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ABSTRACT 

 

Title of Thesis: SYSTEM PERFORMANCE 

ENHANCEMENT OF MOBILE COOLING 

SYSTEM WITH THERMAL BATTERY AND 

THERMOSIPHON RECHARGE 

  

 Darren Key, Master of Science, 2018 

  

Thesis Directed By: Research Professor, Yunho Hwang, Department 

of Mechanical Engineering 

 

A personalized mobile cooling device was modified and tested with different 

components to deliver better system performance. The device uses a miniaturized vapor 

compression cycle (VCC) to deliver approximately 165 W of cooling to an individual. 

The device stores the waste heat from the VCC condenser in a phase change material 

(PCM) carried on-board the device. The PCM is then recharged by rejecting heat stored 

in the PCM with a thermosiphon recharge cycle.  The PCM was enhanced with copper 

and graphite matrices. The system was tested with the goal of increasing the coefficient 

of performance (COP) of the VCC and decreasing the PCM recharge time. This study 

found that a copper enhancement provided the highest COP at 4.43, an improvement 

over the baseline COP of 2.41.  
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Chapter 1:  Introduction 

1.1 Background 

Thermal comfort is a vital component to the indoor build environment. Worldwide urban 

areas could add another 2.5 billion people by 2050 [1]. As populations migrate to urban 

areas and demand for improved thermal comfort increases, associated energy use also 

increases [2]. People in developed countries spend most of their time inside, with 

Americans spending on average 90% of their time indoors [3]. Buildings account for 20-

40% of final worldwide energy consumption [4], and half of that is used for HVAC systems 

[5]. Climate change is also likely to contribute to increased energy use in buildings, 

especially for cooling purposes during the summer months [6 – 7]. A proven technique for 

reducing energy use is by using temperature setbacks [6]. A temperature setback involves 

raising the thermostat temperature during the summer months and lowering the thermostat 

temperature during the winter months. Summer thermostat setbacks of 1 °C was associated 

with 6% of HVAC energy use reduction [7]. Additional field tests, experiments and 

computer simulations indicate that temperature setbacks can deliver up to 30% total energy 

savings for heating systems and 23% energy savings for space cooling systems [8]. Another 

study found that increasing the cooling setpoint from 22.2 to 25.0 °C resulted in an average 

of 29% of cooling energy [9]. Additionally, conventional space cooling systems do an 

inadequate job of providing personalized thermal comfort [10]. The comfort zone 

established in ASHRAE Std. 55 corresponds to thermal conditions which will be 

acceptable to 80% of the occupants in a conditioned space when using the Predicted Mean 

Vote method [11]. By this metric, up to 20% of the occupants of an indoor space are 

dissatisfied with the thermal conditions at any given. Although there is an association 
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between thermal comfort and worker productivity [14 – 17], increasingly narrow 

temperature ranges do not result in increased levels of thermal comfort [12]. Comfort with 

indoor spaces is influenced by thermal comfort, as well as cognitive and behavioral 

processes [13]. To achieve better thermal comfort, it has been shown that individualized 

control results in better thermal comfort [20 – 22]. These findings support the increasingly 

popular adaptive thermal comfort theory which states that humans will tolerate a larger 

range of thermal conditions when they have control over their immediate environment [14].  

New space cooling and heating approaches are required to realize the energy savings 

potential from thermostat setbacks and to achieve better overall satisfaction with thermal 

comfort conditions. For example, localized cooling directed at the torso or face can have 

significant impacts on thermal sensation, especially for cooling [24 – 25]. In other words: 

personalized thermal comfort is needed. The Advanced Research Projects Agency-

Energy’s (ARPA-E) DELTA program aims to address this very need. The program’s 

purpose is “to reduce the costs for heating and cooling buildings by developing Localized 

Thermal Management Systems (LTMS)” [15]. RoCo one of eleven total projects that were 

awarded funding under this program. The projects range from thermoregulatory textiles 

that reduce their level of insulation when warm and increase the insulation when cold, to 

smart vent registers (Stony Brook University) [15]. Only one other project, by Syracuse 

University, proposed to provide cooling by using a miniaturized VCC system and phase 

change material (PCM) heat storage for condenser waste heat. The promising Syracuse 

device is intended to be placed under a desk, and provide cooling to an individual only 

while they are sitting at their desk. As of this writing, RoCo is currently the only truly 

mobile air conditioning device in existence today.  
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The Roving Comforter (RoCo) is such a device that provides personalized thermal comfort 

for individuals in inadequately heated or cooled environments. RoCo allows for liberal use 

of temperature setbacks while maintaining or improving thermal comfort satisfaction levels 

when compared with traditional space cooling technologies. RoCo directs cool air towards 

the torso or face of a single person, thus maximizing the cooling effect experienced by the 

individual [24 – 25]. The RoCo device in its current form consists of a mobile robotic 

platform with a small, battery powered air-conditioning unit. There is currently no heating 

mode for RoCo. The conditioned air is discharged from the unit towards a single person 

through an adjustable nozzle. In a typical air conditioning unit, the waste heat must be kept 

out of the conditioned space. This can be achieved by placing the condenser outside of the 

conditioned space, or by venting the hot exhaust air out of the room via ventilation ducts. 

The novel concept with RoCo is that the waste heat is stored in a PCM on-board the device 

during the cooling operation, eliminating the need for a separate outdoor unit or ventilation 

ducts. Phase change materials have been researched extensively as a method to improve 

cooling in buildings [27 – 32]. The stored waste heat can then be rejected by using a highly 

efficient thermosiphon operation in a different time and place, taking advantage of the 

benefits of load shifting. The RoCo device is also fitted with rechargeable batteries, 

charged overnight. The fact that RoCo is fully mobile allows it to be used as a supplement 

to traditional cooling systems, as well as providing cooling in spaces where none currently 

exists.  

High energy efficiency is obtained because of the small temperature lift and relatively high 

evaporating temperature: the inlet air for the evaporator is at room temperature. Additional 

energy savings can be realized by relaxing the thermostat for space cooling systems. The 



 4 

device can also be configured to deliver air at temperature and velocity as specified by the 

user, thus giving the individual superior control over their own thermal comfort and 

improving satisfaction with thermal comfort levels. Research suggests that air flow should 

be between 0.3 m/s and 1.5 m/s, as desired by the user [16].   

The keys to a successful personal thermal comfort device such as RoCo is that it must be 

portable, it must blow cool air at the user, and it must have a sufficiently long operating 

time. An informative potential use-case for RoCo is in mid-rise apartment buildings during 

the main cooling season summer [17]. Indoor spaces in buildings typically reach their peak 

temperature in the mid-afternoon [18], which also coincides with the highest daily cost of 

energy [19]. RoCo can also be used to shift the peak load of the building [20]. Although 

load shifting does not reduce energy usage, it does have a significant impact on energy cost 

[21]. By recharging RoCo’s battery at night when energy costs are lower, electricity cost 

reduction is realized. RoCo can also be particularly useful during heatwaves when the peak 

load on the power grid is highest [22]. Based on this use-case, RoCo’s continuous cooling 

time should coincide with higher afternoon indoor temperatures, typically about 4 hours 

[40 – 41]. The cooling time of the device is dependent on the capacity of the electrical 

battery, the capacity of the thermal storage container, and the overall efficiency of the 

system. The overall capacity of the thermal storage device is a function of the latent heat 

and mass of the phase change material used. The efficiency of the system includes two 

main factors: (1) the coefficient of performance (COP) of the VCC cooling cycling and (2) 

the amount of time it takes for the PCM to re-solidify after the cooling cycle. By increasing 

the cooling cycle COP and decreasing the PCM recharge time, the device is more useful to 
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the end user. Both factors can be improved by increasing the thermal conductivity of the 

PCM. 

1.2 Objectives 

The objective of this thesis is to evaluate system performance improvements for RoCo. 

The concept and initial tests of this device are reported in detail in the Master’s Thesis of 

Yilin Du, 2016, University of Maryland [23]. This document builds off the work done in 

Du’s thesis, and makes extensive use of the work presented therein. As describe in Du’s 

thesis, RoCo is intended to be used for personal cooling needs in an indoor environment in 

which the ambient air temperature is 26.0 °C (78.8 °F). This temperature corresponds with 

a typical temperature setback in a commercial office space or residential setting. Du’s 

device has already been developed and tested, and is capable of delivering 165.6 W of 

cooling with a system COP of 2.85 for a duration of 2 hours [23]. In the original 

configuration, the PCM was fully solidified and thus thermally recharged and ready for 

another cooling cycle in nearly 8 hours of thermosiphon mode operation. In this thesis, 

system enhancements which can improve the COP of the system in cooling mode and 

decrease the amount of time needed to recharge the thermal battery will be evaluated. Phase 

change materials have the advantage of being able to store relatively large amounts of heat, 

but are limited by low thermal conductivity and thus have low heat charging and 

discharging rates [24].  Improving the thermal conductivity of the PCM can help transfer 

the condenser waste heat throughout the container, thus improving the performance of the 

cooling system reducing the re-solidification recharge time. Like the original system, all 

configurations evaluated in this thesis used a vapor compression cycle to provide cooling 

while storing the waste heat on-board the device in a phase change material. The device 
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provided a delta T of -3 K from the inlet to the outlet of the evaporator. This change in 

temperature is consistent with findings in literature, which state that for a room air 

temperature of 23-26 °C, delivered air should be 3-4 K below the ambient air temperature 

[16]. The device recharged the thermal batter with a thermosiphon cycle. A test facility 

was set up to measure all system characteristics including refrigerant temperature, pressure 

and mass-flow as well as system inlet and outlet air temperature. Tests were run at a 

baseline ambient air temperature of 26.0 ± 0.5  °C and then again at ambient temperatures 

of 30.0 °C and 35 °C. These temperatures were selected based on ASHRAE Std. 116 [25]. 

The system performance will be evaluated against the baseline system built in the previous 

thesis by Yilin Du. 
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Chapter 2:  Test Facility and Experimental Setup 

2.1 System Schematic 

The schematic diagram of the breadboard system is show in Figure 2. The system runs in 

two modes: cooling mode and thermosiphon recharge mode, shown in Figure 1(a) and 1(b), 

respectively. In cooling mode, the system operates as a traditional vapor compression cycle 

(VCC) and the refrigerant flows in a counter-clockwise direction. Waste heat is rejected 

into the PCM condenser by taking advantage of the latent heat of the PCM. The PCM 

slowly melts for the duration of a single cooling cycle. The cooling cycle is complete when 

the PCM has completed phase change and is fully liquified. The instantaneous capacity of 

the thermal battery is determined by monitoring the temperature of the PCM and refrigerant 

in the system. The temperature of the PCM increases slowly during the phase change 

process, and then has a pronounced rate of increase once fully melted. This inflection point 

indicates the completion of phase change as shown in Figure 1: Typical phase change of 

PT37 when used in RoCo condenser 

 

Figure 1: Typical phase change of PT37 when used in RoCo condenser 
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Once all the PCM is melted, the system automatically switches to a clockwise 

thermosiphon mode by turning off the compressor and automatically opening all three ball 

valves. In the gravity assisted thermosiphon mode, the liquid refrigerant drains down and 

collects at the bottom of the system. The refrigerant absorbs heat from the melted and 

superheated PCM and becomes a vapor. It then rises up the left side of the system. The 

compressor is bypassed, and the system rejects heat as the refrigerant passes through the 

top heat exchanger which has now become the condenser. Because the evaporator and 

condenser switch their functions depending on the mode of the cycle, the upper heat 

exchanger will be referred to as the Air-Side Heat Exchanger (AHX) and the lower heat 

exchanger will be referred to as the Phase Change Material Heat Exchanger (PCMHX). 

The refrigerant used in the system was R134a. No additional refrigerants were used during 

testing. Internal pressures and temperatures of the system were monitored using sensor as 

indicated by P and T in the schematics. Addition information on the instrumentation is 

included in Chapter 3:  
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           (a) Cooling mode (VCC)   (b) Recharge mode (thermosiphon) 

Figure 2: Schematic diagram of RoCo breadboard 

2.2 Test Facility 

2.2.1 Environmental Chamber 

All of the experiments were run in the same environmental chamber at the University of 

Maryland, College Park. The test chamber was 2.7 m wide by 4.6 m deep by 2.1 m tall. 

The chamber has three windows and a door. It maintains an ambient steady-state 

temperature within ± 0.2 °C of the setpoint with a maximum air velocity of 2.0 ± 0.1 m/s. 

The door remained closed during all tests.  

2.3 Breadboard Description 

The breadboard used in this experiment was a modified version of the system used by Du. 

The original system was manually operated. This includes the ball valves, the compressor, 

and the expansion valve. The ball valves were manually actuated and were opened or 
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closed depending on the desired cycle: cooling or recharge. The compressor was turned on 

and off by the data acquisition system, but had to be done manually by the user each time. 

The expansion valve was a manually adjusted unit and required the operator to actively 

adjust the knob for the duration of the cooling cycle. All three of these systems were 

replaced by automated versions for this set of tests. The specifications are listed below. 

Du’s original breadboard system will be referred to as Breadboard Version 1 (BV1) and 

the updated breadboard system used in this series of test will be referred to as Breadboard 

Version 2 (BV2). 

2.3.1 Compressor 

The compressor used in all tests was the Aspen Q-series rotary compressor, shown in 

Figure 3. The unit body is 67.1 mm in diameter and 83.3 mm tall. The Aspen Q has a 1.4 

cc displacement volume and has a variable speed range from 2100 – 6500 RPM. The 

variable speed range was used to achieve a 1.1 g/s refrigerant mass-flow while operating 

in cooling mode. Once the targeted mass-flow was achieved by varying a 5 V control signal 

using a potentiometer, the compressor speed was not changed again for the duration of all 

the tests. The compressor was run near the lower end of this RPM range because the only 

partial capacity was needed. A smaller capacity compressor was not commercially 

available, but ideally the system would be run with a smaller compressor. Future work on 

utilizing the variable speed of the compressor is recommended to study variable delivered 

cooling capacity. The compressor is powered by 24 VDC.  
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Figure 3: Aspen Q-series 1.4 cc rotary compressor 

2.3.1.1 Oil Charge 

The breadboard system was filled with compressor oil as per the compressor 

manufacturer’s recommendation. The oil used with the Aspen compressor was the factory 

recommended Emkarate POE RL 68H oil. The Aspen Q compressor is shipped factory 

charged with 23 g of the Emkarate oil. The recommended amount of compressor oil in the 

system was 25% - 30% of the refrigerant charge volume. To determine the amount of oil 

needed, the following assumptions were made: in cooling mode, the refrigerant is assumed 

to have a quality of 0 in the entire receiver and 25% of the condenser, due to subcooling. 

The amount of oil needed is calculated by summing 25% of the condenser volume and the 

entire receiver volume and then multiplying the sum by 25%. A 1.2 safety factor was added 

to ensure sufficient oil volume. A sample calculation for the oil charge is shown in Table 

1. The oil was measured by extracting the oil from the container with a small syringe, and 

then weighing the additional weight of the oil in the syringe. The oil has a density of 0.977 

g/ml at 20 °C. 
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Table 1: Oil Charge for Aspen Q Compressor 

25% of Condenser 

Volume (cc) 

Receiver 

Volume (cc) 

Estimated Refrigerant 

Charge 

Safety 

Factor 

Oil Needed* 

(g) 

53 212 265 1.2 56.5 

*note: Aspen Q compressor comes factory charged with 23 cc of oil 

The tubing volume calculations were made using dimensions provided by industry 

standards. All tubing used was ACR copper tubing and inner diameters were based on 

dimensions in Copper Tube Handbook as provided by The Copper Development 

Association, Inc [26]. The oil keeps the compressor fully lubricated and working smoothly. 

During normal operation, the oil is carried along with the circulating refrigerant and is 

distributed throughout the system. When the condenser is changed, as it frequently was 

during the tests described in this thesis, an unknown amount of oil remains in the removed 

condenser. No reliable method for determining the amount of oil removed each time the 

condenser was changed was found. Each time a new condenser was added, it was assumed 

that all the oil from the previous test had drained into the condenser and a new batch of oil 

was added, as described above. Future work is suggested for optimized oil charge as a 

function of system volume and determining how much oil is removed when the condenser 

is changed.  

2.3.2 Expansion Valve (TXV) 

In the original breadboard system, a manually adjusted expansion valve was used. It was 

initially assumed that the system would operate under steady-state conditions for the 

entirety of the cooling cycle: a constant condensing temperature of 37.0 °C and a constant 

evaporation temperature of 26. 0°C. The phase change material has a nominal phase-
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change temperature of 37.0 °C, but the actual phase change takes place over a range of 36.0 

– 38.0 °C. The system must also be able to operate efficiently when the PCM is subcooled 

to room temperature, such as when the device has been sitting unused overnight. Therefore, 

the actual operating band of the cooling cycle is much greater than just the 37.0 °C original 

assumption. In the initial test, the operator manually adjusted the expansion valve for the 

entire duration of the cooling cycle to maintain a constant compressor inlet pressure of 

about 400 kPa. Manual operation was not a viable option for the cycle testing planned for 

the PCM enhancement testing.  

In BV2, the manually adjusted expansion valve was replaced with a Danfoss TUA 

expansion valve (Figure 4), part number 068U2212 with a #0 orifice.  

 

Figure 4: Danfoss TUA expansion valve 

The valve was placed directly upstream of the evaporator (Figure 5, left) and the bulb was 

placed horizontally at the 2 o’clock position, directly downstream of the evaporator (Figure 

5, right). 
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Figure 5: TXV placement 

2.3.3 Actuated Ball Valves 

Another part of the system that had to be modified to allow automatic cycling was the ball 

valves. The ball valves used in the original system were manual Swagelok 6.35 mm (¼”) 

full-port ¼-turn brass ball valves. Each of these three valves were retrofitted with Belimo 

CMB24 actuator. The Belimo actuators have a power consumption of 1 W and operate on 

24 VDC. They turn 90° in 35 seconds and have a torque of 2 Nm. These actuators are 

designed to actuate ventilation duct dampers. The actuators were controlled with the data 

acquisition system and were set to open or close based on a temperature measurement taken 

in the PCM.  

 

Figure 6: Belimo CMB24 actuator 

 A refrigeration-specific valve and actuator combination was researched extensively, but 

nothing appropriate was found. The limiting factor for these valves is that they must be 

full-port valves. The breadboard system uses a thermosiphon operation to recharge the 
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PCM, and a thermosiphon will not run if there is a choke-point in the cycle. The 

performance of the thermosiphon circuit is significantly improved when the minimum 

hydraulic diameter is at least 5 mm (0.197 in) [27]. Conventional refrigeration valves do 

not maintain this minimum opening size and will not work on the breadboard system.  

2.3.4 Receiver 

The receiver, shown in Figure 7, is included for improved operation during thermosiphon 

mode. During recharge mode (Figure 2(b)), the entire PCMHX should be filled with liquid 

refrigerant. A receiver must be included to store the extra refrigerant during cooling mode. 

The receiver is sized to have the same internal volume as the PCMHX. The receiver must 

be mounted upstream of the TXV in cooling mode and above the PCMHX to accommodate 

the gravity feed of the thermosiphon. The receiver must also drain from the lowest point 

of the receiver to allow all the refrigerant to fully drain out of it while in recharge mode. 

Previous versions of the receiver were constructed by hand and did not drain fully, leading 

to issues with thermosiphon operation. 
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Figure 7: 300 cc receiver 

2.3.5 Evaporator Heat Exchanger 

The design requirement for the evaporator heat exchanger (AHX) is that it must deliver 

150 W of cooling. Based on calculations done by Du [23], the Thermatron 720 2-row AHX 

was used, as shown on the left of Figure 8. The Thermatron heat exchanger has copper 

tubes and aluminum fins and uses copper tubing with a 6.35 mm OD (1/4” ACR) 

throughout. A critical design feature of this heat exchanger is that all the circuitry must be 

able to drain completely during recharge mode. From top to bottom, each tube drains down 

into the tube below it and refrigerant traps are avoided. Any future AHX must share this 

feature to be compatible with thermosiphon operation. Additionally, any AHX must have 

a minimum hydraulic diameter of 5 mm (0.197 in) to promote refrigerant flow during 

thermosiphon mode.  
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In addition to the Thermatron 2-Row 720 AHX, calculations were done to explore the 

possibility of using a Thermatron 1-Row 720 AHX as well as a Sanhua Microchannel 

AHX. All three heat exchangers are shown side-by-side in Figure 8. The physical 

dimensions of each heat exchanger and their weights are given in Table 2. 

 

 

Figure 8: Evaporator heat exchanger options 

Table 2: Evaporator Heat Exchanger Options 

AHX Length 

(mm) 

Width 

(mm) 

Thickness 

(mm) 

Weight 

(g) 

% Weight 

Change 

Thermatron 2-row 177 125 44 998 - 

Thermatron 1-row 177 125 28 561 -43.8% 

Sanhua Microchannel 140 127 16 146 -85.4% 
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Based on calculations done in Coil Designer, the Thermatron 1-Row 720 AHX cannot 

deliver enough cooling capacity, but the Sanhua Microchannel AHX can. The parameters 

listed in Table 3 were used for all Coil Designer simulations. Pressure and refrigerant mass 

flow rate are typical measured values from BV1 and quality is calculated using TXV 

enthalpy-in and evaporating pressure. Relative humidity and air flow are also measured 

values 

Table 3: Coil Designer Input Parameters 

Pressure 

(kPa) 

Refrigerant mass flow 

(kg/s) 

Quality Air Temp.  

(°C) 

Air R.H. 

% 

Air Flow 

m3/s 

525.0 0.0011 0.1 26.0 40 0.0472 

 

The results from the Coil Designer simulations are shown in Table 4. The heat loads of 

each AHX are shown Figures Figure 9 - Figure 11. Initially, it was thought that the 

Thermatron 1-row evaporator would be able to deliver sufficient cooling, but the Coil 

Designer simulation shows otherwise. The Thermatron 1-row is therefore not a good 

candidate for us with RoCo. Both the Thermatron 2-row and Sanhua Microchannel can 

deliver the required amount of cooling, but the Sanhua model offers significant weight and 

refrigerant charge savings, as shown in Table 2. Although the Sanhua Microchannel heat 

exchanger is the smallest and the lightest, the size of the microchannels prevent the 

circulation of the refrigerant in thermosiphon mode and is therefore not a good candidate 

for the final product. If a future design is implemented in which the PCM re-solidification 

is driven by a compressor, then it is recommended to test the Sanhua Microchannel heat 

exchanger. A compressor driven re-solidification cycle would have the added benefit of 
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removing the receiver from the system, thus further reducing the amount of refrigerant 

charge. 

Table 4: Coil Designer Simulation Results 

Evaporator 2-phase correlation Air ΔT (K) Heat Load (W) 

Thermatron 2-row Shah, 2016 Unified TF 2.95 174.5 

Thermatron 1-row Shah, 2016 Unified TF 1.94 115.9 

Sanhua Microchannel Shah, 2016 Unified MC 3.24 193.3 

 

 

 

Figure 9: Thermatron 2-Row 720 AHX 
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Figure 10: Thermatron 1-Row 720 AHX 

 

 

Figure 11: Sanhua Microchannel AHX 
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2.3.6 PCM-side Heat Exchanger 

Most of the testing for this project was done on the PCM-side Heat Exchangers (PCMHX). 

The thermal conductivity of the PCM is the weak link in the heat transfer process and has 

significant impact on cooling cycle COP as well as total recharge time during thermosiphon 

mode [28]. The PCMHX acts as the condenser in the compressor-driven cooling mode and 

is the evaporator when the cycle is in thermosiphon mode. To accommodate the 

thermosiphon cycle, the heat exchanger is designed to promote the refrigerant to flow in a 

clockwise direction during thermosiphon mode. This is done by tilting the bottom header 

to the lower right corner of the container and tilting the outlet to the upper left corner of 

the PCMHX, as shown in Figure 2(b). If this design is not implemented correctly, the vapor 

will get trapped in the PCMHX and the refrigerant will not flow. The interaction between 

the tubes and PCM in the PCMHX is critical for the device. Therefore, different tube 

configurations, PCM container sizes, and enhancement types were designed and tested. 

2.3.6.1 Phase Change Material 

The core innovation of the RoCo device is that it does not reject waste heat into its local 

environment, and therefore requires no ventilation during the cooling operation. This is 

made possible with a PCM in which the waste heat is stored. The PCM used for this project 

was PureTemp 37 (PT37). The material is a paraffin wax based material, specially 

formulated so that the bulk of the material changes phase from a solid to a liquid at 37 °C. 

The properties of the material as reported by PureTemp are listed in Table 5.  
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Table 5: PureTemp 37 Material Properties 

Property Value 

Melting point 37 °C 

Heat storage capacity 210 kJ/kg 

Thermal conductivity (liquid) 0.15 W/m·K 

Thermal conductivity (solid) 0.25 W/m·K 

Density (liquid) 840 kg/m3 

Density (solid) 920 kg/m3 

Specific heat (liquid) 2.63 kJ/kg·K 

Specific heat (solid) 2.21 kJ/kg·K 

 

Although the material used is called PureTemp 37, the entire phase change does not happen 

exactly at this temperature. The Differential Scanning Calorimetry (DSC) analysis 

presented by PureTemp is only for melting and does not include solidification. The 

solidification characteristics of the PCM is important for heat rejection and condenser 

design. An independent analysis of The PT37 was done by Ahmet et al. [29]. The resulting 

DSC curve is shown in Figure 12. The bulk of the PT37 material should be melted around 

38 °C and fully solidified 35 °C. This is supported by experimental data, presented in 

Chapter 5:  
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Figure 12: PureTemp 37 DSC analysis 

The amount of PCM used in each in each PCMHX is calculated by weight. From 

experimental data gathered from BV1, the PCMHX absorbs 185 W during the cooling 

cycle operation. The amount of PCM needed was calculated using the properties listed in 

Table 5. The system was originally designed for an operating time of 2 hours by using 

Equation 1. 

𝒎 =  
𝑱

𝒍
        Equation 1 

J = 185 W *2 hr * 3600 s/hr = 1.33 MJ   (energy stored) 

l = 210 kJ/kg         (latent heat of fusion) 

m = 6.34 kg       (mass of PCM) 

With a factor of safety of 1.4 to ensure a full 2 hours of operation, the total amount of PCM 

needed is 8.6 kg. The internal volume of the container must be calculated using the liquid 

density of the PCM, which is 840 kg/m3. 8.6 kg / 840 kg/m3 = 0.0102 m3. The same process 

was used to calculate the weight of PCM needed and the volume of each container for the 

non-enhanced PCMHX, the two copper-enhanced PCMHX, and the two graphite-

enhanced PCMHX.  
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2.3.6.2 Non-enhanced PCMHX 

In Du’s work, a baseline PCMHX performance was established. The weight of PCM used 

was calculated as shown above in section 2.3.6.1 The original PCMHX is shown in Figure 

13. 

 

Figure 13: PCMHX Version 1: Non-enhanced PCMHX 

The non-enhanced PCMHX has four 6.35 mm OD copper tubes (1/4” ACR copper tubing) 

embedded in the PCM, each 1.2 m long. This length was determined using Coil Designer 

by Du [23]. The headers are each 9.53 mm OD copper tubes (3/8” ACR copper tubing). 

6.35 mm holes were drilled into the headers and the tubes were brazed into place. 

Removable spacers were placed in the headers to set the spacing between the back of the 

sidewall of the headers and the inserted tubes. Nitrogen was used during brazing to promote 

a clean connection and prevent soot in the system. The R134a refrigerant runs through the 
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copper tubes in a clockwise direction during cooling mode and a counter clockwise 

direction in thermosiphon recharge mode (Figure 2). The copper PCMHX was built in the 

CEEE Heat Pump Lab and then inserted into the clear PVC pipe PCMHX container before 

the PCM was added. The PCM was then melted and poured into the PCMHX container. 

The amount of PCM added was measured by weight. A total of 8.6 kg of PCM was added 

to the container. During normal operation, the PCM is in contact with the copper tubes at 

all times. 

With the non-enhanced PCMHX design, the thermal conductivity of the bulk material is 

0.15 W/m·K, which is the thermal conductivity of PT37 in the liquified state. The reason 

the liquid thermal conductivity is used is because as soon as the cooling operation starts, 

the material directly next to the copper tube goes through a phase change and melts, 

creating a liquid barrier at all the tubes. The goal of introducing an enhancement to the 

PCM is to increase the bulk thermal conductivity of the PCM. 

2.3.6.3 Copper Enhanced PCMHX 

To increase the thermal conductivity of the PCM, a copper matrix was added to the 

PCMHX to create a copper enhanced PCMHX. The use of metal matrices to enhance 

thermal conductivity has become popular in recent decades. In a 2016 study done by Wu 

et al., a copper mesh was used to successfully improve thermal conductivity within a PCM 

plate for battery thermal management [30]. The copper enhancement used in this study was 

a pure-copper scouring pad, shown in Figure 14.  



 26 

 

Figure 14: Single copper mesh  

 

A specific type of metal matrix known as metal foams are already used widely in existing 

thermal energy storage units [50 – 51]. Their light weight and high thermal conductivity 

make them ideal candidates for PCM enhancements. In 2014, Yao et al. developed a 

prediction model for the effective thermal conductivity (ke) of high porosity open cell metal 

foams [31]. Metal foams are made up of interconnected tetrakaidecahedrons (14-sided 

polyhedron) and are characterized by two main parameters: (1) relative density and (2) 

pore size. The relative density is defined as foam density divided by the density of the 

parent material. The pore size is a function of pore density, which is defined as the number 

of pores per inch in a sample. Figure 15 shows the various possible cross-sectional ligament 

(web) shapes and the negligible effect of the cross that section on ke. Figure 16 shows the 

negligible effect of pore density on ke in metal foams. 
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Figure 15: Influence of ligament shape on ke in metal foams [31] 

 

Figure 16: Influence of pore density on ke in metal foams [31] 

The ke of metal foams therefore depends mostly on the foam porosity (εf). Ligament shape 

and pore density have negligible effect on ke and therefore this model can be used to 

calculate ke of the copper matrix used in this thesis even though the ligament shape coper 

scouring pad used in this study was different. Equation 2 is used to calculate the foam 

porosity (εf), where me is the mass of the enhancement, ρ is the density of the enhancement 

metal, and V is the total volume of the PCM and enhancement. The total volume is 
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calculated from the weight of the PCM: mpcm/ρpcm where ρpcm is taken in the liquid state. 

Then, εf is used to iteratively solve for λ in Equation 3. The a1 parameter used in equations 

3 – 6 defines the ligament shape, which is not a sensitive parameter in this model. 

Therefore, a constant value of a1 = 2.1 is acceptable. Equations 4 – 6 are used to calculate 

kA, kB and kC. Finally, Equation 7 is used to calculate ke.  

𝜺𝒇 = 𝟏 −
𝒎𝒆

𝝆𝑽
        Equation 2 

𝜺𝒇 = 𝟏 −
√𝟐

𝟐
𝝅𝝀(𝟑 − 𝟓𝝀)

𝟏+𝒂𝟏
𝟐

𝒂𝟏
𝟐      Equation 3 

𝒌𝑨 =
√𝟐

𝟔
𝝅𝝀(𝟑 − 𝟒𝝀)

𝟏+𝒂𝟏
𝟐

𝒂𝟏
𝟐 𝒌𝒄𝒖 + [𝟏 −

√𝟐

𝟔
𝝅𝝀(𝟑 − 𝟒𝝀)

𝟏+𝒂𝟏
𝟐

𝒂𝟏
𝟐 ] 𝒌𝒑𝒄𝒎 Equation 4 

𝒌𝑩 =
√𝟐

𝟐
𝝅𝝀𝟐 𝟏+𝒂𝟏

𝟐

𝒂𝟏
𝟐 𝒌𝒄𝒖 + [𝟏 − √𝟐𝝅𝝀𝟐 𝟏+𝒂𝟏

𝟐

𝒂𝟏
𝟐 ] 𝒌𝒑𝒄𝒎   Equation 5 

𝒌𝑪 =
√𝟐

𝟔
𝝅𝝀𝟐 𝟏+𝒂𝟏

𝟐

𝒂𝟏
𝟐 𝒌𝒄𝒖 + [𝟏 −

√𝟐

𝟔
𝝅𝝀𝟐 𝟏+𝒂𝟏

𝟐

𝒂𝟏
𝟐 ] 𝒌𝒑𝒄𝒎   Equation 6 

𝒌𝒆 =
𝟏

𝝀

𝒌𝑨
+

𝟏−𝟐𝝀

𝒌𝑩
+

𝝀

𝒌𝑪

       Equation 7 

The amount of copper mesh used in each copper enhanced PCMHX was 5.5% by weight 

of the total PCM for a total copper weight of 0.473 kg for the four-tube PCMHX. The 

calculated ke of the copper matrix is 0.872 W/m·K, an increase of 4.8x over the 0.15 

W/m·K thermal conductivity of the liquid PCM. Table 6 shows the calculations of effective 

thermal conductivity of the copper enhanced PCMHX. 
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Table 6: Effective Thermal Conductivity Calculation of Copper Matrix 

Enhancement 

Parameter Symbol Value Units 

Mass of copper enhancement me 0.473 kg 

Copper density ρ 8,960 kg/m3 

Enhancement volume V 0.0102 m3 

Foam porosity εf 0.9948 - 

Derived ligament parameter λ 0.0256 - 

Effective thermal conductivity ke 0.872 W/m·K 

 

2.3.6.3.1 Four-tube PCMHX 

The tube design of the copper enhanced PCMHX was the same as the non-enhanced: four 

6.35 mm OD copper tubes, each 1.2 m long and 9.53 mm OD headers. The weight of PCM 

used is the same: 8.6 kg. The only difference is the addition of a copper mesh, evenly 

distributed throughout the PCMHX. The complete copper-enhanced PCMHX is shown in 

Figure 17. The average weight of each copper mesh was 13 g, a total of 37 copper meshes 

were used. The PCMHX has 4 helical tubes, each with 8 coils. A single copper mesh was 

wrapped around each coil, maximizing the contact area between the copper coil and the 

mesh. The remaining five meshes were used to fill any gaps in the matrix. Small plastic 

zip-ties were used to affix each mesh to the coil. The 5.5% by weight number was selected 

to mimic the graphite-enhanced PCMHX, as provided by Oak Ridge National Labs 

(ORNL). 
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Figure 17: 4-coil copper-enhanced PCMHX 

After the copper meshes were affixed to the copper coils, the copper-enhanced PCMHX 

(CuPCMHX) was placed in a container the same size as the non-enhanced PCMHX and 

filled with liquified PCM. The weight of the PCM in the copper-enhanced PCMHX is same 

as the non-enhanced PCMHX. This CuPCMHX was instrumented with two 

thermocouples: one 28.0 cm from the top of the container near the outlet tube, and one 12.7 

cm from the top of the container near the inlet tube. 

2.3.6.3.2 Eight-tube PCMHX 

In addition to the four-tube copper-enhanced PCMHX, an eight-tube PCMHX was 

designed and constructed. The purpose of the eight-tube PCMHX was to allow for an 

increase in the amount of PCM in the thermal battery, thus increasing the cooling time 

from 2 hours to 4 hours. The design is similar to the 2-hour version: both have 6.35 mm 

OD copper tubes, each 1.2 m long and 9.53 mm OD headers. The eight-tube PCMHX was 

instrumented with 46 type-T thermocouples: 30 directly attached to the copper tubes and 

16 in the center of each helical coil, embedded in the PCM. The eight-tube copper-

enhanced PCMHX is shown in Figure 18.  
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(a) PCMHX with thermocouples (b) PCMHX with copper mesh 

Figure 18: Eight-tube PCMHX 

2.3.6.4 Graphite-enhanced PCMHX 

Two graphite-enhanced condensers were tested, both designed by ORNL. One was 

designed for two hours of cooling operation, and the other was designed for four hours of 

cooling operation. Using graphite as a PCM enhancement will reduce the latent heat 

capacity of the PCM, but it increases the heat transfer between the copper refrigerant tubes 

and the PCM [47, 53]. The graphite was expanded under vacuum to a bulk-density of 100 

kg/m3. Parametric studies on the bulk density of the graphite blocks, PCM and resulting 

thermal conductivity were done by Mallow et al. [32]. A graphite foam bulk density of 100 

kg/m3 was found to be the best balance between latent heat capacity and thermal 

conductivity. The blocks were then saturated with PCM and tested experimentally to 

confirm the simulated thermal conductivity of 11.3 W/m·K. This is 7,433.3% higher than 

the liquid PCM thermal conductivity and 1,195.9% higher than the copper enhanced PCM. 
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2.3.6.4.1 2-hour graphite-enhanced PCMXH 

The two-hour graphite-enhanced PCMHX (GrPCMHX) tested in this experiment was 

designed by Mallow at ORNL. The tubes used in the 2-hour GrPCMHX are shown in 

Figure 19. Note that this design is radically different from the previous condensers: the 

tubes are straight and significantly shorter: 0.3 m rather than 1.2 m. The tubes are also 

vertical rather than helical.  

 

Figure 19: Graphite-enhanced PCMHX 

The GrPCMHX was designed from the ground up to be a 2-hour heat storage device with 

no safety factor. The copper tube design was also changed to accommodate the expected 

improvement in heat transfer enabled by the graphite enhancement. The GrPCMHX has 

6.35 mm OD tubes with 9.53 mm OD headers, the same as the copper-enhanced PCMHX. 

The tube shape is straight rather than helical, and each tube is only 0.3 m long rather than 

1.2 m long. The increased thermal conductivity of the graphite foam enhancement allows 
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for the smaller heat transfer area. Also note that the GrPCMHX was designed before the 

experimental condenser capacity values were available, and instead of 185 W of heat 

transfer in the condenser, 160 W was used in the calculation to determine the weight of 

PCM needed. Using Equation 1 and a safety factor of 0, the weight of the PCM in the 

blocks delivered from ORNL was 5.5 kg. The blocks were then post-processed by shaving 

material off the sides of each block to get them to fit in the 3D printed PCM container, 6.35 

mm holes were drilled down the center of each block to allow for the tubes to pass though 

the blocks and then the blocks were cut in half lengthwise to allow for assembly.  

  

a) Gap around the tube       b) Full cross-section of GrPCM block 

Figure 20: Post-processed graphite block, a) gap around tube, b) full cross-section 

After all the post processing, the total weight of the PCM in the four blocks was 4.7 kg. 

Once the completed graphite-enhanced PCMHX was placed in the condenser container, 

the container was filled with 0.64 kg of PCM to fill any remaining gaps in the container. 

The total amount of PCM was 5.38 kg. Using the experimental condenser capacity of 185 

W, this should be sufficient for a total cooling time of 1.7 hrs. The filled and completed 

graphite-enhanced PCMHX is shown in Figure 21. 
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Figure 21: Graphite-enhanced PCMHX with PCM 

2.3.6.4.2 4-hour graphite-enhanced PCMXH 

The 4-hour GrPCMHX was also designed by ORNL. It was produced by saturating disks 

of expanded graphite foam with 530 g of PT37. The disks were 0.254 m in diameter and 

.0127 m thick. The expanded graphite had a bulk density of 100 kg/m3, the same as the 

smaller graphite condenser. 24 of these disks were used to create a GrPCMHX with 12.7 

kg of PCM. This condenser can provide 4 hours of cooling when the condenser is operating 

at the experimentally confirmed average capacity of 185 W. Like the 2-hour graphite-

enhanced condenser, straight 6.35 mm OD copper tubes and headers were used. The 4-

hour condenser has eight tubes, each 0.33 m long. The copper-tube heat exchanger was 

assembled except for the top header and then the disks were fitted onto the tubes. 

Thermocouples were inserted between the graphite disks during the assembly process. The 

top header was brazed to the tubes after the last graphite disk was put in place. Care was 

taken to minimize burning of the top graphite disk during final assembly. The assembled 

and instrumented 4-hour graphite-enhanced condenser is shown in Figure 22. The 
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assembled graphite disks and copper heat exchanger was placed in an 18.9 L (5 gal.) 

bucket. After running three cycle tests, the bucket was back-filled with enough liquid PCM 

to cover all the disks, eliminating any air gaps between each disk and between the copper 

tubes and graphite disks. The final weight of PCM in the 4-hour GrPCMHX was 14.3 kg. 

  

Single 25.4 cm dia. graphite-enhanced 

PCMHX disk 

Fully assembled graphite-enhanced 

PCMHX with thermocouples 

Figure 22: 4-hour graphite-enhanced PCMHX 
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Chapter 3:  Instrumentation 

To compare the effectiveness of each PCMHX listed in section 2.3.6 the breadboard system 

was fully instrumented. Figure 2 shows the locations of the measurement devices on the 

breadboard system. On the refrigerant side, temperatures and pressures were measured at 

several places. These measurements were used to calculate the enthalpy at different stages 

in the cycle. A mass-flow meter was also installed to ensure a proper flow rate and for 

capacity calculations. The power of the compressor and fan were also measured. Not shown 

in Figure 2 are the thermocouples embedded in the PCMHX which measure the PCMHX 

tube temperatures as well as the PCM temperatures during the cooling and recharge cycles. 

More details on the number of thermocouples and their placement can be found in section 

3.2.2 below.  

3.1 Mass-flow Meter 

The mass-flow meter used was a Micro Motion coriolis flow meter with a Micro Motion 

Model 2700 transmitter. The mass-flow meter used has an accuracy of ± 0.10 % for liquid 

and can be programmed to accept different ranges of mass-flow. The target mass-flow for 

this system is 1 g/s, so the device was calibrated to a range of 0 – 3 g/s. The mass flow 

meter was placed after the condenser in cooling mode and on the uphill side of the cycle, 

allowing the refrigerant flow to be measured as a liquid. Practically speaking, the mass 

flow is helpful in establishing the proper amount refrigerant charge when filling the system 

with refrigerant: when the system does not have enough refrigerant, overall pressure is too 

low, and the refrigerant is not fully liquified when exiting the condenser. The mass flow 

meter will show large fluctuations when the refrigerant has a quality greater than 0. By 

filling the system with refrigerant very slowly (with vapor) and watching the mass flow 
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meter reading, it is possible to ensure that the system has the minimum amount of 

refrigerant needed to operate correctly. Note that the mass-flow meter has a large thermal 

mass compared to the size of the rest of the system and it is recommended to insulate the 

flow meter during normal operation to prevent excessive heat loss. The output of the 

transmitter is a 4-20 mA signal, sent to the LabView data acquisition system. 

 

Figure 23: Micro Motion coriolis flow-meter and transmitter 

3.2 Temperature 

Temperature measurements were taken at various places in the cycle. Refrigerant, tube, 

and PCM temperatures were all recorded.  

3.2.1 Refrigerant Temperature 

The refrigerant temperature was measured in five places throughout the cycle using RTDs. 

Each RTD was a Class 1/10 DIN 4-wire sensor with a 3.175 mm (1/8”) closed-end 

immersion probe. The model used was the ULTRA PRECISE RTD SENSORS P-M-1/10-

1/8-6-0-P-3 8 which has an accuracy of ± 0.3 °C. The probes were fitted into the VCC 

system with 3.175 mm (1/8”) Swagelok compression fittings as shown in Figure 24.  
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 a) 4 wire 1/10DIN RTD        b) Installed RTD using Swagelok fitting 

Figure 24: RTD sensor  

The temperature sensors were placed to allow temperature readings of the of the refrigerant 

before and after the PCMHX, AHX, and the compressor. The RTD sensor locations are 

shown in Figure 25.  

 

Figure 25: System schematic with sensor locations 
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When coupled with the readings from pressure sensors placed in the same locations and 

readings from the mass-flow meter, it was possible to make capacity calculations of the 

AHX and PCMHX, as shown in Table 7. Note that position 4.a in Figure 25 is before the 

TXV, and position 4.b (Figure 32) is after the TXV at the inlet to the AHX.  

Table 7: Sensor Placement for Capacity of VCC Component 

RTD Position Change in Enthalpy of Component 

1, 2 PCMHX 

3, 5 AHX 

5, 1 Compressor 

 

3.2.2 PCMHX Temperature 

To better understand the heat flow in the PCMHX, each was fitted with several Type T 

thermocouples. Type T thermocouples have an accuracy of ± 0.5 °C. In each PCMHX, 

thermocouples were placed to measure the temperature of each copper tube in the heat 

exchanger in multiple places, as well as the PCM temperature in multiple places. The 

thermocouple placement of the 2-hour GrPCMHX is shown in Figure 26. There are 

thermocouples placed on each of the tubes, and then three thermocouples evenly spaced 

between the tubes which measure the PCM temperature. 
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Figure 26: Typical thermocouple placement in PCMHX 

Each thermocouple was calibrated in a temperature controlled bath at 10 °C increments 

from 10 °C - 60 °C. The R2 value of each calibration was 6 nines or greater. Schematics of 

the thermocouple locations are shown for each of the PCMHX in Figure 27 - Figure 30. 

 

Figure 27: 2-hour non-enhanced PCMHX thermocouple placement 
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Figure 28: 2-hour GrPCMHX thermocouple placement 

 

 

Figure 29: 4-hour CuPCMHX thermocouple placement 
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Figure 30: 4-hour GrPCMHX thermocouple placement 

3.2.3 Air Temperature 

T-type thermocouples were also used to measure the air temperature. The placement of the 

air-side thermocouples are shown in Figure 31.  

 

a) Air-side HX inlet    b) Air-side HX outlet 

Figure 31: Air temperature of AHX 

Four thermocouples were used at the inlet and outlet to get an average temperature. This 

helps to reduce the sampling error of the T-type thermocouples. The average inlet 

temperature was also used to measure the ambient room temperature of the environmental 
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chamber. These thermocouples were calibrated using the same procedure as described in 

section 3.2.2 . 

3.3 Pressure Transducers 

The refrigerant pressure was measured at locations 1, 3 and 5 in Figure 25. Only two 

pressure readings were necessary because portions of the VCC system operates along lines 

of constant pressure, as shown in Figure 32. The pressure transducer at position 3 is 

redundant. It confirms the constant pressure assumption across the condenser and ensures 

that the pressure reading before the refrigerant enters the TXV is accurate. Experimental 

data confirmed that the constant pressure assumption across the condenser was valid. 

 

Figure 32: VCC pressure-enthalpy diagram 

The pressure transducers used were Setra AccuSense™ Model ASM high accuracy 

pressure transducers. Each transducer has an accuracy of ± 0.05%. The pressure 

transducers used at positions 1 and 5 were absolute sensors with a range of 0 – 3,447 kPa 

and the transducer at position 3 measured gage pressure with a range of 101 – 3,548 kPa. 



 44 

The output of the gage-pressure transducer was adjusted by one atmosphere (101.325 kPa) 

in the data acquisition program to give an absolute pressure reading. Also note that this 

transducer was not used for any calculations: it just confirmed the no-pressure drop 

assumption across the condenser. 

 
Figure 33: Setra pressure transducer 

The pressure transducers were each calibrated using the Omega PCL 5000 pressure 

calibrator. The calibrator has an accuracy of 0.05%. Each of the three pressure transducers 

was calibrated with a 6-point calibration from 101.3 kPa to 1,530.6 kPa, absolute pressure. 

The R2 of each calibration was 7 nines or greater. 

 

Figure 34: Pressure calibrator 
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3.4 Power/Current  

To evaluate the performance of the VCC system, electrical power consumption of the 

system was compared with cooling capacity to get a coefficient of performance for the 

system, or COP. COP is traditionally defined as evaporator capacity in watts divided by 

the electrical power consumption of the compressor, as shown in Equation 8. 

𝑪𝑶𝑷 =
𝑪𝒐𝒐𝒍𝒊𝒏𝒈 𝒐𝒖𝒕𝒑𝒖𝒕

𝑾𝒐𝒓𝒌 𝒊𝒏𝒑𝒖𝒕
=

𝑸𝒄𝒐𝒐𝒍𝒊𝒏𝒈

𝑾𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒂𝒍
    Equation 8 

Voltage and current readings of the compressor were used to calculate the power 

consumption of the compressor. Power information of the fan was also gathered for RoCo 

run-time implications, but not included in COP calculations. 

 

Figure 35: Current and voltage transducers 

The current transducer is a CR Magnetics CR5211 DC Hall Effect Current Transducer with 

a range of 0 – 10 ADC ± 1% and a 10 VDC output. The voltage transducer is a CR5310 

DC Voltage Transducer with a 0 – 50 VDC input range and a 0 – 5 VDC output. The 

signals were sent to the LabView data acquisition software. All electrical components were 

powered with a 24 VDC power supply. 
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3.5 DAQ 

The entire breadboard test system was controlled with a LabView data acquisition system 

(DAQ). The DAQ also read the sensors and transmitted the information to a computer. The 

thermocouples were read directly by dedicated thermocouple units, the NI-9214. The 

compressor, fan, and actuated ball valves were all controlled with a NI-9472 digital output 

unit. The NI-9472 unit has 8 output channels and each channel has a maximum voltage of 

30 VDC and 0.75 A. All the transducer outputs were read by a NI-9207 unit which has 16 

analog input channels: 8 current channels with a range of ± 20 mA and 8 voltage channels 

with a range of ± 10 VDC. The DAQ modules used are shown in Figure 36. 

 

Figure 36: National Instruments DAQ modules 

The DAQ was also used to automate system based on the temperature of the PCM. If the 

PCM temperature was a below the cooling setpoint, the DAQ closed all the ball valves and 

turned on the compressor for cooling mode. If the PCM temperature was above the cooling 

setpoint, the cycle switched to thermosiphon mode by turning off the compressor and 

opening the ball valves. The system was left to run continuously for a set number of cycles, 

typically at least three full cycles.  
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3.6 Safety Systems 

Because the system was designed to run continuously, both mechanical and software safety 

systems were put in place. A pressure switch was installed directly after the compressor 

and set at a maximum pressure of 1,800 kPa. The maximum expected operating pressure 

of the VCC was 1,700 kPa. A high temperature switch was also installed on the compressor 

which turns the compressor off if it gets too hot. In the LabView DAQ, a software 

maximum operating pressure was set just below the mechanical pressure switch set-point 

at 1,790 kPa. 

3.7 Uncertainty Analysis 

Uncertainty analysis was conducted on all values that were gathered or calculated from 

measured data. Examples of measure data in this thesis includes temperature, pressure, 

mass-flow, power and current. Uncertainty of a measurement, or total uncertainty, (utotal) 

is the sum of random uncertainty (urand) and systematic uncertainty (usys). The systematic 

uncertainty of a measured variable is determined by the accuracy of the measurement 

device as shown in  

Table 8: Instrument Specification and Systematic Uncertainty. Systematic uncertainty of a 

calculated variable can be found by using Equation 9. In Equation 9, un is the systematic 

uncertainty of the measured parameter and 
𝝏𝒇

𝝏𝒙𝒏
 is the partial derivative of the calculated 

parameter, f, relative to the measured parameter, xn. Random uncertainty is the standard 

deviation of the actual measurements collected over a certain time interval, as shown in 

Equation 10. The entire process studied here is dynamic and transient, therefore only 

systematic uncertainty was considered in this study, in accordance with the methodology 

adhered to by Du. Therefore, 𝒖𝒕𝒐𝒕𝒂𝒍 = 𝒖𝒔𝒚𝒔 as shown in Equation 11. Table 9 shows 
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example calculations of the systematic uncertainty in the system. The values in the 4th 

column are representative values taken from actual test data.  

𝒖𝒔𝒚𝒔 = √(𝒖𝟏 ∗
𝝏𝒇

𝝏𝒙𝟏
)

𝟐

+ (𝒖𝟐 ∗
𝝏𝒇

𝝏𝒙𝟐
)

𝟐

+ ⋯ + (𝒖𝒏 ∗
𝝏𝒇

𝝏𝒙𝒏
)

𝟐

  Equation 9 

𝒖𝒓𝒂𝒏𝒅 = √∑(𝒙𝒋−𝒙̅)
𝟐

𝑵−𝟏
      Equation 10 

𝒖𝒕𝒐𝒕𝒂𝒍 = 𝒖𝒔𝒚𝒔 + 𝒖𝒓𝒂𝒏𝒅     Equation 11 

 

Table 8: Instrument Specification and Systematic Uncertainty  

Instrument Type Range Unit Accuracy  

Pressure Strain 0 – 3,447 kPa ±0.05% 

Pressure Strain 101 – 3,548 kPa ±0.05% 

Temperature T-type -250 - 350 °C ± 0.5 

Temperature RTD 1/10 DIN 0 - 100 °C ± 0.3 

Mass-flow Coriolis 0 – 3 g/s ± 0.10 % 

Current Hall Effect 0 – 10 A ± 1 % 

Voltage  0 - 50 V ± 1 % 
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Table 9: Uncertainty Analysis Sample Calculations  

Measured or 

Calculated 

Parameter (Figure 25) Unit Value Systematic 

Uncertainty 

Measured P1 kPa 1,519.2 1.519 

Measured P3 kPa 1,533.9 1.534 

Measured P5 kPa 508.2 0.508 

Measured T1 °C 56.4 0.6 

Measured MFM g/s 0.9964 0.0010 

Measured TPCM °C 45.9 2 

Calculated Fan Power W 6.97 0.10 

Calculated Compressor Power W 60.45 0.78 

Calculated Evap. Capacity W 168.9 0.5 

Calculated Cond. Capacity W 161.8 0.6 

Calculated Ave. Evap. Inlet (air) °C 25.6 0.5 

Calculated Ave. Evap. Outlet (air) °C 22.0 0.5 

Calculated COP - 2.79 0.04 
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Chapter 4:  Testing Procedures 

RoCo was originally designed to deliver 150 W of cooling when used inside a building 

where the ambient room temperature was 26.0 °C. The original baseline BV1 tests were 

run under these conditions, with a single cooling and recharge cycle. Sufficient time was 

given at the end of the stand-alone test to allow the PCM temperature to reach equilibrium 

with the ambient room temperature. Additional use cases were added after the construction 

of the original device, and the BV2 system was tested under additional conditions. These 

conditions included different ambient room temperatures as well as repeated back-to-back 

cooling and recharge cycles. ASHRAE Standard 116, Section 8 specifies the test conditions 

under which air conditioners and heat pumps are to be tested [25]. These specifications 

were used to guide the conditions under which the RoCo breadboard system was tested. 

The critical difference between RoCo and a traditional VCC air conditioning system is that 

in a traditional system, the indoor and outdoor units operate in different temperatures. The 

indoor unit operates inside where the air is cooler, and the outdoor unit operates outside 

where the air temperature is much higher. In the RoCo system, both heat exchangers are 

inside the conditioned space. Therefore, the exact testing procedures in ASHRAE Standard 

116, Section 8 were only used to guide the RoCo test conditions. Table 10 shows the 

conditions under which RoCo was tested. 
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Table 10: Ambient Air Test Conditions 

Test Specification 
RoCo Test Condition 

°C (°F) 

Baseline (all PCMHX) 26.0 (80.1) 

 Cu PCMHX only 30.0 (86.0) 

Cu PCMHX only 35.0 (95.0) 

 

The baseline tests were performed in an environmental chamber set at 26.0 ± 0.5 °C. The 

humidity was not measured or controlled. Each of the five condensers were tested under 

this condition. This temperature was selected based on the original design parameters of 

the RoCo device: to deliver 150 W of cooling in a room at 26.0 °C. The CuPCMHX was 

tested under two additional ambient air conditions: 30.0 °C and 35.0 °C.  

When each test was run, the environmental chamber was held at the specified test condition 

temperature. The compressor and evaporator fan were turned on and the cooling cycle 

began to run. The PCM temperature was monitored on the DAQ system and when the PCM 

was fully liquified, the compressor was turned off and the ball valves were opened. The 

system then ran in thermosiphon mode until the PCM temperature indicated that the PCM 

had fully solidified and was ready for another cooling cycle. For the single-cycle tests, this 

was the end of the test. For the cycle test, the procedure was repeated at least three times. 
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Chapter 5:  Test Results 

5.1 Single Cycle Tests at Room Temperature 

5.1.1 8.6 kg Baseline Non-enhanced PCM Test 

The results in this section are based on the results from Du’s previous work.  

For the baseline test, the RoCo breadboard system was run ambient air temperature of 26.0 

± 0.5 °C. The entire system was allowed to rest at room temperature until the PCM reached 

equilibrium with the air temperature at 26.0 °C. The cooling cycle was then initiated and 

run until most of the PCM was at least 37.0 °C. Once the minimum temperature was 

reached, all the ball-valves were manually opened, and the compressor was turned off, 

allowing the system to operate in thermosiphon mode. The system was allowed to run in 

thermosiphon mode until the PCM temperature once again reached equilibrium with the 

ambient room temperature. The temperature of the PCM for the baseline test is shown in 

Figure 37. Note that the lowest two temperatures, TC-3 and TC-12 correspond with the 

thermocouples at the very bottom and outside of the PCMHX, closest to the wall of the 

PCM container. The refrigerant has undergone full phase change at this point, and has very 

little heat to transfer to the PCM. The entire cycle took 549 minutes, or 9 hours and 9 

minutes. 
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Figure 37: 8.6 kg baseline non-enhanced PCMHX PCM temperature 

 

Figure 38 shows the tube temperature of the PCMHX. Note that the tube temperatures vary 

greatly with location. The tubes in Figure 38 are labeled according to Figure 27. Generally 

speaking, the tube temperatures are higher in the upper portion of the PCMHX, and now 

decrease in temperature towards the outlet at the bottom right of the PCMHX. This is a 

trend that is repeated throughout all the PCMHX that were tested. 
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Figure 38: 8.6 kg baseline non-enhanced PCMHX tube temperature 

Analysis of the initial breadboard test showed that the phase change is not complete at 37 

°C. As shown in Figure 1, the PCM is fully melted after the temperature has inflected 

upwards. TC1 shows such an inflection point, and in future test the cycle was not switched 

from cooling to recharge until after this inflection point was reached at all points in the 

PCM. This temperature measurement is highly dependent on the location of the 

thermocouple within the PCM and should be carefully considered when determining where 

to place the thermocouples.  

The COP of the non-enhanced cycle is shown in Figure 39. The large variation in COP is 

a result of the manually adjusted expansion valve used in BV1. The average COP was 2.41, 

but future baseline tests should be done with a TXV to stabilize the compressor pressure 

and overall performance of the system. The fluctuations in the pressure is shown in Figure 

40. 
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Figure 39: 8.6 kg baseline non-enhanced COP 

 

Figure 40: 8.6 kg baseline non-enhanced pressure 

(compressor) 
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Figure 41 shows the average air temperature inlet and outlet for the AHX. The AHX had 

an average room temperature of 25.7 °C and an average delta T of -1.78 °C. during the 

cooling cycle. 

 

Figure 41: 8.6 kg baseline average air temperature in and out of AHX 

Figure 42 shows the capacity of the evaporator and condenser throughout the cooling cycle. 

The average condenser capacity was 169.1 W and the average evaporator capacity was 

149.1 W 
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Figure 42: 8.6 kg baseline capacity of evaporator and condenser 

Figure 43 shows the mass-flow rate of the refrigerant during the baseline test. The average 

mass-flow rate was 0.00092 kg/s. 

 

Figure 43: 8.6 kg baseline refrigerant mass-flow rate 
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5.1.2 8.6 kg Copper-enhanced PCM Test 

After the non-enhanced PCMHX was tested, the condenser was replaced with CuPCMHX 

as described in 2.3.6.3.1 This condenser had 8.6 kg of PCM and 5.5% by weight of copper 

enhancement distributed throughout the volume of the condenser. The two condenser 

designs are otherwise the same. To determine when the PCM was fully melted or solidified, 

two thermocouples were placed in the PCM as described in section 3.2.2 The temperature 

profile of a typical cooling and recharge cycle is shown in Figure 44. TC-7 was placed 27.9 

cm from the top of the container and as close to the wall of the container as possible. The 

lack of inflection point in the orange line shows that the thermocouple was too close to the 

wall of the container and was most likely measuring the wall temperature and not the PCM 

temperature. This thermocouple was inserted into the PCM after construction of the 

CuPCMHX and its exact location with respect to the copper coils, copper mesh and 

container wall is not known. As noted previously, determining the state of the PCM by 

temperature is highly dependent on the location of the thermocouple.  
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Figure 44: 8.6 kg copper-enhanced PCMHX PCM temperature 

The COP of the first CuPCMHX test is shown in Figure 45. The COP trends downward 

over the course of the cycle, but the average value is significantly higher than the non-

enhanced PCMHX. The compressor inlet and outlet pressures are shown in Figure 46. The 

increase in pressure just after the 100th minute coincides with the inflection point in the 

TC-6 thermocouple. As the temperature of the PCM changes from solid to liquid and the 

PCM becomes superheated, the condenser becomes less efficient and condensing pressure 

increases. This phenomenon will be observed to varying degrees for all the other PCMHX. 

12.7 cm 

27.9 cm 
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Figure 45: 8.6 kg copper-enhanced COP 

 

Figure 46: 8.6 kg copper-enhanced pressure 

(compressor) 
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Figure 47 shows the average air temperature inlet and outlet for the AHX. The AHX had 

an average room temperature of 26.0 °C and an average delta T of -2.99 °C. during the 

cooling cycle. 

 

 

Figure 47: 8.6 kg copper-enhanced air temperature of AHX 

Figure 48 shows the capacity of the evaporator and condenser throughout the cooling cycle. 

The average condenser capacity was 194.1 W and the average evaporator capacity was 

192.3 The average condensing and evaporating values are so close because the system was 

not insulated between the condenser outlet and evaporator inlet. 
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Figure 48: 8.6 kg copper-enhanced capacity of evaporator and condenser 

Figure 49 shows the refrigerant mass-flow rate during the graphite-enhanced cooling cycle. 

The average mass-flow rate was 0.00116 kg/s. 

 

Figure 49: 8.6 kg copper-enhanced refrigerant mass-flow rate 
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5.1.3 5.4 kg Graphite-enhanced PCM Test 

The 2-hour GrPCMHX was tested next. The cooling cycle ran until the minimum PCM 

temperature was 36.0 °C. The group of thermocouples that do not show an inflection point 

are the thermocouples placed closest to the wall of the container. The heat map shown in 

Figure 50 shows the location of the cooler spots along the edge of the container. Again, 

this emphasizes the need to locate the thermocouples properly.  

 

Figure 50: 2-hour GrPCMHX heat map at 2.7 hours into the cooling cycle 

The temperature profile of a typical cooling cycle of the 2-hour GrPCMHX is shown in 

Figure 51. The PCM increases temperature in its sensible range until it begins to change 

phase at about 35 °C. The band of temperatures between the inflection points at 35 °C and 

39 °C indicate the phase-change region of the PCM. Once the phase change is complete 

and the PCM is fully melted at around 140 minutes, the temperature of the PCM increases 

more rapidly as the heat from the condenser continues to transfer into the PCM. Figure 51 

also shows that the full cooling cycle was 164 minutes. 
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Figure 51: 5.4 kg graphite-enhanced PCMHX PCM temperature 

Figure 52 shows the tube temperature of the 2-hour GrPCMHX. TC-12 and TC-5 show 

some fluctuation at the beginning of the cycle. During the post processing of the graphite 

blocks, the blocks were cut in half lengthwise and allowed to rest at room temperature for 

several days. Upon assembly of the GrPCMHX, two of the graphite blocks were warped, 

as shown in Figure 53. The temperature fluctuations are observed in the same block that 

was warped upon assembly. It is postulated that as the cooling cycle proceeded, the blocks 
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returned to their original shape and good contact between the tube and the block was finally 

achieved around minute 30.   

 

Figure 52: 5.4 kg graphite-enhanced PCMHX tube temperature 

 

 

Figure 53: Warpage in the graphite blocks after post-processing 
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The COP of the cycle is shown in Figure 54. The general COP trend is downward and the 

average values are much lower than the 2-hour CuPCMHX. The pressure is shown in 

Figure 55 and shows a steadily increasing pressure. In the 2-hour CuPCMHX the pressure 

had an initial increase and then had over an hour of steadily decreasing pressure. No such 

trend is observed here.  

 

Figure 54: 5.4 kg graphite-enhanced COP 

(compressor) 
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Figure 55: 5.4 kg graphite-enhanced pressure  

Figure 56 shows the average air temperature inlet and outlet for the AHX. The AHX had 

an average room temperature of 25.7 °C and an average delta T of -2.70 °C. during the 

cooling cycle. 
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Figure 56: 5.4 kg graphite-enhanced air temperature of AHX 

Figure 57 shows the capacity of the evaporator and condenser throughout the cooling cycle. 

The average condenser capacity was 144.78 W and the average evaporator capacity was 

151.2. The evaporating capacity was higher than the condensing capacity because the 

system was not insulated between the condenser outlet and evaporator inlet. 
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Figure 57: 5.4 kg graphite-enhanced capacity of evaporator and condenser 

Figure 58 shows the refrigerant mass-flow rate during the graphite-enhanced cooling cycle. 

The average mass-flow rate was 0.00093 kg/s. 

 

Figure 58: 5.4 kg graphite-enhanced refrigerant mass-flow rate 
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2-hour graphite-enhanced PCMHX leak 2-hour graphite-enhanced PCMHX 

container crack 

Figure 59: 2-hour graphite-enhanced PCMHX container crack 

The container for the GrPCMHX cracked during the cooling operation (Figure 59) and 

liquified PCM leaked out. Therefore, a full recharge cycle was not recorded. 

5.2 15.1 kg Copper-enhanced PCM Cycle Tests 

After the single-cycle tests were run for the non-enhanced, graphite-enhanced and copper-

enhanced PCMHX, the cooling and recharge cycles were automated for cycle testing. 

Based on results from previous tests, the cooling setpoint was set at 38.0 °C and the 

recharge setpoint was set at 35.0 °C. The cooling setpoint is the temperature at which the 

cycle switches from cooling to recharge mode, and the recharge setpoint is the temperature 

at which the cycle switches from recharge to cooling mode. Cycle tests were run with 

condensers designed for four hours of cooling operation. For the 4-hour CuPCMHX 
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system, the cycle test was conducted at ambient room temperatures of 26.0 °C, 30.0 °C and 

35.0 °C, as described in Table 10.  

5.2.1 Cycle Test: 26.3 °C  

Results from the 4-hour CuPCMHX test are shown below in Figures Figure 60 - Figure 63. 

Lessons learned from previous tests informed placement of the thermocouples. The result 

is a very clean temperature profile. The system shows a high degree of repeatability from 

one cycle to the next for tube temperatures, PCM temperatures, COP and refrigerant 

pressures. The shapes of each graph are similar to what was recorded for the 2-hour 

CuPCMHX, showing that the design is scalable.  

 

 

Figure 60: 15.1 kg copper-enhanced PCMHX PCM temperature cycle test 
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Figure 61: 15.1 kg copper-enhanced PCMHX tube temperature cycle test 

 
Figure 62: 15.1 kg copper-enhanced COP cycle test 

(compressor) 
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Figure 63: 15.1 kg copper-enhanced pressure cycle test  

Figure 64 shows the average air temperature inlet and outlet for the AHX. The AHX had 

an average room temperature of 26.3 °C and an average delta T of -3.80 °C. during the 

cooling cycle. 
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Figure 64: 15.1 kg copper-enhanced air temperatures of AHX for cycle test 

Figure 65 shows the capacity of the evaporator and condenser throughout the cooling cycle. 

The average condenser capacity was 182.9 W and the average evaporator capacity was 

185.8 W. The evaporating capacity was higher than the condensing capacity because the 

system was not insulated between the condenser outlet and evaporator inlet. 
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Figure 65: 15.1 kg copper-enhanced capacity of evaporator and condenser for cycle 

test 
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Figure 66 shows the mass-flow rate of the refrigerant during the copper-enhanced 15.1 kg 

cycle test. The average mas-flow as 0.00108 kg/s. 

 

Figure 66: 15.1 kg copper-enhanced mass-flow for cycle test 

5.2.2 Cycle Test: 30.0 °C  

The same 4-hour CuPCMHX cycle test was completed with an ambient room temperature 

of 30.0 °C. The PCM temperature, tube temperature, system pressure and cycle COP are 

shown in Figures Figure 67Figure 70. The cooling cycle showed very similar performance 

to the 26.7 °C system, but with longer recharge times and better cooling COP due to the 

smaller difference between condensing and evaporating temperatures.  
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Figure 67: Copper-enhanced PCMHX PCM temperature cycle test with ambient air 

at 30.0 ℃ 
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Figure 68: Copper-enhanced PCMHX tube temperature cycle test with ambient air 

at 30.0 ℃ 
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Figure 69: Copper-enhanced COP cycle test with ambient air at 30.0 ℃ 

 

Figure 70: Copper-enhanced pressure cycle test with ambient air at 30.0 ℃ 

(compressor) 
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5.2.3 Cycle Test: 35.0 °C  

Only a single cooling cycle was run at an ambient room temperature of 35.0 °C. The results 

were close to the 30.0 °C, and the test was cut short. The PCM temperature, tube 

temperature, system pressure and cycle COP are shown in Figures Figure 71Figure 74. 

 

Figure 71: Copper-enhanced PCMHX PCM temperature, ambient air at 35.0 ℃ 
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Figure 72: Copper-enhanced PCMHX tube temperature with ambient air at 35.0 ℃ 

 
Figure 73: Copper-enhanced COP with ambient air at 35.0 ℃ 

(compressor) 
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Figure 74: Copper-enhanced pressure with ambient air at 35.0 ℃ 

5.3 12.7 kg Graphite-enhanced PCM Cycle Test 

Although the initial results from the 2-hour GrPCMHX did not match the design capacity, 

lessons learned were incorporated in the design in of the next iteration of GrPCMHX. 

Additional tubes were added and the rectangular blocks, which required significant post 

processing, were replaced with disks. The disks did not need any post-processing and were 

symmetrical to resist any warpage. The PCM temperature show in Figure 75 followed the 

predictable profile seen in previous test.  
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Figure 75: 12.7 kg graphite-enhanced PCMHX PCM temperature cycle 
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The COP (Figure 76) of the 4-hour GrPCMHX was again significantly lower than its 

copper-enhanced counterpart. The compressor outlet pressure (Figure 77) also increases 

steadily from the start of the cycle. 

 
Figure 76: 12.7 kg graphite-enhanced cycle COP  

(compressor) 
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Figure 77: 12.7 kg graphite-enhanced cycle pressure  

Figure 78 shows the average air temperature inlet and outlet for the AHX. The AHX had 

an average room temperature of 25.6 °C and an average delta T of -3.62 °C. during the 

cooling cycle. 
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Figure 78: 12.7 kg graphite-enhanced air temperature of AHX for cycle test 

Figure 79 shows the capacity of the evaporator and condenser throughout the cooling cycle. 

The average condenser capacity was 172.2 W and the average evaporator capacity was 

177.3 W. The evaporating capacity was higher than the condensing capacity because the 

system was not insulated between the condenser outlet and evaporator inlet. 
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Figure 79: 12.7 kg graphite-enhanced capacity of evaporator and condenser for 

cycle test 

Figure 80 shows the mass-flow rate of the refrigerant during the copper-enhanced 12.7 kg 

graphite-enhanced cycle test. The average mas-flow as 0.00105 kg/s. 

 

Figure 80: 12.7 kg graphite-enhanced mass-flow for cycle test 
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One result not observed in the 2-hour GrPCMHX test was the swelling of the graphite disks 

after backfilling the condenser with liquified PCM. As shown in Figure 81, the graphite 

condenser had a gap of about 2.5 cm between the top of the disks and the copper header. 

The 18.9 L bucket was back-filled with liquified PCM and run for several cycles. During 

that time, the disks absorbed the PCM and swelled, like a dry sponge swelling when 

exposed to water. In theory, this is an advantageous result because the swelling should 

eliminate any air gaps between disk and copper tubes, reducing the thermal resistance in 

the system and increasing condensing performance. The results do not reflect this 

advantage.  

  

Gap before PCM backfill and cycle test Gap after PCM backfill and cycle test 

Figure 81: Graphite disk swelling after PCM backfill and cycle test 
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Chapter 6:  Data Analysis 

When the original BV1 tests were run, it was unclear how to define the end of the cooling 

and recharge cycles. Initial tests were run until it appeared the PCM had undergone phase 

change, and then the thermosiphon recharge cycle ran until the PCM reached equilibrium 

with the ambient room temperature. The BV1 tests defined the PCM as “recharged” once 

the PCM was the same temperature as the ambient room temperature. Given the fact that 

the PCM is intended to be used as a latent heat storage device, this definition needs 

reworking. The cooling cycle should be considered finished after the PCM has fully 

liquified and the temperature of the PCM begins to rise more rapidly, as seen in Figure 1. 

Likewise, the recharge cycle should be considered finished and ready for another cooling 

cycle when the PCM has fully solidified and the temperature of the PCM begins to fall 

more rapidly. By measuring the temperature of the PCM in several places and using the 

PT37 DSC curve as a guide [29] these critical setpoints can be accurately defined. 

Experimentally derived cooling and recharge data can also be used to determine setpoint 

temperatures. Visual inspection of all the PCM temperature curves in Chapter 5: show that 

the PCM temperature consistently has an inflection point at 38.0 ℃ during the cooling 

mode, and an inflection point at 36.0 ℃ during the thermosiphon mode, regardless of the 

PCM enhancement type. Assuming that the PCM thermocouples are not placed in the 

coolest and warmest locations of the condenser, ±1 degree is added to operating 

temperature band. Therefore, for all results included below, the cooling cycle is said to be 

complete when the lowest measured PCM temperature is 39.0 ℃, and the thermosiphon 

recharge cycle is said to be complete when the warmest PCM temperature is 35.0 ℃. All 

Cooling Times, Recharge Times, and COP are reported from values within these ranges, 
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regardless of the setpoint and times at which the test was run. This helps to normalize the 

data across different testing conditions.  A new metric is also introduced here: Recharge 

Time per kg. Many of the tests were run with different amounts of PCM and different 

PCMHX tube configurations, and this new metric attempts to find a meaningful 

comparison between the different PCMHX performances during the recharge cycle. A 

lower Recharge Time per kg is better. Based on the results shown in Table 11, the three 

top performers for this metric are the non-enhanced PCMHX and the two CuPCMHX. No 

data is available for the 2-hour GrPCMHX because of the crack in the container.  

Table 11: Cooling and Recharge Times with Different PCM Enhancement 

PCM 

Enhancement 

Air Temperature 

(℃) 

PCM Weight 

(kg) 

Cooling 

(min) 

Recharge 

(min) 

Recharge Rate 

(min/kg) 

None 25.7 8.6 103 178 20.7 

Copper mesh 26.0 8.6 195 212 24.7 

Graphite foam 25.7 5.4 164 - - 

Graphite foam 25.6 12.7 500.0 403.3 31.7 

Copper mesh 26.3 15.1 213.8 379.8 25.2  

Copper mesh 30.0 15.1 186.5 593.4 39.3 

Copper mesh 35.0 15.1 169 - - 

 

Two values to take note of in Table 11 are the 12.7 kg graphite foam cooling time (500 

min) and the non-enhanced baseline recharge rate (20.7 min). The cooling time for the 12.7 
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kg graphite enhanced PCMHX is higher than it should because it was not properly insulated 

during operation. All the other PCMHX were insulated during operation. With 12.7 kg of 

PCM, the graphite enhanced PCMHX should be able to store enough heat at a condenser 

capacity of 185 W for 4.0 hours (the original design specification for the 12.7 kg PCMHX). 

For 500 minutes of cooling operation at an average condensing capacity of 185 W, a total 

PCM mass of 26.4 kg is needed. Therefore, the 500-minute cooling time is not a meaningful 

value, and emphasizes the need to insulate the PCMHX in future designs.  

Similarly, the 20.7 min/kg recharge rate for the non-enhanced PCMHX is not a meaningful 

value. The baseline test was not run in cooling mode until all the PCM was fully melted. 

Visual inspection of Figure 37 shows that some of the PCM had not undergone phase-

change when the device was switched into recharge mode. Therefore, the 20.7 min/kg 

recharge rate does not represent a full recharge cycle, as all the other values do. For this 

reason, the best recharge rate are the two copper-mesh enhanced PCMHX at 24.7 min/kg 

and 25.2 min/kg for the 8.6 kg and 15.1 kg PCMHX, respectively.  

The COP of each test is reported in Table 12. The COP values for tests run within the 

specified ambient room temperature range (26.0 ± 0.05 °C) are open for direct comparison. 

The two top performers within this range are the two CuPCMHX versions. 
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Table 12: COP Results with Different PCM Enhancements 

PCM Enhancement Air Temperature 

(℃) 

PCM Weight 

(kg) 

COP 

None 25.7 8.6 2.41 

Copper mesh 26.0 8.6 4.37 

Graphite foam 25.7 5.4 2.80 

Graphite foam 25.6 12.7 3.25 

Copper mesh 26.3 15.1 4.43 

Copper mesh 30.0 15.1 4.78 

Copper mesh 35.0 15.1 5.36 

 

A note about the condenser capacities reported in Chapter 5: the tubing, receiver, mass-

flow meter and TXV were not insulated between the PCMHX outlet and AHX inlet. 

Therefore, the condenser capacities are the same or lower than the reported evaporator 

capacities. The goal of this study is to characterize the PCMHX and the AHX, and so the 

heat loss between the condenser outlet and TXV inlet is not considered. As an example, 

Table 13 shows typical operating conditions from the copper-enhanced 15.1 kg condenser. 

Referring to Figure 25 for the sensor positions, Δh1-2 shows the change in enthalpy through 

the condenser. The last column, Δh1-4.a, shows the change in enthalpy from the condenser 

outlet all the way to the TXV inlet. In this case, an additional 14.5 W are accounted for, 

and the overall condensing capacity is higher than the evaporator capacity, as expected. All 
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PCMHX capacity calculations focus only on the condenser (position 1 to position 2 in 

Figure 25) and do not take into account the additional heat loss between position 2 and 4.a. 

Table 13: Additional Heat Loss Between Condenser Outlet and Evaporator Inlet 

T1 

(K) 

T2 

(K) 

T4.a 

(K) 

P1 

(kPa) 

h1 

(kJ/kg) 

h2 

(kJ/kg) 

h4.a 

(kJ/kg) 

Δh1-2 

(kJ/kg) 

Δh1-4.a 

(kJ/kg) 

47.35 40.47 30.64 1160 276.1 108.9 94.49 167.2 181.7 
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Chapter 7:  Results and Discussion 

The objective of this thesis is to evaluate PCM enhancements for a mobile cooling system. 

The PCM is used as a heat storage container for waste heat from the VCC air-conditioning 

system. The two most important factors that are impacted by the PCM are the COP of the 

system during cooling operation, and the time it takes to re-solidify, or “recharge” the PCM 

after the cooling cycle has completed and the PCM has been fully liquified. Both of these 

factors are positivity impacted by an increase in thermal conductivity of the PCM. The 

PCM used was a commercially available product called PT37. The length of time of the 

cooling operation is a function of the heat storage capacity of the PCM and the total mass 

of the material used. The COP of the cooling operation is a function of the cooling capacity 

of the evaporator and the work done by the compressor. The rate of flow of refrigerant into 

the evaporator and thus its capacity is controlled by the TXV, and the compressor work is 

a function of the pressure differential between the inlet and outlet of the compressor. As 

the condenser capacity decreased, the compressor must deliver refrigerant at a higher 

pressure to the condenser to allow for adequate condensation of the refrigerant. In a 

traditional HVAC system, high condensing temperature is associated with an ineffective 

condenser [33]. In the test system, the condensing capacity of the system is dependent on 

the heat transfer between the condenser tubes and the PCM. By increasing the thermal 

conductivity of the PCM, the heat transfer rate will remain high and system performance 

will be improved. The thermal conductivity of the PT37 is 0.25 W/m·K in the solid form, 

and 0.15 W/m·K in the liquid form. During the cooling process, the PCM closest to the 

copper tubes in the condenser melts first, and so the effective thermal conductivity of the 

bulk material is the liquid value: 0.15 W/m·K. 
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7.1 Setpoint Thermocouple Placement 

In order to improve the thermal conductivity of the PCM, it must be enhanced with some 

material that has a higher thermal conductivity. The enhancement material should be able 

to be distributed evenly throughout the PCM, it should be able to withstand repeated 

(thousands) of phase changes and the associated change in density of the PCM (840 kg/m3 

liquid and 920 kg/m3 solid, a + 9.5% change), and it should resist stratification and settling 

when the PCM is in the liquid phase. It should also resist corrosion when in contact with 

the PCM. The two materials chosen as enhancements for testing were copper sponge, and 

expanded graphite foam.  

As shown above in Table 11, the 12.7 kg graphite-enhanced PCMHX has a total cooling 

time of 500.0 minutes (8.3 hours), more than double the next closes which is the 15.1 kg 

copper-enhanced PCMHX. Unfortunately, these results are not as promising as they seem. 

12.7 kg of PT37 is only capable of a theoretical maximum of 4.3 hours of operation with a 

condensing capacity of 185 W. During testing, the graphite-enhanced PCMHX was not 

insulated as shown in Figure 82 (left). The lack of insulation on the graphite-enhanced 

PCMHX resulted in heat loss to the room through natural convection and thus increased 

the overall cooling time.  



 96 

   

Figure 82: Different level of insulation on the graphite-enhanced PCMHX (left) and 

the copper-enhanced PCMHX (right) 

On the other hand, the cooling time of the 15.1 kg copper-enhanced PCMHX was only 

213.7 minutes (3.6 hours). 15.1 kg of PT37 should be able to operate for 4.8 hours with a 

condensing capacity of 185 W. The thermocouples in the copper-enhanced PCMHX were 

placed in the center of each copper helical tubes (Figure 83): with one layer 1/4 from the 

top of the container and one layer 1/4 from the bottom of the container (Figure 84). There 

were no thermocouples placed near the edge of the PCMHX, or in the space between the 

coils. Therefore, it is likely that not all the PCM in the PCMHX underwent phase change, 

and cooling time was sacrificed.  
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Figure 83: Copper-enhanced PCMHX thermocouple placement 

 

Figure 84: Copper-enhanced PCMHX cooling and recharge heat map 

From the heat maps shown in Figure 84 for the copper-enhanced PCMHX, good locations 

for the setpoint thermocouples can be identified. In cooling mode, the last point to melt 

was in the upper layer of the thermocouples in the 6th helical coil. Therefore, the cooling 
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setpoint thermocouple should be placed near this thermocouple, but outside of the helical 

coil. For the recharge setpoint, the last point to solidify was the upper portion of the 4th 

coil. Because the placement of the thermocouples inside the helical coils are measuring the 

warmest part of the PCMHX, this is the ideal location for the recharge setpoint 

thermocouple. 

Both the copper-enhanced PCMHX and the graphite-enhanced PCMHX reach the end of 

the recharge cycle at around the same time: 403.3 minutes for the graphite-enhanced 

PCMHX and 379.8 minutes for the copper-enhanced PCMHX. For the graphite-enhanced 

PCMHX, the last point in the sample to reach the setpoint temperature of 35.0 °C was in 

the very middle of the sample, as shown on the right side in Figure 85. This makes sense 

because there is no tube in the middle of the sample. Therefore, for a disk-shaped graphite-

enhanced PCMHX with multiple layers, the thermocouple which determines when the 

sample is fully solidified should be placed at the very center of the sample. In cooling 

mode, the last portion of the PCMHX to melt is the outside of the middle disk. Therefore, 

the thermocouple that determines when the cooling mode operation is complete and the 

PCM is fully melted should be placed in the middle layer, on the outside, near the second-

to-last tube in the heat exchanger. 
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Figure 85: Graphite-enhanced PCMHX cooling and recharge heat map 

 

7.2 System Performance 

7.2.1 COP 

The COP of the different systems are shown in Figure 86. The last two bars on the chart 

were run at higher ambient room temperatures: they were run at 30.0 °C and 35.0 °C, 

respectively. The goal of these tests was to compare the cooling and recharge times to the 

baseline cycle test at 26.0 ± 0.5 °C, not to compare the COP. The higher COP makes sense 

because the temperature difference between the hot and cold reservoirs is smaller when the 

ambient room temperature is higher: similar to the way your residential AC is more 

efficient on moderate days than it is on very hot days.  
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Figure 86: COP by weight of PCM and enhancement type 

The more instructive values are the first 5 COP values. The non-enhanced PCM has the 

lowest COP, and both copper-enhanced systems have the highest COP. A direct 

comparison cannot be made, though, especially between the graphite and copper-enhanced 

systems. The graphite-enhanced system has significantly shorter tube lengths, and 

therefore less heat transfer area. When comparing the 12.7 kg graphite system to the 15.1 

kg copper system, the copper system has a total of 9.6 m of tube length, and the graphite-

enhanced system has 2.4 m of tubes, a 75% decrease in heat transfer area. Although the 

increase in thermal conductivity of the graphite-enhanced PCM should theoretically be 

able to compensate for the reduced heat transfer area, the results do not support that theory. 

Potential problems with the implementation of the graphite-enhanced PCMHX have been 

suggested: thermal resistance related issues and header related issues. The thermal 

resistance theory is based on poor contact between the graphite disks and the copper tube 

C
O

P
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and exacerbated by the use of layered disks. This was tested by back-filling the GrPCMHX 

with liquified PCM. This backfilling process was repeated after two cooling and recharge 

cycles because the graphite disks absorbed most of the added liquified PCM. Backfilling 

with liquified PCM ensured that any air gaps and associated thermal resistance between 

the tubes and the graphite disks as well as between each graphite disk was eliminated, and 

any voids in the graphite matrix were filled. After running tests in this configuration, the 

COP was 3.27: effectively the same. This suggests that the 2.4 m of 6.35 mm OD copper 

tube is insufficient for effective condensation of the refrigerant. 

The other possibility for poor GrPCMHX system performance was an insufficient top 

header diameter. The non-enhanced PCMHX and copper enhanced PCMHX both used 

9.525 mm OD copper tubes for the top header and bottom headers. The 4-hour graphite 

enhanced condenser on the other hand used a 6.35 mm OD copper tube for the top and 

bottom headers. Future work is recommended to test at GrPCMHX with a larger top header 

diameter, at least 8.0 mm ID. A larger bottom header diameter is not needed because the 

refrigerant is always liquid in the bottom of the condenser, regardless of the operating 

cycle. 

Another potential issue with the GrPCMHX design is the orientation of the tubes. Both 

graphite versions have straight, vertical tubes. The copper versions all have helical tubes. 

According to Incropera, heat transfer can be enhanced for internal flow by coiling the tube. 

The centrifugal forces within the fluid induce secondary flow and heat transfer is enhanced, 

especially in laminar flow situations [34]. While the graphite enhancement increases the 

thermal conductivity of the PCM, the tube orientation decreases the heat transfer on the 

inside of the tube.   
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When comparing the copper-enhanced PCMHX with the non-enhanced baseline, the 

results are very encouraging. For the 8.6 kg versions, the COP increased from 2.41 to 4.37, 

an increase of 81.3%. The results were shown to be scalable to the 15.1 kg version, which 

had a COP of 4.43. The condenser enhancement types, PCM mass, PCM bulk density, 

condenser tube surface area, COP and Recharge Time per kg are listed in Table 14.  

Table 14: PCM Heat Exchanger Performance and Characteristics 

Enhancement Type PCM mass 

(kg) 

Bulk Density 

(kg/m3) 

Tube Area 

(m2) 

COP Recharge time 

(min/kg) 

None 8.6 - 0.096 2.41 20.7 

Graphite 12.7 100.0 0.049 3.25 31.7 

Copper 15.1 46.2 0.192 4.43 25.2 

 

7.2.2 Overall Heat Transfer Coefficient 

To compare the effectiveness of each condenser and PCM enhancement, an overall heat 

transfer coefficient analysis was conducted. The system was analyzed using a thermal 

resistance analysis. The circuit is shown in Figure 87. Tsat is calculated from the 

experimentally measured value Pi. Single-phase heat transfer of the R134a liquid was 

found to be less than 10% by Du [23], and was therefore neglected. The refrigerant enters 

the condenser at a quality greater than 0, so no single-phase vapor heat transfer is 

considered. The values for TPCM were calculated as average values when 𝑄̇ is 180 W, as 

close to the half way point of the cooling cycle. By keeping 𝑄̇ constant, the heat transfer 

into the PCM is constant and UA values can be direly compared. The tube wall radii are as 

specified in the Copper Development Handbook [26] such that ri = 0.002794 m and ro = 

0.003175 m. In R2, the thermal conductivity of copper used was 401 W/m·K. 
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Figure 87: Thermal resistance analysis of PCM condenser 

The general overall heat transfer coefficient equation is defined in Equation 12. Note that 

UA = UiAi = UPCMAo, so UPCM can be found from Equation 12. The thermal resistances of 

each part of the circuit are shown in Equations (13 – 15). Equations (13, 15) are thermal 

resistances for convective heat transfer, and R2 is for thermal resistance of radial 

conduction in a cylindrical wall. Equation 15 represents the heat transfer outside of the 

condenser tube to the PCM. The PCM temperature is calculated as a simple average of all 

the PCM temperatures when 𝑄̇ is 180 W, close to the half-way point of the cooing cycle.  

𝑸̇ = 𝑼𝑨∆𝑻 =
∆𝑻

∑ 𝑹
      Equation 12 

𝑹𝟏 =
𝟏

𝒉𝒊𝟐𝝅𝒓𝒊𝑳
       Equation 13 

𝑹𝟐 =
𝒍𝒏(

𝒓𝒐
𝒓𝒊

)

𝒌𝑪𝒖𝟐𝝅𝑳
       Equation 14 

𝑹𝟑 =
𝟏

𝑼𝑷𝑪𝑴𝑨𝒐
       Equation 15 
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Table 15 shows the measured and calculated values of the UA analysis. In Table 15, 𝑄̇ is 

the condenser capacity. The COP values are included in Table 15 for reference. 

Table 15: UA Calculations 

Condenser 

Type 

𝑸̇ 

(W) 

Pi  

(kPa) 

Tsat 

(°C) 

TPCM 

(°C) 

Area 

(m2) 

UA 

(W/K) 

UPCM 

(W/m2·K) 

COP 

Baseline 180.8 1409.7 52.7 37.2 0.096 11.7 122.3 2.41 

Cu (8.6) 180.3 1303.4 49.5 37.1 0.096 14.5 151.8 4.37 

Gr (5.4) 179.6 1560.2 56.8 37.8 0.024 9.4 394.5 2.80 

Gr (12.7) 180.0 1344.3 50.8 38.3 0.053 14.5 274.6 3.25 

Cu (15.1) 181.0 1154.4 54.3 36.7 0.192 21.0 109.5 4.43 

 

To evaluate the overall performance of the heat exchanger design and the PCM 

enhancement, comparison of the UA value is appropriate. The highest UA value is 21.0 

from the 15.1 kg copper-enhanced PCMHX. It also has the highest COP and is helped by 

the largest heat transfer surface area. At the other end of the spectrum is the 5.4 kg graphite 

enhanced PCMHX with a UA value of 9.4. It also has the lowest COP other than the 

baseline at 2.80, but it also has by far the least heat transfer area, with 75% less heat transfer 

area when compared to the baseline PCMHX. The most useful comparison is the baseline 

vs the 8.6 kg copper-enhanced PCMHX. The UA value increases 24%, even though the 

heat transfer area was the same. The COP is also 81% higher. The UA value offers some 

insight as to how the enhanced PCM impacts the system without considering the copper 

tube circuitry, but the information that can be gained is limited. With 𝑄̇ held constant, the 

UA value is sensitive to the temperature difference between the saturation temperature of 

the refrigerant and the temperature of the PCM. The PCM temperature only varies by 1.6 
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K, but the saturation temperature varies by 7.3 K. The graphite-enhanced PCMHX has the 

highest saturation temperature and the lowest COP. To make up for the small heat transfer 

surface area in the 5.4 kg graphite enhanced PCMHX, a large temperature gradient is 

needed between the refrigerant and the PCM. To achieve this, system pressure increases, 

and compressor power likewise increases. Evaporator capacity stays the same, and COP 

goes down. Inspection of the UPCM values reveal that the graphite enhanced condensers 

work well, but are limited by short tube lengths and reduced heat transfer area. Adding 

additional tubes to increase the heat transfer area for the graphite enhanced condensers is 

recommended. Also, when selecting a PCMHX design, consider the COP first and the UA 

value second. 
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Chapter 8:  Conclusion and Future Work 

The field of personal thermal comfort is growing. The push to reduce energy usage while 

maintaining adequate thermal comfort in indoor spaces is leading to novel approaches to 

space cooling. A prototype battery powered personal air conditioner was built and tested 

by Yilin Du in CEEE at the University of Maryland. The device used a PCM to store the 

waste heat from the air conditioner on-board the system. Because the system is designed 

to be mobile and battery powered, any improvement in efficiency not only saves energy, 

but also increases run time and cooling ability. PCMs are often limited in their effectiveness 

by their thermal conductivity, which is often less than 1 [35]. A known approach to improve 

the effectiveness of a phase change material as an energy storage container is to enhance 

the material with another material of higher thermal conductivity. In this thesis, both 

expanded graphite foam PCMHX and copper matrix enhanced PCMHX were tested.  

The most meaningful measurements of how well the PCMHX is working are (1) the COP 

the for the cooling cycle and (2) the minutes/kg for the recharge cycle. Theoretically, the 

graphite-enhanced PCMHX should have the best overall heat transfer and therefore have 

the best system COP. The high UPCM values of the two graphite foam enhanced PCMHX 

confirm this, but the low COP results from insufficient tube length. The manufacturing 

limitations of the graphite-enhanced blocks means that the tubes must be straight and 

vertical, which reduces overall heat transfer area of the condenser and eliminates the 

possibility for a helical coil and it associated improvement in heat transfer. The copper-

enhanced PCMHX on the other hand had sufficiently long tubes and helical coils to allow 

for better performance of the system. For future work it is recommended that more tubes 

be used for the graphite-enhanced PCMHX, increasing the overall heat transfer area. 
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The evaporator heat exchangers were also analyzed cooling ability in this work. The 

Thermatron 2-row evaporator heat exchanger was used on the baseline system and was 

shown to deliver more than the minimum required cooling of 150 W. For this work, Coil 

Designer simulations were done on the Thermatron 2-row, Thermatron 1-row and Sanhua 

Microchannel heat exchangers. Based on the Coil Designer simulations, the Thermatron 2-

row and Sanhua Microchannel condensers provide sufficient cooling, but the Thermatron 

1-row does not. The Sanhua Microchannel is not compatible with the thermosiphon 

recharge cycle currently in use on the device, but if in future designs the recharge cycle is 

compressor drive, then the Sanhua Microchannel should be installed and tested.  

It must also be reiterated that there is an insufficient baseline test for this body of work. 

The original PCMHX was tested with limited knowledge of the capabilities of the system 

and the test apparatus used a manually adjusted expansion valve instead of a TXV. This 

resulted in a less efficient system requiring constant supervision and manual expansion 

valve adjustments throughout the test. No cycle testing was done with the non-enhanced 

PCMHX, and the cooling cycle was only allowed to run for two hours.  

The RoCo device is a promising personal thermal comfort technology. Improved condenser 

performance will lead to more efficient operation and decreased PCM recharge time. As 

the desire for improved thermal comfort and energy efficiency continues, novel cooling 

devices such as RoCo will lead the way. 
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