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Abstract

In a previous paper [15], we showed that supervisory control of nondeterministic dis-
crete event systems, in the presence of driven events, can be achieved using prioritized
synchronous composition as a mechanism of control, and trajectory models as a modeling
formalism. The specifications considered in [15] were given by prefiz-closed languages. In
this paper, we extend the theory of trajectory models and prioritized synchronous compo-
sition to include markings so that non-closed specifications and issues such as blocking can
be addressed. It is shown that the usual notion of non-blocking, called language model non-
blocking, is inadequate in the setting of nondeterministic systems, and a stronger notion,
called trajectory model non-blocking, is introduced. Necessary and sufficient conditions for
the existence of non-marking and language model non-blocking as well as trajectory model
non-blocking supervisors is obtained for nondeterministic systems in the presence of driven
events. We also show that our approach is also suitable for modular supervisory control.

Keywords: discrete event systems, supervisory control, nondeterministic automata, driven
events, prioritized synchronization, trajectory models, blocking
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1 Introduction

Discrete event systems are systems that involve quantities which take on a discrete
set of values and which are constant except at discrete times when events occur in the
system. Examples include communication networks, intelligent vehicle highway systems,
manufacturing systems and computer programs. Supervisory control theory was developed
to provide a mathematical framework for the design of controllers for such systems in order
to meet various qualitative constraints. A survey of this area (up to 1989) with extensive
references may be found in [14].

The majority of the research effort in this area has focused on the supervisory control
of deterministic systems, and relatively little progress has been made towards supervisory
control of nondeterministic systems—systems in which knowledge of the current state and
next event is insufficient to uniquely determine the next state. Nondeterminism in the
context of supervisory control arises due to unmodeled system dynamics such as suppression
of “internal” events, suppression of “ticks of the clock” to obtain the untimed model from a
timed model [2], partial observation of the system behavior due to lack of enough sensors or
presence of faulty sensors, etc.

In the Ramadge-Wonham approach to supervisory control, every event is generated by
the plant and synchronously executed by the supervisor [13] which acts passively by dis-
abling certain controllable events possible in the open-loop plant. The disablement action
is accomplished by a control-input map which specifies a set of disabled events hased on
the current state of the supervisor. Alternatively, in the work of Kumar-Garg-Marcus [10],
the disablement action is accomplished by removing certain transitions from the structure
of the supervisor while continuing to require that the plant and supervisor be connected by
strict synchronous composition (SSC). In the work of Golaszewski-Ramadge [3] and, in the
real-time setting, the work of Brandin-Wonham [2], the supervisor is able to initiate certain
so-called forcible events that the plant synchronously executes. In the work of Balemi and
coworkers [1], events can originate in the supervisor (so-called command events) or in the
plant (so-called response events). The assumption is made that the plant and supervisor are
mutually receptive, meaning that neither the plant nor the supervisor can refuse to execute
an event initiated by the other.

Common to all of the above approaches is the assumption that there are never events
which may occur in the supervisor without the participation of the plant. However, this
assumption may be unreasonably restrictive for nondeterministic systems. When the plant
is nondeterministic, there is generally no way to know a priori whether a command issued
by the supervisor can be executed by the plant in its current state. For example, it may
be impossible to know that a device is in a faulted state until after it fails to respond to a
command from the controller.

Heymann has introduced an interconnection operator called prioritized synchronous com-
position (PSC) [4], which relaxes the synchronization requirements between the plant and
supervisor. Each process in a PSC-interconnection is assigned a priority set of events. For
an event to be enabled in the interconnected system, it must be enabled in all processes



whose priority sets contain that event. Also, when an enabled event occurs, it occurs in each
subsystem in which the event is enabled. In the context of supervisory control, the priority
set of the plant contains the controllable and uncontrollable events, while the priority set of
the supervisor contains the controllable and driven events. Thus, controllable events require
the participation of both plant and supervisor; uncontrollable events require the participa-
tion of the plant and will occur synchronously in the supervisor whenever possible; driven
events require the participation of the supervisor and will occur synchronously in the plant
whenever possible.

It is important to distinguish between PSC and other types of parallel composition in the
literature. For example, Hoare [6] defines a concurrent composition operator in which each
process has its own alphabet and the processes synchronize on the events in the intersection of
their alphabets. This is generalized to trace-dependent alphabets, called event-control sets,
by Inan-Varaiya [9]. The key difference between concurrent composition and PSC is that in
PSC, although a process cannot block events which are outside its priority set, it may be
able to execute these events—and, whenever possible, will execute these events synchronously
when they occur in the other process!.

Language models identify processes that have the same set of traces. The failures model of
Hoare [6] identifies processes that have the same set of so-called failures. Failure equivalence
refines language equivalence. Heymann showed that failure equivalence is too coarse to
support the PSC operator [4]. In other words, there exist plants Py, P, with the same failures
model (and hence with the same language model) such that their PSC’s Py 4|l S, P24lls S
with a common supervisor have different language models. Thus, neither the language model
nor even the failures model retains enough information about a process to do control design
using the operation of PSC.

This has led Heymann to introduce the trajectory model, a refinement of the failures
model [4, 5]. The trajectory model is similar to the failure-trace model (also called the refusal-
testing model) in concurrency theory [12], but differs from this model in its treatment of
hidden transitions. The trajectory model treats hidden transitions in a way that is consistent
with the failures model. In a previous paper [15], we proved that if P;, P, and S, S, are
nondeterministic state machines (with e-transitions), and if the pairs Py, P, and &1, S; each
have the same trajectory models, then Py 4|l S1 and P; 4]|p Sz have the same trajectory
model-and hence the same language model as well. Thus, the trajectory model retains
sufficient process detail to permit PSC-based controller design.

In [15], we showed that supervisory control of nondeterministic discrete event systems,
in the presence of driven events, can be achieved using prioritized synchronous composition
as a mechanism of control, and trajectory models as a modeling formalism. The specifica-
tions considered in [15] were given by prefiz-closed languages. In this paper, we extend our
previous work on supervisory control of nondeterministic systems using trajectory models

1f applied to so-called smproper processes, the parallel operator defined by Inan [8] can be viewed as
a generalized form of PSC, but only in the deterministic setting. However, when supervisory control is
considered in this reference, the assumption is made that the plant is proper and has a constant event
control set. This assumption excludes driven events.



and prioritized synchronous composition to include the notion of markings, by introducing
the notion of recognized and generated trajectory sets, so that non-closed specifications and
issues such as blocking can be addressed.

The usual notion of non-blocking, referred to as language model non-blocking in this
paper, requires that each trace belonging to the generated language of a controlled system
be extendable to a trace belonging to the recognized language. This property adequately
captures the notion of non-blocking in a deterministic setting. However, the execution of
a trace belonging to the generated behavior of a controlled nondeterministic system may
lead to more than one state. Language model non-blocking only requires that every such
trace be extendable to a trace in the recognized behavior from at least one such state—as
opposed to all such states. Thus, a language model non-blocking nondeterministic system
can deadlock, as illustrated by the example in the next section. Consequently, there is a
need for a stronger type of non-blocking for nondeterministic systems. This leads us to
introduce the property of trajectory model non-blocking, which requires that each refusal-
trace belonging to the generated trajectory set of a controlled nondeterministic system be
extendable to a refusal-trace belonging to the recognized trajectory set.

Another desirable property of a supervisor is that it should be non-marking, i.e., given a
trace (respectively, a refusal-trace) of the controlled system, it should belong to the recog-
nized language (respectively, the recognized trajectory set) of the controlled system if and
only if a marked state of the uncontrolled system is reached due to its execution (regardless
of the type of state reached in the supervisor). We first obtain a necessary and sufficient
condition for the existence of a non-marking and language model non-blocking supervisor for
a given nondeterministic system in the presence of driven events. This result is then used to
obtain a necessary and sufficient condition for the existence of a non-marking and trajectory
model non-blocking supervisor in that setting. We also demonstrate that our approach is
suitable for modular supervisory control.

2 A Motivating Example

In this section, we describe an example that illustrates some of the issues to be
addressed in this paper. Figure 1(a) gives a deterministic model for a plant in which parts
arrive at a machine from a conveyor and are then processed. The incoming parts are of two
types that differ slightly in their widths. The standard width is the wider one. Events a4
and a; denote the arrival at the machine of wide and narrow parts respectively. Events b,
and b, denote the input into the machine of a part with the guides set to wide and narrow
respectively. The default setting of the guides is wide, but intervention by a controller can
reset them to narrow. A wide part can only be input with the guides set to wide. A narrow
part can be input with either guide setting. However, input of a narrow part with the
guides set to wide leads to the machine jamming-event d. If a part is input with the correct
guide setting, then it can be successfully processed and output-event c. It is assumed that
a1, as, ¢, d are uncontrollable events and that there is no sensor that can distinguish between

the two widths of incoming parts—i.e., the observation mask ]\1(-) 1dentifies @, and ay-—say



M(a1)=M(a2):=a

(a) deterministic plant (b) nondeterministic plant (c) closed-loop system

Figure 1: Diagram illustrating the example of Section 2

M(a,) = M(az) := a. A natural control specification is that the supervised plant be non-
blocking since this guarantees that continuous operation is possible.

It is clear that the performance specification cannot be met by any supervisor S of the

tamadge-Wonham type that is consistent with the observation mask. To prevent blocking
arising from the uncontrollable jamming event d, S would need to disable b; following any
occurrence of a,. However, since the mask cannot distinguish between a; and as, S would
also disable b; following any occurrence of a;. But this would give a controlled plant that
would deadlock with the arrival of the first wide part.

Suppose we replace the event labels a; and ay by their common mask value a, thereby
obtaining the nondeterministic system shown in Figure 1(b). By so identifying a; and
az, the events are made indistinguishable from the viewpoints of specification, control and
observation—-whereas in the partially observed deterministic model, they are indistinguish-
able only from the viewpoint of observation. For this system, however, the nondeterministic
model is essentially equivalent to the partially observed one from the viewpoint of control
since a1, as are uncontrollable and hence could not be distinguished in a supervisory control
law. However, the non-blocking specification implicitly distinguishes between ¢; and @, and
consequently forces the definition of a new type of non-blocking appropriate for nondeter-
ministic systems.

Let P denote the nondeterministic state machine (NSM) depicted in Figure 1(b), and let
L(P), L™(P) denote its generated and recognized languages respectively. Then

L™(P) = [a(by + b2)c], L(P) = prl[a(b + by)c]"abid],

where pr(-) denotes the prefix-closure operation. Having replaced the original partially
observed deterministic model with a completely observed nondeterministic model, let us
consider whether the specification can be met by a supervisor of the Ramadge-Wonham type.
The closed-loop nondeterministic system Q obtained by disabling b; following any occurrence
of a is depicted in Figure 1(c). Since L(Q) = pr((abzc)*) = pr(L™(Q)), the supervisor is
non-blocking from the language model point of view. However, this control design is clearly
unsatisfactory since the closed-loop system can deadlock. After all, the nondeterministic
plant model is derived from the partially observed deterministic plant model, and there is
no non-blocking Ramadge-Wonham type supervisor for that model.
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The problem is that the usual language model definition of non-blocking given by L(P) =
pr(L™(P)) is not suitable for control specifications in a nondeterministic setting. This mo-
tivates us to consider a stronger non-blocking requirement which we refer to as trajectory
model non-blocking to distinguish it from the usual language model non-blocking condition.
Using trajectory models for the plant and supervisor, and PSC as the mode of interconnec-
tion, it is possible to design a supervisor so that the closed-loop system meets the stronger
non-blocking requirement. The details are given in Section 5, Example 3.

3 Notation and Preliminaries

Given a finite event set ¥, ¥* is used to denote the collection of all traces, i.e., finite
sequences of events, including the zero length sequence, denoted by €. A subset of £* is called
a language. Symbols H, K, etc. are used to denote languages. The set 2% x (¥ x 2%)* is used
to denote the collection of all refusal-traces, i.e., finite sequences of alternating refusals and
events [5, 15] of the type:

Yo(o1,21) ... (00, En),

where n € M. The sequence oy...0, € X* is the trace, and for each i < n, ¥; C ¥ is the
set of events refused (if offered) at the indicated point. Symbols P, @, R, S, etc. are used to
denote sets of refusal-traces. Refusal-traces are also referred to as trajectories.

Given s € ¥*, we use |s| to denote the length of s, and for each & < |3, ox(s) € X is
used to denote the kth event in s. If ¢ € £* is another trace such that |t| < |s| and for each
k < |t|, ox(t) = ox(s), then ¢ is said to be a prefix of s, denoted t < s. For each k < |s],
s¥ denotes the prefix of length k of s. The prefix-closure of s € ¥*, denoted pr(s) C ¥*,
is defined as pr(s) := {t € ¥* | ¢ < s}. The prefix-closure map can be defined for a set of
traces in a natural way. Given e € 2% x (X x 2%)*, we use |e| to denote the length of e, and
for each k& < |e|, £x(e) C ¥ is used to denote the kth refusal in e and o(e) € ¥ is used to
denote the kth event in ¢, i.e.,

e = Yo(e)(o1(e), Bi1(e)) - .. (an(e), Lr(e)) - .. (aref(e), Dy (€))-

If f € 2% x(Z x 2%)* is another refusal-trace such that |f| < |e| and for each & < |f],
k(f) = Zx(e) and ox(f) = ox(e), then f is said to be a prefix of e, denoted f < e. For
each k < |e|, € is used to denote the prefix of length k of e. If f € 2% x (¥ x 2¥) is
such that |f] = |e| and for each k < |f], Bx(f) € i(e) and ox(f) = or(e), then f is said
to be dominated by e, denoted f C e. The prefix-closure of e € 2% x (¥ x 2¥)*, denoted
pr(e) C 2% x (8 x 2%)*, is defined as pr(e) := {f € 2% x (R x 2%)* | f < ¢}, and the
dominance-closure of e, denoted dom(e) C 2% x (X x 2%)*, is defined as dom(e) := {f €
2% x (¥ x 25)* | f £ e}. The prefix-closure and dominance-closure maps can be defined for
a set of refusal-traces in a natural way. Given a refusal-trace e € 2% x (X x 2%)*, the trace of
e, denoted tr(e) € £*, is defined as tr(e) 1= o1(€) ... 0} (e). The trace map can be extended
to a set of refusal-traces in a natural way. Given a set of refusal-traces P C 2% x (¥ x 2%)*,
we use L(P) := tr(P) to denote its set of traces.

)



Symbols P, Q, R, etc. are used to denote NSM’s (with e-moves). Let the 5-tuple
P = (Xp, Z, 517,:6%, )(77;1)

represent a discrete event system modeled as an NSM, where Xp is the state set, ¥ is the
finite event set, 6p : Xp X (X U{e}) — 2*7 denotes the nondeterministic transition function®,
2% € Xp is the initial state, and X7 C Xp is the set of accepting or marked states. A triple
(z1,0,22) € Xp X (E U {e}) x Xp is said to be a transition if 3 € ép(z1,0). A transition
(z1,€,x3) is referred to as a silent or hidden transition. We assume that the plant cannot
undergo an unbounded number of silent transitions, i.e., P does not contain any cycle of
silent transitions. The e-closure of & € Xp, denoted e5(x) € Xp, is defined recursively as

z € €p(z), and 2’ € &;(z) = bp(a’,€) C (),
and the set of refusal events at € Xp, denoted Rp(2) C X, is defined as
Rp(z) :={c € X |ép(a’,0) = 0,Va' € &5(x)}.

In other words, given z € Xp, €5(z) is the set of states that can be reached from z on zero or
more e-moves, and Rp(z) is the set of events that are undefined at each state in the e-closure
of z.

The transition function ép : X x (2 U {¢}) — 2*7 is extended to the set of traces as
6% : X x ©* — 2%7 which is defined inductively as:

] op(z,€) = ep(2),
V€ Xp: { Vs € £*,0 € £ : 65(x, 50) 1= €p(6p(65(x, 5), 7)),

where in the last inequality, the transition function §p : X x (¥ U {e}) — 2%7 has been
extended to ép : 2X7 x (¥ U {€}) — 2*7 in a natural way. The transition function is also
extended to the set of refusal-traces as 6% : X x (2% x (T x 2%)*) — 2%7, which is defined
inductively as:

VY C X éh(2,Y) = {a' € ep(z) | T C Rp(a')},

Vee Xp:{ Ve€ 2P x (¥ x25) 0L, C Y

6E(z,e(0, X)) := {2’ € e5(8p(6}(x,€),0)) | ' C Rp(2")}.
These maps are then used to obtain the language models and the trajectory models of P as
follows:

L(P) = {s € X" | §p(2%,5) # 0}, L™(P):={s € L(P) | 6p(ap,5) N X7 # 0},
T(P):={e € 2% x (X x 27)" | &5 (2B, e) # 0}, 1™ (P) := {e € T(P) | bp(2%, e) N X7 # 0}
L(P),L™(P), T(P),T™(P) are called the generated language, recognized language, generated
trajectory set, recognized trajectory set, respectively, of P. It is easily seen that L(T™(P)) =
L™(P) and L(T(P)) = L(P). The pairs (L"(P),L(P)) and (I'"™(P),T(P)) are called
the language model and the trajectory model, respectively, of P. Two language models
(K7, K1), (K3, K3) are said to be equal, written (K{*, Ky) = (K7, Ky), if K" = K3, Ky =
I{,; equality of two trajectory models is defined analogously.

2¢ represents both an internal or unobservable event and an internal or nondeterministic choice [6, 11}.

6



4 Trajectory Models and Prioritized Synchronization

It is clear that a language pair (K™, K) with K™, K C £~ is a language model if and
only if

e K#0, and K™ C K = pr(K).

Next we obtain a necessary and sufficient condition for a given refusal-trace set pair to
be a trajectory model. This requires the definition of saturated refusal-traces. Given a
refusal-trace set P C 2% x (¥ x 2%)*, we define the saturation map on P by satp : P —
2% x (L x 2%)* where

satp(e) = Xo(o1(e), 1) ... (d)e)s Eiep)s
Y = Si(e)U{o € X | ef(0,0) & dom(pr(P))},Vk < |e].

The saturated refusal-traces of P, denoted Py, C P, is defined to be the set of fixed points
of satp(-). The following characterization of generated trajectory sets was given in [15,
Theorem 1].

Theorem 1 [15] Given a refusal-trace set P C 2% x (¥ x 2%)*, there exists an NSM P with
generated trajectory set P, i.e., P = T(P), if and only if

P+#0

P =pr(P)

P = dom(P)

satp(P) C P

Ve € P:ogpi(e) € Si(e), k<le|—1

CU WD

Corollary 1 If P is a generated trajectory set, then
1. satp(-) is idempotent,
2. P, = satp(P).

Proof: Let ¢ € P, € := satp(e), and k < |e] = |é|. We need to show that if o & X1 (¢), then
g := ¢*(0,0) € P. Since o & x(é), f := e*(0,0) € P. Since (satp(f))* = satp(e*) = &,
it follows that g C satp(f) € P by Theorem 1, Property 4. By Property 3, it follows that
g € P, so satp(é) = é. The second claim is an immediate consequence of the first. |

Remark 1 It follows easily from Corollary 1 that Properties 3 and 4 in Theorem 1 can be
replaced by the single property P = dom(Ps,:).

The following result generalizes Theorem 1 to characterize those refusal-trace set pairs
that are trajectory models of NSM’s. If ¥y,..., %, are subsets of £, then min(X;,X,,...,%,)
denotes the set of minimal sets from among the given subsets with respect to the inclusion
partial order.



Theorem 2 Given a pair of refusal-trace sets (P™, P) with P™, P C 2% x (% x 2%)*, it is
a trajectory model if and only if

T1: P#(

T2: P = pr(P)

T3: P = dom(Psa:)

T4: Ve € P:orya(e) € Brle), k<lel-1
T5: P™ = dom(Pse N P™)

Proof: First suppose that (P™, P) is a trajectory model, i.e., there exists an NSM P :=
(Xp,%,6p,2%, X5) such that T™(P) = P™ and T(P) = P. Then it follows from Theorem 1
and Remark 1 that T1 through T4 hold. In order to show that T5 also holds, we first
show that P™ = dom(P™), i.e., dom(P™) C P™. Pick e € dom(P™), then there exists
f € P™ such that e C f. Hence 65(2%,¢) D 65(2%, f), which implies that §5(2%,e) N X3 2
6%(2%, f)N X2, which is nonempty since f € P™. Thus e € P™, so P™ = dom(P™). Hence,
dom(Ps: N P™) C dom(P™) = P™. It remains to show that P™ C dom( Py N P™). We show
using induction on length of refusal-traces that for each ¢ € P and x € 65(2%, ¢), there exists
f € Py such that e C f and z € §5(2%, f). If |e] = 0, then e = ' C &, If x € 65(2%, %),
then z € €5(2%) and ¥’ C Rp(z). Set f := Rp(z); then clearly, f € Pt e T f, and
z € 65(2%, f). This proves the base step of induction. In order to prove the induction
step, let e = &€(0,X') € P, x € 65(2%,¢). Then z € ¢5(8p(z,0)), where z € 65(2%,¢€) and
' C Rp(x). Since T2 holds, e € P implies € € P. Hence from induction hypothesis, there
exists f € Pyy such that € C f and z € 65(2%, f). Set f := f(o,Rp(2)); then f € Pt e C f,
and z € 65(2%, f). This proves the induction step. Hence it follows that given e € P™, so
that there exists * € X7 with = € 5%(1:%,6), we can select f € P,,; such that e [C f and
z € §5(2%, f), i.e., f € Py N P™. Since e C f, this implies that e € dom(Pyg N P™) as
desired.

Next assume that T1 through T5 hold. We need to show that (P™, P) is a trajectory
model, i.e., there exists an NSM P such that 7(P) = P™ and T(P) = P. Consider the
NSM P := (Xp, X, bp, 2%, X7, where
Xp = Psat7
23 :={c€X|0(c0)¢ P},

XF = Pgye N P™,
6p : Xp x (2 U {e}) — 2% is defined as:
1. Ve € Pyyy,0 € X :

_ ) elo{d €Z|e(o,0)(c",0) ¢ P}) ife(o,0)€P
bp(e, o) = 0 otherwise,

2 (a). VX' C ¥ such that X' € P,y :

p(X,€) i=min({E" C X | X' € Py, ¥ C X"},
2 (b). Ve € 2% x (¥ x 2%)*,0 € £,¥' C ¥ such that e(o,X') € Py :
Sple(a, ), €) = {e(a, ) | X" € min({E C ¥ | e, V) € P, ¥ C S}



The NSM construction given above is the same as that of a canonical NSM given in [15,
Algorithm 1] except that accepting states are also defined. From [15, Lemma 1], it follows
that 29 € Py, and for each e € Py, 0 € ¥, §p(e,0) € Py whenever it is nonempty. Thus
NSM P is well-defined. It follows from [15, Proposition 2] that 7'(P) = P. It remains to
show that T™(P) = P™. By definition we have T™(P) = {e € T(P) | 65(z%,e) N X7 £ 0},
Since T(P) = P, X% = Py N P™, and for each e € P, §5(2%,¢) = {f € Pous | € T £} [15,

Corollary 1], we have

T™(P) = {e€P|{f € Put|el f}N(Pu:NP™)#0}
{e€e P|{f€PunP™|eC f}#0}
= dom(Ps: N P™)

P,

where the last equality follows from T5. |
The following result was obtained in the course of the proof of Theorem 2.

Jorollary 2 Let P := (Xp,%,dp,2%, X% ) be an NSM. Then for each e € T(P) and z €
6% (x%, ), there exists f € (T'(P))sqa such that e C f, @ € §5(z2, f) and Ey5(f) = Rp().

For a language model (K™, K), the prefix-closure of the recognized language K™ is the
generated language of an appropriate state machine provided K™ is nonempty. The situation
is different for a trajectory model (P™, P). If P™ is nonempty, then its prefix-closure, pr( P™),
satisfies properties T1,T2,T4. However, pr(P™) need not satisfy T3 in which case it cannot
be the generated trajectory set of any NSM. (See example 1 below.) The following result
shows that a generated trajectory set can be obtained by taking saturation closure.

Proposition 1 Let () be a nonempty refusal-trace set satisfying pr{dom(Q)) = @ and T4.
Then R := dom(satg(Q)) is a generated trajectory set.

Proof: R is trivially nonempty and R = dom(R). Since () is prefix-closed and for each
e € Q,k < |e|, satg(eF) = (satg(e))*, R is prefix-closed. Also, from the definition of satg(-),
T4 holds for R since it holds for (). It remains only to show that satr(R) C R. Since
satp(-) is monotone (with respect to C) and R is dominance-closed, it suffices to show that
satR(satQ(Q)) g R.

Let e € @) and let é := satg(e). Suppose there exist k, o such that o € Xg(€). Since
o ¢ Li(é), it follows that f := e*(o,0) € Q. Since the map satg(-) commutes with the
operation of taking the length-k prefix, we have

¢(0,0) = (satg(c))*(0,0) = satq(e*)(0,0) E satq(f) € R.
This shows that satp(é) = é, completing the proof. n

Jorollary 3 Let P™ be a recognized trajectory set. Then dom(sat,,pm)(pr(P™)) is a
generated trajectory set.



Example 1 Let P denote an NSM with ¥ = {a, b} and transitions

(CB%, 6’ x'}J)? (xop’ 67 $'2P)7 (3/%77 a’ w%)’ (.'I,'?p, b’ ;(,'f’l))’

and unspecified marking. Thus, P is obtained from the nondeterministic choice between
two deterministic subsystems-one that executes a and deadlocks, the other that executes
b and deadlocks. Then P := T(P) = pr(dom({e1,ez})), where e; = {b}(a, {a,b}), ez =
{a}(b, {a,b}). ei1,e, are saturated refusal-traces of P. The refusal-trace e5 = @(a, {a, b}) is
also a saturated refusal-trace of P. Let P™ = dom({es}). Then the refusal-trace set pair
(P™, P) satisfies T1-T5, so it follows from Theorem 2 that there exists an NSM Q such that
T(Q) = P, T™(Q) = P™. (One choice for Q is the canonical NSM described in the proof
of Theorem 2, which has 7 states.) However, it is easy to check that there is no marking
of the states of P for which 7™ (P) = P™. It can be seen that pr(P™) = pr(dom({es}))
does not satisfy T3 and hence cannot be the generated trajectory set of any NSM. Note that
saty(pmy(es) = {b}(a, {a,b}) = e1. Hence dom(saty.pmy(pr(P™))) = dom(pr(e1)), which is
the generated trajectory set of the NSM R with transition (2%, a,z%).

Note that given a trajectory model, the trace map can be used to obtain the associated
language model. On the other hand, given a language model (K™, K), it is possible to obtain
a deterministic trajectory model having (K™, ') as the language model.

Definition 1 A trajectory model (P™, P) is said to be deterministic if there exists a deter-
ministic state machine P := (Xp, ¥, §p, 2%, X7') such that 7™ (P) = P™ and T(P) = P.

Civen a language model (K™, K), the trajectory map trjx : K — 2% x (¥ x 2¥)* can be
used to obtain the associated deterministic trajectory model:

trir(s) = Lo(s)(01(),B1(s)) ... (015(5), Dpsi(8)) € 2% x (L x 2%)*, where
Yi(s) = {oeX|sfod K}, VEk<|s].

Let det(K) := dom(trjx(K)) and det™(K™, K) := dom(trjr (K™)).

Proposition 2 Given a language model (K™, K), (det™ (K™, I{), det(X)) is the unique de-
terministic trajectory model with language model (K™, K).

Proof: From a standard result, there exists a deterministic state machine P such that
L™(P) = K™ and L(P) = K. Let (P™, P) be the trajectory model of P. By [15, Proposition
3], det(K) is the unique deterministic generated trajectory model with generated language
K, so P = det(K). 1t is clear from the definition of trjx that Py = trjr(K). By T5, it
follows that P™ = dom(trji(K) N P™). Thus, K™ = L(P™) = L(trjx(K) 0 P™), which
implies that trjx (K) N P™ = trjg(K™), so P™ = det™ (K™, K). n

In [4, 5, 15], prioritized synchronous composition (PSC) of systems is used as the mech-
anism of control. In this setting, each system is assigned a priority set of events. When
systems are interconnected via PSC, an event can occur in the composite system only if it
can occur in each subsystem which has that event in its priority set. In this way, a subsystem

can prevent the occurrence of certain events, thereby implementing a type of supervisory
control. The formal definition of the PSC of two NSM’s is as follows:

10



Definition 2 Let P := (Xp,%,6p,2%, X7), Q := (Xo, £, 60,22, XF) be two NSM’s having
priority sets A, B C ¥ respectively. The PSC of P and @ is another NSM which is denoted
by ‘
’PAHB Q =R = ( /R, 2,(573,:13%,)(77?),
where X = Xp x Xg,z% = (2%,2%), X% = X x XF, and the state transition function
6r : X x (Z U {e}) — 2*® is defined as:
Ve, = (z,,2,) € Xr :
op(xp, 0) X b0(xq,0) il 6p(xp,0),00(2q,0) # 0
op(zp,0) X {24} if 6p(z,,0)
{zp} x bo(zq,0) if 6o(zq,0)
0 otherwise,
or(zr,€) = [6p(zp,€) U{zp}] X [00(2y,€) U{zs}] = {(2p, 24)}
This definition of the PSC of two NSM’s extends the one given in [15, Definition 9] to take
into account the sets of accepting states.
For notational convenience, given ¥/, Y1, Y9, X" C ¥, we define
¥ e ®s, 2= (2 NnE)U(E NE)U (B NE,).
Given generated trajectory sets P, @, the PSC of a pair of trajectories €, € P, e, € () was
defined in [15, Definition 10] as follows:

Definition 3 Let P, () be generated trajectory sets with e, € P, e, € ). Then the PSC of
e, and e, (with respect to P and @), denoted e, 4|/ ¢4, is defined inductively on |e,| + |e,]
as follows:

VX, Xy € X such that ¥, € P,¥, € @ :
Ep alls By = {2 C %, 4Qp %, },
Ve, € Pieg € Q504,04 € E;5,, 8, C ¥ such that ¢,(0,,%,) € P,e,(0,,8,) € Q :
ep(0py Xp) allB €4(04,5q) :=T1 UT, U T5,

Vo € ¥:ér(zr,0) =

where
{e(op, ') | € € €y allB €4(0g, 5¢); X' € X, a®p 5y} if 0, ¢ B and
T, := eq(04,5g)(0,0) ¢ @
L0 otherwise
{e(og, ) | € € €(04,2p) allp e X' C Xy a®p Xy} if 0y € A and
T, = ¢ ep(0p, Ep)(0g,0) & P
(0 otherwise
{e(0,E) |e€ e, allBe; X' CE,aQp 5} ifo,=0,:=0
T3 =
0] otherwise

11



It should be noted that e, 4|l €, is a set of refusal-traces that depends on the generated
trajectory sets P, () as well as on the particular trajectories e,,e,. The dependence on P, Q
is not explicitly indicated in the notation.

Using the definition of PSC of refusal-traces, we next define the PSC of trajectory models.

Definition 4 Let (P™, P), (@™, Q) be trajectory models with priority sets A, B C X re-
spectively. The PSC of (P™,P) and (Q™,Q), denoted (P™, P) 4|l (@™, Q), is the pair of

refusal-trace sets (R™, R), where

R™ .= U epA“B €q, R := U epA”B €q)

epEP™ eq€Q™ epEP,eq€Q
where e, 4||B €, is with respect to P, @ in the definitions of both R™ and R.

We will use the notation (P™ 4||g Q™, P 4l @) for (P™, P) 4|l (Q™, Q). However, it must
be kept in mind that P™ 4]|p @™ implicitly depends on P and Q.

Theorem 3 T™(P) 4|l T™(Q) = T™(P allg Q) and T'(P) 4|l 1(Q) = T(P 4l @

Proof: The fact that T(P) 4|lp T(Q) = T(P 4llp Q) is proved in [15, Theorem 2]. For
notational convenience, let R := P 4||p Q; we first prove that T™(R) C T™(P) 4llz T™(Q).
Pick ¢ € T™(R). Then e € T(R), and there exists z, = (x,,7,) € 6k(2%,¢) N XB =
6% (7%, €) N (X7 x X7). It follows from [15, Corollary 5] that given e and w,, there exists
e, € T(P) and e, € T(Q) such that

€ € epullB €g and z, € 673(5”73767)) < 50( meq) (1)

It follows that 6F(2%,e,) N X3 # 0 and 65(2%,e,) N X # @. This implies that e, € T™(P)
and e, € T™(Q), proving that e € T™(P) 4|lg T™(Q).

Next we prove that T™(P) 4||p T™(Q) € T™(R). Pick ¢ € T™(P) 4|l T™(Q). Then
there exist e, € T™(P) and e, € T™(Q) such that ¢ € epA[[B : Since ¢, € T(P) and
eq € T(Q), it follows from [15, Corollary 5] that 63(2%,€,) x 65(2%, €;) C éx(2%,€). This
implies that

[65 (25 €p) N X3 X [65(2,¢) N XF] C 57“(1’72» )N Xz. (2)
Since e, € T™(P) and e, € T™(Q), we have 6T($p, ep) N X7 # 0 and 65(2%,e,) N XZ # 0.
Thus, Equation 2 implies that 6%(z%,e)N X% £ 0, s0 e € Tm(R) n

Corollary 4 Let Py, P2, Q1,Q2 be NSM’s such that T™(Py) = T™(Py), T(P1) = T(Ps),
T7(Q4) =1T™(Q2), T(Q1) = T(Q2). Then for any A, B C X:

1. Tm(Pl A||B Ql) = Tm(Pz A“B Q2) and T(Pl A||B Ql) =T(P, AHB Qz)
L™(Py allp Q1) = L™(P2 4|l Q2) and L(Py 4|l Q1) = L(P2 4llp Q2).



Proof: The first part follows immediately from Theorem 3. The second part follows from
the first part since L™(Py 4llp @1) = L(T™(P1 4lls Q1)) etc. [ ]

The first part of Corollary 4 states that the trajectory model contains enough detail to
support the prioritized synchronous composition of NSM’s. The second part of Corollary
4 states that the trajectory model serves as a language congruence [4] with respect to the
operation of prioritized synchronous composition.

Jorollary 5 Let (P™,P) and (Q™,Q) be two trajectory models, and A, B C %. Then
(P™ allp @™, P 4]l Q) is a trajectory model.

Proof: By hypothesis, there exist NSM’s P and Q such that (7(P),T(P)) = (P™, P)
and (T™(Q),T(Q)) = (Q™, Q). It follows from Theorem 3 that (P™ 4|z Q™, P 4|5 Q) =
(T™(P allB Q), T(P 4|l Q)), which completes the proof. n

The following corollary states that when the priority sets of two systems are each equal
to the entire event set, then the language model of the composed system can be obtained as
the intersection of the individual language models.

Corollary 6 Let P := (Xp,%,6p,2%, X3), Q := (Xo, ¥, 60,2%, X3 ) be NSM’s. Then
L L™(Psle Q)= L™(P)NnL™(Q),

2. L(Ps|ls Q)= L(P)N L(Q).

Proof: We only prove the first part; the second part can be proved analogously. Let
R = Pylls Q. We have L™(P) = L(T™(P)), L™(Q) = L(T™(Q)), L™(R) = L(T™(R)),
and it follows from Theorem 3 that T™(R) = T™(P) z||s T™(Q). Hence it suffices to show
that L(T™(P) s|lx T™(Q)) = L(T™(P))NL(T™(Q)). Pick s € L(T™(P) x|z T™(Q)). Then
there exists e € T™(P)zlls T™(Q) such that ¢r(e) = s. Since e € T™(P) x|z T™(Q), it
follows that there exist e, € T™(P),e, € T™(Q) such that e € e, 4|lp e, and tr(e,) =
tr(ey) = tr(e) = s. (Refer to [15, Remark 6].) Le., s € L(T™(P)) N L(T™(Q)). This proves
that L(T"(P) slls T™(Q)) € L(T™(P)) N L(T"™(Q)).

Similarly, given s € L(T™(P)) N L(T™(Q)), there exist e, € T™(P),e, € T™(Q) such
that tr(e,) = tr(e,) = s. Choose e € e,x||x ¢;, which is clearly nonempty. Then e €
T™(P)xlls T™(Q) and tr(e) = s. (Refer to [15, Remark 6].) Consequently, we have s €
L(T™(P)x|ls T™(Q)), which proves that L(T™(P)) N L(T™(Q)) C L(T™(P)x|ls T™(Q))m

Corollary 7 Let (P™, P) and (Q™, @) be trajectory models. Then
1 L(P™glls Q™) = L(P™) N L(Q™),
2. L(Ps|z @)= L(P)NL(Q).

Proof: From the hypothesis there exist NSM’s P, @ such that (I™(P),T(P)) = (P™, P)
and (T™(Q),T(Q)) = (Q™, Q). Hence the result follows from Corollary 6. n

Next we prove the associative property of PSC. It is immediate from Definition 2 that
given NSM’s P, Q with priority sets A, B C ¥ respectively, the following holds for for each
z, = (z,,2,) € Xg, where R :=P 4||p Q:

Rr(z,) = Rp(z,) a8 Ro(z,) = Rp(z,) N Rolz,)] U [Re(z,) N AJU [Ro(z,) N BJ.
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Theorem 4 Let P,Q,R be NSM’s and A, B,C C ¥.. Then

(P alle ) auBllc R =P allBuc (@ Bllc R).

Proof: Let 81 = (PAIiB Q)AUBHC R and 82 = PA”BUC (QBHC 'R) Then it follows
from Definition 2 that Xs, = Xs, = Xp x Xg x Xr 1= Xg, qu = ”cg-2 = (x%,:rog,:v%),
X3 = Xg = Xp x XG x X%, and for each z, = (7,7, 7,) € Xs:

85, (@5, €) = bs,(Ts,€) = [6p (2, €) U {@p}] X [60(2q,€) U {g}] X [6r(2r, €) U {2}] — {2}
It remains to show that for each z, = (z,,2,4,2,) € Xs and 0 € &:
651 (xs, U) = 6'52(‘1783 o). (3)

It follows from Definition 2 that

[ Sp(zp,0) X bo(7q,0) X ér(Tr,0) if bp(ap,0),00(xy,0),0r(2r,0) # 0
op(zp,0) X {24} X br(2r,0) if ép(xp,0),0r(zr,0) # 0,0 € Ro(z,),
oc¢ B
{zp} x éo(z4,0) x br(2/,0) if 8o(2¢,0),6r(2r,0) # 0,0 € Rp(,),
cd A
6p(2p,0) X 8o(z4,0) X {2} if 6p(2p,0),00(24,0) # 0,0 € Re(a,),
0s,(2s,0) = odC
op(zp,0) X {2} X {z,} if ép(ap,0) # 0,0 € Ro(ay) N Rr(z,),
cgd BUC
{zp} x bo(zq,0) X {z,} if 6g(2y,0) # 0,0 € Rp(x,) N Rr(z,),
cg AUC
{wp} X {:Uq} X 672('777*)‘7) if r(z,,0) # 0,0 € Rr(z,) aQp Ro(zy),
cZ AUB
L 0 otherwise

An expression for ds,(zs,0) can be analogously obtained. Note that in the fifth clause
of the expression for és,(zs,0), the condition o € Ro(z,) N Rr(z,) and ¢ & B U C is
equivalent to o € Ro(2,) BQc Rr(z,) and ¢ ¢ BU C. Similarly, in the sixth clause of the
expression for g, (z,0), the condition o € Rp(z,) N Rr(x,) and ¢ ¢ AU C is equivalent
to o € Rp(z,) AQc Rr(z,) and o ¢ AU C. If similar simplifications in the clauses of the
expression for ds,(zs, o) are performed, then Equation 3 is easily proved. |

Corollary 8 Let (P™,P), (@™, Q) and (R™, R) be trajectory models and A, B,C C X.
Then

L (P™ AllB Q™) auBlle R™ = P™ 4llpuc (@™ Bllc R™),

2. (PAHB Q) AUB”C' R = PA”BUC (Q BHC R
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Proof: From the hypothesis, there exist NSM’s P, @, R such that (T™(P), T(P)) = (P™, P),
(I™(Q),T(Q)) = (Q™,Q),and (T™(R),T(R)) = (R™, R). It is easily shown using the result
of Theorem 3 that

(P™all Q™) auslle R = T™((P alls Q) auslic R),

P™ 4llpuc (@™ Blle B™) = T™(P allbuc (L 5llc R)),
(PallB Q) auBllc B = T((Pallg Q)ausllc R),
P allBuc (@Bllc B) = T(P allbuc (5llc R)).

Thus the result follows from Theorem 4. [ |
Part 2 of Corollary 8 is stated without proof in [5]; a direct proof of part 2 that does not
depend on the corresponding result for NSM’s is given in [15, Theorem 3].

Next we define augmentation, which is the PSC of a given NSM with an NSM of the type
D = ({z%}, %, 6p,2%, {z3}), the transition function of which is defined as:

0 .
o . _ | {2%} ifoeD
VoeXU{c}, bnlap,0):= { 0 otherwise,
where D C ¥ is a given set of events. Le., D is a deterministic state machine consisting of a
single state having self-loops on events in D C X. It is clear that L™(D) = L(D) = D and
T™(D) = T(D) = det(D").

Definition 5 Given an NSM P := (Xp,X,ép, 2%, X}) and D C X, the augmented NSM
with respect to D, denoted PP, is defined to be PP := Py|lp D. Given a trajectory model
(P™, P), the augmented trajectory model with respect to D, denoted (P™, P)P | is defined to
be (P™, P)P := (P™, P)g|lo (det(D"), det(D")).

Using ((P™)P, PP) to denote (P™,P)P, we have (P™)P = P™y|lg det(D*) and PP =
Pyllp det(D*). As is always the case with the PSC of recognized trajectory sets, the ex-
pression for (P™)P implicitly depends on the corresponding generated trajectory sets P and
det(D*). Clearly the trajectory model (T™(PP), T(PP)) of the augmented NSM PP is equal
to ((T™(P))P, (T (P))P). Also, since det(D*) can always execute every event in D and can
never execute any event in £ — D, it follows that given any trajectory model (P™, P), any

ACY—D,andany BC D

(P™)P := P™ y|lp det(D*) = P™ 4l|p det(D"),
PD = P@H@ det(D*) = PA”B det(D*).

Next we show that the PSC of two systems is equivalent to the strict synchronous com-
position (over the union of the two priority sets) of the associated augmented systems.

Proposition 3 Let (P™, P),(Q™, Q) be trajectory models, and A, B C X. Then
L P 4lle Q™ = (P™)P~* auglle @™ = (P™)P " aupllaus (@™)*F,

2. P4lls @ = PB4 auslls @ = PP~ aub||lavs @15,

15



Proof: We only prove the first part; the second part can be proved analogously. Again,
we only prove the first equality as the second equality follows from symmetry and a second
application of the first equality. From the definition of augmentation and associativity of

PSC (Corollary 8), we have

(P™)P~4 auglls Q™ = (P™ allp-a det((B — A)*)) ausllz @™
= det((B — A)") p-allavs (P™ 4llB Q™)
= P"4lls Q™
where the last equality follows from the two facts: (i) The priority set of P™ 4|l @™ is
AUB,and B— A C AU B, so det((B — A)*) cannot execute an event that P™ 4]|p Q™ does

not execute. (ii) det((B — A)*) can always execute each event in its priority set, so that it
cannot block any event in P™ 4||g Q™. ]

5 Supervisory Control Using PSC

In [15], we studied the supervisory control of nondeterministic systems in the set-
ting of trajectory models and prioritized synchronization under the assumption that all
refusal-traces of the plant are marked and the desired behavior is specified by a prefix-closed
language; thus the issue of deadlock/blocking was not investigated. In this section, we gen-
eralize the results in [15] to include non-closed specifications and arbitrary marking of the
plant refusal-traces. In addition, we consider modular synthesis of supervisors.

Since trajectory models contain sufficient detail to support the operation of prioritized
synchronization, we use trajectory models, rather than NSM’s, to represent a discrete event
system. Unless otherwise specified, the trajectory model of the plant and that of the su-
pervisor are denoted by (P™, P) and (S™,S), and the priority set of the plant and that of
the supervisor are denoted by A and B respectively. In the setting of supervisory control,
A=Y, UX, where ©,,X. C ¥ denote the sets of uncontrollable and controllable events
respectively [13, 14]; and ¥4 C B C ¥.UY,, where ¥4 C ¥ denotes the set of so-called driven
[4] or forcible {3, 2] or command events [1]. The sets X,, Y. and Xy are pairwise disjoint and
exhaust the entire event set. Note that since A=Y, UYX.and ¥y C B, AUB = }.

The controlled (or closed-loop) system is (P™, P) 4]/ (5™, 5). Since A contains every
event that is either controllable or uncontrollable, such events cannot occur solely in the su-
pervisor. This is consistent with the modeling assumption made in the Ramadge-Wonham
theory [13] that these events originate in the plant. Since B contains every driven event,
these events cannot occur solely in the plant. This corresponds to the modeling assumption
that driven events originate in the supervisor and are executed synchronously by the plant
whenever possible. If there is only one supervisor-i.e., the non-modular case-then the as-
sumption that ¥y C B C X, U X, should be strengthened to B = ¥, U Y, to reflect the
modeling assumption that the occurrence of controllable events requires the participation of
the supervisor. However, the weaker assumption is useful when modular synthesis is con-
sidered, since it is not necessary to require that every subsystem in a modular supervisor
participate in each controllable event.
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In certain situations, a plant may consist of several “sub-plants” operating under prior-
itized synchrony. In such a case, if (P, P;) is the trajectory model of the :th sub-plant,
and A; C X is its priority set, then the trajectory model of the composed plant is given by
(P™, P) := (||la, P™ ”A; :), where the notation (|4, P/, ||, ;) is used to denote the PSC
of sub-plants {(P["' P;)}. (Since PSC is associative (Corollary 8), (|4, P™, || 4, ;) 13 well de-
fined, and it follows from Corollary 5 that it is a trajectory model.) The priority set of the
composed plant is given by A := U; A;.

Definition 6 Given a plant (P™, P) with priority set A C X, a supervisor, with trajectory
model (5™, S) and priority set B C X, is said to be non-marking if S™ = S; it is said to
be language model non-blocking if pr(L(P™ 4|lg S™)) = L(P 4l|ls S); and it is said to be
trajectory model non-blocking if pr(P™ 4|lp S™) = P 4|l S.

Note that if a supervisor is trajectory model non-blocking, then it is also language model
non-blocking. On the other hand, if a plant as well as a supervisor are deterministic, and the
supervisor is language model non-blocking, then it is also trajectory model non-blocking.

Next we obtain a necessary and sufficient condition for the existence of a non-marking
and language model non-blocking supervisor. This result is then used to obtain a necessary
and sufficient condition for the existence of a non-marking and trajectory model non-blocking
supervisor.

Theorem 5 Let (P™, P) be the trajectory model of a plant, A, B C ¥ with AUB = %,
and K™ C L((P™)*~4) with K™ # (. Then there exists a non-marking and language model
non-blocking supervisor with trajectory model (5, 5) such that L(P™ 4|l S) = A™ if and
only if

Relative-closure: pr(K™)N L((P™)*~4) = K™
Controllability: pr(K™)(A — B) N L(P¥4) C pr(K™).

In this case, S can be chosen to be det(pr(A™)).

Proof: We begin with the proof for necessity. Suppose there exists a non-marking and lan-
guage model non-blocking supervisor with trajectory model (.5, 5) such that L(P™ 4||p S) =
K™, Then

pr(K™) = pr(L(P™ 4lls 9)) = L(P all5 ), (1)
where the last equality follows from the supervisor being language model non-blocking. It
follows from Definitions 4 and 5 that (P™)*~4 C P¥=4 which implies that pr(K™) C
pr(L((P™)®~4)) C L(P*~*). Hence it follows from the necessity part of {15, Theorem 4]
that pr(K™)(A — B) N L(P®4) C pr(K™)-i.e., the controllability property is satisfied. It
remains to show that the relative-closure property is also satisfied. We have the following
series of equalities:

pr(K™) N L((P™)*4) L

(P alls S) N L((P™)*1)

L((P allg S)<lla P™)

L((P alla P™) allB 5)

= L((Palla Pm)""")n L(S¥7F), (3)

i
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where the first equality follows from Equation 4, the second equality follows from Corollary
7 and Proposition 3, the third equality follows from associativity of PSC (Corollary 8), and
the final equality follows from Corollary 7. On the other hand, we have

K™ = L(P™ 4|lg 8) = L((P™)*4) n L(5*~8), (6)

where the last equality follows from Proposition 3 and Corollary 7. It follows from Equations
5 and 6 that in order to show that the relative-closure property is satisfied, it suffices to show

L((P alla P™)*=4) = L((P™)*~4). We have

L((P alla P™)*) = L((Palla P™) alls-a det((E — A)7))
= L(Palls (P™ allz-a det((Z - A)”
= L(P4ls (P™)*1)

— L(PE A)ﬂL(Pm)E A)
= L((P™)*),

where the first and third equalities follow from the definition of augmentation, the second

equality follows from the associativity of PSC (Corollary 8), and the fourth equality follows

from Proposition 3. This completes the proof of necessity.
Next we prove sufficiency. Suppose the relative-closure and controllability properties are

satisfied. Then it follows from the sufficiency part of [15, Theorem 4] that the non-marking
deterministic supervisor with trajectory model (5, 5), where S := det(pr(L™)), yields

L(P 4llg S) = pr(K™), (7)

and 5™ is arbitrary. We select 5 = 9, so the supervisor is non-marking. It follows from
Equation 7 that
pr(K™) = L(P**)n L(S*5). (8)

Using the relative-closure property gives the following series of equalities:

K™ = pr(K™)N L((P™)* %)
= [L(PE) N L(S* PN L((P™)*)
= L((P™)* )N L(5*F)
= L(P™ 4|l S).

Since pr(K™) = L(P 4|l S) and K™ = L(P™ 4]|g S), the supervisor is language model
non-blocking. |

Remark 2 In contrast to the standard conditions [13] for the existence of a non-marking
and language model non-blocking supervisor in the absence of driven events, the control-
lability and relative-closure conditions given in Theorem 5 refer to the language model of
the augmented plant. It is easily demonstrated [15, Example 3] that this language model
depends on the trajectory model of the plant and generally cannot be determined if only the

lansuase model of the Plant is known.
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We will obtain necessary and sufficient conditions for the existence of a deterministic
non-marking and trajectory model non-blocking supervisor that imposes a desired closed-
loop recognized language. The following preliminary results are needed.

Lemma 1 [15, Lemma 6] Let P,Q be generated trajectory sets, A,B C ¥, f,,e, €
I)a fq7eq € Qa with fp C €py fq C €q. Then

JoallB fi € epallB g

Lemma 2 Let (P™, P) be a trajectory model, § # H = pr(H) C ©*, and K := L(P)N H.
Then

1. lelz det(H) = Pz”z det(K),

2. PmE”E det(H) == PmE”E det(K).

Proof: By T3, every refusal-trace in a generated trajectory set is dominated by a saturated
trajectory. By T5, every refusal-trace in a recognized trajectory set is dominated by a satu-
rated marked trajectory. By Lemma 1, it suffices to show that for any saturated trajectories
e € P (respectively, e € P™), f € det(H), g € det(K), we have

P x|y det(K) (respectively, P™ g||s det(K)) (9)

-
C Pyllx det(H) (vespectively, P™ gl||x det(H)). (10)

The left side of Equation 9 is empty unless tr(e) = tr(f) € K, while the left side of Equation
10 is empty unless tr(e) = tr(g) € K. Thus, to establish Equations 9 and 10, it suffices to
show that for e € Py, with tr(e) :=t € K, f:=trju(t), g := trjx(t), we have

exfls f=exz|x g (11)

We have for each k < |t|, o € Ei(f) (respectively, o € E(g)) if and only if tfo ¢ H
(respectively, t*o & K). It follows from Definition 3 that

exlle f = {h€2® x (Ex25) |tr(h) =1,54(h) C %
exllsg = {h €28 x (X x 25 | tr(h) =t,5k(h) C Sile)

Sk(f)v k= 07"'a|t|}a
Ek(g)’ k= Ova‘t‘}

Thus, to establish Equation 11, it suffices to show that
Le(e) UZe(f) = Be(e) UXk(g), k=0,....]t. (12)

Since K C H, it follows that X4(f) € ¥x(g). On the other hand, if ¢ € ¥i(g) — Xk(e), then
t*a ¢ K and, since e € P,,, it follows that ¢*(o,0) € P, so t*¢ € L(P). Hence, t*o & H, so
o € Xi(f) proving Equation 12. [
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Proposition 4 Let (P™, P) be the trajectory model of a plant, A, B C ¥ with AU B = X,
and K™ C L((P™)®*~4) with K™ # 0. If (5,5) is any non-marking language model non-
blocking deterministic supervisor with L(P™ 4|/ S) = A'™, then

P 4||lg det(pr(K™)) = Pals S, (13)
P™ A“B det(pr(Km)) = pPm™ A”B S. (14)

Proof: It follows that the relative-closure and controllability conditions in Theorem 3
hold, and hence that (det(pr(K™)),det(pr(K™))) is a non-marking and language model
non-blocking supervisor with L{P™ 4||g det(pr(K™))) = K™. Thus,

pr(K™) = L(P alls det(pr(K™)) = L(P¥) (1 L{(det(pr(K™)))*7).
This together with Lemma 2 gives

PEA gz (det(pr(K™)))*—8 = PEA gl det(pr(K™)), (15)
(P)* 4 glls (det(pr(K™)))5F = (P™)" A clls det(pr(K™)). (16)

Since (S, 5) is language model non-blocking,
pr(K™) = L(P alls §) = L(P*=4) 0 L(S®5).
Hence it follows from Lemma 2 and the fact that S~ is deterministic that

PEAgly S¥8 = P Ag|p det(pr(K™)), (17)
(P™)EAgls S¥8 = (P™) s det(pr(h™)). (18)

From Equations 15-18 we have

PE4 5|z (det(pr(K™)))*~B = PS4 g||g SE-B,
(PmyE4 s (detlpr(K™))PP = (P™)* sy 5P,

This implies Equations 13-14. ]

Theorem 6 Let (P™, P) be the trajectory model of a plant, A, B C ¥ with AUB = X, and
K™ C L((P™)®4) with K™ # (. Then there exists a non-marking and trajectory model
non-blocking deterministic supervisor with trajectory model (.S,.5) such that L(P™ 4||p S) =
K™ if and only if

Relative-closure: pr(K™) N L((P™)5~4) = K™
Controllability: pr(K™)(A — B) N L(P=4) C pr(K™)
Trajectory-closure: P ||g det(pr(K™)) = pr[P™ 4|\ det(pr(L™))].

In this case, S can be chosen to be det(pr(A™)).
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Proof: We first prove the sufficiency. Since the relative-closure and controllability conditions
hold, it follows from the sufficiency part of Theorem 5 that the non-marking deterministic
supervisor (5,.5), where S := det(pr(K™)), yields L(P™ 4||g S) = K™ and L(P 4|l S) =
pr(K™). It follows from the trajectory-closure condition that the supervisor is also trajectory
model non-blocking.

Next we prove the necessity. Suppose there exists a non-marking and trajectory model
non-blocking deterministic supervisor with trajectory model (S, .S) such that L(P™ 4|l S) =
K™. Since a trajectory model non-blocking supervisor is also language model non-blocking,
it follows from Theorem 5 that the relative-closure and controllability conditions hold, and
from Proposition 4 that

P 4l det(pr(K™)) = Pu|ls S. (19)
PmAHB det(pr(Km)) - PmA”B S. (20)

Since (S5, S) is trajectory model non-blocking, we have P 4||g S = pr(P™ 4|l S). Hence,
the trajectory-closure condition is implied by Equations 19-20. |

Remark 3 The controllability condition of Theorem 5 is needed for the existence of a su-
pervisor such that the closed-loop generated language equals the closure of the language to
be recognized by the closed-loop system, i.e., L(P 4|l S) = pr(K™). The relative-closure
condition is needed so that the corresponding non-marking supervisor (S,.5) yields equal-
ity of closed-loop recognized language and the desired language, i.e., L(P™ 4||g S) = K™.
Clearly, this design automatically yields that the non-marking supervisor (5,.5) is also lan-
guage model non-blocking. The extra trajectory-closure condition of Theorem 6 is needed so
that the non-marking supervisor (.5, .5) is also trajectory model non-blocking. Thus all three
conditions of Theorem 6 are needed for the existence of a non-marking and trajectory model
non-blocking supervisor so that the closed-loop recognized language is the desired one.

In Theorem 6 it is proved that if there exists a non-marking and trajectory model non-
blocking deterministic supervisor, then the trajectory-closure condition holds. The following
example illustrates that the requirement of determinism of supervisor cannot be relaxed. In
other words, if there exists a non-marking and trajectory model non-blocking nondetermin-
istic supervisor, then the trajectory-closure condition need not hold.

Example 2 Consider the plant NSM defined on the event set ¥ = {«,b}, shown in Fig-
ure 2(a). Since the refusal-trace {b}(a, {a,b}) belongs to the generated trajectory set of the
plant, and there exists no refusal-trace in the recognized trajectory set of the plant with
{b}(a, {a,b}) as its prefix, the plant is trajectory model blocking.

Consider the nondeterministic supervisor depicted in Figure 2(b). The supervisor has the
same structure as the plant except that all its states are marked, so that it is non-marking.
Let the priority set of both plant and supervisor be the entire event set, so that the set of
uncontrollable events as well as the set of driven events is empty. The closed-loop system
under the nondeterministic supervision is shown in Figure 2(c). The generated trajectory set
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(a) plant/closed-loop system (b) nondeterministic- (c) closed-loop syatem under (d) deterministic-
under deterministic supervisor supervisor nondeterministic supervisor supervisor

Figure 2: Diagram illustrating Example 2

of the closed-loop system is same as that of the plant. However, the recognized trajectory set
is larger than that of the plant. In particular, the refusal-trace {b}(a, {a,b}) belongs to the
recognized trajectory set of the closed-loop system, and the closed-loop system is trajectory
model non-blocking.

The generated language of the closed-loop system is pr(a + b). The non-marking deter-
ministic supervisor shown in Figure 2(d) generates this language. The closed-loop system
under the supervision of the deterministic supervisor has the same NSM as the plant, and is
hence trajectory model blocking. Thus the trajectory-closure condition of Theorem 6 does
not hold even though a non-marking and trajectory model non-blocking supervisor exists for
the given plant.

With Theorem 6 in hand, we revisit the example of Section 2.

ixample 3 Consider the open-loop NSM P described in Section 2 and depicted in Fig-

ure 1(b). It is given that a, ¢, d are uncontrollable. We regard b; as a controllable event-i.e.,
requiring the participation of both the plant and supervisor. Ilowever, we regard b, as a
driven event. This models the possibility that the supervisor may request the input of a
part with the guides set to narrow, but that this request may be refused by the plant if
the arriving part is wide. Thus, for PSC-based design, the priority sets of the plant and
supervisor are A = {a,b;,c,d} and B = {b,b;} respectively.

In Section 2, we indicated that a language model non-blocking Ramadge-Wonham type
supervisor could be constructed that gives K" := (abyc)* as the closed-loop recognized
language. We also noted that the closed-loop system is unsatisfactory since deadlock can
occur. Let us determine whether a PSC-based supervisor can impose the specification K{*
without permitting deadlock. The augmented plant P*~4 is shown in Figure 3(a) and has
generated language given by

L(PE4) = pri{Bia(bihs + ba)bse] Biabibjdhs]

[t is straightforward to verify that A7 satisfies the controllability and relative-closure con-
ditions of Theorem 5. Thus, it follows from Theorem 5 that the non-marking supervisor
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(b) closed-loop system 1

a
c b2 b2
bI
(c) supervisor 2 (d) closed-loop system 2

Figure 3: Diagram illustrating Example 3

(S1,51), S1:= det(pr(K{)), is language model non-blocking and imposes K7 as the closed-
loop recognized language.

To determine whether there is any deterministic non-marking and trajectory model non-
blocking supervisor that can impose K™, we must check the trajectory-closure condition in
Theorem 6. Let S; denote the minimal deterministic state machine (with 3 states) with
L™(S1) = L(S1) = pr(K7). Let Q1 := P 4||p S1 depicted in Figure 2(b). Letting (P™, P)
denote the trajectory model of P, it follows from Theorem 3 that

P allp det(pr(KT")) = T(Q1),  P™ all det(pr(K7")) = T™(Q1).

Since e := 0(a, )(bs, {c}) € T(Q1) — pr(T™(Q4)), the trajectory-closure condition fails to
hold. Thus, K7* cannot be imposed without trajectory model blocking.

Consider the alternative specification KJ* := (aby(e + by)c)*, which also satisfies the
controllability and relative-closure conditions of Theorem 5. Let S, denote the determinis-
tic state machine with L™(S;) = L(S;) = pr(KJ*) depicted in Figure 2(c). The resulting
closed-loop system Qj := P 4||p S is shown in Figure 2(d). Since T(Q,) = pr(T™(Q,)),
the trajectory-closure condition holds. Thus, the non-marking deterministic supervisor
(S2,82), So := det(pr(K7)), is trajectory model non-blocking and imposes KJ* as the closed-
loop recognized language.

The supervisor implements the following control strategy: When a part arrives, the
supervisor requests that it be input with the guides set to narrow. If the part happens to
be narrow, the plant accepts this request and executes the event b,. However, if the part
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is wide, the plant refuses to execute the event and the transition on by occurs only in the
supervisor. The part is then input with the guides set to wide. By following this strategy, a
narrow part is never input with the guides set to wide, so jamming does not occur. Allowing
for the possibility that a supervisor-initiated event may be refused by the plant is an essential
feature of this control design.

Next we show that our approach is also suitable for modular supervisory control. It was
shown in [16] that such a design results in significant computational advantage provided the
specification languages are non-conflicting.

Definition 7 Given K", Ki* C ¥*) K" and KI* are said to be non-conflicting if pr(K{")N
pr(K7) = pr(K7* N KJ).

Since pr(K7* N K3*) C pr(K7*) N pr(K3) for any K7*, K7* C ¥*, K7* and KJ* being non-
conflicting is equivalent to pr(K7") N pr(K5*) C pr(KT N K3).

Theorem 7 Let (P™, P) be the trajectory model of a plant, A, B;, B, C ¥ be such that
AUB; = AUB, = &, K[*, Ki* C L((P™)®4), and (51, S1), (53, S2) be the trajectory models

of two non-marking and language model non-blocking supervisors such that L(P™ 4||g, S1) =

K and L(P™ 4||B, S2) = KJ".
1. The non-marking supervisor (9,5), where S := Sy ,||B, S2, is such that

L(P™ |lg,uB, S) = K" 0 K.

2. (5,9) is language model non-blocking if and only if K7* and A7}* are non-conflicting.

3. If (S1, S1) and (S2, S;) are deterministic and trajectory model non-blocking, then (S, 5)
is deterministic, and is trajectory model non-blocking if and only if

prlP™ all,up, [det(pr(KTY) B, ||, det(pr(K3"))]]
= pr(P™) allgus, [det(pr(KT")) B |l B, det(pr(K3))]. (21)

Proof: We have the following series of equalities, which are obtained from one or more
applications of one or more of these results: Corollaries 7 and 8, and Proposition 3.

KN K = L(P™4|s S1) N L(P™ 4|, S2)
[L((P™) 4 0 L(ST™P0)] 0 [L((P™)* ™) N L(S552)]
[L((P™)**) 0 L(Sy~2)] N L(S372)
= L(P™ 4llB, S1) N L(S372)
L((P™ 4l|B, S1) auB, B, S2)
L(P
L(P

mAHBlUB2 (Sl Bl||B2 52))
m A||B]UB2 S) (22)
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Next, note that since (S1,5;) and (Sq,52) are both language model non-blocking, we
have pr(K™) = L(P 4l|p, S1) and pr(KJ*) = L(P 4|, S2). Thus, it can be shown as above
that

pr(KT") Npr(K3') = L(P alls,us, S)- (23)
Therefore, it follows from Equations 22 and 23 that (.5,.5) is language model non-blocking
if and only if pr(K™ N Ki*) = pr(K7) N pr(K7*), i.e., if and only if KT* and K3* are non-
conflicting.

In order to show the final part, first note that since (S5, .51) and (.53, S2) are deterministic,
(S, 5) is deterministic. Next note that repeated applications of Proposition 4 and Corollary 8
yields

P 4llBuB, S = (P4l S1)zllB, So

[P allB, det(pr(KT"))]sllB, 52

= (P alls, 52) sllB, det(pr(KT"))

[P allB, det(pr(K3))]slls, det(pr(KT))

= P allgus, [det(pr(KT")) B, ||, det(pr(K3"))]- (24)

Similarly, we have

P™ sllBiup, S = P™ allBius, [det(pr(KT")) b, ||, det(pr(K3))]. (25)
It follows from Equations 24 and 25 that (.5, 5) is trajectory model non-blocking if and only
if
P allg,uB, [det(pr(KT)) 5,115, det(pr(K3"))]
= pr[P™ allB,us, [det(pr(KT")) B, | B, det(pr(K3"))]]- (26)

Since (S1, 51) is non-marking, trajectory model non-blocking, and deterministic, it follows
from Theorem 6 that the following trajectory-closure condition holds:

P 4l|B, det(pr(K{")) = pr[P™ 4B, det(pr(K))].
Hence we have

PA”BlUBz [det(pT(fqn))Bllle det(pr([x’;”))]
= [P al|B, det(pr(LK7*))] sl B, det(pr(K7))
= pr[P™ all, det(pr(K7"))] sllB, det(pr(K7'))
C [pr(P™) alls, det(pr(KT")] x| 5, det(pr(h3"))
= pr(P™) allp,us, [det(pr(KT")) BB, det(pr(K3"))]. (27)

The containment follows from facts that P™ C pr(P™) and pr(P™), det(pr(K7")) is
p ! P 1
f)rei"leclosed. The ﬁnal ecl'llazl;lty' follows froln Oorollary 8 L\S;llS ﬁhe {‘&‘LC{? tll?l.t <z)?"<pnl ‘>7 p) ;S au
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trajectory model. Since pr(P™) C P, the reverse containment of Equation 27 always holds.
Therefore, we have

PA”Bx'v'Bz [det(pr(l({ﬂ)) 31”32 det(pr([x’;"))]
= pr(P™) allB,us, [det(pr(KT")) B, ||B, det(pr(h3"))].

Hence Equation 26 holds if and only if Equation 21 holds. ]

Remark 4 Since it is assumed that AU By = AU B, = X, it follows that ¥y C By N By-
i.e., every driven event belongs to the priority sets of both of the modular supervisors.
Consequently, for a driven event to occur in the closed-loop system, it must occur in both
Si1, S2, and will occur in P if possible. Although we have not explicitly made the assumption
that ¥. C B; U B,, this is a natural requirement, since events in ¥ — (B; U B;) cannot be
prevented by S. However, there is certainly no need to require that ¥. € B; N By. Thus, for
a controllable event to occur in the closed-loop system, it must occur in P and in at least
one of the supervisors.

6 Conclusion

In this paper, we have extended our earlier work on supervisory control of nonde-
terministic systems to include markings so that the issue of blocking can be investigated.
Since language model non-blocking is inadequate for certain nondeterministic systems, the
stronger requirement of trajectory model non-blocking is introduced. Necessary and suffi-
cient conditions are obtained for the existence of language model non-blocking as well as
trajectory model non-blocking supervisors that meet given language specifications.

These necessary and sufficient conditions require that the tests of controllability, relative-
closure and trajectory-closure be performed. In the case where the languages involved are
regular, one way to perform the test of controllability /relative-closure of the desired lan-
guage with respect to the generated language of the augmented (nondeterministic) plant
is to construct a language-equivalent deterministic system and apply a known test for
controllability /relative-closure. However, it is possible to perform these tests without having
to do such a nondeterministic to deterministic conversion. Hence algorithms of polynomial
complexity (polynomial in the number of states of the plant NSM and number of states in
the recognizer of the desired language) for testing controllability/relative-closure can be ob-
tained. A test for the trajectory-closure condition can be obtained in terms of coaccessibility
[7] of the NSM obtained by SSC of the plant NSM and the deterministic generator of the
closure of the desired language specification. Thus the computational complexity of testing
the trajectory-closure condition is also polynomial.

We have also addressed the issue of modular supervisory control and shown that our
approach is suitable for such designs. It can be shown that the conditions for the existence
of such designs are also polynomially testable.
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