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It has always intrigued man as to how the human body performs so many com-
plicated functions with the speed and accuracy that it does. One such task is that
of sound localization in space, the ability to determine the location of a sound
source with considerable accuracy. A biologically realistic neural network is pro-
posed for the binaural processing of interaural time and intensity cues that closely
resembles computational schemes suggested for stereopsis (depth perception) in
vision. The important feature of this network is that it does not use any neural
delay lines to generate such attributes of binaural hearing such as lateralization
of all audible frequencies and the detection and enhancement of signals in a noisy
environment. Temporal shifts between the signals at the ears, arising from sound
sources at different locations on the azimuth cause spatial disparities in the corre-
sponding travelling waves set up on the basilar membranes in the two ears. The two
dimensional network proposed uses these spatial differences between instantaneous

outputs at the two ears to measure interaural differences. The network operation



approximately computes the cross-correlation between the two cochlear outputs by
combining the ipsilateral input at a given characteristic frequency(CF) with con-
tralateral inputs from locally Off-CF locations. Some of the results obtained from
this network are presented.

Having proposed a network, the next question is whether such a connection is
genetically present in the body or whether it is formed over a long period of time by
a gradual process of learning. Assuming that the latter solution is more plausible,
two learning rules are suggested according to which the network could alter its
initial random connectivities. The first learning rule is a supervised technique in
which a teaching signal prespecifies the ideal response expected from the network
to each input pattern presented. The error between the actual output and the
desired response helps to guide the learning process in the desired direction. When
the minimum of the error surface is reached, the network is said to have learned
and the weights do not change any more.

The teaching signal required for the supervised algorithm could be derived from
the visual system. However, no physiological evidence exists that links the auditory
and visual maps at the level of the olivary complex which is where early binaural
processing occurs. To overcome this problem, an unsupervised learning rule is
proposed which requires only the cochlear outputs from the two ears. The rule is
a competitive learning strategy wherein only one neuron updates its connectivities
for a particular input pattern. The neuron chosen to alter its weights is the one
which responds maximally to the input. The inherent delays that exist in the

neural system are used as guides to form the organized spatial map responses.
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CHAPTER

ONE

INTRODUCTION

The ability of animals to identify, localize and isolate a sound source in their
normally noisy acoustic environment depends significantly on their having two ears.
The advantages of two ears are best appreciated in experiments where monaural
and binaural recordings of acoustic events are presented to normal hearing subjects
through microphones placed in the ear canals. While attempting to recreate the
original event, a sharp improvement in the ability of the subject to accurately per-
ceive the event was seen in the binaural presentation over the monaural case. While,
in the binaural case, sounds can be easily localized with reasonable accuracy, the
monaural experiments cause the sounds to seem fused and as though originating
from the stimulated ear. The processing of binaural cues is fundamental to several
tasks in spatial hearing of which lateralization and signal detection-enhancement
are probably the most important. Extensive work has been done in these areas and
several models proposed to explain these attributes of hearing. The most success-
ful of these models in terms of explaining some of the binaural phenomenon have
been the correlation models ([19], [32]). Binaural sound localization and enhance-
ment requires the processing of two types of interaural cues, timing differences, and

intensity differences. While at lower frequencies, timing differences play an impor-



tant role, level differences come into play as the primary cue at higher frequencies.
This report mainly considers the timing differences which are very prominent at
lower frequencies. The correlation models consider the issue of lateralization as an
engineering problem. The signals from the two ears are cross-correlated in time to
determine the temporal disparity between them, which then maps into locations
on the azimuth. It is not known if sufficient neural delays exist in the human phys-
iology to be able to perform an accurate correlation of the two signals. In view
of this disadvantage with the cross correlation models this report first proposes a
binaural processing network that is able to explain several experimentally observed
binaural phenomena without using any neural delays. Due to the similarity this
network seems to have to the kind of processing in depth perception in studies on
vision i.e stereopsis ([25]), the proposed network is called the stereausis network.
Having proposed a network, the question that immediately arises is whether
such a neural network like the one proposed is genetically formed or whether it
is acquired by a gradual learning over a long period of time. Assuming an initial
random pattern of weights, the second portion of this thesis attempts to propose
learning rules by which a network can be formed which can accurately localize
sound. The learning rules were implemented only on time shifted low frequency
inputs presented at the two ears. First, a supervised learning rule is presented
which assumes that during the learning process, a teaching input exists which pre-
determines the location of the sound source. If the presence of such a teaching
signal cannot be ascertained through physiological experiments, then an unsuper-

vised training rule would be required which does not make any prior assumptions



as to the presence of any additional reinforcing signals to guide the learning process
in the correct direction. This report proposes such a learning algorithm where the
only external data input available to the network is the basilar membrane outputs
from the two ears.
The succeeding chapters in the thesis are arranged as follows :

Chapter 2 is a brief overview of some of the different models that have been pro-
posed till now to explain binaural phenomenon. Chapter 3 explains the stereausis
network topology and some of the data that was obtained from its implementation.
The stereausis network was proposed and tested by Naiming Shen as part of his
Master’s thesis ([36]) and he was assisted by the author in the implementation.
Having described the proposed network, the report enters the area of neurons and
network learning. Chapter 4 is a description of the neuron model used in later
analysis and an introduction to some of the neural network architectures. Chap-
ter 5 elaborates on the supervised learning rule and explains the significance of
the results which were obtained when the algorithm was tested on data from the
cochlear model. This is followed in Chapter 6 by a different approach to the same
problem, where an unsupervised competitive learning algorithm is proposed. The
report concludes with a summary of the work that has been done and a look at

the scope for future research in the area.



CHAPTER

TWO

OVERVIEW OF BINAURAL INTERACTION MODELS

I Introduction

Several perceptual attributes of spatial hearing require the processing of binaural
cues, particularly signal detection and enhancement and lateralization. These have
been the topic of intensive research for several decades ([4], [11], [14]). A number
of models have been proposed to explain the various aspects of spatial hearing.
The succeeding sections of this chapter will discuss some of the models which have
been proposed emphasizing on the methods used to process the input signals from
the two ears to highlight and extract the differences between them.

The models that have been proposed till now ([11]) for binaural lateralization

and tone enhancement fall under four basic categories :

1. Count-comparison models.

2. Interaural Difference Detector models.

3. Noise Suppression models.

4. Correlation based models.



Untuned

==\ -

Figure 2.1: Bekesy's tuned cells

NN

II Count Comparison Models

These lateralization models determine the image position based upon a comp:
of activity levels in the neurons from the ipsilateral and contralateral ears. M
of this type have been proposed since the early 1900’s by several people inc]
Bekesy ([3]) and Bergeijk ([37]). The first model, proposed by Bekesy, descr
group of neurons excited by stimuli from both ears. Depending upon the sou
the excitation, the cells are tuned either to the left or to the right. A comp:
of the number of cells tuned to each direction provides the information requir
lateralization. If the input stimuli contained an interaural time delay, the exci:
from the delayed input would be extinguished before it reaches the center
neuron population. There would be more cells tuned to the opposite directio
the image would be identified as being on the side whose stimulus arrived e
Bekesy proposed that the interaural intensity difference is determined directly
the relative magnitudes of the excitations at each ear. According to his hypot
more cells are tuned by a stronger excitation wave, and thus for a given dela

number of cells tuned to either side is proportional to the intensity. Note th

ison
dels
ling
2s a
e of
son
. for
sion
the
and
lier.
rom
2sis,

the

the



> v

N 7
[0] N < 1
s SORE 5
a 0¥ 2N a
\ 4 -
L P \\’é\, o

g ¢

7 N
Ipsilateral Contralateral

Input Input

Figure 2.2: Schematic of Van Berjeik’s neuron model
extinction point for a particular delay is still the same. Thus a time delay in a ear
can be compensated by an intensity increase in that ear thus explaining the time-
intensity trading effect. Figure 2.1 shows a schematic diagram of tuned cells as
proposed by Bekesy. A comparison of the areas of the two shaded regions localizes
the sound. Van Bergeijk restated Bekesy’s model by making it structurally more
specific. He assumed that localization occurs at a peripheral pair of nuclei and
it is done by a comparison of the number of neural firings in the left nucleus to
that in the right nucleus. For each nucleus ipsilateral inputs are inhibitory and
contralateral inputs are excitatory with the image being lateralized to the side
opposite to the maximally firing nucleus. A schematic of the network he proposed
can be seen in figure 2.2. This theory is based on the fact that an inhibitory input
arriving before an excitatory input will prevent the neuron from responding to the
latter input.Thus identical inputs result in an equal number of neurons firing in each
nucleus, creating a centered image; if the left input leads the right, it is immediately

obvious that more neurons are excited in the right nucleus than the left, and so the
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image is localized on the left. The count-comparison models are qualitative and

are restricted to only one binaural phenomenon namely lateralization.

III Interaural Difference Detector Models

The models under this category measure interaural differences in time and/or am-
plitude. The pioneer in these kind of models was the Jeffress model ([19]). While
some of the models in this category explain the lateralization phenomena, oth-
ers explain detection; but none are able to satisfactorily describe all the aspects
of binaural hearing. Jeffress proposed a neural network which coded ITD’s into
the average rates of firing of neurons. The idea behind the network is shown in
figure 2.3. The ipsilateral input is delayed by an amount so that inputs from
both ears arrive at corresponding locations A and B at the same time instant.
Neurons 1, 2, 3, 4 and 5 are excited maximally when both exciting stimuli arrive

simultaneously. Thus it is obvious that depending upon whether the ipsilateral



or contralateral stimulus arrives first, different output neurons are excited. Inputs
arriving simultaneously to the two ears would excite neuron 3 while stimuli which
lead in the ipsilateral ear would stimulate either neuron 4 or 5 in the figure depend-
ing upon the magnitude of the ITD. Jeffress hypothesized that interaural intensity
differences are coded into time delays in that a higher intensity stimulus would
propagate faster than a lower intensity one. Thus assuming no ITD, if the ipsilat-
eral input were of greater intensity, the impulses would arrive earlier at A than at
B. This hypothesis called the Latency Hypothesis combined with the topology of
the Jeffress network could explain lateralization based on ITD’s and ILD’s, as well
as time-intensity trading effects. To extend the Jeffress model to masking phenom-
ena, Webster ([39]) proposed a variation by introducing a bandpass filter centered
at the center frequency of the target signal before the signal is processed in any
way, and a monaural processor to explain the case when the interaural differences
between the signal and the masker are different and the same respectively. See
figure 2.4. Several other variants to the Jeffress model were proposed by Durlach

([9]), Hafter and Carrier ([16]), and Colburn ([5], {7}, [6]).

IV Noise Suppression Models

Models in this category are aimed at detecting narrow band signals in broadband
masking noise. The underlying principle is to operate on the two input signals so
as to cancel out the masking as is done in the Fqualization and Cancellation model
proposed by Kock ([21]). Details on further modifications to the original model are

discussed by Durlach ([10]). The basic idea of the model is to adjust the received

8
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Figure 2.4: Webster's Difference Detector model

signals so that the masking components are equal in the two channels and then
to subtract that component out. If the interaural differences of the masker and
signal are different, the output would contain only the component of the target
signal. The processing is assumed to be corrupted by random jitters which are
characterized in terms of two statistically independent random variables, a gain
factor (1 - €) and a time delay §. A block diagram of the model as proposed by
Durlach is shown in figure 2.5. Detection is assumed to be characterized by the

channel on which the signal to noise ratio is maximum.

V Correlation Models

The first model to describe binaural phenomena in terms of interaural correlation
was presented by Sayers and Cherry ([10]). The models in this category are similar
in flavor to the Jeffress model discussed earlier, but are more specific thus allowing
comparison to behavioral data. Sayers and Cherry rejected the latency hypothe-

sis used by Jeffress because they noted that an ILD affected the whole function
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describing the dependence of lateralization on time delay towards the ear receiv-
ing the stronger intensity signal. The correlation model proposed by Sayers and
Cherry is shown in figure 2.6. In this model the input signal is first transformed
by adding a dc term proportional to the signal level to it so that the running
cross-correlation function of the transformed signals is always positive, and has a
dc level proportional to the input signal levels. The cross correlation is then per-
formed and weighted by delay and the other on the polarity of the delay i.e Af,
for 7 < 0 and Ay for 7 > 0. This weighted correlation function is then averaged
over time. The position judgement is finally made by comparing the integral of
this final over positive values of 7 with the value got from the negative values of
7. Dolan and Robinson ([8]) and McFadden ([26]) considered the assumption that
binaural unmasking for a fixed target signal is determined by the correlation of the
noise and also introduced additive internal noise to explain the dependence of un-
masking on the overall and interaural amplitude ratio of the external noise. While
correlation based models seem to explain several of the binaural phenomena, they
make a fundamental assumption of the presence of neural delays, the presence of

which have not been confirmed.

VI Conclusion

All the models that been propose above are unable to explain more than a small
portion of all the existing data on binaural interactions. Some of them are unable to
relate assumptions or parameters used, to known physiological results. If a model

were to be made summarizing the elements common to almost all the models

11
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proposed till now then it would look like the one shown in figure 2.7 ([11]).
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CHAPTER

THREE

STEREAUSIS : PROCESSING WITHOUT NEURAL DELAYS

I Introduction

As was described in the previous chapter, several models have been proposed to
explain binaural phenomena, of which the most successful has been the Sayers and
Cherry cross correlation model ([32]) which is based on the early Jeffress network
([19]). In an attempt to biologically justify the mathematical processing in the
correlation models, the most common assumption has been to associate the various
lags in the computations with “neural delays” e.g neuronal pathways of different
lengths or latency effects. A typical network based on these principles is shown in
figure 3.1. It can be seen that following the frequency analysis of the cochlea, each
fiber projects to the cross-correlator with a precise topologically ordered range of
delays that allows its correlation with the output from the other cochlea of the
fiber with the same characteristic frequency(CF). While it may not be tenable
to assume a total absence of neural delays in the binaural processing system, it
seems incorrect to assume that sufficient precise delays exist to account for the
time difference of 750 microseconds difference that can exist between the signals to

the two ears especially since there is as yet no direct anatomical or physiological
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support as to the existence of such a network or of the essential functional relevance
of neural delays. Therefore, it should be emphasized that the idea of a cross-
correlation model was not proposed because of compelling experimental evidence
but rather to satisfy a literal interpretation of a convenient mathematic function
(the correlation function) coupled with a highly schematic view of the cochlea
as a bank of extremely sharply tuned bandpass filters which respond to only one
frequency. This view of the basilar membrane is inexact and, as shall be elaborated
later, several features of the spatio-temporal response are ignored which, if used,
could make neural delays totally redundant.

In the following sections, a biologically realistic neural network is proposed
which accounts for two important aspects of binaural hearing - lateralization and
signal enhancement, without the use of any neural delays. On account of the funda-
mental similarities that emerge between this network and the type of computations
proposed for “stereopsis” in vision ([25]), this network is called the “stereausis”
network. Section II will deal with the spatiotemporal responses of the basilar
membrane which are the input to the sterausis network; Section III will discuss the

topology and details of the network.

IT The Network Input Patterns

Auditory stimuli at the external ear set up a series of complex patterns on the
basilar membrane which depend upon the spectrum and intensity of the sound
stimulus. The stimulus impinges on the tympanic membrane (eardrum) which in

turn sets up a vibration in the bones of the middle ear (malleus, incus and stapes).

14
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The displacement of the stapes is transduced into ripples in the cochlear fluid which
set up traveling waves on the basilar membrane lining the inner wall of the cochlea,
with each point on the basilar membrane vibrating at the frequency of the input
sound stimulus. These traveling waves conform to an envelope which depends
on the spectrum of the input sound. Corresponding to each frequency there is a
characteristic envelope which peaks at a different location on the membrane. The
tonotopic arrangement of the membrane is such that the lower the frequency of the
stimulus, the closer the peak of the envelope is to the apex of the membrane. The
rising edge of the envelope is gradual while the falling edge is extremely steep as can
be seen in figure 3.2. In the case of a complex sound input, a peak can be observed
in the envelope at locations corresponding to all the main frequencies observed in
the spectrum of the stimulus. While the magnitude response of the membrane
determines the shape of the envelope, the phase response of the membrane is the
source of the traveling waves. A phase shift is observed on the membrane which
increases to a maximum around the region of the CF. It must be noted that while
at lower frequencies, the fine temporal structure of the traveling waves can be seen
clearly and phase locking occurs, at higher frequencies the only distinguishable
feature of the spatiotemporal response is the envelope.

A simplified schematic of the biophysical cochlear model is shown in figure 3.3
([35]). It comsists of a linear 2-dimensional hydroelastic basilar membrane model,
followed by the velocity fluid-cilia coupling stage and finally the biophysical model
of the inner hair cell. The hair cell model consists of a sigmoidal non-linearity

due to the threshold and saturation characteristics of the hair cell transduction

17
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mechanism. The non-linearity leaves the spatial features of the spatio-temporal
patterns unaffected over wide ranges of stimulus intensity. The cochlear model
used, ([18], [35]) assumes the basilar membrane to be divided into 128 channels,
each channel corresponding to a nerve fiber where the frequency scale of the mem-
brane is approximately logarithmic. The characteristic frequency of the fiber is
defined as that frequency for which the fiber shows maximal activity. The cochlear
spatiotemporal patterns are formed using digital filters and the responses to the
stimulus are generated using an FFT based overlap-and-add method. The output
is then highpass filtered (wn = un — 0.8u,—1) modeling the outer ear and fluid-cilia

coupling stages; compressed by a sigmoidal function of the form

M
(1 + be(-aw))

T =

where a, b and M are parameters of the non-linearity; finally lowpass filtered with
time constant 0.1 to 1 msec to smooth the output. The response of the model
to a 600 Hz. pure sinusoid is shown in figure 3.4 along with the input stimulus.

The 3-dimensional output shown is also called the “waterfall” output and plots the

18
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cochlear excitations in time. The markings on the vertical axis represent frequencies
on the membrane. The maximal phase shift of the response at the frequency of the
input is clearly seen in the sharp bending of the pattern around the region of the

CF.

IITI The Stereausis Network

While it is difficult to find conclusive evidence in support of any binaural processing
neural network model, at best, one can show that the relevant existing physiological,
anatomical and psychophysical data are consistent with the various aspects of the
proposed model and that the basic model design principles are in harmony with

the fundamental principles of organization of the mammalian auditory system. The

19



following are a few of the basic assumptions of the stereausis network :

1. The primary pathways of the auditory system maintain their tonotopic order
from the basilar membrane through several central nuclei up to the cortex
([20]). This emphasizes the importance of the spatial dimension in auditory

processing at all the levels.

2. The fine temporal structure of the responses on the auditory nerve, crucial
to binaural processing is preserved in the responses of the Bushy cells of the
anteroventral central nucleus (AVCN) which project partially via the Nucleus
of the Trapezoidal Body (NTB) to the nuclei of the superior olivary complex
(SOC), where significant binaural interactions are recorded. It can thus be
concluded that binaural networks that utilize this temporal information are

presumably located at this level ([41]).

3. While it is known that binaural processing at lower frequencies primarily de-
pends upon the Interaural Time Differences (ITD) and processing at higher
frequencies on the Interaural Level Differences (ILD), it is unclear at present
whether separate or identical binaural networks process these differences.
Nevertheless, considering the similarity of the intended psychoacoustical at-
tributes, it would be desirable to propose one network that can gracefully
process both types of cues or at least show that closely related networks
underlie their processing. The same would hold true for onset and ongoing

(continuous) interaural cues.

20



The input patterns used by the binaural processing network are generated using
a simplified biophysical model of the basilar membrane where the nerve responses
are represented by their instantaneous probability of firing. The stereausis network
combines the ipsilateral and contralateral cochlear outputs in a simple ordered
matrix of operations. The activity of node (¢,j) of the matrix is the output of
combining the responses of the ¢t* ipsilateral fiber #; and the j** contralateral fiber
y;. The inputs are combined to produce an output o;; = C(zi,y;) where C is a
correlation measure between inputs. Thus the cochlear response at a given CF
location in one ear is correlated with outputs from the same CF and locally off-CF
fibers from the other ear such as z; with y;_y1, y; and y;_;. See figure 3.5. As
shall be shown shortly, this spatial cross-correlation is proportional to a normal
cross-correlation in time because of the finite velocity of the traveling waves. This
possibility seems to have been first proposed by Schroeder ({33]). Thus nodes along
the diagonal cgx receive inputs from corresponding CF locations from both ears
while nodes on axes parallel to the diagonal receive systematically spatially delayed
inputs. Next the outputs are further processed by a spatial lateral inhibitory-
excitatory mask to enhance the results. Finally the output patterns are averaged
over time for about 12 msecs(which may be thought of as the time constant of
the neurons). The exact form of the correlation is not crucial to the network
as long as it generates a consistent correlation measure of its half wave rectified
inputs. All the data that is shown in this report has been done using the function
Clz,y) = (z +y)*

The output patterns obtained using other functions such as
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Clz,y)=z—y, Clz,y)=z*y,and C(z,y)=x+y
though not shown in this report, are essentially similar to the results shown.
Now to show that the spatial correlation is equivalent to a temporal correlation,

consider the output of the network to be specified as :

0i; = Cl(zi,y;)
= [ st @ us(tat (3.1)

where @  is some mathematical correlation operator
z;(t) is the response of the i** ipsilateral fiber
y;(t) is the response of the j** contralateral fiber

T  is the time period over which the output patterns are averaged

Let
zi(t) = Ai(w)sin(wt + 6;(w)) (3.2)
yi(t) = Ay(w) sin(wt + 0,(w)) (3.3)
where A;(w), Aj(w), 0;(w) and 0;(w) are the amplitudes and the phases of the

traveling waves at the ¢** and j** locations of the two cochlea for a frequency w.

If 7 and j have close CF locations on the membrane,

Ai(w) Aj(w)

Q

Hj(w) = 0;(w) e A()(w)
yi(t) = Afw)sin(wt + 8i(w) — Adw)) (3.4)
If the velocity of the traveling wave is assumed to be a constant v over the small

distance As between the locations 7 and 7 on the membrane, the spatial frequency
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of the wave w, can be expressed by the relation :

w, = = 3.5
.= (3.5)
Abw) = w,*As
= —As
v
= WT, (3.6)

where 7, is the time taken by the wave to travel the distance As at location i on
the membrane.

Substituting in equation 3.4
yi(t) = Ai(w)sin{w(t —1,) + 0:(w))
= yi(t—1) (3.7)
Thus, substituting in equation 3.1

0y = /T 2i(8) @ yi(t — 7,)dt (3.8)

It can be seen from the above equation that a spatial cross correlation along the
length of the basilar membranes of the two ears over small areas around the CF is
equivalent to a temporal correlation of the inputs at identical locations on the two
membranes.

The specific ON-center OFF-surround mask used to sharpen the output in the
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processing was as below :

I S Y Cikt2
—3 =3 =3 .iiin.n. Chkt1
44 44 44 eienn.. Crk

~3 =3 —3 ieienn. Chk—1
B T (T R Chk—2

Although the mask was applied in a non recursive (feedforward) manner to speed
up the computations, similar results can also be got in a recursive (feedback) con-
figuration, a topology that is commonly reported in physiological literature ([17],
[25], [34]). Figure 3.6 shows the output of the network to two simple input patterns
crudely mimicking the actual cochlear inputs : a single pulse sweeping across the
spatial axis of the two inputs and a pair of pulses with a fixed separation moving
across the input space. In figure 3.6a when the input patterns are identical, max-
imum activity occurs along the diagonal corresponding to maximum correlation
between corresponding locations on the two membranes. Since the pulse height is
fixed, the activity occurs uniformly all along the diagonal. When the inputs are
now relatively phase shifted as is the case in figure 3.6b, the line of activity moves
away from and parallel to the diagonal towards the side corresponding to the lead-
ing input. The shift is parallel to the diagonal since the pulse moves at a constant
velocity and maintains a constant spatial shift with respect to the pulse on the
other membrane. While the output patterns in figures 3.6c and 3.6d are similar
to the cases already cited, the output feature to be noted is the presence of two
secondary peaks of smaller amplitude corresponding to the correlation between the
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Figure 3.6: Network response to pulses traveling across the membrane

non-corresponding pulses on the two membranes. It should be noted that maximal

activity is still in the central peak.

IV Binaural processing in the Stereausis network

The stereausis network was tested on several classes of inputs to show its ability to
explain several binaural phenomena. There were six classes of which the first dealt

with lateralization and the last with signal detection and enhancement in noisy

environments :
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1. Lateralization of low frequency tones (< 1.5kHz.) using interaural time delays

(ITDs).
2. Lateralization of high frequency tones — Interaural intensity differences (IIDs).
3. Time-intensity trading for low frequency tones.
4. Lateralization of speech and harmonic complex stimuli.
5. Lateralization of broadband noise.
6. Detection and enhancement of tones in noise.
The computations performed in the network on the inputs are as follows :

1. The stimulus is processed by the cochlear model to generate the spatiotem-
poral response patterns of the auditory nerve (similar to those in figure 3.4).
All responses are expressed in terms of the instantaneous firing rates of the

cells.

2. Each (4, 7)™ node of the binaural network performs the following coincidence
operation :

¢ij = (zi(n) +y;(n))? (3.9)

where z;(n) and y;(n) are the ipsilateral and contralateral inputs at time n.

Thus at each time instant n, a two dimensional matrix of activities ¢;; is

computed.

3. Each frame is then processed by the LIN nonrecursive mask explained earlier
and then half wave rectified to remove negative outputs.
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Figure 3.7: Network output for time shifted 600Hz. tone

a] zero shift b] % shift ¢] 2= shift d] = shift

In this thesis, only two of the above cases are discussed, the lateralization of low
frequency tones and the time-intensity trading effects. The results for the other
cases can be found in the thesis work of Naiming Shen ([36]).

Lateralization of a 600Hz. tone :

A lower frequency tone evokes a traveling wave that is conveyed to the binau-
ral network via the phase locked responses of the input pathways. The responses

of the network to phase shifts of 0, %, 2—3’5 and 7 are shown in figure 3.7. They
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are qualitatively very similar to the responses of the network to the simulated in-
puts (figure 3.6) in that a primary correlation maximum emerges, accompanied
by several secondary peaks arising from the multiple peaks within the traveling
wave envelope. It is observed that almost all the output activity is concentrated
around the CF location specific to the input tone (600Hz. in this case). Varying
the frequency of the input excitation would cause the active region to move along
the spectral axis i.e. along and parallel to the diagonal AB. The spectral plot in
the upper left corner of each output samples activity along and adjacent to this
spectral axis. The other interesting feature of the outputs which is different from
the simulated case is that the secondary maxima converge towards the primary
peak rather move parallel to it. This is due to the rapidly increasing slope of the
spatial phase function of the traveling wave and the accompanying decrease of the
spatial separation of the peaks beyond the point of resonance. The ITD causes the
binaural patterns to shift off the AB axis. This shift is clarified in the disparity
plot which samples the network outputs around the region of the band drawn in
the figure. For the centered tone, a dominant peak of activity appears along the
AB diagonal; when a tone is binaurally delayed, the pattern shifts accordingly and
the relative height of the primary to secondary peaks decreases gradually. At =
shift, the secondary peak is so large that there are now two equal peaks on either
side of the midline. With further shifts, the previously secondary image moves
further towards the center and now becomes the dominant peak. The periodic
behavior of these patterns and the appearance of multiple confusing images at ©

phase-shifts correspond closely to the lateralization of continuous low frequency
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tones performed by human and animal subjects ([11], [31]).

Time-Intensity trading for low frequency tones

For low frequency tones, both phase as well as amplitude disparities can be pre-
served in the responses of the auditory nerve and hence detected by the stereausis
network. Figure 3.8 illustrates the effect on the network output of increasing the
ILD of a centered 600Hz. tone. Two regions of activity emerge along the disparity
axis in this experiment: (1) the centered primary peak whose location remains
relatively fixed reflecting the zero phase shift between the two inputs and (2) the
secondary peak which grows relatively in height and broadens with the increase
in the ILD. The result can either be viewed as a single broad auditory event with
a center of gravity that is lateralized as the relative height of the secondary peak
increases or alternatively, the two peaks can be viewed as two distinct auditory
percepts - one remaining in the middle corresponding to the zero phase shift and
the other migrating to the side of the head corresponding to the ILD becoming
more spatially blurred as the level difference increases. The second interpretation

was most often reported in similar psychoacoustical experiments ([40]).

V Concluding Remarks

The fundamental difference between the stereausis network and the Jeffress model
is in the use of spatial versus temporal correlations to extract the binaural cues.
The major implication of this distinction is the functional role of neural delays, one
that both relates and distinguishes the two models. Neural delays are an inevitable

occurrence in any biological network where information is transmitted from one
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Figure 3.8: Network output showing time-intensity trading at low frequency

a] centered tone b] same as (a) with ILD = 3db.

c] same as (a) with ILD = 6db d] same as (a) with ILD = 12db.
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point to another. The two models represent two extremes on the relevance of such
delays. While they are pivotal to the Jeffress model, they are completely ignored
by the stereausis network. In reality, it would seem likely that an intermediate
view exists and the two models simply represent two ideologies through which the

functioning of the biological network can be understood.
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CHAPTER

FOUR

INTRODUCTION TO NEURAL NETWORKS

I Introduction

A neuron is the basic unit of processing and memory storage in the human body.
A set of neurons connected together with different connectivities forms a network
which is a strong tool for pattern recognition and associative memory. Networks
are formed due to the synapses between neural axons and dendritic trees. The
strength of these synapses can be varied based on several learning rules. Each
neuron can be modeled by a transfer function combining the inputs to generate a
train of spikes which is proportional to the output. Section II in this chapter will
discuss the neuronal model used in later computations. Section III is an overview of
the different kinds of network connections possible and their functional differences.
The final section of the chapter deals with the various kinds of learning rules used

for connection formations in neural networks.

II The neuron model

A neuron consists of a cell body, receiving inputs from a dendritic arborization.
The cell body terminates in a long axon which transmits the output signal to
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Figure 4.1: A Neuron based system

one or more neurons and in some recursive networks to the same neuron itself.
Input and output signals in neurons are in the form of electrical pulses also termed
as “spikes” where the number of spikes per time instant in an axon or dendrite is
proportional to the level of activity in that process. Axons connect to other neurons
by converging on the dendritic input trees and making a connection at a “synapse”.
The synapse regulates the amount of current flowing from the axon into the dendrite
and thus the influence of the source neuron(from which the axon emanated) on
the destination neuron (the neuron associated with the dendritic tree). A neuron
would thus receive inputs from various axons each weighted by the strength of the
corresponding synapse. These input signals combine to generate a potential in the
cell, which, if above a threshold causes the neuron to fire. Depending upon the

type of neuron and its output it could either saturate or maintain a steady value.
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A general neuron based system is shown in figure 4.1.

For computational and analytical purposes, a neuron can be represented as a
processing unit and a whole set of such units would form a parallel distributed
processing system ([29]). Each unit is relatively very simple, performing the rudi-
mentary task of receiving inputs from its neighbors, computing an output value
which is a function of its inputs and sending that value to its neighbors. A unit
can compute at the same time as some other unit leading to a massively parallel
system. In a general system, units can be divided into three categories : input,
hidden and output units. Input units receive signals from sources which are ex-
ternal to the framework under consideration, but their outputs propagate to other
units within the system. Such units are usually sensory units or interfaces to other
processing systems. Output units obtain their inputs from within the system but
they send output signals out of the system under consideration either to other
processors or to the motor system. The hidden units, as the name suggests are
completely imbedded inside a system and are not visible at the interface levels.
They receive signals from and transmit signals to other units within the system.
Associated with each neuron is an activation state which is a measure of the ac-
tivity of that unit. It is a function of the inputs signals received by the unit and
could either be continuous or discrete. The simplest case would be when the state
of activation is a weighted combination of all the inputs to a neuron. A discrete
activation function would have a value at one of two or more state values. (The
most common case would be a binary one where the unit could either ON or OFF.)

The output of the unit at any instant in time is a function of the state of
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activation of the unit at that moment. The output signal would serve as an input
to other processing units or to an external system and the strength of this signal
would affect the functioning of the succeeding neuron. The function transforming
the state of activation to the output signal could be a simple step function, a
sigmoidal or a signum function. Depending upon the type of system, any neuron
could excite or inhibit all other units, or their patterns of connectivity could be
restricted by some constraints imposed by the system under consideration. If strong
output activity of neuron X reinforces the output of neuron Y, X is said to “excite”
Y or alternatively the input to Y from X is called “excitatory”. If on the other
hand, strong activity on neuron X causes neuron Y to be shut off, or its output to
diminish, the input to Y is said to be “inhibitory” or neuron X inhibits neuron Y.
Each link between any two neurons is associated with a weight which is a measure
of the impact that one neuron has on the other. Mathematically, a positive weight
implies an excitatory link and a negative weight an inhibitory connection. A weight
of zero would imply that there is no direct effect of one neuron on the other. The
pattern of connectivity and the weights of the links are very important since these
represent what the system knows or what features the system can identify in the
input. For every system, a connectivity matrix can be formed which is a square
matrix with as many rows as there are processing units. Elements in the matrix
represent the weight of the link between the neuron corresponding to its row and
the neuron corresponding to its column. The nature of the matrix determines the
nature of the system and the kind of processing it performs. Other information

such as the fan-in (number of elements that excite or inhibit a unit) and fan-out
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Figure 4.2: Feedforward Architecture in neurons

(number of units directly affected by a unit) are also embedded in this matrix.

III Neural Network Connections and Architectures

Neural networks can be connected by two kinds of architectures, a feed-forward
fashion or a recursive connection. If neurons are assumed to be stored in layers,
all connections are only in one direction in feed-forward connections. Neurons in
a layer are affected only by neurons in previous layers. An example is shown in
the figure 4.2. A recursive or feedback architecture on the other hand imposes
no restriction on the direction of the connections. See figure 4.3. A neuron can
feed its outputs to previous layers or even to itself. It is obvious that feedforward
networks are just a subset of recursive networks. A recursive architecture can be
modeled by a feedforward network although the representation would most often
require more neurons, more connections or both.

A neural network can represent two basic kinds of knowledge: an associative

memory or a regularity/pattern detector. An associative memory is a setup which
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learns to adjust its connectivities so that a particular input or pattern of activation
to a system will always result in another distinct pattern at the output. It would
usually be required that an associative memory map an orthogonal set of inputs
into an orthogonal output set. Such a network is employed when patterns must
be stored to recall them at some future time. Regularity detectors are networks
that update their connectivities so that one or more characteristic features in a
pattern of input activity can be detected or locked onto. They would be useful in
detecting distinct classifying features in input signals. In several cases, however, a
combination of both these modes of representations may be required to achieve the
desired output. It may be required to detect a regularity in the input which must
later be mapped into a certain specific output pattern. An example of this is the
problem of sound localization of sound to which these learning networks have been
applied in succeeding chapters; a regular systematic difference in the cochlear input
from the two ears must be detected and depending upon the spatial separation and
the frequency of the tone (determined by its location on the basilar membrane), it
should be mapped into a specific location/region on the azimuth.

An associative learning paradigm can either be a pattern association paradigm
or an auto-associative one, the former being a subset of the latter. A simple pattern
associator learns to build connections between patterns defined over one subset of
units with a pattern in another disjoint subset of units. Most often, a teacher
is provided at the latter set of units in order to guide the direction of pattern
matching. An auto-association paradigm is one where the same pattern serves

both as input as well as the output. A goal of such a system would be pattern
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completion wherein if a portion of the input is presented, it can complete the rest of
that pattern, the correctness of response depending upon the fraction of the entire
pattern being presented. Since the input and output units are indistinguishable,
connections can exist from any unit in the system to any other. It can be surmised
that while a pattern associator is a feedforward network, the auto associator is
recursive in nature. Due to the presence of a teacher in the associative learning
process, it is also called supervised learning. A regularity detector on the other hand
has no explicitly specified teacher. The system, based on its setup determines its
own teaching function. The nature of the teaching function and the input patterns

determine the feature that the network learns to extract.

IV Learning in neural networks

For any neural network, the connectivity matrix is determined by a learning rule
which is pre-specified either externally or is implicit in the network architecture.

The learning rule gathers the information it requires from the inputs, from the
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network arrangement, and from the teacher signal if it is known, and iteratively
generates a connectivity matrix which will generate a desirable output. All learning
rules can be categorized as either supervised or unsupervised learning depending
upon the presence or absence respectively of a teacher input. In the absence of
an explicit teacher, unsupervised learning algorithms rely solely upon a teaching
function which must be determined or fixed earlier. Depending upon the nature of
this function, unsupervised learning can be further subdivided into reinforcement

learning and competitive learning.

1. Supervised Learning :-
As the name suggests, a supervised learning algorithm requires a teacher or
some desired output corresponding to each input pattern/signal. Assuming
initial (random) connectivities and an output function for each unit, the
system updates the weights of the links in an attempt to minimize the error
between the teacher and the actual output i.e. update the matrix vector W
such that an error function f(¢,,0,) is a minimum where %, is the teacher
value and o, the output of the neuron for a pattern p. The exact form of
the error function f varies for different algorithms. In the special case when
the outputs are linearly separable, the supervised learning rule is reduced to
an algorithm to determine a hyperplane that separates the input patterns
into two different categories. The most commonly used learning rule in this
class of algorithms is the perceptron learning rule where the output of a unit

is a linear combination of its inputs and the error function to be minimized
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is the mean square error between the teacher and the output. While the
perceptron rule is useful only for single layer networks, Rumelhart extended

it to the backpropagation algorithm for multilayer structures.

. Competitive Learning :-

Being a type of unsupervised learning, in this class of learning rules, there is
no guiding or teaching signal which ensures at every step that the network
update is progressing in the correct direction. Every unit in the network
competes with all the other units for the right to update their weights. The
unit which has the maximum output to a particular input pattern is the
one closest tuned to that input and it wins the competition. This chosen
unit alone now adjusts its connectivities so that it is even better tuned to
this input. In this manner, each output unit will capture a certain subset
of the input patterns, and respond to all the inputs in that subset. Several
learning rules based on or similar to the competitive learning scheme have
been proposed by von der Malsburg ([38]), Fukushima ([13]), Grossberg ([15])
and Kohonen ([22], [24], [23]). This method has been used in later analysis of
sound lateralization and is discussed in detail in chapter 6. A disadvantage of
this learning algorithm is that in the absence of a teacher, it is impossible to
be sure that the learning is progressing in the desired direction thus making

it difficult to guarantee convergence to a solution.

. Re-inforcement Learning :-

This scheme is similar to supervised learning in that there is a teacher; how-
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ever the teaching signal is not a deterministic output as in the supervised
case, but rather a less informative teaching or reinforcing signal, which eval-
uates the response of a unit to an input pattern. The reinforcing signal is a
fuzzy measure of whether the output is good, bad or indifferent to the input.
This signal is very often noisy and inconsistent making it unreliable, unlike
the definite hints given by the teacher in a supervised learning algorithm. The
learning rule associates input patterns with different output patterns in an
attempt to find the association which maximizes the positive reinforcement.
Such a learning method has been test-implemented in various areas such as
reinforcement learning control ([12]; [27]), learning automata theory ([28]),
and associative searching ([2]; [1]). Finding a reliable reinforcement signal is
difficult making this learning procedure a complex one. In trying to explain
the biological phenomenon of sound localization, it is difficult to identify, or
propose and biologically justify a reinforcing signal and hence reinforcement
learning was rejected as a possible solution to the network learning problem

discussed later.

V Conclusions

This chapter is an introduction to the models and ideas used in succeeding sections

of this report. It began with a discussion on the neural model used in all further

computations, followed by a simplistic look at the different architectures present

in neural networks. A cursory study of the two main types of learning algorithms

supervised and unsupervised was presented with a closer look at two particular
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unsupervised learning procedures viz. competitive learning and re-inforcement
learning. With particular reference to the problem being studied in this report
sound localization on the azimuth, two possible solutions have been proposed; the
first based on a supervised learning algorithm is discussed in chapter 5; the other

is an unsupervised, competitive learning rule explained in chapter 6.
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CHAPTER

FIVE

A SUPERVISED LEARNING SOLUTION

I Statement of the Problem

As has been explained in the previous chapter, the process of supervised learning
requires the presentation of pairs of input and output patterns. By repeated pre-
sentation of these fixed pairs, the network must learn to align its connectivities
so that it will always associate a particular input pattern with a specific output
pattern. Once the network connectivities can produce the correct output corre-
sponding to each input it was trained on, the network is said to have learned. For
the problem of sound lateralization being discussed, the input to the network is the
responses of the basilar membrane from the two ears; the output is the activity of
a layer of neurons, in which only one is ON for the different location of the sound
source on the azimuth. Since, each location of the source corresponds to a different
spatial separation between the traveling waves on the two basilar membranes, a
set of input patterns along with a corresponding orthogonal set of output patterns
can be presented to the network as the data on which it must train. The basilar
membrane responses are obtained from a cochlear model described earlier in chap-
ter 3. The network obtains its input not from the entire membrane but rather from
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the small region around the characteristic frequency of the input. For the learning
process presented in the next section, inputs from a set of 20 points around the
location of the CF were used to train the connectivities. The network topology
consists of two layers, a layer of input neurons and a layer of output neurons. Each
input neuron is initially connected to every output neuron. It is assumed that
the initial connectivities are such that maximum weight occurs between an output
neuron and the fiber corresponding to the CF while the weights to the other input

neurons taper away on either side.

II The Learning algorithm

The algorithm used is derived from the gradient descent rule. According to this
rule, the change in connectivity of a link between two neurons is proportional to the
rate of change of output error (defined as the difference between the teacher input
and the actual output observed at the neuron) with respect to the connectivity.

Let the error surface be

E=YE,

P

where E, is the error associated with a particular output pattern p. If ¢,; is the
value of the teacher at a neuron ¢ for a pattern p, and o, the actual observed

output at the same neuron for the same pattern, E, can be defined as

E, = %E(tm’ — 0pi)’ (5.1)

Opi = OpLi * OpRi (52)



= Zw,-jij * Zw,'j:b‘jg (53)
J J

where w;; is the weight between neuron ¢ and neuron j
opri is the output from the left cochlea

opri is the output from the right cochlea

The output at a neuron is defined as the product of the output values from the two
cochlea; the output of each cochlea is the sum of all the inputs from that ear in the
region of the stimulus CF, each weighted by the connectivity of the link between
the input fiber and the output neuron. The product term in the output ensures
that the neuron is excited only if there is an input component from both ears, not
just from one of them. Thus in the case of a monaural input, these neurons are

never excited. Hence such neurons are called “binaural neurons”.

OE, OE, . Oopi

ow;; Jopi  Ow;j
. 80 "t

= —(tp — opt) * 3wij (5.4)
gz: = oppi * x;; for the left ear (5.5)
;321% = opri *zjp for theright ear (5.6)
OF.

"aw; = (tpi — 0pi)OpiopT;
O0E, .
Aw;; < — £ by the gradient descent rule (5.7)
ij

Awy; = 1ty — 0pi ) OpiopT j (5.8)

where . is the learning rate and is usually a constant.

0piop is the output of the cochlea opposite to the one being updated
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It can be seen from the learning rule above that the we
way so that the output neurons approximate the excitatios
teacher. The presence of the input term z; shows that if a

appears at an input neuron when the teacher is also high

connection between the input and output is strengthened -

of excitation. In contrast, should the teacher be low, the 1
is correspondingly reduced. Update of the weights occur:
present at both ears. Let us assume that the sound stin
monaural at the left ear, the update terms for the right
the input term in the update equation would be zero alw
0pi0p term would be the output of the right cochlea which i
is no excitation there. Each connection also undergoes a

Thus the complete learning rule is

wi; = N(tpi — 0pi)OpiopZ; + (1 — Blw

where (3 is the decay rate.

The decay rate must be slow enough to make certain that
decay to zero; if this should occur, the output from both ea
zero and no update would occur. The learning rate is also ¢
the system. The learning rule proposed is trying to find t!
surface. A low n would make learning sluggish and at tl
the system to settle at a local minimum rather than the

error surface which is the actual solution of the problem.
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other hand would make the error value oscillate across the minimum value never
actually reaching it; the connectivities therefore would not stabilize to a steady
optimal value, but instead would switch back and forth around it.

Having derived an equation for a supervised learning rule, an intuitive under-
standing of how the rule should work is presented next. It was discussed earlier
in chapter 3 as to how the traveling waves on the basilar membrane conform to
an envelope which is characteristic to the frequency of the input sound stimulus.
While interaural time disparities do not cause any difference in the envelopes of
the traveling waves at the two cochlea, the details of the traveling waves within
the envelopes will show that the peaks in one of the ears will lead those in the
other ear. Assuming that the sound stimulus leads at the contralateral ear and
that time ¢ = to corresponds to the instant the stimulus is applied to the ipsilateral
ear, figure 5.1 plots the spatial view of a traveling peak on the basilar membrane
in each ear. The details of a particular peak in the contralateral ear is shown at
different time instants as it moves along the membrane with the positions of the
corresponding peak in the ipsilateral ear. It can be seen that at any time instant ¢,
the peak in the contralateral cochlea always leads its counterpart in the ipsilateral
cochlea.

In figure 5.2 the instantaneous activity of the same pair of peaks is plotted against
the time axis. It is obvious from figure 5.1 that the activity profile of the peak in
time, will be identical to its envelope on the basilar membrane. Since the envelopes
of both peaks are identical, the input profile for the peak in the contralateral ear

is identical to the activity of the peak in the ipsilateral ear, but it is shifted in
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Figure 5.2: Peak amplitudes on the basilar membranes in time

time because of the interaural time disparity. The connectivity update at each
time instant is proportional to the output of the binaural(output) neuron at that
instant which is in turn proportional to the product of the inputs from each ear.
Hence maximum update occurs at that time instant when the product of the inputs
from the two ears is a maximum. This would occur approximately at time ¢,,4,
as shown in figure 5.2. It should be emphasized that all disparities shown in the
figures have been considerably amplified for visual clarity. At time ¢,,,., the peak
in the contralateral cochlea is at location s; and at location sg on the ipsilateral
cochlea. Hence, the strongest connectivity for this shift forms between the output
neuron, and the neuron at sy, in the contralateral ear, and the neuron at sg in the
ipsilateral ear. Thus, the temporal disparity between the traveling waves in the
two ears causes a spatial disparity of sp between the connectivities to the inputs
from the two ears. As the temporal disparity increases (decreases), it is obvious

that the spatial disparity also correspondingly increases (decreases).
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Figure 5.3: Connectivities obtained when binaural neurons have no time shifts

IIT Implementation Results

The supervised learning rule solution was implemented for three cases :

e The output neurons have no time shifts and the inputs from both ears reach

the neuron at the same time.

¢ The neurons have enough time shifts in them to compensate the shifts be-

tween the input patterns from the two ears.

e Fach neuron has an inherent time shift but the shifts are not enough to

compensate for the external time delays in the signal.

In all the cases, the network was trained on 21 shifts for a 600 Hz. input tone.
The shifts ranged from a phase shift of 2* left ear leading, to a shift of 27 right

ear leading, in steps of . There were 3 output neurons receiving inputs from
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20 input neurons centered around the CF(600 Hz. in this case) from each of the
basilar membranes. Assuming that the output neurons are named A, B and C. The
teacher input at neuron A was fixed as ON for a phase shift of § where the left ear is
leading. Neuron B is ON for a zero phase shift between the two ears while Neuron
C is ON for a phase shift of Z with the right ear leading. For each case, the output
is graphically illustrated in two parts : the right side of the figure will show the
pattern of connectivities of each output binaural neuron to all the input neurons;
the left side of the figure is a representation of the point of maximal connectivities
for each of the neurons. A line is drawn connecting the input neuron associated
with the maximum and the output neuron, so that any disparities between points
of maximal connectivity are immediately apparent.

In the first case (See fig 5.3), the connectivities of neuron B are symmetric since
the inputs from both ears are identical. Maximal connectivity is to the input fiber
corresponding to the characteristic frequency of the sound on the basilar membrane
and occurs at the same point on both ears. Neuron A which received a leading
input from the left ear shows an asymmetry in its connections. The input to
which maximum weight is assigned has now moved away from the CF towards the
left on one membrane and towards the right on the other ear. The exact reverse
occurs at neuron C. Thus it is seen that when there are no time delays in the
output neurons to compensate for the external time shifts between the two inputs,
the connectivities align themselves in a stereausis network fashion, i.e., a spatial
disparity in the point of maximal connectivity along the membrane is observed for

neurons which are active for a non-centered input. A comparison of the connectivity
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Figure 5.4: Sufficient neural delays are present to compensate the external shifts

pattern obtained by this rule and the one proposed in chapter 3 would show that
they are identical.

In case 2, there is a time shift associated with each output neuron, which is equal to
the time delay between the two inputs for which that neuron is active. The intrinsic
time lag of the neuron would compensate completely for any external delay in the
sound caused by the source not being centered. Thus, although the sound at the
two ears is not centered, at the neurons A, B and C it would appear so since the
input from the ear with the leading signal would arrive later at the neuron by a
time equal to the amount by which it was leading. In such a case, the distribution
of weights at both ears would be identical and maximal connection would be to
the same input fiber on both membranes. This means that if an internal delay

between the left and right inputs to a neuron could compensate for an external
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time shift between the signals, corresponding locations on the basilar membrane
with the same CF would be correlated. Thus a Jeffress-like ([19]) connectivity
pattern would emerge. See figure 5.4.

The most probable scenario that exists in the human body however must be a
combination of the two extreme cases discussed above. While small displacements
on the azimuth would cause shifts between the ears small enough to be compensated
by internal shifts, larger shifts may not be compensated in a similar fashion. So, for
smaller shifts, the neurons would connect themselves in a Jeffress fashion where no
spatial asymmetries would be required. As the shifts increase however, the neurons
would look for an alternate way to incorporate the external shifts since sufficient
internal delays do not exist and would achieve this by spatial separations between
the connections on the membrane. This can be seen in figure 5.5 where the spatial
movement of the point of maximal connectivity is not as much as in the first case
since the neuron now relies partially on the internal delay between the paths from
the two ears to it. For the same phase shift of Z, while the spatial disparity of the
points of maximum weights was 2 points on the basilar membrane in case 1, it has

reduced to just 1 neuron in case 3.

IV Conclusion

The learning rule proposed in this chapter relies largely on the assumption that
there is some sort of teacher which is able to distinguish between various temporal
shifts and accordingly set the response of the binaural neurons for each input. The

most obvious choice for such a teacher would be a visual map. The location of the
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Figure 5.5: Connectivities when neural delays present are not sufficiently large
sound as identified visually, would decide which neuron should be favorable to the
input. The demerits of such an assumption are discussed in the next chapter. Yet,
if such a teaching input were identified, the delta rule based supervised learning
rule proposed would be a very possible solution to the sound lateralization learning

process.
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CHAPTER

SIX

AN UNSUPERVISED LEARNING SOLUTION

I Statement of the Problem

The problem requiring solution is the same one for which a supervised learning
rule (based on the delta rule) was proposed in chapter 5 : sound lateralization.
There is a serious drawback to the supervised update process : the requirement of
a teacher input which fixes the ideal output of a binaural neuron for each input
pattern presented. If the model were to be biologically realistic, the only source
for such a teacher would be the visual map. Based upon the visual location of
a sound, the temporal shift between the excitations at the two ears is associated
with a displacement on the azimuth. However no synapses between the auditory
and visual maps have been found at or before the level of the olivary complexes,
which is where most of the early binaural processing occurs. This also poses a
problem in explaining the ability of visually impaired people to localize sound
accurately. In view of the lack of sufficient physiological evidence, some other
learning rule is required which is unsupervised in nature, one which does not rely on
any teaching signal/input. The only input available to the network is the cochlear

outputs from the two ears identical to those used in the supervised learning case.
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Neuron A Neuron B Neuron C

Neuron D
Figure 6.1: Output pattern of Binaural neurons with different delays

for different shifts
The network consists of a layer of input neurons which are excited directly by
the basilar membrane. The input neurons are all connected to a layer of output
binaural neurons. Each output neuron has an interaural delay associated with it
i.e., the input from one ear is delayed relative to the signal from the other ear by

a fixed time interval. There are no other signals or inputs in the system.

II The Learning Algorithm

The unsupervised rule proposed relies upon some ordered intrinsic time shifts to
exist along the output binaural layer. Assume that there is an array of N binaural
neurons such that they are in order of increasing internal time delay, contralateral
ear always leading. The first neuron in the row receives its inputs from both the
ears at the same time while the ith neuron sees a delay of iT between the signals
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from the two ears. If two signals relatively delayed by an amount zT (where z is
an integer) were presented to the two ears such that the leading signal is at the
ipsilateral ear, the network will perform an approximate cross correlation of the
two signals and hence neuron z shows maximal activity. However, for any shift zT'
larger than the maximum interaural delay NT, neuron N would always respond
maximally. Figure 6.1 shows the output activity for an array of 4 neurons named
A, B, C and D whose internal delays are 0.0 msecs to 0.3 msecs in steps of 0.1
msecs in response to input signals from the two ears relatively delayed by 0.0 to
0.5 msecs in steps of 0.1 msecs. It can be seen that for a shift of 0.0 msecs, neuron
A shows maximal activity, neuron B for a shift of 0.1 msecs, neuron C for a shift
of 0.2 msecs and neuron D for all shifts equal to or greater than 0.3 msecs as was
expected from the preceding discussion.

The learning rule being proposed uses a competitive learning strategy wherein
only the maximally activated neuron updates its connectivities. The output activ-
ity profile of the neurons for different shifts depends on the varying internal delays
of the neurons and hence in the absence of internal delays, this learning rule would
not produce an ordered network. The weight update rule can be derived based on
the delta rule as follows :

Assume a network with M output neurons and N input neurons where w;; is the
connectivity between output neuron : and input neuron j and Wj, is the connec-
tivity between output neuron 7 and output neuron k. Note W;; = 0 for all 1.

The error F; at an output neuron 7 is defined as the difference between the final

output at the neuron after inhibition from the other output neurons and the output
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due to the inputs from the two ears alone.

E;, = —(o, (Z Wix| * Z Wir ) (6.1)

r=1
x; is the input from the left cochlea and
z, is the input from the right cochlea

o; is the final output at neuron ¢ and is defined as follows

N N M
= fOQ wami * Y wirz, + Y, Wikog) (6.2)
=1 r=1 k=1
where f(s) is the step function,

f(,,): 1 z>6

0 z<4

0 is the threshold and W are such that the output layer forms a winner take-all
network with unit vectors constituting the only stable states of the network.

We use gradient descent to determine the update rule :

OE; . N
Z W T] * E WirZy) * (0; — T; Z WirLy) (6.3)

7 th r=1 r=1

N N M
= O wazi * D wirz, + Y Wiror)
1=1 r=1 k=1
The value of o; will always be either 0 or 1 and hence, f('x) is always 0. Hence

’

0, =0

Thus

OF: _ Z wiT * Z Wip Ty ) Z Wir Ty (6.4)

ow;;
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By the gradient descent rule,

OF;
Aw;; o s
N N N
Awij = 77331'(0:‘ - Zwﬂwl * Z wirmr) Z WirZy
I=1 r=1 r=1
N N N N
Dwij = 1Tj0i ) Wiry — NT; Y WA * 9 WinTy 3 WirTy (6.5)
r=1 =1 r=1 r=1

If the weight w;; is restricted to being between 0 and 1, and since the input is
normalized to a maximum of 1, Aw;; is less than zero if o; is 0 and is always
positive if o; = 1. In equation 6.5 above, the second term on the right hand side
is a balancing term which prevents the connectivity from becoming too large. If
the weights were constrained by some other method, the balancing term could be
eliminated from the equation. Also since the factor Zf;l wi, T, is always positive it
can be merged into the the constant 7 thus simplifying equation 6.5 to the following
update equation

Aw;j = n*x; * 0; (6.6)
where 7 is the learning rate.

As mentioned earlier, some sort of constraint is required to prevent the weights
from becoming too large. Hence, a restriction is imposed on the length of the
connections to each neuron. The length of a neuron’s connectivities is defined as
the square root of the sum of the squares of the weights of all the links to that
neuron. So after every update, the weights are adjusted so that the length of the
connections to each neuron is a constant.

Let us assume that there are N links to a neuron  each having a weight w;;
associated with it. The length of the connectivity for neuron ¢ is L; defined by the
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expression

If the weights are now updated to v;;, each weight must be altered by a factor «

to maintain the constraint. Thus

Hence

a= ——— (6.8)

In the absence of this constraint, if a particular neuron wins the competition more
often than the others, its connectivities would increase continuously until they be-
come so high that, irrespective of the input pattern presented, this neuron would
always win, and this would increase weights further ([30]). It can be seen that
restricting the length of the connection to a constant has a similar effect to de-
caying the weights at each update (as was done in the supervised training rule),
the important difference being that the decay rate here is not fixed, but changes
depending upon the existing connectivities. This constraint is more effective than
merely saturating a connectivity beyond a certain value, since it maintains the
shape of the connectivity pattern while restricting the values of the weights at the
same time.

An intuitive description of the working of the rule described above in equa-
tion 6.6 is now presented. Assume an array of neurons 1, 2, ...... , N arranged
in order of increasing axonal delays. At lower interaural time delays, since there
are sufficient internal neural delays to compensate the external delay, there is one
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particular neuron for which the axonal delay completely cancels out the interaural
time difference. Hence for any input shift, there is one neuron which sees the inputs
from both ears as arriving at the same time. Thus for that shift this is the neu-
ron which will respond maximally. As per the learning rule described earlier, the
connectivities of that neuron are tuned to respond even better to that particular
shift. Thus each neuron in the array is tuned to recognize a distinct interaural time
disparity. However the connectivity profile for all of these neurons is identical since
they all see identical inputs from both ears.

For larger interaural shifts, which cannot be compensated for through axonal de-
lays, the neuron with the largest axonal delay (neuron N at the edge) initially
responds best and hence its connectivities get updated for all such shifts. As is
explained below, this neuron gradually becomes selectively responsive only to the
largest one or two interaural shifts. The N — 1°* neuron then begins to respond to
the remaining shifts, and in turn becomes selective to the largest remaining shifts.
This propagating process continues until all interaural shifts are assigned to the
output neurons. This process is explained with the aid of figure 6.2, where we
assume that the input is leading in the ipsilateral ear. Two peaks are shown on the
ipsilateral membrane representing two different interaural shifts; peaks Q1 and Q2
are the ipsilateral counterparts of peak P1 for two different shifts, 2 obviously
corresponding to the larger shift. Let us assume that the input to the binaural out-
put neurons is initially derived from the region I1 to I4 on the ipsilateral cochlea
and from C1 to C4 on the contralateral cochlea. When peak 1 moves from I1 to

I2, there is no corresponding peak from the contralateral ear since the peak lags in
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Figure 6.2: Corresponding peaks on the contralateral and ipsilateral cochlea
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that ear. Since incremental update of the connectivities only occurs when input is
present in both cochlea, the positive update region on the ipsilateral ear for shift
S1 is restricted only to the inputs from I2 to I4. Similarly, on the contralateral
ear, the update region for S1 is from C1 to C3. If the shift is increased to 52,
the peak Q2 has to travel to I3 before any input appears in the contralateral ear.
Thus the update region reduces to the portion between I3 and 74 on the ipsilateral
membrane and C1 to C2 on the contralateral membrane. Thus it is seen that
depending upon the time disparity between the inputs, only some of the connec-
tivities get incremented while the others just decay during the normalization. This

results in two characteristics of the connectivity pattern :

1. The connectivities between the output neuron and the input neurons from

the two ears become asymmetric.

2. As the interaural time disparity becomes larger, the update regions become

smaller.

Now consider what happens to an output neuron that initially responds to both
shifts S1 and S2. From figure 6.2, the connectivities to this neuron from the
region I3 to I4 are updated for shifts S1 and S2. However, the inputs I2 to I3 are
updated only for shift S1 and decay for shift 52. Consequently the connectivities
to the region I2 — I3 begin to weaken, and with it, the response of this neuron
to the S1 shift inputs, i.e., it becomes selectively tuned to the largest shift at its
input. Simultaneously, its output response to the smaller shift keeps decreasing

until another output neuron’s response becomes relatively stronger, and the same

64



process occurs at this new neuron. In general, then, selectivity to the largest
shifts is propagated from the N** edge neuron towards the center neurons in a
process in which higher axonal delay neurons relinquish their maximal response to
a particular interaural time disparity to neurons with smaller axonal delays. The
extent of this translation depends upon the number of uncompensated (by axonal
delays) disparities which are presented to the network. Thus, for higher interaural
shifts, the same neuron may respond to more than one interaural delays, while
at lower shifts there is a one to one correspondence between the delays and the
responding neurons, i.e., the resolution of the resulting “spatial” map is best near

the center and gradually decreases towards the edges.

IITI Implementation Results

In this section of the chapter, the results obtained by implementing the unsuper-
vised competitive learning rule and the significance and reasoning behind the kind
of results obtained are outlined. The kind of processing done in the course of the

learning process was as follows :

1. The time shifted input waveforms are processed in the cochlear model dis-
cussed in chapter 3 to obtain the traveling waveforms on the basilar mem-

brane.

2. A pair of waveforms which are shifted by a randomly chosen time period are
then presented to the network for approximately 4 periods of the input signal

(6.4 msecs for a 600Hz waveform). During this period, the outputs of the
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neurons are averaged (the time can be considered as the time constant of the
neurons) and the neuron with the maximum output is selected for update.

In this step however, none of the neuron connectivities are updated.

3. The input patterns are then presented again for one period of the input signal
(1.6 msecs for 600Hz. input) during which the connectivity to the neuron
which won the competition in step 2 are updated based on the learning rule

of equation 6.6.

4. Each time the connectivities are updated, they are adjusted so that the length
of the connection to each binaural neuron is a constant. The adjustment is

done according to the procedure discussed in the previous section
The rule was tested for two different conditions :

e The internal delays of the output binaural neurons were sufficient to com-
pensate for the maximum shift between the signals presented at the two ears
during the training process. Here there are as many output neurons as there
are shifts presented to the network, i.e., there is a neuron with an equal and

opposite internal delay corresponding to every input shift.

e The maximum temporal delay between the binaural excitations is greater

than the maximum internal delay in the binaural neurons.

The results are displayed in the same way as in previous chapters, the distribution
of the weights on the right side and the points of maximal connectivities on the
left.
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Figure 6.3: Connectivity pattern got when every input shift is compensated

by the internal delay of a neuron

In the first case, the results obtained are identical to what could be expected based
on the results obtained in the supervised case. Due to the output activity profile
already explained, each of the output neurons would respond maximally to one of
the shifts being presented. Since there is a one-to-one correspondence between the
shifts and the output neurons, a different neuron would respond favorably to each
of the shifts presented. That neuron for which the external delay is compensated
completely by its intrinsic delay will respond to that pair of shifted input patterns.
Hence a different neuron will update its connectivities for each of the input patterns
and that neuron will see the pair of patterns as arriving at the same time. The
neurons would change their weights so that they become better tuned to a particular

pattern. However the connectivities at all the neurons remains symmetric since
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Figure 6.4: Weights obtained when more input shifts are presented than output neurons

they are all seeing signals arriving at the same time from the two ears. Thus inputs
from corresponding CF locations on the two basilar membranes will be correlated
thus resulting in a Jeffress model like network. The results obtained are shown in
figure 6.3.

In the second case, more shifts were presented than there were output neurons.
The difference between the delays was 0.15 msecs for the neurons and the input
patterns. However while there were only 4 output neurons, the minimum internal
delay being zero milliseconds and the maximum being 0.45 msecs, there were 6
input pattern pairs presented. The pair with the minimum delay was centered
(in phase) while the maximum temporal delay between the two signals was 0.75
msecs. Let us call the neurons in order of increasing internal delays as neurons

A to D respectively and the input pattern pairs as P1 through P6 again in order
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of increasing delay. Initially neuron A responds to pattern P1, neuron B to P2,
neuron C to P3 and neuron D would update its connectivities for all the remaining
patterns. By a update process similar to the one described earlier, at the end of the
training phase, neuron D becomes selectively tuned to the highest two shifts, viz.,
P6 and P5. Neuron C responds to patterns P4 and P3, neuron B to P2 and neuron
A to P1. Thus, while the localization is accurate for smaller phase shifts (smaller
displacements from the centered case on the azimuth), as the shifts get larger, the
sound sources seem to be more fused and localization becomes more blurred. This

is a commonly experienced phenomenon in binaural sound lateralization.

IV Conclusion

A learning rule was proposed which did not rely upon any external signal or teacher
and learned to localize sounds accurately based solely upon the inputs received from
the two ears. The learning rule proposed uses axonal delays to establish an initial
rudimentary order of the input patterns into groups, each such group associated
with a different output neuron and then tune each of the neurons further. Other
algorithms for self organizing maps have been presented by several others such as
Kohonen ([23]). The Kohonen algorithm was implemented to solve the problem of
sound lateralization. Although no encouraging results were obtained, the algorithm
cannot be discounted. The solution most probably requires the determining of
the optimal parameters so that some meaningful results can be obtained. The
algorithm proposed in this report is more robust and the learning rate, which is

the only free parameter can be chosen from a fairly wide range of values.
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The learning rules attempt to explain the formation of a network which can
localize sound on the azimuth. The update rules used are general and are not
biased towards any particular kind of topology. The only inputs to the network
are the travelling waves from the two ears and the desired goal, viz., lateralization
of sound. In the supervised case, the goal is in the form of an explicitly specified
output for each input pattern pair. Using the error at the binaural neurons and
the Widrow-Hopf rule, the weights were updated. In the unsupervised case, the
presence of delays in the neurons is used to generate an output profile which re-
solves the competition between the neurons as to which neuron shall update its
connectivities. The interesting feature of the results obtained in both cases was
that they encompassed the previously proposed Jeffress network as well as the
stereausis network proposed in this thesis. In the case when sufficient delays are
present in the binaural neurons to compensate the maximum temporal shift at the
two ears, for both the learning rules, a Jeffress like network emerges where inputs
from corresponding CF locations on the two cochlea are cross correlated to deter-
mine the shift. In the other extreme when no delays exist at all, the unsupervised
rule breaks down since there is no criterion by which the competing neurons can
resolve which one will update its weights. While Kohonen ([23]) does suggest that
an automatic sorting of the inputs into groups would occur, implementation of that
technique for this problem did not result in any ordering at all. In the supervised
case, however, a lack of neural delays resulted in a network which depended on
spatial disparities alone, similar to the stereausis topology. Finally, in a realistic

case where smaller delays were available (though not enough to entirely compen-
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sate the external delays), these delays in conjunction with small spatial disparities
on the membrane (required only for higher phase shifts) were able to compensate
the external delays and thus localize the source. In the supervised case again, an
output neuron exists corresponding to every distinct input pattern pair presented
and hence each location in space can be uniquely identified. In sharp contrast,
a one-to-one correspondence is not present between the binaural neurons and the
input pairs in the excitation set in the unsupervised case. It is observed that while
small phase shifts uniquely correspond to a certain neuron, larger shifts are more
grouped in that, a single binaural neuron can respond maximally to more than one
input pattern.

The network learning rules proposed have been tested successfully for low fre-
quency time shifted inputs. The next step would be to determine the effect of
such rules on signals with level differences. At higher frequencies, phase locking
does not occur and hence time shifts are of no use at all. It has been shown that
the stereausis network can detect level differences ([36]); but the training rules
have not been implemented at higher frequencies. Even at lower frequencies, level
differences show a time intensity trading where one can compensate the other. Sim-
ilar processing has been proposed for visual depth perception or binocular vision.
This would imply that such a network is a general one which could possibly be

implemented in other kinds of processing as well.
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