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The “Wisdom of the crowds” is the concept that the average estimate of

a group of judges is often more accurate than any single judges estimate. This

dissertation explores a variety of elicitation, modeling, and aggregation methods for

time-based forecasting questions at both the individual and consensus levels, and

shows that accurate continuous forecast distributions can be modeled from relatively

few judgments from individual forecasters.

For individual forecasters, eliciting judgments with fixed versus random cut

points, and modeling those judgments with least-squares methods led to the most

accurate forecasts. While gamma distributions fit the empirical judgments more

closely than exponential distributions, exponential fits yielded more accurate model

forecasts, suggesting that the greater flexibility of the gamma distribution tended

to over-fit the empirical forecasts.

For consensus forecasts, random cut points across individual forecasters yielded

more accurate forecasts than fixed cut points, suggesting that across a group of



forecasters, random bins may help average over individual-level forecast errors in-

troduced through partition dependence bias and an arbitrary set of fixed cut points.

With respect to modeling methods, a mixture of forecaster distributions fit with a

Bayesian Dirichlet-multinomial model performed best across a variety of metrics and

yielded forecast accuracies on par with advanced discrete aggregation techniques.

This model also provides a natural way to weight individual forecasters according

to expertise and other factors.

Differences in forecast accuracy between modeling methods varied greatly de-

pending on when an event occurred relative to the range over which forecaster

judgments were elicited, particularly when events occurred long after the last date

for which forecasters provided judgments. In these cases, the modeled forecasts de-

pend heavily on the assumptions of the model versus the elicited judgments, and

forecasts should be cautiously interpreted as representing crowd belief.

The results of this research shows that with a limited number of discrete

elicited judgments, it is possible to obtain continuous aggregate models of forecaster

belief that are as accurate as discrete forecast aggregation methods, but can also

provide decision makers with forecasts for arbitrary partitions of the event space

and can be easily integrated into a broad range of decision analyses.
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Chapter 1: Introduction

The “Wisdom of the crowds” has been a frequent topic in popular media

for several years. The concept is that the average estimate of a group of judges

is often more accurate than any single judge’s estimate. This idea is at least as

old as Aristotle: “For it is possible that the many, though not individually good

men, yet when they come together may be better, not individually but collectively”

(Jowett and Davis, 1908). Remarkably, in the subsequent passages of the Politics,

Aristotle lays out some of the most important aspects of judgment elicitation and

aggregation that still apply today, including: judgment aggregation is most effective

when individuals hold disjoint information; that depending on an individual judge’s

expertise, there is an optimal weight (vote) that each judge should receive; and that

even small groups of judges, who individually may not hold any significant expertise,

can make more optimal decisions than the any individual expert.

The first example of “Wisdom of the crowds” in the scientific literature is Sir

Francis Galton’s 1907 analysis of a competition to guess what the weight of an ox

would be after it had been slaughtered and dressed (Galton, 1907b). Contestants

at a stock show in Plymouth, England purchased tickets and wrote down their best

guess for the weight. Galton showed that on average the 787 guesses deviated from
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the true weight of 1,198 pounds (lbs) by 37 lbs. In contrast, the median of the guesses

deviated from the correct value by 9 lbs and the mean was within 1 lb 1. Galton

took this as evidence that the collective judgment of groups, even of non-experts,

could rival or exceed that of individuals. Considerable research since this time has

shown that aggregating judgments, and in particular probabilistic forecasts, almost

universally increases accuracy (Wallis, 2011; Wallsten et al., 1997).

An independent line of research begun in the mid 1950’s discovered that math-

ematical models of human judgment could often outperform the judgment of the

experts on which the models were based (Meehl, 1954) . In one example, Gold-

berg (1970) modeled the judgment process of 29 clinical psychologists attempting

to differentiate psychotic from neurotic patients based on scores in the patients’

Minnesota Multphasic Personality Inventory (MMPI). He fit a linear regression for

each clinician predicting their diagnoses from the 11 MMPI scores and found that

the regression models outperformed the clinicians not only in the training sample,

but also on new out of sample diagnoses.

In this dissertation I combine both of these approaches, judgment aggregation

and mathematical models of human judgment, to develop new methods for modeling

continuous probabilistic forecasts of uncertain events. In particular, I focus on

methods for forecasts of events based on time, i.e. the probability that an event

will happen by some date, and for events without a well-defined reference class that

can occur only one time, for example the probability of a specific conflict between

1Galton did not provide the mean in the original paper, but in response to a letter to the editor

requesting it (Galton, 1907a).
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two nation states. In the following sections I provide background on probabilistic

forecasting, forecast calibration, methods for determining forecast accuracy, and

different approaches for aggregating forecasts.

1.1 Background

Over four years, the Intelligence Advanced Research Projects Activity (IARPA)

conducted what is likely the most extensive investigation to date into the elicita-

tion, mathematical aggregation, and communication of probabilistic forecasts of

non-repeatable uncertain events. This project, the Aggregative Contingent Esti-

mation (ACE) program (IARPA, 2010), focused on forecasts of events of interest

to the intelligence community. Nevertheless, the research and innovations obtained

from this work apply more generally to any forecasting problem, and particularly

to forecasts of events characterized by high epistemic uncertainty.

The ACE program focused on innovating methods for discrete forecasts of

continuous phenomena. One type of these discrete questions elicited judgments

for a single event partition. For example, “Before 10 June 2015, will Ukraine offi-

cially announce that it will hold a referendum on the structure of its government?”

Forecasters selected either ‘yes’ or ‘no’, then provided a probability judgment cor-

responding to their choice. Another type of discrete question elicited judgments for

multiple partitions of the event space. For example, “How many additional countries

will report cases of the Ebola virus as of 9 May 2014?” Ace researchers provided

forecasters with multiple options, in this case [0,1,2,3 or more], and provided prob-
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ability judgments for each option.

While this approach has proven itself useful in many domains (For examples

in economics, energy, and health risk, (see Croushore, 1993; Usher and Strachan,

2013; Hetes et al., 2011), it is nevertheless constrained in that it can only provide a

decision maker raw or aggregate judgments with respect to the event partitions that

were explicitly elicited. Take the first example of the Ukrainian referendum. This

question elicits judgments for a small range of the more fundamental question “When

will Ukraine officially announce that it will hold a referendum on the structure of

its government?” The answer could be any time between when the question is

elicited and infinitely far into the future, i.e. never. A probability distribution over

all possible values of the forecasted event would be much more useful to decision

makers than would a discrete forecast, since the continuous forecast could provide

relevant forecasts for any partition of the variable and be more easily integrated into

a broad range of decision analyses.

At least two research teams involved with the ACE program explored the

feasibility of eliciting, modeling, and aggregating continuous forecast distributions.

The most extensive work was conducted by the Continuous Elicitation Team of

the Good Judgment Project (GJP-CE) led by Don Moore and Tom Wallsten, of

which I was member. This work focused on producing continuous forecast methods

that would be effective when using relatively few judgments from each individual

forecaster. The GJP-CE method was as follows:

1. For each forecasting question, elicit interval probability judgments from a set

4



of forecasters. Typically, three to five judgments per forecaster were elicited.

2. Fit a two-parameter probability distribution to each forecaster’s judgments

via least-squares. The distribution chosen to fit these judgments depended

on the bounds of the forecasted variable. Unbounded variables were fit with

the normal distribution. Double-bounded variables, for example ratios or per-

centages, were fit with the beta distribution. Left-bounded variables, typically

time-based variables, were fit with the gamma distribution.

3. Aggregate these fitted distributions into a a single parametric consensus dis-

tribution of the same distributional form as fit at the forecaster level. The

primary aggregation method was to take the median of each distribution pa-

rameter at the forecaster level, and then use these values as the parameters

for the consensus distribution.

GJP-CE evaluated this method, which they termed “Median-θ”, with a 9-

month on-line forecasting tournament. Approximately 350 forecasters participated,

producing over 30,000 sets of interval probability judgments for 132 events. Though

analysis of these forecasts is currently incomplete, tentative results indicate that

the GJP-CE method yielded consensus forecasts that were as least as accurate as

advanced discrete aggregation methods.

1.1.1 Motivation for Research

While their tentative results are promising, there are at least three reasons to

believe that the Median-θ method can be improved. First, the choice of the gamma
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distribution to model forecaster judgments necessarily restricts the kinds of belief

that the forecaster models can represent. Second, since individual forecasters provide

relatively few judgments, the flexibility of any two parameter distribution fit to these

judgments raises the risk of over-fitting the forecasts. Third, constraining consensus

level forecasts to follow the gamma distribution can obscure the heterogeneity of

belief across individual forecasters.

One useful way of representing continuous belief for time based events is

through the hazard function of a probability distribution. The hazard function

is the ratio of the density function to the survival function (Eq 1.1), and is the

instantaneous rate of occurrence of an event. At the forecaster level, modeling judg-

ments with two-parameter distributions restricts the possible forms of subjective

belief and may over-fit and/or mis-specify the hazard function. For example, the

gamma distribution is capable of representing constant, concave and increasing, and

convex and decreasing hazards (Figure 1.1-a). Since GJP-CE modeled probability

judgments for time-based forecasting questions with the gamma distribution, the

potential hazards their methods can capture are limited to those listed above. In

terms of forecaster belief, this means that this method must produce forecaster level

models that either “believe” that the chance of an event occurring is constant as

time passes; that the event is getting more likely but approaches a constant maxi-

mum chance of occurrence as time passes; or that the event is getting less likely but

approaching a constant minimum chance of occurrence as time passes. The gamma

distribution can not model beliefs such as those in Figure 1.1-b: the rate of increase

in likelihood of an event increasing as time passes (convex and increasing hazard)
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or that an event is most likely to occur relatively soon, or far into the future, but

unlikely to occur for some medium term (bathtub hazard).

h(t) =
f(t)

1− F (t)
(1.1)

Another potential problem with fitting simple distributions at the forecaster

level is particular to this forecasting environment, where for a given forecasting

question relatively few interval probability judgments are elicited per forecaster. If

one assumes that forecasters produce judgments with some error component, then

as the number of elicited bins decreases, the potential to over-fit these judgments

increases. For example, if one elicits three interval probability bins for a forecast-

ing question, as long the cumulative probabilities of these judgments are strictly

increasing, any two-parameter distribution with appropriate support will fit these

observations perfectly. This implies that rather than averaging out production error,

fitting two parameter distributions maximizes the influence of production error in

the fitted model.

(b)(a)

tt

h(
t)

h(
t)

Figure 1.1: Hazard Examples

The inability of two-parameter distributions to model plausible subjective be-

lief at the forecaster level extends to the the consensus level as well. However, at the
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consensus level there is the additional complication that forecasters may have very

different continuous subjective estimates of the likelihood of some event. Defining

the consensus as a single two-parameter distribution may inadvertently gloss over

heterogeneity of forecaster belief, and provide a false picture of certainty and/or

unanimity amongst forecasters.

For questions defined primarily by aleatory uncertainty (random variability)

versus epistemic uncertainty (insufficient/unknown information), it is reasonable to

assume that the the goal of aggregation is to obtain a continuous probability measure

that itself is an estimate of some objective and observable long-run phenomenon.

Assume that a group of forecasters observes a sufficiently long sequence of rolls of

a biased 6-sided die, and is then asked to define a categorical distribution of the

probabilities of each side appearing on a given roll. All forecasters have equal access

to information, and one should expect an equal weighted mixture of all forecaster

distributions to yield a good estimate of the true distribution, assuming that each

forecaster judgment is a function of the true probability perturbed by individual

error and that forecasters are independent. Aggregation in this context averages out

individual error, and provides an accurate consensus judgment of the true discrete

distribution. In the case of forecasting problems principally defined by aleatory

uncertainty, individual subjective belief is an estimate of an objective and observable

true long-run probability, and aggregation attenuates error in individual forecast

production.

In the case of forecasting problems defined by high epistemic uncertainty, this

line of reasoning breaks down. Consider the question “At what point will Bashar
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al Assad step down or otherwise be removed from the office of president of Syria?”,

and assume that one could perfectly model continuous subjective distributions of

forecaster belief for this question. There is no well-defined reference class for this

question; there is no practically definable probability model at the forecaster level.

Even if we assumed that each forecaster had a covert and well defined causal model

with a joint probability over many events that could yield a marginal distribution of

time until Assad was no longer in office, it would be practically impossible to elicit

this joint distribution and the marginal distribution shouldn’t be expected to follow

any simple form. Given that such a model existed, it’s practically unknowable to the

forecaster, much less to anyone else, and even less plausibly could be well-modeled

by something like the gamma distribution.

For forecasting questions defined primarily by aleatory uncertainty, the “best”

consensus distribution is the one that most accurately models an observable envi-

ronmental phenomenon with a well-defined reference class. For questions defined by

high epistemic uncertainty, the “best” consensus distribution is the one that most

accurately models a summary of crowd belief.

1.2 Properties of Forecasts

1.2.1 Calibration

Calibration refers to the consistency between probabilistic forecasts and the

frequency with which the forecasted events occur (Gneiting et al., 2007). If a fore-

caster is well-calibrated, whether the forecaster is an individual or a model, then the
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forecasted events should occur proportionally to the probability assigned to those

events. For example, if a weatherman was well-calibrated, then it would rain 50%

of the days he forecasted a 50% chance of rain.

A common form of miscalibration is overprecision (Moore and Healy, 2008).

A forecaster is overprecise if her forecasts obtain confidence intervals that are ex-

cessively narrow. If an economist repeatedly estimated a 50% confidence interval

for the U.S. inflation rate, but only 25% of the forecasted rates fell within her 50%

confidence interval, then her forecasts would be overprecise.

In line with Gneiting et al. (2007), I will evaluate the calibration of the forecast-

ers and consensus methods with the Probability Integral Transform (PIT). Assume

a strictly continuous predictive cumulative distribution function F and an observed

event x. The PIT, ZF = F (x) is simply the the cumulative probability that F

assigns to the outcome. Given a set of events X, one can evaluate the calibration of

the predictive distribution F (X) with the empirical distribution of ZF . If F ∼ X,

i.e. if the predictive distribution is identically distributed to the distribution of out-

comes, then ZF is necessarily distributed standard uniform. F is probabilistically

calibrated if ZF ∼ U(0, 1) (Rosenblatt, 1952).

PIT histograms can generally classify forecasts as either neutrally dispersed,

underdispersed, or overdispersed. Dispersion in this case refers to the variance of

the PIT (ZF ), not the predictive distribution F . Since the PIT is distributed on

the interval [0,1], its variance (σ2
Z) is necessarily constrained to the interval

[
0, 1

4

]
.

A perfectly calibrated forecast will be distributed standard uniform with a variance

σ2
Z = 1

12
, or about 0.083, and will be considered neutrally dispersed. When σ2

Z >
1
12

,
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the forecast is underdispersed relative to a neutral forecast, and when σ2
Z <

1
12

the

forecast is overdispersed relative to a neutral forecast.

Figure 1.2 shows examples of the different dispersion patterns. For each ex-

ample, I simulated 10,000 observed outcomes from X ∼ N(0, 2). The middle panel

shows a neutrally dispersed forecaster with a continuous forecast F ∼ N(0, 2). The

PIT is uniformly distributed, so the forecaster is calibrated. At any arbitrary con-

fidence interval, the proportion of observations that fall within the interval match

the forecasted probabilities. The left panel shows an underdispersed forecaster with

forecast F ∼ N(0, 1). The variance of the PIT is greater than a a standard uni-

form distribution For any central confidence interval, the proportion of observations

falling within that interval are less than the range of the interval. This pattern is

consistent with an overprecise or “overconfident” forecaster. The right panel shows

an overdispersed forecaster. The variance of the PIT is less than 1
12

and for any cen-

tral confidence interval, the proportion of observations falling within that interval

are greater than the range of the interval.
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Figure 1.2: PIT histograms for underdispersed (overconfident/overprecise), neu-

trally dispersed (calibrated), and overdispersed (underconfident/underprecise) fore-

casts.
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1.2.2 Accuracy

Calibration in itself is not a sufficient measure of forecast quality. Assume that

two weather forecasters predicted the chance of rain for a series of days, and that the

true probability of rain on any give day was 50%. Forecaster #1 always predicted

a 50% chance of rain. Forecaster #2 always predicted 100% chance of rain on days

that it did rain, and 0% chance of rain on days that it did not rain. Both forecasters

are perfectly calibrated, but clearly Forecaster #1’s predictions are no better than

flipping a coin, while Forecaster #2’s predictions are perfectly diagnostic.

Scoring rules are measures (cost-functions) that simultaneously evaluate fore-

cast diagnosticity as well as calibration. Strictly proper scoring rules uniquely obtain

the best possible score if the forecaster reports their true estimated probability, i.e.

there is no way to ‘game’ the score by reporting any probability other than true

belief. Since a scoring rule is just a cost function, there are an unlimited number of

possible scoring rules; however, some are much more widely adopted than others.

The Brier score (Brier, 1950) is one of the most common scoring rules for

binary forecasts of the probability that an event will or will not occur. The Brier

score is a quadratic the loss function in Equation 1.2, where F (q) is the forecasted

probability for whether the event will occur before the cut point (or have a value

less than the cut point) q and 1o≤q equals 1 if the event occurs before q, otherwise

0. Scores can range from 0 to 2, with the best possible score of 0 and worst possible

score of 2.
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SBS = 2 [F (q)− 1o≤q]
2 (1.2)

While the weather forecasters in the example were both perfectly calibrated,

the expected values of their Brier scores show that the second forecaster is more

accurate. Forecaster #1 always predicts a 50% chance, so his expected score is .5.

Forecaster #2 always correctly predicts the chance of rain as either 100% or 0%, so

her expected score is 0.

The rank probability score (RPS) is a brier score for questions with more than

two possible outcomes (Matheson and Winkler, 1976). This score divides forecasts

for n ordered alternatives into a series of binary alternatives as the threshold moves

up from lower to higher (1.3). A Brier score is calculated for each of the n−1 binary

partitions and the final result is the average of the separate scores where n is the

number of cut points; qi the quantile associated with cut point i, i = 1...n; o the

observed value; F the predictive cumulative distribution function; and 1o≤qi equals

1 if o is less than or equal to qi, otherwise 0. Like the Brier score, RPS scores can

range from [0,2], with 0 the best possible score and 2 the worst possible score.

SR =
2

n

n∑
i=1

[F (qi)− 1o≤qi ]
2 (1.3)

There are scoring rules for continuous forecasts just as there are for discrete.

Like in the discrete case, these scores simultaneously measure calibration and res-

olution, though the concept is somewhat different in the continuous case and is

generally referred to as sharpness (Ranjan and Gneiting, 2010).
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Assume that a series of events is distributed Et ∼ N(µt, 1), where µt ∼ N(0, 1).

Think of t as indexing a random forecasting question, and µt as the state of the

world at the the time of the forecast. The outcome of each event is random, but

conditioned on µt. Unconditionally, Et is necessarily distributed Et ∼ N(0,
√

2).

A forecaster who always makes predictions based on the unconditional distribution

with the distribution N(0,
√

2), and a forecaster who always conditioned on µt and

for each event chose the distribution N(µt, 1) would both be perfectly calibrated

(Fig 1.3), but the second forecaster would provide more accurate forecasts over a

series of events, because the variance of his predictive distribution is smaller relative

to the first forecaster.
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cy
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Figure 1.3: PIT histograms for two calibrated continuous forecasters, where µt ∼

N(0, 1), and the true distribution of the event is E ∼ N(µt, 1). Both forecasters are

perfectly calibrated in expectation, but the forecaster on right, who conditions on

µt will produce more accurate forecasts.

The continuous rank probability score (CRPS) (Eq 1.4) is a continuous scoring
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F ~ N(0, 2) F ~ N(µt, 1)
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Figure 1.4: Visualization of the CRPS score. The right panel plots the CDF of

N(µt, 1) and the left panel N(0,
√

2). The vertical black line is the outcome of the

forecast question, 0. The CRPS equals the shaded area between the outcome and

the CDFs. Though both forecasters are calibrated, the forecaster who conditions on

µt obtains a more accurate (lower) CRPS as indicated by the smaller shaded region.

rule that scores the entire predictive distribution (Matheson and Winkler, 1976). It

is a generalization of mean absolute error (MAE) and is equivalent to integrating

the RPS across all possible real-valued thresholds (Matheson and Winkler, 1976).

Like the RPS, lower scores reflect more accurate forecasts, but the CRPS has no

upper limit.

SC =

∫ ∞
−∞

[F (x)− 1o≤qi ]
2 (1.4)

The more probability a forecast concentrates near the outcome, the lower

the CRPS score will be. Figure 1.4 shows the two example continuous forecasts

when µt ∼ N(0, 1). The right panel shows the CDF for the predictive forecast

F ∼ N(µt, 1), and the left panel the CDF for the predictive forecast F ∼ N(0,
√

2).
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The CRPS is equal to the shaded area between the step function defined by the

outcome at 0, and the respective CDFs. Despite both forecasts being calibrated, The

forecast with the smaller standard deviation is concentrated closer to the outcome,

and therefore the area between the outcome and the CDF is smaller and yields a

lower CRPS score (SR = .23) compared the the score for the forecast with a standard

deviation (SR = .33).

1.2.3 Aggregation

One of the most common methods to aggregate continuous distributions is the

linear opinion pool (LOP). The LOP is a mixture of either the density or cumula-

tive probability functions of the continuous forecasts (Clemen and Winkler, 1999).

Though common, it is also well known that linear aggregation is often suboptimal.

With calibrated forecaster level distributions linear aggregation will necessarily pro-

duce uncalibrated, underconfident consensus forecasts (Ranjan and Gneiting, 2010)

(Hora 2004, Ranjan 2010). To continue the previous example, though the forecaster

with F1 ∼ N(0,
√

2) and and forecaster with F2 ∼ N(µt, 1) were both calibrated,

the linear combination of their distributions F3 yields an underprecise consensus

distribution that scores worse than than the best forecaster F2 (Fig 1.5).
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Figure 1.5: PIT histograms for three continuous forecasts, with the expected values

of SC for each forecast. The true data generating process is F ∼ N(µt, 1), µt ∼

N(0, 1). Although the left and middle forecasts are calibrated, the unweighted linear

combination of these distributions in the right panel results in an overdispersed

aggregate forecast that scores worse than F2.

Despite the known shortcomings of LOPs, there is little agreement about what

constitutes an optimal distribution aggregation method. For example, Lichtendahl

et al. (2013) demonstrate that under certain conditions, aggregating over quantiles

obtains better calibrated consensus distributions and sharper forecasts, and argue

that sharpness should be the primary goal in aggregation. However, Ranjan and

Gneiting (2010) show that a LOP re-weighted using a beta transformation mitigates

the miscalibration inherent to finite mixtures of cumulative probabilities, and Hora

et al. (2013) argue that under certain conditions replacing mean aggregation of

cumulative probabilities with median aggregation leads to better calibration and

sharper forecasts.

While the existing research into continuous aggregation is both analytically

and computationally rigorous, most often this works begins with the implicit as-
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sumption that the distributions over which one will aggregate are perfect repre-

sentations of subjective belief and are well-calibrated. Real-world forecasts, on the

other hand, tend to be underdispersed and therefore overconfident (Gneiting et al.,

2007). Because of this, even though linear aggregation necessarily increases dis-

persion and introduces miscalibration if the source distributions are calibrated, it

often improves aggregate scores since the source distributions are overdisprsed and

miscalibrated to begin with.

1.3 Summary

Researchers have recently developed at least one approach, the median-θ con-

sensus method, that may yield aggregate continuous consensus forecasts that are

generally as accurate as more extensively researched discrete aggregation methods.

The goal of this dissertation is to extend that continuous modeling and aggregation

work and discover consensus methods that can consistently outperform median-θ.

There are at least three reasons why this method may be improved: the choice

of the gamma distribution to model forecaster judgments necessarily restricts the

kinds of belief that the forecaster models can represent; since in the forecasting en-

vironment under study individual forecasters provide relatively few judgments, the

flexibility of any two parameter distribution fit to these judgments raises the risk

of over-fitting the forecasts; and constraining consensus level forecasts to follow the

gamma distribution, or any particular parametric function, may obscure the hetero-

geneity of belief between individual forecasters. In the following chapters I detail
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a set of forecast modeling and aggregation methods that may improve consensus

forecast accuracy over the median-θ method, test these models against a large em-

pirical forecast dataset, use Monte Carlo experiments to determine the potential for

the modeling methods to capture forecaster hazard functions, and conclude with a

general discussion of the research findings.
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Chapter 2: Consensus Methods

I define a “consensus method” as the combination of three components: a

forecaster model, forecaster estimates derived from the forecaster models, and an

aggregation function that combines the forecaster estimates. A forecaster model

uses a set of judgments for one forecasting question for one forecaster to estimate a

distribution function for all possible values of the forecasted variable. For example,

one could fit a parametric distribution to a forecaster’s judgments via least-squares

to obtain parameters that represent the forecaster’s continuous subjective belief. I

will fit forecaster judgments with two methods: least-squares (LS) and a Bayesian

Dirichlet-Multinomial model (DM).

Forecaster estimates are the information that will be aggregated to form the

consensus distribution. I will use either the forecaster cumulative distribution func-

tions (F ), or the parameters of the forecaster distributions (θ), as the forecaster

estimates.

I will use the simple mean or median as the aggregation functions to combine

forecaster estimates into a single consensus distribution. For example, if you had pa-

rameters for a set of forecasters you could take the average of each parameter across

the forecasters to obtain a consensus level parametric distribution that represented
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the aggregate belief of the forecasters.

I will identify all modeling methods with reference to these three components.

For example, µ(FLS) denotes a consensus method that takes the mean cumulative

probabilities of forecaster level distributions fit via least-squares.

2.1 Forecaster Models

I use two methods to estimate forecaster level continuous subjective belief,

least-squares (LS) and a Bayesian Dirichlet-Multinomial model (DM). LS is an at-

tractive method because it is both mathematically and computationally simple (at

least for distributions with few parameters), requires relatively little programming

or mathematical expertise to implement, and should provide consistent and pre-

dictable results. These are significant considerations for any real-world application.

Regardless of its potential benefits, a consensus method that requires extensive mon-

itoring and broad programming or mathematical expertise will be far less likely to

be implemented outside of an academic environment.

At both the forecaster and consensus levels I developed and evaluated Bayesian

analogues of the LS methods. My goal for these models was to establish whether a

Bayesian approach was practical and could obtain forecast accuracies in the same

range as the LS methods, not to develop the optimal Bayesian method. Given that

Bayesian methods are practical and dependable, I believe that this approach will be

more useful than LS methods because they provide a transparent way to estimate,

recalibrate, and aggregate forecaster judgments within a hierarchy of clearly defined
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priors and likelihoods.

2.1.1 Least Squares - LS

The least-squares (LS) model finds the best fitting distribution parameters θ̂

for a single forecaster’s judgments for one forecasting question by minimizing the

mean squared error between the elicited probabilities pi and corresponding quantiles

qi (Eq 2.1). The objective function is simple, but can be difficult to optimize for

functions with complex search spaces. This is particularly true when trying to

fit distributions with many parameters. One way to improve optimization is to

repeatedly fit the distribution across a grid of different starting values and take the

estimated parameters that yield smallest error, though this doesn’t guarantee that

you will obtain the global minima. As the complexity of the search space increases,

so does the number of unique starting values that should be evaluated, and therefore

the necessary computational resources.

arg min
θ̂

n∑
i=1

[
pi − F (qi|θ̂)

]2
(2.1)
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2.1.2 Dirichlet Multinomial - DM

Bin j = 1 . . . k

Forecaster i = 1 . . . n

Ri ∼Multinomial(θi)

θi ∼ Dirichlet(δi)

δij = w · [F (rij)− F (lij)]

F (x) = FDi(x; γi)

γik ∼ πk

Ti

lij

δij

F

w

θi

rij

γi

Figure 2.1: Dirichlet Multinomial model for forecaster judgments.

In the empirical dataset I evaluate in Chapter 3, forecasters distributed 100

tokens across k bins for each forecast. Instead of modeling probabilities like the

LS method, the Dirichlet Multinomial (DM) method (Fig 2.1) directly models the

distribution of tokens. Two potential advantages of this approach is that it directly

models the empirical data, versus first transforming the tokens into probabilities,

and it provides an intuitive way to think about the priors in the model.

Assume Ti is a k length vector of the observed distribution of a forecaster’s

100 tokens across k bins. I model Ti as multinomial with k length parameter θ bin

probabilities. Each token within one of the k bins represents a single occurrence

of that interval. The k length Dirichlet prior δi on θi controls how closely the

probabilities in θi correspond to the empirical token counts. You can consider the
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δi as ‘pseudo-counts’ of observations that have already been observed. If a forecast

had four bins, and δi = [5, 5, 5, 5], then the prior is effectively adding 5 additional

tokens to each bin. If this was the top level of the model, since the Dirichlet is

conjugate to the multinomial, the posterior distribution of bin probabilities would

be distributed Dir(t1 + 5, t2 + 5, t3 + 5, t4 + 5), where tj was the token count in bin

j for forecaster i.

In order to estimate a continuous distribution from the tokens, I add a con-

tinuous prior distribution D over the concentration parameters δi for each bin. The

value of each δij is the cumulative probability FD assigns to the interval for each

bin, defined by the left (lij) and right (rij) quantiles for each bin multiplied by a

fixed scaling factor w. The model therefore estimates parameters for D, γ, that

integrate the prior information for all the parameters and the observed data. I take

the posterior estimate for D as the subjective distribution for each forecaster.

2.2 Forecaster Estimates

After producing a forecaster model, I selected the unit of forecaster belief

to aggregate over, either cumulative probabilities (F ), distribution parameters (θ),

or avoiding forecaster models altogether, and just selected the empirical interval

forecasts (∀). Probabilities and parameters are subsequently passed to a linear

aggregation function, while the empirical forecasts are directly fit with a parametric

distribution at the consensus level.
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2.2.1 Probabilities - F

Aggregating probabilities has three potential advantages: preserving consensus

among forecaster models, relaxing parametric requirements at the consensus level,

and reducing overdispersion. Linear aggregation guarantees that if a set of subjective

distributions agree on the mean or modal value of a distribution, or on the width

of any given interval, that this agreement is preserved through aggregation (Hora,

2004). For example, if all forecaster models agreed that there was a 60% chance

that an event would occur in the next 30 days, then the linear combination of their

judgments would also predict a 60% chance of the event occurring in the next 30

days. However, such consistency may not always be ideal, even if it at first it seems

intuitive. (Wallsten and Diederich, 2001) show that for conditionally independent

judgments, as the number of judges increases, the average probability judgment

becomes increasingly diagnostic of the outcome. In the limit, if the average of all

judgments exceeds 50%, the conditional probability of the event converges to 1. If

the average judgment falls below 50%, the conditional probability converges to 0.

This implies that if conditional independence holds, preserving consensus among the

forecaster level models may under/over estimate the true conditional probability of

the event, given the agreement among the forecaster models.
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(a) (b) (c)

Figure 2.2: Examples of different aggregation methods. Panel (a) shows two fore-

caster level forecast CDFs, with different means and variances. Panel (b) shows the

CDF that results from averaging the parameters of the distributions in panel (a).

Panel (c) shows the linear combination of the CDFs in panel (a).

Aggregating over probabilities will yield a mixture consensus distribution that

is potentially much more flexible than constraining the consensus to a single para-

metric form, and therefore capable of representing a much wider range of aggregate

belief. Panel (a) in Figure 2.2 shows the CDFs for two continuous forecaster distri-

butions. Clearly one distribution has a lower mean and smaller variance than the

other. If you constrain the consensus distribution to follow one simple parametric

form, then you’ll obtain something similar to the CDF in panel (b), which obscures

the differences in belief between the two forecaster distributions. Panel (c) is a linear

combination of the two forecast distributions. While this consensus CDF lacks a

simple form, it better represents the hetereogenity of belief at the forecaster level.

Linear aggregation over probabilities may also improve consensus accuracy

since linear combination tends to reduce dispersion, and probability judgments tends

to be overdispersed, i.e. “overconfident”. In a sense, this is two wrongs making a

26



right. If forecaster models are well calibrated, then linear aggregation of the distri-

bution functions will lead to underdispersed consensus forecasts, and may decrease

consensus accuracy relative to other methods (Ranjan and Gneiting, 2010).

2.2.2 Parameters - θ

While there have been a few studies that fit continuous distributions directly

to interval or cumulative probability judgments (Abbas et al., 2008; Wallsten et al.,

2015), there are no published studies I am aware of that establish the properties of

aggregating over forecaster level distribution parameters. Unpublished research by

the Good Judgment Project shows that this can be a useful method (Tidwell et al.,

2015), but until their research is more developed this evidence isn’t conclusive. Nev-

ertheless, there are at least two reasons that aggregating over parameters may yield

accurate and useful consensus forecasts: it is a much more constrained aggregation

goal than aggregating probabilities, and it is a computationally and mathematically

simple operation that could be easily implemented by almost anyone.

To optimally aggregate probabilities, the forecaster models need to accurately

reflect true subjective belief for the entire region of interest of the support of the

forecasted variable, and the aggregation function needs to optimally combine the

probabilities. If individual forecast production has a significant error component,

and between forecaster belief is highly variable, then it may be difficult for proba-

bility aggregation to effectively filter signal from a very noisy channel. Aggregating

distribution parameters, on the other hand, only needs to optimize the relevant
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parameters for the consensus model. It is possible that relative to other methods,

estimating and aggregating parameters will be more robust to extreme forecaster

models and provide more consistent consensus forecasts.

The greatest potential benefit of aggregating parameters is it’s simplicity. This

method would require only very limited computational resources, and the aggrega-

tion steps are simple enough that the modeling could be done in a spreadsheet.

2.2.3 Empirical (no modeling) - ∀

Aggregating both probabilities and parameters requires continuous forecaster

models. Given that these models are often fit to relatively few judgments for any

individual forecaster, and given that forecasters tend to produce overdispersed judg-

ments and/or introduce error at the time of forecast production, it is likely that

continuous parametric distributions will often overfit the observed judgments and

yield a distorted model of forecaster belief. One way to mitigate this potential dis-

tortion is to refrain from fitting forecaster level models at all, and instead treat the

judgments from all forecasters as a single sample and estimate a consensus model

directly from the empirical judgments. However, this method necessarily eliminates

the distinction individual forecaster and consensus level error or variability, and

imposes very constrained possible forms of belief at the consensus level.
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2.3 Forecast Aggregation

I will aggregate forecaster model probabilities and parameters with the the

simple mean and median. While there are more sophisticated methods to weight

individual forecasts, given that consensus aggregation is two steps removed from

the empirical judgments and that it is hard to predict how many of the candidate

methods will behave with real-world data, I believe the best option is to keep the

aggregation functions simple. Mean aggregation has proved very successful in many

environments, but it can be very sensitive to extreme forecasts. In these cases,

median aggregation should yield more robust consensus distributions (Lichtendahl

et al., 2013). For the empirical judgments, I will fit the LS and DM models directly

to all forecasts and bypass estimating forecaster level models.

2.4 Summary

Table 2.1 lists all combinations of forecaster models, estimates, and aggrega-

tion functions that I will test in this dissertation. I selected each of these to address

some combination the potential consensus limitations described above. Aggregating

probabilities will allow flexible consensus functions that reflect heterogeneity of be-

lief between forecasters and potentially attenuate overfit of parametric distributions

at the forecaster level. Aggregating fitted distribution parameters may be robust

to extreme forecasts and, if accurate, could be easily implemented in real-world

environments. If forecaster level models distort true subjective belief, then fitting
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consensus distributions simultaneously to all judgments may yield more accurate

forecasts. Finally, though the Bayesian and least-squares methods are similar, the

Bayesian approach provides transparent and intuitive mechanisms to recalibrate

forecasts and introduce additional information to the model outside of the empirical

judgments.

Consensus Symbol Aggregation Function Forecaster Estimates Forecaster Model

M(θLS) Median Distribution Parameters Least-squares

µ(θLS) Mean Distribution Parameters Least-squares

M(FLS) Median Cumulative Probabilities Least-squares

µ(FLS) Mean Cumulative Probabilities Least-squares

M(FDM ) Median Cumulative Probabilities Dirichlet-Multinomial

µ(FDM ) Mean Cumulative Probabilities Dirichlet-Multinomial

θLS(∀) Least-squares Empirical Judgments None

θDM (∀) Dirichlet-Multinomial Empirical Judgments None

Table 2.1: Nomenclature and brief description of all candidate consensus methods.
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Chapter 3: Analysis of Empirical Data

I validated the candidate consensus methods against a large forecasting data

set collected by the continuous elicitation (CE) team of the Good Judgment Project.

This team was led by Donald Moore and Thomas Wallsten, and was one component

of the larger Good Judgment Project directed by Barbara Mellers, Don Moore, and

Philip Tetlock. I was a member of this research team and led development of forecast

modeling and aggregation methods, but the credit for designing, implementing, and

managing this experiment belong to the entire CE team. The experiment and data

I describe below are the product of many people’s diligent effort, and were not

directly collected for this dissertation; however, all of the work in this dissertation

developing and validation consensus models is my own.

The experiment was a 10-month on-line forecasting tournament. We recruited

382 forecasters from a list of subjects who had volunteered to participate in the main

Good Judgment Project (GJP) forecasting tournament, but who were not selected

because the GJP had met it’s quota for participants. We provided forecasters the

opportunity to provide judgments for 127 forecasting questions. Forecasters could

respond to as many, or as few, questions as they wanted, and they could revise their

forecasts as many times as they chose to as long as a forecasted event had not yet
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occurred.

All question topics were created by a team of political scientists from the

University of Pennsylvania and focused on socio-political events of interest to the

intelligence community. Topics included the likelihood of conflict between foreign

nations, prices of commodities, foreign elections, and events related to disease and

world health. I retained 47 of the 127 forecasting questions for consensus method

evaluation. This was the total number of questions that were about time-based

events, where the events had occurred so the forecasts could be scored, and were

elicited in similar forms in the GJP and GJP-CE forecasting tournaments (Table

3.1).

Condition Forecasts IFPs

fixed 5931 47

random 4392 47

Table 3.1: Number of IFPs and forecasts by condition

Forecasters provided judgments through a web-based forecasting platform de-

veloped by Lumenogic, a forecasting and business solutions consultancy company.

To make a forecast, forecasters moved tokens into or out of the bins assigned to

them for that question (Figure 3.1). The platform required forecasters to exhaus-

tively distribute all 100 tokens.
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Figure 3.1: Screen shot of interval probability elicitation using Lumenogic’s Fullwalk

platform.

This analysis uses data taken from one GJP-CE experiment that was run

during this tournament. In this experiment, we randomly assigned 382 forecasters to

3 different experimental conditions defined by 2 manipulations: how the range over

which bins was set, and how the bins within this range were determined. We labeled

the conditions Expert-Set:Fixed, Expert-Set:Random, and Self-Set:Proportional.

For each forecasting question, the computer divided the continuum for the

question into four or five mutually exclusive and collectively exhaustive binned in-

tervals, defined by three or four cut points. For the Expert-Set:Fixed and Expert-

set:Random conditions, for each forecasting question a group of experts provided

bounds on a subjective central 96% confidence interval (CI) around the correct an-

swer, i.e., estimates of the 2nd and 98th quantiles that the true value might attain.

We denote these two values L and H respectively. Focusing on the Fixed condition

first, we used the L and H values to generate cut points in the following manner.
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Let R = H − L denote the range on the interval, C the number of cut points (i.e.

number of bins - 1) and S = R/C a unit value for setting the size of the interior bins.

For questions assigned three cut points (four bins) we set cut-points at L + 0.5S,

L + 1.5S and L + 2.5S. For questions assigned four cut points (five bins), the first

three cut points were as described and the fourth was set at L+ 3.5S.

In the Random manipulation, we randomly generated three or four cut points

between L and H for each question. In order to prevent the resulting intervals from

being excessively small, we imposed restrictions ensuring that each interval was at

least 1/10th (in the case of five bins) or 1/8th (in the case of four bins) of the total

96% confidence interval, and that the lowest and highest cut points were at least

that minimum interval from L and H respectively.

For this analysis, I only retained forecasts from the Expert-Set:Fixed and

Expert-Set:Random conditions, for a total of 484 forecasters, 11,420 forecast sets

of 4 to 5 interval probability judgments, for 47 forecasting questions that elicited

interval probability judgments for date-based events.

3.1 Methods

3.1.1 Modeling Forecasters

Each unique forecast consisted of three to five interval judgments for that

forecasting question, with 100 tokens exhaustively distributed across the elicited

intervals. I fit continuous distributions to these judgments with the least squares

(LS) and Dirichlet multinomial (DM) forecaster methods. I used both methods to fit
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exponential, gamma, and generalized gamma distributions to the observed forecasts.

Least Squares (LS)

For each forecast, I first converted the cut points from dates to the relative

number of days from the date of the forecast. Assume a forecaster responded to

a question on January 6th and that the cut points for the question were January

10th, January 15th, and January 20th. The platform would display the question

with judgments for four intervals: before January 10th, January 10th to January

14th, January 15th to January 19th, and January 20th or later. The number of days

relative to the forecast date for these cut points would then become qi = {4, 9, 14},

where q is the quantile for the distribution that will be fit to the judgments for

forecast i.

I divided the number of tokens in each elicited bin by 100 to obtain a vector

of pseudo probabilities pi. In order to fit any of the distributions to a forecast set,

there must be at least as many non-zero bins as there are parameters in the distribu-

tion, otherwise no solution exists. Approximately 39% of forecasted bins contained

no tokens, and consequently 0% probability. Since this would have substantially

reduced the number of forecasts that could be fit with distributions, I assigned .05%

probability to any 0 value in pi, and then renormalized the the vector to sum to 1.

arg min
θ̂

n∑
i=1

[
pi − F (qi|θ̂)

]2
(3.1)

For each pi, I searched for distribution parameters than minimized Eq 3.1
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across a grid of different starting values in order to minimize the chance of a single

optimization run converging on a local minima, and retained the fit that minimized

the objective function. I conducted all optimization using the optim function in R

(R Core Team, 2015).

For exponential distributions, I used simulated annealing to optimize the mean

of the distribution (Eq 3.2), λ = 1
µ
, with starting values of µ = {1, 10, 25, 50, 100, 200, 400}.

For gamma distributions (Eq 3.3) I used Broyden, Fletcher, Goldfarb and Shanno

(BFGS) optimization, with the factorial combination of α = {.5, 1, 2, 4, 8, 10} and

β = α
µ

as starting values.

λe−λx (3.2)

βα

Γ(α)
xα−1e−βx (3.3)

αβ−αc

Γ(c)
tαc−1 exp

[−t
β

α
]

(3.4)

Dirichlet Multinomial (DM)

As with the LS method, I converted the cut points from dates to the relative

number of days from the date of the forecast. Unlike the LS method, there was

no need to transform the token judgments to pseudo probabilities, since the DM

method directly models the distribution of tokens across the bins (Fig 3.2).

Each forecast i consisted of k bins with 100 tokens exhaustively distributed
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across the bins. The distribution of these tokens Ti was modeled as multinomial

with probability parameter θi. I placed a Dirichlet prior over this parameter. The

vector of concentration parameters for the Dirichlet, δi was fully determined by a

weight w and the cumulative probability of a continuous hyper-prior FD and the

left and and right bounds of each bin (lij, rij). For example, if the bounds for the

first bin were 0 and 10, then δi1 would be w[FD(10|γ)−FD(0|γ)], where γ is the set

of parameters for the hyper-prior.

Bin j = 1 . . . k

Forecaster i = 1 . . . n

Ri ∼Multinomial(θi)

θi ∼ Dirichlet(δi)

δij = w · [F (rij)− F (lij)]

F (x) = FDi(x; γi)

γik ∼ πk

Ti

lij

δij

F

w

θi

rij

γi

Figure 3.2: Dirichlet Multinomial model for forecaster judgments.

I held w = 100 constant across all forecasts. This was an entirely practical

decision. The relatively large value of w helped the models to more consistently con-

verge in a reasonable number of samples. However, this also amplified the influence

of FD relative to the observed counts. I estimated each forecast with FD distributed

as an exponential, gamma, and generalized gamma distribution. For exponentials,

I set the prior on the rate parameter as λ ∼ Exp( 1
10

). For gamma distributions, I
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set the prior shape as α ∼ Gamma(1, 1
4
) and prior rate β ∼ Exp( 1

10
). I estimated

all forecaster DM models with with the Stan Markov Chain Monte Carlo (MCMC)

sampler (Stan Development Team, 2015) in R, with 4 chains, 3,000 samples, and I

discarded the first 1,500 samples from each chain as burn-in after sampling com-

pleted.

3.1.2 Consensus Models

Each of the eight consensus methods I validated on this data combined a

forecaster level model (LS,DM), a unit to aggregate over, either parameters (θ) or

probabilities (F ), and either a mean (µ) or median M aggregation function. Each

method is identified by the combination of these components. For example, µ(FLS)

denotes the method that takes the mean of forecaster level cumulative distribution

functions fit with least squares.

Each consensus method had to generate a forecast for every day that a fore-

casting question was open. Since the number of forecasters available to aggregate

over each day depended on how many forecasts had been made, and since the left

bound ‘Day 0’ for any consensus forecast was the day the forecast was made, I

calculated a new consensus distribution for every day, for every method, for every

forecasting question.

All consensus methods followed the same forecast selection rules. Many fore-

casting questions remained open over long intervals, up to nine months, and it is

likely that very old forecasts would reduce the accuracy of consensus models. For a
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given question and day, I selected all forecaster level models for forecasts made on

or before that day. Of those forecasts models, I retained the greater of either 50%

of the forecasts or the number of forecasts made in the previous three days. The

resulting set of forecast models was then passed on to the consensus method specific

modeling functions.

Probability Methods: µ(FLS), M(FLS), µ(FDM), M(FDM)

F ∗i =
Fi(t− t0)
Si(t0)

(3.5)

The first step for each consensus method was to set all forecaster models on

the same scale. Assume that a there were three forecasts for a question, elicited

on January 1st, January 5th, and January 10th. I would first fit a continuous

distribution to the forecaster judgments (In practice, I fit each forecaster distribution

only once and then referenced the fitted parameters for any consensus method that

required them). Since the left bound of day 0 each fitted forecast Fi is different (1st,

5th, 10th), the forecast models can not be directly aggregated. For example, for a

consensus forecast on January 15th, the cumulative probability for each distribution

for the event occurring on January 20th would be F1(19), F2(15), and F3(10).

To set the forecaster models on the same scale, I took conditional cumulative

probabilities of the forecaster distributions (Eq 3.5). If t0 is the date of the consen-

sus forecast and t the date to forecast a probability, the a forecaster’s conditional

distribution F ∗i (t) scales the probability of the event happening between date t0 and
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t by the forecaster’s survival function Si(t0), the probability that the event occurs

after t0.

The median and mean methods took the respective average of the forecaster

conditional distributions at any date t as the value of the consensus CDF. The

µ(FLS) and M(FLS) methods used conditional distributions based on the least

squares fits, and the µ(FDM) and M(FDM) methods used conditional distributions

based on the Dirichlet Multinomial fits.

Parameter Methods: µ(θLS), M(θLS)

In order to average over forecaster parameters, I required parameters for every

forecaster for every day a forecasting question was open, and also parameters that

were based on the same day 0. Assume the same set of forecasts in the previous

example. For the θ consensus methods I divided the forecaster conditional distribu-

tions F ∗i by 20 equidistant cut points between t and t+ 180. This yielded 20, 9-day,

intervals and one open interval t > 180. I then re-fit a continuous distribution to

these intervals with the LS method to obtain an updated set of parameters.

The independent average of the forecaster parameters became the consensus

distribution parameters. For example, if it was a gamma distributed M(θLS) con-

sensus model, the consensus method would be distributed Gamma(ᾱ, β̄), where α

and β were vectors of all the forecaster shape and rate parameters.
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Empirical Methods: θLS(∀), θDM(∀)

Both θ methods directly modeled the forecaster judgments instead of aggre-

gating over forecaster level models, effectively treating each set of forecasts for a

consensus forecast day as a single sample. However, like the previous methods,

forecasts first had to be equated on the same Day 0.

Rather than refit distributions, these methods reallocated tokens. I propor-

tionally redistributed tokens from bins that occurred prior to the consensus forecast

day, or for which the consensus forecast day fell inside the bin. Assume a forecast

made on January 5th assigned 20 tokens to the interval [Jan 5th - Jan 14th) and the

remaining tokens to subsequent bins. For a consensus forecast on January 10th, I

would remove 10 tokens from the first bin, and divide the vector tokens for all bins

by .9, the remaining percentage of tokens left.

For the θLS(∀) I then fit exponential, gamma, and generalized gamma dis-

tributions as I did at the forecaster level, except instead of fitting one forecaster’s

pseudo probabilities, I simultaneously fit all the forecasters’ judgments. For the the

θDM(∀) method, I similarly fit all bins of tokens for all forecasters.

3.2 Results

3.2.1 Model Quality

Many forecasts did not include enough non-zero bins to fit the gamma or

generalized gamma distributions, and some forecasters assigned all 100 tokens to
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the top open interval, which prevented even fitting an exponential distribution.

Although I redistributed a small amount of probability to the zero bins as detailed

above, I was still unable to successfully fit some of the forecasts.

R2 = 1−
∑

i(pi − F̂ (qi))
2∑

i(pi − p̄)2
(3.6)

For LS fits, I defined a successful fit as any model that the optimization routine

converged and the resulting coefficient of determination R2 (Eq 3.6) was greater than

0. R2 measures how closely a model corresponds to the observed data, where F̂ is the

estimated cumulative distribution function, pi the cumulative observed probability

judgments, and qi the cut points used to elicit the forecaster’s judgments. If a model

perfectly fits the data, R2 = 1. Any model that fits the data worse than the mean

will yield R2 < 0. This statistic only measures how closely the fitted cumulative

distribution corresponds to the observed judgments, and is not any measure of how

well the fitted model represents a forecaster’s latent continuous subjective belief.

For DM fits, I defined a successful fit as any model that yielded with R2 > 0

and a Gelman-Rubin convergence diagnostic R̂ < 1.2 (Gelman and Rubin, 1992).

R̂ assesses convergence by comparing the between chain and within chain variances

for each estimated parameter. If all parameters obtain an R̂ < 1.2 the model has

demonstrated strong convergence evidence (Brooks and Gelman, 1998).

Table 3.2 contains the proportion of successful fits by forecaster modeling

method and distribution. On one end the exponential distribution fit virtually

all forecasts, while neither the LS or DM methods successfully fit a generalized
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gamma distribution to a large proportion of the forecasts. For the DM method,

less than half of the forecasts were fit successfully with the generalized gamma

distribution. I judged that the difference in the number of forecasts available for

aggregation, and therefore the amount of potential signal to extract from the crowd,

between the few generalized fits and the other distributions was too great to draw

any meaningful inferences, no matter the results. I therefore exclude the generalized

gamma distribution from all analyses other than fit quality.

Distribution

Condition exp gamma gengamma Method

Fixed 0.99 0.84 0.78 LS

Random 0.99 0.77 0.71 LS

Fixed 0.98 0.83 0.48 DM

Random 0.98 0.83 0.45 DM

Table 3.2: Proportion of ‘successful’ fits by forecaster model method and distribu-

tion. For LS models, a successful fit was defined as any fitted distribution for which

the optimization routine converged and the resulting R2 > 0. For DM fits a success-

ful fit was any model with an R̂ < 1.2 and R2 > 0 for a distribution parameterized

with the means of the posterior distribution of parameters.

For forecasts that were fit successfully, fit quality was uniformly high (Table

3.3). The gamma and generalized gamma distributions, whether LM or DM models,

obtained nearly perfect fits. As expected, the exponential distribution fits were .15
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to .20 lower than the other distributions. Since many of the forecasts contained

only 3 bins, the gamma and generalized gamma distributions are flexible enough to

fit almost any response pattern. The single parameter exponential distribution, on

the other hand, is far less flexible. Unless judgments happened to be distributed

perfectly exponential, this distribution could not obtain fits as close to the observed

judgments as the other distributions.

Distribution

Condition exp gamma gengamma Method

Fixed 0.87 1.00 1.00 LS

Random 0.77 0.99 1.00 LS

Fixed 0.89 0.99 1.00 DM

Random 0.79 0.98 0.99 DM

Table 3.3: Mean coefficient of determination R2 for all forecaster model fit methods

and distributions, only including LS models that obtained R2 > 0 and converged,

and DM models that obtained R2 > 0 and R̂ < 1.2
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3.2.2 Calibration

Forcasters
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Figure 3.3: Calibration curves for empirical forecasts for the fixed (red) and random

(blue) elicitation conditions. The black identity line represents perfect calibration.

Both conditions show severe overconfidence.

Empirical forecasts were substantially overconfident except for low probabil-

ity judgments (Fig 3.3). I assessed calibration of the forecaster models with the

variation and dispersion of the PIT histogram. I first obtained a PIT variance for

each forecaster by calculating the cumulative probability for the outcome of each of

their forecasts using each combination of fitting method (LS, DM), and fitted dis-

tribution type (exponential, gamma). This provided four variances per forecaster,

one for each combination of methods, and treats each combination of subject and
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specific forecast modeling method as a unique forecasting unit.

The primary difference in calibration for forecasters was by fitted distribution.

Figure 3.4 shows that gamma distributed fitted distributions were consistently more

underdispersed (PIT variance > .083) than the exponential fits (µdiff = 0.035, SD =

.003).

Exponential Gamma

0.00

0.05

0.10

0.15

0.20
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Condition

s P
IT

2

Method
DM

LS

Figure 3.4: Distribution of forecaster PIT variances (S2

PIT) by elicitation format,

modeling method, and fitted distribution. Boxplot notches show the asymptotic

standard error of the median. Individual values are jittered points.

I evaluated the calibration of each experimental condition and method by con-

sidering each combination of condition and method as a forecasting unit. For each

experimental condition (fixed bins, random bins), I calculated the PIT across every

forecast for each of the combinations of fitting method (LS, DM), and fitted distri-

bution type (exponential, gamma). Each forecast from each forecaster contributed

fours scores, one for each combination of fitting methods. The PIT histograms
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(Fig 3.5) show that all conditions and manipulations were underdispersed, with all

variances well above the neutral threshold of .083 (Table 3.4).

The left skew of the histograms also reveals that forecasts were biased to

predict events occurring far sooner than they actually did. The relative height of

the last decile / bar each plot indicates that the probability the fitted distributions

assigned to many events was close to 100%, and therefore that the events occurred

far into the right tail of the distributions.

Since the PIT method yields only a single histogram/variance for each com-

bination of methods and conditions, I estimated marginal differences in dispersion

with an independent non-parametric bootstrap for each of the comparisons. For elic-

itation condition, fitting method, and distribution type, I calculated the difference in

PIT variance between the levels (e.g. fixed - random) on 1,000 resamples of the data.

The entire dataset (10,323 forecasts) was sampled with replacement each iteration.

Random elicitation was consistently more underdispersed than fixed elicitation (95%

CI[.010, .014]), least-squares fitting more underdispersed than Dirichlet-multinomial

(95% CI[.004, .008]), and the gamma distributions were more underdispersed than

the exponential (95% CI[.025, .029]).
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Figure 3.5: PIT histograms for each elicitation condition (Fixed, Random), fore-

cast fitting method (Least-Squares, Bayes), and fitted distribution (Exponential,

Gamma)

Distribution Condition Least-Squares Dir-Mult

Gamma Random 0.17 0.16

Gamma Fixed 0.15 0.15

Exponential Random 0.14 0.13

Exponential Fixed 0.13 0.12

Table 3.4: PIT variance across forecasters for each experimental condition, fitting

method, fitted distribution

Consensus

Every consensus method produced a forecast for every forecasting question,

for every day that the question was open and that there was at least one forecast
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level forecast. In total, there were 138,611 unique consensus forecasts across all the

consensus methods. In general, the consensus methods tended to mitigate the severe

underdispersion of the forecaster level distributions, though there are some cases

where underdispersion increased relative to individual forecasters. For example, the

combination of the µ(θLS) consensus method and gamma distributions yielded not

only underdispersed, but extremely biased forecasts (Fig 3.6).
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Figure 3.6: PIT histograms for every consensus method, by elicitation format and

distribution type.
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Figure 3.7: PIT variances by consensus method, condition, and distribution.
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Figure 3.8: Distribution of PIT variances by condition and distribution.

While there were only minor differences in dispersion between methods and

distributions at the forecaster level, there were clear differences in the calibration

(Fig 3.6) and PIT variances (Fig 3.7) at the consensus level. Across consensus
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methods, the gamma distributions tended to be underdispersed while the exponen-

tial distributions were slightly overdispersed (Fig 3.8).

Given the extreme bias of the forecaster level models, and the attenuated yet

still considerable bias at the consensus level, the variance of the PIT may be less

informative than visual distribution of the histograms. As a simpler alternative to

PIT variances, I calculated the central 50% and 90% confidence intervals for each

consensus method, condition, and distribution (Table 3.5). A well calibrated fore-

cast method would capture the same proportion of events as the central confidence

interval. Across methods the gamma distribution models tended to exhibit greater

overprecision than the random distribution models (Fig 3.9). You could infer these

intervals directly from the PIT histograms, but the table and boxplot format makes

it easier to compare intervals across methods and conditions. While the pattern of

intervals is similar across methods, the mean-theta method for the random condition

obtained extremely narrow confidence intervals.
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Exponential Gamma

Method Condition 50% 90% 50% 90%

θDM(∀) Fixed 40 74 39 72

Random 36 66 40 68

θLS(∀) Fixed 47 83 43 76

Random 40 77 38 70

µ(FDM) Fixed 57 90 39 72

Random 53 87 33 64

M(FDM) Fixed 44 76 30 55

Random 41 69 24 42

µ(FLS) Fixed 70 90 41 76

Random 63 90 37 73

M(FLS) Fixed 55 82 29 59

Random 48 80 23 48

µ(θLS) Fixed 33 64 17 27

Random 28 55 11 18

M(θLS) Fixed 55 81 24 47

Random 48 80 20 39

Table 3.5: Width of consensus method central 50% and 90% confidence intervals by

experimental condition, fitting method, and distribution.
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Figure 3.9: Proportion of events occurring within the 50% and 90% central confi-

dence intervals for exponential and gamma distributions, collapsed across consensus

methods.

3.2.3 Accuracy

I scored discrete forecasts with the rank probability score (RPS) in Equation

3.7 and continuous forecasts with the continuous rank probability score in Equation

3.8. The RPS is a Brier score for questions with at least two categories. This score

divides forecasts for n ordered alternatives into a series of binary alternatives as the

threshold moves up from lower to higher. The Brier score is calculated for each of

the n− 1 binary partitions and the final result is the average of the separate scores

where n is the number of cut points; qi the quantile associated with cut point i,

i = 1...n; o the observed value; F the predictive cumulative distribution function;

and 1o≤qi equals 1 if o is less than or equal to qi, otherwise 0. In the form in Equation
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3.7, the scores can range from [0,2], with 0 the best possible score and 2 the worst

possible score.

SR =
2

n

n∑
i=1

[F (qi)− 1o≤qi ]
2 (3.7)

Since SR is dependent on the location of partitions, I could not score the

cut points used to originally elicit the forecasts. Although the fixed and random

elicitation conditions had identical minimum and maximum values in which the

cut points could be distributed, the location of the cut points differed by con-

dition. The cut points were identical for every forecaster in the fixed condition,

and effectively different for every forecaster in the random condition. For ex-

ample, assume a continuous forecast distributed N(0, 1) and an outcome o = 1.

If a forecasting question had one cut point at 0, then the forecast would score

2 [F (x < 0)− 11≤0]
2 = 2(.5 − 0)2 = .5. However, if the cut point was at 1.64, then

the forecast would score 2 [F (x < 1.64)− 11≤1.64]
2 = 2(.95 − 1)2 = .005. Although

the only difference in examples was the location of the cut point, the second forecast

appears much more accurate than the first.

I scored continuous forecasts, i.e. the fitted continuous forecaster and consen-

sus distributions, with the Continuous Rank Probability Score (CRPS). The CRPS

(Eq 3.8) is a generalization of mean absolute error (MAE) and is equivalent to inte-

grating the RPS across all possible real-valued thresholds (Matheson and Winkler,

1976). It is a generalization of MAE in the sense that since the score integrates the

area between the predictive CDF and the step function for the observed outcome
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(P (x < o) = 0, P (x ≥ o = 1)) over the support of the variable, the score will be in

units of forecasted event. The more probability density that a predictive distribution

places close to the true outcome, the lower the score will be.

SC =

∫ ∞
−∞

[F (x)− 1o≤qi ]
2 (3.8)

3.2.3.1 Forecaster Level

RPS (SR)

Both the modeled and empirical forecaster RPS scores were quite variable (Fig

3.10). I evaluated the modeled forecasts with a varying-intercepts beta regression

using R (R Core Team, 2015) and the rstan package (Stan Development Team, 2015)

in order to estimate the effects of the conditions and forecast modeling methods on

the RPS scores.
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Figure 3.10: Distribution of SR scores. The left panel displays scores for the em-

pirical forecasts, scored against the cut points used to elicit the judgments. The

right panel displays scores for the forecaster level continuous models by modeling

method, distribution, and condition, scored against the GJP cut points.

Method

Condition Distribution DM LS

Fixed Exp 0.66 (0.67) 0.54 (0.59)

Gamma 0.64 (0.70) 0.59 (0.66)

Random Exp 0.71 (0.71) 0.59 (0.64)

Gamma 0.71 (0.76) 0.65 (0.72)

Table 3.6: Mean (SD) SR for all conditions and forecast modeling methods at the

forecaster level.

I modeled the scores as the linear combination of regression coefficients β

and intercept-free model matrix X of the full interaction of condition (fixed, ran-

dom), distribution (exponential, gamma) and model type (Dirichlet-multinomial,

least-squares). Each predicted score was offset by a varying intercept αj for the

corresponding forecasting question for the score to account for differences in the
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forecasting questions that could skew the results. I set a N(logit(.25), 1) prior on

the constant α0 to regularize the scores towards .25, the RPS score for a forecaster

who always guesses 50% probability for a dichotomous event. The remaining priors

are included in Figure 3.11.

SRi
∼ B(µiφ, (1− µ)φ)

logit(µi) = αj[i] + β0 +Xiβ

α0 ∼ N(logit(.25), 1)

β = 10 · θ

θ ∼ N(0, 1)

φ ∼ Cauchy(0, 5)

α ∼ N(0, σα)

σα ∼ |N(0, 1)|

Figure 3.11: Hierarchical beta regression model for forecaster SR scores, with varying

intercepts αj for each forecasting question j; model matrix X of predictors for

experimental condition, fitted distribution, and forecaster model; and regression

coefficients β.

I sampled 4 chains, with 3,000 iterations each, and discarded the first 1,500

samples in each chain as a burn-in. I assume an adequate posterior sample based

on visual inspection of the predicted scores and distribution of the Gelman-Rubin

R̂ convergence diagnostic (Gelman et al., 2013) (Fig 3.12). All of the regression
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coefficients, excluding the varying intercepts, are included in the caterpillar plot in

Figure 3.13. Parameters for condition, distribution, and modeling method imply a

comparison to the unnamed reference level, e.g. the reference level for the ‘random’

parameter is the the fixed condition.

●●
●

●
●●●●

●● ●
●

●●●●

● ●
●

●
● ●●●● ●

● ●
● ●● ●

●●
●

●
●●●●

● ●
●

●
● ●●●

● ●
●

●
●●●●

●● ●
●

●●●●

●●●●●● ●●

●●
●●

●● ●●● ●
● ●
● ●● ●

●●●●●● ● ●

● ●
●

●
●●●●

● ●●●●●●●

●●
●●●●●●

●●●
●

●●●●

● ●
●●

●●●●

● ●
●

●
● ●● ●

● ●
● ●
● ●● ●

● ●
●

●
● ●● ●● ●

●
●

● ●● ●

●●
●●

● ●●●
●●●●●●●●

●●●
●

● ●●●

● ●
● ●
● ●● ●

● ●
●

●
● ●● ●

●●
●●

●●●●
●●

●●
●●●●

● ●
●●

● ●●●
●●● ●

● ●● ●●●
●●
●●●●

●●
●●●●●●

●●
●

●
●● ●●

●●●●●●●●

●●●
●

●● ●●

● ●
●●●● ●●

● ●
●
●

●●●●

●●
● ●
●●●●

● ●
●

●
●●●●

●●
●●

●● ●●
●●

●●
●● ●●

● ●
● ●
● ●●●●●
●●

●●●●

● ●
●●
●●●● ●●

●●
●● ●●

0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

SR

S
R^

R̂

F
re

qu
en

cy

1.00 1.02 1.04

Figure 3.12: Diagnostic plots for Bayesian varying-intercepts beta regression model

for forecaster level RPS scores. The left panel plots the mean empirical SR and

posterior ŜR scores by condition, method, distribution, and forecasting question.

The right panel shows the distribution of the Gelman-Rubin convergence diagnostic

R̂.
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Figure 3.13: HDI and posterior median for each non-varying coefficient for the

varying-intercepts beta regression model for forecaster level RPS scores. The thick

black lines represent the posterior 50% HDI. The thin lines represent the 95% HDI.
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Though it’s easy to discern the credible intervals of the coefficients in Figure

3.13, it can be somewhat more difficult to mentally transform coefficients to direct

differences in manipulations and conditions. Figure 3.14 plots the relevant marginal

differences in means for the method, distribution, and elicitation format. Forecaster

model had the largest effect (µ = −0.08, 95% HDI [-0.10, -0.06]), though the gamma

distribution scored reliably lower than the exponential and fixed bins scored lower

than random. The LS forecaster model with fixed bins, both for the gamma and

exponential distributions scored lower than any other combination of method and

condition (Table 3.7).

µLS − µDM

−0.10 −0.08 −0.06 −0.04 −0.02 0.00

mean = −0.0774

100% < 0 < 0%

95% HDI
−0.0954 −0.0603

µgamma − µexp

−0.05 −0.03 −0.01 0.00 0.01

mean = −0.02

98.2% < 0 < 1.8%

95% HDI
−0.0376 −0.00141

µfixed − µrandom

−0.06 −0.04 −0.02 0.00

mean = −0.033

100% < 0 < 0%

95% HDI
−0.0508 −0.015

Figure 3.14: Posterior distribution of simple effects for the varying-intercepts beta

regression model for forecaster level RPS scores. Solid horizontal black lines display

the width of the 95% HDI, vertical green lines with text show what percentage of

the distribution falls above/below 0.
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Method

Distribution Condition DM LS

Exponential Fixed 0.39 [0.38, 0.40] 0.34 [0.33, 0.35]

Random 0.41 [0.40, 0.42] 0.35 [0.34, 0.36]

Gamma Fixed 0.36 [0.35, 0.38] 0.34 [0.33, 0.35]

Random 0.39 [0.37, 0.40] 0.36 [0.35, 0.37]

Table 3.7: Posterior ‘cell’ medians (95% HDI) for each combination of experimental

condition, distribution, and forecaster model for the varying-intercepts beta regres-

sion model for forecaster level RPS scores.

CRPS (SC)

The CRPS can be difficult to compare across forecasting questions because

it is sensitive to distance and can be interpreted in units of the forecasted vari-

able. Assume two continuous forecasts for two independent events. The first event

occurs 10 days after the forecast, and the second event occurs 100 days after the

forecast, and both forecasts yield scores of SC = 1. In terms of the magnitude of the

scores, the forecasts are equivalently accurate, about one day off from the true value.

The forecast for the event that occured 100 days from the forecast is clearly more

impressive, but without transforming the score, they appear to equally accurate.

Sγ =
SC

Resolution−Date
(3.9)
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In order to make the scores for each forecasting more directly comparable, I

scaled all scores by the distance in days from the forecast to the event resolution

(Eq 3.9). I interpret this transformed score as the relative absolute error of the

forecast as a proportion of the distance in days between forecast production and

event resolution. The scores for the previous example would then become 1
10

and

1
100

, with the score for the further event becoming ten times as relatively accurate

as the the more immediate event.

I was also interested in whether where we set the elicitation cut points relative

to the event resolution affected the forecast scores. To evaluate this, I included

a covariate in all CRPS analyses that was an index of this relative distance be-

tween event resolution and the elicitation interval. GJP-CE assigned a maximum

and minimum date within which cut points could be assigned for each forecasting

question. For the fixed elicitation condition, the minimum cut point delineated the

first elicitation bin, and the maximum cut point delineated the minimum bound of

the last open-interval bin. For the random elicitation condition, all cut points were

randomly distributed between the maximum and minimum. I defined a measure d

as the ratio of the distance in days between the event resolution and minimum date

(Rangelow) and the width in days of interval over which cut points were distributed

(Eq 3.10).

d =
Resolution− Rangelow
Rangehigh − Rangelow

(3.10)

I modeled the scores as the linear combination of regression coefficients β
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and intercept-free model matrix X of the full interaction of condition (fixed, ran-

dom), distribution (exponential, gamma) and model type (Dirichlet-multinomial,

least-squares), and the continuous predictor d. Each predicted score was offset by

a varying intercept αj for the corresponding forecasting question for the score to

account for differences in the forecasting questions that could skew the results. I

used mildly regularizing priors on all parameters (Fig 3.15).

log(SCi
) ∼ N(µi, σ)

µi = αj[i] +Xiβ

σ ∼ |N(0, 10)|

α ∼ N(0, 5)

β = 10 · θ

θ ∼ N(0, 1)

σα ∼ |N(0, 10)|

Figure 3.15: Hierarchical regression model for forecaster SC scores, with varying

intercepts αj for each forecasting question j; model matrix X of predictors for

experimental condition, fitted distribution, forecaster model, and distance d; and

regression coefficients β.

I sampled 4 chains, with 3,000 iterations each, and discarded the first 1,500

samples in each chain as a burn-in. I assume an adequate posterior sample based

on visual inspection of the predicted scores and distribution of the Gelman-Rubin
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R̂ convergence diagnostic. All of the regression coefficients, excluding the vary-

ing intercepts, are included in the caterpillar plot in Figure 3.17. Parameters for

condition, distribution, and modeling method imply a comparison to the unnamed

reference level, e.g. the reference level for the ‘random’ parameter is the the fixed

condition.
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Figure 3.16: Diagnostic plots for Bayesian varying-intercepts beta regression model

for forecaster level CRPS scores. The left panel plots the mean empirical log(SC)

and posterior log(ŜC) scores by condition, method, distribution, and forecasting

question. The right panel shows the distribution of the Gelman-Rubin convergence

diagnostic R̂.
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Figure 3.17: HDI and posterior median for each non-varying coefficient for the

varying-intercepts beta regression model for forecaster level CRPS scores. The thick

black lines represent the posterior 50% HDI. The thin lines represent the 95% HDI.

The coefficient means and HDIs in Figure 3.17 show that nearly every predictor

led to credible differences in forecast scores. However, the interactions, log scale of

the dependent variable, and influence of the continuous predictor d make these

coefficients difficult to interpret. The remainder of analyses and visualizations in

this section will focus on the posterior distribution of scores transformed back to the

original Sγ values. I transformed scores back to Sγ units via exp(ŷij +
σ2
j

2
), where

ŷij is score i from MCMC sample j, and σ2
j is the regression variance for sample j.

As resolution distance d increased, Sγ decreased (Fig 3.18). While this was

the largest “effect” in the model, by itself it is is not particularly informative above

demonstrating that the relative magnitude of the Sγ scores to the elicitation interval

decreased as the resolution distance increased, i.e. that unscaled scores increased as

d increased, but increased at a slower rate than d. However, differences in forecast
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accuracy between the conditions interacted with d (Fig 3.19).
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Figure 3.18: HDIs and posterior median for Sγ by resolution distance d for the

varying-intercepts beta regression model for forecaster level CRPS scores. The thick

black lines represent the 50% HDI. The thin lines represent the 95% HDI. d is log-

scaled to make it easier to distinguish values between 0 and 1.
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Figure 3.19: HDIs and posterior median for difference in Sγ scores by elicitation for-

mat (top panel), distribution (middle panel), and forecaster model (bottom panel).

The thick black lines represent the 50% HDI. The thin lines represent the 95% HDI.

d is log-scaled to make it easier to distinguish values between 0 and 1.

Fixed bin elicitation tended to score higher (worse) than random bins when
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events resolved early within the elicitation interval (for d < .05, µdiff = 1.21, 95%

HDI [0.09, 2.65]), but scored lower (better) than random elicitation when events

resolved well after the elicitation interval (for d > 1, µdiff = −0.59, 95% HDI [-1.42,

0.02]). Overall, LS models models obtained lower scores than DM (µdiff = −0.13,

95% HDI [-0.22, -0.05]), though this effect was driven largely by the conditional

difference between LS and DM for gamma distributions (µdiff = −0.23, 95% HDI

[-0.48, -0.00]) (Fig 3.20).
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Figure 3.20: HDIs and posterior median for differences in Sγ, by distance d, be-

tween the different combinations of forecaster model (LS,DM) and distribution (exp,

gamma). The thick lines represent the 50% HDI. The thin lines represent the 95%

HDI. d is log-scaled to make it easier to distinguish values between 0 and 1.

Even though there are several credible interactions between the different con-

ditions and resolution distance, there are still clear differences between the modeling

methods. The left panel of Figure 3.21 plots the posterior differences in conditional

means between each combination of distribution, elicitation format, and forecaster

model. The right panel makes the same comparisons, but collapsed across elicitation
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format. In this format, it’s easier to see that the the LS forecaster model credibly

outperformed all other methods.
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Figure 3.21: Excluding questions with d > 1.25, HDIs and posterior median for

differences in Sγ between conditional distributions of means for elicitation format,

distribution, and forecaster model, and the mean score for gamma and exponential

least-squares fits. The thick lines represent the 50% HDI. The thin lines represent

the 95% HDI. d is log-scaled to make it easier to distinguish values between 0 and

1.

3.2.3.2 Consensus Level

RPS (SR)

I fit the consensus level RPS scores with the same Bayesian varying-intercepts

beta regression as the forecaster level (Fig 3.11), but included indicator predictors

for the different consensus methods. The model converged as indexed by all R̂ < 1.2,

and the correspondence between the predicted and empirical scores indicated that

the model adequately represented the data generating process (Fig 3.22).
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Figure 3.22: Diagnostic plots for varying-intercepts beta regression model for con-

sensus level SR scores. The left panel plots the empirical density of scores (red) with

20 posterior sample densities overlayed with black lines. The right panel shows the

distribution of the Gelman-Rubin convergence diagnostic R̂.

Figure 3.23 displays the posterior estimates for the regression coefficients for

the effects of condition, distribution, and consensus method. Since the full inter-

action model includes 71 parameters, excluding the varying intercepts, I only show

coefficients where at least the 50% HDI excluded 0. DM-All is the reference level

for all consensus method coefficients.

There were very few credible differences between the consensus methods, dis-

tributions, and elicitation formats. Exponential methods were credibly more accu-

rate than gamma methods (µdiff = −0.005, HDI[0.000, 0.010]), but the effect was

minuscule.

Even though there is no clearly superior method for discrete forecasts, consen-

sus aggregation did improve forecast accuracy. For example, the M(FLS) consensus

method with exponential fits averaged M = −0.16 (IQR[.06,.26]) points lower than

the best forecaster model, least-squares exponential fits to fixed bin forecasts.
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Figure 3.23: HDIs and posterior median for each non-varying coefficient where at

least the 50% HDI excluded 0, for varying-intercepts beta regression model for con-

sensus level SR scores. The thick black lines represent the posterior 50% HDI. The

thin lines represent the 95% HDI.

CRPS (SC)

I fit the consensus level CRPS scores with the same varying-intercepts log-

linear model as the forecaster level (Fig 3.15), but included indicator predictors for

the different consensus methods. The model converged as indexed by all R̂ < 1.2,

and the correspondence between the predicted and empirical scores indicated that

the model adequately represented the data generating process (Fig 3.24).

Figure 3.25 displays the posterior estimates for the regression coefficients for
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the effects of condition, distribution, and consensus method. I only display coeffi-

cients where at least the 50% HDI excluded 0.
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Figure 3.24: Diagnostic plots for varying-intercepts log-linear regression model for

consensus level SC scores. The left panel plots the empirical density of scores (red)

with 20 posterior sample densities overlayed with black lines. The right panel shows

the distribution of the Gelman-Rubin convergence diagnostic R̂.

Similar to the forecaster level scores, as resolution distance d increased, Sγ de-

creased, and the random elicitation format tended to obtain lower (more accurate)

scores when d < .5 (Fig 3.26). Unlike the forecaster level, the consensus methods

based on the gamma marginally outperformed exponential methods. However, nei-

ther of these trends were consistent across all methods, due to interactions with

d.

To get a better picture of how the relative accuracy of the different methods

changed as a function of of the resolution distance I sampled the predictive posterior

distribution of the fitted model. Instead of using the empirical values for d, I created

a new model matrix with the same combinations of conditions, but 20 new d values

equally spaced between 0.01 and 4.0. Figure 3.2.3.2 compares the median posterior
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Figure 3.25: Posterior parameter estimates for varying-intercepts log-linear regres-

sion model for consensus level SC scores, for the effects of condition, distribution,

and consensus method

predictive Sγ scores for these data. For all conditions, the M(FDM) and µ(FDM)

methods yield more accurate forecasts for approximately d > .5, but as d approaches

0, they become the worst scoring methods.

Resolution distance is a property of the event, and not the forecast or question.

While it is unlikely that it can be well controlled for, given that a forecast is a known

distance into the elicited range there exists a minimum bound for d. For example, if

a forecaster provided judgments that covered a 30 day interval from the day of the

forecast, and the forecast was made 15 days ago, the minimum value d could obtain

is .5. If some consensus methods perform better than others as a function of d, then

this could provide a way to select the most optimal consensus method throughout
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the life of a forecasted question.

I sampled the conditional posterior predictive means for all conditions and

for three ranges of d (d < .5, d > .5, .1 < d < .9), and calculated the differences

from the M(θLS) consensus method fit with the gamma distribution (Table 3.2.3.2).

Relative to this method, there were no consistent differences in consensus accuracy

given .1 < d < .9 or d < .5. For d > .5, the µ(FDM) and M(FDM) methods

were more accurate than M(θLS), particularly for random set bins and gamma

distributions. For these conditions µ(FDM) averaged M=-0.25 95% HDI[-0.52,-0.04]

S|γ points lower than M(θLS). In the case that an event occurred at the end of the

elicited range, the µ(FDM) method would then on average score .25 · range CRPS

(SC) points lower than M(θLS).

3.3 Comparison to GJP scores

One of the advantages of this dataset is that the forecasting questions we used

were concurrently issued on the main Good Judgment Project (GJP) forecasting

platform. This was an independent experiment, with different forecasters, and a

different web based forecasting application. The question format was slightly differ-

ent as well. While all of our questions elicited three or more interval judgments, the

majority of the GJP questions elicited only one or two bins, and the cut points they

used to set those those bins were independent of ours. GJP aggregated discrete fore-

caster judgments with 38 different methods. Once a forecasting question resolved,

then each of these methods would be scored and receive a mean daily Brier/RPS
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Figure 3.26: HDIs and posterior median for difference in mean daily Sγ scores

by elicitation format (top panel) and distribution (middle panel), and forecaster

model (bottom panel). The thick black lines represent the 50% HDI. The thin lines

represent the 95% HDI. d is log-scaled to make it easier to distinguish values between

0 and 1.

score for the question.

One of the advantages of continuous forecast models is that you can impute a

probability for a value that was never elicited. Using GJP’s cut points, I calculated

a mean daily RPS score for every question for every consensus method and com-

pared the consensus forecast scores to those of GJP discrete aggregation methods

(Fig 3.28). The worst performing consensus method on these scores was µ(θLS) with
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Figure 3.27: Median posterior predictive Sγ scores for d = .01, .022, .043, . . . , 4.0, by

elicitation format, distribution, and consensus method.

gamma distributions on random bin forecasts (MSR
= 0.59, IQR[0.06,1.46]) scored

better than 37% of GJP discrete methods. The best performing consensus method,

M(FDM) (MSR
=.27, IQR[0.15,0.52]) scored better than 42% of GJP discrete meth-

ods.
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3.4 Summary

Overall, the consensus methods performed quite well, particularly given the

variability in empirical forecaster judgments. Consensus aggregation improved cal-

ibration, improved forecast accuracy for discrete judgments, and improved the ac-

curacy of continuous models.

For discrete forecasts, the RPS for the M(FLS) consensus method with ex-

ponential fits averaged M = 0.16 (IQR[.06,.26]) less than than the best forecaster

model, least-squares exponential fits to fixed bin forecasts. The M(FLS) RPS scores

were M=39% (IQR[2%, 61%]) lower than LS fit exponential forecaster models.

For continuous scores, M(FLS) for gamma fits to random bins averaged Sγ scores

M=24% (IQR[-1%, 44%]) lower than the best forecaster continuous method, expo-

nential LS fits to fixed bin forecasts. That the consensus methods performed so

well relative to GJP discrete aggregation on their own forecasts and cut points pro-

vides compelling evidence that consensus accuracy was not just a function of the

particular sample of forecasts used to generate the models.

Across methods, consensus models attenuated overdispersion and improved

calibration. Forecasts tended to be overdispersed at both the forecaster and con-

sensus levels, but overdispersion was much more severe for forecaster models. Both

consensus methods that directly modeled forecaster judgments instead of aggregat-

ing over forecaster models, θDM(∀) and θLS(∀) obtained close to neutrally dispersed

PIT variances of .083. On the one hand this is evidence that the consensus methods

improved forecasts.
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At the forecaster level, there were a few conditions that clearly outperformed

the others. For discrete forecasts, the combination of fixed bin elicitation, gamma

distributions, and LS forecaster models outperformed all others. However, for con-

tinuous forecasts, random elicitation and exponential fits were marginally better. It

isn’t surprising that different methods would be more or less accurate depending

on whether RPS or CRPS scores were evaluated. For the discrete forecasts, the

probability assigned to each interval is the only influence on the RPS score. For

the continuous forecasts, the CRPS is heavily influenced by the magnitude of the

outcome, so questions that resolve later will tend to have higher scores. The CRPS

also accounts for how much probability is concentrated around near the outcome. If

that outcome occurs far beyond the elicitation interval, then the score is primarily

a function of the tails of the model fit to the forecasts.

At the consensus level there were few clear differences in accuracy between

the methods. While across all the methods exponential distributions yielded better

RPS scores (µdiff = −0.005, HDI[0.000, 0.010]), the effect was small in a practical

sense. For example, for a single cut-point question forecasting whether some event

will occur before date q, a difference in scores of .005 is equivalent to a forecaster

assigning P(x < q) = .5025 versus P(x < q) = .5000, or one quarter of a percentage

point of probability.

Continuous consensus forecast performance depended heavily on when the

event occurred relative to the range over which judgments were elicited. When

events occurred early within that range (d < .5) no method yielded consistently more

accurate scores than another, and between forecaster scores were highly variable.
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When events occurred relatively later (d > .5) the FDM consensus methods obtained

the most accurate scores. Although method differences were highly conditional,

random bin elicitation did consistently provide more accurate forecasts than fixed

bins, though this advantage attenuated as d increased, and largely disappeared for

d > 1.
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Method Distribution Condition d > .5 d < .5 .1 < d < .9

µ(FLS) Exp Fixed 0.04 [-0.2, 0.25] 0.99 [-0.32, 2.72] 0.65 [-0.32, 1.72]

Random 0.04 [-0.2, 0.27] 0.79 [-0.57, 2.39] 0.54 [-0.34, 1.67]

Gamma Fixed -0.01 [-0.23, 0.21] 0.46 [-0.72, 1.87] 0.30 [-0.54, 1.27]

Random -0.01 [-0.23, 0.21] 0.39 [-0.95, 1.63] 0.25 [-0.61, 1.17]

M(FLS) Exp Fixed 0.04 [-0.19, 0.27] 1.00 [-0.34, 2.67] 0.66 [-0.33, 1.74]

Random 0.04 [-0.19, 0.27] 0.81 [-0.5, 2.44] 0.54 [-0.43, 1.59]

Gamma Fixed -0.02 [-0.24, 0.21] 0.47 [-0.69, 1.92] 0.29 [-0.59, 1.21]

Random -0.01 [-0.23, 0.21] 0.39 [-0.73, 1.77] 0.25 [-0.62, 1.15]

µ(θLS) Exp Fixed -0.02 [-0.25, 0.19] -0.27 [-1.29, 0.8] -0.2 [-0.95, 0.56]

Random 0.03 [-0.19, 0.26] -0.26 [-1.37, 0.69] -0.16 [-0.9, 0.6]

Gamma Fixed 0.12 [-0.11, 0.39] 0.32 [-0.88, 1.55] 0.27 [-0.57, 1.22]

Random 0.17 [-0.05, 0.46] 0.42 [-0.81, 1.79] 0.37 [-0.49, 1.37]

M(θLS) Exp Fixed -0.02 [-0.25, 0.19] 0.51 [-0.75, 1.89] 0.31 [-0.53, 1.3]

Random -0.02 [-0.25, 0.19] 0.36 [-0.79, 1.65] 0.23 [-0.62, 1.11]

Gamma Fixed - - -

Random 0.03 [-0.19, 0.26] 0.08 [-0.99, 1.26] 0.07 [-0.71, 0.91]

θLS(∀) Exp Fixed -0.04 [-0.26, 0.19] 0.49 [-0.75, 1.87] 0.3 [-0.55, 1.25]

Random -0.04 [-0.26, 0.17] 0.31 [-0.95, 1.56] 0.18 [-0.65, 1.04]

Gamma Fixed -0.01 [-0.23, 0.2] 0.42 [-0.77, 1.81] 0.27 [-0.6, 1.18]

Random -0.01 [-0.22, 0.21] 0.34 [-0.91, 1.63] 0.22 [-0.6, 1.12]

θDM (∀) Exp Fixed 0.02 [-0.2, 0.24] 0.42 [-0.77, 1.84] 0.28 [-0.55, 1.27]

Random 0.03 [-0.2, 0.25] 0.28 [-0.84, 1.66] 0.21 [-0.61, 1.12]

Gamma Fixed 0.01 [-0.2, 0.23] 0.29 [-0.9, 1.54] 0.2 [-0.63, 1.1]

Random 0.05 [-0.16, 0.3] 0.27 [-0.95, 1.48] 0.2 [-0.65, 1.09]

µ(FDM ) Exp Fixed -0.13 [-0.38, 0.08] 1.14 [-0.23, 2.9] 0.56 [-0.31, 1.7]

Random -0.19 [-0.46, 0.01] 0.86 [-0.46, 2.53] 0.36 [-0.53, 1.3]

Gamma Fixed -0.22 [-0.47, 0] 1.12 [-0.25, 2.94] 0.46 [-0.44, 1.49]

Random -0.25 [-0.52, -0.04] 0.97 [-0.44, 2.65] 0.33 [-0.5, 1.35]

M(FDM ) Exp Fixed -0.15 [-0.4, 0.06] 0.89 [-0.43, 2.54] 0.42 [-0.45, 1.47]

Random -0.21 [-0.47, -0.01] 0.77 [-0.6, 2.26] 0.29 [-0.64, 1.19]

Gamma Fixed -0.2 [-0.45, 0.03] 1.17 [-0.27, 3.02] 0.5[ -0.41, 1.53]

Random -0.23 [-0.49, 0.00] 1.11 [-0.28, 2.90] 0.44 [-0.46, 1.50]

Table 3.8: Median and 95% HDI for conditional posterior predictive means.

79



Chapter 4: General Discussion

An accurate probability distribution over all possible values of the forecasted

event is much more useful to a decision maker than a discrete forecast because it can

provide a judgment for any partition of the event, independent of what values were

elicited from forecasters, and can be easily integrated into a broad range of deci-

sion analyses. However, eliciting complete distributions from an individual judge is

impractical in many contexts. Previous research from the Good Judgment Project

(GJP) has shown that fitting gamma distributions to relatively few interval prob-

ability judgments, and then aggregating those distributions by taking the median

of the distribution parameters across all forecasters, could yield accurate consensus

models (Tidwell et al., 2015).

This dissertation evaluated the performance of potential methods to extend

and improve the GJP research for forecasts of unique events that occur only once.

Continuous models of forecaster judgments were fit with exponential, gamma, and

generalized gamma distributions to determine whether more or less flexible functions

would improve forecast accuracy. Aggregate consensus forecasts were obtained from

the linear combination of forecaster level probabilities or distribution parameters,

and by fitting distributions to sets of forecaster judgments instead of at the individ-
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ual level.

The previous chapter detailed analytic results specific to various experimen-

tal and computational manipulations; however, these results can only inform what

constitutes an optimal forecasting system subject to the goals of the forecasting

system. For example, if the goal of a forecasting system is to achieve the most well-

calibrated forecaster level judgments, then the combination of methods that achieve

this would be the most appropriate; however, these methods may not necessarily

yield the most accurate continuous forecasts at either the forecaster or consensus

levels. Any continuous forecasting system will likely have a many goals, includ-

ing evaluating individual forecaster performance and achieving accurate consensus

models.

I divide the methods I evaluated in this dissertation broadly into elicitation

and computation. Elicitation methods include anything used to elicit empirical

judgments from forecasters. Computational methods include all of the analytic

steps used to manipulate the empirical judgments in some way. Since the empirical

judgments are fixed once elicited, the optimal elicitation methods are those that pro-

vide the most accurate forecasts across a range of forecasting goals. Computational

methods are not similarly constrained. Given a set of empirical judgments, one can

apply whatever computational method is best suited for a particular forecasting

goal. For example, if the goals of a forecasting system were to both compare indi-

vidual forecaster accuracy and obtain the most accurate consensus forecasts, then

one could use different computational methods to achieve each goal, but clearly only

one elicitation method.
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4.0.1 What is the best elicitation method?

With the exception of forecast level discrete scores, random-set bin elicitation

yielded the most accurate forecasts (i.e. lowest RPS and CRPS scores). This implies

that a forecasting system should use random bins to maximize forecast accuracy

across the widest number of possible forecasting goals and computational methods.

There is the trade-off of potentially less accurate discrete forecaster level forecasts,

but this seems like a reasonable cost given the benefits of continuous forecasts at

both the forecaster and consensus levels.

A likely explanation for the superior performance of random bins are the same

reasons that motivated including it as an experimental condition: to attenuate the

effects of partition dependence and to elicit judgments across a greater range of

values of the forecasted variable. Partition dependence is the tendency for forecasters

to anchor and adjust from 1
n

probability judgments for a variable partitioned into

mutually exclusive and exhaustive intervals (Fox and Clemen, 2005). Fixed bins

concentrate this bias at the same values of the elicited variable across forecasters,

and therefore likely lead to similarly biased forecaster level models, and consequently

biased consensus models. By eliciting random bins, the bias introduced by partition

dependence at the forecaster level can be attenuated in aggregation at the consensus

level.

One should also expect random bins to increase forecast accuracy at the con-

sensus level because the consensus methods will aggregate over more distinct infor-

mation than with fixed bins. Both fixed and random elicitation are, by definition,
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interval censored at the forecaster level. However, aggregating over fixed bins carries

this censoring through to the aggregate model, while random bins approximate a

random sample of judgments across the elicitation range.

4.0.2 What are the best computational methods?

4.0.2.1 Forecaster Accuracy

Fitting exponential distributions via least-squares yielded the best continuous

forecast accuracy. Though exponential distributions yielded poorer fits to empirical

judgments, they were better calibrated and scored nearly as well as gamma fits for

discrete forecasts and slightly better for continuous forecasts. This suggests that

there is little benefit, and possibly a cost, to modeling small sets of judgments with

flexible multi-parameter distributions. When a forecaster provides only three or four

estimates, a higher parameter distribution will necessarily obtain a better fit to those

judgments, but the fit between the model and the probabilities doesn’t necessarily

correspond to how well the distribution represents true subjective belief. Even with

a large number of judgments, more flexible distributions may not necessarily do a

better job of modeling true subjective belief. Assuming forecasters produce overt

judgments with some error component, then the closer a model fits the observed

judgments the better the model represents the true belief plus error distribution,

not true belief.

Least-squares models were considerably more accurate than the Dirichlet-

multinomial for forecaster judgments across elicitation format and distribution, and
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should be the modeling choice if the goal is to maximize the accuracy of forecaster

level continuous models. However, this consistent difference is somewhat surprising

given that the LS and DM models are effectively conducting the same task: finding

distribution parameters that fit the observed judgments as closely as possible. The

primary difference in these approaches, aside from the token/probability distinction,

is that the DM model incorporates the relatively strong weight w = 100 on the prior

distribution for the forecasters’ continuous subjective distribution. Since I needed

to fit over 100,000 DM models, it was impractical to monitor and adapt the models

for individual forecasters, and this weight helped ensure that the models converged

and produced consistent results. Clearly the benefits of obtaining quick and consis-

tent convergence came at the cost of model accuracy. Future work should be able

to refine the DM model and its constituent priors to yield consistently tractable, as

well as accurate, forecaster level models.

4.0.2.2 Consensus Accuracy

Overall, the M(FDM) consensus method using gamma distributions yielded

the most accurate consensus forecasts, and obtained the most accurate imputed

RPS scores for the discrete GJP cut points. This combination of results suggests

that this method is, in general, a good choice when the forecasting goal is to obtain

the most accurate continuous consensus forecasts, and an improvement over M(θLS)

However, the accuracy of this method varied greatly with the relative distance of the

question resolution from the range over which forecaster judgments were elicited, d.
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For d < .5, that is when questions resolved in the first half of the elicitation range,

M(FDM) performed worse than other methods, particularly M(θLS).

The limited success of the FDM methods is promising. All of the probability

averaging methods are simply mixtures of forecaster distributions. Unlike with the

M/µ(θ) or θ(∀) methods, once a forecaster model is fit to the original judgments, it

never needs to recomputed for daily aggregation. For any forecast day, the consensus

is the mixture of the conditional forecaster distributions, given the current date.

This is a much simpler, and less computationally intense, daily forecast process

than the other methods, and should be easier to implement. Another promising

aspect of the FDM methods is that the Dirichlet-multinomial models provide an

intuitive and relatively simple way to include external information into the model,

to calibrate forecasters, and to weight forecasters in the mixture.

The result that relative model accuracy varies as a function of d is a novel

finding and has implications for anyone developing a continuous forecasting system.

First, where possible the range over which judgments are elicited should include the

question resolution value. From a modeling perspective this is intuitive, i.e. only

predict where the model is fit to empirical data. Of course, a priori there is no

way to know when the event will happen. One potential solution is to issue a new

forecasting question with an updated range as the current date approaches the end

of the elicitation range.

Second, it may be useful to combine consensus methods based on the elicitation

range. For example, though the resolution can not be known a priori, the value of d

given any resolution value is known. It may be useful to model forecasts for d < .5
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with a method that performs well in that range, e.g. M(θLS), and forecasts for

d > .5 with M(FDM). If one uses the CDF as the prediction function, then different

consensus methods can be combined with little additional computational effort.

4.0.3 Calibration

The discussion above intentionally omits calibration as a forecasting goal,

though there are large differences in calibration between some elicitation and com-

putational methods. For example, nearly every consensus method dramatically

reduced the underdispersion of the forecaster models, with exponential consensus

models closest to neutral dispersion for most methods, and even overdispersed for

the mean probability averaging methods µ(FLS) and µ(FDM). This is a well known

effect of linear combinations of forecast distributions (Ranjan and Gneiting, 2010;

Hora, 2004; Gneiting et al., 2007). If the forecasters in the experiment had been

better calibrated, it’s possible that some of the aggregation methods would have

introduced severe miscalibration instead of attenuating it.

Despite these results, it’s unclear how appropriate the concept of calibration

is for these kinds of forecasting questions, and whether or not it is an appropriate

forecasting goal. Previous researchers have argued whether calibration, and over-

confidence in particular, can be explained all or in part by: biased item selection

(Gigerenzer et al., 1991), individuals conflating sample with population character-

istics (Juslin et al., 2007), elicitation format (Winman et al., 2004), or a statistical

artifact of unbiased error prone judgments (Erev et al., 1994; Dougherty, 2001),
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among many other reasons. This is an even more complicated issue in this type

of forecasting context, where forecasting questions are often difficult by design and

where it is extremely difficult to define what constitutes a class of events.

Since calibration is the correspondence between the frequency of events and the

probability assigned to those events, it can only be evaluated given a set of random

outcomes for an event or class of events, but what class of events do questions

like “What is the probability Assad will leave office before 1 January 2017” belong

to? And even given that there was some definable class of events, it is unlikely

that questions would be sampled from this class in an unbiased way. Most likely,

questions will be selected based on what interests the decision makers that the

forecasting system informs.

If forecasting questions are selected in a way that biases the distribution of out-

comes, then even a perfectly calibrated forecaster will appear miscalibrated. Assume

some class of events is distributed E ∼ N(µ, 1), where µ ∼ N(0, 1). Consider µ a dis-

tribution of potential forecasting questions and E the probability distribution over

the outcome for any particular event. A forecaster who always conditioned on µ and

forecasted the probability of an event with the distribution function F ∼ N(µ,
√

2)

would be perfectly calibrated, but appear miscalibrated. For example, if this cali-

brated forecaster only forecasted questions where (µ < −1), then her PIT histogram

would look biased like the middle panel of Figure 4.1. If she only forecasted events

where (−1 < µ < 1), then she would appear underconfident like in the right panel

of Figure 4.1.

This potential problem is particularly relevant for forecasts of socio-political
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events like the ones in this research. A group of experts chose the questions based

on many criteria, but almost certainly none of these criteria was to try and get an

unbiased sample of a random process. Similarly, in an applied forecasting environ-

ment the questions will most likely be selected to meet information requirements of

a decision maker, rather than to obtain a representative sample. If the forecasting

questions do not reflect a random process, or do not belong to a well defined class

of events, then you can not dissociate forecaster calibration from question selection.
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Figure 4.1: PIT histograms given non-random samples of events. Even though the

underlying distribution of events is identical across the three scenarios, the observed

calibration for each panel varies greatly depending on how particular events are

selected.

4.1 Future Research

The results of this dissertation suggest three main areas for future research that

could improve consensus forecast methods: developing more psychologically plausi-

ble models, improving the efficiency and dependability of computational methods,

and understanding forecasters’ subjective interpretation of time-based questions.

All of the consensus methods in some way assumed that forecaster belief can be
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described by common probability distributions. While it seems possible that there

are cases where this could be true, it may be unreasonable to expect that something

as complex as continuous subjective belief will generally follow common parametric

forms. Restricting models to distributions like the exponential and gamma therefore

limit how well forecaster judgment can be modeled, and consequently how well these

models truly reflect both forecaster and aggregate crowd belief. The mixture models

introduced in this dissertation were one step towards reducing the dependence on

parametric forms. Though forecasters were still fit with exponential and gamma dis-

tributions, the mixture of their forecaster models can represent much more complex

models of group belief. A logical next step is to further remove the dependence on

parametric forms and model judgments with Bayesian nonparametric models like

Gaussian or Dirichlet processes.

Computational efficiency and tractability are closely related to the psycho-

logical plausibility of forecast models. Compared to the Bayesian methods in this

dissertation, fitting simple distributions via least-squares is a simpler, more depend-

able, and generally more resource efficient method to generate forecast models. For

example, the Bayesian models in this dissertation included relatively strong priors

to help ensure consistent and timely convergence. However, these priors also likely

biased the posterior distributions, particularly for the forecaster level models where

there was very little observed information to integrate into the models. Future work

should focus on developing models that are not only theoretically attractive, but

that also can be dependably implemented in a real-world forecasting environment.

Another potential line of research is to establish how forecasters interpret

89



interval judgments for time based questions for events that can only happen once.

Consider this question set: “What is the probability that Assad will leave office

between today and January 1st?”, and “What is the probability that Assad will

leave office between January 2nd and February 1st?” The second question is only

interpretable given that you assume Assad is still in power on January 1st, i.e. that

it is a conditional probability, yet we typically model judgments from questions like

these as intervals from an unconditional distribution. If we understand how people

interpret these questions and produce their judgments, we could improve the models

we make from those judgments.

4.2 Summary

This dissertation showed that accurate consensus forecast distributions can be

modeled from relatively few judgments from individual forecasters. With respect

to elicitation format, random bins yielded more accurate forecasts than fixed bin

elicitation. Random bins provide more information across the range of the forecasted

variable, and in aggregation are more likely to mitigate the potential effects of

partition dependence and random error in individual forecaster judgments.

At the consensus level, a mixture of forecaster distributions fit with a Bayesian

Dirichlet-multinomial model and gamma distributions outperformed median param-

eter aggregation and obtained forecast accuracies on par with advanced discrete

aggregation techniques. This model provides an intuitive way to weight and cal-

ibrate forecasters, and to include external information, that would be much more
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difficult with least-squares approaches. Consequently, this model not only offers the

best current option for consensus forecasts, but also holds much potential for future

development and to integrate proven discrete aggregation techniques.

Unlike the consensus level, fitting with least-squares was the most accurate

modeling method for individual forecasters. This is likely due to the combination of

strong priors in the Bayesian models and few judgments from each forecaster for any

given question. Compared to gamma distributions, exponential distributions yielded

poorer fits to the empirical judgments, yet better forecast accuracy as measured

by proper scoring rules. This suggests that at the forecaster level more flexible

distributions may overfit error in the observed judgments. If the forecasting goal is

to obtain the most accurate forecaster level models, then then the best option is to

fit exponential distributions via least squares.

One unexpected result was the effect of resolution distance on forecast accu-

racy. Differences between modeling methods varied greatly as a function of when an

event occurred relative to the range over which forecaster judgments were elicited,

particularly when events occurred long after the last date for which forecasters pro-

vided judgments. With the benefit of hindsight, this is reasonable. When an event

occurs long after any forecaster judgments have been collected, then a model’s pre-

dictions are almost entirely a function of the assumptions of the model rather than

the judgments of the forecaster.

The success of the consensus methods explored in this dissertation implies

that with little additional data or forecaster effort, it is possible to obtain contin-

uous aggregate models of forecaster belief that are as accurate as discrete forecast
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aggregation methods, but can also provide decision makers with forecasts for any

partition of the event over which judgments were elicited and can be easily integrated

into a broad range of decision analyses.
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