. Sosi, "SNAP: A General-Purpose Network Analysis and Graph-

Mining Library," ACM Transactions on Intelligent Systems and Technology (TIST),

vol. 8, no. 1, p. 1, 2016.

[28] P. Shannon, A. Markiel, O. Ozier, N. Baliga, J. Wang, D. Ramage, N. Amin, B.

Schwikowski and T. Ideker, "Cytoscape: a software environment for integrated

models of biomolecular interaction networks," Genome Research, pp. 2498-2504,

2003.

46

This page intentionally left blank.

