UNDERGRADUATE
REPORT

Supported by the
National Science Foundation
Engineering Research Center

Program (NSED CD 8803012),
the University of Maryland,
Harvard University,
and Industry

U.G. 914

The Walking Robot Project

by P. Williams, E. Sagraniching,
M. Bennett, R. Singh, et al.
Advisor: L. W. Tsai

TABLE OF CONTENTS

INTRODUCGTIONootiiiiiiininiieininieieeenterestetesesassesestsae et sessesessosessessessssssssssssessssesens 3
SECHON It LEG .ottt ettt ar s s ssssaesebeenen e et ess s 4
Section II: BODY ..ottt se st sn s e ss s ebetes et et sasebense e 23
Section III : ELECTRICAL HARDWAREcocivtviiieeieieeiceeeee e 31
Section IV : SOFTWAREccouiiviiriieiireieteniietesse s sestevetstesassesessesesessesenesasesns 68
CONCLUSION ..ottt sieteetesstsssasss s st ssasesssessssssssesassssasssesesesasensssesesessens 84
APPENDIX .ottt st e et s v v e s e b n e sean e 87
REFERENCEScoiiiiiiiiiiiiinteiceininetetsr sttt sttt svesssrasss s ase st essss et ses b easenan 96
1

Introduction

The objective of the University of Maryland walking robot project was to
design, analyze, assemble and test an intelligent, mobile and terrain-adaptive
system. This objective was met by thirty engineering students, half electrical and
half mechanical, under the instruction of Dr. Lung-Wen Tsai. The project spanned
seven months, required approximately 3000 student hours to manufacture, and cost
under $7000.

The walking robot project was the subject of two consecutive courses: design
in the fall, and construction in the spring. About twenty students participated in
each class. The mechanical engineering students divided into two groups, leg and
body; the electrical engineering students were divided into the electrical hardware
and software groups.

The robot’s design became a novel application of existing technologies. The
design of the six legs modified and combined well-understood mechanisms and was
optimized for performance, flexibility, and simplicity. The body design incorporated
two tripods for walking stability and ease of turning. The electrical hardware design
employed modularity and distributed processing to drive the many motors. The
software design used feedback to coordinate the system and simple keystrokes to
give commands.

The construction of the walking machine required precise, distributed work.
Mechanical elements were constructed to be functional and durable. Critical
machining was performed through numerical control (NC) machinery. Custom
circuit boards were constructed and wired to the body of the robot.

The students involved also considered practical factors. The walking
machine can be easily adapted to hostile environments such as high radiation zones
and alien terrain. Minor modifications would further enable the machine to

perform useful tasks with high precision and reliability.

_ Sectionlileg

The primary goal of the leg design was to create a leg capable of supporting a robot’s
body and electrical hardware while walking or performing desired tasks, namely
those required for planetary exploration. The leg designers intent was to investigate
the maximum amount of flexibility and maneuverability achievable by the simplest
and lightest leg design. The main constraints for the leg design were leg kinematics,

ease of assembly, degrees of freedom, number of motors, overall size, and weight.
Design Constraints

Kinematics was the first constraint considered. It was desired to design a leg
with an ovoid walking path to minimize the “slamming” effect caused by a robot’s
inertial forces during normal walking. This effect is highly pronounced in designs
employing a circular kinematic path. The stride length of the leg (the major
diameter of the walking path) was an additional kinematic constraint, particularly
in designing the leg to climb stairs and maneuver across rough terrain.

The number of degrees of freedom was a constraint pertaining to maximizing
the flexibility of the robot while minimizing its weight and complexity. This
constraint was closely related to the number of motors used.

The number of motors was limited to thirteen to minimize weight and
simplify design. Increasing the number of motors makes a design more flexible but
adds complexity to hardware and software design.

Designing for ease of assembly was an important constraint, manifested
during the construction of the legs. Six legs were needed in a short period of time;
it was therefore important to optimize the design for simplicity while maintaining
mechanical integrity.

Modified Four Bar Mechanism
Four bar mechanisms, by definition, consist of a crank link, coupler link,
rocker link, and fixed (ground) link. The passive role of the coupler link can be

modified by integrating the kinematic paths of the crank and rocker. This is

achieved by replacing the traditional straight bar coupler with an oblique triangular
link. The internal angles of the modified coupler can be varied to create an array of
continuous, ovoid paths at the disjointed vertex of the triangle. The summation of
the crank and rocker lengths must, however, remain less than the fixed length plus
the jointed coupler length, in adherence to the rules of kinematics.

The constraint on kinematics required the leg to have an ovoid path in order
to prevent the inertial “slamming” effect during its walking motion. It was also
desired that the path be symmetric in order to allow uniform walking motion in
forward and reverse. In addition, constraints on power, control simplicity, and the
number of motors to be used, required the walking motion to be carried out by one
motor. Utilization of the modified four bar mechanism satisfied these constraints
and provided the desired walking motion for the robot. Figure 1.1 shows the
modified four bar mechanism and the kinematic trace of point “C” through one
crank cycle. The major diameter of the ovoid path is 7.5 cm while the minor
diameter is 0.68 cm. The internal angles of the triangular coupler link define these
diameters and have been manipulated to produce the path that is shown.

The four bar, crank and rocker mechanism (Figure 1.1) is defined by links
“AP”(crank), “BQ”(rocker), “ABC”(coupler), and “PQ”(ground). The motor turns
the crank through a worm gear combination. As the crank rotates, a pendulum
path is created by the rocker link. The crank and rocker links are connected to the
modified triangular coupler link, which integrates the kinematic paths of the crank
and rocker links, and creates the trace at point “C”.

The modified four bar mechanism is an innovative, new mechanism that
satisfied the kinematic and motor constraints by providing a smooth, efficient, two
dimensional walking motion for the robot through a one degree of freedom system.

The path created by this mechanism closely emulates the walking path of humans.
Pantograph Mechanism

The constraint on stride length was 15 cm. This distance was chosen so that
the robot can safely maneuver amid small to medium sized obstacles such as rocks
and trenches. This was also an appropriate constraint for dynamic and static stability
of the robot. Increasing stride length increases vibration and also decreases the robot
body’s region of stability.

O — SO ——

Q

INTEQRATED couPlek” FATH

-— e - —

“THe MooiFiet> FouR - iBAR Meu»vxmswt;
Stowr T AcTUAL S ALE,

Figure 1.1

In order to achieve a stride length of 15 cm, the 7.5 cm path produced by the
four bar mechanism required amplification by a factor of two. The pantograph
mechanism shown in Figure 1.2 is defined by links “CDE" (upper link), “HGE” (lower
link), “F'FG”(long link), and “DF”(short link). The pantograph acts as a mechanical
amplifier; when attached to point “C” in the position shown, the path created by the
crank and rocker mechanism is translated, inverted, and magnified by a factor of
two at point “H”(the foot). During normal walking the angle between the lower
link and the ground was designed to be 45 degrees at center stride. This maintains a
horizontal walking path.

The pantograph was used to magnify the stride length to the desired length of
15 em, and to provide a means of supporting the robot body and hardware. The
combination of the four bar and pantograph mechanisms provides the first degree
of freedom for the leg.

The pantograph mechanism acts as a mechanical amplifier for kinematics as
well as static forces, therefore, it was important to choose materials and bearings that
could withstand these amplified forces. According to kinematic laws, the force at
point “F’ ” (Figure 1.2) is three times that of point “H” and the force at point “C” is
two times that of point “H”. This demonstrates the importance of considering

kinematic constraints in the design.
Leg Lift Mechanism

The ovoid walking path required another degree of freedom in order to avoid
obstacles and climb over rugged terrain. The second degree of freedom is in the
form of a leg lift mechanism, capable of changing the leg height as well as the stride
length. The leg lift mechanism is defined by the pinion gear and lifter gear-link
attached to point “F'“ in Figure 1.3. The lifter motor turns a worm gear combination
which drives the lifter pinion. The lifter gear then rotates, causing the pantograph
mechanism to compress or expand, depending on the direction of rotation. The leg
was designed to extend and compress 7.5 cm from the datum at the foot during
normal walking. This results in a total lift range of 15 cm, sufficient to clear small to

medium sized obstacles and maneuver within rough landscapes.

I

T H MocnliFicbation Facroes e &

)

< .t CE -
, ToINT F MAGNIFlcATioN BAcToe = Z;; ==

* THE AT cakoy
MEcHLNISrA - SiHowr
T AcTUAL SerAlLE

Figure 1.2

LiFteR
GEAR - LINK

THE LEG UFT MECHANIS MM~ CEFINED
BY THE ANtoN g ”7 AND THE LIFTER .
Figure 1.3 geag-LINK “g” 75em.

H 15 con LIFT RANGE

!

PAT U MM

Supporting Structure

The crank and rocker, pantograph, and leg lift mechanisms are supported
between two rectangular plates shown in Figure 1.4. These plates provide the
ground attachments for the crank and rocker at points “P” and “Q”, and also for the
lifter mechanism at points “R” and “S”. The plates also provide a convenient
means for mounting the entire leg assembly to the robot body, and protect the leg
links from external objects which could damage or bind the moving links during
operation. The motor and gearbox combinations of the lifter and four bar
mechanisms are mounted outside the plates to avoid mechanical interference.
Motors and gearboxes can be mounted on either side of the two plates, depending on
their orientation on the robot body. Three legs have a right hand orientation and
the remaining three have a left hand orientation for this design.

The two support plates are rigidly connected by four support columns that are
bolted together between the plates. Figure 1.4 shows the entire leg assembly with its
top support plate removed.

Mathematical Modeling and Engineering Analysis

The DADS computer software package is a very powerful tool for
determining forces, torques, displacements, velocities, and accelerations for a gross
array of mechanical elements. The DADS analysis for the final leg design of Figure
14 was very involved and was a major aspect of the overall design process.
Familiarity with the program took several days. The three main routines within
the DADS software are the DADS preprocessor, DADS analysis, and DADS
postprocessor.

The preprocessor is used to create the mechanism to be analyzed. This
involved creating system data (i.e. time intervals, gravitational constants, etc.),
inverse data (i.e. force coordinates, step size, and tolerances), revolute joints (ie.
crank, coupler, rocker, etc.), body elements (i.e. ground, crank, and other links),
points of interest (i.e. points “C”, “E”, and “H” of Figure 1.4), driver elements (i.e.
crank and lifter), and rotational spring-damper elements (i.e. torsion spring at point
“Q).

The analysis routine then uses the information from the preprocessor to

10

Lifter Motor
with gearbox

|
Crank | Motor
with qearbox

Figure 1.4

compute the inverse kinematics equations for torque, force, displacement and
acceleration at the intervals specified by the preprocessor. The resulting data is then
tabulated and displayed graphically upon request.

The first three analysis performed on the leg in Figure 1. 4 were crank torques,
joint forces, and joint displacements at points “C”, “E”, and “H”. It was very
important to determine the crank torque needed for normal walking and obstacle
maneuvering. To find the maximum torque needed for normal walking, a force of
40 Ibs was assumed at the foot (point “H”). This value was used to estimate the
amount of weight (force) for the entire robot (240 Ibs for a factor of safety of two),
distributed over six legs. The DADS analysis for a time interval of 0.01 was found to
give a maximum torque of 35 lb-in, as shown by the black line (in cgs system) in
Figure 1. 5. This analysis prompted an idea to connect a torsion spring to point “Q”
on the rocker link (see Figures 1.1 and 1.4). The torsion spring could be used to store
the torque energy (created by the crank) while the foot was off the ground since less
torque is required for this region of the stride cycle. Once the foot was again on the
ground and its torque demand the greatest, the potential energy in the torsion
spring could be released, resulting in a smoother torque vs. time curve (smoother
walking motion). The torque vs. time curve for the addition of the torsion spring is
shown by the blue line in Figure 1. 5. The addition of the torsion spring decreased
the required crank torque to 21 Ib-in; an appreciable change from the 35 1b-in needed
when no spring was attached.

The crank torque was also analyzed during obstacle maneuvering. In this
case, a force of 60 lbs was assumed at the foot since more force exists on the foot
when climbing an incline surface. Figure 1.6 (in cgs system) shows the torque vs.
time curve in black for a force of 40 lbs at the foot and no torsion spring on the
rocker. The blue line of Figure 1.6 shows the torque vs. time curve for 60 lbs of force
at the foot and the torque spring attached to the rocker. This analysis shows that
approximately the same torque value can be achieved for 60 lbs with the spring as
with 40 Ibs without the spring. The proper spring constant “k” was determined
through trial and error with DADS. The value of the spring constant was chosen so
that the two peaks of the blue curve in Figure 1.5 would be even with one another.
This meant that the torque cycle was as smooth (efficient) as possible. The value of
“k” was found to be 1.02 lb-in per degree. This value was found using 40 lbs (normal

walking force) instead of 60 lbs (climbing force) since the robot is under the

12

7

n—b

I LT gy SA) Ot = TAN V]
SIANNZ Jva) SN BOEHIL

00°71

06°0

08°0

04°0

08°0

(S0 7I%Y Hpyi_L

08°0

0v'0

0g°0

02’0

070

00°0

00" F-~

00°¢-

00"

[
I

00°7T-

0070

00°7

00°2

00°¢

00" ¥

Figure 1.5

. (W2-3nng
INoACL

L P N B N SN I_in\n_ N J,\: Qn\w ks.x%m_

NS S oAy 102 O S3) O l.n.l\.w..v/\r_i
BADND DI L SN DIRTAT L

0 3 X (Sano73s) TWIL ©
00°T 06°0 080 0270 09°0 0G°0 0FV°0 0£°0 02°0 0T'0 00°0 5
00°F- 8
IS

00°¢-

00°2-

00°7T-

(W2 -32pMs
00°0 SF==T

00°71

00°¢

00°¢

00°¥

conditions of normal walking most of the time.

Figure 1.7 shows the DADS analysis for displacements at points “C”, “E”, and
“H”. Notice the inverted, amplified path of point “C” at point “H”. The path
drawn by point “E” shows the motion of the knee during normal walking. A force
analysis was also performed on DADS to determine the forces at each joint of the
leg. This information allowed proper bearings to be selected within acceptable safety
factors. Most of the forces were approximately equal and the maximum force was
found to be approximately 800 N. This occurred at point “F” “ in figures 2 and 4.

Finally, through DADS and MATHPAC analysis, the equation for torque as a
function of crank angle was determined. This equation was input into the robot’s

software, allowing a smoother walking motion.
Gearbox Design

Purchasing gearheads from the motor manufacturer was too expensive,
therefore, gearboxes were designed and constructed. The leg crank and leg lift worm
gears have different dimensions. The original idea was to design a different gearbox
for each and minimize their dimensions. One eighth inch aluminum sheet was to
be cut into appropriate sizes and then fastened together by L-brackets or welding. It
was decided that this design was difficult and unnecessary. Two inch by four inch
rectangular 6061-T6 aluminum tubing with one eighth inch wall thickness was
selected for both gearboxes. This size provided the necessary strength and was
considered the minimum thickness necessary to support the bearings. The leg lift
gears required a box with a four inch length and the leg crank gears required a box
with a three and one eighth inch length. Typical crank gearboxes and lifter
gearboxes are shown in Figures 1.8 and 1.9, respectively.

Stainless steel shafting material was chosen for the gear shafts. The 303 grade
was selected for its machinability, high strength, resistance to corrosion and
relatively low cost. Brass couplers were chosen to attach the motor shafts to the
worm shaft. Brass was selected due to availability, low cost, and machinability. Past
problems involving set screws in gears, and couplers slipping on shafts, prompted
the drilling and pinning of all the gears and couplers to the shafts. The gears were
first aligned and locked in place with a set screw. The hubs of each gear were then
drilled slightly undersized for the diameter of the hardened spring steel pins.

[

iy 3es M I EIR
= Hivd S FLINCD %D
ANTFrmredstad L Csh X

0 3 X (MW7) o730 X (O
0°ST G6°2T7T 0°'0T G*2 6'8 G*'¢ 0°*0 §'2- 0°G- G2~ 0°'0T- &
” 0°6G- Wo
w [
< | H X
Ir[[lll% oo G°0-
} |
R
| G°3
\\\\\\n w *
__ 0°ET (ws,
= m e IR
|
, S _ 527
!
: 0°22
“ 592
a1 5T
0°T¢

- o o
i H) 1S3 a1 N N
u).c\:;,.ﬁ r\.w“ W D\% 31O
A e Tl TR
o CANYJWEQD - . Aoudca)
el 'y e a3 . .] 1 7
NS e 7]) smrsece JLYid 4oL S
,\.\HN ﬂu\.@ rvt.\\.WQ o o i «Hlu.
Sun 15CT DODT eray g
6
Lvid oL Lcg
. -
I 0] v . (LEE | E-
i€ |
(- ~—%
- —_— e o L _ \wl
! 1
] ! 4,
'."—- —
| L
1 X -
: ' ~
o
| :
_) 'R
[. .
| <
_ i
: vl e
!
_ 1 ,,
: — i OKd m_j
- - - - - - > ,
| Ko S FwS ~r\a¢c\,ntﬁv il
S e - 25 wlvn mwu
TR T ¢ o as
_ R L e A
1
_nu\a T tp MY qy‘ RPN Y“..& ,,.c\nuO
Y N P VTR PR
¢ sm.mN.- fw.nc: ,.\u‘.f.\h ...U#-CL._ﬁ

XOFAVIAD ANV DI L Dy FANT

g 5]

EXEZE

oW eSrswriu
{ ANVSVDD

Wt

:wé 150 :ADoddo

Gl A 795

UEPIG] 7). w00

x Gy .
9 s@ﬁw X DO 7] eres

SI¥TG HOLLOY

31Vig JOL

T - " ’
A T Wl;¢ L7 VS wc\\. .V\tu(u

-

Bh e heo e

? ooy v
m\Wr ' 4 ™/

Figure 1.9

2

N0

PN s Y sy AT e o g gl

L

Ww_ yt, ey

~WN | iro,. ‘H‘mbuo ”J‘eh Te

XOQAVIE A31J v 76 FanTiY

Gear Selection

Due to space constraints, the motors could not be mounted between the
support plates. To minimize the width of the overall assembly, the motors were
mounted flush against one of the plates. The following items had to be considered
when selecting the type of gears best suited for this application:

-The torque from the motors needed to be transmitted between non-
parallel, non-intersecting shafts.

-The high torque and shaft speeds from the motors had to be reduced to
drive the crank and further reduced to drive the leg lift mechanism.
-Backdriving of gears was a problem in previous robot designs and must
be considered.

-The gears had to be easily accessible and adjustable in case there was a
problem. |

For these reasons a worm and worm gear combination was selected. There is often a
large difference between the pitch diameters of the worm and worm gear. This
difference was considered during the selection of the gear material. The worm must
rotate many times to rotate the worm gear once, therefore, in order for wear to occur
equally between the worm and worm gear, the worm was made of hardened steel
and the worm gear was made of brass. The gear ratio for the crank gearbox was
selected to be 35:1, while the lifter gearbox ratio was 60:1. All gears were purchased

from Boston Gear, Inc.
Motor Selection

Thirteen motors were were needed for this design, therefore, they were the
most expensive components of the entire robot design. For this reason, special
attention was given to their selection. Based on durability, low weight, small size,
high torque, and cost, 14202 series Pittman DC servo motors were selected. Motor
specifications are listed in the appendix.

Two motors were required for each leg. One motor drives the crank, the

second motor drives the leg lift mechanism. Originally, MicroMo Corp. motors

18

were selected with gearheds attached. These motor/gearhead combinations,
however, were nearly three times the price-of the Pittman motors and it was
discovered after closer examination that the gearheads would not withstand the
large torques of this design.

Another consideration in motor selection was the the choice of encoders.
Hewlett-Packard encoders were supplied and attached by Pittman in order to reduce
complexity of integration and assembly. Due to cost constraints, the encoders
selected were incremental not absolute. To provide absolute positional data to the
motor controllers, the encoders were augmented with contact microswitches
located at each extremes of the pie shaped lifter gears; on the bottom of each foot;

and at an extreme position of the rockers of each leg assembly.

Leg Links

The leg links are the load bearing members of the crank and rocker and of the
pantograph mechanisms. The crank and rocker consists of a steel coupler plate, a
steel crank bar, and an aluminum rocker bar. The pantograph mechanism consists
of four aluminum bars. These materials were specified and machined so as to
provide adequate strength under impact conditions while maintaining very close
hole-to-hole and part-to-part tolerances. To facilitate this, a highly rigid and
precisely controlled machine tool was required. A computerized, numerically

controlled (CNC) vertical milling station was provided to the students by a sponsor.

Design Optimization

The design of the five aluminum links was optimized for simplicity of
construction. This was achieved primarily by incorporating common design details
in each of the links. The benefits of using typical details manifest themselves
through all stages of the construction process. Materials were economically
obtained due to the quantity pricing advantage of homogenous specifications.
Drawings were easily created through use of CAD software. Programming the
machine control was done efficiently. A common fixture was used to clamp the
links during machining. The automated machining itself was performed with only
six tools. The mechanism assembly procedure was also simplified by the modular

part structures.

19

Materials

The material for the links was originally purchased in the form of two 12 foot
bars of 1" square solid 6061-T6 aluminum.

Drawings

The detailed part drawings were made with CAD software. The modular
parts allowed use of blocks for part details, which were copied and modified for each
link drawing. Further use of CAD blocks provided an analysis technique for
determining internal clearance conditions. Datum dimensionihg was employed
using these criterions. A rough block drawing of the fixture profile was used to
‘determine the logical position for datum placement. This method afforded a clear
understanding of the cutter path with respect to the fixture and vice. The
dimensioning technique facilitated data extraction for programming the machine
control. CAD drawings of the links are included in the appendix of this document.

Programming

The machine control was programmed remotely through use of a macro
library. The macro language translates written commands into machine language
according to a set of definitions. The modular part design allowed extensive use of
subroutines for program details. The goal in programming the machine controller
was to describe the cutter path so as to affect the specified cuts while avoiding
interference (collision) with the fixture and vice.

Programming the control also required understanding of the actual cutting
process. Proper spindle speeds and feed rates were calculated and specified for an
array of drills and reams and for an end mill under various loading conditions.
This process is highly empirical and requires fine tuning during the machining
process. A sample set of programs (in non-compiled form) are included in the

appendix of this document.

20

Fixture Design

The function of the fixture was to hold the aluminum bars within the vice
while machining. The design of the fixture had three major constraints. The fixture
was required to index off of the machine table in order to define the part position
with respect to the control's coordinate system. The fixture had to be sufficiently
rigid so as not to deflect under the entire clamping force of the vice. The size of the
clamp blocks themselves was also critical. Their width (parallel to part length) was
restricted to being small enough so as to allow maximum cutter path flexibility
around the part. The depth of the blocks had to provide tool clearance between the
vice and the part. This is indeed the very purpose of the fixture: to provide the tool
with free access to the small part in a large vise.

The fixture consisted of five components, four of them steel. The base, a thin
plate, was welded to an indexing flange and a clamp block. The flange was flushed
with the vice corner. The second clamp was kept free to allow for material
compression and variation. The fifth component was an acrylic riser used to
protect drills as they clear the bottom surface of the piece. This part was replaced

when, due to wear, it could no longer provide a flat surface on which to rest.
Tooling Selection

Milling, drilling, and reaming were the machining operations specified by
the parts' designs. All holes required tight diametral tolerances, hence a tool staging
procedure was employed. The first operation is a center drill. This prepares the part
for the drill through operation in that there is less tendency for the drill bit to
"walk" as it enters the piece. The drill diameter was 1/64" undersize to ease the
reaming stage. A ream cuts holes far more accurately than a drill.

The interior slotting and exterior contouring work was performed with an
end mill. The parts were designed to be milled with only one tool. The tool selected
was designed for use on aluminum, the chips of which has a tendency to lodge in

the flutes of tools intended for steel.

21

Machining Process

The process of machining the aluminum links began by cutting the
aluminum bar into rough part lengths with a cut-off saw. It was determined that a
blade with widely spaced teeth, running at high RPMs, provided the best quality cut
for the aluminum grade utilized. Six lengths were cut for each link design, one per
leg, except for short link DF. Three lengths were cut to the rough length of the short
link, which were then cut lengthwise by a bandsaw to form the required six pieces.
All 30 aluminum pieces were then deburred on a light grit grinding wheel.

Next, the links were prepared for their machining cycles. The most
important factor in this preparation was the requirement that the majority of the
links be machined on two perpendicular faces. Given the available equipment, this
factor called for the pieces to be turned 90 degrees at some point during the
machining cycle. This is not a trivial step, as the machine is computer controlled

‘and the piece must therefore be replaced in the same location from which it was
removed. To accomplish this, reference lines were drawn on each piece. These
marks were drawn in locations free of external details and alligned with a scribe
line on the center of the welded fixture clamp. This placed the pieces into a known
position with respect to the machine coordinate system. Tolerances between the two
faces were designed to be such that when the pieces were turned 90 degrees,
positioning by eye was sufficient.

The applicable program was then begun. When it was fully debugged, the
process from this point on was trivial. Although a great deal of time was spent
debugging the programs, the final versions were all but autonomous, requiring
only observation and adjustment of the coolant nozzle. This process lends well to
high production quantities. Through modular design and use of subroutines in
programming, debugging was simplified and thus production efficiency improved

through reduced setup time.

22

Section It Body

The purpose of the body group was to meet certain objectives in the process of
completing this component of the walking robot:

* To design a platform capable of retaining all major components of the robot
¢ To minimize the deflection, weight, cost and complexity of construction.

* To maximize the toughness and ease of manufacture.

* To create a frame capable of causing the robot’s turning motion

* To build an assembly used for competition in the hockey puck event

Frame

The overall design dictated the outline and geometry of the chassis. The
design is as follows:
Two triangular (isosceles) frames containing a leg mounting boss at each apex are
superimposed in a “star of David” configuration. The two frames rotate about a
common axis passing roughly through the center of mass of each frame. Several
types of chassis construction were considered. The original design, a trussed space
frame, was deemed too complex due to the large number of mitered joints and the
interplay of component members between the two triangles. It was therefore
decided to utilize a platform chassis (Figure 2.1) operating in a single plane for each
frame, thereby eliminating any possible interference between the triangles.

A platform chassis may be constructed in several ways and out of several materials.
In any design project there are two possible approaches. First, there is a design
which is easy to conceptualize but difficult to manufacture. Second is a design that
is easy to manufacture but difficult to conceptualize. A ladder frame of two side rails
and several straight cross members of generous wall thickness was considered. This
is easy in concept but labor-intensive to manufacture. This is due to the fact that the
shape requires a large number of cut and mitered joints at odd angles. The other
approach is a unitized combination of two parts, a flat skin and a reinforcement
panel with stamped-in stiffening ribs. Once spot welded together, they produce a
single platform that is both thin and extremely rigid. A production rate of several

thousand units per hour is possible for this design approach. The excessively high

23

'} }
Y
——
8 1/2°
e
67 5de
Y A
11/8
15/8
Y _
15 15/18"
o 7T 12 5/16° 9157/16°
] \ Yy
-} 13 1/2° ol
- 211/2" -

Figure 2.1: Frame Dimensions (one frame)

production rate along with moderately high tooling costs were beyond the scope of
this project. Therefore, A fiberglass version of this concept with hand laid foam core
stiffening ribs was briefly considered. This consideration was rejected due to time
consuming, tedious load analysis required for placement of reinforcements. This
process would work if sufficient time and expertise were available during the design
stage.

The final design was a combination of the ladder frame and the unitized
frame. This modified frame contained two thirds less material than the original
ladder frame design allowing the use of steel tubing instead of aluminum. A
modified ladder frame of an irregular shape can be made easily if the members can
be formed into the desired shapes by simple bends. This would reduce the number
of joints. The material choice for this application was round thin wall tubing. The
strength lost due to the reduction in wall thickness (as compared to traditional
ladder frames) is compensated by the reduction in the number of fastened joints. An
additional strength is created by the installation of thin steel sheet reinforcements.
These steel sheets are installed at the top and bottom of the main frame by spot
welding the sheets to the thin wall tubing. The spot welding can be accomplished
where ever opposing access is available on the outside diameter of the tube for
electrode placement. Spot welding has the added advantage of easy automation and
preservation of the rust resistant capabilities of galvanizing. This design provides
low tooling and material costs, ease of automation (bending and welding) and a
large or small volume production. But, since the spot welder was not at the disposal
for this project the steel sheets were installed by using pop rivets.

The overall design of the robot was extremely sensitive to any backlash.
Specifically, the bearing hub would not have functioned adequately in a presence of
any backlash. This sensitivity was demonstrated during the initial assembly of the
two chassis. It was noticed that with one tapered bearing seat removed, a 0.001”
assembly clearance was magnified to 1/8” at the points of leg mounting. The
tapered bearing seat was reinstalled, and a static load test was performed. The
equipment used in this test was a vernier calipers, a surface plate, and a ten pound
weight. Three trials were run with an average deflection of .024”. The maximum
and the minimum deflections were .030” and .018”. The chassis’s performance
proved to be robust.

There were two incidents during the competition that proved the strength

and durability of body’s robust design. The first and most serious was the final

25

e

assembly of the robot with only three of the five bolts installed to hold the bearing
hub to the upper chassis. The second was a large clamp which was applied to
prevent relative motion of the frames during handling. This is normal except in
one case in which the 3/4 inch spacer was not installed between chassis. The result
was that the chassis were forced together on one side to the point of contact.
Fortunately no permanent damage was done to the chassis or bearing hub. The
repair consisted of simply prying the chassis apart to the required 3/4”. Since it has
proven itself so well, the body will remain unchanged as the robot is brought to

competition performance.

Turning Mechanism

The design of the turning mechanism for the body incorporates several
design criteria. The mechanism is simple and was easy to build, easy to assemble and
disassemble, light weight, strong enough to withstand the loads applied to it and
powerful enough to turn the body under dynamic loading conditions. The final
design takes into account each of these constraints.

In order to keep the design simple it was decided that it should consist of only
four parts: the hub, bearings, shaft and motor (see Figure 2.2). The hub, which
houses the bearings, was machined out of one piece of aluminum to insure light
weight and high strength. Two tapered roller bearings were press fit into the hub.
The shaft is locked into the bearings with a 7/8” nut. The motor shaft was to be
inserted directly into the turning shaft and held in place by setscrews to increase
efficiency and simplicity. However, we were forced to change this element of the
design for reasons which are outlined further on.

Weight reduction was largely achieved through the use of aluminum in the
hub. The shaft is steel due to strength requirements imposed by overcoming the
inertia of the body, and makes up the bulk of the weight in the turning mechanism.
Use of composites, alloys or other materials for further weight reduction is
recommended for any future design.

Strength requirements dictated the path of several design features. Five
through bolts anchor the hub to a 3/16” thick steel plate that was welded to the
frame of the body. Bearing strength was achieved through the use of automotive
tapered roller bearings. These bearings provide more than adequate strength as well

26

e

/— MOTOR

MOTOR, SHAFT

[/——MAlN SHAFT

SEARINGS AND RACES

AN

BEARING HUD

CONDWT —% 3—;—.040 SHEET 3o PLATE —< éCONDUtT

e ————————

[@7Z8=dr i

7
L F\LLETS—-/

Figure 2.2: Original Turning Mechanism Design

LavYHS ONINIGNL NIvW

9
.,

DOH ONINIVLITA ONTIVIY

N .

- - - -

A

b - -

v R

-

--..:...- -.J_-....,. (.
M
'

b ==y

- M

b -4

b = = -

S abl

[
1
po - -

i

b - -

R SR .1[. [* QR

|

S

YOLOWN |17

NOILYNIKIWOD av3o0 WOM

Figure 2.3: Temporary Turning Mechanism Design

as zero backlash. The damping effect of the tapered bearings is considered to be
useful in overcoming the angular momentum of the body. As mentioned above,
the shaft is made of steel which is of sufficient strength to handle the applied loads
and torques. The shaft was welded onto a 3/16” inch steel plate that was in turn
welded into the frame of the body. Triangular 1/8” thick steel fillets were welded to
the plate and shaft to provide extra bending moment strength.

The motor shaft was originally designed to fit directly into the turning shaft.
The motor, a Pitman model GM9414 with 24V nominal voltage, a 127.7:1 gear ratio,
and a 100 CPR encoder, was capable of producing the power necessary to turn the
body against the moment of inertia generated by the weight of the frame and legs.
However, the motor’s reduction gears were not able to withstand the applied loads
and were destroyed. Under these last-minute conditions, we were forced to use one
of the extra leg lifter motors and gearboxes (Figure 2.3) as a substitute turning motor
assembly. Later, we will replace this temporary system with the original turning
assembly, using a new gearbox with stronger components. = When the
microprocessors function correctly, they will insure that the turning motor does not
turn the body too far, causing the legs to hit each other and the motor to stall. This
way, the motor will not spend much time working at stall torque, and lesser

demands will be made of the gears.

Hockey Stick Assembly

The performance requirements for the hockey puck event of the competition
necessitated a design with certain criteria. The hockey stick assembly had to be able
to drag or push a puck continuously through the event. The event had two major
influences on the design of the hockey stick. First, the assembly had to be able to
turn independently of the body. Second, the assembly had to have freedom to move
in the vertical direction.

The purpose of the first design criteria was to assure that as the body turns
and moves forward or backward, the hockey stick can keep the puck in the desired
position. The second design criteria is incorporated in the design of the hockey stick
to allow the blade to have continuous contact with the ground and puck as the body
rises up and down in its normal movement path.

The hockey stick assembly is composed of two links and a blade. Only the

29

blade has contact with the puck. Link 1 is vertical and connects to the blade, giving
the stick the proper height to connect to the motor. Link 2 is horizontal and
connects to link 1 and to an aluminum joint. Link 2 acts as a displacer for the blade,
giving it an arcing motion, which causes the puck to return to center. The
aluminum joint, and therefore the links and blade, is turned by a stepper motor.
The motor shaft is fitted into the aluminum joint and is reinforced by a set screw.
The motor is mounted to the rear leg housing by an L-bracket.

The first design criterion, control of the puck’s direction of movement, was
satisfied by the turning motor, which is controlled by an operator through a tether.
The hockey stick was installed on the rear leg housing for maximum operator
visibility. The second design criteria was satisfied by the use of the aluminum joint.

‘With the rise and fall of the body during its normal walking pattern, the hockey
stick assembly will also rise and fall. The joint allows the hockey blade to maintain
contact with the ground by giving the links and blade freedom to rotate about an
axis perpendicular to the links and parallel to the ground. The weight of the
assembly causes it to rotate about the joint, thereby keeping constant contact with
the ground and puck, providing continuous control by the operator of the hockey
stick assembly.

In sum, the body group created a frame capable of meeting the objectives
stated above. A few changes may be made to the basic design between now and next
year’s competition, but overall the robot body proved its worth in its satisfactory

performance on the field of competition.

30

Section IIT: Electronic Hard

The Hardware Group was responsible for the design of the computer ‘brain’

for the walking robot. This computer controls a total of 13 motors, each with an
optical encoder to monitor it’s position, and monitor at least 26 switches. Since the
robot must be completely self-contained, the electrical power for the robot comes
from on-board 12 volt batteries.

The decision of the type of computer system to use took into account the cost,
computational power, and the ease of external device (motor) control. A PC is
widely familiar computer, but lacks easy device control. An AT is essentially a PC,
but with more computational power. A microcontroller is a “computer on a chip”-
it is meant for applications that require easy device control. But a complex task that
a PC or an AT can handle in stride, the microcontroller comes up deficient. There
are five possibilities for controlling the motors:

1. PC to Motors

2. AT to Motors

3. Microcontroller to Motors

4. PC to Microcontrollers to Motors

5. AT to Microcontrollers to Motors
The first was eliminated because although the hardware connection would be
simple, the software would become extremely difficult. The computing power
required by the PC would be more than it could supply. The second choice was
eliminated for the same reasons. Microcontrollers directly to the motors was
eliminated because of the difficulties encountered when it was attempted
previously. The increased computational power provided by the AT does not
overcome the increase in cost. The microcontrollers are designed for motor control
applications. They can easily be used to control two motors and keep track of the
encoder data, making it useful to control a single leg. A PC commanding
microcontrollers controlling the motors was the system that best fit the
requirements. Figure i.l is the basic hardware configuration.

The next task was deciding how to communicate between the PC and the
microcontrollers, and between the microcontrollers and the motors. The first
decision was the choice of serial or parallel] communication between the PC and the
microcontrollers. The software needed for serial communications is greater than

for parallel, while the hardware is about the same. It was decided to use parallel

31

ey . »
Moters oentrelier / oontrolier
pC

Leg
Moters
Miore- Mere- Loy
mv.m

/ Miore-
Miere— ore- Lot

oontre sentralier Meters
Ter sentreler

[
%

gf

Retatiena)
Mater

Figure 3.i

communications. With parallel communications, comes the problems of bus
protocol. A shared dual port memory allows a separate common memory between
the PC and each microcontroller that both the PC and the microcontroller can access
at the same time. Additional hardware and software is kept to a minimum. The
dual port memory can be directly connected to the microcontrollers address and data
buses. Address decoding is required on the PC side so that it can access the correct
bank of memory.

Dual-Port Micro=-
PC RAM controller
Addr Bus
Dual-Port Micro-
RAM controlier
Data Bus Dual-Port Micro-
RAM controller
Dual-Port Micro-
RAM controller
Dual-Port Micro-
RAM controller
Dual-Port Micro-
RAM controller
L—— Dual-Port Micro-
RAM controller
Figure 3.ii

32

The microcontroller to motors connection is outlined in the application
notes for the 80C196KB. The microcontroller sends the direction and speed to the
motor driver circuit. The motor driver circuit is needed to amplify the signal since
the motors use more power than the microcontroller can supply. The circuit uses
the pulse width modulated signals from the microcontroller to control the speed of
the motor.

The design philosophy was to keep the circuitry as simple as possible, within
the specifications outlined above. Part of the simplicity was the modularization of
the components. Each individual sub-system was built and tested independently of
all the other sus-systems to localize problems before the robot was completely
assembled.

33

Part1
The PC interface

The main processing unit of the hardware design is an IBM PC motherboard.
The PC controls the legs by communicating with the 80C196 microcontrollers. This
communication is accomplished through a Dual Port Static RAM (SRAM) that is
shared between the PC and the microcontroller. The PC also handles interfacing
with the voice control and the sensors.

The PC shares one dual port SRAM with each of the seven microcontrollers.
The PC uses the right side of the dual port and the microcontroller uses the left side.
These dual port SRAMs are mapped into the PC memory space. The dual ports are
mapped into the memory space assuming the PC has it's maximum RAM memory
(640Kb). The address space between the 640Kb RAM maximum and the IMb top of
memory was explored for a suitable area to map the dual ports. A 248Kb block was
found starting at address CO000h. Each dual port is 2Kb, therefore at least 14Kb is
needed. A large enough section of the 248Kb block for all the dual ports to be
mapped contiguously was found at address CC000h through CFFFFh. Figure 3.1.1
shows the complete memory space of the PC (Duncan, 87). This part of the block is
used to simplify address decoding. Figure 3.1.2 shows the address decoding circuit.
The circuit uses the nine high order address lines and AEN (Address Enable) to
generate a chip select signal when the appropriate memory block is accessed. The
signals are taken from the PC’s expansion bus (labeled PC Bus in the figure). A table
of addresses associated with each signal is also included in the figure. Once the dual
port mapping was established, the connections between the PC and the dual ports
needed to be defined. The address and data lines connect directly from the PC to the
dual port. The read and write signals from the PC do not correspond directly to read
and write signals on the dual port. The dual port has one signal indicating read or
write (R/W) and one signal for enabling the output (QE). The dual port function
associated with these signals while the chip is enabled are:

R/W QE Function
L X Write to dual port
H L Read from dual port
H H High impedance state

34

A —— S ——

FFFFF
FEGOO

ROM BIOS (8K)

Reserved for BIOS (248K)

(9]

Co000
Reserved (16K)
BCQOR
CGA, EGA, MCGA, VGA
Buffer (16K)
BS0Q0
Reserved (28K)
B1000 Monochrome Buffer (4K)
BoQEO
EGA, MCGA, VGA
Buffer (64K)
AG200
RAM (642K))
20000
Figure 3.1.1
PC Bus +5y
E—
AEN AL
FRLY L LA
YTy L1k M- 74138
A7 %%——)—o 16MGec vo —’-2———)—
A6 A2 —s—qg 261 viHE—-
ATS H2—> 2028 y2pi—>-
A14 1o 5|28 Y3pE—>-
AT3 AT —>- 2ic Y4-%6——>-
A2 [0 £l8 ysHO 5
Al —> LA Ys~3———+—
_J:— GND Y7pb————
Figure 3.1.2

S

1024K (1M)
1016K

768K

752K

736K

708K
704K

640K

oK

Chip
Select
Active

Address
Block
(Hex)

NN WNN-O

CCooe-CCT7FF
CC800-CCFFF
CDBoe-CD7FF
CD809-CDFFF
CEQGBQ-CETFF
CE8@0-CEFFF
CFe00-CF7FF
CF808-CFFFF

write signal MEMW) are:

MEMR MEMW Function
H L Write to memory
L H Read from memory
H H No read or write

|

The PC functions associated with the memory read signal (MEMR

) and the memory

The dual port functions and the PC functions coincide if the R/W signal is
connected to the MEMW signal and the OE signal is connected to the MEMR signal.
The timing diagrams and calculations show that these signals meet the required
timing conditions. The diagrams and calculations appear at the end of this section.
In addition to the read and write signals, the dual ports generate two signals
that the PC must monitor. They are busy (BUSY) and interrupt (INT). If the busy
signal goes active, the dual port is requesting a wait state. A wait state is when a
device can not respond to an access by the processor and the processor allows extra
time for the device to respond. This signal is connected to the I/O Channel Ready
input on the PC. This input signal is used to request wait states. If the interrupt

goes active then there is information in the dual port that the PC needs to read.

This is connected to one of the interrupt request (IRQx) lines on the PC. These
connections are shown in Figure 3.1.3. The busy and interrupt signals are not quite
as simple to connect as described. Since there are seven dual ports, there are seven
busy signals and seven interrupt signals that need to be monitored. The circuit that
accomplishes the combination of the seven busy and seven interrupt signals into
two signals is shown in Figure 3.1.4. The circuit sends a busy signal to the PC if any
of the dual ports generate a busy signal. The PC does not need to know which dual
port needs the wait state. If any of the dual ports generate an interrupt signal, an
interrupt signal is sent to the PC. Once an interrupt is received, the PC needs to
know which dual port sent it so that the information can be read. This is

accomplished by connecting the interrupt lines to an input port of a Programmable
Peripheral Interface (PPI) that is connected to the PC. When the PC receives an
interrupt, the PPI port contains the status of the interrupt line. By reading this port,
the dual port that generated the interrupt can be determined. Since the complete

configuration of the PC motherboard is not known, a jumper block is used to select

36

PC Bus

+3v

IDT71321L A
52 Vee
Ao (A3 > 45! sor
A1 [A3e > A3 atr
A29 43
A2 >
> A2r
A3 [A28 > 42 \3r
227 ¢ 41
A4 > Adr
As|A26 ; Tt
A6 (423 > 32| acr
A7[A24 > 38/ \or
ag(hzd > 37 Agr
A22 . 36
AS > ASr
A21 L 47
ate A2 > A ater
e > 1/00r
(a8 ? 28
D1 > 1/01r
A7 . 29
p2 A7 > 21 1/02r
D3 (42 > $5]1/03r
D4 |23 > H1/04r
DS > 1/05r
D6 (A3 > 3311 /06r
A2 34
D7 > 1/07r
FIEFR g}f > ;6 otr
FIEMW | > R rwr
10 CHAN RDY {218 49/ 5USTr
48 iNT
r
5tz
28] or
S GND
CSx =
(From) (To)
Interrupt/Busy Control
Figure 3.1.3
+Sv
PC Bus Jumper
Block
Re2 24— T o]
IRQ3 325 < 2 o)
IRQ4 ng {0 3 o € <
IRQS € < 4 o)i N
RQs 1222« 155 o 7430)
IRQ7 —to 6 o < €
10 CHAN RDY [A12 <)
8255 (PPI) ¢
PAR I —¢ <
PA1 ; ¢ .
Pa2{E— <
PA3 ¢ €
Pa4iO ¢)
pas [22 ¢
PAS gs < N
PA7 ¢ .
Figure 3.1.4

37

which interrupt request line is used to inform the PC of an interrupt. The timing
diagrams and calculations show that the busy and interrupt signals meet the
required timing conditions. The diagrams and calculations appear at the end of this
section.

The PPI is connected to the PC and is used to interface with several devices.
The first use has already been discussed, the monitoring of the interrupt lines from
the dual ports. Other uses include interfacing with a voice recognition circuit and
sensors. The voice recognition circuit has up to eight outputs to indicate
commands. One port of the PPI can monitor these eight lines for commands at a
time when voice control is desired. The PPI can also monitor sensors. Optical
sensors generally have one output signal, .therefore up to eight sensors can be
monitored with one port. The PC to PPI connections are shown in Figure 3.1.5.

PC Bus Jumper PPI
—A9 A22 +5v Setting Addr
A5} (Hex)
1 20¢-3
At4 14138 2 220-3
A3 ol Vee Yop o ! ot 3 240-3
Al12 . G1_ Y1 3 o 2 4 260-3
4\% Y2 > >to 3 5 280-3
At 11028 Y3p oo 4 6 2A8-3
A0 2| Yaholre e 7 | ce-3
B YSt=>1o 6 8 2£0-3
A8 3lc Y6 [2rto 7 o
Ad) Blono v7H o8 o .Sy
8255 (PPI)
AS 2§§ — = TZQ Veo PAG iNTre
e > 35 PAt| iNTr1
A7 > 5 RESET PAZ“ iNTr2
GND PA3 NTr3
a3 (28 l PA4 e — iFTrs
L PAS EE'——W_TPS
A1 - PA6 =7 iNTré
AEN PA7{ NTr7
élcs poa S
19
PBI =
AB A3] > -> 9 AQ PB2 21 Voice
arjA3e > 81 a1 PBII°> 5 Control
:g; Eg' Board
OR ::; > — 32 RD PB6 |24
IOWR > > VR pa7(25. J
A9 34 14 ~
LY pe Pce—
D1 {28 331p1 pci 3
A7 32 16
D2 D2 PC2f 2
D3 A $ipz pcsfil
AS 30| py pea 13 Sensors
D4 [aa 29 12
D5 DS PCSF=
D6 (A3 28 g pCs L
A2 27 10
D7 D7 pc7pL /

Figure 3.1.5

38

Timing Diagrams and Calculations:

This section contains the timing diagrams and calculation as mentioned

previously in the text.

Read Cycle:

1
Clock
[2]

Addr Valid Address Out

‘ tehll
cll\"‘1 l——)‘

1

AE f \ .

fcmﬂl telmh I

FEFRD | \ /

]
{300
1
MEMWR 0 tz the
1 —
o M\
tdos ,_,L Y teldx
1
Data o Valid Data Out —
tace * tdvel

Read Cycle Calculations:

Two conditions must be satisfied for the read cycle to function correctly. All
numerical values are in nanoseconds. A list of parameters is included at the end of
this section.

1.) Valid data must be output by Dual Port before data is read by PC:
valid data =t + toym] + tage

data required = 3t

data set-up time = tdvel

(data required) - (valid data) > (data set-up time)

39

Gtael - talel + telml * tace) > tdvel
2tclcl - teiml ~ taoce > tdvel

Minimize the left side and maximize the right side:
2(200) - (35) - (40) > (30)
325> 30

This condition is satisfied.

2.) Valid data must be output by Dual Port before data is read by PC:

valid data = tolav * tdes * tace

data required = 3t |

data set-up time =ty

(data required) - (valid data) > (data set-up time)
Btere) - Uelay * tdes * tace) > tdvel
3talel - telay ~ tdes ™ tace > tdvel
Minimize the left side and maximize the rigHt side:
3(200) - (110) - (35) - (70) > (30)
385> 30

This condition is satisfied.

40

i

write Cycle:
T T2 T3 % T4
o Yol tehe
1
Clock
°
telav,
1
Adde o X Valid Address Out
tehn
(cl'l\‘_1 l——-1
1
ALE 0_]— \
MEMRD !
e V t
toiml clmh
, i i
MEMWR \ /
*as 4 ‘WD
taw -
l——-
CSx ~\
e
*dese-J k\,z(—)I
1
Data {[[vatidpata
teldy L 4w LJL__J
DEN | f \
e
tcvrav‘—'J

Write Cycle Calculations:

Three conditions must be satisfied for the write cycle to function correctly. All
numerical values are in nanoseconds.

1.) Valid data must be output by PC before data is read by Dual Port:

valid data =t + togqy

data required = 3t +t

clc clmh

data set-up time = t,

(data required) - (valid data) > (data set-up time)
Btetel +telmn) - elcl * teldv) > taw
2tejal * telmh * tldv > tdw

41

Minimize the left side and maximize the right side:
2(200) + (10) - (110) > (30)
300> 30

This condition is satisfied.

2.) The time from chip enable to data required must be greater than address valid to
end of write:
chip enabled = t5v * t4cs

data required = 3t + tcimh
address valid to end of write = taw

(data required) - (chip enabled) > (addr valid to end of write)

(3tclcl + tclmh) - (tclav + tdcs) >taw

3t 1+t

clel * telmh " telav © tdes > taw

Minimize the left side and maximize the right side:
3(200) + (10) - (110) - (35) > (50)
465 > 50

This condition is satisfied.

3.) Data bus must be tri-stated while Dual Port is still in output mode:

data bus tri-stated by the PC =t + toyny

bus required to be tri-stated by Dual Port = t.5y + tges + tas * twz

(bus tri-stated by PC) > (required tri-stated by Dual Port)
tald * tevnv > telav * tdes * tas * twz
Minimize the left side and maximize the right side:
(200) + (5) > (110) + (35) + (0) + (35)
205> 180

This condition is satisfied.

42

Reed or Write Cycle With Busy:

r—————n T2 wS T3
terel telch tehel
1
‘chv’ ‘rqw’
1
Add Valid Address Out
r ° x i es.
tetih "'1
1
ALE \
°]

e
—_— S

'-—-—-—_
T8x :
e 1
tdes thac
—
us
Yr o \ { I
tdbs thda | tgbs -
1
IOCHANRDY e \ /
Addr o Addresses Match No Match

Read or Write Cycle With Busy Calculations:

The following condition must be satisfied for th

e read or write cycles to correctly
generate a busy signal. All numerical values are

in nanoseconds.
1.) Valid data must be output by PC before data is read by Dual Port:
busy signal required = telel * teleh - trqw
busy signal generated = tlav * tdes * thac * tabs

(busy signal required) > (busy signal generated)
(telel + telen - trgw’ > (telav + tdes * thac * tabg)

telel * telch - trqw > tolay * tdes * thac + tdbs

Minimize the left side and maximize the right side:
(200) + (118) > (110) + (55) + (35) + (45) + (60)
318 > 305

This condition is satisfied.

43 |

Timing Diagram Parameters

tace
taoe
tas

taw

thac
thda
tchel
tehil
tlav
tclch
telel
teldv
toldx
tellh
telmh
telml

Chip enable access time
Output enable access time
Address set-up time

Address valid to end of write

Busy access time to chip enable

Busy disable time to address

Clock high time

ALE inactive delay
Address valid delay
Clock low time

Clock cycle period

Data valid delay

Data in hold time

Clock low to ALE valid
Command inactive delay
Command active delay
Control active delay
Delay of busy select logic
Delay of chip select logic
Data hold time

Data in set-up time

Data valid to end of write
Output high Z time
Output low Z time

Time before rising clock to request wait state

Write pulse width

Write enabled to output in high Z

44

Part I1

The Microcontroller

The microcontroller performs all low level control functions, according to
commands passed to it from the PC motherboard. The communication with the PC
is done through the dual port RAMs. This hardware is fairly straight forward, but
required considerable analysis. The dual port RAM circuit is the major portion of
the microcontroller circuitry. Additional connections include the connections to the
motor control hardware and encoder logic. The rest of the circuitry was chosen to
keep the complexity to a minimum.

The dual port RAM connections are shown in Figure 3.2.1. This is a fairly
standard method of accessing memory. The address/data lines are demultiplexed
using a pair of 74HC373 latches. Address Valid (ADV) is used to control the latches
and Chip Enable (CE, active low) on the RAM. Read (RD, active low) is connected to
Output Enable (OE, active low) on the RAM. Microcontroller signal Write WR,
active low) is connected to Read not Write (R/W). BUSY (Active low signal from
RAM) is connected to READY (active high input on microcontroller).

In the original design, ALE (Address Latch Enable) was used instead of ADV
and Chip Enable on the RAM was tied active (low). This design produced a conflict
between the PC and the microcontrollers and was changed to the current design.
With the old design, after the microcontroller was through accessing an address, the
address was left in the latches and Chip enable was still active. This prevented the
PC from accessing that memory location until the microcontroller accessed another
location. The new design only requires that the microcontroller finish accessing a
particular memory location before the PC can access it. Using the Address Valid
signal instead of Address Latch Enable also greatly reduces the time that the left port

of the RAM is active and therefore greatly reduces its power consumption.

45

B

nicrucartrollsr to DUkl Part RAN CornbClions

oy
[+ =) 9 +3v
Vo3 Il IR
U (1) EH—
wa 213 EHL,
A1 2 b CI B &y
N2 v P °) L
e Sap b o r
0 B 3lap e . I axll}i17Y
@ oHil X
Pr: » oHis ,
o E o ol Lam
Fel: r-‘law ol A
-] AZT
Al n -£- 18 on
pope Py
G678 A
“fvodling LE AB)
1) mgi— 4
2 i + AR
L 0 e S— 4]
‘:1. x;: » :A‘Ill
Lge o i
= [
Ul eofld L34 1am
o ofk 1
ap wfd 17041
2, ;51
1 /083
l——zrlﬂ"l
= £l
RN
v.v/l 1 4 W'
= th
mx o0
“13e =
Figure 3.2.1

The RAM is mapped at 4000H to 47FFH in the microcontroller’s address
space. Since the higher address lines are not used for address decoding, the memory
will respond to any location higher than 4000H. These “shadows” of the memory
should not be used, as they are reserved for later use.

The memory design allows extremely fast and versatile communication
between the PC and each microcontroller. Both have full simultaneous access to the
same physical memory block. This allows many different data transfer schemes to
be used. To pass commands that require immediate execution, an interrupt feature
of the dual port RAMs will be used. To use this feature, one CPU will store data in a
certain memory location (a “mailbox”). This will generate an interrupt signal for
the other CPU. The second CPU will service the interrupt and clear the signal by

reading data from its “mailbox”. There are two mailbox locations, 47FEH and

46

— -]

47FFH, one for passing commands each direction. The PC will write to location
47FEH to cause an interrupt on the microcontroller. This interrupt line on the
microcontroller side is connected to the non maskable interrupt.

The major consideration for this memory design is how fast will it function
correctly. Both the memory and the microcontroller give timing specifications as to
how they will perform. The 80C196KB12 and 80C196KB10 microcontrollers have
slightly different timing specifications even if running at the same frequency.
Timings were calculated for both versions. It was necessary to analyze each of the
requirements given by the microcontroller to determine whether the system will
respond within the correct time frame in all cases. These calculations are included
in table 2.1.

With the completion of the timing calculations on both the microcontroller
side and the PC side, it was determined that the system will work correctly at 10
MHz or slower with a 55 ns (or faster) memory. The 55 ns memory is the desired
one because it is the slowest non-military version available, and therefore the least
expensive. In order not to push the capabilities of the system, it was decided to run
the system at a slower rate. It is not necessary to run the microcontroller at a high
speed because the speed is only needed in the I/O to the motor control circuits.
These circuits are inherently fast because they are connected to the high speed inputs
and outputs (HSIO port) and the pulse width modulator (PWM). This high speed
I/0O port can run almost as fast as the microcontroller can pass data to and from it.
Thus the 1/0 frequency can easily be 1/100th of the clock frequency. (The PWM is
even faster.) A speed of 3.5 MHz (the slowest allowable for the 80C196) will allow at
least one access every .0003 seconds, which is more than fast enough for the motor
driver circuits.

The PC bus has its oscillator line (OSC) available on the PC bus, and this is
used to drive a frequency divider circuit, which will drive the clock frequency input
on the microcontroller, XTAL1l. XTAL2 is floated when using an external clock
drive. CLOCKOUT is not connected simply because no external circuitry uses it.
The OSC line from the PC has a frequency of 14.3 MHz. A divide by two circuit will
cause the microcontrollers to run at 7.15 MHz, which is in the desired range. This
circuit requires that the OSC line conforms to the “External Clock Drive Waveform”
specifications given in the data sheet. Clock Detect Enable (CDE) is grounded

because Intel does not guarantee the clock fault detect circuit to work correctly, and

47

the circuit may inadvertently reset the microcontroller if enabled.

The RESET circuit is a standard RC circuit which charges whenever the power
is on and drains whenever the power is off. The output is run through a Shottky
inverter to provide sharp transitions and buffer the signal.

The external I/O connections are shown in Figure 3.2.2. These connections
use the high speed input and output lines for most of the motor drive circuit. The
PWM line is used for the walking motor because it is easier to program than the
high speed output and takes less CPU time. The high speed output is used for the
PWM on the lifting motor. The high speed input is used to receive data from the
encoder circuitry. The various switches are individually connected to bits of port 2,
and collectively (through an OR gate) to the external interrupt pin (EXTINT) so that
an interrupt routine may be used to service the switches.

80C196 Pin External Device Line
Name, Number, Type '

PWM 39 Output Main Drive Motor PWM

P2.6 45 Output Direction
P2.1 61 Input Limit Switch
HSL.O 54 Input Encoder Direction
HSI.1 53 Input Count
HSO.0 50 Output Lifting motor PWM

pP2.7 40 Output Direction
P0.0 4 Input Limit Switch
HSL2 52 Input Encoder Direction
HSIL3 51 Input Count

P2.4 36 Input Foot Contact Switch

Figure 3.2.2 I/O connections

Several other connections are required for proper operation of the
microcontroller. P0.0 through P0.7 are used for a “debugging port”; they are
connected to two four-bit hexadecimal displays. T2CLK is connected to a line of the
OSC divider circuit to run at 1/16th the speed of XTAL1. Several connections to the
A/D converter are needed even if it is not being used. The Voltage reference (V 4¢)
and ground (ANGND) must be connected (see Figure 3.2.3). Analog ground and
digital ground are connected at the power supply. The two V . pins were directly

connected to prevent a voltage difference between them.

48

Vref 12

ANGNDE—{

Figure 3.2.3 Analog to Digital References

System Timings
Microcontroller to Dual Port RAM

The following timings are required by the microcontrollers or the system will
not function properly. This table is condensed from INTEL'’s data sheet.

Name Min (ns) Max (ns)
TAvyV 81/115
TLLYV 11/20
Tcryx 0

Trryx 68/85

TAvGY N/A
TLLgv N/A
Terox N/A
TAVDV 182/230
TRLDV 60/70
TcLpv 33
TRHDZ 63
Trxpx 0

49

Each of these timings is calculated in the following table. With the exception
of the three timings discussed here, all timings are met by this design.

The “Ready hold after CLOCKOUT low” time (Tpyyx) and “READY hold
after ALE low” time (Tyyy) are required to insure that a wait state is inserted.
These calculations were made with the assumption that not meeting these
minimum READY hold times will cause nothing worse than not having a wait
state. To confirm this an engineer at Intel was consulted. He confirmed that there
would be no adverse effects from not meeting the minimum READY hold time.
There are cases when these timing requirements are not met. Further calculations
showed that in these cases, the RAM will respond with the data fast enough in all
cases except with the 55 ns or 70 ns memory and the microcontrollers running at 12
MHz.

The “Address valid to READY setup” time (T 5 yyy) will not be met while
running at 12 MHz even with the faster memory. '

Notation:
txxx Small case t indicates time defined by the RAM
Tyxxx Capital T indicates time defined by the controller
12/10 2 numbers
- First time is for an 80C196KB12 at 12 MHz
- Second time is for an 80C196KB10 at 10 MHz
35/45/55/70
4 numbers
- one for each available speed of the RAM
35/45/55/70-35/45/55/70
8 numbers
- Four at 12 MHz
- Four at 10 MHz
Omitted numbers are the same as the previous number.
i.e.35//45/ = 35/35/45/45
All times are in nanoseconds.
The names used here are the same as those used in the data sheet.
ACTIVE LOW signal names are underlined.

50

|

The following are the calculations used to determine if the system will satisfy the
necessary timings for various speed/part combinations:

1) Address valid to Ready valid time (T AVYV): maxallowed =81/115

Toyyv=I Tippg, (max) - T AVLL (min)] +'393 delay + tBAA
=25+30+35//45/

=90//100/

This is the critical timing: Address valid to READY valid. None of the RAMs can
respond fast enough to insure a wait state if the controller is running at 12 MHz.

2) ALElow to READY setup Time (T} | yy): max allowed = 11/20

TLLYV = -[TLI‘H..L or TAVLL] +'373 delay + tBAA
=-66+30+35//45/

=-1//9/
3) READY hold after CLOCKOUT low (TCLYX): min allowed =0
4) READY hold after ALE low (TLLYX): min allowed = 68/85

Teryx and Tpp yy cannot be guaranteed to be satisfied. If the max is exceeded, an
extra wait state will be added. Extra wait states are not a problem in this design. If
the min is not satisfied, no wait state will be generated, and the response of the
RAM needs to be fast enough to correctly store or retrieve the data. The read and
write cases will be analyzed separately.

Tc1 yx (read cycle)
TrRLDVY =60/70
tgpp =maxof0,30/35/40/,15/25/35/40 =30/35/40/
TRLDV >=tgpp So in this case no wait state is needed.
RD won't go low before READY goes high.

51

h‘?gﬁ_ —

T1 1 yx (read cycle)
required response = Tp 1 g, + TRL.Dv =43/60 +60/70 = 103/130
actual response = Ty y yx + tgpp = 68/85 +30/35/40/
=98/103/108/108-115/120/125/125

The response is not fast enough to guarantee a correct read when no wait state is
inserted is two cases: 55 ns RAM at 12 MHz and 70 ns RAM at 12 MHz.

Tt yx (write cycle)
If no wait state is generated, the RAM ne(_eds the data to be
held on the bus for long enough to store it.
RAM needs (max allowed):

TLLCI‘I + TCHCL + tWH =15+93/110 + 20 = 128/145
RAM gets (actual response):

TriwL * TwLwH * TwHOX =73/90 +53/70 +73/90 = 199/250
T1 1 yx (write cycle)

RAM needs (max allowed):
RAM gets (actual response):

5) Address valid to input data valid (T 5 ypy): max allowed = 182/230

TAvDV = [T (Max) - Toypp (min) 1+ 373 delay + ta o
=25+30+35/45/55/70=90/100/110/125

6) Read active to input data valid (Tgy py): max allowed = 60/70
TRLDV = tAOE =25/30/35/40

7) CLOCKOUT low to input data valid (Tp jyy): max allowed = 33

52

This cannot be calculated directly, so the time from latch low to input data valid will
be calculated (using Ty py)- The memory must respond in less time than the
response required by the controller.

TcLpv
Response required by controller:

TLLCH (mm) + TCHCL (mm) + TCLDV =-15+ 73/90 +33
=91/108
Actual memory response:
Ty 1RL * tAOE =43/60+25/30/35/40
=68/73/78/83-85/90/95/100

8) End of read to input data float (TRpypz): max allowed = 63
TRHDZ = tpiz =15/20/30/35
9) Data hold after read inactive (TRXDX): min allowed = 0

This requirement simply specifies that the data must be kept on the data lines until

after the read signal goes inactive. This satisfied by the design of the control lines.
Timing Diagram Parameters

TavDV Address valid to data input valid
TAVGY Address valid to Buswidth setup
TAVLL Address valid to ALE falling edge
Tavyv Address valid to READY setup
TencL CLOCKOUT high period

TerLpy CLOCKOUT low to data input valid
Terax Buswidth hold after CLOCKOUT low
Teryx READY hold after CLOCKOUT low
TiL ALE high period

TI1CH ALE falling edge to CLOCKOUT rising edge
TiLgv ALE low to Buswidth setup

53

ﬁ'_—__Tﬁ—ﬁ

ALE falling edge to READ falling edge
ALE low to READY setup

READY hold after ALE low

End of READ to data input float
READ active to data input valid
Data hold after READ inactive
Data hold after WRITE rising edge
WRITE low period

Address access time

Output enable access time

BUSY disable time to address
BUSY disable to valid data
Output high Z time

WRITE hold after busy

54

e ————— —————
— ————

Part I11
Real-World Interface

The electrically noisy environment of the motors is kept separate from the
sensitive computer circuitry by using opto-isolators. The power for the motors is
two 12 volt batteries connected in series. The computer circuitry uses a separate
battery to isolate the computer circuitry further.

Motor Circuitry

Each motor is hooked up through a relay to reverse the motor in the simplest

way possible (Figure 3.3.1). To prevent arcing of the relay contacts, the motors must

be stopped before changing their direction.

Motor
Supply

2
by Slow Blow Fuse
- 2%
1
—
oyl W\ Jern)

- .,
TR 2]__——’:;'
A

Blown Fuse
indicator

Limit Cutoff

Switches

Switches

Limit switohes are connected -
to Cutoff switches. When the

Timit has been reached in ene
dwection, that direction is
cutoff and a signal is sent to
the micrecentretler.

1N4204

it

+3v

tk

1
286901 2

+—l
Direction a

PWM
Input

1/6 74HCO4 a

Hex Inverter =

-
-

TL11Y

Moter
N

Supp
10k { RFDUIOR
6
s
4

—l L

Motor
Supply

}_’
-
b——

T

» |a

1ok { WFI30R
’——_—-—_———
; i

B

Figure 3.3.1: Motor Control Circuitry

55

Motor speed is controlled by using pulse width modulation (PWM). PWM
provides a motor with high peak current, but lower average voltage. The transistor
for PWM is rated at a maximum continuous current of over 10A, with much higher
surge currents. The fuse prevents any continuous currents higher than designed
for. The LED across the fuse will be lit only when the fuse is blown. This provides
an immediate visual indication of a problem with any of the fuses.

Hardware limit switches provide a fail-safe mechanism to stop the motors if
the computer fails to turn a motor off at the proper time. Given the power and
gearing of the motors, this is necessary; without it, the robot has the potential of
damaging itself.

Encoder Circuitry

Figure 3.3.2 is an optical encoder decoder schematic. It reads an encoder and
converts the data from the encoder into a ‘Count’ and a ‘Direction’ signal. ‘Count’ is
a wave that gives an incremental indication of the rotation of the motor. ‘Direction’
is high or low, depending on the direction of rotation of the motor.

) DEM'
T4HCT4
Phase A ? D > T4HCS6
74HCP6

G
O

T4HC14]_: TAHC14
-—ID 0
T4HCT4
Phase B l z > o] >
I T4HCBE
TANC14 = T74HC14
L Direction
5 o E——————
T4HCT4
74HC86 >

Figure 3.3.2: Encoder Circuitry (Schaefer, p. 4)

The resistor and capacitor values are dependent upon the frequency of the
encoder pulses. The values must be computed to give a delay that is smaller than a
pulse directly off of the encoder, but larger than noise that would cause the circuit to

operate erratically. They were determined experimentally with the working
hardware.

56

Voice Recognition Circuitry

Voice control is necessary in certain situations. This was done by using a
commonly available chip that costs about $10.00 and recognizes 5 separate
commands. It is based on a speaker independent voice recognition algorithm. This
chip and a few external parts will provide 5 commands: GO, TURN RIGHT, LEFT
TURN, REVERSE, STOP.

Clipped audio
VYCP200 100K
RIT 2
Lt &
+5V supply = IGND reset h_ 10K
10K = 19 =
Vee ¢ d OPEN yes~off/
18 no-on
[Voo OND | -l—- CLOSED:
17,7, command
XTAL Vee
10K
EXTAL vee HE
15 10K
IGND —
—114
Audio in left turn }—

e FY =
9 |wrn Fight/ = 112
yes-off stop

AOkeverse/ 11
not sure

Figure 3.3.3: Voice Recognition Circuitry (Archer, p.3)

Power Supply
The computer’s power-supply must be heavily regulated. A digital circuit is

sensitive to noise on it's supply voltage. If the power is not regulated sufficiently,
the computer will not operate properly or consistently. Here, there are two options,
a series linear regulator, or a switching power supply. The series is simpler, but the
switching power supply is much more efficient. (A significant concern, since the

robot is battery operated.)

57

Foot Sensing Switch

The robot must have some way of sensing that it’s foot has contacted the
ground. A simple opto-isolator circuit is used to reduce the risk of damaging the

microcontroller hardware.

Figure 3.3.4 is a circuit that provides an active high

indication of the foot contacting the ground. It is a general purpose circuit that can

be used whenever a switch needs to be interfaced to the computer hardware.

SWITCH

+3v

18k

57:52

TRL111Y

Non

l|f———-——]
a {o

Motor power supply

Figure 3.3.4: Foot Sensor switch

58

e P S PSSV

S —

Part1V
Construction Notes

PC interface

The PC interface hardware was constructed on an expansion card. The
hardware was wire wrapped on the perf board card. Figure 3.4.1 shows the layout of
the PC interface card. This expansion card was used to allow construction of the
hardware while the card was removed from the PC. The card could be remove to be
worked on and then reinstalled in the PC for testing. The card was constructed
using a color coded wiring system. This was done to ease debugging, particularly to
help find mistakes from incorrect wiring. The layout allows for expansion, since
only about half of the card is used.

|~ Off Board Connector |
Component side U1 P? W
W L_J L.l
u12 6] E‘f
Uiz | || L
Io ﬂ lij__‘_ i
L-— R
] Edge Connector |
U1 : 74HC4002 U6 : 74HC30 U10: 74HC373 J4:Busy jumper
U2: 74HCO4 U7: 74HC138 U11:8255 J6: Interrupt Request select
U3 : 74HCOO UB: 74HC138 U12: IDT71321 J8: PPI Address select
US: 74HC30 U9: 74HC373 U13:80C196 f
Figure 3.4.1
This hardware could be modified to ease construction. The circuits could be l
redesigned using programmable array logic (PAL) chips. This would reduce the
address decoding to two chips, one for the memory selection and one for the PPI
selection. Two PALs could replace five chips and a jumper block. This would save
space and debugging time. It would also allow hardware modifications by replace l

the PALs with differently programmed ones. From a production standpoint, this
entire board could be manufactured on a single medium scale integration (MSI)
chip. This would reduce required space, simplify the connections, and simplify
debugging. To reduce space even further, the entire PC and PC interface hardware

59

could be put on a large or very large scale integration (LSI or VLSI) chip.
Microcontroller Board

Due to space considerations the leg microcontrollers were placed on a separate
8.5” by 17" perf-ucard. A common bus was plar~1 aiong une edge of the board to
distribute the data -.d arfdr~s oussc - from the PC interface card to the
microcontrollers. The dual-port memcries were placed closest to the bus. The opto-
isolators were placed on the opposite side of the board to isolate the power circuitry
from the computing circuitry. The microcontrollers were placed in between the
opto-isolators and the dual-port memories.

The microcontroller board has a huge number of interconnections. The wire-
wrapping techniques used do not adapt well to the environment on a walking robot.
By mounting the microcontroller hardware on printed circuit bbards, the
microcontrollers would be much more reliable and durable. This is quite a bit more
expensive. The boards must be t!.oroughly debugged before this should be done.
Power Supply

The robot is battery powered so a switching supply was desired to conserve
battery life. To determine the supply requirements it was necessary to finalize the
power needs of the robot’s five volt circuitry. The bulk of the supplied load is from
the PC motherboard and disk drive. After testing constructed systems and
estimating the needs of proposed circuitry, a maximum four amp, five volt load was
established.

GND 1ok
Vin J I 1
1 14 12 0] 300w Vout

—3
I,T\ ﬁ L296 2 —— ,
104 7 6 9 4 8 = —J—

S
- 1 100uF 100w
T T /T\
220F| 220 2.20F] 15K 49“ 40¥
R
390pF

-~ A~ h

33nF Rlim TA
Schottky

|
I

)
/

Bl

GND GND
Figure 3.4.2: 1.296 High Current Buck Regulator

Once the requirements had been finalized, existing switching power supplies

were reviewed in search of a five volt high current supply. The final decision was

60

an 1296 High Current Buck Regulator, a 5 to 40 volt 6 amp regulator, from the
Unitrode;. The databook also provided a common application of this IC that proved
to be the basis of the design. The circuit is shown in Figure 3.4.2. R; was set to 4.3K
to yield a switching frequency of 160 kHz and a resulting 74% efficiency.

After designing the circuit board layout, transfers were used to mask the
copper board prior to etching. This circuit could not be breadboarded because of high
current outputs and was therefore tested after construction. Initially the results were
disturbing as the supply produced a constant 5 volt output for low current loads
(200mA); but when the load was decreased to test the available current range the
output dropped to 0.8 volt for a load of 300mA or greater. Troubleshooting this
circuit became a formidable task given the limited information supplied by
Unitrode. After several tests the solution was to remove the current limiting
resistor Ry;,,, which according to the databook should default the current limit to
6A. A 5A fuse was placed in series with the supply’s output to protect the supply
and other circuitry in the event of a short circuited load.

Once these difficulties where alleviated the supply circuit was tested using a
12 volt battery and artificial loads. Successful completion of these tests allowed the
direct connection of the supply into the robot’s circuitry. The final implementation
of this circuit in the robot performed without difficulties, meeting the design goals
and current requirements.

Motor Control and Relay Boards

The computer circuitry output signals, used for controlling the thirteen
motors used in this robot’s design, are of an insufficiently high-enough voltage to
drive the 24 volt motors used, and of too sensitive a nature to be directly connected
to the high voltage motor-side of this system. There must be some circuitry which
accepts these low voltage controlling signals and translates them into high voltage
signals capable of driving the turning mechanism’s and legs’ motors, and some
means of intermediate protection between the two sides of this system.

The sensitive computer circuitry and the relatively noisy environment of the
robot’s motors are kept separate through the use of opto-isolators. Two transistors
per motor are present on the motor-side of this system; a Pulse Width Modulation
MOSFET, which controls the speed of the motors, and a transistor which determines
direction. Each of these transistors has its gate connected to the intermediate opto-
isolators and are “tied-high” to 24V by means of a 10K resistor. A fuse and “blown-

61

fuse” indicator LED are included in series with each motor, as a form of protection
against large current surges and as an indication of such surges respectively.

In addition, each motor is connected through a relay which acts to reverse the
motor direction. It was decided to mount the relays on two separate boards using
barrier blocks for connections. This was done to ease trouble-shooting and simplify
the re-wiring that would be done to “fine-tune” the operation of the robot.

Since the two relay boards were simple in design, it was decided to use point-
to-point soldering for their construction. A decision was made to place all motor
inputs on one side of the board and all motor outputs on the opposite side. Twenty
gauge, solid-core wire was used in the construction because of the currents involved
(limited by fuses to 5A). This is done to decrease the time it takes the relay contacts
to go from the normally-closed position to the normally-open switch position,
called the “pull-in” time, and to reduce the relay coils tendency to produce electrical
noise in the circuit, known as “backwards EMF”.

Because the motor-side of this system is a high current environment, a
decision was made to mount all motor-side components on etched circuit boards
with more than sufficiently wide copper traces for the current they would carry. An
etched circuit board was deemed preferable to soldering heavy gauge wire on a
point-to-point basis for a number of reasons: (1) Point-to-point soldering of 7
components per motor is a time consuming task and is difficult to keep orderly, (2)
trouble-shooting is more easily accomplished, and (3) fast and easy replacement of
defective or ruined components is aided.

The motor control circuit board design was created with the aid of a printed
circuit board design software package. The final foil pattern design was as shown in
Figure 3.4.3.

After construction, these boards were tested and were found to work correctly
in all respects, requiring no debugging or modifications.

Voice Recognition Circuitry

During construction of the robot’s electrical hardware systems, strong
emphasis was placed on completing construction of those systems designated as
essential to having the robot perform its most basic tasks: walking and turning. Only
after it was clear that all of the major systems were near completion was someone
assigned to the construction of non-essential circuits. Included in this group of

circuits was the voice recognition circuitry.

62

Figure 3.4.3: Motor Control Board Foil Pattern

ﬁvthvvv"ﬁvv‘b""'l‘l'vhrTll'l"Th'ﬁ'V'ﬁ"be'vYTTrTW‘TI‘V—vvrvvv‘Tr"IIT‘V*'Fvx

The voice recognition circuitry was constructed around the VCP200 Speaker-
Independent Word Recognizer. In its command mode, this chip recognizes 8
commands of which the five most important movement commands are GO, STOP,
LEFT TURN, TURN RIGHT, and REVERSE. The outputs are active low.

The VCP200 data sheet includes foil patterns for printed circuit board
implementation. However, as these patterns are for a two-sided board, an

alternative single-sided foil pattern, presented in a Radio Electronics magazine

article about this same chip, was used for greater ease of construction. Changes
made to the layout included the elimination of the power circuitry, as a 5 volt power
regulator was included in the design of the robot, and instead of the suggested
microphone, and electret condenser microphone was used to improve the circuit’s
input signal in noisy environments. Also, a switch was included to disconnect the
voice recognition circuitry from the external power supply.

After construction, this board was tested and was found to work correctly in
all respects, requiring no debugging of the circuitry.

Encoder Boards

As discussed in the design , the encoder circuitry was taken directly from
Intel’s Application Notes. There were, however, some remaining requirements of
the design to be finalized before a prototype could be constructed. The circuitry
utilizes a series of Schmitt triggers, exclusive OR gates, and delay flip-flops to
monitor motor speed and direction.

The encoder initially levels off the input signals then passes them through
delay filters. The delay is necessary to make a comparison with the originally
unaltered signal in the counting process. The actual value of the RC-network had
not yet been determined; thus the objective was to determine the necessary delay in
the circuit and fix component values to accomplish this goal. To initiate the design,
the capacitor was fixed at 0.1 uF, and the expected wave forms through-out the
circuit were plotted. Knowing the maximum expected input frequency (250 Hz), the
delay time was set at one sixth of the maximum input period (delay=0.17mS). One
sixth was selected to limit any possible error that could occur when the motor
changes direction during. Using the transfer expression for the RC-network a
resistance of 1K was used.

The board was laid out to take advantage of the output pin symmetry and
shared components among the different integrated circuit chips then sectioned to

64

— ﬁ-—————-—————'—————_—————-—_:-ﬂ

separate the circuits into the different leg groups with two motors per leg sharing

the same components and input sockets. Then the leg circuits were split into two

similar boards with each board assigned to three legs apiece and the circuit for the

turning motor added to one of the boards.This is shown in Figure 3.4.4. A flow-

INPUT

HEADER

LEG 1

INTEGRATOR
COMPONENTS

INPUT
HEADER
LEG2

INPUT
HEADER

LEG3

PIN 1

INPUT

TURNING
MOTOR

\U

ol

74F14 74HCT86 74HCT74
74HCT74
74F14 74HCT886 74HCT74
74F14 74HCT86 74HCT74
74HCT74
74F 14 74HCT86 74HCT74
74F14 74HCTS86 74HCT74
74HCT74
74F14 74HCT86 74HCT74
74F14 74HCT86 74HCT74
D 74HCT74
POWER
INPUT
O 0:i0 O HEADER
+5 aD

/PIN1

Figure 3.4.4: Encoder board layout

through architecture, with the input signal directed into one side of the board and

the output taken from the opposite side, was selected to avoid cabling problems.

65

——

e —— S —— ‘___.T

For the sake of simplicity, the construction consisted of perforated board and
wire-wrap IC sockets. Sixteen pin sockets were chosen to easily accommodate the
decoupling capacitors without soldering. An IC socket was also used for the resistor
capacitor integrator to provide for a quick change of components and to speed up
construction.

The boards were tested by coi.qecting a motor eacoder to the circuits and
observing the outputs while the motor speed and direction were varied.

Adjustments to the integrator were made by changing the component values of the

resistor or capacitor to maximize the efficiency of the circuit.

Due to the efficiency of the layout and circuit, the only improvement of the
motor encoder board would be a small reduction in space and current gained by
utilizing the unused portions of the chips.

Circuit Board Etching

When it had been decided that etched circuit boards would be used in those
robot systems that could benefit from such an implementation, discussion was held
as to whether those circuit boards should be contracted out to a vendor, or if they
should be produced by our own group. After making a number of calls to local
vendors, it was determined that the cost of having the necessary boards produced by
an outside source would be exorbitant.

At this point, means of etching circuit boards “in-house” were discussed. Two
methods to prrsue were agreed upon:

(1) Photo-resist etching. In this process, the copper-clad circuit board to be used was
sprayed wit . a photosensitive material in the absence of light and allowed to dry
overnight. The foil pattern to be etched was reversed, black-for-white, and
photo-copied onto a transparency. When the board was completely dry, the
transparency was fixed to the copper board. The board was then exposed for a set
time to a strong ultra-violet (U.V.) light source, and where the U.V. light struck
the photosensitive material, that material was sensitized. The board was then
developed in an appropriate developing solution, with the sensitized material
hardening and turning opaque. At this point, the board was placed into an
etching solution of ferric chloride where all exposed copper was to be removed. e
Unfortunately, due to the unavailability of a strong enough U.V. light source, we
were unsuccessful in etching the boards by this process.

(2) The “toner” method. This method makes use of a photo-copy transparency of

66

the circuit foil pattern and a common household iron. The foil pattern to be
etched is reversed, left-to-right, and photo-copied onto a transparency, being
careful to have heavy toner deposited on the plastic during photo-copying. This
transparency is then laid on top of the copper-clad board, toner-side down, and
ironed with a hot iron until the majority of the toner is deposited on the copper.
Afterwards, a permanent marker was used to touch-up those areas not well
transferred. Each board was then etched in a ferric chloride solution were all
exposed copper was removed. This simple method had surprisingly remarkable
results and provided an inexpensive, quick, and reproducible method for
etching small circuit boards.

67

The primary design goal of PredaTerp’s software team was to implement an
optimal solution to controlling the complex mechanical and electrical systems. The
simplest implementation of the software would occur on a single processor
computer architecture. The break down would look like Figure 4.1.

User
Feedbadk
Ir;!t!tt(m] Autonamaus Events
erlac Algotithms
External Main Rautine Positian/Veleci
A and " C;“;r;/hﬁw;t;
Cammand Genexaior
Optital Prcoder Y Positinal FID
Feedback WM Cantial Algedihm
Output
Figure 4.1

The Main Routine and Command Generator would be responsible for the
initialization of the software and for coordination of the different software tasks.
The Tether Interface routines allows for a human operator, who would have the
flexibility to either control PredaTerp manually, or invoke one of several
Autonomous Event Algorithms, which, with the help of the External Sensors
interfaces, allow PredaTerp to operate without human guidance. User Feedback is
provided for ease of operation. For PredaTerp to be able to complete any task, it is
necessary to have Optical Encoder Feedback from the various motors, to allow for
Positional Proportional/Integral/Differential (PID) Control. Pulse Width
Modulation (PWM) Output drives the motors.

Implementing this software design would not do justice to the flexibility
available in PredaTerp’s computer hardware. As stated in the Hardware section,

68

PredaTerp utilizes a multiprocessor system, where an INTEL 8088/6, in the form of
an IBM PC clone mother board, is used as the “coordinating” processor, and seven
INTEL 80C196 microcontrollers are used to control the various motors. In order to
utilize the strengths of the various components of this hardware system, the
software tasks had to be split. Obviously, one would use the 80C196s to run the code
that would control the motors, a task that the PC is not suited for. Many of the other
tasks could be allocated to either the PC or the 80C196s. The determining factor was
the interprocessor communication bottleneck.

It became apparent that serious timing problems could result if too much was
assigned to the PC. The PC would be faster and more accurate at doing the various
calculations, especially the Positional Control Algorithms. However, doing that
calculation for as many as thirteen motors at once would be a logistical nightmare.
A similar problem arises if too much is assigned to the 80C196s. The 80C196 is a
very capable microchip, but lacks the computational prowess of the 8086/8. In
addition, a lot of potential operational speed of the 80C196s was sacrificed when it
was decided to limit the clock speed of the 80C196s to that of the operational clock
speed of the PC in order to simplify the hardware design.

The PC was to act as the supervisor/coordinator, issuing commands to the
microcontrollers. The microcontrollers were to actually operate the motors in a
manner that would fulfill the commands of the PC, and provide some feedback to
the PC. So, inspite of the flexibility afforded in the use of the Dual Port RAMs (DP-
RAMs), the DP-RAMs were to merely pass simple commands and feedback back and
forth. (This is not entirely true, as is to be shown later). The breakdown of the
software tasks can be seen on the following pages in Figure 4.2 and Figure 4.3.

The PC was assigned tasks that allowed it to easily fulfill its supervisory role.
The Tether Interface, User Feedback, and Autonomous Events Algorithms are run
on the PC so that either the operator or PredaTerp can decide what tasks need to be
completed in order to accomplish the goal. The PC Main Program and Command
Generator breaks down these tasks into commands that are issued to the 80C916s.
Control over the Environmental Sensors was given to the PC in order to allow for
ease of autonomous operation. The PC is also responsible for self initialization
(Main PC Initialization) and for initialization of the complete PredaTerp hardware
platform (System Initialization). The various 80C196's commands are written out to
the appropriate DP-RAMs (Write to Dual Port RAM’s), and, upon receipt of the

69

appropriate interrupt (Receive Mailbox Interrupt), the PC poll the various DP-RAMs
to receive feedback from the 80C196’s (Read Dual Port RAMs).

Xepboard Main PC
Infereupi Initializatic

l Usex
* Feedback
Tether Sysiem
Trtertace Indtializatio
\\ }/
- PC Main Prageam
Brvizaymenta) \ and | Autmambis Bvents
Sensors Command Genexator Alpozithons
[Wrtets | Read
Dugl Port RAN Dual Poxt RAM

i
|
Generale Receive Mailbo:
Mailbox Inferrupt Inderrupi

Figure 4.2

The 80C196s, which, aside from the Intel 80C196 Initialization Routine, is
completely interrupt driven, have all the routines necessary to control the motors.
The microcontroller receives commands from the PC via the Read Dual Port RAM
routine when a Receive Mailbox Interrupt is actuated. Based on the command, the
PID Control Algorithm calculates the next desired position of the motor. Pulse
Width Modulation Output is provided to control the motors, and motor Position
and Velocity Calculation feedback is provided via the Optical Encoder Interrupt.
The microcontroller is able to Reset Motor Position Count when the leg or body
reaches its limit of travel and the Motor Limit Switch Interrupt occurs. Feedback to
the PC is provided via the Write to Dual Port RAM routine.

70

Receive Mailbox
Interrupt

{

Read
Dual Port RAM

INTEL 80C196
Initialization
Routine

Reset Motor
Position Count

Routines

Interrupt Driven

Send Mailbox
Interrupt

T

Write to
Dual Port RAM

Pulse Width
Modulation
Output

*

Position and Velocity

Calculations

Microcontroller
Command Intrepreter

|

Motor Limit
Switch Interrupt

*

C

L
Optical Encoder
Interrupt

)

Figure 4.3

|

PID Control
Algorithm

Position and Velocity
Error Calculation

\

]
Periodic Software)

Timer Interrupt

(

Interprocessor Communication Protocol

The PC needs to be able to break down any possible action (for instance, a right
turn to thirty degrees while walking at fifty-percent speed) into commands that are
passed to the microcontrollers. In order to accomplish this, a PredaTerp
Communication Protocol was established, cursisting of a minimum set of
commands combined with framework of parameters that can be written to the DP-
RAMs. A table showing the seven minimum set commands is shown in Fig SW-4.
The top axis shows the six parameters that are used as the communication protocol.
An asterisk (“*”) indicates that the command requires a valid value be passed in the

corresponding parameter.

@mmwmwm Maawp)

wal U - - £ J

Change
Weladty

Tan 3 - £ -
YRasa1

XRastat - . -

Bat Helgh . : - -

Btog . . -

Figure 4.4

This table is straightforward. However, note that certain commands do not
have some expected parameters. For instance, there is no direction specified for the
“Turn” command. The human operator, or PredaTerp operating under an
Autonomous Event Algorithm, may decide that it is necessary to turn “left” by
thirty degrees. The proper parameters are sent by the PC’'s Command Generator to
the Write to Dual Port RAMs, including the command to turn, the number of

degrees the turn needs to be, and whether the turn is to the right or left.

72

It was decided to give all motors absolute positions, rather than attempt to
define and work with relative positions. The microcontrollers reset their motors to
a “zero position”, and deal with only positive positional values. Therefore, the
Write to Dual Port RAMs must convert the PC parameters into parameters that the
microcontroller code will understand. The “Set Height” command works in a
manner similar to the “Turn” command. The “Walk” command, however, requires
that the “Direction” be sent to the microcontrollers. Since the walking motors go
through complete revolutions, the absolute position values repeat themselves
periodically. Therefore, in essence, we have to specify relative positions for walking.

The “Change Velocity” command is sent by the PC’s Write to Dual Port
RAMs, but is intercepted by the microcontrollers Read Dual Port RAM routine.
This command causes a previous velocity parameter to be changed, without
modifying the command (or any other) parameter. So, if the microcontroller was
executing a “Walk” command at 50% velocity in the positive direction for 5 steps, a
“Change Velocity” to 75% command would cause the microcontroller to execute a
“Walk” command at 75% velocity in the positive direction for 5 steps.

Note that if an expected parameter field is not filled, the microcontroller
coder will default to a set value. The “XReset”, “YReset” and the “Stop” command
require no parameters. In the case of the reset commands, the microcontroller
proceeds to cycle its motors at a slow default speed until the reset switch is hit. The
“Stop” command causes the microcontroller to cease all actions. Any motors in

motion are brought to a stop at maximum deceleration.

73

Implementation of Interprocessor Communications

Several concerns arise when dealing with this communication scheme. In it
present implementation, PredaTerp’s Interprocessor Communication Protocol from
PC to microcontroller is fairly simple. There are only seven commands, and up to
five other parameters. Writing a complete command sequence to memory does not
take a lot of time. However, consider that in order to walk, the PC needs to tell the
six leg microcontrollers the same command. The time between when the first
microcontroller gets its command and when the sixth microcontroller gets its
command is a measurable delay. This timing delay could cause a problem as the legs
could start out of phase. Consider the potential ramifications of an action that
requires the six legs to walk at a constant speed, raise/lower their respective heights
to different values to go over rough terrain, and turn the body, all simultaneously.
This would create a temporal nightmare. Instead, consider Figure 4.5 below.

PC Microcontrolley”

Receive Commands

from PC
I Return to Appropriate
Translate Commands to Routine
Interprocessor
Communication Protoco
J Store Parameters in
A . .
Write Parameters ppropriate Variables
to Dual Port RAM
Write to Read Parameters
Mailbox from Dual Port RAM

! !

Generate Mailbox | __ __ _ Receive Mailbox
Interrupt Interrupt

Figure 45

74

In order to minimize the timing problem, the PC writes commands to the
appropriate microcontrollers’ DP-RAM. The PC’s Write to Dual Port RAMs routine
then takes advantage of a DP-RAM’s hardware feature. By writing a special one byte
memory location on the DP-RAM (a “Mailbox”), an interrupt can be generated
indicating that the DP-RAM contains information that needs to be read. The time
between writing one byte on the first DP-RAM and one byte on the last DP-RAM is
inconsequential.

There are two such memory locations per DP-RAM, so the microcontrollers
can make use of this feature to let the PC know that there is feedback available (see
Figure 4.6). When a microcontroller completes an expected action, it informs the PC
by writing a message to the DP-RAM, and interrupting the PC. As all such
interrupts from the DP-RAMs are ORed together and run to one input interrupt on
the PC, when the PC receives the interrupt, it must poll the different lines to see
which microcontroller wrote to its memory. While this system is not ideal, it does
keep the PC from having to continually poll the various DP-RAMs to see if feedback
from the microcontrollers are available. In addition, in an interrupt driven software
system, the task of receiving feedback from the microcontrollers can be easily
assigned relative importance in comparison to the other tasks that need performing
at a given time.

Micracem irolle) ol ot

Praceas Femdback fam

Micracantmllers
PIYXTYe Aextect .
Lral fiard L AN

v
Write tc Poll Lines from
MialThox Dual Per't AAMSs

l |
|
Receive NMollbax j

Generate Mailbax

Intenupt — — — — e Interrupt

Figure 4.6

When the microcontroller Receives Mailbox Interrupt, it begins executing

75

——

the Read Dual Port RAM routine. This routine read the memory locations in which
the parameters are written, and stores them in the appropriate variables for the
Microcontroller Command Interpreter code to use. When the microcontroller
notifies the PC when it completes a designated task by calling the Write to Dual
Port RAM routine. Presently, this is the only feedback provided to the PC, so the
Write to Dual Port RAM routine merely writes to the Mailbox. Future expansion of
PredaTerp’s capabilities may deem it necessary to provide more detailed feedback to
the PC, but given the flexibility of the Dual Port RAM multiprocessor design, this is
not seen to be a problem.

The Interprocessor Communication routines have one other function. The
PC is a superb computational engine, with many fine mathematical libraries that are
not readily available for the 80C196 family. Rather than try to compute a
mathematically complex positional control equation on the microcontrollers in real
time, it was decided that the PC should compute the desired motor positions once
and place the values in a lookup tables stored in the seven DP-RAMs. The
microcontrollers could access its DP-RAM just as if it were “standard” memory.

To accomplish the desired aims, the Write to Dual Port RAMSs routine
executes the calculation once, as the first step in the System Initialization routine.
The values are stored in the appropriate memory locations, which the

microcontrollers access in order to do the PID control calculations.

76

PC Software Implementation

The PC has four main tasks:
* Initialize itself and all supporting hardware,
* Process inputs,
* Make decisions regarding commands to be issued,
* Communicating with the various INTEL 80C196 microcontrollers.
Please refer back to Figure 4.2.

The Main PC Initialization routine is responsible for initializing the
computing environment of the PC (i.e. creating variable memory locations,
initializing constants, etc.). The PC is also responsible for coordinating the
initialization of the various motors and encoders through the 80C196s (see Figure
4.7). PredaTerp cannot be sure that its initial state is known, or even that it is stable.
That being the case, it could be disastrous if the microcontrollers started to initialize
their corresponding motors without any guidance. = The PC asks that the leg
microcontrollers execute a “YReset”. This causes all the legs to plant themselves,
and raises the body to its full height. It also takes the height motors and encoders to
a known position and resets the appropriate counters.

When the PC gets a “Command Done” from all the microcontrollers, it is
ensured of a stable position. It then commands the microcontrollers controlling
lower triangle’s legs to raise their legs off the ground (“Set Height”). The PC then
resets the corresponding walking motors/encoders by issuing an “XReset”
command. Upon receiving the three “Command Done”s, the PC lowers the three
legs attached to PredaTerp’s lower triangle (“Set Height” ... “Command Done”), then
raises the legs attached to the upper triangle (“Set Height” ... “Command Done”),
and precedes in a similar fashion. Upon completion of the reset routine, the PC
issues one more “Set Height” command to all the legs, placing PredaTerp at its
operational height. The sequence of commands shown above reveals the power
and flexibility of the Interprocessor Communication Protocol. By combining the
available parameters in different orders, the PC is able to control the various motors
with ease. In essence, the PC is executing commands in a simple robot control
language. The commands issued by the Autonomous Events Algorithms and by the
Command Generator follow a sequence not unlike that of the System Initialization

routine.

77

S —

— ———— . ——————————————

The PC has the facility to process various inputs, ranging from the human
tether interface to any number of possible environmental sensors. The standard PC
keyboard was chosen to be the tether interface for PredaTerp. A custom tether could
have been built, but it was unlikely that any custom tether could approach the
flexibility afforded by the keyboard. Conceivably, a human operator could have in
excess of 101 possible inputs, far more if multiple keystroke commands are used.

The human operator does not have control over individual functions of
PredaTerp. For instance, the operator cannot drive a single motor directly, as could
be had in a simple robot using a custom tether involving switches. In general, the
human operator is constrained to command PredaTerp using variations of the
Interprocessor Communication Protocol. For instance, an operator could direct the
PC to command the turning motor’s microcontroller to turn the motor thirty
degrees to the left (Turn, Turning Motor, 30 degrees to left), but the operator could
not switch that motor on directly. The reason for this is that, given the overall
complexity of PredaTerp, no operator would be able to do any meaningful task in

this manner. The ability to coordinate the six separate motors involved in a simple

Walk command is beyond the capability of any operator.

Instead, it was felt that PredaTerp’s PC code could be trusted to correctly
decipher the operator directives and produce the correct microcontroller commands.
This task involves writing relatively simple software (a directive parser, for
instance) that is inherently robust and trustworthy. Given the fact that PredaTerp’s
tether is only operational when the PC is, it is safe to say that this is a valid
assumption--it would be impossible to input human directives if the PC and
corresponding code were rendered inoperable.

PredaTerp is also able to accept inputs via its voice command hardware. The

software driving the voice command hardware operates the same way the keyboard

tether does, only with much less flexibility. The human operator is constrained to
five commands, as outlined in the Electrical Hardware section, under Voice
Recognition Circuitry.

In addition to the human operator inputs, the PC is also able to easily accept
inputs from any number of environmental sensors. The possible future additions
of infrared sensors, tactile sensors, sonar, and possibly a full vision system would
allow PredaTerp a flexibility in autonomous operation that it does not currently
have.

78 J

Currently, the Autonomous Events Algorithms are constrained under

limited environmental input.

PredaTerp currently is currently configured to
operate autonomously only in strictly defined, simple environments, such as the i

one pictured in Figure 4.7 below.

In such an environment, the desired trajectory can be computed ahead of
time by PredaTerp’s operators.
programmed to produce commands for the microcontrollers that would allow

PredaTerp to navigate this environment with a minimum of environmental

inputs.

The PC’s last task is one that has already been discussed in the section titled

Interprocessor Communication Protocol.

The Autonomous Event Algorithm would be

FinNISH LINE

—_—

T

- T XOUArS .

rylan Z

1_

—+ p

-

\ rredaTerpg s

Trajwctory

START LINE

Figure 4.7

79

Microcontroller Software Implementation

It can be seen from Figure 4.3 that the microcontroller has six major
functional tasks. The interprocessor communication routines have been discussed
already, leaving the microcontroller initialization routine, the reset motor position
routine, the feedback interpretation routine, the control algorithm and command
interpreter routines, and the output to motors routine.

The initialization routine runs as soon as the microcontroller is powered up.
It is primarily responsible for initializing constants and creating variable locations.
Note that this is an initialization of the 80C196 computing environment only, not of
the motors, encoders, or any other hardware. The initialization of these other
systems is done under the guidance of the PC, via the reset commands (“XReset”
and “YReset”). The INTEL 80C196 Initialization Routine is the only routine
executing on the microcontrollers that is not initiated via an interrupt.

Control was instilled by way of an implementation of a Proportional,
Differential, and Integral (PID) control algorithm. The PID routine is dependent on
a constant period (dt) between its calculations. To ensure that the PID routine was
executed at a set period, it was configured to run on every fifth Software Timer
Interrupt.

() =kpe(t) + kife(t)dt + ky(de/dt) (Eq4.1)

The proportional term in the PID control equation shown in Eq 4.1 was easy
to program. The integral term was implemented by keeping a sum of all previous
errors, e(t). Periodically, the sum of errors was zeroed, so as to keep the value from
growing to large to handle arithmetically. This is one of many accepted ways of
handling the growing sum. The differential term was also simple in that all that
was necessary was that a record be kept of the error that occurred just prior to the

current time t. The three gains, k,,, k;, kd, are found by testing different values.

What units were to be usgj in the measure of 4t? Consider that these are
values based on the speed at which the 80C196 executes instructions. The measure
of time is very small when compared to a second. It would take a lot of effort to
create the floating point routines to do the calculations in 80C196 Assembly, at a
great sacrifice of speed. In order to keep the calculations and Assembly routine
simple, the interval of time dt was defined such that dt=1! This eliminates several

tedious and slow floating point division and multiplication routines.

80

The Optical Encoder Interrupt records the encoder position values as they

come in. The PID routine calculates error based on the encoder position value used

in its last calculation, APyt and the most recent encoder value that was recorded,

APpresent' The values that fall in between APlast and APpresen

they fall within the time period dt, not on the boundaries. Once the PID calculation

t are extraneous, as

is done, an other routine converts 1(t) to the appropriate Pulse Width Modulation

Output value that can be used to drive the motors.

AP =Pgesired ~ Pactual (Eq4.2)

It is important to note that the PID routine calculates errors based on actual
motor position, which is supplied by the optical encoders, and the expected motor
position, which is calculated before the PID routine is called. When is this done?
The answer lies in Figure 4.3. Notice that the PID Control Algorithm is followed by
the Microcontroller Command Interpreter? The Microcontroller Command
Interpreter is responsible for taking the information that the PC sent and calculating
the next desired position for the motor(s). So, the next desired position, Pnext' is
found right after the PID routine calculates the value necessary to move the motor
t0 Pyegireq DY the next dt interval.

The last microcontroller routine is that of the Motor Limit Switch Interrupt.
The Reset Motor Position Counter for the x-trajectory (walking) is enabled only
when the microcontroller is issued a reset command by the PC. This allows the
microcontroller to zero the motor position counter at a known position in the leg’s
trajectory. In normal operation, the walking limit switch is ignored, as it has a
complete range of motion that it can go through. The body limit switches and the
height limit switches are not ignored during their operation, as there are definite

limits as to how far a leg can extend/retract or a body turn.

81

Future PredaTerp Capabilities

PredaTerp currently employs the bare minimum hardware and software
necessary to perform simple tasks. The employment of a IBM PC clone “core”
computing engine allows for easy expansion of PredaTerp’s capabilities, ranging
from sophisticated sensors, to image processing, expanded voice recognition, voice
synthesis, and “artificial intelligence”. The addition of mechanical actuators would
enable PredaTerp to manipulate its environment, not just navigate in it.

On a smaller scale, PredaTerp could use power consumption monitoring
capabilities, so as to conserve its batteries by shutting down non-vital, power
draining components. Expanding the memory available to the 80C196s would allow
for more sophisticated control algorithms to be implemented.

The PredaTerp designers have succeeded in developing a versatile and
functional walking machine. In its next iteration, PredaTerp will be truly worthy of
the title “Walking Robot”.

82

83

Conclusion

The design and manufacture of a walking machine was completed by thirty
students in seven months. The responsibilities were divided into leg, body,
electrical hardware and software tasks. The mechanical and electrical engineering
students were instructed over two semesters through the design and construction
processes.

The leg design combined a modified crank and rocker mechanism with
pantograph and leg lift mechanism. The six legs each operate with two degrees of
freedom, providing great flexibility. Structural integrity was maintained through
computer engineering analysis and numerical control machinery.

The body design provided a third degree of freedom for the robot. This was
achieved with a turning mechanism. This mechanism controls the relative
position of the two body frames. The rigid tripod frames serve as a means to mount
the six legs and the electrical hardware components.

The electrical hardware design employed distributed processing and modular
components to control and power the walking machine. A supervisory computer
accepts commands, oversees control and runs autonomous programs.
Microprocessors were used to directly control the thirteen motors. Communication
between the PC and microprocessors is performed with dual port RAM.

The software design coordinated the robots actions. Low level code written to
the microcontrollers controls the motor positions. High level code written to the PC
processes programs and commands. Communications code breaks down PC
commands into smaller microcontroller tasks and coordinates timing of data. The
robot presently employs the bare minimum hardware and software necessary to
perform simple tasks. The use of a IBM PC clone “core” computing engine allows
for easy expansion of robot’s capabilities, ranging from sophisticated sensors, to
image processing, expanded voice recognition, voice synthesis, and “artificial
intelligence”.

Practical applications were also considered in the walking robot’s design. The
machine is easily adaptive to almost any terrain due to the design’s flexibility. In
addition, the mechanical actuators would enable the robot to manipulate its
environment, not just navigate in it. The leg design emulates a human stride,

allowing a modified system to serve in functions hazardous to humans. The

84

feedback control design allows the robot to be adapted to perform repeatable, precise
tasks.

The University of Maryland robot designers have succeeded in developing a
versatile, multi-functional walking machine. With adjustments to the basic design,
the capabilities of the robot can be directed to many applications — whether they be
simple and close to home, or complex and as far away as the face of the moon.

85

86

APPENDIX:

Leg Motors and Link Dimensions

87

PITMO’ D-C SERVO MOTORS

Series 14000 - 2.125 in. O.D.
with Stall Torques from 160 to 286 oz.-in.

This family of permanent magnet field motors
offers significantly higher performance than the
Pittman® 13000 series through the use of an
11-slot armature lamination designed to use most
advantageously the high air gap flux densities
provided by radially oriented Ceramic 8 magnets.
Series 14000 servo motors have been developed,
produced and proved for long, maintenance-free
operation. Premium quality materials coupled
with the very latest manufacturing and assembly
techniques provide- excellent reliability. In
addition, every motor is subjected to complete

PRIMARY DESIGN FEATURES OF THE SERIES 14000

Revised June, 1?F

testing of all critical parameters under bo
load and no load conditions in the uniq
Pittman® computerized final testing statiop.
A printout of test data is kept on file for a
further reference.

Speed, voltage, current and torque chara
teristics can be varied over a wide range to me
specific needs. Please note that armatu
winding changes, and any relatively simp
modifications that do not require extensi
redesign or tooling alterations, may be specifi
for prototype quantities at onty nominal costs.

PEAK TORQUE (STALL)
from 160 to 286 oz.-in.

NO LOAD SPEEDS
from about 3,000 to 3,700 rpm for standard motors
at rated voltages

ARMATURES
11-slot design, skewed for reduction of reluctance
torque. Laminations are silicon steel, with standard
windings of film-insulated (class 200°C) magnet
wire — impregnated with polyester resin and baked.

COMMUTATORS
diamond turned after armature assembly to ensure
optimum concentricity and long brush life.

BRUSHES
copper-graphite standard.
Optional materials at additional costs include
silver-graphite and other specified material compo-
sitions.

FIELD
Radially oriented strontium-ferrite magnets en-
closed in heavy-gage steel return rings. End bells
are zinc die castings.

@
=

Mg ®
TELEPHONE (215) 256-6601 (//,,,, ‘\\\\\
FAX (215) 256-1338 : H
®

A DIVISION OF P

HARLEYSYILLE, PA 19438-0003 USA

ENGINFERING 8 MANUFACTURING CORP

BEARINGS
self-aligning sintered bronze, precisely sized
provide optimum journal clearance. Also equipp
with felt wicks for reserve lubrication. Optio
double shielded ball bearings availabie at additionp!

W

cost.

TELEX 283668
TWX 510-661-8686

Figure A-1

€Pittman 1985 1987

— = . SN

/14202 14203 14204 14205 14206
ITEM MOTOR SIZE CONSTANTS UNITS SYMBOL 'VALUE/ VALUE VALUE VALUE VALUE
1 PEAK TORQUE (STALL) 0Z-IN TPK ~—108 160 205 226 286
1a Peak torque (stall) Nem TPK 0.75 1.13 1.45 1.60 2.02
2 MOTOR CONSTANT 0Z-IN/VW PKO 5.81 7.88 8.63 9.97 10.9
2a Motor constant mNem/VW PKO 41.1 55.6 60.9 70.4 77.0
3 POWER FOR PEAK TORQUE w PWR 333 417 570 519 686
4 DAMPING (ZERO SOURCE IMPED.) 0Z-IN/(rad/s) DPO 0.248 0.439 0.526 0.701 0.841
4a Damping (zero source Imped.) mNem/(rad/s) DPO 1.75 3.10 3.7 4.95 5.94
5 DAMPING (INFINITE SOURCE IMPED.) OZ-IN/(rad/s) DPI 74x10-¢ 85x10-* 103 x10-* 11.2x 10-* 13.0 x 10-*
5a Damping (Infinite source imped.) mNem/(rad/s) DPi §2x10-* 6.0x10? 73x10-* 79x10° 8.2x10-*
6 NO LOAD SPEED REV/MIN SNL 3820 3420 3670 3040 3170
6a No load speed rad/s WNL 400 358 384 318 332
7 ELECTRICAL TIME CONSTANT ms TCE 1.47 1.64 1.58 1.63 1.62
8 MECHANICAL TIME CONSTANT ms TCM 8.5 6.8 7.0 6.3 6.2
9 FRICTION TORQUE 0Z-IN TOF 2.0 2.0 2.0 2.0 2.0
9a Friction torque mNem TOF 14.1 14.1 14.1 14.1 14.1
10 ARMATURE INERTIA 0Z-IN-s? ERT 23x 10~ 30x10"* 37x10-? 44x10-° 52x 10
10 a Armature inertia kgem? ERT 163 x 10-¢ 21.2x10~* 26.1 x 10~* 31.1x 10~* 36.7 x 10-*
1 MOTOR WEIGHT 0z WGT 26.0 31.2 35.2 39.5 45.4
11 a Motor mass kg . WGT 0.74 0.88 1.0 1.1 1.3
12 THEORETICAL ACCELERATION rad/s? CEL 46100 53300 55400 51300 55000
13 THERMAL TIME CONSTANT MIN TCT 24.0 26.0 28.8 29.4 33.6
14 ULTIMATE TEMP. RISE/WATT °C/W TPR 9.0 8.1 7.7 7.3 6.8
15 MAXIMUM WINDING TEMPERATURE °C TMX 155 155 155 155 155
WINDING CONSTANTS (other windings available)
MODEL 14202
* WINDING CONSTANTS UNITS SYMBOL WDG #1 WDG #2 WDG #3 WDG #4
16 VOLTAGE v VLT 12.0 19.1 24.0 30.3
17 CURRENT (STALL) A AMP 21.8 17.6 13.8 ©11.0
18 TORQUE CONSTANT 0Z-IN/A TPA 3.90 6.15 7.80 9.85
18 a Torque constant mNem/A TPA 27.5 43.5 55.1 69.6
19 TERMINAL RESISTANCE OHMS RTR 0.431 1.08 1.73 2.76
20 BACK EMF V/(rad/s) BEF 0.028 0.043 0.055 0.070
1 INDUCTANCE mH DUK 0.635 1.58 2.54 4.05
R2 CURRENT (NO LOAD) A INL 0.460 0.291 0.230 0.182
MODEL 14203
* WINDING CONSTANTS UNITS SYMBOL WDG #1 WDG #2 WDG #3 WDG #4
16 VOLTAGE v VLT 12.0 19.1 24.0 30.3
17 CURRENT (STALL) A AMP 34.8 21.8 17.4 13.7
18 TORQUE CONSTANT OZ-IN/A TPA 4.63 7.41 9.26 1.7
18a Torque constant mNem/A TPA 32.7 52.3 65.4 82.8
19 TERMINAL RESISTANCE OHMS RTR 0.345 0.877 1.38 2.21
20 BACK EMF V/(rad/s) BEF 0.033 0.052 0.065 0.083
21 INDUCTANCE mH DUK 0.565 1.45 2.26 3.63
22 CURRENT (NO LOAD) A INL 0.390 0.244 0.195 0.154
MODEL 14204
* WINDING CONSTANTS UNITS SYMBOL WDG #1 WDG #2 WDG #3 WDG #4
16 VOLTAGE Vv VLT 12.0 19.1 24.0 30.3
17 CURRENT (STALL) A AMP 47.7 30.2 23.8 19.1
18 TORQUE CONSTANT 0OZ-IN/A TPA 4.34 6.86 8.67 10.8
18a Torque constant mNem/A TPA 30.6 48.5 61.2 76.5
19 TERMINAL RESISTANCE OHMS RTR 0.251 0.633 1.01 1.59
20 BACK EMF V/'(rad/s) BEF 0.031 0.048 0.061 0.076
21 INDUCTANCE _ mH DUK 0.400 1.00 1.60 2.50
22 CURRENT |'N0_LOAD) A INL 0.420 0.265 0.210 0.168
* WITHER WINDINGS AVAILABLE
89
I |

-.9625

DATUM

4
™
oJ
o
o

2.7859—

Figure A-3

250 DIA REAM (TYP)

2O STEEL PLATE

0620 R (TYP)

90

Figure A-4

500 R CTYP) 1 T
1.0000 — @ ”mw g
5000 /J
DATUM ____
624 DIA REAM

249 DIA REA
=AM 370 W SLOT

1.0000

-

\

l_
!

.5000

NERE
|

DATUM

DATUM
2.0536
3.3036

91

500 R

Figure A-5

(TYP) ,m._ m_ﬂ 2 m_m %_
R ~C | D - | E AN
B S B S 77 N
o | Ly L

624 DIA REAM (TYP) —/
375)W SLOT (YR ~
5000 — . — R /4
DATUM —
: : : oL

92

8.6250

D00 R (TYP)

1.0000 —
2000 —

DATUM —

249 DIA REAM (TYPD

—DATUM

—.3730
—.5000
— 2.7300

— 2.8730
— 3.2500

* HOLD TO WITHIN .005

x 3230

DATUM

DATUM

3.2500

_

Figure A-6

92

P00 R (TYP

Figure A-7

—DATUM
.5000

—.5625
3.5625
3.6230

— 6.1250

—2.9625

1.0000 —

~F -
5000 //,k i //

DATUM — _ — /.—.Q

624 DIA REAM AA<UV-L\
\\\I.wwm W SLOT (TYPD
1.0000

5000 /N\ [

DATUM

o)
AY

93

DATUM
38125 —
48750 —
6.1250

D00 R (TYPD

10000 —

5000

—DATUM

—.3750
— .5000

~ 18125

— 38375

5.3750

7.7500

Figure A-8

7.87350

DATUM __

#49 DIA REAM (TYP)

1875 R FILLET

1.0000
.8500
6625

3375

| 1

.~Mco||
DATUM —

DATUM

8.2500

References
Electrical Hardware Group

Archer, VCP200 Application Notes, Archer, Fort Worth: 1988.

Cooper, Daniel B.; “Experiments in Voice Recognition,” Radio Electronics: April
1991.

“87C196KB 16-Bit High Performance CHMOS Microcontroller,” 16-Bit Embedded
Controllers, Intel Corporation:1990.

“L296 Switching Power Supply”, Linear Integrated Circuits DATABOQK, Unitrode
Corporation, Merrimack NH: 1987.

Schaefer, Tim; Michael Chevalier, Distributed Motor Control Using the 80C196KB,
Intel Corporation: May 1989.

Snow, C. Bruce; “Making PC Boards,” Radio Electronics: November 1987.Intel 16-bit
Embedded controllers (1996), Inlet Corporation, Order Number 270646.

Software Group

Intel Microprocessor and Peripheral Handbook, vol. 1 & vol. 2 (1989), Inlet
Corporation, Order Number 230843.

Inlet 8086 / 8088 Users Manual (1989), Inlet Corporation, Order Number 240487-001.

Intel Embedded Control Applications Handbook (1989), Inlet Corporation, Order
Number 270648.

Schilling, Robert J.,(1990), Fundamental Of Robotics; Analysis of Control , ISBN
0-13-344433-3.

Shade, Gray, (1985), 8088 IBM PC Assembly Language Programming , ISBN
0-03-001298-8.

Hancock, Les, & Krueger, Morris (1982), The C Primer , ISBN 0-07-02598.

Thorne, Michael (1986), Programming The 8086/8088 , ISBN 0-8053-5004-7.

96

97

