
ABSTRACT

Title of dissertation: TOPOLOGICAL RARE EARTH
HALF-HEUSLER HoPtBi

Connor Roncaioli
Doctor of Philosophy, 2019

Dissertation directed by: Professor Johnpierre Paglione
Department of Physics

Magnetic HoPtBi is created and characterized as a new half-Heusler Weyl-

candidate. By analogy with the well-studied GdPtBi system we undertake measure-

ments intended to understand the normal state of this material, before extending

our study to search for characteristics of Weyl behavior. We find a material with

semiconducting properties as well as a low temperature antiferromagnetic transition

below 1.25K and a Curie-Weiss paramagnetic system above. Analysis of the magne-

toresistance in HoPtBi finds multiple Weyl-like characteristics, including potential

chiral anomaly and anomalous Hall angle components. Finally we found significant

anisotropic magnetoresistance in HoPtBi dependent on field alignment relative to

the crystalline axes of the material, which is unexpected for a paramagnetic com-

pound. We will show that these behaviors indicate a material with a Fermi surface

readily tuned by application of magnetic field.
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Chapter 1: Background

The condensed matter (CM) field of physics is often concerned with the in-

vestigation of novel Hamiltonians. In many ways the creation of unique energetic

landscapes and the ability to manipulate them in a low-energy, accessible scale is

what connects CM to our high-energy and particle physics contemporaries and sets

the field apart in its capacities. Bose-Einstein condensates, superfluids, Majorana

Fermions, massless Dirac particles and countless other theoretical systems have been

or are predicted to be realizable in materials that we can engineer in small, user-

accessible labs. Adding to this ever-expanding repertoire many CM physicists have

taken a recent interest in Weyl semimetals, materials that reflect the generalization

of the Dirac Hamiltonian proposed by Hermann Weyl in 1929. [1]

The prediction for the Weyl Hamiltonian and the search for corresponding

Weyl Fermions is closely tied to the more widely used Dirac equations. The Dirac

equations are familiar to any physicist as the basis for relativistic quantum mechan-

ics. More specifically the Dirac equations integrates the necessary spin degree of

freedom which makes our understanding of Fermi-Dirac statistics consistent with

the 2-electron orbital occupancy. Dirac semimetals, in particular Graphne, have

been a fertile ground for the study of relativistic quasiparticles and their associated
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physics. [2] Weyl semimetals are a particular class of materials in which the Fermi

surface has distinct regions of well-defined spin character that host massless Dirac

quasiparticles. The discovery of Weyl semimetal compounds has lead to an entirely

new subfield of condensed matter physics focused on the novel behavior, and proper

classification, of these compounds.

1.1 Topological Materials

For the conventional solid state physicist it might not be immediately clear

what makes a material topological. Topology is generally concerned with global

properties, ie properties of that can only be described by looking at global structure

and not just evaluated at a point. The classic example of a topological invariant

is the comparison between a toroid and a sphere. A toroid could be continuously

deformed into many shapes, such as a coffee cup or donut, without ever disturbing

the continuity of the surface. However it is only by ’cutting’ or ’pinching’ that

a toroid could be transformed into a sphere. The Chern-Gauss-Bonnet theorem

formalizes this understanding of closed physical surfaces. [3]

The language of topology may seem an odd fit for a field which has historically

a large connection to nanophysics. For instance the p-n junction, arguably the single

most important technological development of the 20th century, depends explicitly on

connecting two regions of different microscopic character within a singular device. [4]

Nonetheless careful inspection finds that the fundamental tools of condensed matter

physics are well adapted to topological analysis.
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1.1.1 Chern Number as a Topological Invariant

Bloch’s theorem is one of the fundamental keystones of solid-state physics. The

single particle Bloch wavefunction that inhabits a mathematically ideal, infinitely

periodic lattice makes an exceptionally good approximation for the real study of

particles in near-infinite lattices of N ≈ 1026 atoms. A Bloch wave function |un(k) >

in momentum-space is a function of crystalline momentum k and is uniquely labeled

by the band from which it originates n. |un(k) > defined on the first Brillouin zone

completely defines the available states for the system, since all higher Brillouin zones

are images of the first Brillouin zone related by a reciprocal lattice vector.

In a 3D crystalline system we can also calculate the Berry connection

A(k) =< un(k)|iδkun(k) > (1.1)

which is related to the Berry curvature

Ω(k) = ∇A. (1.2)

Berry connection and Berry curvature represent the gauge evolution through

available quantum states, and is a useful concept not just for crystalline systems

satisfying Bloch’s theorem’s constraints, but any adiabatic path through a quantum

mechanical system. [3] Integrating the Berry curvature over a closed surface gives a

discrete quantity known as the Chern number [3]

3



Ci =
1

2π S
ΩdS. (1.3)

The Chern number is quantized, and in a real crystalline system we have the

useful property that the Chern number is necessarily zero when calculated over the

full first Brillouin Zone. [3] (figure 1.1) Due to the lattice symmetries of the system,

sweeping the Chern number integral over the full 3D Brillouin zone means that the

Chern number must sum to zero. [5] [6] [7]

Although the Chern number for the entire Brillouin zone is necessarily zero,

it is possible to divide up the BZ into sub-manifolds such that the Chern number of

the sub-manifolds are non-zero. By necessity then each region of the Brillouin zone

with non-zero Chern number Ci must have a complementary region with non-zero

Chern number Cj = −Ci (figure 1.1)

Thus pockets of non-zero Chern number always occur in pairs of opposite char-

acter. Furthermore, minor perturbations to the system which would adjust the band

structure cannot alter the Chern number of a region except by pairwise annihilation

of two pockets of opposite Chern number. This latter property is commonly referred

to as topological protection and has profound implications when it comes to trans-

port. In particular, if a material has topologically non-trivial bandstructure then

the pairwise annihilation is mandated on the surface in order to continuously transi-

tion to the topologically trivial vacuum, which leads to the creation of topologically

protected surface states. [7] [5]
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a)

b)

Figure 1.1: 2D cross-section of the Chern number being evaluated within the first
Brillouin zone of a hexagonal system. a) The integral is expanded over the whole
first Brilloin zone, using Stokes’ theorem combined with the reciprocal lattice vec-
tors (dashed, red) the integral volume can be collapsed to a zero-volume, which
necessitates a zero Chern number. b) The integral over a sub-manifold of the first
BZ cannot be fully collapsed. A non-zero Chern number may be evaluated in this
regime (stylized red) however the complementary region of the BZ must be of equal
and opposite value (stylized blue). This matches the expected condition imposed
by the full BZ integral and can readily be extended to 3D. [3]

5



1.1.2 Dirac and Weyl Semimetals

While the properties of Chern numbers are useful, it is not clear from the

theoretical formulation what types of materials might host non-trivial topological

states. The study of topological materials has exploded in the last decade. Topolog-

ical insulators [8] [9], Dirac semimetals [2], Weyl semimetals [10] [11], and magnetic

half-Heuslers [12] have all been studied as part of the greater research of topological

materials.

Dirac and Weyl semimetals, as well as the magnetic half-Heuslers, are of par-

ticular interest because in addition to satisfying some of the requirements to have

regions of non-zero Chern number, they also have non-zero density of states near

the Fermi surface. As a result there are accessible conduction states in the bulk of

the material with unique properties, subject to topological protection.

The Dirac equations in covariant form are written

ih̄γµδµφ−mcφ = 0, (1.4)

where γµ are matrices that form the basis of a Clifford algebra. This formulation was

designed to provide a metric which accurately represented space-time while evading

some unphysical degeneracies while predicting intrinsic spin. [7] Weyl semimetals

represent a specific solution of the Dirac equation in the relativistic regime (m = 0).

The massless spin-dependent Weyl Hamiltonian is

6



HW = κc~k · ~σ (1.5)

with κ = ±1 reflecting the chirality of the Hamiltonian, ~σ a vector composed of the

Pauli matrices, and ~k the momentum of the quasiparticle. An ideal Weyl semimetal

would have a massless linear dispersion and no band gap, however some materials

such as the HoPtBi investigated in this dissertation may have a quadratic dispersion

near the Weyl crossing. [12] [13]

A key characteristic of the Weyl Hamiltonian is that its solutions are momen-

tum locked, i.e. knowing the momentum, ~p at a given energy also fixes the spin of

the quasiparticle. This is notable for many reasons, not the least of which is that

spin-locked Hamiltonians are robust against non-magnetic backscattering. Any scat-

tering effect which reverses the momentum of the particle must also reverse its spin

(ie, interact magnetically) or else there will be no available states to scatter into.

This means that the conduction channels associated with the Weyl point should be

robust against conventional sources of backscattering, such as disorder. [14]

Furthermore, κ can be mapped to the Chern number quantizing the sum

of the Berry curvature around the Weyl point, as discussed in section 1.1.1. For

type I Weyl points, in which the massless Dirac cone is relativistic (figure 1.2) the

Chern number is mapped to the integral of the Berry curvature at fixed energy

around the Weyl point. Due to the limitations imposed by periodic materials, the

Berry curvature must disappear when integrated over the whole first Brillouin zone,

therefore Weyl points must be matched throughout the first Brillouin zone by Weyl
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points of opposite parity such that the summation of all Weyl points is Chern number

ΣCi = 0.

It is worth noting that (equation 1.5) only represents the Hamiltonian in the

vicinity of a single Weyl point. More in-depth calculations of Weyl systems must

necessarily take into account the net zero Chern number considerations enforced

by the Brillouin zone. In particular, since Weyl points are always matched with a

point of equal but opposite Chern number, there must also be a protected Lifshitz

transition somewhere in the vicinity of the Weyl crossing which corresponds to the

merger, and resulting annihilation, of the Weyl pocket pair. [15] [16] [17] Since Weyl

points exist due to band inversion it is a reasonable concern to expect the Lifshitz

transition to be not far energetically from the Weyl point.

In addition to the necessary condition that all Weyl points must be matched

by an equal Weyl point of opposite character, symmetry considerations can inform

us about the relative location of Fermi surface features in a given material. [18]

Because Weyl semimetals are by definition spin-split materials, they must break

either time reversal symmetry T , or inversion symmetry P . In the case of systems

that break T but preserve P the Brillouin zone must be symmetric when ~k ⇒ −~k,

therefore the Chern number of the Weyl points related by this transformation must

be equivalent. As a result for these systems the total number of Weyl points must

be 4N to respect not only the Brillouin sum rule, but also the symmetry relations

between Weyl points. In systems that break P but not T , Weyl points on opposite

sides of the Brillouin zone are of opposite character, meaning that only 2N Weyl

points must exist as Weyl points symmetrically located in the BZ already obey the

8



Figure 1.2: Schematic overview of the simplest Weyl prototype. Near the cross-
ing point the dispersion is relativistic, with spin locked to momentum along the
iso-energetic surface (blue arrows). A second Weyl point of opposite character is ne-
cessitated by the topological arguments covered in section 1.1.1 (red arrows). Away
from the crossing point the bands must become quadratic and merge, creating a
Lifshitz transition (dashed line).
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zero Chern sum condition.

By their non-zero Chern number Weyl semimetals are explicitly tied to the

phenomenon of topology in CM systems. Like the simpler topological insulators,

Weyl semimetals have a distinct protected surface state that bridges the topologi-

cal bulk state and the trivial state outside of a Weyl material. Unlike topological

insulators, Weyl semimetals have bulk conduction states near the Fermi surface.

Band inversion creates distinctive changes to the band structure of these conduct-

ing states, twisting the curvature of the inverted bands to create a non-zero chern

number evaluated at the FS. This leads to a bevy of distinctive behaviors in Weyl

materials, in particular a number of magnetoconductivity effects that are strong,

although not necessarily unique, indicators of Weyl behavior.

1.1.3 Chiral Anomaly

The most prominent transport effect on the bulk state of Weyl semimetals is

the presence of the Chiral anomaly which represents a negative magnetoresistance

contribution when applied magnetic field is co-aligned with the electric field in the

material. [19] [5]

The result of this effect is the biasing of carriers in the Weyl point associated

with electric field and away from the symmetry-paired Weyl point that is anti-

aligned. As a result a ’spontaneous current’ develops between these Weyl points,

increasing conductivity in this configuration.

Measurements have been carried out for Chiral anomaly on a number of mate-
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rials including TaAs [20] and HoPtBi’s sister compound, GdPtBi [21] and others [22].

Unfortunately negative magnetoresistance in semimetals, and magnetic semimetals

in particular is not incontrovertible evidence for a Weyl semimetal state. Semimet-

als with high carrier mobility under high magnetic fields are often subject to the

extrinsic effect known as current jetting which can create a negative magnetoresis-

tance signal in the longitudinal ~E ‖ ~B configuration which overlaps with the chiral

anomaly. [23] While current jetting is not a problem for the theoretical case of ideal

lead placement and uniform current distribution within materials, it is practically

speaking a significant extrinsic cause of negative magnetoresistance.

1.1.4 Anomalous Hall effect

The next significant indicator of potential Weyl-like behavior is the anomalous

Hall effect. The conventional Hall effect is best understood by first considering the

general conductivity tensor

Ji = σijEj (1.6)

and its inverse

Ei = ρijJj (1.7)

which can be decomposed into
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ρij = σ−1
ij = ρsymmij + ρasymmij . (1.8)

The conductivity tensor σ is a rank two tensor with some well-established

properties. Onsager’s reciprocal relations, which generally apply to any flux of a

system initially at equilibrium, dictates that σij(B) = σji(−B). In zero field σ is

diagonal. Furthermore any rank-two tensor can be broken down into symmetric and

antisymmetric components. The classical Hall effect is an expression of the Lorentz

force, given by

Fi = eεijk(vjBk) (1.9)

where εijk is the Levi-Cevita term. Scattering may interfere with the degree of

Hall deflection, but does not by itself break any further symmetries. Therefore the

conventional Hall effect is described by the antisymmetric off-diagonal elements of

the conductivity tensor. [24]

The conventional Hall effect relates to the deflection of charged carriers by

the classical Lorentz force. While the model was originally derived by the classical

Drude model, it conveniently applies to quantum mechanical formulations based

on quasiparticles in the electronic band structure of periodic lattices, though the

derivation of this generalization is quite involved. [24] Anomalous Hall effect is a

broad term describing off-diagonal conductivity tensor terms that do not correspond

to the Lorentz force charge-deflection picture.
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There are several potential causes for the anomalous Hall effect in materials

at large, including extrinsic effects such as side jump or scew scattering terms from

impurities in ferromagnetic systems and intrinsic effects from Berry curvature. [6]

Since Weyl points introduce a quantized Berry curvature, an anomalous Hall effect

is expected to intrinsically arise in these systems. [16]

Investigation of Berry curvature’s effects on Hall transport are ongoing and

depend on the details of the system. There have been arguments for a universal

relationship between Weyl points and anomalous Hall effect in simple models how-

ever this depends on the idea that the Weyl points are well separated and the Fermi

energy is close to the Weyl crossing. [16]

When analyzing the anomalous Hall effect, which contributes to the off di-

agonal component of the conductivity tensor σxy, it is helpful to consider the Hall

angle

ΘH = arctan(
σxy
σxx

). (1.10)

The Hall angle measures the net deflection of charge due to a magnetic field.

In single carrier metals at high ~B the longitudinal conductivity diminishes while the

transverse conductivity grows indefinitely, as a result the Hall Angle asymptotes

to π
2
. In the case of compensated semimetals, positive and negative carriers will be

deflected in the same direction such that the net charge is not deflected laterally, and

the Hall angle generally asymptotes to a near-zero value. In both of these classical

materials the Hall angle varies continuously with applied magnetic field as σxx and
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σxy continuously change. If the material undergoes a transition that affects the

electronic transport properties, in particular a Lifshitz transition, we may expect to

see a field-localized change in Hall Angle.

1.1.5 Planar Hall effect

Distinct from the anomalous Hall effect is the planar Hall effect. The Hall

effect as covered in section 1.1.4 corresponds to the cross product of applied current

and applied field, i.e. conductivity elements that are normal to both current and

magnetic field contribution. By contrast the planar Hall effect occurs when the

magnetic field is in the plane of conduction, rotated in the plane of the contacts

(and by extension, current). Since the Lorentz force deflects carriers perpendicular

to field direction it cannot account for the planar Hall effect. However, several

groups have suggested that the intrinsic Berry curvature of Weyl semimetals can

create a planar Hall effect. [25]

1.2 Select Weyl Candidates

1.2.1 TaAs

TaAs was one of the first materials to be reported as a Weyl semimetal. Initial

reports focused on observation of the bulk and surface band structure by means

of ARPES measurement. [11] [26] ARPES directly probes band structure density,

however it is indiscriminate when it comes to the chiral nature of observed density of

states (DoS), and it does not directly differentiate between bulk and surface states.
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More complex spin-polarized ARPES measurements were used to determine that

certain observed bands had spin character, further reinforcing the Weyl picture [27]

TaAs is a non-magnetic body-centered tetragonal I41md structure. Therefore,

TaAs (and related compounds TaP, NbAs, NbP) is non-centrosymmetric, and DFT

calculations confirm that this structure combined with the strong spin orbit coupling

(SOC) effect is sufficient to create momentum-resolved Weyl points in this material.

Therefore TaAs and its related compounds are predicted to be Weyl semimetals of

the T -breaking type. [10] As discussed in section 1.1.2 Weyl semimetals that violate

centrosymmetry but obey TRS must have Weyl points of identical character that are

related by inversion in the Brillouin zone. By looking at band structure calculations

in TaAs we can see an example of such symmetry-related Weyl points. In TaAs

this resolves into 24 discrete Weyl nodes, each matching the condition that nodes

of like-Chern number are related by inversion symmetry in the Brillouin zone.

In calculations done for TaAs band structure without spin orbit coupling the

spin-degenerate state of the system has numerous Dirac points. i.e. the crossing is

relativistic before spin orbit coupling is considered, and spin orbit coupling acts to

split the spin-degenerate Dirac point into two, spin-textured Weyl points. TaAs then

in a sense evolves directly from Dirac semi-metallic materials, which is distinct from

the case of Weyl semimetals derived from the magnetic half-Heusler compounds.
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1.2.2 GdPtBi

GdPtBi is a compound derived from the same series of RPtBi as HoPtBi

studied in this dissertation. GdPtBi, however, has been richly studied in the past

few years due to its predicted Weyl semimetal state and accessible paramagnetism.

One of the crucial predictions for GdPtBi is that the WSM state is accessed only

through application of field. GdPtBi (and associated RPtBi half-Heuslers, including

HoPtBi) are of symmetry group F43m and are non-centrosymmetric, however even

with SOC included in DFT calculations GdPtBi is a quadratic semimetal in zero field

down to low temperatures. This suggests that despite T being broken in GdPtBi

the asymmetry is insufficient to create Weyl points.

Below TN = 9.2K GdPtBi enters an AFM state with ordering along the (111)

direction. When moderate field is applied, the Gd moments are coerced out of AFM

ordering and align paramagnetically, creating a reported interaction that spin-splits

the Fermi surface, creating Weyl points. [12] [28] Therefore the primary broken sym-

metry that drives Weyl behavior in GdPtBi (and is suspected for related magnetic

half-Heuslers) is P due to the internal field of the localized f-moments. This is

supported by DFT calculations, which indicate Weyl points of opposite character

related by inversion in the first BZ. [12] As a thoroughly studied high-J RPtBi com-

pound, GdPtBi is the best magnetic analogue for HoPtBi and comparisons will be

drawn between these compounds throughout subsequent chapters.
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1.3 Half-Heusler Compounds

In order to expand the study of Weyl semimetals, we decided to focus on

the family of half-Heusler compounds that GdPtBi is part of. RPtBi and RPdBi

compounds have high potential for f-electron magnetism, and the heavy Bi element

introduces significant SOC inverted bands near the Γ high-symmetry point. [30] [31]

Significant work was done on the RPdBi compounds, since Pt and Pd are very

similar platinum-group metals this allowed me to extrapolate good candidates for

RPtBi compounds to study. [13] Lanthanide contraction was determined by band

structure calculations to be a significant tunable parameter for band inversion in

RPdBi. (figure 1.3) Additionally Ho and Er were determined to be high-J candi-

date compounds with very low AFM ordering temperatures and large paramagnetic

moments. (figure 1.4) Since we wished to investigate Weyl behavior in the param-

agnetic state the RPtBi counterparts were identified as ideal candidates for topo-

logical investigation. Both compounds were grown, however in-depth investigation

into HoPtBi occupied the focus of this research.
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R Pd

Bi

R

Figure 1.3: Lattice constant reduction in RPdBi as you traverse the 4f elements
showing the lanthanide contraction effect. Band inversion strength ∆E = EΓ8 −
EΓ6 decreases as lattice constant reduces, Ho and Er PdBi compounds are good
candidates for band-inverted behavior. Figure is taken with permission from [13]
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c) d)

Figure 1.4: Various measurements of magnetism in the RPdBi series. a) Susceptibil-
ity as a function of temperature, showing AFM transitions for Dy, Tb, Gd, Sm, but
no transitions for Ho or Er. b) Magnetization as a function of field showing Ho and
Er with greatest magnetization. c) Neutron diffraction peaks in DyPdBi indicating
q = (0.5, 0.5, 0.5) magnetic ordering. d) Neutron diffraction in TdPdBi showing the
low-field low-temperature AFM phase common to the RPdBi and RPtBi lanthanide
family. Figures are taken with permission from [13]
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Chapter 2: Experimental Methods

In this chapter we will cover the techniques required to go from elemental

compounds provided by a manufacturer, to the measurement of the transport prop-

erties of a novel single crystal material. This section will begin by discussing the

flux method by which we produce single crystal compounds. Then we will discuss

how we characterize these materials to ensure that the material we have grown is the

compound we desire. Then we will discuss the systems used to establish conditions

of temperature and magnetic field vector relevant to these measurements. Finally

we will explain the techniques involved in transport measurements and how these

results can be used to determine interesting properties of the associated systems.

2.1 Single Crystal Growth

Before studying samples of a desired compound first it is necessary to produce

crystals that are of proper stoichiometry, structure, and size. We produce samples

by flux method, in which a molten metal flux is used as a solvent and the desired

component materials are the solute. By heating the solvent metal well above its

melting point the solute materials can completely dissolve in solution. The solution

is then cooled until it is supersaturated, at which point a single nucleation site will
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begin the process of crystal growth. By adjusting parameters such as flux solvent

material, relative concentration of solutes and solvent, dwelling temperature, and

rates of heating and cooling you can idealize the conditions to produce a given

crystal, with the goal of producing single crystals of at least a millimeter in two

dimensions, suitable for transport measurement.

In the case of Heusler compounds Bismuth, with a melting temperature of

271C, is our preferred flux. This method of using a solvent as a component in the

goal precipitate is known as the ’self-flux’ method, and is useful if the solvent metal

has a low melting temperature and doesn’t create super stable binary compounds

with the solute components of the growth.

Growths of HoPtBi were grown using a ratio of 1:1:20 of Ho:Pt:Bi. This ratio

produces truncated cubic crystals between 1-2mm per side which was sufficient for

most transport measurements.

Component materials were assembled in a 2.5mL alumina crucible. Alumina is

a stable oxide that melts at 2,000◦C and is non-reactive with many metallic elements

and as such makes a good choice for containing the growth solution (however, care

should be taken for growths in which Aluminum is a potential dopant). A second

crucible was filled with quartz wool, the quartz wool acts as a sieve when attempting

to remove any precipitate from the remaining solution during the spin-out phase of

the growth. This second crucible is placed inverted atop the first crucible and is

known as the ’catch crucible’. This assembly is then placed inside a quartz tube,

with additional quartz wool above and below to cushion the contact point between

crucibles and tube. Then, the diameter of the region above the quartz tubes is
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reduced using a Hydrogen-Oxygen torch in a process known as ’necking’. Note that

during necking the inner diameter is not completely collapsed to allow inert gas

exchange.

The necked assembly is then attached to a dry vacuum pump by means of a

manifold of airtight tubes colloquially referred to as a pumping station. Reactive

atmosphere is removed from the crucible, flushed with high-purity Argon, and then

purged again. This cycle is repeated a total of three times, then the tube is filled

with high-purity Argon to 1/5atm at room temperature (300K). The low pressure

is chosen such that even at the maximum temperature allowed by the quartz tube

(1500K) the pressure inside the tube would be no more than 1atm (assuming basic

PV=nRT relation for ideal gasses, which Argon approximates rather well) so that

the quartz tube assembly is never under pressure, which could cause an explosion

risk. Finally the neck of the assembly is thinned and pinched using the H-O torch

and the materials are ready to be put into a furnace for the growth procedure. An

example of the final product of this procedure can be seen in figure 2.1.

The temperature schedule for the growth can be varied in numerous ways,

and the exact schedule used can be crucial in determining the type and quality of

product. HoPtBi has a fortuitously simple temperature profile: samples were heated

from room temperature (20◦C) to 1050◦C at a rate of 50◦C/hour then held at that

temperature for 5 hours to ensure that the solute were fully dissolved. The aggregate

was then cooled at 3◦C/hour until 520◦C. At this point the assembly is placed in a

centrifuge and spun to mechanically separate the precipitated HoPtBi from the still

molten Bismuth. The quartz sieve holds onto the precipitated material, and the
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Quartz Wool

Catch Crucible

Solutes

Flux

Flux

Quartz Wool

Figure 2.1: Diagram of sample crucibles and growth process. Components are
assembled into a sealed quartz tube with inert Argon gas inside at 1

5
atm. The

assembly is inserted into a furnace where it undergoes a growth sequence. After
the sequence terminates the assembly is centrifuged to separate flux from growth
product. An example crystal showing one well formed octagonal [100] and three
triangular [111] faces. Small rectangular [110] faces are also visible.
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remaining molten flux is passed through the sieve and caught at the bottom of the

catch crucible, where it then solidifies. This process removes the greatest amount of

flux, but subjects the crystal to a fair amount of physical strain when the material

is still at high temperature. Therefore it is not recommended for fragile samples or

materials close to a structural transition.

2.2 Sample Characterization

After decanting a new batch of crystals it becomes necessary to do two things:

identify the crystal composition matches our intended product (or evaluate the struc-

ture and composition of a novel product) and shape the sample to an intended

measurement geometry.

2.2.1 Determining Sample Orientation

Many of the experiments within will depend on the relative orientation not just

of the Electric and Magnetic fields but of these fields with respect to the underlying

crystalline symmetries. As such it is important to understand not just the structure

of the material we are studying, but also how the microscopic structure relates to

macroscopic properties of the crystal. The microscopic structures are crucial for

understanding the physics involved, however it is the macroscopic sample which we

manipulate and shape for measurement.

Understanding the full process by which atoms suspended in solution nucleate

and form complete crystals is beyond the scope of this dissertation, however it is
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still insightful to have a basic understanding of the energetics involved and how this

affects the creation of crystalline product. For instance it is often the case that

fully formed crystals will have an apparent geometry that matches the microscopic

symmetries of the material. In the case of cubic RPtBi the crystals will form in a

shape similar to a cantellated cube, in which the edges and vertices are beveled with

their own perpendicular surfaces, which has the Octahedral symmetry representa-

tion. This is useful for identifying the primary crystalline faces as the [100] and [111]

planes are mapped directly to the prominent octagonal and triangular faces. The

similarities are not complete however, as the crystal will often grow in a distorted

or with certain sides misshapen by any of a myriad of causes, and in addition there

are rectangular faces that correspond to the [110] direction (although these faces

are quite small and easily discerned). In the face of these irregularities it is best to

look for a face with an easily recognizable C4 or C3 symmetry, then by comparing

the angle between that face and it’s nearest neighbor you can reasonably discern

the orientation of the crystals major axes. These findings can be confirmed through

the use of bench-top x-ray diffraction, as will be covered in section 2.2.2.

An astute observer will note thatRPtBimaterials have the f 4̄3m group, which

has the point symmetry group of Td, the chiral tetrahedral symmetry, and not the

Octohedral symmetry apparent in the macroscopic sample. In order to understand

why certain broken symmetries are lost in moving from the microscopic regime to

the macroscopic we should look a little deeper into the energetics that dominate

flux solvent growth, and the Wulff construction of crystallization.

The creation of a crystal in solvent is energetically akin to the creation of a
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water droplet or the meniscus of water in a glass that is just slightly too full. There

is some amount of energy involved in laying a surface of material, we can therefore

expect a quantity γ which represents the reversible work dW done to remove a layer

of material of infintesimal width dA

γ = dW/dA (2.1)

We wish to minimize
∮
A0
γdA, the energy involved in creating the surface. In

a spherically symmetric system γ is a constant so this is done by minimizing the

total area A, which results in a spherical droplet. Liquids are in general spherically

symmetric, however solids are not. Nonetheless in a crystal we can reasonably

expect γ to be an extrema, and in particular a minimum, along the high-symmetry

directions of the crystal.

This is known as the Wulff construction, in which the balancing of the mini-

mum γ is weighted against choosing a minimum surface area A0. The specifics of

this calculation are non-trivial and there are terms (such as edge and corner energy

terms) which also need to be considered, however simply by understanding this con-

struction we can know to search for high-symmetry planes along sample facets. [32]

It is worth noting that γ only inherits values pertinent to the surface of the mate-

rial, therefore glide and screw symmetries parallel to the plane do not change the

value for γ. It is for this reason that the macroscopic crystal ignores certain broken

point symmetries of the underlying crystal which are transformed into one another

through glide or screw transformations, and Oh symmetry is recovered.
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γ=c

γ=f(Θ)

a)

b)

Figure 2.2: Wulff’s construction relates the microscopic energetics of a system to its
final macroscopic shape. a) Fluids are isotropic, with no long-range orientation de-
pendence. Absent additional forces, positive surface tension will cause a free-flowing
fluid to adopt a spherical shape. b) Crystals have a surface tension function with
orientation dependence, typically with crystallographic high-symmetry directions
being the lowest energy surfaces. A complicated sixfold-symmetric system readily
produces a hexagonal precipitate.
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2.2.2 X-Ray

Once we have a reasonable guess for a sample’s orientation through observation

of surface features, we can confirm our results using x-ray diffractometry. By using

Bragg’s diffraction law and knowing the wavelength and expected value of 2Θ for a

given orientation, the orientation of the underlying crystalline axes can be quickly

confirmed.

Samples were measured in one of two X-ray diffraction systems. Powder X-

ray was conducted using a Rigaku miniflex benchtop system. Powder X-ray was

conducted on batch samples prior to measurement in order to establish the creation

of intended HoPtBi product and confirm the documented F 4̄3m cubic structure.

Since the process of powder XRD is destructive it was not used to confirm the

structure of samples, but is reserved for identification of growth product.

Single crystal X-ray was conducted using a D8 Bruker double-axis XRD on

pre-shaped and polished samples. Samples going in to SC XRD already had a ’good

guess’ on the proper orientation using the macroscopic features of the sample using

the techniques in section 2.2.1. SC XRD was used to confirm that the face of the

sample was the expected orientation.

The mechanical process of polishing a well-aligned face is subject to significant

error given the size of samples and the presence of fractures or volumous flux deposits

on the surface, and many samples had to be discarded due to misalignment of 2◦

or more. SC XRD is sensitive enough to alignment that even fairly well aligned

samples would not necessarily produce a peak without some amount of searching
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within the nearby alignment parameters. Samples with misalignment greater than

2◦ could rarely be identified by SC XRD and were discarded as poorly-aligned. An

example of a [100] oriented SC XRD measurement is presented in figure 3.2.

2.2.3 Energy Dispersive X-Ray Spectroscopy

Energy Dispersive X-ray Spectroscopy (EDS/EDX) was conducted using the

Hitachi S-3400 Variable Pressure SEM at the UMD Fablab facilities. EDX is an

atomic analysis tool which uses electron bombardment and the resulting X-ray emis-

sion spectra to identify atomic components of a material to within a few percent

(accuracy of roughly 5%). This technique was used to identify the 1:1:1 ratio of

Ho:Pt:Bi in fabricated samples. Samples are adhered to a glass plate by electrically

conductive carbon tape, which acts as a ground for excess electrons introduced from

the e− beam. Once mounted and placed within the measurement chamber the entire

apparatus is sealed and evacuated of any atmosphere. The e− beam is turned on,

tuned to 15keV and 50mA. 15keV is chosen because the EDX emission spectra of

most heavy elements is well below 10keV which allows us to resolve all components

of the growth. Finally the spectra can be measured and analyzed for atomic contri-

bution percentage using the ESPIRIT software package, and these numbers can be

compared against the atomic formula of the goal material.
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2.3 Sample Preparation

2.3.1 Shaping and Polishing

There are a myriad of potential geometries for measuring the properties of

materials from the classic linear bar, to the cylindrically symmetric Corbino disk

geometry, [8] to the Van der Pauw method and more. Each of which come with

individual benefits, draw backs, and particular observables that they are designed

to measure. Many measurement geometries require specific fabrication techniques

in order to ensure that the measurements are accurate enough within tolerance, for

example measurements which search for quantized resistance or negative longitu-

dinal magnetoresistance effects are particularly sensitive and benefit from knowing

the exact dimensions of the sample.

Once the relationship between the macroscopic geometry and the microscopic

crystalline orientation is established it is time to adapt the form of the crystal to a

shape appropriate for measurement.

• Samples decanted from flux must have their apparent surfaces cleaned of any

remaining flux material before attempting to use that surface for alignment

purposes.

• Once a clean surface is identified a sample is processed via x-ray diffraction to

establish the prominent crystallographic direction associated with that surface.

• If large enough a sample can be rough-cut using either the wire-saw or spark-
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cutting methods. Wire-saw cutting is good for very large samples and will

generate an deep and wide cut about 0.5 mm thick. Spark-cutting can be

done down to roughly .2mm in thickness and creates a flatter face however the

high voltages involved can cause pitting and chemical changes to the surface of

your material, so care must be taken to polish any spark-cut surface. Neither

of these methods will guarantee a well-oriented surface so care must be taken

to maintain an oriented surface while cutting.

• Next the sample is adhered by the appropriate face to a polishing platform

using crystal bond. The platform is designed to be as close to exactly parallel

to the polishing material as possible, therefore establishing that the polished

surface will represent the same orientation as the identified face from x-ray

diffraction

• Samples are rough polished using 1000 grit Aluminum-Oxide in order to re-

move the majority of the material and bring the sample within a few dozen

µm of the intended thickness. During this step the sample should be routinely

checked for inclusions. Ideally inclusions will present as a different reflectivity

or overall color, however it is up to the human eye to pick out any details that

signal inclusions. If an inclusion is at the edge of the sample and leads can

be placed on pure sample surface then it can be tolerated, however inclusions

that run into the length between two leads (in particular the voltage leads)

will short the sample and provide an anomalous contribution to resistivity.

• Using a 90degree angled step the edges of the sample are polished away and the
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intended bar shape is created. In-plane geometry of the sample is determined

at this point so knowledge of the samples orientation and the shape of the

planar cut made in the previous steps should be used to determine which

direction is preferred for the contact orientation.

• After the sample is polished according to its intended final geometry the final

step is to use finer polishing pads to increase the quality of the surface. As

a general rule the sample surface will have scratches and microscopic cracks

roughly the size of the particles used to polish. Therefore for an arbitrarily

good surface, incremental polishing with finer and finer particles is the best

method to create a clean surface.

In this dissertation samples were finely polished using a pad of .5µm Aluminum

Oxide particles which was sufficient to create a light reflective surface. Samples of

HoPtBi would retain their clean reflective surface over long exposure times to air,

but to cut down on potential oxidation samples were kept in a glove box with

< 0.5ppm O2 when not being actively manipulated or measured.

2.3.2 Transport Configuration

Once a sample has been shaped to the appropriate geometry the next step is

to attach electrical contacts to measure intended observables. The contacts usually

serve one of two primary purposes: applying a fixed current ~J to the system, or

measuring a potential difference between two points ~V . In essence two current leads

and two voltage leads will help determine an element in the Resistance tensor of the
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material:

Vi = RijJj (2.2)

knowledge of the sample geometry (established by good sample preparation in sec-

tion 1.3.1) helps reduce this to knowledge of the more general electric field and

resistivity tensor:

Ei = ρijJj (2.3)

For this dissertation the primary geometries are the conventional four-wire

longitudinal and the four-wire transverse (aka Hall) measurements. It is however

possible to compound these measurements into a six-wire measurement which is

capable of measuring both the longitudinal and transverse components, and alter-

natively it is possible to do a longitudinal measurement with a two-wire technique.

Each technique has its own distinct set of advantages and disadvantages covered

below.

Four Wire Longitudinal: In this technique the current and contact leads are

applied sequentially along the length of the material, ideally with each lead forming

a uniform contact across the width of the sample. Since Jj and the measured

electric field response Ei are collinear in this geometry it is used to analyze diagonal

components of the resistivity tensor ρii which are the conventional resistivity values
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typically associated with e.g. a length of conventional conducting wire in typical

(i.e. no applied magnetic field) conditions.

Four Wire Transverse: the transverse geometry is similar, with the exception

that the voltage contacts are now located on opposite edges of the sample, opposite

one another, and are affixed to the material through a point-like contact. This

geometry measures the off-diagonal components of the resistivity tensor ρij and is

associated with the Hall effect in conventional metals.

Six Wire: The six wire measurement is quite simply the use of a single pair

of current leads to simultaneously measure both the longitudinal and transverse

components by having voltage contacts for both geometries on a single sample during

a single measurement.(figure 2.3) This geometry has the convenience of measuring

both set of resistivity values for a fixed ~J without worrying about varying sample

integrity from handling or oxidation. Furthermore since a single, unchanged sample

is used for both measurements simultaneously the thickness value is fixed for both

geometries, which simplifies a number of important calculations that take the ratio

of longitudinal to transverse resistivity, such as Hall angle, and cancels out one

degree of uncertainty in these measurements.

On the other hand six wire measurements have three primary drawbacks. First

it makes contact creation exponentially more difficult as more wires have to be

accurately placed within a fixed volume without touching. This is a trivial concern

for large samples but can be very limiting for < 1mm samples. Second for highly

resistive samples the presence of additional highly conductive leads can short the

measurement to a limited degree, introducing a different source of error into your
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measurements. In effect your transverse contacts will reduce the resistivity value

of a longitudinal measurement and vice versa. Finally this type of measurement is

not the default for resistance measurements in the PPMS or Dynacool systems and

will take up two channels, reducing the number of samples that can be concurrently

measured.

Two Wire: In the event of exceptionally small samples a two wire measurement

can be attempted. In a two wire configuration voltage and current leads of a given

polarity share a single point of contact, therefore a two wire measurement is only

feasible for measuring the longitudinal component of resistivity. Furthermore since

the current and voltage leads share a single point of contact the voltage difference

as measured by the voltage leads will include some amount of contribution from the

leads and contacts. As a result this measurement is unreliable for samples with very

small resistances comparable to the gold wire and silver contacts, and in particular

this measurement is a very poor choice for measuring any superconducting behavior

such as TC or HC2. In these cases the intrinsic signal of the sample is dwarfed by

the contribution from the leads, no matter how small.

2.3.3 Leads and Contacts

Once a decision is made on how to position and affix leads the final step is

to choose an appropriate method of creating electrical contact. This, in essence,

involves making the decision between several different types of electrical wires and

several different types of electrical contacts.
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Figure 2.3: Clockwise from top left: Four-wire longitudinal, four-wire transverse
(Hall), two-wire, and six-wire lead configurations. In case of four-wire transverse
and six-wire measurements the Hall contacts are labeled as to give a positive value
if charge carriers are positive (hole-like).
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The primary decision for choosing an electrical wire is material (typically gold

or silver) and thickness. Wire thickness is usually predicated on the size of the

sample involved, with thicker wires more likely to create large and diffuse contacts

while smaller wires create more confined contacts, but are more difficult to create in

a spatially homogenous way. Additionally larger wires are more difficult to fit into

a small space, but offer increased durability relative to their smaller counterparts.

Gold wire is the standard used in our lab, however silver wire is not uncommon

and is more rigid at the expense of being more brittle. Specialty wires, such as

manganin, can be used in cryogenic measurements but are usually reserved for

special measurements such as in pressure cells.

For the contact that fixes the leads to the sample there are three primary

options: silver paint, silver apoxy and soldered contacts. In our lab we use

Silver paint: this is the least durable option but the easiest to use, most flexible

and has a middle-range contact resistance ≈ 1Ω. Silver paint comes in solution

which contains colloidal silver particles and is typically mixed in a 1:1 ratio with

2−Butoxyethylacetate which acts as a quick-drying flux. Once created contacts are

quite fragile and can easily be ripped off of a sample if carelessly handled, however

such weak contacts pose no threat to anything but the most fragile or micaceous of

materials. Silver paint is also very easily removed through the use of acetone and

mild sonication, and as such are usually the first-choice for making contacts due to

their ease of removal and resetting.

Silver Epo-Tek: the next most durable option is silver apoxy. Apoxy forms

the least desireable contact with contact resistance in the 2− 10Ω range. The silver
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apoxy we use in our lab is Epo-Tek H20E which comes in a two part solution (type

A and type B) which are stored separately. Right before creating contacts these

two solutions are mixed which creates a homogenous silver fluid that will not dry

in room temperature conditions over time scales applicable to lab work. Once leads

are placed with silver apoxy on the sample, the sample needs to be heated for some

period of time (2hrs at 150◦C is typically sufficient) in order to cure the contacts.

Prior to curing samples can be washed with acetone to remove any apoxy if an error

is made in applying contacts, however after contacts are cured the process becomes

more complicated. If you wish to remove cured apoxy leads the sample will need

to be bathed in dichloromethane (CH2Cl2) for 5min-1hr if necessary. This softens

up contacts such that they can be mechanically removed (typically with a razor)

after which sonication in acetone should remove any remaining residual contact.

Alternatively if the sample is thick enough the apoxy and contacts can be removed

by polishing the surface away. Apoxy contacts which have not been treated with

dichloromethane are durable and will typically outlast the wire to which they are

affixed.

Soldered contacts: finally soldered contacts are by far the most durable con-

tacts available for benchtop sample preparation. Contact resistances for soldered

contacts are tiny at ≈ 0.1Ω however once attached soldered contacts are essentially

permanent and cannot be removed or replaced, this makes them a technique typi-

cally of last resort. Soldered contacts are created by dipping the lead in solder flux,

and bringing it together with a small droplet of solder located on a fine-tipped solder

iron together at your intended point of contact. The need to maintain control over
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not just the contact wire, the solder, and the sample, but all three mutual elements

together means this is an advanced technique best practiced before use on difficult

to replace samples.

In this dissertation contacts were primarily made using silver paint or silver

apoxy, as the high relative resistance of semiconducting materials and the lack of

superconducting order as our focus meant these contacts were more than sufficient

for our purposes.

2.3.3.1 Miller Index Convention

In this dissertation numerous measurements will involve comparing or manip-

ulating the orientation of magnetic fields or electrical contacts. For practical reasons

electrical contacts will be fixed during a single measurement, but may vary between

measurements. Magnetic field can be dynamically adjusted in-situ through use of a

rotator. For this reason Miller indices will be used in a consistent manner in order

to minimize confusion.

Rotation measurements will specify the plane of magnetic field rotation using

Miller index notation, {hkl}. In measurements that involve electrical transport

labeled as ’[100]’, contacts will be applied such that ~E is oriented along the [001] axis.

These measurements are generally concerned with the C4 symmetry projection of the

cubic system. In electrical transport measurements labeled as ’[111]’ the contacts

will be applied such that electric field is along the [11̄0] axis. These conventions

were chosen such that electric and magnetic fields could be applied at 90◦ while
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Figure 2.4: Miller indices conventions used in this dissertation. A sample with a
possible six-wire lead configuration is shown. A corresponding set of Miller directions
are labeled, as well as an example plane. In most transport measurements ~E is fixed
along the [001] direction or [011] in the case of [111] measurements. When specifying
a rotational plane the Miller plane index will be used to indicate the chosen rotation
plane.

retaining good in-plane orientations. Rotation measurements are labeled by the

plane in which the field is rotated, e.g. {001}.

2.4 Measurement Systems

Transport measurements below 14T and above 1.8K were conducted in either

a Dynacool 14T PPMS or a Quantum Design 14T PPMS system. Susceptibility

measurements were conducted in a 7T MPMS or the Dynacool 14T system using

the VSM (Vibrating-Sample Magnetometer) option.
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2.4.1 Temperature and Magnetic Field Control

Temperature control is similar between these listed systems and is achieved

through evaporative cooling on a pool of liquid He. The equilibrium boiling tem-

perature for He is 4.2K which is too high for our purposes, so conventional cooling

by liquid He is insufficient. To achieve temperatures below 4.2K the gaseous He is

pumped out of the system, as a result the equilibrium point between evaporation

processes and condensation of the gaseous He drops and the liquid cools further in

temperature. In order to adjust temperature to a desired fixed point this cooling

process is balanced against an electric heating element. By combining heating and

cooling methods with a temperature sensor located very close to the sample a stable

temperature can be achieved anywhere from 1.8K to 310K with ease.

A magnetic field is created by passing an electrical current through a longi-

tudinal coil of superconducting material. The sample platform resides within the

interior of the solenoid of superconducting material, creating a uniform uniaxial

magnetic field profile. Using this method stable fields can be reached up to 14T

(140,000 Oe).

2.4.2 Sample Orientation

In addition to the previous control methods samples can be rotated relative

to the sample space using a simple mechanical rotator attachment for the Dynacool

or PPMS systems. While application of current across a sample is necessarily fixed

to the contacts during a measurement, by use of a rotator it is possible to change
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the orientation of the magnetic field relative to the sample. The rotator only has

one axis around which it has a 380◦ range of motion, so axis of rotation must be

carefully chosen prior to measuring the sample.

Rotation measurements typically are chosen in one of three primary configu-

rations.

Transverse: in this configuration the axis of rotation is in the {001} plane, and

consequently the magnetic field is always transverse to current. In the case of a cubic

system (such as GdPtBi and HoPtBi) if the current is along the [001] direction then

the magnetic field consequently sweeps out a C4 symmetric plane through the [010]

and [100] directions, also traversing the [110] and [11̄0] orientations by necessity.

Since magnetic field and current retain a 90◦ relative orientation throughout this

type of rotation measurement should only be sensitive to either geometric factors or

the crystalline symmetries of the compound.

Longitudinal: in this configuration the axis of rotation is {010}, along the edge

of the bar sample. Therefore the field rotates from perpendicular to the sample (out

of plane) to in the plane of the sample, along the electric field. This rotation is

sensitive to the orientation between electric and magnetic field, in addition to the

geometric and crystalline considerations of the transverse case.

Planar: finally the last configuration has the plane of rotation {100}, ie in the

plane of the material. Intrinsically this shouldn’t be different from the longitudinal

case for two, or four-wire longitudinal measurements outside of geometric consider-

ations. However if this rotation is done for a Hall measurement then the magnetic

field is in plane of both the contacts and the current. For semi-classical Hall effect
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this should be a zero signal, however in the case of materials exhibiting the Planar

Hall Effect a sinusoidal signal should arise from this configuration.

2.5 Measurements

In this dissertation the focus will be on bulk transport phenomenon with some

support from magnetization effects.

2.5.1 Electrical Transport

Electrical transport refers to the collective behavior of the resistivity tensor

discussed in section 1.1.4 and 2.3.2 under various conditions of temperature and

magnetic field, as well as other conditions not considered in this dissertation. Sam-

ples were wired up according to geometries discussed in section and attached to a

measurement puck by their leads. Low-temperature N grease was used to create a

thermal contact between sample and puck, then the puck was inserted into a PPMS

or Dynacool system as described in section 2.4. From there control over the sam-

ple environment was used to evaluate resistivity as a function of temperature and

magnetic field.

2.5.2 Magnetoresistance

Magnetoresistance is a deeply complicated topic that bridges a number of

phenomenologically similar, but causally distinct experimental results. The simplest

magnetoresistance phenomenon is attributed to increased scattering from magnetic
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path deflection, however in many ordered compounds the application of magnetic

field can have a significant effect on magnetic scattering rates, or can change the

type of ordering inducing a change in MR character. [24] In this dissertation we

will focus on a material which has novel MR character dependent on magnetic field

orientation, which we do not expect for a paramagnetic material. In addition at high

fields the material undergoes a specific form of MR response known as Shubnikov

de Haas oscillations, which will be a useful diagnostic of the Fermi surface.

2.5.2.1 Shubnikov de Haas

Shubnikov de Haas oscillations are a specific form of high-field MR signal that

is oscillatory in increasing field. SdH is a form of quantum oscillations (QO), in

which the Landau quantization condition begins to strongly influence the transport

properties of the system. As field increases the Landau phase quantization is con-

volved with the Fermi surface area as projected along the applied field axis. DoS will

increase sharply when the Landau phase condition as determined by field matches

the Fermi surface area extrema, and will decrease sharply between satisfied Lan-

dau phase conditions. The result is an oscillatory signal in observables that depend

strongly on DoS, such as the longitudinal conductivity. [33]

The cross section of the allowed Landau levels in k-space is

Ak = (n+ γ)2πα (2.4)

where γ is a non-zero correction term that depends on the details of the Hamiltonian,
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and α = eB
h̄

. For a given, non-field dependent Fermi surface the maximal intersection

occurs at a fixed projected area extrema, and oscillations occur as the Landau levels

corresponding to each successive level satisfying the fixed-area condition. By looking

at oscillations in the 1/B basis a clear oscillatory period can be extracted [34]

∆(
1

B
) =

2πe

h̄

1

Ak,ext
. (2.5)

In HoPtBi oscillations onset around 10T and are of quite low frequency. For

this reason conventional magnetoresistance measurements in the 14T PPMS or Dy-

nacool systems was insufficient to reach the necessary fields required to appropriately

characterize the system. Samples were taken to the National High Magnetic Field

Lab (NHMFL) in Tallahasee, Florida where field sweeps up to 35T were achievable.

Leads were attached by silver paint in the four-wire longitudinal configuration and

attached to a custom rotator by low-temperature N-grease.

The {010} plane was chosen for the plane of rotation for applied field ~B i.e.

the field would be rotated from the conventional ~B ⊥ ~E configuration, with ~B

oriented perpendicular to the sample, through the longitudinal ~B ‖ ~E configuration.

This allowed the field to sweep through the [100], [001], and [101] crystalline high

symmetry directions.

Shubnikov de Haas results are discussed in section 5.2 and a closer inspection

of the techniques used to extract the frequency information from low-frequency SdH

data is covered in Appendix A.

45



2.5.2.2 Hall Effect

A brief discussion of the definition and sources of Hall Effect are covered

in chapter 1 of this dissertation, in this section we will discuss how Hall effect

measurements were conducted. Samples were shaped into a longitudinal bar shape

in transverse four wire configuration using silver paint for contacts with minimal

(≈ 1Ω) contact resistance. In the case of certain repeated measurements where the

sample had to be manipulated between measurements without losing leads silver

apoxy was used instead of silver paint in order to create more durable contacts.

Hall Effect measurements are asymmetrized in field in order to minimize con-

tribution from geometric imperfections in the sample or from lead misalignment. In

the case of field sweeps data was collected for the full range and data points of oppo-

site field were asymmetrized. In the case of fixed field temperature sweeps two mea-

surements of opposite field would be conducted under the same initial conditions.

Where feasible measurements were conducted under zero-field cooled conditions,

however this was done out of an abundance of caution as repeated magnetization

and neutron diffraction measurements found no magnetic order in the range of most

measurements conducted.

2.5.2.3 Hall Angle

Hall angle measurements are a composite of Hall Effect and longitudinal con-

ductivity.
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ΘH =
σxy
σxx

(2.6)

Note however that we do not measure conductivity of materials directly, in-

stead resistance (which can be directly converted to resistivity, if the geometric

factors are known) is measured and conductivity must be calculated.

σxx = ρ−1
xx (2.7)

σxy =
ρyx

ρ2
xx + ρ2

yx

(2.8)

Due to the ratio of conductivities errors from sample geometry and lead place-

ment was reduced by maintaining the same sample between measurements.

2.5.3 Magnetization

Magnetization is acquired through the use of a Vibrating Sample Magnetome-

ter option of the Dynacool PPMS system. A sample is first adhered to a quartz rod

using GE varnish. The varnish acts as a physical contact between sample and rod,

preventing movement or rotation. A pickup coil is inserted into the sample chamber.

The quartz rod and sample are mounted to a linear motor and then inserted into

the sample chamber.

A small field is applied in order to center the sample. The centering process

is handled automatically, but consists of the sample and rod being lowered in the
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pickup coil and dynamically measured as a function of vertical displacement. The

response curve is used to determine the ideal placement of the sample. Since HoPtBi

is a large moment paramagnet this centering measurement could be done at room

temperature.

Once the sample is centered the field is then set to 0Oe using the oscillate

approach (which produces the most accurate final field) and temperature is lowered

to base temperature of 1.8K. From there the measurement of either field sweep or

temperature sweep is conducted in sequence. Knowledge of the sample mass and

molar mass is used to determine the magnetic field response per Ho atom, which

is used in subsequent calculations of Curie constant and effective bohr magneton

response.

2.5.4 Torque Magnetometry

The final measurement technique was torque magnetometry, a technique which

is not sensitive to the total magnetic response of the material but measures the

difference between the microscopic moment and the applied field direction. Due

to the large magnetic response of HoPtBi and the delicate nature of the sample

platform an extremely small sample (≈ 0.1mg) sample was used to prevent the

possibility of breaking the lever mount through excessive magnetic torque.

A magnetic field is applied and the sample platform is vibrated. The response

of the platform to this vibration is used to determine the force applied by torque

from the sample, τ = ~m× ~B where ~m is the magnetic moment of the material. In an
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isotropic paramagnet ~m and ~B are coalligned and torque is zero. If the microscopic

moment is pinned to some easy axis however, either through interactions or through

magnetic ordering there will be some non-coalligned response which will induce a

measureable torque.
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Chapter 3: HoPtBi Characterization

3.1 HoPtBi Growth

HoPtBi was grown by conventional flux method. About 5g of Ho:Pt:Bi were

combined in a 2.5mL crucible in a 1:1:20 ratio. Growths with a ratio of 1:1:10 were

attempted however it was found that a surplus of Bi flux was ideal for creating a

smaller number of larger crystals.

Samples were placed in a 1200◦ C box furnace. Samples followed a regular

heating schedule beginning at 20◦ C, heated at a rate of 50◦ C to 1050◦ C. Samples

dwelled at 1050◦ C for 5hr to guarantee thorough dissolution of materials into flux.

The furnace was then slowly cooled at 3◦ C/hr to facilitate SC crystal growth, and

were finally spun out using a centrifuge at 520◦C

HoPtBi crystals were about 1−1.5mm3 in size and formed in an approximation

of a cantellated cube (figure 3.1). [100] and [111] faces were prominent and easy to

identify except in cases of severe malformation of the sample surface. [110] faces were

exceptionally small and often would not grow at all, though there were exceptions.

These surface features were used to orient samples for shaping and polishing before

confirming orientation through XRD.
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3.2 HoPtBi Structure

Before we can understand the specific intricacies of HoPtBi it is necessary to

establish its fundamental behaviors and, to the extent possible, describe them with

conventional models. In this chapter we will provide the basic tools for characterizing

HoPtBi

In studying new solid state materials it is fundamental to understand the

structure of the system and characterize their properties. This is particular true

in RPtBi Weyl semimetals candidates where magnetism and lattice constant are

important potential controlling parameters for the band-inverted state. [13]

3.2.1 EDX

I performed EDX measurements on well-formed crystals of HoPtBi growth to

identify intended product. An example spectrum is presented in fig. 3.1. Spectrum

weight analysis using ESPIRIT package always identified Ho, Pt, and Bi compounds

in the 31 − 34% atomic contribution range, corresponding to 1:1:1 elemental com-

ponents to within the accuracy of the EDX system. After several consistent EDX

measurements I determined that the cubic crystal could be easily identified visually,

and EDX was forgone in favor of SC XRD as an identification confirmation method

for individual samples.
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b)

CAR178 batch

CAR178 batch

Figure 3.1: An e− beam image of HoPtBi showing the triangular [111] oriented
facet. Some minor growth defects (cavities) are visible, as well as leftover flux on
the surface. An associated EDX spectrum showing prominent Ho, Pt, and Bi peaks
indicating a 1:1:1 contribution of components as expected.
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3.2.2 XRD

I used powder and single crystal X-ray diffraction to confirm the cubic F 4̄3m

structure of HoPtBi. Powder diffraction was done using a Rigaku Miniflex benchtop

XRD system and was analyzed using PDXL.

Single crystal XRD was used to confirm sample alignment and establish ex-

pected lattice parameters before proceeding with measurements. Example SC data

sets are provided in 3.2. SC XRD was performed using a D8 bruker double axis

XRD using a Cu Kα source. SC sample alignment by double-axis XRD is a pre-

cision process, unlike powder XRD which uses a mosaic of microscopic particles

to span the [hkl] space for particular diffraction peaks, SC XRD samples must be

pre-aligned to the appropriate facet to within fractions of a degree. As a result SC

XRD is an excellent tool for guaranteeing proper sample alignment. In the event of

a minor misalignment control over the axes of the XRD allowed a limited search for

the appropriate [hkl] alignment, however this was never successful for misalignments

greater than 2◦ and numerous samples which could not be effectively aligned had to

be discarded.

3.3 Magnetic Order in HoPtBi

In order to understand how AMR in HoPtBi arises it is crucial to first under-

stand the magnetic state. We studied the magnetization response of HoPtBi using

the Vibrating Sample Magnetometer option on a Quantum Design Dynacool PPMS

system (VSM). Additionally the magnetic order of the material was directly probed
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Figure 3.2: An example of SC X-ray diffraction analysis. 2θ detector sweep is
presented for a crystal aligned to the [100] orientation, showing the [2l00] peaks
present for the F 4̄3m structure (odd diffraction peaks destructively interfere and
have zero counts). A rocking curve is presented for the same spectrum centered on
the [400] peak, showing a highly localized diffraction peak (FWHM≈ .01◦) indicating
good sample quality.
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by Neutron beam diffraction on the BT-7 beam line at the NIST Center for Neu-

tron Research (NCNR) in collaboration with Lekh Poudel and Jeffrey Lynn using a

triple-axis spectrometer.

3.3.1 Neutron Diffraction

Triple-axis Neutron diffraction showed a magnetic ordering temperature TN of

1.25K with a scattering wave vector of q = (0.5, 0.5, 0.5) which corresponds to (1,1,1)

oriented antiferromagnetic ordering. [35] For base temperature 100mK the peak is

robust, by applying a field along the (110) crystallographic axis the TN is completely

suppressed with a moderate HC = 2.5T . As temperature increases, especially above

1K the peak intensity and suppressing field begin to decrease due to destabilization

of the AFM state. Above 1.25K the peak is fully suppressed and the system is in

an unordered state regardless of field. Due to low magnetization anisotropy below

4T we expect similar suppression field HC for magnetic fields applied along other

arbitrary directions. This matches the paramagnetic and AFM order usually found

in Rare Earth platinum and palladium-bismuthides [36] [37] [12]

3.3.2 Susceptibility

The vast majority of our resistive measurements were conducted above TN =

1.25K in the magnetically disordered state. We conducted magnetization measure-

ments of HoPtBi in this regime to establish the nature of the magnetic response.

Given that the 4f-electron states in HoPtBi are strongly localized and there is an ex-
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CAR173Neut1

Figure 3.3: Neutron scattering for Q = (0.5, 0.5, 0.5) with field oriented along [110]
direction. a) Raw counts at fixed temperature and sweeping field. b) Contour
map of counts as a function of field and temperature showing low-temperature and
low-field AFM phase.
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ceedingly low carrier density of 1018e/cm3 we anticipate that the Curie-Weiss law of

solids with some AFM perturbations will best represent the material in the low-field

regime. [38]

M = χH (3.1)

χ =
1

3

N

V

µ2
Bp

2

kB(T −ΘC)
(3.2)

p = g[J(J + 1)]1/2 (3.3)

We measured magnetization as a function of temperature at various fields.

This measurement was split into two components, for low field measurement was

conducted on well-oriented, large (mass ≈ 50mg) samples in order to well charac-

terize the CW paramagnetism. (figure 3.4) A second round of measurements were

conducted on a much smaller sample (mass ≈ 5mg) in order to access high fields.

(figure 3.5) High field measurements were inaccessible to large-mass samples as the

magnetic force would cause the sample to detach from the quartz VSM rod, render-

ing high field inaccessible.

Low, fixed field temperature-sweep measurements are presented in (figure 3.4).

Samples follow a modified Curie-Weiss paramagnetic behavior, linear in 1/T with

AFM perturbations with Weiss constant Θ = −9K and effective bohr-magneton
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CAR178VSM1 CAR178VSM1

Figure 3.4: Example data set for Curie-Weiss like magnetization with field applied
along [100] and [111] directions by a large mass m ≈ 50mg sample. Fitting of
the Curie-Weiss coefficient above 50K finds an effective Bohr-magneton number
of p = 10.3µB and a Weiss constant of Θ = −9K corresponding to AFM-type
perturbations. Below 50K fits begin to slightly deviate as AFM perturbations begin
to dominate the magnetization.
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number p = 10.3, which is slightly below the value for free Ho3+p = 10.6. [38]

Fits to a CW paramagnetic model are presented in (figure 5.2) for temperatures

above 50K and in low-field (1000Oe) the 1/T dependence is consistent down to low

temperatures, though there is some deviation near base temperature. No transition

is observed as measurements do not extend below TN = 1.25K and there is no

additional indicator of magnetic order above TN .

We measured magnetization as a function of field at various temperatures

from 2K to 100K. (figure 3.5) Higher temperatures present a situation consistent

with the Curie Weiss paramagnetism, with linear magnetization in the kBT >>

gµBH regime. For very low temperatures the behavior begins to deviate from the

expected J=8 Curie-Weiss behavior. This behavior is visible up to 10K in figure

3.5. For measurements 37K and above the linear, low-field regime remains however

saturation regime is pushed above 14T. There is some deviation from CW in the

saturation regime. This is expected as Curie Weiss formalism cannot be made into a

closed analytical form when taking into account AFM perturbations.(figure 3.5) [34]

So long as the temperature scale kBT exceeds the magnetic energy scale gµBH

the behavior is a familiar constant susceptibility associated with isotropic param-

agnets. For higher field scales where gµBH > kBT the magnetization approaches

saturation. For Ho this equates to 1.2T field per 1K increase in temperature. Near

saturation HoPtBi begins to deviate from the conventional CW paramagnet law,

magnetization begins to tail off before reaching the CW saturation point. This is

not unexpected as the same AFM perturbations that cause the Weiss constant shift

in paramagnetism are a good candidate to curtail paramagnetic saturation.
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CAR171Hall1

Figure 3.5: a) Field sweep of magnetization for the [110] direction at various tem-
peratures. b) Curie-Weiss paramagnetism fit for sample at 2K, shifted by Θ = 9K.
Deviation between CW fit and 2K data increases as field increases and temperature
decreases which is indicative of the strong AFM perturbations near the saturated
paramagnetic state.
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Outside the high-field deviation from paramagnetic saturation, HoPtBi is a

textbook example of a paramagnet with no magnetic-field induced transitions, no

temperature induced transitions, and which follows the Curie-Weiss behavior with

AFM perturbations. It is however surprising how well HoPtBi matches CW param-

agnetism up to the field scale of kBT = gµBB, most paramagnets depart from this

relationship well before this point is reached, as this corresponds to saturation of

the microscopic moments at relatively low field. In HoPtBi the saturation point is

approached well below 14T, and even well above this point HoPtBi does not order,

which is unusual compared to associated materials however large-J RPdBi carry

some promisingly similar candidates [13]

3.3.3 Torque Magnetometry

In order to better understand the anisotropy of the magnetic state torque

magnetometry was conducted on HoPtBi in two complementary orientations. These

measurements were done by Halyna Hodovanets, to whom I am grateful for both

the work and associated discussion of results. A C4-symmetry sweep was conducted

along the {001} rotation plane and a C2 symmetry sweep was conducted along

the {011̄} plane. The C4 sweep maps out asymmetry between the [100] and [11̄0]

orientations, while the C2 sweep maps [111], [100] and [111], [110] asymmetry.

For both {001} and {110} sweeps at low applied fields there is a small Sin(2θ)

moment contribution, which is identical even once the sample has been rotated

through 45◦. The origin of this signal isn’t clear and may require further investiga-
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tion. At higher fields a strong anisotropic character arises that is centered along the

high symmetry orientations.

The {001} field sweep is higher symmetry than the {110} field sweep, however

it never crosses the expected easy axis of the expected AFM interactions, [111].

The closest projected direction is [110] which assumes the role of attractor along

the manifold of rotation. There is an anomalous Sin(2θ) which we cannot explain

given the cubic symmetries of the material. Absent this Sin(2θ) the signal at 1T

appears isotropic indicating that HoPtBi is well within the isotropic paramagnetic

state. As field is increased a C4 signal begins to develop at 6T , and overwhelms

the Sin(2θ) signal at 8T . This roughly corresponds to the saturated paramagnetic

regime as seen in magnetization. Take special note that the data is normalized by

applied field H, so the

The C4 symmetry signal indicates that the [100] direction is the hard axis and

the [110] direction is the easy axis for this rotation. Torque moves continuously

through the easy axis, which acts as an attractor, however while moving through

the hard axis a sudden ’flip’ will occur as torque reorients to match the new closest

easy axis. The result is an asymmetric, near-sawtooth waveform that matches our

expectations for the C4 symmetric system with the [110] being the projected easy

axis (figure 3.6 dashed line).

The 110 field sweep is slightly more complicated. For 0 − 55◦ and 125 −

180◦ (modulo 180◦), the angles between [100] and [111], the same hard-easy axis

asymmetry corresponding to a moment pinned in the [111] direction exists. However

for 55 − 125◦ (modulo 180◦) corresponding to rotation from [111] into the [110]
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Figure 3.6: Torque divided by field along high symmetry rotations. a) Torque/H
for the {001} rotation at various fields. A model for a moment pinned to [111] is
presented (dot dashed line). b) Torque/H for the {011̄} rotation at various fields.
A model for a moment pinned to [111] is presented (dot dashed line). the [111]
and [1̄11] are marked by a dashed line (55◦ and 125◦). Note that the model vastly
overpredicts torque between the [111] and [110] orientations.
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direction the response is much smaller, indicating that the moment is not as strongly

pinned for field rotated into this direction (figure 3.6). It isn’t immediately clear why

the [100] direction is a harder axis than the [110] direction, and this phenomenon

might be worth further study.

3.4 Conclusions

Composition, physical structure, and magnetic ordering were considered for

the HoPtBi compound. HoPtBi is found to be a F 4̄3m cubic compound as reported

when grown according to the self-flux method described in section 3.1.

The magnetic state for HoPtBi is found to be a low-temperature and low-field

conventional AFM by neutron diffraction. At higher temperatures and fields the

AFM order is suppressed and a paramagnetic regime exists for high-temperatures.

At very high fields the compound still appears paramagnetic, however significant

magnetic anisotropy begins to develop. This anisotropy isn’t associated with any

magnetic transitions or apparent ordering, suggesting it is the result of magnetic

interactions asserting themselves at the highly-polarized regime outside of conven-

tional Curie-Weiss paramagnetic description. We find that the [100] direction in

particular is a hard axis, with significant torque associated with rotation into this

direction. The [111] direction is the apparent easy axis as expected given the AFM

order at low field, however the [110] direction is a softer magnetic axis than ex-

pected, deviating from the torque expected for a moment pinned specifically to the

[111] direction.
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Chapter 4: Weyl-like Transport in HoPtBi

The Weyl Hamiltonian discussed in section 1.1.2 has numerous ramifications

for the electric transport properties for any Weyl semimetals. Unfortunately these

identifying properties occupy a measured parameter with a number of other compli-

cating transport effects. This makes experimental transport measurements a com-

plicated affair of deducing and analyzing various contributions in order to make

a reasonable statement about whether a particular signature is a result of Weyl

Fermiology.

4.1 Chiral Anomaly

The most widespread signature of a Weyl semimetal is the chiral anomaly.

The chiral anomaly occurs when a system has two Weyl points of opposite character

coalligned with both an electric and magnetic field. In reciprocal space the Weyl

point has the character of a magnetic monopole, so the presence of the combined

electric and magnetic fields will bias carriers into one pocket and out of the other.

The result is a non-symmetric contribution of charges, since this bias is coalligned

with ~E in ~k space the result is a spontaneous additional current of spin-textured

charges. The primary result of this is the creation of a negative magnetoresistance
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if ~B ‖ ~E. In the event that ~B ⊥ ~E there is no contribution from this effect, leading

to an additional longitudinal conductivity component.

In addition to the negative magnetoresistance the chiral anomaly has another

major ramification. Due to the topologically protected nature of Weyl points in

condensed matter systems there must always be a surface state that connects two

opposite-chirality Weyl nodes. In the event of chiral anomaly where one of these

nodes is biased with a higher chemical potential, this surface state must be at least

partially occupied. The result can be directly observed by means of ARPES or

Photo Emission Spectroscopy. This measurement has been accomplished for certain

materials, [11] [27] however it is beyond the scale of this dissertation to study this

in HoPtBi.

Chris Eckberg measured samples I provided for longitudinal MR ρxx of HoPtBi

in a He3 insert option in a custom dewar capable of reaching 18T . Field and current

were aligned along the [001] crystalline axis of a sample shaped into a bar with

approximate dimensions of 1000µm × 400µm × 100µm. A small region of positive

MR exists below 0.1T , however at 1.5K there is a significant region of negative MR

beginning at 0.2T and spanning up to 12T . The negative magnetoresistance effect is

largest at 2T , other features explored in subsequent sections will center around this

field at base temperature as well (sections 4.2 and 5.3). As temperature is increased

the negative magnetoresistance is both reduced in magnitude and deflected to higher

field, disappearing almost entirely around 20K. For all temperatures up to 10K high

field MR is approximately linear.

At high fields (6T and above for base temperature) a strong f = 70T Shub-
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Figure 4.1: Resistance values for a sample measured in a He3 chamber with ~B ‖
~I ‖ [001]. A significant region of negative MR is visible extending up to 12T . As
temperature increases the negative magnetoresistance signal diminishes until it is
mostly gone by 20K. Note that for the lowest temperature 0.35K fields below
2T correspond to the AFM ordered state, explaining the multiple sharp drops in
resistivity.
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nikov de Haas signal is visible. Discussion of SdH oscillations will be more deeply

considered in section (5.2)

I conducted fixed-field rotation measurements in the 14T PPMS system at

various temperatures in order to track the angular dependence of the negative mag-

netoresistance effect. We find that the negative magnetoresistance is only present in

a small angular region around (10◦) from ~B ‖ ~I. Also visible at 2K is a significant,

non-Cos(2θ) like anisotropy. The ’butterfly’ form of the anisotropy has distinct

peaks near high symmetry directions, such as the [011] direction. As temperature

is increased the negative magnetoresistance signal narrows in angular region as well

as decreasing in magnitude. At 50K the negative magnetoresistance signal is to-

tally gone, as is the apparent ’butterfly’ anisotropy that appears aligned with the

crystalline symmetries. A significant Cos(θ)-like signal remains that depends on the

angle between ~B and ~I, indicating that even at 50K the angle between ~B and ~E is

a significant parameter in this system.

4.2 Anomalous Hall Effect

As overviewed in section 1.1.4, well-formed Weyl semimetals are expected to

have an anomalous contribution to the asymmetric Hall Effect. The form of this

contribution is unclear, however it has been argued that the contribution can be a

semi-quantized form directly corresponding to the distance between Weyl points in

reciprocal space. [16] In GdPtBi application of Field results in an increase in the

Hall Angle at 2.5T , which is argued to be an expression of field-stabilized Weyl
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Figure 4.2: Rotation measurements at fixed field for multiple temperatures. At 2K a
negative MR signal is visible in a roughly 10◦ window around the [001] direction ~B ‖
~E (dotted lines are presented as a guide to the eye). Also visible is a ’butterfly shape’
character of non-Cos(2θ) like behavior that is attributed to anisotropic MR character
dependent on underlying crystalline symmetry. As temperature is increased to 10K
the negative magnetoresistance persists, but the window of available angles narrows
considerably. By 50K the negative magnetoresistance is gone, as well as the butterfly
effect leaving only a Cos(2θ)-like dependence on the angle between ~B and ~E.
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points. [12] As temperature is increased this AHE effect decreases in magnitude

until it is effectively gone at roughly 60K.

We found a similar AHE effect in HoPtBi, however we found the AHE con-

tribution was significantly orientation and temperature dependent in a way not

reported for GdPtBi. We break down the results as a function of temperature (at

two fixed orientations) and then by a continuous rotation in the following sections.

4.2.1 AHE Temperature Dependence

4.2.1.1 [100] AHE

I collected ρxx and ρyx data in the four-wire longitudinal and Hall configu-

rations with ~E applied along the [001] direction. Measurements were done as a

function of field up to 7.5T and at various fixed temperatures in the 3− 50K range.

These measurements preceded a similar, but more expansive measurement with

field oriented along the [111] magnetization easy axis. Both longitudinal and Hall

resistivity are presented in figs. 4.3 and 4.7.

Before calculating Hall angle it is instructive to look at the individual resistiv-

ities and see how increasing field affects the phenomenology in this orientation up

to moderate fields. Longitudinal resistance is presented with vertical adjustment in

fig. 4.3. At 2K and fields below 1.2T a quadratic dependence in field is apparent.

At approximately 2T there is a downturn in resistance (marked by an arrow, figure

4.3) that separates the low-field quadratic region from a region of linear MR behav-

ior up to high field. As temperature is increased the quadratic low field behavior
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is extended to higher field and the downturn region that separates linear high field

region is smeared out and increased in field.

Hall resistivity data is presented in 4.3 as well as carrier concentration cal-

culated from ρyx data in figure 4.5. At 3K ρyx begins linear but has a significant

negative deflection at 2T . At higher fields ρyx increases again such that a linear

extrapolation at high field passes through the origin, suggesting that the negative

deflection is a localized decrease in Hall resistivity. Carrier concentration data re-

flects this deflection as a sharp increase in hole carriers of ≈ 40% centered on 2T . As

temperature was increased the deflection in ρyx as well as the associated increase in

hole concentration get pushed to higher fields. For 50K the increase in CC seems to

be pushed past 7.5T used in this measurement, however the tail end of the increase

can be seen in high fields.

Using the longitudinal and Hall resistivity I calculated a composite measure-

ment of Hall angle according to section 2.5.2.3 and results are presented in fig. 4.5.

Data collected at 50K was scaled and subtracted from other temperatures to pro-

duce a measurement of the anomalous Hall angle value, also presented. The results

appear qualitatively similar to measurements conducted on GdPtBi, [12] however

there are some crucial differences. First of all the peak of the AHA value in HoPtBi

is strongly affected by temperature, with increasing temperature causing an increase

in peak AHA field value and a moderate decrease in amplitude. In GdPtBi an in-

crease in temperature causes the AHA to diminish in magnitude, however it does

not significantly change the peak field value. Additionally the AHA in these mea-

surements is negative instead of the positive AHA in GdPtBi. [12] As we will see in
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Figure 4.3: Resistivity values as-measured for the ~B ‖ [100] configuration. Lon-
gitudinal resistivity is presented as the resistivity tensor value ρxx and the Hall
resistivity is presented as ρyx. Major features for each measurement are marked by
colored arrows. Longitudinal resistance appears to have an additional minor feature
at higher field, but this does not clearly map to features in Hall Angle.
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Figure 4.4: Conductivity values as-measured for the ~B ‖ [100] configuration. Lon-
gitudinal conductivity is presented as the conductivity tensor value σxx and the
transverse conductivity is presented as σxy.
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a following section this negative AHA value is unique to this specific magnetic field

orientation in HoPtBi, a feature which will help motivate measurement of resistive

anisotropy covered in ch. 5 of this dissertation.

4.2.1.2 [111] AHE

ρxx and ρyx measurements were also conducted for magnetic field along [111]

and current along [11̄0]. Measurements were conducted in a similar manner to the

[100] oriented measurement, but were conducted on a greater temperature range

(2− 300K) since [111] is the easy magnetic axis of the material.

Longitudinal and Hall resistivity is presented in fig. 4.3. The low-field quadratic

region found in the [100] orientation extends to the [111] orientation as well. At base

temperature and 2T longitudinal MR has a small negative deflection instead of the

positive kink visible in the [100] oriented data (marked by a colored arrow). As

temperature increases this region is deflected upwards and diffused similar to the

positive kink in the previous section. Correspondingly ρyx has a small region of

non-linearity in the 2T region (marked by a black bar).

Hall angle was calculated according to section 2.5.2.3. A deviation in Hall

angle is readily apparent in data sets up to 60K. The 60K Hall angle data was

used as the representative set for the normal state, and AHA results were calculated

by subtracting a 60K data set scaled according to the 7.5T value from each corre-

sponding temperature. Hall angle in this orientation is large and positive, matching

the reported behavior for GdPtBi. [12] Once again as temperature is increased from
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Figure 4.5: Hall Angle evaluated for the [100] orientation. Data was collected across
multiple temperatures in the 3− 50K range and up to 7.5T in field sweep. Anoma-
lous Hall Angle is calculated by subtracting 50K HA data from lower temperatures,
creating a profile of the AHA deflection. AHA magnitude is not significantly de-
creased by temperature up to 10K, however the peak AHA value is deflected to
higher fields as temperature is increased.
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Figure 4.6: Carrier concentration evaluated for fields applied along ~B ‖ [100]. Car-
riers are hole-like and in the roughly 5E18 regime. The deflection in ρyx translates
to a roughly 40% increase in c.c. at 3K, a feature which deflects upwards in field as
temperature increases, similar to features in ρxx.
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Figure 4.7: Resistivity values as-measured for the ~B ‖ [111] configuration. Longitu-
dinal resistivity is presented as the resistivity tensor value ρxx and the Hall resistivity
is presented as ρyx. Major features in ρxx are presented as colored arrows and in ρyx
by a black bar.
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Figure 4.8: Conductivity values as-measured for the ~B ‖ [111] configuration. Lon-
gitudinal conductivity is presented as the conductivity tensor value σxx and the
transverse conductivity is presented as σxy.
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Figure 4.9: Hall Angle evaluated for the [111] orientation. Data was collected across
multiple temperatures in the 1.8−60K range and up to 7.5T in field sweep. Anoma-
lous Hall Angle is calculated by subtracting scaled 60K HA data from lower tem-
peratures, creating a profile of the AHA deflection.
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1.8− 10K the peak of the AHA effect is pushed upwards in field, however the mag-

nitude of the AHA effect only begins to diminish at higher temperatures (20K).

This is similar to the results found in the previous section, such that Hall Angle

field onset is dependent on temperature.

4.2.2 AHE Orientation Dependence

Given the discrepancy between [100] and [111] oriented AHE signs we ex-

panded the measurement of Hall Angle to arbitrary angles through measurement

of ρxx and ρyx as field is rotated in the {001} plane. This measurement allowed a

continuous mapping of Hall Angle through the high symmetry directions of [100]

and [110]. Take note: ~B is necessarily rotated into the plane of the sample leads

for this measurement, which is not ideal for this type of measurement. ρyx was

asymmetrized in order to remove any symmetric contribution, however as ~B enters

the plane of the sample the asymmetric component we wish to observe will diminish

and be overwhelmed by residual symmetric contributions. For this reason only data

points through 70◦ are presented for ρyx and resulting calculations.

ρxx data at 2K is presented in figure 4.10. The low-field quadratic region is

readily apparent for all orientations indicating the isotropic regime. Above 2T MR

for different orientations begins to display orientation dependence. Above ≈ 3T the

orientation dependence flips in character, a detail which will be more closely studied

in ch 5 of this dissertation.

ρyx data is more complicated in this picture. We are interested in the Hall
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Figure 4.10: Longitudinal and Hall resistivity components as a function of field
angle. 0◦ corresponds to ~B ‖ [100], 90◦ corresponds to ~B ‖ [010], and 45◦ corresponds

to the intermediate ~B ‖ [110]. Anisotropic MR is clearly visible in ρxx. High angles
are omitted from the adjusted ρyx calculation due to error being significant compared
to experimental signal. 81



response of the system as field is rotated relative to the crystalline axes of the

system, however it is practically speaking impossible to reorient the leads between

each measurement such that magnetic field is perpendicular to the contacts. For

this reason ρyx will follow a Cos(θ) dependence. To counteract this we calculated

ρeffyx = ρyx/Cos(θ). For ~B ‖ [100] we find the same negative deflection of ρeffyx we

see in the [100] oriented measurement from section 4.1.1. As field is rotated through

45◦ ρeffyx gets deflected upwards to reflect behavior similar to the [111] oriented

measurement. Higher orientations corresponding to rotation into the [010] direction

are omitted as noise dominates the ρeffyx value.

Hall angle data is presented in figure 4.11. Once again we can see a charac-

teristic change between the [100] and [110] orientations, confirming that the [100]

anomalous Hall angle sign difference from section 4.2.1 and furthermore that the

change in character is distinct to that high symmetry direction. The AHA sign flips

around 12◦ back to positive through the [110] direction. The AHA sign flip cannot

be confirmed at higher angles due to the limitations of rotation into the plane of the

Hall measurement.

4.3 Conclusions

In this chapter we discussed a few signatures of a potential Weyl state. We

discussed negative longitudinal magnetoresistance, which is a key signature of the

chiral anomaly. We also discussed the anomalous Hall effect which is often tied

to intrinsic Berry curvature in compounds. The phenomenological dependence on
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Figure 4.11: Hall Angle as a function of applied field angle. High-angle values
(corresponding to ~B ‖ [010]) are omitted due to high error sources in calculating
ρeffyx .
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applied field orientation and temperature seem to be strong indicators that complex

phenomenon might be occuring in HoPtBi’s band structure.

Between the negative magnetoresistance signature of chiral anomaly and the

anomalous Hall effect, HoPtBi appears to be a compound which begins with very

typical semimetallic properties, but which has significant band distortion in the

intermediate 2 − 8T field range. Furthermore there are several anisotropic magne-

toresistance behaviors that became apparent during these measurements. The next

chapter will expand on these AMR characteristics, and we will attempt to tie all of

these behaviors into a single coherent explanation.
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Chapter 5: Anisotropic Magnetoresistance in HoPtBi

5.1 Overview

Magnetoresistance is a complicated phenomenon with numerous causes and

phenomenological results. In the simplest case resistance is dependent on the applied

magnetic field as a result of deflections of charge carriers in a magnetic field. Magne-

toresistance can be further complicated by magnetic ordering and domains, in which

carriers passing from one magnetic domain into another deal with increased scatter-

ing at the boundary between. The study of anisotropic magnetoresistance (AMR)

officially began in 1857 with the study of longitudinal and transverse magnetore-

sistance in purified Iron and Nickel by Professor William Thomson, later known as

Lord Kelvin. [39] Nearly a century later this knowledge would be used to create mag-

netic reading elements for magnetophons, a precursor to more modern read/write

elements. [40]

Magnetoresistance has historically been a crucial technology in miniaturization

of computerized memory components. Prior to 1990 the read-write head for spinning

disk hard drives was a single unit inductive coil, which had issues spatially resolving

magnetic bits encoded in the disk media. The discovery of GMR allowed the creation

of extremely sensitive and compact magnetic readers which miniaturized one of the
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largest components of computers, paving the way for the realization of the modern

home computer. The 2007 Nobel prize in Physics was granted to Albert Fert and

Peter Grünberg jointly for their discovery of this mechanism. [41] [42] [43]

Beyond its historical importance in the modern technological age, anisotropic

magnetoresistance is also vital for specialized highly accurate magnetic field detec-

tors everywhere from scientific astronomical and geophysical applications as well

as microscopic detectors for diagnoses of electrical components and beyond. The

creation of AMR components alone constitutes a significant industry, therefore the

discovery of an additional mechanism for AMR is worth investigating. [44] In this

chapter we discuss AMR in a paramagnetic compound, which previous AMR mech-

anisms cannot explain. This property is likely driven purely by the electronic state,

for which interaction with the magnetic field is mediated by exchange interaction

with the RE f-electrons well removed from the Fermi surface.

In this chapter we will discuss the magnetic and Fermi surface properties

of HoPtBi and how these relate to a novel anisotropic magnetoresistance (AMR)

signal we see in this material. In section 5.2 we will discuss quantum oscillation

measurements that probe the shape of the Fermi surface of HoPtBi under field.

In section 5.3 we will discuss the AMR signal found in HoPtBi and draw parallels

between the magnetic state and crucial aspects of the AMR signal. Section 5.4 is

reserved for discussion and conclusions.
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5.2 Shubnikov de-Haas Oscillations

Shubnikov de-Haas oscillations are a key tool to probe the Fermi surface of

metals and semimetals. Oscillation frequency can be used to map the maximal

orbit perpendicular to a given field orientation. One of the assumptions in quan-

tum oscillation frequency analysis is that the Fermi surface is static under applied

field and changing field orientation. [45] For most materials this is a valid premise,

however in HoPtBi and associated high-J half-Heuslers, DFT calculations as well

as investigation of other Fermi surface sensitive observables suggest that this may

not be a safe assumption. In particular previous work on GdPtBi suggests that the

number and location of Weyl nodes can be tuned by application and orientation

of field, suggesting a strong field dependence for the Fermi surfaces of these ma-

terials. [12] Nevertheless Shubnikov de-Haas oscillations can still be used to glean

insight, provided we keep in mind that the surface may be quite sensitive to field.

Samples of well-aligned HoPtBi were sent to the National High Magnetic Field

Lab in Tallahassee, Florida. Samples were oriented such that current was applied

along the [100] direction and field could be rotated from perpendicular to current

and along the [010] direction (0◦) to along the [100] direction, parallel to current

(90◦). This will be known as the longitudinal configuration. Take note that the 45◦

orientation corresponds to the [110] high symmetry direction.

Samples were rotated to fixed orientation between 0◦ − 90◦ and cooled below

700mK. The magnet was quickly charged to 35T , then relaxed slowly to 0T con-

stituting a down-field sweep measurement. Measurements were taken in alternating
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current mode with a four wire longitudinal setup in order to extract resistance data.

Frequencies were extracted from resistance data using a combination of Fast Fourier

Transform (FFT) and a phenomenological fit function on the second derivative of

the raw data. Analysis of low-frequency quantum oscillation data is an involved

process that is better reserved for a deep discussion, details and justification for the

methods used can be found in Appendix A.

Samples are rotated along the high symmetry [001] axis, with current along

the [010] direction and therefore in the plane of rotation. The non-oscillating com-

ponents of the high-field ρxx values in this measurement match the phenomenology

observed in the 18T measurements, but extended to higher field. ρxx is linear or sub-

linear non-saturating for all observed orientations at sufficiently high fields (> 20T ).

Take note that resistance decreases as field is rotated into the direction of current.

The pronounced resistive anisotropy resulting from crystalline orientation is super-

imposed over this decrease in ρxx associated with rotation into the longitudinal

orientation, as a result the greatest MR direction is along 26◦ at least up to 35T .

(figure 5.1)

Large oscillations become apparent in all orientations above 15T, taking the

second derivative of the data allows oscillations to be isolated down to 10T, giving

a 1/B range of .07T−1. As discussed in Appendix A the small 1/B window com-

bined with the roughly exponential growth in oscillatory signal presents a problem

for conventional FFT analysis. For this reason in addition to conventional FFT

approach to analyzing frequency we used a phenomenological fit approach, the goal

of which was to isolate the frequency of the signal from it’s envelope function while
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Figure 5.1: Raw resistance data collected at NHMFL in Tallahasee, FL. a) Data col-
lected at chosen orientations representing the breadth of measurements taken from
0◦, [100] to 90◦, [010]. b) Select data sets closest to 45◦, [110] showing the evolution
of the quantum oscillation behavior nearest to the sensitive [110] orientation. The
dotted black arrow shows the change in phase apparent as the sample is rotated a
just over 15◦ through the [110] orientation.
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sidestepping the numerous sources of error introduced by FFT on low frequency

signals. (Appendix A)

Frequency values for single pocket phenomenological fits as well as FFT and

the associated full width half-maximum (FWHM) are presented in figure 5.3. A

frequency of roughly 70T is present for orientations within roughly ±30◦ of the

[100] direction. Close to the [110] orientation the frequency sharply drops to 35T,

indicating a much smaller Fermi surface cross-section in the [110] plane.
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If the Fermi surface is a static construct as high field is rotated relative to the

sample then this presents a difficult picture where the surface is heavily distorted,

such that the maximal circumference of the [110] measurement is half that of the

[100] measurement. Because the Γ pocket of HoPtBi is small, maintains cubic

symmetry, and is located on the Brillouin zone center we can reasonably guess that

a minimally distorted pocket would be convex, and cubic/octohedrally symmetric.

Were this the case we expect a frequency ratio f[100]/f[110] ≈ 1.2 . A frequency

ratio of 2.0 between the [100] and [110] orientations, as well as the non-Cos(Θ) like

change in frequency, is inconsistent with these pictures.(fig. 5.4) This suggests that

a static Fermi surface would have to have significant regions of concavity, which is

unexpected for a small pocket near a high symmetry point. Alternatively if the Fermi

surface is significantly distorted by field then we cannot reasonably expect a static

image of the Fermi surface to account for field along different crystalline orientations.

In this case the oscillations depict a Fermi surface that changes significantly upon

rotation of field, potentially contracting significantly when field is oriented close to

the [110] direction.

5.3 Transverse Magnetoresistance

The high-field (> 10T ) magnetoresistance of HoPtBi exhibits quantum oscil-

lations as described in section 5.2. However, despite the large amplitude of these

oscillations we see no corresponding oscillation in magnetization (Ch. 3.3). This

is not an unexpected turn of events, the origin for the resistance is by default a
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Figure 5.4: Non-concave solids obeying cubic symmetry which would be good initial
candidates for a small cubic hole pocket. The cube and octohedron represent dual
extremes of the same symmetry, with the spherical pocket being the isotropic case.
The cube has the greatest difference in Fermi surface crossection with a 1+

√
2

2
≈ 1.2

ratio between the [100] and [110] projections, however this is much less than the
roughly 2.0 ratio seen in quantum oscillation fitting.
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property of the conduction electrons near the Fermi surface, while the origin of

magnetism in this system depends on the localized f-electron states which are well

removed from the Fermi surface. Therefore behavior in magnetism and conductivity

are not necessarily linked. Nonetheless outside the specific case of quantum oscil-

lations, in which conduction states must satisfy an additional Landau quantization

rule, it is usually expected that anomalies or transitions in magnetoresistance would

correspond to magnetic ordering of some type. In this section we report on a mag-

netoresistance signal which depends on angle of the applied magnetic field relative

to the crystalline axes, with no associated transitions or ordering in magnetization.

Samples were measured in a Dynacool PPMS system. In order to control the

relative orientation of the applied magnetic field samples were mounted on a uniaxial

rotator. The magnetic field orientation is fixed within the sample chamber, however

we can rotate the sample relative to this applied field. By viewing the system in the

rest frame of the sample, the applied magnetic field is rotated around an arbitrary

chosen axis, while the crystalline symmetries, and the applied current (which is

introduced by the static electrical contacts) remain fixed. In cases relevant to this

material we will discuss the ’transverse’ case (in which ~B ⊥ ~E for all chosen ~B) and

the longitudinal case (in which ~B ‖ ~E at 90◦) at 0◦ ~B is oriented perpendicular to

the face of the sample bar, and in all cases ~E is along the sample bar.

We measured HoPtBi with field applied transverse to current.(figure 5.5) Cur-

rent is applied along the [001] direction and field is rotated in the (001) plane, the

transverse case. The (001) plane is C4 symmetric, passing through the [100], and

[110] high symmetry points. Different fields were applied and then the sample was
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Figure 5.5: Resistance of HoPtBi under transverse resistance at base temperature.
Sample values are symmetrized through 180◦ to remove the Hall component. The
isotropy of the low-field signal gives way to C4 symmetry under increasing field,
which matches the projected symmetry of the [100] axis in a cubic system. Under
higher field the nature of the MR orientation inverts at least once, such that the
MR is enhanced along the [110] orientations, suggesting at least two fields at which
the underlying cause for the MR changes character

rotated through 360◦. The signal is symmetrized through 180◦ in order to eliminate

any asymmetric component in field. Below 0.5T the sample is isotropic in MR for

all measured temperatures. At low temperatures (2K) 1T applied field is enough to

begin seeing four-fold symmetric MR signal, with a larger MR signal along the [100]

directions of the crystal. At 2K an applied field of 4T causes this four-fold symmet-

ric MR to flip character, and the greater MR direction becomes aligned along the

[110] orientation of the crystal.

These angular cuts suggest an underlying mechanism that is sensitive to the

crystalline symmetry of the sample. Besides the magnitude, which is of the order

of 50-200%, the orientation dependence of this effect is characteristically dissimilar

to the Lorentz-effect that contributes to MR in most metals. [24] [46] Other sources
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Figure 5.6: Symmetrized field sweep of resistivity as orientation is rotated from 0◦

through 90◦. Regions of different AMR character are clearly visible. The solid arrow
indicating AMR2 region where resistivity peaks along 0◦, 90◦ and the dash arrow
indicating AMR1 region, where resistance peaks along 45◦.

of anisotropy that are dependent on just the relative orientation between magnetic

field and electric field (such as the Planar Hall Effect, covered in section 1.1.5) are

generally expected to follow two-fold symmetry at second order, whereas this effect

is fourfold symmetric which matches the symmetry of the F43m projected along its

cubic [100] face.

The two regions of different AMR character are enumerated as AMR1, the

high-field and low-T region with the largest anisotropy along [110], and AMR2 the

lower-field higher temperature with anisotropy along [100]. Below approximately

0.5T there is a small region of quadratic magnetoresistive isotropy. In the high-field
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AMR1 regime resistance is non-saturating in all directions, a character which carries

over to high field measurements as visible in section 5.2. For all orientations high

field appears almost linear, and unsaturating.

5.3.1 AMR Temperature Dependence

We extended our study of this anisotropy to higher temperatures in order to

understand how this behavior evolves as the thermal energy scale increases. As the

thermal distribution of states broadens we expect states further away from the Fermi

Energy to contribute more to the behavior of the system. A naive accounting of this

might expect that if the states furthest from the Fermi Energy do not contribute

to anisotropy then the AMR will decrease in magnitude in temperature, but the

field-dependent onset of anisotropy will not change with increased temperature. For

reasons we will shortly cover this is not the behavior we observe.

We measured the AMR signal of HoPtBi under rotation at various fields

(B=0.5-14T) and temperatures (T=2K,10K,50K). This measurement allowed us to

establish the broader relationship between field application and temperature. Due

to the large phase space that encompasses trying to measure across the three vari-

ables of field orientation, field magnitude and temperature only a few temperatures

could be measured.(figure 5.7) Followup measurements more closely establish the

relationship between field and temperature, but by avoiding measurements along all

but two high symmetry directions. (figure 5.8)

Below 0.5T the sample is isotropic in MR for all measured temperatures, de-
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spite a fairly large initial applied field. At low temperatures (10K) 1T applied field

is enough to begin seeing four-fold symmetric MR signal, with a larger MR signal

along the [100] directions of the crystal. At 2K an applied field of 4T causes this

four-fold symmetric MR to flip character, and the greater MR direction becomes

aligned along the [110] orientation of the crystal. Note that between 2K and 10K

the field required to flip from [100] dominant to [110] dominant MR rises above 4T

and appears closer to 7T . Higher temperatures appear to push this transition to

higher fields. At 50K even 14T , the maximum applied field for the in-house Dyna-

cool system, is insufficient to push the system into the AMR1 state and the [100]

remains the predominant AMR direction for any sufficiently large applied field.

Next we measured the temperature-dependent MR of HoPtBi with ~E ‖ [001]

and ~B ‖ [100], [110] ⊥ ~E at various fields. the resistivity was measured in positive

and negative fields and symmetrized in order to remove the contribution from the

asymmetric Hall Effect. We found a strong MR difference for magnetic field ap-

plied along these two independent orientations that matches the overall character

of anisotropy found in angular measurements. (figure 5.7, figure 5.8) As field is

increased the overall MR of the sample increases, additionally the anisotropy be-

tween field applied along the [100] and the [110] directions greatly increases. The

anisotropic difference between [100] and [110] directions also flips in sign as temper-

ature increases, a result that broadly captures the difference that we see in the 4T

data set in figure 5.7.

Closer inspection of figure 5.7 reveals that for sufficiently large fields (>2T )

there are multiple regions where the largest AMR orientation will change. We
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Figure 5.7: Transverse magnetoresistance measurements under rotation at higher
temperatures (10K, 50K). AMR1 with AMR enhanced along [110] is pushed to
higher fields as temperatures increase, and is inaccessible even at 14T in the 50K
data set. The intermediate field between AMR1 and AMR2 is visible at 4T in the
2K data set, and is pushed up to 7T in 10K.
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Figure 5.8: a) b) Several example datasets for HoPtBi Magnetoresistance with field
oriented along one of two principal transverse axes corresponding to [100] or [110]
directions. Data was symmetrized in positive and negative field to remove any anti-
symmetric Hall contribution. A clear inversion in character is visible corresponding
to a change in larger AMR contribution direction. Dashed line corresponds to
chosen temperatures for follow up rotation measurements. c) d) Rotation measure-
ments at fixed field and temperatures associated with maximum inversion of AMR
character. Data sets are symmetrized through 180◦ in order to negate asymmetric
contributions. a clear inversion in character is visible confirming temperature sweep
measurements.
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call these temperatures TAMR1 and TAMR2 with AMR1 representing the anisotropy

present at base temperature (i.e. [110] predominant AMR). Higher fields stabilize

both the AMR1 and AMR2 phases, however the AMR1 phase could only be pushed

up to 22K at 14T. AMR2 can be stabilized to much higher temperatures, up to 76K

confirmed at 9T. Careful inspection of both figure 5.8 can see a potential AMR3 state

at low field and high temperature, in which the [110] AMR is once again predominant

at higher temperatures, though at a much smaller magnitude. An inspection of

TAMR3 was not attempted since the crossover to isotropy at room temperature occurs

over a broad range, and the region of onset is subject to significant error.

We compared TAMR1 and TAMR2 with magnetization data (figure 5.9). Both

temperatures track closely with fixed values of M(B, T ). This suggests that TAMR1

and TAMR2 correlate with fixed values for the internal field of the sample. This sup-

ports the picture that applied magnetic field does not directly influence the AMR of

the samples, instead the internal moments are directly related to the AMR behavior,

and the applied field is responsible for coercion of the paramagnetic moments.

This creates a complicated picture in which we have successive regimes with

greater AMR amplitude that are stabilized by higher fields, but which are destabi-

lized by increasing temperature. (figure 5.9) As briefly mentioned at the beginning

of this section, if the band structure was static we might naively expect that the

broadening of states near the Fermi level could increase or decrease the relative

contribution of various AMR states, however it does not directly explain why in-

creasing field can drive one contribution to overtake another. Furthermore there

is no corresponding magnetically ordered phase, or clear resistive transition that
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Figure 5.9: Map of transitions from [100] predominant AMR to [110] predominant
AMR. Data was collected by temperature sweep in fixed-field and fixed-orientation
samples, with samples symmetrized through positive and negative field. Contour
map corresponds to Magnetization (ie internal field) collected by VSM measurement
along the [110] orientation. Signature AMR transitions correspond roughly to fixed
internal field.
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accompanies the swap between the various AMR phases and the isotropic state at

room temperature.

According to DFT calculations for other heavy-element Heuslers [12] the mag-

netic ordering of the f-electrons in the REPtBi material are the source of an effective

interaction term with the band structure near the Fermi surface. Extending this

model to HoPtBi as we increase temperature the paramagnetic moments become

increasingly disordered, leading to a smaller internal field and a smaller interac-

tion term. Meanwhile, increasing field will increase the paramagnetically derived

internal field, stabilizing this effect. Data for the magnetic moment derived from

VSM measurements has been integrated into figure 5.9 as a contour plot to indicate

the magnetization of the Ho atoms within the sample, which directly corresponds

to the internal moment of the system. It is apparent that the AMR1 and AMR2

correspond to fixed internal moments, suggesting a direct relationship between the

onset of these AMR components and the moment alignment or internal field of the

Ho atoms. As covered in chapter 1 anisotropic scattering does not appear to be a

sufficient cause for anisotropic magnetoresistance of this magnitude (nor would it

easily explain the change in AMR direction). Therefore it seems that the internal

field’s relationship with the Fermi surface is the likely cause for the AMR found in

this system.
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5.4 Conclusions

Since HoPtBi is a paramagnetic compound we cannot expect sources of mag-

netoresistance that depend on magnetic order, which rules out GMR (dependent

on FM layered materials) [42] [43] [47] [48], CMR (ferrimagnetic half-metals) [49] ,

TMR (ferromagnetic-insulator layered structures) [50] and other ordering-dependent

phenomena. Without these we do not have an explanation for the anisotropic mag-

netoresistance effects in this material, however given the other exceptional charac-

teristics of this material we may be able to extrapolate a likely cause.

As discussed in sections 5.1, calculations indicate that the magnetic behavior

of RPtBi strongly influences the Fermi surface of the material. When the magnetic

moments are completely disordered only the F43m symmetry remains. Without

magnetic order there is no time reversal symmetry breaking to induce TRS Weyl

points, however through application of moderates amount of field we expect Weyl

points can be induced. In order to form Weyl pairs from a small Fermi surface

significant Fermi surface distortion must occur, and in particular since the formation

of these Weyl points is dependent on the orientation of the magnetic field relative to

the crystal symmetry the distortion for a 4T field applied along (100) is significantly

different than the distortion for 4T applied along (111) or (110).

If this understanding is correct then there is a new explanation for this AMR

behavior. The Fermi surface is strongly dependent on the exchange interaction

with the f-electrons, and the orientation of these f-electrons is quite malleable in

the HoPtBi system with near-saturation readily achievable below 10T. Therefore
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we expect that the behavior we describe here is a result of strong Fermi-surface

distortions. In other words the magnetoresistance is derived from a purely electronic

effect attributable to a field-distorted Fermi surface. This electronic effect, however,

is the result of magnetic alignment in the paramagnetic material. The Ho f-electrons

readily orient themselves to align with the applied magnetic field, which causes

applied-field dependent distortions in the Fermi surface. This is quite distinct from

many sources of MR that we often associate with ordered magnetic compounds, in

which scattering is the predominant cause for large AMR contributions.
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Chapter 6: Discussion and Conclusions

6.1 Conclusions

This dissertation studied the half-Heusler magnetic semiconductor HoPtBi.

Structural and EDX measurements were undertaken to confirm structure and com-

position from samples grown in Bi-flux method. Neutron diffraction and susceptibil-

ity measurements found a conventionally ordered AFM compound below 1.25K and

2.5T , and a Curie-Weiss paramagnet with antiferromagnetic correlations outside the

ordered state. With moderate field the paramagnetism saturates and we find sig-

nificant magnetic anisotropy in torque measurements, however with no associated

indicators of magnetic ordering or hysteresis this anisotropy is attributed to effects

from proximity to paramagnetic saturation.

We studied magnetoresistance in HoPtBi and found a number of rich behav-

iors. We investigated signatures of the chiral anomaly which are a key characteristic

of Weyl semimetals. We also found a localized anomalous Hall angle deflection

in transverse MR measurements, which is an intrinsic effect of compounds with

Weyl crossings. In addition to characteristics indicative of Weyl behavior we found

a novel anisotropic magnetoresistance response in moderate and high fields. This

AMR response is unanticipated in unordered magnetic materials, and corresponds
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rather readily to fixed internal moments of the system. Collectively HoPtBi is an

exciting compound both in the investigation of magnetic Weyl semimetals and this

potentially novel AMR state.

6.2 Further Work

This research has been a focused analysis of a single half-Heusler compound.

As a result this research has engendered numerous open-ended questions about the

source of the behaviors observed in this compound, as well as what other compounds

might harbor similar behaviors

6.2.1 AMR in Similar Compounds

One of the striking anomalies in this compound is the presence of a significant

magnetoresistive anisotropy without clear indicators of order. Similar compounds

should be evaluated in order to discern whether this behavior is unique to HoPtBi,

whether it extends to other magnetic half-Heuslers, magnetic Weyl semimetals or

beyond.

GdPtBi is the first compound that should be evaluated for transverse AMR

components. Numerous studies have already documented the chiral anomaly as

well as the planar hall effect in GdPtBi, however we are not aware of any studies

which show AMR that is independent of relative orientation between ~B and ~E. It

is worth noting that in GdPtBi that the Curie-Weiss paramagnetic regime extends

up to significant fields, with saturation near 35T . Since we find a significant AMR
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component corresponds to near-polarization of the Ho 4f magnetic moments in

HoPtBi, it is possible that GdPtBi would only produce a transverse AMR component

at fields that are accessible only in specialized high-field equipped laboratories. It

is also possible, given the model proposed for GdPtBi in which the Fermi surface

distortion is mediated by internal moments, that a potential AMR state in GdPtBi

would also have to reach a fixed internal field similar to HoPtBi. Since Gd+3 is a

J = 7/2 state it is possible that GdPtBi would also have to be closer to its saturated

PM state before inducing AMR.

The model for AMR proposed in HoPtBi depends on the idea that as a Weyl

semimetal it must be close to a Liftshitz transition. This proximity to a Lifshitz

transition, as well as the tuning of the Fermi surface through internal magnetic

alignment, couple to produce a system in which the Fermi surface can be signifi-

cantly distorted through application of field. AMR comes into the picture when the

distortion has a different character for fields applied along different directions. This

is already the proposed model for GdPtBi [12] in which application of field along dif-

ferent directions corresponds to the stabilization of different symmetry Weyl points.

If this is the case then AMR might exist in any Weyl system where magnetism

can significantly tune the FS. For this reason magnetic Weyl semimetals should be

evaluated for AMR in high fields, to see if this behavior extends beyond just the

half-Heusler system.
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6.2.2 Fermi Surface Analysis

A significant section of this dissertation was devoted to the analysis of Shub-

nikov de Haas oscillations in HoPtBi. While we began this research expecting a

fairly isotropic hole pocket, we found that the Fermi surface is either heavily dis-

torted, giving rise to a significant anisotropy, or that the application of field in

different orientations can have a large effect on the shape and size of the Fermi

surface. While the Fermi surface can be indirectly probed through SdH analysis the

functional dependence of the magnetoresistive response to field means that we can-

not meaningfully distinguish between the case of a static, heavily anisotropic pocket

and a pocket that is nearly isotropic in zero field but which is heavily distorted

under field application.

ARPES measurements have already been conducted on GdPtBi. An ARPES

measurement of HoPtBi in zero-field should be sufficient to determine if there is a

large anisotropy in the Γ pocket. If insufficient anisotropy is detected then additional

high-field confirmations of the Fermi surface will be required.
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Chapter A: Fitting of low-frequency Quantum Oscillations

Quantum oscillations are a widespread tool for determining the size and shape

of the Fermi surface [33]. In the 3D case and to first order oscillations follow the

composite equation

mcB
1/2

(S ′′)
1/2
extr

RTRDRSCos(2π(
F

B
− 1

2
) + γ) (A.1)

with the damping prefactors RT , RS, and RD. These prefactors take the following

form

RD = exp(−2π2kBTD/h̄ωc) (A.2)

RS = Cos(
π

2
gmc/m0) (A.3)

RT =
2π2kBT/h̄ωc

Sinh(2π2kBT/h̄ωc)
(A.4)
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with ωc = qB/mcc. Note that all of these prefactors are monotonically increasing

in field, which will be a crucial justification for our choice of envelope function.

Shubnikov de Haas calculations are often reserved for metals which have large

Fermi surfaces and high carrier counts. As a result most SdH analysis is focused

on materials with accessible fields and with high oscillation frequencies. HoPtBi

presents a difficult situation with an extremely small Fermi surface and low oscilla-

tion frequencies, with oscillations in the 35-70T range, we need to be careful about

employing the conventional techniques involved in analyzing Quantum Oscillation

data.

For high-oscillation frequency data it is often the standard to perform an FFT

on either the initial data, or a derivative thereof, in order to extract the oscillation

frequency component which corresponds to the Fermi pocket extrema area. This is

successful in most cases because high oscillation frequency and a wide FFT window

relative to the frequency makes extraction of the frequency component reliable.

However this is not, in general, a foolproof method for extracting the frequency

component of Quantum Oscillation data.

In order to understand the limitations of FFT it is necessary to understand

how exactly an FFT is calculated. The FFT is essentially a change in basis for a

periodic function to a series of harmonics the exact details of which can be covered in

a number of mathematic and computational textbooks. In the event that the signal

repeats exactly in a given window, all frequencies will be a multiple of that window.

In practice signals never match the measured window exactly. There are numerous

methods for minimizing errors introduced by this mismatch, including the use of
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windowing functions which minimize distortions in the signal from mismatches at

the edge of a sampled data set, however these tools are intended to error-correct

signals that are periodic, which our signal is not.

These techniques are intended to minimize small effects in the edge cases of

well behaved data sets, i.e. finite, repeating signals with a well defined frequency

that is not drastically mismatched to the window being analyzed. In the case of

SdH analysis several of these constraints are fundamentally not well satisfied, and

FFT is useful only in so much as these issues are avoided.

For example consider equation A.1. We can decompose this into an oscillatory

component:

Cos(2π(
F

B
− 1

2
)γ) (A.5)

and a non-repeating envelope function:

mcB
1/2

(S ′′)(1/2)extr
RTRDRS (A.6)

The oscillatory component is finite and in the case of a single or multiple

frequencies related by a rational multiplicative, repeating. If that were the totality

of the signal it would not present an issue for FFT even in the case of an irrational

ratio between components, provided the frequency window was sufficiently larger

than the frequencies being analyzed.

The envelope function however represents an obvious problem. Since the enve-

lope function is non-periodic (and indeed, exponentially increasing in field) it cannot
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be reduced to the harmonic basis. Of course, this does not stop us from trying, and

it can be insightful to attempt to do so. In the case of high frequencies such that

the signal does not change much over a single wavelength the FFT will successfully

interpret the oscillatory component.

In most cases non-periodic functions will contribute a false spectral component

mostly to low-lying frequencies, however this is not guaranteed. In conventional SdH

analysis on materials with large Fermi surfaces the spurious signal from the enve-

lope function will be dwarfed by the well-localized weight from the high-frequency

oscillation component. In the event of an extremely low-frequency signal, such as

discussed in section 5.5 of this dissertation, this false contribution cannot be ignored.

While a non-bounded windowing function presents an analytic problem for the

issue of Fourier Analysis, there are also separate, practical issues that plague FFTs

on low-frequency data. FFT is by necessity evaluated upon a fixed window of data,

and ultimately it can only decompose the signal into a series of finite frequencies

eingx where n ∈ N , the natural numbers and g is some value corresponding to

the width of the evaluated FFT window. For high-frequency data, ie very large

values of n the difference between two adjacent channels is small, so even if the

evaluated frequency is not an exact multiple of g the adjacent frequencies are likely

to collect the spectral weight of that function. In the case of low-frequency data

that mismatches with the window the nearest frequencies do not approximate the

actual function very well, and spectral weight can be dispersed into many channels

obscuring results. An example of several of these problems is given in (figure A.2)

There are other issues with FFTs and there are many techniques beyond the
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Figure A.1: FFTs evaluated on exact low-frequency data sets (within computational
resolution). a)-c) are the initial data sets comprised of 1000 data points each with
singular well-defined frequencies while d)-f) are the normalized FFT amplitudes.
(take special note of the axes, which are expanded so peak broadening is more
easily observed) a),d) a single frequency which exactly matches the sampled window
resolves into a single FFT bin. b),e) a single frequency which is mismatched to the
sampling window by a quarter wavelength creates a broadened peak in FFT spectra.
c),e) a single frequency with an exponentially decaying envelope function resolves
into a broadened peak with a long spectral weight tail.
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scope of this section for ameliorating these problems. Fortunately FFT is not the

only means to discern the frequency component of a signal. Fitting functions are well

equipped to handle issues of low frequency and non-trivial envelope signal analysis,

provided the fitting function is well justified.

In the case of HoPtBi magnetoresistance data was collected as a function of

field ~H at the NHMFL. Data was transformed into a 1
H

basis and collected into

equally spaced bins for purposes of calculation. Individually collected data points

are subject to some random noise from measurement apparatus. An error with

standard deviation of σ ≈ 3% was assumed based on documentation from the lock in

amplifier. Data points were roughly evenly spaced in H so with transformation into

the 1
H

basis high field bins collected a greater number of overall data points, and total

mean standard deviation σbin is appropriately smaller for high field measurements.

Once data had been collected in the 1/H basis the second derivative was

taken twice. This was done in order to emphasize the high-amplitude oscillation

components while minimizing the near-linear background. Previous attempts had

been made to do a background subtraction on the ρ(H) data, however it was found

for low-frequency data an attempt to add a linear or quadratic fit to data with

large, incomplete oscillations at high field would have an oversized influence on the

fit, leading to anomalous fitting values.

Bumps: Curve Fitting and Uncertainty Analysis software package was used to

evaluate the resulting array of evenly spaced data points and associated uncertain-

ties. Bumps is a Markov chain Monte Carlo analytic package with numerous uses.

Bumps was designed, and is used in this dissertation, in order to evaluate curve
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fitting to a set of data points with associated uncertainty. Bumps also provides

useful diagnostic information about the Monte Carlo methods which can be used

to evaluate whether a particular fit effectively converges and if there is significant

correlation between variables in a chosen fit. Both of these properties are very useful

for determining if a fitting equation is underconstrained, which is vital for making

an informed decision between single and multiple frequencies in SdH analysis.

Bumps requires choosing a fitting function as well as a window for all param-

eters. DREAM then blankets the parameter space with randomly chosen variables,

each guess is then iteratively evolved to minimize distance from the provided array

of data points. Each initial condition evolves into a deterministic local minimum

according to the constraints provided by the fitting function. If the fitting function

and parameter windows are well chosen then the result should be a single minimum

to which each initial set of parameters eventually converges, and further evolution

should be highly constrained i.e. a single model should not ’wander’ away from a

fitting value.

The fitting function chosen for this modeling was:

f(x) = Aie
−ki·xCos(mi · x+ φi) +

b

x3
(A.7)

with summation implied for fittings involving multiple frequencies. b/x3 is the

background term corresponding to the linear MR. The exponential term was chosen

as a phenomenological choice for the envelope function discussed in chapter 5. The

analytical form of this envelope is more complicated however the exponential term
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a) b)

c) d)

f(x) = A1exp(-k1)Cos(m1•x+phi1) + b/x3 f(x) = A1exp(-k1)Cos(m1•x+phi1) +

           A2exp(-k2)Cos(m2•x+phi2) + b/x3

Figure A.2: Two comparative sets of diagnostic data for Bumps fitting software. a)
data points, fitting, and variance for a single-frequency fit. b) data points, fitting,
and variance for a two-frequency fit. c) Trace of fitting parameter evolution after a
large number of steps. Each color represents a different initial condition as it evolves.
Variables have all converged on a tight range of values and are highly localized,
indicating convergence. d) Trace of fitting parameters for the two-frequency fits
after a large number of steps, parameters have a wide range and liable to wander,
indicating the fit is not well-converged and is under-constrained.
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was the predominant term by at least an order of magnitude. Since the goal of

this fitting was to determine the oscillatory frequency and the relationship between

potential pockets was uncertain it was determined that an attempt to better char-

acterize the envelope function carried significant uncertainty and minimal potential

benefit. Attempts at fitting a more complicated envelope did not significantly affect

the frequency value.

An example of data set analysis is presented in fig.A.2. This data set was cho-

sen to reflect a particular anomaly that is apparent in certain orientations near the

[110] direction in which the oscillation frequency appears to change slightly between

low and high fields. Initially it was believed this may be due to a beating effect of

SdH from two bands. Attempts were made to resolve two bands through bumps

analysis assuming two independent bands with different frequencies and prefactors.

Bumps software package was used to evaluate the convergence and interdependence

of variables. It was determined that the two-frequency models did not significantly

improve the fitting and introduced significant correlation between fitting parame-

ters, indicating an under-constrained model. This does not rule out the potential

for a second frequency, however if it exists it cannot be resolved from this method.

The results of these fits are presented in figure 5.3 as a supplement to FFT

analysis. Results were found to correspond closely to FFT results, but allowed a

better resolution of frequencies.
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Chapter B: Growths

Research always involves many attempts before a single novel success is found.

It is easy to publish and document those shining successes and leave the other roads

traveled to get there unlit. This appendix is meant to document the numerous

growths attempted during my graduate student career in order to help highlight

failures and other possible routes forward in pursuit of new results.

Take note: The ’Product’ column is necessarily ambiguous. While I attempted

to document the products of a growth with some specificity, it isn’t entirely possible

to describe in depth each growth output here. Note that some growths produced a

crystal that wasn’t intended (e.g. numerous YPtBi doping attempts produced pure

YPtBi) and ’failed’ growths may be successful with further tweaks.
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Goal Compound Component Ratio Growth Method Product

HoPtBi 1:1:20 Bi flux SC

HoPtBi 1:1:10 Bi flux poly

CeSbTe 1:1:1 I2 Vapor Transport failed

TbPdBi 1:1:10 Bi flux SC

YPtBi 1:1:20 Bi flux SC

HoPdBi 1:1:10 Bi flux SC

ErPtBi 1:1:20 Bi flux SC

Ce3Pt4Bi3 1:1:20 Bi flux SC

PrPtBi 1:1:20 Pb flux SC

LuPtBi 1:1:20 Bi flux SC

LuPt0.85Au0.15Bi 1:0.85:0.15:20 Bi flux SC

YPt0.85Bi 1:0.85:20 Bi flux SC

HoPtBi 1:1:1:20 Pb flux Domain-twin SC

YPtBi 1:1:1:20 Pb flux SC

YPt0.85Au0.15 1:0.85:0.15:20 Bi flux SC

CePtBi 1:1:1:20 Pb flux SC
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Goal Compound Component Ratio Growth Method Product

PrPtBi 1:1:1:20 Pb flux SC

LaPtBi 1:1:20 Pb flux La3Pt4Bi3 SC

PrPtBi 1:1:20 Bi flux Pr3Pt4Bi3 SC

CePtBi 1:1:20 Bi flux Ce3Pt4Bi3 SC

ErPtBi 1:1:20 Bi flux SC

TmPtBi 1:1:20 Bi flux SC

YPt0.5Ni0.5Bi 1:0.5:0.5:20 Bi flux failed

YPtBi0.85Sb0.15 1:1:(0.85:0.15)*20 Mixed flux YPtBi SC

YPtBi0.85Sn0.15 1:1:(0.85:0.15)*20 Mixed flux YPtBi SC

YPtBi0.85Te0.15 1:1:(0.85:0.15)*20 Mixed flux YPtBi SC

YPtBi0.85Pb0.15 1:1:(0.85:0.15)*20 Mixed flux YPtBi SC

CeRu4Sn6 1:4:6 Arc Melt failed

Y0.85Zr0.15PtBi 0.85:0.15:1:20 Bi flux YPtBi SC

Y0.85Hf0.15PtBi 0.85:0.15:1:20 Bi flux YPtBi SC

YPt0.85Ag0.15Bi 1:0.85:0.15:20 Bi flux YPtBi SC

YPt0.90Ag0.10Bi 1:0.90:0.10:20 Bi flux YPtBi SC
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Goal Compound Component Ratio Growth Method Product

YPt0.95Ag0.05Bi 1:0.95:0.05:20 Bi flux YPtBi SC

CeRu4Sn6 1:4:6 Solid State failed

CeRu4Sn6 1:4:6:10 Pb flux poly

YPt0.5Au0.5Bi 1:0.5:0.5:20 Bi flux failed

YPt0.25Au0.75Bi 1:0.25:0.75:20 Bi flux failed

YAuBi 1:1:20 Bi flux failed

YPt0.99Au0.01Bi 1:0.99:0.01:20 Bi flux YPtBi SC

YPt0.98Au0.02Bi 1:0.98:0.02:20 Bi flux YPtBi SC

YPt0.97Au0.03Bi 1:0.97:0.03:20 Bi flux YPtBi SC

Ru2Sn3 2:3 Arc melt failed

YPt0.99Ir0.01Bi 1:0.99:0.01:20 Bi flux YPtBi SC

YPt0.98Ir0.02Bi 1:0.98:0.02:20 Bi flux YPtBi SC

YPt0.95Ir0.05Bi 1:0.95:0.05:20 Bi flux YPtBi SC

YPt0.90Ir0.10Bi 1:0.90:0.10:20 Bi flux YPtBi SC

YPt0.85Ir0.15Bi 1:0.85:0.15:20 Bi flux YPtBi SC

YPt0.90Au0.10Bi 1:0.90:0.10:20 Bi flux YPtBi SC
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Goal Compound Component Ratio Growth Method Product

YPt0.95Au0.05Bi 1:0.95:0.05:20 Bi flux YPtBi SC

MnP 1:1:20 Sn flux failed

CoP 1:1:20 Sn flux SC

RuP 1:1:20 Sn flux SC

YPtSb 1:1:1:20 Bi flux SC

YPtSb 1:1:99 Sb flux PtSb2 SC

Y0.8Ti0.2PtBi 0.8:0.2:1:20 Bi flux YPtBi SC

YbIr2P2 1:2:2:60 Pb flux failed

IrP 1:1 Solid State poly

RuP 1:1 Solid State poly

YbRu2P2 1:2:2:45 In flux SC

RuAs 1:1:25 Sn flux SC

RuP 1:1:25 Sn flux SC

YbRu2As2 1:2:2 Solid State poly

YbRuBi 1:1:18 Bi flux failed

CeRu2As2 1:2:2 Solid State poly
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Goal Compound Component Ratio Growth Method Product

YbRu2As2 1:2:2 Solid State poly

YbRu2P2 1:2:2:45 Sn flux failed

YbRu2P2 4:7:7:82 Sn flux failed

YbRu2P2 1:2:2:15 Sn flux SC

LaRu2P2 2:5:5:95 In flux SC

TaAs 1:1:19 In flux SC

TaAs 1:1 Solid State binary

YRuSn3 4:3:93 Sn flux SC

YbRu2P2 3:2:4:51 In flux SC

YbRu2P2 3:2:4:51 Sn flux SC

LaRu2P2 1:2:2:40 Sn flux SC

Yb0.65La0.35Ru2P2 0.65:0.35:2:2 Sn flux failed

Ca0.88La0.12FeAs1.8Sb0.2 0.8:0.12:1.8:0.2 Solid State poly

Ca0.3La0.7Ru2P2 0.3:0.7:2:2:60 In flux failed

Ca0.5La0.5Ru2P2 0.5:0.5:2:2:60 In flux failed

Ca0.7La0.3Ru2P2 0.7:0.3:2:2:60 In flux failed
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Goal Compound Component Ratio Growth Method Product

CaRu2P2 1:2:2:60 In flux failed

Yb0.3La0.7Ru2P2 0.3:0.7:2:2:60 In flux failed

Yb0.5La0.5Ru2P2 0.5:0.5:2:2:60 In flux failed

Yb0.7La0.3Ru2P2 0.7:0.3:2:2:60 In flux failed

YbRu2P2 1:2:2:60 In flux SC

Ca0.88La0.12FeAs1.8Sb0.2 0.88:0.12:1:1.8:0.2 Solid State poly

YFe2Ge2 1:2:2 Arc Melt failed

Y0.05La0.95Ru2P2 0.05:0.95:2:2:40 In flux failed

Y0.1La0.9Ru2P2 0.1:0.9:2:2:40 In flux failed

Y0.2La0.8Ru2P2 0.2:0.8:2:2:40 In flux failed

Pr0.025Ca0.975Fe2As2 0.025:0.975:2:2:10 Sn flux SC

YRu2P2 1:2:2:40 Sn flux failed

YRu2P2 1:2:2:80 Sn flux failed

LaRu2P2 1:2:2:40 Sn flux SC

LaRu2P2 1:2:2:80 Sn flux SC

Pr0.05Ca0.95Fe2As2 0.05:0.95:2:2:10 Sn flux SC
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Goal Compound Component Ratio Growth Method Product

CeRhIn5 1:1:20 In flux SC

CeRh0.4Co0.6In5 1:0.4:0.6:20 In flux SC

CeRh0.5Co0.5In5 1:0.4:0.6:20 In flux SC

La0.15Ca0.85Fe2As2 0.15:0.85:2:2:20 Sn flux SC

YFeGa5 1:1:30 Ga flux SC

ScFeGa5 1:1:30 Ga flux SC

CaFe2As2 1:2:2:20 Sn flux SC

CaFe2As2 1:2:2:20 In flux SC
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