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In dataflow-based application models, the underlying graph representations

often consist of smaller sub-structures that repeat multiple times. In order to en-

able concise and scalable specification of digital signal processing (DSP) systems,

a graphical modeling construct called “topological pattern” has been introduced in

recent work [23].

In this thesis, we present new design capabilities for specifying and work-

ing with topological patterns in the dataflow interchange format (DIF) framework,

which is a software tool for model-based design and implementation of signal process-

ing systems. We also present a plug-in to the DIF framework for deriving parameter-

ized schedules, and a code generation module for generating code that implements

these schedules. A novel schedule model called the scalable schedule tree (SST) is

formulated. The SST model represents an important class of parameterized schedule

structures in a form that is intuitive for representation, efficient for code generation,

and flexible to support powerful forms of adaptation. We demonstrate our meth-



ods for topological pattern representation, SST derivation, and associated dataflow

graph code generation using a case study centered around an image registration

application.
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Chapter 1

Introduction

The behavior of many multimedia applications can be characterized by pat-

terns of stream processing computation and modeled efficiently using dataflow mod-

els of computation. In multimedia and other signal processing intensive application

domains, dataflow graph models are widely used to describe applications because of

their natural correspondence to signal flow graphs, and important forms of compu-

tational structure that are exposed by such models.

A dataflow graph is a directed graph, where vertices (actors) represent com-

putational functions and edges represent inter-actor communication channels that

buffer data in a first-in first-out (FIFO) fashion. Dataflow actors can contain com-

putations with arbitrary complexity as long as the interfaces of the computations

conform to dataflow semantics. That is, actors produce and consume data from their

input and output edges, respectively, and each actor execution (firing) depends on

the availability of sufficient data from the input edges of the associated actor.

When implementing a dataflow-based multimedia application model on a tar-

get platform, scheduling plays an important role (e.g., see [2]). Here, by scheduling,

we refer to the process of determining which processing resource each actor executes

on, and the ordering of execution among actors that share the same resource. By

affecting key metrics that include performance, and memory usage, scheduling often
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has significant impact on implementation quality.

For dataflow models of large-scale digital signal processing (DSP) applications,

the underlying graph representations often consist of smaller sub-structures that re-

peat multiple times. Topological patterns have been shown to enable more concise

representation and direct analysis of such substructures in the context of high level

DSP specification languages and design tools [23]. Furthermore, by allowing design-

ers to explicitly identify such repeating structures, use of topological patterns pro-

vides an efficient alternative to automated detection of such patterns, which entails

costly searching in terms of graph-isomorphism and related forms of computation.

A topological pattern is inherently parameterized and provides a natural interface

for parameterized scheduling, which enables efficient derivation of adaptive schedule

structures that adjust symbolically in terms of design time or run-time variations.

1.1 Contributions of this thesis

In this thesis, we present a formal design method for specifying topological

patterns and deriving parameterized schedules from such patterns based on a novel

schedule model called the scalable schedule tree. Our method ensures deterministic

behavior of the system based on compile-time analysis of system behavior that may

contain structured, parameterizable patterns of actors and edge instantiations. We

have also developed an associated software plug-in and integrated it into the dataflow

interchange format (DIF) framework and the associated cross-platform design and

synthesis environment called targeted DIF (TDIF) [9, 24]. TDIF is a companion
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design tool of the DIF framework that supports dynamic dataflow analysis, cross-

platform actor design, and code generation on targeted platforms [24].

1.2 Outline of the thesis

The rest of the thesis is organized as follows. Chapter 2 provides summary

of background on dataflow graph modeling, schedule representation, and design

tool development as well as related work on parameterized scheduling. Chapter 3

presents the formalization of our proposed schedule model scalable schedule tree.

Chapter 4 presents the integration of our design method into the DIF framework and

the associated TDP software package. Chapter 5 demonstrate the contributions of

this thesis using a case study of an image registration application. Lastly, conclusions

and future work are discussed in Chapter 6.
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Chapter 2

Background and Related Work

2.1 Background

In this section, we summarize background on dataflow graph modeling, sched-

ule representation, and design tool development that we build on in this thesis.

2.1.1 Topological Patterns

For large-scale models of signal processing applications, the underlying dataflow

graph representations often consist of smaller substructures that repeat multiple

times. A method for scalable representation of dataflow graphs using topological

patterns was introduced in [23]. Topological patterns, such as the ring, butter-

fly, and chain patterns, are pervasive in signal processing applications, including

multi-dimensional signal processing systems, where processing of large scale dataflow

structures is common.

Topological patterns enable concise representation and direct analysis of sub-

structures in the context of high level DSP specification languages and design tools.

Modeling based on topological patterns also provides a scalable approach to spec-

ifying regular functional structures that is formally integrated with the framework

of dataflow. This integration allows not only for specification of functional pat-

terns, but also for their analysis and optimization as part of the larger framework
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of dataflow.

For more details on modeling and design based on topological patterns, we

refer the reader to [23].

2.1.2 Generalized Schedule Trees

The generalized schedule tree (GST) is a compact, tree-structured graphical

format that can represent a variety of dataflow graph schedules [13]. In GSTs, each

leaf node refers to an actor invocation, and each internal node n (called a loop node)

is configured with an iteration count In for the associated sub-tree, where execution

of the sub-tree rooted at n is repeated In times.

The GST has been demonstrated to represent looped schedules for dataflow

graphs effectively in the context of static, non-scalable schedules (e.g., see [13]). In

this thesis, we go significantly beyond the capabilities of GSTs by formulating and

implementing a novel schedule tree model for representing scalable schedules (i.e.,

schedules that symbolically accommodate variations in the numbers of actors and

edges in the associated dataflow graphs). We refer to this new form of schedule

tree as the scalable schedule tree (SST) model. We demonstrate the utility of SSTs

in the synthesis of software from topological pattern models of signal processing

applications.
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2.1.3 The Dataflow Interchange Format

The Dataflow Interchange Format (DIF) framework provides a standard lan-

guage, i.e., The DIF Language (TDL), for specifying semantics of a broad class of

dataflow model of computations for signal processing applications [9]. Forms of

dataflow semantics that can be expressed using TDL include graph topologies, hier-

archical design structures, dataflow-related design properties (e.g., delays, produc-

tion rates, consumption rates, etc.), and actor-specific information. The associated

software package in the DIF framework, called The DIF Package (TDP), provides

intermediate representations for dataflow graphs that are specified by TDL, along

with libraries of analysis techniques and transformations that operate on these rep-

resentations. The analysis techniques can be used to enhance dataflow-based de-

sign flows based on TDL or, through generalized interchange capabilities provided

by DIF, based on other dataflow environments that are interfaced to DIF (e.g.,

see [11, 8, 24]).

In this thesis, we demonstrate the implementation and integration into the DIF

framework of 1) topological patterns for representing large-scale dataflow graphs

using TDL, and 2) SST representations for modeling and manipulation of param-

eterized schedules based on topological patterns. Our implementation of the SST

representation is integrated with the Targeted Dataflow Interchange Format (TDIF)

environment for generating platform-specific code from DIF models [24].

More specifically, this thesis builds on the developments of [23, 9, 24] by in-

troducing the SST model described above for expressing parameterized schedules

6



based on topological patterns. We also introduce a new syntax for TDL that pro-

vides a compact way for specifying topological patterns. Furthermore, we have

developed a novel plug-in to TDP for generating code from our new schedule model,

and thereby deriving platform-specific code from TDL programs that include speci-

fications of topological patterns. Designers can use this tool for experimenting with

parameterized scheduling and automated synthesis of implementations from scalable

dataflow graph models.

2.2 Related Work

Parameterized schedules have been studied before (e.g., see [1, 13]), and pre-

viously, production and consumption rates were key dataflow graph aspects that

were used to generate parameterized schedules. In topological patterns, even if

production and consumption rates are fixed, the schedule is still scalable in terms

of the numbers of actors and edges. Such scalability, when formulated in term

of topological patterns, leads to new opportunities and constraints for developing

parameterized scheduling techniques.

Early work on parameterized scheduling for dataflow graphs was done in the

context of parameterized dataflow representations. Parameterized dataflow is a

meta-modeling technique that can be applied to any underlying “base” dataflow

model, such as SDF [15], CSDF [3], FRDF [18], and BDF [4], for dynamically re-

configuring the behavior of dataflow actors, edges, subsystems, and graphs through

dynamic reconfiguration of parameter values [1]. Quasi-static scheduling techniques
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were developed for parameterized synchronous dataflow (PSDF) specifications, which

is the integration of the parameterized dataflow meta-model with SDF as the base

model. By quasi-static scheduling, we mean the derivation of schedule structures

that are largely fixed at compile time, with relatively small numbers of decision

points or symbolic adjustments made at run-time based on the values of relevant

input data. This approach to PSDF scheduling improved the flexibility with which

SDF techniques can be applied, and allowed, for example, dynamic adjustments to

schedules as dataflow (token production and consumption) rates vary at run-time.

However, in this work, parameterized scheduling for scalable topologies was not

addressed — the underlying sets of actors and edges were assumed to be fixed.

The reactive process networks (RPN) model of computation supports the con-

struction of analysis and synthesis tools for dynamic streaming multimedia applica-

tions that include both event-based and dataflow-based computations [7]. RPN pro-

vides an integration framework with run-time reconfiguration for event and stream

processing which is flexible to handle run-time scheduling decisions and may also be

used to represent non-deterministic stream processing behaviors.

Using the parameterized Kahn process network (PKPN) model, designers can

analyze the behavior of a parameterized system at runtime based on self-timed

scheduling without introducing non-deterministic behaviors [17]. PKPN also auto-

mates the design process through integration into the Compaan/Laura tool [25].

The operational semantics of the RPN and PKPN models can be viewed as

extensions of the Kahn process network (KPN) modeling framework [10], where

processes execute concurrently, applying blocking reads to assess availability of data
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on their inputs, and control is incorporated into processes in a distributed fashion

without use of a global scheduler. While these models lead to flexible and efficient

execution of KPN-related models, they, like the parameterized dataflow framework,

do not address the scheduling of scalable topologies.

In summary, our work addresses the issues of parameterized scheduling for

scalable topologies, and introduces a novel schedule model that provides for intuitive

representation and efficient code generation for our targeted class of parameterized

schedules. Adapting the parameterized scheduling models and methods from this

work to the frameworks of parameterized dataflow, RPN, and PKPN are interesting

directions for further study.
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Chapter 3

Scalable Schedule Trees

In this section, we build on the GST representation, and develop a new for-

mal method to formulate and represent a class of parameterized schedules. This

targeted class of schedules is useful for implementing dataflow graph models that

employ topological patterns, as we demonstrate in subsequent sections of this thesis.

Our new model for schedule representation is significantly more powerful than the

original GST formulation, and as a target for scheduling techniques, this new model

enables the development of correspondingly more powerful schedulers.

A scalable schedule tree (SST) has all of the features of a GST (see Section 2),

and additionally provides the following new features.

1. Parameterization. An SST has an associated parameter set K. Nodes within

the schedule tree can be parameterized in terms of this parameter set (we will de-

scribe this in more detail below). The semantics of how SST parameters (i.e., values

associated with elements of K) change is not specified in the SST model; rather, it

is determined by the model of computation that is used for application specification

(e.g., SDF with static graph parameters [14], parameterized dataflow [1], or scenario

aware dataflow [26]), in conjunction with the scheduling strategy that is used to de-

rive the schedule tree. This decoupling from parameter change semantics allows

the SST model to be applied to a variety of different kinds of dataflow application
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models and design environments.

2. Guarded execution. An SST leaf node, which encapsulates a firing of an indi-

vidual actor, has an optional guarded attribute, which indicates that firing of the cor-

responding actor should be preceded by a run-time fireability (enabling) check. Such

an enabling check determines whether or not sufficient input data is available for the

actor to fire. If sufficient input data is not available, the firing is aborted — i.e., the

corresponding actor is effectively “skipped” during the current visitation of the leaf

node. The guarded attribute of SSTs is motivated by the enable-invoke dataflow

model of computation, where guarded executions play a fundamental role [20].

3. Dynamic iteration counts. Loop nodes can be dynamically parameterized in

terms of SST parameters, which provides capabilities for data- or mode-dependent

iteration in schedules. An SST loop node L can be viewed as a parameterizable form

of the constant-iteration-count loop nodes in GSTs. An SST loop node L has an as-

sociated iteration count evaluation function cL : K → Z+. An implementation of cL

takes as arguments zero or more of the parameters in K, and returns a non-negative

integer (zero parameters are used if the iteration count is constant). Visitation of L

begins by calling cL to determine the iteration count, and then executing the subtree

of L successively a number of times equal to this count.

4. Arrayed children. In addition to leaf nodes and SST loop nodes, there is a third

kind of internal node called an arrayed children node (ACN). ACNs are perhaps the

most distinctive aspect of SSTs, and the most closely related to topological patterns.

These are discussed in more detail in the following subsection.
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3.1 Arrayed Children Nodes

An ACN z has an associated parameter set Pz. Each p ∈ Pz in turn has

an associated evaluation function fp : K → νp, where νp is the set of admissible

values (parameter domain) of p, and again, K is the parameter set of the associated

schedule tree.

An ACN z has an associated array childrenz, which represents an ordered

list of candidate children nodes during any execution of the SST subtree rooted

at z. For simplicity, we assume that childrenz is a one-dimensional array, but the

associated formulations can easily be extended to handle multi-dimensional arrays

of candidate children. The array childrenz has a positive integer size sizez, which

gives the number of elements in the array. It is assumed that the array is indexed

starting at 0.

Each element in childrenz represents a schedule tree leaf node (i.e., an encap-

sulation of an actor in the enclosing dataflow graph), an SST loop node, or another

SST — i.e., a “nested” SST. An ACN z also has three functions associated with

it, which we denote as cinitz, cstepz, and climitz, that determine how childrenz is

traversed during a given execution of the enclosing subtree. These functions take

as arguments pre-specified subsets of the parameters of z, and return, respectively,

a non-negative, positive, and non-negative integer. One or more of these functions

can be constant-valued — dependence on parameter settings is not essential but

rather a feature that is provided for enhanced flexibility.
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3.2 SST Traversal Process

When an ACN z is visited during traversal (execution) of the enclosing sched-

ule tree, the following sequence of steps, called the SST traversal process, is carried

out.

(1) The parameter settings for z are updated by applying the evaluation function

fp for each parameter p ∈ Pz.

(2) The values of cinitz, cstepz, and climitz are evaluated in terms of the updated

parameter settings. These values are stored in temporary variables, which we denote

as I, s, and L, respectively.

(3) The computation outlined by the pseudocode shown in Algorithm 1 is carried

out, where A represents the array childrenz; count represents the iteration count

evaluation function of the associated SST loop node; and K represents the set of

parameters for the enclosing SST.

Algorithm 1 Outline of the SST traversal process.

for (i = I; i <= L; i += s) {

if A[i] is a leaf node {

execute the actor encapsulated by A[i]

} else if A[i] is an SST loop node {

Z = count(K)

execute the loop node subtree Z times

} else { // A[i] is a nested SST

recursively apply the SST traversal

process to A[i]

}

}

A generalization of SSTs can be envisioned in which arrays of candidate chil-

dren are replaced by lists, and the visitation process for a generalized ACN g starts
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A_ACN

B_ACN 3

B0 B1 B2 B3 B4 A

Figure 3.1: An example of an SST.

by applying a function g, which takes parameter settings for Pg as arguments, and

returns a list of children in the order that they should be visited. Exploring such

generalized SSTs for more complex schedule control is an interesting direction for

further study.

Figure 3.1 shows a synthetic example of a nested SST to help illustrate the

SST model. In Figure 3.1, A ACN and B ACN are ACNs. Suppose that the evaluation

results of cinit, cstep, and climit for A ACN and B ACN are: cinitA = 0, cstepA = 1,

climitA = 1, cinitB = 1, cstepB = 2, and climitB = 4. Then the scheduling result

from traversing the SST by following the SST traversal process is

S = B1 B3 A A A B1 B3 A A A.

This traversed schedule S shows the sequence of actor executions that results

from traversing the given SST.

3.3 Relationship to Scalable Dataflow

The form of scalability provided by SSTs, which can be viewed as topological

scalability, is orthogonal to that provided by the scalable dataflow concept introduced
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by Ritz, Pankert, and Meyr [21]. The two techniques can be applied independently

or jointly. In scalable dataflow, the objective is to execute block-processing versions

of actors. Each scalable dataflow actor is programmed in terms of a vectorization

degree N , which represents the number of firings of the actor that are executed

together. This allows such an actor to process data in blocks of N units, and

furthermore to carry out internal computations in such a block-processed way, which

can provide significantly increased throughput and data locality, possibly at the

expense of latency and buffer memory requirements [22, 12].

While Ritz presents scalable dataflow in the context of SDF, referring to the

model as scalable SDF or SSDF, the underlying form of scalability is more gen-

eral and can be applied to arbitrary application programming interfaces (APIs) or

software synthesis frameworks for signal processing dataflow graphs. This form of

vectorization-oriented scalability can be applied in conjunction with SSTs by having

leaf nodes represent vectorized executions of the corresponding actors. Note that

constructing an ACN with size equal to the vectorization degree N will not have

an equivalent effect because control will alternate between each (scalar) actor firing

and the control associated with ACN visitation instead of remaining dedicated to

the actor for N consecutive firings as scalable dataflow ensures.

Vectorization (scalable dataflow) can be applied flexibly within SSTs. For

example, an SST loop node L can be connected as an element of childrenα, where

α is an ACN, and L contains as its single child the actor A that is to be vectorized.

The loop count associated with L can then be passed dynamically to a vectorized

implementation of A to execute A in a block-processing fashion.
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Chapter 4

Integration in the DIF Framework

In this section, we discuss our approach to integrating topological pattern mod-

eling and SST-based schedule representation and analysis into the DIF framework

and the associated TDP software package. This integration provides new capabil-

ities for design and implementation of multimedia signal processing systems that

employ repetitive graph structures.

4.1 Language Extensions

TDL in the DIF framework is a vendor-independent textual language that

helps to transfer dataflow-based application models across different design tools,

and also serves as a standalone language for specifying such models. TDL along

with TDP captures essential dataflow modeling information and stores this infor-

mation within intermediate representations, which can be analyzed and mapped

into implementations on different platforms.

We have extended TDL to incorporate support for topological patterns. This

extension allows topological pattern constructions to be specified as first-class citi-

zens in the language. The parser of TDL is generated by using the SableCC com-

piler construction framework [6]. We have extended the TDL grammar for SableCC

by defining syntactic constructs and associated parsing actions for topological pat-

tern instantiations in TDL. Topological patterns that are currently supported by

TDL and defined as pattern keywords in the language include chain, ring, merge,
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broadcast, parallel, and butterfly. Extending TDL with additional patterns

is straightforward, and such extensions will be considered in future versions of the

language as additional kinds of patterns are identified as being important in the

context of relevant applications.

A topological pattern is instantiated in a TDL specification with a declaration

of the form:

<edge declaration> -> <pattern keyword>(<node list>);

Here, <edge declaration> effectively declares a set of new edges in the graph

that is being constructed. These edges can be defined as scalar edges (e.g., e1, e2,

. . . ) or in the form of an array (e.g., e1[2]). The placeholder <pattern keyword>

represents a TDL keyword that specifies the kind of topological pattern that is

being instantiated (e.g., chain, ring, etc.). The placeholder <node list> provides

a list of nodes (graph placeholders for dataflow actors) that have been previously

instantiated. The topological pattern instantiation construct instantiates the newly

defined edges (i.e., the edges listed in <edge declaration>) in such a way that they

connect pairs of nodes in <node list>) so that that the resulting combination of

the nodes in <node list>, and edges in <edge declaration> form the specified

type of topological pattern. The orderings of edges in <edge declaration> and

nodes in <node list> are significant in determining how specific nodes and edges

are linked to form a new instance of the specified pattern.

As a simple example, an instance of a chain pattern can be specified using

the new TDL syntax as follows.

e[3] -> chain(n1[0:3]);
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Here, a chain pattern is created by linking four nodes, n1[0], n1[1], n1[2], and

n[3] with the three newly instantiated edges e[0], e[1], and e[2]. Figure 4.1

shows instantiation examples for all of the patterns we have supported so far and

their corresponding TDL specifications.

4.2 SST Plug-In for the DIF Package

We have implemented a new plug-in to the DIF framework that allows de-

signers to construct SSTs for schedules associated with dataflow graphs that are

specified in TDL, and that employ arbitrary numbers of topological pattern instan-

tiations. This plug-in integrates the SST formulations developed in Section 3 as a

new internal representation format and associated set of manipulations within the

DIF framework.

This plug-in is built based on two Java classes in DIF called Scalable-

ScheduleTree and ScalableScheduleTreeNode. An object that is instantiated

from the ScalableScheduleTreeNode class can be in the form of either a leaf node

or an internal node, where the internal node can be configured with an iteration

count or specified as an ACN node. A leaf node instance is associated with an

actor from the original dataflow graph. An ACN node instance has private fields

that store the values of cinitz, cstepz, and climitz, as defined in Section 3. The

ScalableScheduleTree class provides methods that allow designers to construct

SSTs.

The following examples illustrate how the SST that is shown in Fig. 3.1 can

be constructed using the proposed tools.
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Figure 4.1: Example of topological pattern instantiations shown in terms of TDL
code, and illustrations of the resulting edge instantiations together with their inci-
dent nodes.
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Construction of a new SST subtree (sst1) is illustrated as follows. This SST is

rooted at a node that is instantiated from the ScalableScheduleTreeNode class and

configured with an iteration count value of 2. An ACN node (labeled as A ACN )

is also instantiated without any child node and added as a child node of the root

node of sst1.

ScalableScheduleTree sst1 = new ScalableScheduleTree();

sst1.addACN("A", 0, 2);

Construction of another SST subtree (sst2) is illustrated as follows. This SST

is rooted at an ACN node (labeled as B ACN ) that is instantiated with 5 children

nodes from the ScalableScheduleTreeNode class, and added as a child node of the

root node of sst2.

ScalableScheduleTree sst2 = new ScalableScheduleTree();

sst1.addACN("B", 5);

Construction of a third SST subtree (sst3) is shown as follows. This SST is

rooted at a node that is configured with an iteration count value of 3. A leaf node

is added as the child node of the root node of sst3.

ScalableScheduleTree sst3 = new ScalableScheduleTree();

sst2.addSchedule("A", 3);

To create the SST that is shown in Fig. 3.1, designers can insert the sst2

subtree as the last child of the root node of the sst1 subtree by using the method

below. The same method can then be applied to insert the sst3 subtree as the last

child of the root node of the sst1 subtree.

sst1.insertSchedule(sst2);

sst1.insertSchedule(sst3);
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4.3 Code Generation and TDIF Version 0.2

In the first version of the targeted DIF (TDIF) environment, TDIF Version 0.1,

designers construct schedules based on programming interfaces that are automati-

cally generated from the TDIF tool [24]. These programming interfaces provide a

consistent, formal dataflow abstraction layer between designer-constructed schedules

and the actors that are executed by the schedules. Furthermore, the approach of au-

tomatically generating actor programming interfaces from target-independent actor

interface specifications (in the TDIF language) allows the framework to be adapted

efficiently to different target languages (presently, the environment supports both C

and CUDA).

Although the designer-specified scheduling approach of TDIF 0.1 generally

requires more effort compared to use of automatically generated schedules, it pro-

vides significant flexibility in terms of optimizing and fine-tuning the schedules based

on specialized application constraints and objectives, and incorporating application-

specific insights on schedule structure that may not exploited by available techniques

for automated scheduling.

In the new version of TDIF, which we introduce here as Version 0.2, we

have integrated specification and code generation support for SSTs. Thus, rather

than having designers specify schedules in terms of arbitrary target-language code

that connects to TDIF-generated actor interfaces (as in TDIF 0.1), we raise the

level of abstraction for schedule specification by allowing SST-based specification of

schedules, where leaf nodes in the schedule trees are connected to the same TDIF-
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generated interfaces. SSTs are specified programmatically using graph construction

APIs associated with the SST internal representation. Incorporating such specifica-

tions into TDL is a natural direction for future work that we plan to explore.

Code generation in TDIF for an SST is carried out by applying depth first

search to traverse the schedule tree, and invoking a specialized code generation

module in each visitation step depending on the kind of node that is visited (leaf

node, SST loop node, or ACN). The code generated from an SST, which implements

the scheduler for the given application, can be linked together with a top-level C

file that is automatically generated from the TDIF environment, and actor code

from the associated actor library to construct an executable that implements the

application.

Algorithm 2 shows a pseudocode description of the SST traversal process for

generating C code from the TDIF environment. Example of a generated code seg-

ment that implements a scheduler will be shown in Section 5.

Figure 4.2 illustrates the design flow of TDIF Version 0.2, which incorporates

specification and code generation support for SSTs and parameterized scheduling.
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Algorithm 2 Pseudocode description of the SST traversal process for code gener-
ation.

x is the root node of a given SST

function SSTTraversalProcess(x)

if (x is a leaf node) begin

Generate C code for the TDIFC run-time APIs

for the actor encapsulation.

end

else begin

if (x is an ACN) begin

Update the parameter settings for x.

Evaluate cinit, cstep, and climit of x

and store values in I, s, L , respectively.

for (i = I; i <= L; i += s) begin

Get y as the array children of x

SSTTraversalProcess(y[i])

end

end

else begin // x is a SST loop node

Evaluate loop count of x.

Generate C code for the loop structure of x

for each child node z of x

SSTTraversalProcess(z)

end

end function
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Figure 4.2: TDIF design flow.
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Chapter 5

Case Study: Image Registration Application

To demonstrate our methods for representation of and code generation from

schedules for dataflow graphs that employ topological patterns, and to demonstrate

also the capabilities of our associated new plug-in to the DIF framework, we devel-

oped an image registration application based on the Scale-Invariant Feature Trans-

form (SIFT) algorithm as a case study [16]. SIFT is a well-known algorithm in

computer vision for feature detection in and matching of images.

5.1 Application Overview

Image registration is a process of geometrically aligning two or more images of

the same scene so that they can be overlaid [28]. Here, one of the images is referred to

as the reference image and the second image is referred to as the target image.

Figure 5.1 shows the design flow of our proposed image registration system in terms

of a dataflow graph.

5.1.1 Scale-Invariant Feature Transform

The SIFT algorithm provides a method to extract distinctive scale- and rotation-

invariant features from images. SIFT can be used to perform feature matching be-

tween images that are taken from different views of the same scene. The dataflow

graph in Figure 5.1 for the SIFT algorithm consists of five actors. These are actors

for Cascade Gaussian Filtering, Difference of Gaussian computation, Local

Extrema Detection, Post Processing, and Descriptor Assignment.
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Figure 5.1: A dataflow graph model of the image registration application.

The Cascade Gaussian Filtering actor implements a cascade Gaussian fil-

tering subsystem, which contains a number of Gaussian filters with different stan-

dard deviations. These filters produce a series of Gaussian filtered images. Neighbor-

ing images that are filtered by Cascade Gaussian Filtering (e.g., see Figure 5.2)

are subtracted by the Difference of Gaussian actor to produce a series of differ-

ences of Gaussian images. Then the Local Extrema Detection actor selects the

maxima and minima of difference of Gaussian images as key point candidates. Each

key point is selected only if it is larger or smaller than all of its 26 neighbors (8

neighboring pixels in the enclosing image and 18 neighboring pixels of the adjacent

two images).

The Post Processing actor eliminates key points that are localized near the
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Figure 5.2: Cascade Gaussian filtering and the process for generating differences of
Gaussian images.

boundary of the image or localized along line segments or curves across which there

are large gradients in pixel intensity. Orientation is assigned to each key point as

well. Finally, image gradient information near the key points are extracted and

stored as key point descriptors by the Descriptor Assignment actor. We ported

MATLAB implementations of the SIFT algorithm [27] to the dataflow actors and

implemented them using C and CUDA.

5.1.2 Key Points Matching

When performing feature matching between two images, key point i in an

image A is matched to key point j in another image B only if the Euclidean distance

between i’s descriptor and j’s descriptor multiplied by a user defined threshold is

not greater than the Euclidean distance of i’s descriptor to all other key point
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descriptors.

5.1.3 Matching Refinement

Since key points matching may generate false matches between the reference

image and the target image, a refinement step is needed in order to eliminate these

false matches. For such matching refinement computation, we applied the RANdom

SAmple Consensus (RANSAC) algorithm [5]. RANSAC is an iterative method to

estimate parameters of a mathematical model from a set of observed data consisting

of both inliers and outliers. In our case, inliers are correct matches and outliers are

false matches.

The pseudocode shown in Algorithm 3 outlines our implementation of the

RANSAC algorithm. Both iteration and threshold are parameters that can

be configured by the designer. As an example, Figure 5.4 shows the key points

matching of the two images shown in Figure 5.3 before running RANSAC, and

Figure 5.5 shows the key points matching after running RANSAC.

5.1.4 Target Image Transformation

As shown in Fig. 5.1, the Target Image Transformation actor performs the

computation of target image transformation by taking the outputs produced by the

SIFT computation, the refined matching result and the target image and producing

the resulting registered image. For the computation of target image transforma-

tion, we use a rigid transformation process, which can be divided into three steps,

translation, rotation and scaling (see Figure 5.6).
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Algorithm 3 Outline of the RANSAC algorithm as we have applied it.

/* track the number of match pairs in the best inliers */

count_best = 0;

for (i = 0; i < iteration; i++) {

/* select one match pair (K1, K2). (x1, y1)

and (x2, y2) are coordinates of the two

key points in terms of the pixel position */

rand_match = randomly selected match pair;

/* track the number of match pairs in the inliers */

count = 0;

for (j = 0; j < number_matches; j++) {

/* (K3, k4) is jth match pair, (x3, y3)

and (x4, y4) are their coordinates */

deltax = (x1 - x2) - (x3 - x4);

deltay = (y1 - y2) - (y3 - y4);

/* error measures how likely this match pair is an inlier */

error = pow(deltax, 2) + pow(deltay, 2);

if (error < threshold) {

add jth match pair into inliers;

count++;

}

}

if (count > count_best) {

count_best = count;

best_inliers = inliers;

}

}
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Figure 5.3: Original images for RANSAC example.

Figure 5.4: Key points matching before running RANSAC.
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Figure 5.5: Key points matching after running RANSAC.

!"#$%&#'($) "(!#'($) %*#&+$,)
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Figure 5.6: Steps in rigid target image transformation.
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1. In the translation step, we use one key points match pair from the Matching

Refinement step as the basis of translation. This pair is the randomly selected

match pair at the beginning of each iteration of the RANSAC algorithm. The

reason for using this pair as the basis of the target image transformation step is

that this match pair is unlikely to be a false match. Suppose the coordinates

of this match pair are (x1, y1) and (x2, y2). Then the translation vector is

(x1− x2, y1− y2).

2. The computation of the rotation step is carried out in the polar coordinate

system. The pole of this polar coordinate system is the coordinate of the key

point in the reference image of the match pair mentioned in our description of

the translation step. First, we convert the coordinates of matched key points

from the Cartesian coordinate system to the polar coordinate system. Then

we determine the rotation angle θ using the key point matching information.

3. The Scaling step is computed in the polar coordinate system. Since the target

image has been rotated, each key points match pair should be aligned with

the pole. Therefore, the ratio of scaling is the ratio of the radius of the key

points match pair.

Now that we have the translation vector, rotation angle and scaling ratio, we

can use them to determine the corresponding positions (in the target image) of each

pixel in the resulting image. These positions are coordinates with fractions. We use

bilinear interpolation to determine each pixel value in the resulting image by taking

weighted average values of four surrounding pixels in the target image to reduce
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visual distortion.

5.2 Applying the Scalable Schedule Tree

Cascade Gaussian filtering is a relevant case study for experimenting with

topological patterns and SSTs because it can be modeled naturally in terms of

parameterized topologies. Here, we model the cascade Gaussian filtering actor as a

subsystem. It can be modeled as a dataflow graph consisting of actors that perform

Gaussian filtering and downsampling computations. These computations can be

divided into a set of o groups, such that each group involves s filtering steps. Both

o and s are parameters that can be configured by the designer (e.g., to explore

trade-offs between processing complexity and image processing accuracy).

In the cascade Gaussian filtering process illustrated in Figure 5.2, the origi-

nal image is convolved with the first filter. The filtered image is saved and then

convolved with the next filter, and so on. After one group of filtering operations is

carried out, s different blurred Gaussian images are labeled as a separate octave.

The next step is to downsample the last image of the previous octave by a factor

of two. This process, as shown in Figure 5.2, repeats until o octaves of images are

produced.

The topological pattern underlying this subsystem with o = 6 and s = 6 is a

chain (linear arrangement of actors) that can be specified using the TDL code shown

in Program 1. Here, an array of 40 edges is instantiated by connecting 41 specified

nodes (six groups of six nodes each that are interleaved with five individual nodes)

in a chain.
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Program 1 TDL code for cascade Gaussian filtering.

topology {

nodes = G[36], D[5];

edges = e[40] -> chain(G[0:5], D[0],

G[6:11], D[1],

G[12:17], D[2],

G[18:23], D[3],

G[24:29], D[4],

G[30:35]);

}

Note that the binding of nodes to specific functions is done in a separate part

of the TDL specification that is dedicated to assigning actor attributes. This part of

the specification is not shown for conciseness (for details, we refer the reader to [9]).

In this example of cascade Gaussian filtering, since both o and s are param-

eters that can be configured, one can naturally derive a nested SST as shown in

Figure 5.7. Such a representation provides a formal, target-language-independent

model of schedule structure that can be applied to coordinate execution for this

subsystem in a manner that is parameterized across two dimensions.

In the case that o = 6 and s = 6 (as shown in Figure 5.7), the cascade

Gaussian filter ACN has 11 children nodes, which include 6 nested ACNs, each

labeled as filter, and 5 downsampler actors encapsulated as leaf nodes, which are

labeled as D[0], D[1], . . . , D[4]. Each of these leaf nodes represents an encapsu-

lation of a downsampler actor in the cascade Gaussian filtering application. Each

internal node labeled filter is an ACN that contains 6 children nodes, where each

of these children nodes represents an encapsulation of a Gaussian filtering actor

in the application. The Java code shown in Program 2 demonstrates how this SST
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Figure 5.7: SST representation for the cascade Gaussian filtering application.

can be built by using the SST plug-in that is introduced in Section 4.

The generated code segment from the SST for the cascade Gaussian filter-

ing application in the TDIF environment is shown as Program 3. In this code

segment, tdifc ec enable check is the TDIF run-time API that implements the

enable method to test for sufficient input data for execution of a given actor, and

tdifc ec invoke is the TDIF run-time API that implements the invoke method

to execute a single invocation for that actor. Also, tdifc lib <A> ec and tdifc -

lib <A> tc implement the execution context and the topological context, respectively,

which are instances of retargetable data structures that encapsulate relevant state

information of an actor <A>.

To learn details on the enable method and the invoke method, we refer the

reader to [19]. For details on the execution context and topological context,

we refer the reader to [24].

5.3 Evaluation in Terms of Coding Efficiency

Our design framework for specifying topological patterns enables concise and

scalable representation of multimedia applications. To help quantify this kind of
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Program 2 Java code for building an SST for cascade Gaussian filtering using our
SST plug-in.

/* parameters */

int o = 6, s = 6;

/* cascade Gaussian filter ACN */

ScalableScheduleTree cgf

= new ScalableScheduleTree();

cgf.addACN("CGF", 0);

/* filters ACN */

ScalableScheduleTree filters[] = new ScalableScheduleTree[o];

/* downsamplers */

ScalableScheduleTree d[] = new ScalableScheduleTree[s-1];

for (int i = 0; i < o-1; i++) {

filters[i] = new ScalableScheduleTree();

filters[i].addACN("G", s);

cgf.insertSchedule(filters[i]);

d[i] = new ScalableScheduleTree();

d[i].addSchedule("D");

cgf.insertSchedule(d[i]);

}

filters[o-1] = new ScalableScheduleTree();

filters[o-1].addACN("G", s);

cgf.insertSchedule(filters[o-1]);
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Program 3 A segment of code that is generated in the TDIF environment from
the SST for the cascade Gaussian filtering application.

if (tdifc_ec_enable_check(tdifc_lib_g0_ec, tdifc_lib_g0_tc)) {

tdifc_ec_invoke(tdifc_lib_g0_ec, tdifc_lib_g0_tc);

}

...

if (tdifc_ec_enable_check(tdifc_lib_g5_ec, tdifc_lib_g5_tc)) {

tdifc_ec_invoke(tdifc_lib_g5_ec, tdifc_lib_g5_tc);

}

if (tdifc_ec_enable_check(tdifc_lib_d0_ec, tdifc_lib_d0_tc)) {

tdifc_ec_invoke(tdifc_lib_d0_ec, tdifc_lib_d0_tc);

}

if (tdifc_ec_enable_check(tdifc_lib_g6_ec, tdifc_lib_g6_tc)) {

tdifc_ec_invoke(tdifc_lib_g6_ec, tdifc_lib_g6_tc);

}

...

if (tdifc_ec_enable_check(tdifc_lib_g11_ec, tdifc_lib_g11_tc)) {

tdifc_ec_invoke(tdifc_lib_g11_ec, tdifc_lib_g11_tc);

}

...

if (tdifc_ec_enable_check(tdifc_lib_d4_ec, tdifc_lib_d4_tc)) {

tdifc_ec_invoke(tdifc_lib_d4_ec, tdifc_lib_d4_tc);

}

if (tdifc_ec_enable_check(tdifc_lib_g30_ec, tdifc_lib_g30_tc)) {

tdifc_ec_invoke(tdifc_lib_g30_ec, tdifc_lib_g30_tc);

}

...

if (tdifc_ec_enable_check(tdifc_lib_g35_ec, tdifc_lib_g35_tc)) {

tdifc_ec_invoke(tdifc_lib_g35_ec, tdifc_lib_g35_tc);

}
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benefit, we apply an evaluation metric called the lines of code (LOC), which is the

number of lines of code required for an application. Unless otherwise specified,

the LOC cost refers to code that the designer needs to manually provide (e.g., in

contrast to code that is automatically generated or reused from some other part of

an implementation). We apply this metric on various applications, including the

cascade Gaussian filtering application, that are specified with and without use of

topological patterns. Note that use of the LOC metric is facilitated by employing

lines that have reasonably consistent complexity — we have tried to follow such an

approach in our comparisons. A more accurate metric along these lines would be to

compare the numbers of lexical tokens. Exploration of such a more detailed metric

is an interesting direction for further study.

5.3.1 LOC Evaluation for Topological Patterns

We first compare LOC evaluation results by using TDL with and without the

support of topological patterns. Table 5.1 shows a comparison result in terms of

LOC for TDL specifications with and without the support of topological patterns

for different applications. For the specifications in this comparison, each node and

edge declaration occupies a separate line of code. As an example, Program 4 and

Program 5 shows the TDL specifications of the image registration application (see

Figure 5.1) without support for topological patterns and with support for topological

patterns respectively.
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Program 4 TDL code for the image registration application without support for
topological patterns.

topology {

nodes = IR_r, IR_t, CGF_r, CGF_t, DOG_r, DOG_t,

LED_r, LED_t, PP_r, PP_t, DA_r, DA_t,

KPM, MR, TIT, IW;

edges = e0(IR_r, CGF_r),

e1(IR_t, CGF_t),

e2(CGF_r, DOG_r),

e3(CGF_t, DOG_t),

e4(DOG_r, LED_r),

e5(DOG_t, LED_t),

e6(LED_r, PP_r),

e7(LED_t, PP_t),

e8(PP_r, DA_r),

e9(PP_t, DA_t),

e10(DA_r, KPM),

e11(DA_t, KPM),

e12(CGF_r, PP_r),

e13(CGF_t, PP_t),

e14(CGF_r, DA_r),

e15(CGF_t, DA_t),

e16(DOG_r, PP_r),

e17(DOG_t, PP_t),

e18(KPM, MR),

e19(MR, TIT),

e20(TIT, IW),

e21(DA_r, MR),

e22(DA_t, MR),

e23(DA_r, TIT),

e24(DA_t, TIT),

e25(IR_t, TIT),

e26(IR_t, IW);

}
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Program 5 TDL code for the image registration application with support for topo-
logical patterns.

topology {

nodes = REF[6], TAR[6], REGIST[4];

edges = e0[9] -> chain(REF[0:5], REGIST[0:3]),

e1[6] -> chain(TAR[0:5], REGIST[0]),

e2[2] -> broadcast(REF[1], REF[4:5]),

e3[2] -> broadcast(TAR[1], TAR[4:5]),

e4(REF[2], REF[4]),

e5(TAR[2], TAR[4]),

e6[2] -> broadcast(REF[5], REGIST[1:2]),

e7[2] -> broadcast(TAR[5], REGIST[1:2]),

e8[2] -> broadcast(TAR[0], REGIST[2:3]);

}

5.3.2 LOC Evaluation for TDIF Framework

We also assess the LOC benefit for the cascade Gaussian filtering application

that is obtained from code generation in the TDIF environment. More specifically,

we compare the LOC cost of an implementation that uses code generation and the

LOC cost of the generated code (i.e., the LOC cost of the generated implementation).

This gives a comparison of the complexity of the complete implementation generated

using TDIF compared to the complexity of the code that the designer has to write

and maintain as source code.

As discussed in Section 4, TDIF Version 0.2 contains a code generator to

translate SSTs into C code that implements the corresponding schedules. The

TDIF environment also provides tools to translate concise specifications of actor

interface information (input, output, state, etc.) into APIs for implementing the

actors according to standardized dataflow implementation structures in TDIF [24].

Additionally, the TDIF environment provides translation from DIF specifications
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Table 5.1: LOC comparisons for TDL specifications with and without the support
of topological patterns (TPs).

Application without TP with TP

Cascade Gaussian filter 81 3
Image registration 43 12
JPEG encoder 37 9

FFT (size N = 8) 32 2

into top-level C language implementations that construct and execute the specified

dataflow graphs.

Table 5.2 summarizes the LOC costs for different implementation components

for the cascade Gaussian filter application when code generation is used — i.e.,

these are the costs for the designer-written code that can be viewed as input to the

TDIF toolset. These costs are listed as functions of the numbers of dataflow graph

actors n and edges e in the scalable application, and the total LOC costs c in the

designer-written component of the actor implementations.

On the other hand, Table 5.3 shows the LOC costs of the complete generated

implementation — i.e., the generated code together with the designer-written TDIF

input code that is used directly (without translation) in the implementation.

Comparing the LOC listings in the two tables, we see that as the number of

nodes n in the application is increased, the ratio of the designer-written LOC cost

to the complete implementation LOC cost decreases. This helps to quantify the

utility of the TDIF tool in terms of LOC costs as a function of graph complexity.

This comparison incorporates the use of topological patterns, which help to reduce

the LOC cost for the top-level DIF specification.
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Table 5.2: LOC costs for designer-written code in the TDIF environment.

Top-level DIF specification 5n+e+6
TDIF specification 5n

Building SST 16
Actor development c

Total 10n+e+22+c

Table 5.3: LOC costs for the implementation generated by the TDIF environment.

Top-level C file 9n+6
Function declaration 56n
Scheduling APIs 22n

Scheduling file header 2n+5
Scheduling 41n

Actor development c

Total 130n+11+c

5.4 Evaluation in Terms of Execution Time

5.4.1 TDP Processing Time

As shown in Section 5.3, support for topological patterns notably reduces the

amount of input a designer needs to provide when using TDL to specify a system.

In this section, we evaluate the TDP processing time with and without support

for topological patterns. Here, by TDP processing time, we mean the execution

time of TDP in reading the TDL specification file and storing the dataflow graph

information within intermediate representations.

Table 5.4 shows our comparison results. The processing time is slightly faster

for TDP with support for topological patterns. The input TDL specification specifies

the dataflow graph of the image registration application shown in Figure 5.1. The

corresponding TDL code is shown in Program 4 and Program 5. The results are

obtained according to the average execution time for 100 runs in each of the two
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Table 5.4: Execution time for reading the TDL specification file and storing the
dataflow graph information within appropriate intermediate representations.

without support for TPs (sec) with support for TPs (sec)

0.973 0.943

Table 5.5: Image registration application execution time for the dataflow-based im-
plementation in the TDIF environment and a conventional implementation (without
dataflow-based modeling).

Implementation in TDIF (sec) Plain implementation (sec)

30.523 30.476

cases.

5.4.2 Application Execution Time

In this section, we compare the image registration application execution time

for the dataflow-based implementation (see Figure 5.1) in the TDIF environment,

and the “conventional” implementation without dataflow-based modeling. Table 5.5

shows the comparison results. The input images are 1200 × 900 gray-scale bitmap

images. The results are obtained according to the average execution time for 10

runs in each of the two cases. We see that the execution times of the two cases are

very close, which means that the coding efficiency of our new modeling approach

does not come at significant performance cost when using this application in our

design framework.
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5.5 Cross-Platform Experimentation

5.5.1 Cascade Gaussian Filtering

TDIF includes capabilities for targeting CUDA-enabled graphics processing

units (GPUs) in addition to pure C code (“CPU targeted”) implementations [24].

As part of this application case study, we experimented with the CUDA-targeted

synthesis capability of TDIF for the cascaded Gaussian filter application. As our

experiments show, parts of the application are a good match for GPU execution,

and thus, the synthesized GPU implementation exhibits significant performance

improvement. This aspect of our case study validates the utility of topological

patterns and the developed tool chain in enhancing application specification and

scalability in the context of cross-platform experimentation to explore trade-offs on

alternative targets. Linkage to such experimentation capabilities is important for

multimedia-oriented tools since there is a wide variety of relevant platforms available

for multimedia system implementation.

In these experiments, input to the application is a 1200×900 gray-scale bitmap

image, and the implementations are executed on a 3GHz PC with an Intel CPU

that is equipped with 4GB RAM, and co-located with an NVIDIA GTX260 GPU.

Table 5.6 shows a performance comparison of CPU-targeted and GPU-targeted im-

plementations for the cascade Gaussian filtering application. Both implementations

were generated by TDIF based on SSTs that exploit topological pattern structures

in the application specifications. The results are obtained according to the average

execution time for 100 runs in each of the two cases.
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Table 5.6: Performance comparison for CPU-targeted and GPU-targeted cascade
Gaussian filtering implementations.

CPU (sec) GPU (sec) Speedup

11.79282 0.46281 25.48

The results show that GPU acceleration provides significant benefit in this

application, and validates the retargetability of our use of topological patterns and

SSTs in TDIF. Use of the TDIF environment allows us to obtain such a comparison

with relatively high coding efficiency, and a correspondingly high degree of automa-

tion, as demonstrated in Section 5.3. This is due to the high level of abstraction and

accompanying formal modeling capabilities provided by TDIF and the associated

TDL programming features. Use of topological patterns helps to enhance the coding

efficiency and raise the level of abstraction further by representing applications in

terms of scalable, higher level constructs that are complementary to conventional

forms of hierarchy, which are employed in related kinds of dataflow specifications.

5.5.2 Image Registration Results

In this section, we show experimental results for the whole image registration

application and provide a performance comparison for CPU-targeted and GPU-

targeted implementations. In these experiments, the cascade Gaussian filter is no

longer modeled as a system that contains many actors. It is just one actor in the

overall image registration application illustrated in Figure 5.1. We demonstrate im-

age registration results with two examples. Figure 5.8, Figure 5.9 and Figure 5.10

show the reference image, target image and result image for the first example, re-

spectively. Similarly, Figure 5.11, Figure 5.12 and Figure 5.13 show the reference
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Figure 5.8: Reference image for Example 1.

image, target image and result image for the second example, respectively.

Table 5.7 shows a performance comparison between CPU-targeted and GPU-

targeted implementations for the GPU-targetable actors and the overall image regis-

tration application. Inputs to the application are again 1200×900 gray-scale bitmap

images, and the implementations are executed on a 3GHz PC with an Intel CPU

that is equipped with 4GB RAM, and co-located with an NVIDIA GTX260 GPU.

The results are obtained according to the average execution time for 10 runs in each

of the two cases.
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Figure 5.9: Target image for Example 1.

Figure 5.10: Result image for Example 1.
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Figure 5.11: Reference image for Example 2.

Figure 5.12: Target image for Example 2.
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Figure 5.13: Result image for Example 2.

Table 5.7: Performance comparison between CPU-targeted and GPU-targeted im-
plementations for the GPU-targetable actors and the overall image registration ap-
plication.

CPU (sec) GPU (sec) Speedup

Cascade Gaussian filter 11.896 0.416 28.60
Difference of Gaussian 0.584 0.012 48.67

Target image transformation 0.614 0.017 36.12
Whole application 55.575 30.523 1.82
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Chapter 6

Conclusions and Future Work
6.1 Conclusions

In this thesis, we have presented a novel schedule model called the scalable

schedule tree (SST) for representing parameterized schedule structures based on

topological patterns. We have also presented language extensions for specifying

topological patterns and a new plug-in to the dataflow interchange format (DIF)

framework for specifying SSTs that execute dataflow models with topological pat-

terns, and for generating C code that implements the parameterized schedules repre-

sented by these SSTs. Through a case study centered around an image registration

application, we have validated our new methods and tools, and demonstrated their

utility in the design and implementation of multimedia systems.

6.2 Future Work

Useful directions for further work include the following:

• developing techniques for automated derivation of SSTs;

• exploring SSTs that incorporate more complex forms of adaptivity;

• supporting code generation on additional classes of platforms, such as field

programmable gate arrays and multicore digital signal processors;

• incorporating into TDL the SST plug-in that we have developed in this work;

• extending TDL with additional topological patterns; and
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• further development of non-rigid image registration applications based on the

scale-invariant feature transform (SIFT) algorithm.
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