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The thesis comprises of three essays.

The first essay is titled “Do more US airports need slot controls? A welfare
based approach to determine slot levels.” It analyzes the welfare effects of slot con-
trols on major US airports. We consider the fundamental trade-off between benefits
from queuing delay reduction and costs due to simultaneous schedule delay increase
to passengers while imposing slot limits at airports. A set of quantitative models
and simulation procedures are developed to explore the possible airline scheduling
responses through reallocating and trimming flights. We find that, of the 35 major
US airports, a more widespread use of slot controls would improve travelers’ wel-
fare. The results from our analyses suggest that slot caps at the four airports that
currently have slot controls (Washington Reagan, Newark, New York LaGuardia,
New York John F. Kennedy) are set too high. Further slot reduction by removing
some of the flights at these airports could generate additional benefits to passengers.

Slot controls can potentially reduce two thirds of the total system delays caused by



congestion. A number of implementation and design issues related to the use of slot
controls are also discussed in the paper.

The second essay is titled “Designing the Noah’s Ark: A Multi-objective
Multi-stakeholder Consensus Building Method.” A significant challenge of effec-
tive air traffic flow management (ATFM) is to allow for various competing airlines
to collaborate with an air navigation service provider (ANSP) in determining flow
management initiatives. This challenge has led over the past 15 years to the de-
velopment of a broad approach to ATFM known as collaborative decision making
(CDM). A set of CDM principles has evolved to guide the development of specific
tools that support ATFM resource allocation. However, these principles have not
been extended to cover the problem of providing strategic advice to an ANSP in
the initial planning stages of traffic management initiatives. In the second essay, we
describe a mechanism whereby competing airlines provide “consensus” advice to an
ANSP using a voting mechanism. It is based on the recently developed Majority
Judgment voting procedure. The result of the procedure is a consensus real-valued
vector that must satisfy a set of constraints imposed by the weather and traffic con-
ditions of the day in question. While we developed and modeled this problem based
on specific ATFM features, it appears to be highly generic and amenable to a much
broader set of applications. Our analysis of this problem involves several interesting
sub-problems, including a type of column generation process that creates candidate
vectors for input to the voting process.

The third essay is titled “Strategic Opportunity Analysis in COuNSEL —

A Consensus-Building Mechanism for Setting Service Level Expectations.” The



consensus-building mechanism described in the second essay has been accepted as
a technically viable solution for the stated problem — although many practical chal-
lenges still remain before it may be deployed in operations. A key issue worthy of
further investigation is its strong strategy-resistance — as claimed by the authors of
Majority Judgment, the voting procedure embedded in COuNSEL. Using the broad
ideas of Nash Equilibria, we characterize the necessary and sufficient conditions for
an airline to benefit from unilaterally deviating from truthfully grading one or more
candidates. The framework provides the airline with all the other airlines’ grades
on a set of candidates, and allows it an opportunity to present new grades. The
analysis is repeated over multiple instances, and likelihood of beneficial strategic

opportunity is presented.
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Chapter 1: Introduction

Air transportation is among the most complex man-made systems. It touches
millions of lives every day, with over two million daily passenger enplanements in
the US alone (BTS|2013)). The overall economic activity generated by civil aviation
supported over 10 million jobs, and accounted for 5.2% of total US GDP in 2009
with $1.3 trillion in total output (FAA/2011). Of this, airline and airport operations
contributed to over 2.5 million jobs, and $375 billion of output (1.4% of GDP).

The Federal Aviation Administration (FAA) is the Air Navigation Service
Provider (ANSP) in the US. Its Air Traffic Organization (ATO) is primarily tasked
with safely and efficiently coordinating air traffic over the National Airspace System
(NAS) (FAA|2013). The scale of the operations in this Air Traffic Flow Management
(ATFM) is enormous: over 7000 airplane operations (takeoff and landing) per hour,
at about 800 airports through the country (29 of these classified as “major”), 50000
flights every day, operated by over 50 passenger airlines (15 with over $20 million
annual operating revenue) and 25 cargo airlines. Employing 35000 air traffic con-
trollers and other support personnel, the ATO operations are executed through 22
Air Route Traffic Control Centers, 27 Terminal Radar Approach Control Facilities

(TRACON), and 133 Airport Traffic Control Towers.



The role of strategic planning in ATFM cannot be over-emphasized. The
sheer nature of the ATFM operations involves a large network of personnel and
equipment, subject to uncertain weather events as well as market forces. This

dissertation focuses on some strategic aspects of ATFM in the US.

1.1 Do More U.S. Airports Need Slot Controls?: A Welfare-Based

Approach to Determine Slot Levels

The year 2007 was marked with an unprecedented demand for air travel in the
US. It was also the year when the on-time performance for US airlines reached
historic lows (Figure . The issue caught national attention, with the Joint
Economic Committee of the US Congress issuing a report titled “Your flight has
been delayed again: Flight delays cost passenger, airlines, and the US economy
billions.” The report put its economic estimate of the delays on the overall economy
at $41 billion (JEC|2008]). The FAA instituted a more scientific and comprehensive
study with the NEXTOR (roughly, “National Center of Excellence for Aviation
Operations Research”) consortium of (then-) five universities. The NEXTOR report
estimated the impact of delays at $31.2 billion (Ball et al.|2010)).

This essay deals with a specific congestion management approach, namely slot
controls. Widely prevalent in Europe, slot controls have historically been used much
more sparingly in the US.

Generally speaking, as the number of scheduled operations from an airport in-

creases, passengers would get more service options. This would result in a decrease
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Figure 1.1: Unprecedented delays and demand for US air travel in 2007.

in average schedule delay — which is the difference between a passenger’s ideal de-
parture (or arrival) time and the nearest scheduled time for departure (or arrival)
by any airline. Increase in scheduled operations would also increase the capacity
utilization at the airport. High capacity utilization at busy airports would lead to
an increase in the realized delays, as queuing theory would predict.

Slot controls, in effect, reduce the peak capacity utilization at an airport. By
implementing slot controls at a busy airport, the increase in schedule delay cost can
be traded-off against the decrease in the queuing delay cost. Of course, slot controls
at a particular level can be recommended only if the net benefit is positive. This
key insight is operationalized in the essay.

Ours is the first prescriptive work that justifies a more widespread use of slot
controls in the US through a welfare-based analysis. It not only identifies which
airports in the US should be instituted with slot controls, but also specifies the
slot levels that should be implemented at each airport to achieve maximum benefit.

Using domain-specific data and novel models, we find that 16 airports would benefit



with slot controls even at their current capacity levels, yielding net annual benefit of
$237 million. The annual benefit nearly triples to $629 million if our recommended
slot levels are implemented at these airports. Furthermore, 12 of the sixteen airports
would continue to serve the current demand despite the recommended slot controls.
Significantly, the recommendations could potentially eliminate two-thirds of overall
congestion-related delays.

The essay was co-authored with researchers at University of California, Berke-
ley. Specifically, I have no intellectual claim on Section 2.4.2 “Passenger Queuing

Delay Cost”.

1.2 Designing the Noah’s Ark: A Multi-objective Multi-stakeholder

Consensus Building Method

A significant challenge of effective air traffic flow management (ATFM) is to
allow for various competing airlines to collaborate with an air navigation service
provider (ANSP) in determining traffic flow management initiatives (TMlIs). In the
US, this challenge has led over the past 15 years to the development of a broad
approach to ATFM known as collaborative decision making (CDM). A set of CDM
principles has evolved to guide the development of specific tools that support ATFM
resource allocation. However, these principles have not been extended to cover the
problem of providing strategic advice to the ANSP in the initial planning stages of
traffic management initiatives.

In this research, we seek to develop a framework that addresses the strategic
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Figure 1.2: NextGen Service Process at Aggregate NAS level

level planning in advance of the design of a TMI. Specifically, we propose a mech-
anism whereby the airlines provide “consensus” advice to an ANSP using a voting
mechanism. To more precisely state its role in the ATFM decision-making processes,
let us contrast the current and the proposed state of collaboration among the stake-
holders in the U.S. Currently, the airlines influence ATFM decision-making of the
Federal Aviation Administration (FAA) — the ANSP in the U.S. — in several ways.
To obtain strategic planning input, the FAA Air Traffic Control System Command
Center (Command Center) holds one or more daily Strategic Planning Teleconns.
In many cases, these are augmented by various ad-hoc calls between the Command
Center or regional FAA facilities and various airlines. While collecting the airlines’
views is certainly desirable, the current system allows for ad-hoc and inequitable
representation — even in the structured teleconns. Moreover, the focus of the discus-
sions is on the TMIs, and not necessarily on the service performance expectations
desired by the airlines. In contrast, the architecture of the Next Generation Air
Transportation System (NextGen) envisages a service process that focuses entirely
on the service expectations (see Figure [1.2] JPDO| (2007)). The collaboratively
agreed service expectations are to be taken as input to the latter service processes

of devising an operational plan, and executing and evaluating the same.



We set out the following as a list of desirable outcomes for our proposed

mechanism:

(i)

(iii)

(iv)

consensus-building. The winning vector should have maximum acceptability

among the airlines.

single winner determination. The mechanism should result in a single winning

vector.

practical. The procedure should be easy to administer, and not involve time-
consuming information gathering and / or processing steps by the airlines as

well as the ANSP.

equitable. The mechanism should be perceived to be fair to all parties involved

from the outset.

confidential. The private information requirements from the airlines should be

minimal.

strategy-resistant. As far as possible, the mechanism should discourage gam-

ing, and encourage truth-telling behavior.

These are consistent with the principles of mechanism design, and also take into

account some specific needs of our application environment.

Our research team, in collaboration with the Federal Aviation Administra-

tion (FAA), considered several mechanisms to address the basic requirements listed

above. An initial proposal viewed the process as one of allocation of capital among

“investment” alternatives, wherein the airlines may purchase the service expectation



metrics. A related mechanism is that of Combinatorial Auction, wherein bundles of
the metrics may be offered for bidding. However, this paradigm suffers from various
problems. Firstly, it requires creation of an artificial “currency,” that would be used
by the airlines for the investments. Secondly and more fundamentally, the service
expectation metrics are not really goods being split up, as is the assumption in
combinatorial auction. Rather, each airline’s value (performance) is derived from a
single, mutually agreed upon vector. Strategic behavior from the airlines becomes
unavoidable. Specifically, this mechanism is especially prone to the well-known free-
rider problem.

To precisely model strategic behavior among the airlines, the framework was
modeled as a Multi-player Non-cooperative Game by other members of the research
team (see Ball et al.|(2011))). This approach successfully modeled the airline strategic
behavior well; the existence of unique Nash equilibrium under certain conditions
was also established along with a computational method. However, the ultimate
solutions were not viewed as practical in that only extreme solutions were generated
(with a clear winner and loser). Solutions where the various stakeholders (airlines)
compromise — viewed as highly desirable by the research group — were not generated
using this approach.

We then turned to voting procedures, which would seem to constitute a natural
way to model the decision making paradigm here. However, challenges — and oppor-
tunities — exist in modeling the framework as a voting mechanism. We considered
two alternatives: a variant of the Instant Runoff Voting, and Majority Judgment.
Majority Judgment is a recently proposed procedure (Balinski and Laraki 2011),

7



that “bypasses” Arrow’s Impossibility Theorem — a result that rules out existence
of any preference ranking aggregation procedure over three or more candidates, that
has certain desirable properties. And hence, its authors claim it to be “a better al-
ternative to all other known voting methods, in theory and in practice.”

The choice of Majority Judgment helped meet four of the six desired outcomes:
consensus-building, single winner determination, confidentiality, and strategy-resistance.
In this essay, we extend the basic Majority Judgment procedure in many ways to
address the remaining two. To address equity, the airlines are assigned weights in
proportion to the likely impact of the weather, respecting the well-accepted notion
of proportional representation.

Our most significant contributions have been three-fold that makes the pro-
posed mechanism practical. First, the proposal allows a continuous candidate space
that is constrained by the physics of ATFM parameters. Second, the airlines’ pref-
erences are modeled using multi-attribute valuation theory, and estimated over mul-
tiple rounds. Three, we develop a novel integer program that identifies the consen-
sus winner over the continuous candidate space, given the airlines’ true preference
functions. Alternately, given their estimated preference functions, it generates new
candidates that approximate the true winner over rounds. In our simulation exper-
iments, we found the optimality gap of the procedure to be 0.13% — which makes
our proposal a sound recommendation.

The architecture of the proposed mechanism is presented in Figure 1.3 The
mechanism will be initiated by the ANSP with a small (possibly empty) considera-

tion set of feasible candidates. All the candidates will be governed by the physical
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Figure 1.3: Mechanism Architecture

feasibility constraints. The airlines will provide two kinds of inputs: (a) a grade
for each candidate in the consideration set, and optionally, (b) one or more feasible
candidates. The FAA would use pre-assigned weights for each airline to determine
a winner. It would also update its estimate of the airlines’ preference functions, and
use them to generate new candidates. The consideration set will be updated, and
unless some stopping criteria are met, the procedure would repeat.

A shared perception of a common, imminent, unavoidable, impactful threat
or opportunity oftentimes leads even fierce competitors to seek consensus solutions.
The mythical Noah’s Ark is indeed witnessed in the real-world of business, key
examples are technology standards bodies like the American National Standards
Institute and the Internet Society. We believe our proposal has larger application
areas in multi-stakeholder strategic decision making contexts, like capital budgeting,

and collaborative forecasting.



1.3 Strategic Opportunity Analysis in COuNSEL — A Consensus-

Building Mechanism for Setting Service Level Expectations

The consensus-building mechanism described in the second essay has been
accepted as a technically viable solution for the stated problem — although many
practical challenges still remain before it may be deployed in operations. The under-
lying models and software tools have been named COuNSEL: CONsensus Service
Level Expectation Setting. Currently, the research team is actively seeking user
feedback from the airlines, and is also preparing software to facilitate Human In
The Loop experiments.

A key issue worthy of further investigation is its strong strategy-resistance —
as claimed by the authors of Majority Judgment, the voting procedure embedded
in COuNSEL. In this essay, we seek to verify their claim through simulations.

Following the notions behind Nash Equilibrium, we explore beneficial strategic
(that is, untruthful) grading opportunities for each airline after they are allowed to
see everyone else’s grades. This idea has been of prevalence in analyzing mechanism
design implementations (Maskin/[1999)). Of course, such opportunities will not exist
in practice, and one may hurt oneself without the exact knowledge of others’ grades.
Thus, this framework of analysis allows us to characterize the worst case strategy-
proneness of the procedure.

Our key contributions are two-fold. One, we characterize the necessary and

sufficient conditions under which an airline may benefit from unilateral strategic

10



grading. Using these, we define three measures for strategy-proneness of a given
setup. Two, we compute these measures over a variety of simulation experiments,
starting from the basic Majority Judgment to more complex procedures that are
near our application. Our general finding is that the likelihood for such beneficial
strategic grading opportunity for a player via one or more candidates is quite low,
in the region of 2% or below. Further, differentially weighting the players does not
significantly change the strategy-proneness. Moreover, the reasonable assumption

of convex preference structure significantly reduces the strategy-proneness.

1.4 Methodology

A variety of methods from the general areas of Operations Research and statis-
tics were deployed in each of the essays. We provide a summary of the tools and
analysis methods in this section.

The foremost tools used in the first essay are economic modeling, linear /
integer programming, and simulations. The essay describes two models to predict
the likely aggregate response of slot controls at an airport. FlightTrim assumes that
some service will be dropped from the airport, while FlightMove assumes no such
drop in service.

FlightMove involves generating new hypothetical schedules that may result
after slot controls are implemented at the airports. The airline response to slot con-
trols being not entirely predictable, we treat it as an inherently stochastic process.

A large-scale simulation was designed that perturbs the current schedule into one
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that follows the slot controls, where the small random perturbations are made incre-
mentally over several rounds. A transportation model with a specialized objective
function is then used to determine the passenger disutility cost attributable to the
new schedule, which yields the marginal schedule delay cost.

Since FlightTrim drops the passengers in the new schedule, the marginal cost
of schedule delay for the dropped passengers is essentially undefined in the sense
described above. Hence, an economic model is developed from the first-principles
to estimate the same for this model. A specialized algorithm is designed and imple-
mented to compute the marginal cost.

The second essay employs aspects of voting theory, multi-attribute valuation
theory, linear, integer, and non-linear programming, statistical estimation, and sim-
ulations. The primary voting method finally used in the essay is Majority Judgment,
although it was extended in many directions for the final proposal in COuNSEL.
Instant runoff voting was another voting method that was also explored in the initial
stages.

The airlines’ grade functions are motivated from multi-attribute valuation the-
ory. As the grade functions are assumed to be globally concave, non-linear pro-
gramming tools are used to determining conditions that ensure the same. As a
result, statistical estimation of the coefficients of the airlines’ grade function in-
volves a constrained linear regression. As no standard libraries are available for
such custom-specified regressions, a quadratic program was developed and deployed
for the estimation.

A novel integer program is developed to determine the majority judgment win-
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ner over a continuous feasible candidate space, given the airlines’ true grade func-
tions. In the absence of true grade function coefficients, the same integer program
is used for generating new candidates using the estimated coefficients. A similar lin-
ear programming formulation achieves the same results, but needs enumeration of
majoritarian sets as an input. The same linear program finds the grade-maximizing
candidate for a given airline if the argument has only a single airline instead of a
majoritarian set.

Finally, large-scale simulations are used to test the validity of the entire pro-
posal. The simulations bring together all the components of the proposal, includ-
ing aspects of carefully selecting airlines’ grade function coefficients, and different
weighting schemes. An acceptance sampling based approach is developed for select-
ing the airlines’ grade function coefficients that follow some intuitive guidelines.

The third essay uses some aspects of mechanism design, voting theory, and
simulations. The framework for analysis is inspired from Nash equilibrium concept,
much like in implementation theory of mechanism design. A logical analysis based
on the framework is applied to Majority Judgment which leads to identification of
the conditions for unilateral strategic grading that may benefit a player via one or
more candidate.

A design of experiments is laid out that proceeds from the basic Majority
Judgment to a scenario that closely resembles the COuNSEL proposal. Simulating

the range of scenarios helps establish the key conclusions from the essay.
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Chapter 2: Do more U.S. airports need slot controls?

A welfare based approach to determine slot levels

This paper analyzes the welfare effects of slot controls on major U.S. airports.
We consider the fundamental tradeoff between benefits from queuing delay reduction
and costs due to simultaneous schedule delay increase to passengers while imposing
slot limits at airports. A set of quantitative models and simulation procedures are
developed to explore the possible airline scheduling responses through reallocating
and trimming flights. We find that, of the 35 major U.S. airports, a more widespread
use of slot controls would improve travelers’ welfare. The results from our analyses
suggest that slot caps at the four airports that currently have slot controls (Washing-
ton Reagan, Newark, New York LaGuardia, New York John F. Kennedy) are set too
high. Further slot reduction by removing some of the flights at these airports could
generate additional values to passengers. Slot controls, if optimally implemented,
could yield a net benefit of 0.8 billion dollars for the U.S. air transportation system
in 2007, and help reduce two thirds of the total system delays caused directly by
congestion. A number of implementation and design issues related to the use of slot

controls are also discussed in the paper.
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2.1 Introduction

Air transportation delays in the U.S. and around the world represent a well-
known burden to society and are the subject matter of both technical and public
policy debates. A recent study (Ball et al.2010) estimated the total economic
impact of air transportation delays on the U.S. economy in the year 2007 to be
$31.2 billion. The most obvious and often called-for actions are investments in the
expansion of system capacity either in the form of infrastructure, e.g. new runways
and airports, or new capacity-enhancing technologies. The other option to curtail
delay is through demand management. While investing in capacity can be lumpy;,
expensive, politically contentious, and sometimes technically challenging, demand
management — often realized in the form of either slot control or congestion pricing at
the airport level — seems cheaper, more flexible, and effective in the short run. To be
sure, the second approach involves altering the behavior of individuals or companies,
resulting in social and political hurdles. Appropriate evaluation of the benefits
from demand management is, therefore, critical to justify the implementation of
airport demand management strategies and to inform the inevitable public policy
debates. This paper focuses on slot control, the most widely implemented form of
airport demand management, and develops a method to investigate the fundamental
trade-offs between costs and benefits from restricting flight schedules. The next
section provides a background of recent slot control policy and practice in the U.S.,
and establishes our basic premise for the research. In Section [2.3| we review the

existing research. Section presents our models for computing the cost (increase
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in “passenger schedule delay”) and benefit (savings in “delay against schedule”) of
implementing slot controls at an airport. The application of the models to U.S.
airports and results are presented in Section 2.5 Section [2.6] concludes and presents

further discussion.

2.2 Background

In the U.S. delays reached a high point in the year 2000 only to recede in the
advent of the 9/11 tragedy and related changes to the air transportation system
and economy. Subsequent demand growth coincided with the return to levels of
delay at and even beyond the 2000 level in the year 2007. Very recently a softening
of demand has once again led to a reduction in delays. While delay trends have
seen fluctuations, few would argue that this is not a long-term problem in need of

government investment and action.

2.2.1 Recent Slot Control Policy and Practice in the U.S.

The history of slot rules in the U.S. dates back to the inception of the High
Density Rule (HDR) in 1969 and has had many twists and turns over the past
decade (Berardino [2009)). The passage of the Wendall H. Ford Aviation Investment
and Reform Act (AIR-21) in 2000 called for the elimination of slot controls at New
York’s John F Kennedy International Airport (JFK) and LaGuardia Airport (LGA)
by January 1, 2007 and at Chicago O’Hare Airport (ORD) beginning July 1, 2002. In

anticipation of delay increase after the expiration of the HDR, the Federal Aviation
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Administration (FAA) has proposed alternatives in an effort to avoid exorbitant
delays in a post-HDR era. In a proposed 2006 rulemaking (FAA [2006), the FAA
sought to require airlines serving LGA to maintain a certain average gauge (seat
capacity); airlines failing to attain the average gauge standard would lose slots for
their smaller-gauge flights until the standard was attained. While based on the idea
that larger aircraft allow the access of more passengers to the airport, this proposal
was strongly opposed by airlines and the Port Authority of New York and New
Jersey (PANYNJ), arguing that it was overly disruptive and prescriptive, and did
not take into account airport-specific constraints (PANYNJ|2008).

The FAA then proposed a slot allocation policy for LGA, and soon after JFK
and Newark Liberty International Airport (EWR), based primarily on grandfather
rights, but with auctioning of a limited number of slots (FAA|2008d,b). In its final
rule for LGA, each carrier currently holding slots would have lost 15 percent of its
slots in excess of 20 (FAA 2008c). These slots would be relinquished over a five-
year period, with two thirds of them auctioned and the remaining one third retired,
decreasing the hourly cap from 75 to 71. Similar rules, albeit with relinquishment
of 10% of slots in excess of 20 and no retirements, were set forth for JFK and EWR
(FAA2008a)). These rules were challenged in court by the Air Transport Association
and PANYNJ, who argued that FAA lacked legal authority to conduct slot auctions.
The DC Court of Appeals issued a stay delaying the plan, and this, in combination
with Congressional action, caused FAA to rescind the rule in 2009. However, the
FAA did feel compelled to implement simple caps on the number of operations at
the three major airports in the New York Region (FAA 2008e,f). These caps remain
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in effect as of 2011.

Despite the many debates throughout the above slot control rulemaking pro-
cess, there remain important gaps to fill before making any improved decision mak-
ing. The benefits and costs from slot controls have not yet been systematically
quantified and well understood. Neither the setting of caps nor the allocation of
slots at the slot controlled airports was based on rigorous economic analysis. A fur-
ther issue left unaddressed is whether policy makers in the U.S. should consider more
widespread use of slot control, as exists in Europe where it has been implemented
at virtually all major airports. Filling these gaps constitutes the major motivation

in the present paper.

2.2.2 The Fundamental Tradeoff: FEconomic Justification for Slot
Controls

This paper focuses on the fundamental tradeoff in determining the socially
optimal level of operations for an airport. Figure illustrates this tradeoff. The
x-axis is given in units of the fraction of available capacity at which the operations
level is set, e.g. by the hourly slot levels. The curve that decreases from left to
right is the ex-ante schedule delay cost. Schedule delay is a well-known phenomenon
in transportation systems. It measures the degree to which passengers must adjust
their planned departure time to accommodate the schedule offered by a transporta-
tion service. For example, if a passenger wished to depart at 9 AM but there were

only flights offered at 8 AM and 10 AM, then that passenger might choose the 8 AM
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Figure 2.1: Schematic representation of cost curves for queuing delay and schedule
delay vs. capacity utilization.

flight and we would say the passenger suffered one hour of schedule delay. The curve
that increases rapidly as the airport capacity is approached represents the “classic”
delay-against-schedule cost that passengers experience when a flight arrives late, a
flight is canceled or a connection is missed. We refer to this delay component as
quewing delay cost since it results from system congestion and increases at a greater
than linear rate as system demand approaches system capacity. As the level of op-
erations at an airport is restricted, airlines will be forced to reduce flight frequency
in certain city pairs (in the following we refer to a city pair as a market), increasing
passenger schedule delay, but in the meantime resulting in reduction in passenger
queuing delays. The optimal level of operations is identified by the lowest point
on the total cost curve, as shown in Figure 2.1, which is the sum of costs due to

passenger schedule delay and queuing delay. Of course, an extreme case would be
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an air carrier exiting one market entirely. Consideration of this will be explicitly
incorporated into the subsequent analysis. In this paper we argue that many US
airports currently operate at a point far to the right of this optimal point. This
would seem to give strong support for instituting slot controls at more airports and
for setting the existing slot controls at lower levels than they are now set.

To support this argument, we estimate the slopes of the two curves illustrated
in Figure 2.1l The relevant models are described in Section [2.4] The models to es-
timate schedule delay employ a combination of economic modeling, simulation, and
optimization. In order to compute the cost of changes in the level of operations these
models produce estimates of plausible — albeit not necessarily optimal — changes in
flight schedules that would result. The model to estimate the delay against schedule
is an econometric model. It directly estimates flight delays, and from this, passenger
delays and costs are derived. We consider two possible scheduling responses from
airlines: either by moving flights from peak periods to less congested time windows,
or eliminating certain flights from time windows where slot control is active.

The fundamental tradeoff may also involve fares and competition effects. Specif-
ically, if operations are restricted in some way, then increased resource scarcity could
lead to higher fares. To the extent that such restrictions allow one or more air carri-
ers to increase market power, this could move fares even higher. While these effects
are often cited as a major detriment of airport access controls, they are not in-
cluded in the present study. Among other challenges, the degree to which there is
an anti-competitive effect depends very much on how controls are implemented. For

example, administrative slot controls that are based primarily on grandfather rights
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would tend to preserve existing market structure and restrict new entrants from
entering the markets served by the airport. Mechanisms that allow for some slot re-
allocation, e.g. via auctions, would support a more vibrant competitive environment
and lower fares.

The fundamental tradeoff described in this section will determine when access
controls have the potential to improve welfare. Poorly implemented controls, on the
other hand, can negate or greatly reduce the overall benefits by moving farther away

from the minimum point on the total cost curve.

2.3 Summary of Literature

Before proceeding to discussing the models that characterize the fundamental
tradeoffs and identify the welfare-improving slot control levels, it would be useful
to have a review of existing research in related fields. Any airport congestion man-
agement scheme, including slot control, essentially deals with flight schedule change
and in particular de-peaking of airport traffic. One consequence of flight schedule
change is variation of schedule delay perceived by passengers. The flight schedule,
the single most important product of an airline, is originally developed in a manner
that best accommodates travelers’ departure time preferences (Proussaloglou and
Koppelman||1999). However, no matter how flights are scheduled, schedule delay-
as measured by the difference between a traveler’s desired departure time and the
nearest flight’s scheduled departure time-always exists, and contributes to the pas-

senger generalized cost for a trip. Because each individual’s preferred travel time
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is generally unknown, researchers often resort to statistical, aggregate approach to

quantify the relationship between schedule delay and frequency (Douglas and Miller|

11974} |Abrahams||1983). Provided passenger demand and flight spacing can be rea-

sonably assumed to be uniform, simplified schedule delay functional forms have been

derived (e.g. Brueckner and Flores-Fillol (2007)). When airport congestion manage-

ment schemes are implemented, some flights may be forced to fly at less convenient
times and therefore increase the overall passenger schedule delay. Quantification of
such schedule delay change, however, has garnered only limited attention (Hansen
2002).

Impacts on schedule delay notwithstanding, airport congestion management
schemes are incentivized by the reduction of queuing delay through de-peaking.
Queuing delay models abound in literature, falling primarily into three categories:

stochastic (e.g. (1976))), deterministic (Hansen| (2002)),[Hansen et al. (2009)),

and econometric (Hansen and Wei| (2006)), Morrison and Winston| (2008), Hansen|

(2010)), and have been utilized to compute marginal delay cost for flights.

lin and Park (1970), [Morrison| (1983)), Hansen| (2002), and Ashley and Savage| (2010)

found these marginal costs are higher than the actual airport charges. Researchers

have also looked at different trade-offs between queuing delay and other pertinent

elements. Using a greedy algorithm, (2002) demonstrated eliminating five

flights could save 1570 seat-hours of congestion delay while incurring only 51 seat-

hours in additional schedule delay. |Flores-Fillol] (2010)) analyzed a simple network

model incorporating flight frequency choices and congestion, in which the tradeoff
between congestion and schedule delay was explicitly presented in the computation
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of congestion tolls. Focusing on connecting hub operations, Daniel| (1995]) examined
the tradeoff between delay, additional layover time, and “interchange encroachment”
time. (Coogan et al. (2010) considered additional trades, including increased travel
time from shifting short-haul flight traffic to surface modes, and having private
aircraft shift operations away from busy commercial airports.

While our analysis primarily focuses on passenger schedule and queuing delay
costs and benefits, slot control also incurs other consequences, including changes in
carrier profitability, load factor, air fare, and aircraft size. Research by Vaze and
Barnhart| (2011) and |Le| (2006)) attempted to understand the impact of slot controls
on these variables, focusing on New York LaGuardia (LGA). These studies, at least
implicitly, considered the queuing delay — schedule delay tradeoff as well as other
impacts and tradeoffs. Both studies attempted to answer the question, “What would
happen if more restrictive slot controls were put in place at LGA?” They considered
not only changes in service frequency but also impact on airline costs and profits.
Their conclusions are consistent with ours, namely that tighter slot controls at LGA
would lead to a net benefit to society.

Research also extends to comparing different congestion management schemes.
Brueckner| (2009b) found that atomistic pricing, which charges each flight its marginal
congestion cost even though some of that cost is borne by flights of the same airline,
is less efficient than slot controls so long as the number of slots is optimally chosen.
He further pointed out congestion pricing, despite its economic justification, might
be politically infeasible because small carriers would fiercely oppose a rule that ap-

pears to subject them to an unfair burden (Brueckner2009a). |Czerny (2010) argued
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that demand and congestion cost uncertainty, which may lead to a suboptimal choice
for the number of slots or the congestion price, favors congestion pricing, i.e. the
pricing errors that result from imperfect information are less harmful than errors
in setting the number of slots. Basso and Zhang] (2010) considered a model with
perfectly elastic air travel demand and found slot auctions will outperform conges-
tion pricing when airport profits matter from a social viewpoint. Ball et al.| (2007)
reported on gaming simulations of congestion pricing and slot auction policies for
LGA. While the simulation indicated that both schemes are feasible, it also showed
the challenge in setting congestion prices. Congestion pricing, on the other hand,
was seen to bear certain advantages, including increased carrier scheduling flexibility
and reduced incentive for airlines to hoard slots. These different views notwithstand-
ing, on balance many observers find slot-based approaches conceptually much more
intuitive and easier to manage than congestion pricing (Berardino|[2009). As dis-
cussed in Section [2.2.1], some of the recent slot control proposals in the U.S. included
a provision to auction some slots. Ball et al. (2006)) provides a broad framework for
airport slot auction. It gives many of the key features that should be included in an
auction design and also discusses the relationship between the problem of allocating

long-term access rights and performance on a given day-of-operations.

2.4 Models for Estimating Schedule Delay and Queuing Delay

We now present models for computing the incremental costs (i.e. schedule

delay costs), and incremental benefits (i.e. savings in queuing delay), of implement-
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ing slot controls. Estimation is done at three slot levels, namely the peak airport
capacity, and its 90% and 80% levels, measured in the number of arrival operations
per quarter hour. Setting slot levels to peak airport capacity may be the most
straight-forward recommendation if the benefits justify the costs, as it may be sim-
pler to communicate and gain agreement on than any lower slot level. However, as
we hypothesize in section further benefits may be possible with slot level set
below the peak capacity, justifying the need to investigate the costs and benefits at

lower levels.

2.4.1 Passenger Schedule Delay Cost

Although the definition of schedule delay is straightforward, evaluating it is
challenging. We need to first estimate the “ideal” passenger demand, which will be
compared with the original flight schedule to determine passenger schedule delay. To
convert schedule delay into cost, we also need an estimate of passenger valuation of
time. The estimation of incremental change in passenger schedule delay cost requires
a procedure to emulate airlines’ responses to the imposition of slot control, and the
resulting new flight schedule. In the present study, we propose two schedule delay
models, FlightMove and FlightTrim, to characterize possible airline responses to slot
control and the associated change in passenger schedule delay. In the FlightMove
model, we assume airlines would reschedule, but not drop, existing flights when slot
controls are imposed at an airport. The FlightTrim model assumes there would be

a reduction in the number of scheduled flights when the slot levels are made more
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stringent. The core for both models is the schedule delay cost function, which we

first present below.

2.4.1.1 Cost Function

As FlightMove and FlightTrim represent two distinct responses from airlines
to slot control, the calculation of their respective schedule delay change would also
be different. In the FlightMove model, we specify a cost function in terms of flight
perturbation from the current schedule. In this case, the model computes the incre-
mental cost directly using this function. In the FlightTrim model, we derive schedule
delay cost from first principles as a function of the number of flights. Incremental
cost is then derived by iteratively deleting an average flight from the total number
of flights.

Let p(7) be the density function of the number of passengers who would ide-
ally like to travel at time 7 for a market (refer Figure [2.24). Integrating p(r) over
a time-interval T' gives total demand in the interval. Assuming that airlines place
flights so that each captures an equal amount of demand, and that demand is uni-
form over each interval covered by a flight, p(7) would have the form illustrated in
Figure 2.2l While it seems reasonable and pragmatic to use the observed flight
schedule time to derive passengers’ preferred travel time, this may not be accurate
as airlines’ schedules are subject to many operational constraints, such as those from
terminal capacity, coordination of a hub-and-spoke network, and competition. Some

passengers’ schedule delay would certainly be overestimated whereas others underes-
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Figure 2.2: Schematic for schedule delay cost function.
x-axis represents time, y-axis represents the passenger demand density. Triangles denote the
flight time, diamonds demarcate the time intervals over which the flight services its demand.

timated . The extent of this deviation, however, is difficult to gauge. To circumvent
these uncertainties, in the following we focus on the average effect of scheduling by

assuming the flights are evenly placed, with 7" being the headway. This assumption
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leads to the constant demand density function p(7) = p = K /T, where K is the av-

erage number of passengers per flight, and simplifies the subsequent schedule delay

calculation.

INCREMENTAL SCHEDULE DELAY COST ON MOVING A FLIGHT. Consider sched-

uled flight arrivals for a given market at the airport of our interest. Let us perturb

the current flight placement by moving a flight ¢ time-units earlier within the time-

interval T} (i.e. from the triangle on the right to the left one), as shown in Figure

22,

We assume that the perturbed flight continues to serve its demand density.

In other words, passengers do not change their flight due to the change in schedule.

This would change schedule delay for three sets of passengers differently:

(i)

(i)

(i)

Passengers whose ideal travel time is later than the original flight will see

an increase in their schedule delay by 6. The number of such passengers =

(K/T;)(T;/2) = K/2; hence the total increase in schedule delay = K§/2.

Passengers whose ideal travel time is between the new and original flight times,
as a group, will experience a total schedule delay change of zero. If we split
interval ¢ evenly into two parts, then the increase in schedule delay for pas-
sengers on the right part will be offset by equal decrease in schedule delay for

passengers on the left part.

Passengers whose ideal travel time is before the new flight time will see a
decrease in schedule delay by §. The number of such passengers = (T;/2 —

8)(K/T;); hence the total decrease in schedule delay = K§/2 — K6*/T;.

Thus, the increase in passenger schedule delay for a flight perturbation equals
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(K/T;)0% 1If f flights were so perturbed, the total change in schedule delay in
passenger-hours would be (K/T;)6%f. Under the simplification of a single headway
T, for market d, the incremental schedule delay cost from identically moving f flights

leftward by d,4 is given by:
MSDCdFM(pd, 5d7 fd) = A(Kd/Td)égfd = Apd(ﬁfd

where superscript F'M denotes FlightMove model; A the value of passenger schedule
delay, measured in $/hr.

Similar results can be derived by moving flights rightward and beyond the
original time-interval.
INCREMENTAL SCHEDULE DELAY COST ON DELETING A FLIGHT. Under the
assumption of constant demand density p and flight headway 7T, the schedule delay

for each flight can be calculated as:
T/2
SD(T) = 2/ rpdr = pT?/4.
0

In the case of FlightTrim, we assume Ny flights for market d in a four-hour period
t. In this four-hour period, demand can be more reasonably assumed to be uniform
than in other longer time periods . Then the headway for market d in period t,

Tar = 4/Ng. Total schedule delay cost across all flights for market d in period ¢ is:
SDCy = ANgpa T3 /4 = 4Mpa; /Ny

Assuming that the removal of one flight in market d in a four-hour time interval
t redistributes the passenger demand over the remaining flights flying the same
market in the same time-interval, incremental cost of schedule delay caused due to
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the removal of flight to its passengers is given by:

1 1

where the superscript F'T" denotes FlightTrim model.

2.4.1.2  FlightMove Model.

The aim of this model is to determine the expected delay cost from modifying
a flight schedule so that it conforms to quarter-hourly slot limits. To determine this,
we must consider how the schedule is modified to satisfy the limits. Unfortunately,
this cannot be known with any certitude. While it is tempting to assume some form
of maximizing behavior, this is unlikely at the aggregate level since multiple airlines
are involved. Competitive models might also be employed, but there are so many
cost and revenue considerations at play that this would be difficult for even a single
airport, and prohibitively so for the large set of airports we are considering here.

In light of this, we opt for a different, more agnostic, approach. Essentially,
we randomly generate a series of small perturbations to the existing schedule that
eventually yields a new schedule that conforms to the slot limits. We then assume
that the changes leading from the prior schedule to the new one minimize the ag-
gregate amount of flight schedule change. For example, if a schedule includes one
less flight to a given destination between 8 and 8:15am, and one less flight between
5 and 5:15 pm, while the 8:15-8:30am and 4:45-5pm periods have one more flight
to the same destination, then we assume the morning and evening flights were each

moved by one period, rather than having the morning flight moved to the evening

30



slot and vice versa.

This process is clearly stochastic; we therefore simulate it multiple times and
average the results. Also, in some cases there may not be enough slots to accommo-
date all the flights no matter how they are rescheduled. This necessitates the use of
the FlightTrim model discussed later.

We begin with an “average” daily schedule aggregated to the origin, time
period level for an airport. Suppose now the airport is subjected to slot controls
limiting the number of scheduled arrivals in a given quarter-hour period. The Flight-
Mowve simulation now proceeds as follows. First, it randomly selects a time window
t with total flights above the slot level, then determines the number of flights f4
scheduled in this time window to move for each market d, and then assigns each
flight a move to either ¢ — 1, ¢ (i.e. no move), or t +1. t = 1 and t = 64 are
handled specially to ensure moves are not made outside of the time range. This is
repeated until the aggregate schedule is within the slot level at each time-point in
the range 1,...,64. Schedule delay costs are computed for the predicted schedule,
which completes one simulation run. Further details about the simulation are pro-
vided in[A.1] This procedure is then repeated multiple times. We report the mean
cost over the simulation runs for each airport in the subsequent analysis, and the
range of results in terms of z-scores, i.e., number of standard deviations from the
mean for each airport in [A.2]

CoSsT DETERMINATION USING TRANSPORTATION MODEL. The simulation pro-
cedure yields a predicted schedule that may have moved the same flight segment

multiple times over the iterations. Since the cost function MSDCY ™M is not linear
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in the length of a move it would not be accurate to simply add the cost of the inde-
pendent moves, which could involve multiple moves to the same flight. We employ
a costing model that minimizes the total cost of all moves. This can be viewed as
a lower bound of the total cost, given the new schedule, but also as the most likely
way in which the new schedule would be reached.

A linear programming-transportation model determines minimum cost flight
moves for each destination, given the original and predicted schedules. Its objective
function value gives the total increase in schedule delay upon perturbing the original
schedule into predicted schedule, or, the incremental schedule delay cost for the
airport.

Define non-negative decision variables:

fair = mnumber of flights moved from a 15-minute time-interval i to k for
destination d,

and parameters:

pa = demand density for destination d,
A = passengers’ valuation of time for schedule delay,
Ng; = number of flights originally scheduled during time-interval j for

destination d,
P4 = number of flights in the predicted schedule during time-interval j
for destination d.

Then the formulation is:

32



Minimize

Incremental schedule delay cost, M SDCFM — Z Apq(i — k)2fdik

dik
subject to:
> far < Ny vV odj (Supply)
k
Z Jaij > Paj vV od,j (Demand)
Jai =2 0 vV od,ik (Non-negativity)

“Supply” constraints ensure that the total flights moved out from any time-
point across all destinations are below the originally scheduled flights at the time-
point. “Demand” constraints are the converse; these ensure that total flights moved
into any time-point across all destinations meet the predicted scheduled flights at
that time-point. The cost minimizing objective function makes sure that these are
met at equality, as any excess flights would come at an avoidable positive cost. “Non-
negativity” constraints make sure that decision variables, here the flights moved, are

7Zero or positive.

2.4.1.3  FlightTrim Model.

We now present an alternate approach to estimating incremental schedule de-
lay cost upon imposition of slot controls. Here we assume that flights will necessarily
be trimmed from the current schedule when slot controls are imposed at an airport,
and we estimate the schedule delay incurred due to the removal of “average” flights.
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This procedure approximates the average outcome that would be obtained from
simulating a random sequence of flight removals analogous to the random sequence
of flight schedule changes modeled in FlightMove.

The model we now describe is applied to each four-hour period ¢ over the
course of a day. In our case we employ a sixteen-hour day so we consider t =
1,...,4. We initially compute for each ¢, the number of flights to be dropped
DF, =max (0,)_, Ng — SL), that is, the excess if any, of scheduled flights over the
slot level in the period. Note that for this model, ¢ denotes a larger time-period
than FlightMove model.

ALGORITHM. We adopt an algorithm that successively trims one average flight from

the overall schedule in each iteration for the period t.

Initialize. Set iteration counter:

1+ 1.

Repeat steps 1-3 while there are flights to trim in iteration ¢, i.e., total number of

flights remaining is larger than the slot level:
NG > sL
dt :
d

Step 1. For all destinations that have greater than two flights remaining in iter-
ation 4, trim 1/, N, (g? fraction of flights for destination d at period ¢ and

update number of flights remaining as below:

. . 1
NG NGO <1 L
S Ny
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Note that we drop a total of > {Na/> 4 Nc(lfz} = 1 flight over all the desti-

nations in each iteration.

Step 2. Compute incremental schedule delay of dropping the flights in Step 1 as:

; 1 1
Ny Ny U
Step 3. Update iteration counter:
v 1+ 1.

We need |DF;] + 1 iterations, where |-| is the floor operator, yielding the
largest integer smaller than or equal to the operand. The last iteration is to

interpolate M .S Dy, for the fractional part of DF;.
The incremental passenger schedule delay cost for the airport is then:

MSDC™ =3 "A- MSD),

tid

It is implicitly assumed that flight moves within each four-hour period are

cost-less, and are not possible beyond the specific period. If the flights within a

period are more than the slot level, then those are trimmed instead of being moved

out to another four-hour period. Further, the model preserves smaller markets:

destinations having less than two flights in each period are not trimmed at all. This

can be viewed as a type of policy prescription. However, we should also point out

that the model becomes unstable for markets with less than one flight in the average

schedule. We note that such markets do exist (they receive some service during a

week but not daily service). In fact, eliminating the only flight that serves a markets

cannot really be modeled using schedule delay since this amounts to a loss of service.
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2.4.1.4 Data.

We use August 2007 as the target month for our analysis of the 35 Operational
Evolution Partnership (henceforth OEP35) airports in the U.S. The name and code
of the airports included in OEP35 are listed in To avoid irregularities in
schedules over weekends, we use only Tuesday, Wednesday, and Thursday. Daily
schedules are computed by averaging over the relevant days. The daily schedule is
composed of sixty-four 15-minute periods spanning 6 AM to 10 PM to capture the
busy period.

The Aviation System Performance Metrics (ASPM) database, maintained and
published by the U.S. Federal Aviation Administration (FAA), was used for com-
puting aggregate schedules. Market-based schedules are computed using Official
Airline Guide (OAG) data. We use arrivals data for all computations.

Finally, we use passengers’ valuation of time for schedule delay, A = $15.77
per hour. Adler et al.| (2005) report fare substitution values for a number of service
variables for business and leisure travelers. The mean values for an hour of scheduled
arrival time difference are respectively $30.3 and $4.8. As their study has 43%
business trips and 57% leisure trips, we arrive at average passengers’ valuation of
time for schedule delay, A, as $15.77 per hour. This is the most recent estimate;
another by the classic [Proussaloglou and Koppelman| (1999) reports the valuations
to be $40 and $10 per hour for business and leisure travelers, respectively. Hsiao
and Hansen (2011)) present evidence that the value of schedule delay as trended

downward since 2000. As the exact share of business vs. leisure travelers at an
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airport is in general unknown, in the subsequent analysis we also use one third and
twice of the $15.77 per hour value as passengers’ valuation of schedule delay to test
the sensitivity of the results. These two values would represent the extreme cases

that an airport is used only by either leisure, or business passengers.

2.4.2 Passenger Queuing Delay Cost

Under the assumption that the queuing delay experienced by a passenger is
the same as the queuing delay of his/her flight, this sub-section adopts a two-step
approach to quantify flight queuing delays. In the first step, we construct a de-
terministic queuing diagram at each of the US OEP35 airports. The calculated
queuing delays and their higher order terms are then included-together with other
explanatory variables-in an econometric model which is estimated using data for
2007. This two-step, hybrid approach enhances the model’s capability of predicting
queuing delays at current levels and producing credible delay results under different

airport slot control scenarios.

2.4.2.1 Deterministic Queuing Delay.

We derive the deterministic queuing delay at each airport by constructing a
deterministic queuing diagram, which illustrates the operational demand and supply
relationship at an airport. The deterministic queuing diagram is based on the time
profile of scheduled flight demand and airport capacity over the course of a day, and

thus is capable of capturing temporal characteristics of scheduled demand, such as
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—+— Cumulative arrival demand
=—0— Cumulative throughput

Time of day

Figure 2.3: Queuing diagram of arrivals (EWR, Jan 2, 2007).

peakedness. Two curves in the queuing diagram are pertinent to the calculation of
queuing delays: cumulative scheduled arrivals and cumulative throughput. As an
example, Figure[2.3]illustrates the deterministic queuing diagram at Newark Liberty
International Airport (EWR) on January 2, 2007.

Specifically, the cumulative scheduled arrival curve is constructed using the
ASPM quarter-hour scheduled flight arrival information. Let D;;; denote the cu-
mulative demand at airport ¢ on day ¢ by the [th quarter hour. The cumulative
throughput curve can be constructed using D;;;’s and the quarter-hour airport ac-
ceptance rate AAR;;’s. For time period [ on day ¢, the cumulative throughput
at airport ¢ is the minimum of the cumulative scheduled arrival and the sum of

cumulative throughput in the preceding period and contemporaneous AAR:

Citg = min(Div, Cirg—1 + AARy).

Employing Little’s Law, total deterministic queuing delay (7'DQD) is calcu-
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lated as the area between the two curves:
TDQD; =15 Z(Dit,l —Ci1) (in minutes).
I

Daily average queuing delay per flight, @, is obtained by dividing the T DQ D,
by the total scheduled arrivals. This procedure is repeated for each day in 2007 and
each of the OEP35 airports. While it is possible for delays on a given day to spillover
to the next day and consequently calculate the queuing delay continuously over the
entire analysis period (Hansen and Kwan|2010), we find the queuing delay results
and the subsequent delay model estimation do not significantly differ. In addition,
because in the study only Tuesdays/Wednesdays/Thursdays are concerned, we still
stick to computing queuing delays for each airport-day pair. Previous studies have
revealed that average deterministic queuing delay is highly correlated with the ob-

served average flight delay (Hansen and Hsiao| 2005, Hansen and Kwan![2010).

2.4.2.2 Econometric Model.

In the second step of modeling queuing delay, we propose and estimate the

following econometric model:

Dit = 50 + 61@# + 52@% + B?»Q?t
+ Bl F Ry + /BSIFR?t + BsWdir + B Tempiy

+ BsAAR;; + ByConnecty

+ Z wqu(t) -+ Z )\jmj (Z) + €it,
k J

where:
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D;; = Average positive arrival delay against schedule per flight, in min-
utes, at airport ¢ during day ¢;
Qi+ = Average deterministic arrival queuing delay per flight, in minutes,
at airport ¢ during day t;
2 = The square of average deterministic arrival queuing delay per
flight;
3 = The cube of average deterministic arrival queuing delay per flight;
IFR;; = The portion of time during day ¢ in which airport ¢ operated under
Instrument Flight Rules (IFR) conditions;
IFR?, = The square of the portion of time during day ¢ in which airport 4
operated under Instrument Flight Rules (IFR) conditions;
Wd;; = Average wind speed, in knots, at airport ¢ during day ¢;
Temp;; = The average temperature, in Fahrenheit, at airport ¢ during
day t;
AAR;; = Airport arrival acceptance rate (number of arrivals per day)
at airport ¢ during day t;
Connecty; = The number of non-stop flight segments connected to airport
© during day t;
qr(t) = Dummy variable for month ¢, i.e. gx(tf) = 1 if day ¢ belongs
to month £ and 0 otherwise;
m;(i) = Dummy variable for airport j, i.e. m;(i) =11if j =¢ and 0

otherwise;
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Bo - Bo,wk,A\j = dummy coefficients to be estimated;
€;; = stochastic error term.

The dependent variable D;;, the average positive arrival delay against schedule
per flight, is a standard measure of flight delays available from the FAA’s ASPM
database, and represents one of the official performance metrics adopted by the
U.S. FAA Air Traffic Organization (ATO). This delay metric only reflects positive
delays: flights that arrive earlier than schedule are assigned a zero delay value in
the calculation. The deterministic queuing delay ();; described above is included in
the econometric model as an explanatory variable. We further consider the second
and third order terms of ();; as they can help capture other schedule disruptive
phenomenon such as flight cancellations in response to exorbitant delays and the
effect of delay propagation.

In addition to deterministic queuing delays, adverse weather at an airport will
increase flight time by causing air traffic controllers to increase aircraft separation
within airspace around the airport. Although in theory the weather effect could
be reflected in the deterministic queuing and AAR variables (as discussed below),
such variables may not fully capture this effect (Hansen and Hsiao|2005). As a
consequence several weather variables are explicitly introduced in the model. The
first two variables are the proportion of quarter-hours under Instrument Flight Rules
(IFR) conditions in a day and the quadratic term of this proportion. Daily average
wind speed is also included because of either the direct effect of wind itself or the

associated conditions such as wind shear that may impact airport capacity and not
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be adequately captured by the recorded AAR. Furthermore, we include temperature
as it has proven to be another causal factor to airport delay (Hansen and Wei|2006)).

We also hypothesize that flight delay can be affected by the size and network
connectivity of an airport, and include AAR and the number of non-stop flight
segments connected to the airport under study (Connect) as two separate explana-
tory variables. The AAR variable is included because high AAR’s tend to be set
more conservatively — that is, at a lower level relative to the absolute maximum
throughput — than low AAR’s (Neufville et al.|[2003).

The C'onnect variable is calculated based on the number of airports to which
the observed airport has commercial non-stop flights on a given day. We expect high
connectivity to complicate aircraft turnaround operations and increase the exposure
of the airport to delay propagated from other airports, and may therefore make the
airport more susceptible to delays. Airline hubs are especially prone to such effect
as the integrity of flight schedule is more fragile due to connecting banks.

Finally, to account for monthly and airport-specific effects that are not cap-
tured by the above explanatory variables, a set of dummy variables are employed.
The model includes 11 monthly dummies, with December used as the baseline
month. As an example, February day would have the February dummy set to 1
and all other monthly dummies to 0. Similarly, there are 34 airport dummies with
TPA as the baseline airport.

One may argue that airport concentration may exhibit as well some effect
on flight delays to the extent that the delay that airlines cause themselves is in-
ternalized (Morrison and Winston, 2008). An airport Herfindahl-Hirschman Index
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(H H1I) variable is often introduced in statistical delay models to serve this purpose.
However, the delay impact of HH I results from its impact on the flight schedule,
characteristics of which are already accounted for in this model. The debate on
whether hub airlines (fully) internalized their delays (Daniel |1995, [Brueckner 2002,
Mayer and Sinai|[2003, Daniel and Harback|[2008, Rupp 2009), therefore, does not

seem to be relevant, and such a variable is not included in our model.

2.4.2.3 Data, Model Estimation and Results.

The delay model is estimated on a daily dataset of the OEP35 airports covering
the year 2007. The variables included in the model are constructed using two data
sources: the FAA ASPM database and the US Bureau of Transportation Statistics
(BTS) Airline On-time Performance database. The former provides quarter-hour
based information about flight schedule, runway capacities, and meteorological con-
ditions at major US airports. All variables except for the C'onnect are obtained from
the ASPM database. The BTS Airline On-time Performance database documents
individual flight information, such as the scheduled and actual departure and arrival
time, and origin and destination airports, for each domestic flight operated by carri-
ers that account for at least one percent of domestic scheduled passenger revenues.
Such information is used to construct the Connect variable. In the data collection
process, we observe a number of airport-days for which some of the required data
are missing from ASPM, and are therefore excluded from the dataset. Days in which

there was a transition between standard and daylight saving time are also excluded
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(March 10-11 and November 3-4 in 2007) considering the frequent reporting errors
on such days. In total, the airport-day dataset contains 12,605 usable observations.

In estimating the model several econometric issues need to be considered.
First, since airport operations are interdependent in the National Airspace System
(NAS), it is important to account for this interdependency in estimating the model.
Second, it is likely that individual airports in the panel have features that consis-
tently increase or decrease delay, leading to a need to include airport fixed effects.
Third, errors in econometric delay models have been found to be heteroskedastic
(Wei and Hansen, 2006). Finally, serial correlation among error terms may per-
sist because, among other reasons, delay at the end of a day could possibly affect
the operations of the next day. We therefore perform a Prais-Winsten regression
by allowing a first-order autocorrelation between observations for the same airport.
Panel corrected standard errors are employed, in which error terms are assumed
heteroskedastic and contemporaneously correlated across panels (i.e. errors are cor-
related across airports at a given point in time). Estimation results are presented
in the Table 2,11

In general, the coefficients have the expected signs as previously discussed.
The first-order queuing delay variable has a highly significant coefficient, whose
value is very close to one. The coefficients for the quadratic and cubic queuing de-
lay terms are also highly significant, with diminishing magnitude which is natural as
the higher-order terms have greater absolute values. Greater prevalence of IFR con-
ditions results in high delay, but the effect is not linear as the second-order IFR term
has a negative coefficient. Consistent with previous studies (e.g. [Hansen and Hsiao
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Estimate  Std. Err. H Estimate Std. Err. ‘
Cons(Bo) 15.7834%%% 3.0695 | DEN()\g) -5.4005% 24175
Q(B) 1.0562%** 0.0305 || DFW (o) -8.7964%*  3.3074
Q?(B2) -0.0073%** 0.0004 || DTW (A1) -15.9171%0% 24457
Q*(Bs) 1.53E-05%** 1.11E-006 || EW R(\11) -11.3089%* 1.4861
IFR(B,) 16.4138%%* 1.2369 || FLL(\12) -0.6885  0.7155
ITFR?(3s) -9.5336%** 1.3383 | HNL(\13) 0.931 1.4899
Wd(Bs) 0.1887+** 0.0353 || TAD(A14) 0.2958  0.6282
Temp(Sr) -0.0476* 0.0192 || TAH(\s5) -9.8916*** 2.4193
AAR(Bs) -0.0081%** 0.0006 || JFK(\s) -9.3924 %% 1.1149
Connect(Bg)  0.2554%%* 0.0428 | LAS(\i7) -8.209 1+ 1.1843
Jan(w;) -4.1829** 1.418 | LAX (\g) -7.0825%%* 1.1062
Feb(ws) -0.5913 1.4483 || LGA(Ay9) -4.9853 %+ 1.0944
Mar(ws) -0.9399 1.4373 || MCO(Ay) -0.7347  0.6904
Apr(wy) -3.6284* 1.4456 || MDW (Ay1) -7.3218%%* 0.9345
May/(ws) -3.3868* 1.4678 || MEM (M) -3.7089%** 0.87
Jun(we) 2.6321 1.5094 || MIA(Ny3) 10.1735%%*  0.7077
Jul (wr) 1.8042 1.5227 || MSP(Aa4) -18.5847FFF 25349
Aug(ws) 0.5598 1.529 | ORD(\zs) -16.8544%**%  3.5873
Sep(wo) -5.2635%** 1.4978 || PDX (Ag) -2.8426%* 1.0401
Oct(wi) -4.3928** 1.447 | PHL(\y7) -3.9256™**%  0.8351
Nov(wi;) -5.5085%* 1.4291 || PHX (\gg) -7.8380%** 1.3608
ATL()\) -20.598 1% 4.9125 || PIT(Ag9) 9.2130%** 1.1994
BOS()\2) -4.9724%* 0.7836 || SAN (Az0) -9.5330%%*  0.9438
BWI()3) -7.2301%%% 0.7373 || SEA(A31) -8.3987FF%  (.7468
CLE(\y) -11.6438%** 0.7591 || SFO()s2) S751T2REE0.7514
CLT(Xs) -7.9047%5* 0.5803 || SLC(A33) -13.2007%%* 1.911
CVG(X) -6.8763%** 1.8915 || STL(X34) -0.6465  0.6538
DCA(N;) -6.6269%** 0.8221
R? 0.5488 || Autocorr coeff (p) 0.3114

Table 2.1: Delay model estimation results.

¥ gignificant at 0.1% level, ¥* significant at 1% level, * significant at 5% level

2005, Hansen and Kwan| |[2010), higher delay values are associated with stronger
winds and lower average temperature. As expected, larger AAR seems to reduce
average delay, whereas greater connectivity contributes to higher delays. Ceteris
paribus, the months of February, March, June, July, and August would experience
the same level of delays as that in December because of their statistically insignif-
icant dummy coefficients. Interestingly, the bulk of airport dummy coefficients are
negative and significant, implying that, all else equal, delays at most airports will

be lower than at TPA.
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Figure 2.4: Monthly average delays by airport: predicted vs. observed (Mean Ab-
solute Percentage Error, MAPE: 10.75%.

Since monthly average delays are of the major concern in the subsequent anal-
ysis, we use the estimated delay model to perform in-sample prediction with monthly
averaged data. The predicted airport-month values are plotted against the observed
average delays, as shown in Figure 2.4, We observe that most data points are con-
centrated along the 45-degree line, to some degree validating the prediction power
of the model. Mean Absolute Percentage Error (MAPE) of the monthly predictions
with respect to the monthly averages observed values is quite small (10.75%). This
model will be used in Section to predict new monthly average delays brought
by changes in the deterministic queuing delay variables given various slot control

situations.

2.4.2.4 Computation of Passenger Queuing Delay Cost Savings.

With the deterministic and econometric queuing delay models, quantifying

passenger queuing delay cost savings when slot control is introduced involves the
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following steps. Given an airport and a slot control level, we first generate a new
schedule profile given by either the FlightMove or the FlightTrim model. The new
schedule profile enters the deterministic queuing delay model to produce @), which
then feeds into the econometric model to yield the predicted average queuing delay
per flight. This delay value is compared with the predicted average delay in the
absence of slot control using the same econometric model. The difference represents
the average delay savings per flight at the airport. Following our assumption that
the queuing delay experienced by a passenger is the same as the queuing delay
of his/her flight, total passenger queuing delay cost savings is the product of the
average delay savings per flight, the average number of passengers on a flight, the
number of arriving flights at the airport, and the passenger value of travel time. In
the case of FlightMove, we assume that the number of passengers carried on each
flight will be adjusted such that all existing passengers continue to be served after
introducing slot control. This assumption is especially pertinent when considering
the long run responses of airlines. We use the US Department of Transportation
recommended value for the passenger value of travel time, which equals $37.5/hr

when inflated to 2007 US dollars (DOT|2003).

2.5 Results of Combined Model: the need for increased slot controls

in the US

The schedule delay and queuing delay models developed in Section are used

to quantify the incremental scheduled delay costs and queuing delay cost savings
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respectively, when slot control is imposed at an airport. We consider three slot
levels for each of the OEP35 airports: the peak airport capacity, and its 90% and
80% levels. The peak airport capacity would generally be the recommendation that
most easily would gain community acceptance. However, further benefits (in terms
total cost reduction) may be achieved by setting slot level below the peak airport
capacity. To this end, we also look at costs and benefits associated with lower slot
levels in this analysis.

Table provides the results of the FlightMove model for all of the OEP35
airports. Fifty predicted schedules generated by using the simulation algorithm in
subsection [2.4.1.2] are used for computing queuing delay and schedule delay cost
change. The MQDC_80, MQDC_90 and MQDC_100 columns give the mean daily
cost savings resulting from a reduction in queuing delay with slot controls imposed
at the 80, 90 and 100% of the airport peak capacity respectively. Similarly, the
MSDC_80, MSDC_90 and MSDC_100 columns give the mean daily increase in cost
associated with schedule delay with slot controls imposed at the 80, 90 and 100%
levels respectively. provides standard deviations and z-scores for the estimates.
The small values of standard deviation and z-scores relative to the mean strongly
support the robustness of the procedures adopted.

To justify slot control as a realistic option at an airport, the measure must
yield savings in queuing delay of significant magnitude and well in excess of the
corresponding increase in schedule delay costs. A high margin is required to offset
any additional sources of cost that could arise from implementing slot controls.

Examples of such cost include basic administrative costs to the government and
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Mean Queuing Delay Cost Savings || Mean Schedule Delay Cost Increase

Airport || MQDC80 MQDC90 MQDC_100 || MSDC_80 MSDC_90 MSDC_100
ATL $220,239  $183,658 $125,873 $347,507 $53,643 $26,317
BOS $660 $311 $304 $1,779 $301 $102
BWI $2,505 $2,429 $1,880 $609 $320 $146
CLE $61,484  $55,995 $45,690 $10,710 $6,935 $4,786
CLT $120,556  $111,800 $94,128 $21,654 $12,449 $7,845
CVG $1,663 $1,297 $994 $1,342 $422 $67
DCA $40,464 $40,399 $32,796 $11,612 $5,449 $3,173
DEN $2,125 $633 $0 $725 $138 $0
DFW $0 $0 $0 $0 $0 $0
DTW $86,706  $71,233 $55,364 $28,239  $16,525 $8,924
EWR || $435155  $223,109 $68,011 || $1,915,486  $306,853 $37,446
FLL $0 $0 $0 $0 $0 $0
HNL $0 $0 $0 $0 $0 $0
IAD $36,785 $28,190 $20,012 $6,720 $4,130 $2,355
IAH $6,488 $2,814 $0 $1,669 $424 $0
JFK $217,960 $87,359 $66,631 $449,293 $97,747 $32,114
LAS $6,694 $4,334 $2,781 $3,444 $800 $181
LAX $17,328 $12,551 $3,874 $27,119 $3,362 $793
LGA NA  $131,228 $40,451 NA  $445,154 $8,904
MCO $0 $0 $0 $0 $0 $0
MDW $2,666 $1,944 $864 $1,075 $372 $68
MEM $2,139 $1,609 $353 $376 $162 $29
MIA $0 $0 $0 $0 $0 $0
MSP $48,766 $32,074 $16,143 $17,208 $8,331 $4,000
ORD NA $78,665 $56,177 NA $67,904 $8,440
PDX $0 $0 $0 $0 $0 $0
PHL $168,166  $124,377 $102,694 $269,887 $47,075 $19,096
PHX $58,037 $57,575 $49,256 $11,186 $6,332 $4,270
PIT $0 $0 $0 $0 $0 $0
SAN $36,661 $36,661 $35,881 $54,931 $7,596 $2,576
SEA $16,978 $12,540 $8,531 $14,000 $1,836 $717
SFO $4,134 $2,227 $470 $957 $270 $52
SLC $5,985 $5,203 $2,996 $3,418 $1,165 $298
STL $0 $0 $0 $0 $0 $0
TPA $0 $0 $0 $0 $0 $0

Table 2.2: FlightMove model results for OEP35 airports — mean daily values over
50 simulation runs. Sixteen airports (italicized) are selected for further analysis.

costs incurred by the flight operators in planning their response (and subsequently
operating in the presence of slot controls). In addition, slot controls could restrict
competition, leading to higher air fares. One should therefore set a high benefit
threshold for the imposition of slot controls. We chose as a cutoff for consideration
a daily queuing delay cost savings of $10,000 at 90% capacity slot level. Based on
this criterion, 16 airports realize significant queuing delay savings when slot controls

are introduced (highlighted in Table and are thus examined further as potential
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[ Airport | MQDC80 MSDC80 Drop in Service | MQDC-90 MSDC90 Drop in Service |

EWR $473,510  $121,540 11% || $432,041  $43,685 1%
JFK $560,851  $142,433 9% || $440,361  $52,422 4%
LGA $214,102  $61,634 15% || $197,771  $27,282 7%
ORD $165,723  $101,711 7% || $141,185  $18,971 2%

Table 2.3: Flight Trim model results for airports expected to drop service on imposing
slot controls (daily values)

candidates for this measure.

We assume that as long as FlightMowve is feasible, airlines would always prefer
FlightMove to FlightTrim, because FlightMove preserves baseline demand without
requiring changes in fleet mix. FlightTrim may be justified under two situations.
First, it may be impossible to attain slot limits without reducing flights. We find
two cases of this. When slot controls are imposed at 80% AAR, for LGA and
ORD it is not possible to service the existing scheduled flights. That is, it is not
possible to move the scheduled flights among the various time windows so that
all time windows are below the slot limit. The other situation is when there are
protracted periods when total flights exceed total slots. Specifically, we find that,
when slot controls are imposed at the 90% or 80% level, at least one of the 4-hour
time windows at EWR, JFK, LGA, and ORD will encounter insufficient capacity to
service the scheduled demand. As a result, FlightTrim is applied at 80% and 90%
levels at these airports. The other twelve airports do have sufficient capacity even
after imposing slot controls at the 80% level; however the schedules will have to be
further flattened beyond the 90% level, leading to larger MQDC and MSDC values.
Table gives the FlightTrim results for the four airports in question.

Table provides further information on the 16 airports under considera-

tion. It provides net benefits for the three Slot Levels (SLs) as the difference
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between the cost of imposing the slot control at that level, i.e., MSDC, and the
benefits, i.e. MQDC: (i) MQDC_80 — MSDC_80, (ii) MQDC_-90 — MSDC_90, and
(iii) MQDC_100 — MSDC_100. Next, it gives the incremental benefit of impos-
ing slot controls at a given slot level compared to the next highest slot level, i.e.:
(MQDC_80 - MSDC_80) — (MQDC_90 - MSDC _90) in column (iv), and (MQDC_90
— MSDC_90) - (MQDC_100 — MSDC_100) in column (v). Then, it gives a measure
of return on implementing slot control as the benefit-cost ratios: (vi) MQDC_80 /
MSDC_80, (vii) MQDC_90 / MSDC_90, and (viii) MQDC_100 / MSDC_100. Fi-
nally, our recommended slot level is presented in column (ix), the recommended slot
level in terms of arrival operations per hour is given in column (x).

For the airports listed, net benefit levels are positive at the 100% and 90%
slot levels. This provides support for a more widespread use of slot controls at these
airports. When considering whether to restrict slots at the 100%, 90%, or the 80%
capacity levels, one should consider the incremental savings achieved by proceeding
from the 100% level to the 90% level, and further to the 80% level, i.e. the columns
(v) and (iv). We note that (v) is positive for all airport listed except: PHL and
SAN. Thus, a direct interpretation of the results suggests that slot control at 100%
of the capacity is cost justified at all airports in the Table and slot controls at
the 90% level are justified at all airports in the table except PHL and SAN. Upon
examining column (iv), we note that further benefits are possible by implementing
slot controls at the 80% level for six airports: CLE, CLT, DTW, IAD, JFK, and
MSP. Of the four airports where the FlightTrim model is applicable, only JFK has
a positive incremental benefit at 80% level over 90% level, albeit with a higher drop
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Net Benefit(SL) Incremental Benefit(SL) || Benefit Ratio(SL) Recommended SL
= MQDC.SL - MSDC_SL =YoDe-aL

Slot Level (SL) 80% 90%  100% 80% 90% (| 80% 90% 100% || %age of AAR Arrivals/hr
Airport (1) (ii) (itd) || (iv)=(1)-(i1) (v)=(i)-(ii1) || (vi) (vii) (viii) (ix) (x)
ATL -$127,268 $130,015 $99,556| -$257,283 $30,4591(/ 0.63 3.42 4.78 90% 103
CLE $50,774 $49,059 $40,904 $1,715 $8,155 | 5.74 8.07 9.55 80% 31
CLT $98,902  $99,351 $86,283 -$449 $13,068( 5.57 8.98 12.00 90% 63
DCA $28,851  $34,950 $29,623 -$6,099 $5,327| 3.48 7.41 10.34 90% 32
DTW $58,467 $54,708 $46,440 $3,758 $8,268 1 3.07 4.31 6.20 80% 57
EWR* $351,971 $389,256 $30,565 -$37,285 $358,691(/3.90 9.91 1.82 90% 40
IAD $30,065 $24,060 $17,657 $6,004 $6,403 || 5.47 6.83  8.50 80% 67
JFK* $418,418 $387,939 $34,517 $30,478 $353,423((3.94 8.40 2.07 80% 41
LAX -$9,791  $9,189 $3,081 -$18,980 $6,108 1 0.64 3.73 4.89 90% 71
LGA* $152,468 $170,489 $31,547 -$18,021 $138,943/3.47 7.25 4.54 90% 35
MSP $31,558  $23,743 $12,143 $7,815 $11,600( 2.83 3.85 4.04 80% 49
ORD* $64,012 $122,215 $47,737 -$58,202 $74,477(/1.63 7.44 6.66 90% 87
PHL -$101,722  $77,302 $83,597| -$179,024 -$6,295(/0.62 2.64 5.38 100% 50
PHX $46,851 $51,243 $44,986 -$4,392 $6,2571 5.19 9.09 11.54 90% 71
SAN -$18,270  $29,065 $33,305 -$47,335 -$4,240/ 0.67 4.83 13.93 100% 24
SEA $2,977 $10,704 §$7,814 -$7,727 $2,8901 1.21 6.83 11.90 90% 38

Table 2.4: Summary of Results from Combined Models (daily values).
(*) Using Flight Trim model results for MQDC and MSDC for 80% and 90%.

in service.

Furthermore, this list of 16 airports that may benefit by imposing slot controls
includes all airports that currently have slot controls: DCA, EWR, JFK and LGA.
Our results suggest that the current caps at these airports are set too high: 90%
level is most beneficial for DCA, EWR, LGA; and 80% level is most beneficial for
JFK. Finally, the list contains airports, such as CLE, MSP, SAN and SEA, which
are not normally considered to be highly congested. On the other hand, they do
have pronounced peaks; thus the results suggest that imposing controls that would
reduce such peaks by spreading flights to less congested periods are worthwhile.
This is illustrated in Figure which shows schedules for some highly, mildly, and
least congested airports.

As an airport can serve primarily leisure or business travelers, the benefit
estimates can be different as the two types of passengers involve different values of

schedule delay and travel time. To investigate the sensitivity of the above results
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to different time values, we recalculate the potential benefit gains for two extreme
cases. As mentioned in Section 4.1.4, we choose one third and twice the base A value
as the new value of passenger schedule delay for MSDC calculation, representing the
extreme cases of only leisure and only business travelers using an airport. Following
DOT] (2003),we use values of travel time for leisure and business passengers as 81%
and 140% of the average to generate new MQDC estimates.

Overall, the results are rather insensitive to the variations in passenger value
of schedule delay and travel time. We observe the same 16 airports that would
reap benefits from implementing slot controls. Assuming an airport are used by
leisure travelers only, maximum benefits at LGA, CLT, EWR and PHL could be
achieved by further reducing the optimal slot level by 10%. For the other 12 airports,
the recommended slot levels stay the same. If all air travel is assumed for business
purposes, the optimal slot levels at the 16 airports would remain unchanged — except
for DTW and JFK, which would have 90% instead of 80% of their respective peak
airport capacity as the optimal slot level. Clearly, these small changes, which are
associated with very extreme distribution of leisure/business passengers, suggest
the robustness of the general conclusions from our analysis to specific passenger
composition at the airports.

Using the base case values, we obtain a first-order estimate of annual benefits
from queuing delay reduction by summing up the estimates over the 16 airports and
multiplying it by 365 (days). When slot controls are implemented at the current
peak capacity at all the sixteen airports, a net annual benefit of $237 million is
indicated by the study. The annual benefits could be significantly increased if our
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Figure 2.5: Aug 2007 Aggregated Arrival Schedules for several airports. Congestion
levels decrease from top to bottom. The dotted line shows the peak arrival capacity
(AAR).

recommended slot levels are implemented to $629 million.

Associated with the latter figure is a total queuing delay saving at about $0.8
billion in 2007. It is important to note that the estimate mainly captures reduction
in delay that is within the control of the National Airspace System, or NAS delay.
Using individual flight delay records from the BTS On-time Performance Database,
we compute the fractions of delay by causes in August 2007 (BTS|2007). Figure
shows that, NAS delay constitute 24.56% of the total; the other two major causes
are air carrier delay and aircraft propagated delay. Air carrier delays can result from
mechanical breakdowns and various operational problems not related to congestion,

e.g. problems boarding passengers. On the other hand, some air carrier delays are
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in fact indirectly caused by NAS delays, e.g. crew timeouts. All aircraft propagated
delay is the result of an earlier delay that could either be a NAS delay or an air carrier
delay. Thus, while congestion directly causes 24.56% of recorded delays, it indirectly
causes another large portion of the total delay. Ball et al.|(2010) find that the total
passenger delay cost in the US in 2007 directly caused by flights arriving late equals
$4.7 billion. Under the assumption that the distribution of delay causes remains
stable throughout the year, an entire elimination of NAS delay would generate a
cost saving of .2456 * $4.7 = $1.2 billion (if we further assume that other sources of
delays contribute to aircraft propagated delay based on their share of delay minutes,
the delay cost saving from slot controls and overall saving will be proportionately
larger). Our estimate of $0.8 billion suggests that the proposed slot control policies
would help reduce delay cost by 67 % (0.8/1.2). This estimate, however, does not
include components such as delay cost reduction due to passenger misconnections
or canceled flights which are considered in Ball et al.| (2010). As discussed above, it
is also the case that air carrier delays and propagated delays would be substantially
reduced as a result of reducing NAS delays. Therefore, the $.8 billion figure should
be regarded as a lower bound rather than a precise estimate of passenger delay cost
reduction. In fact, the discussion above suggests that the proper application of slot
control would eliminate 67% of congestion related delays.

While we would recommend a cautious approach to deciding on the exact set of
airports where slot controls should be imposed, we feel at an aggregate level strong
conclusions could be made. Specifically, these results indicate that slot controls

should be imposed more broadly across the U.S. and where they are imposed the
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Figure 2.6: Causes of delay published by Bureau of Transportation Statistics for
Aug 2007.

slot levels (caps) should be set at lower values than has been the norm.

2.6 Conclusions and Further Discussion

This paper provided a comprehensive investigation of the fundamental trade-
offs associated with implementing airport slot controls. The potential cost and
benefit to travelers — realized in the form of increased schedule delay and reduced
queuing delay — were explicitly examined using a set of quantitative models and
simulation procedures. The results from empirically analyzing the OEP35 airports
suggest that more widespread use of slot controls in the U.S. would improve traveler
welfare. The recommended slot control level varies at different airports depending

upon where the maximum net benefits can be achieved. Applying this logic to
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airports that currently have slot controls, we found the current slot caps at DCA,
EWR, JFK, and LGA are set too high. Further slot reduction through deleting
some flights that are currently scheduled at these airports could generate additional
value to passengers. Robust to demand split between leisure/business passengers
at the airports, these findings offer helpful insights and reference for future policy
making in airport congestion management.

One needs to, however, bear in mind some uncertainties surrounding these
conclusions. First, a typical airport serves origin-destination as well as connecting
passengers, for whom penalty from flight schedule perturbation would be realized
through the layover time change. Provided that relevant data are available, it would
be worthwhile to investigate the sensitivity of our results to this passenger differen-
tiation. Second, in the present study we did not explicitly consider the impact of
slot control on airline revenue and cost. Intuitively, decreased queuing delay reduces
airline operating cost, allowing airlines to charge lower fare. Empirical evidence im-
plies that such effect is rather minimal (Zou and Hansen|2011)). On the other hand,
limited slots make air travel more valuable goods, adding potential for price increase,
which may partially offset or even reverse the benefits from queuing delay reduction
net of schedule delay cost increment for leisure travelers, given their low value of
travel time. Business passengers, however, may still be better off from slots because
of their much higher valuation of time (such effects has been discussed in road pric-
ing, e.g. Hau (1992). While in a different context, the insights also hold for slots).
From the competition perspective, slot control can affect airport concentration by
forcing some airlines to cut operations more substantially or even eliminate services
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in certain markets. As a consequence, carriers with greater market concentration
could charge passengers higher fares; whereas the fringe competitors, in order to
maintain a foothold at the airport, might be forced to offer lower ticket prices. The
overall effect on fare may be neutralized to some extent. Uncertainties over airline
cost changes arise primarily from two sources: immediate cost savings due to delay
reduction, and potential cost increase associated with schedule adjustment. One
possible reason for the latter could be the new aircraft purchase in order to meet
the adjusted schedule under slot control. The multiple effects on both revenue and
cost sides confound any conclusion about airline profitability. For local airports or
pertinent public entities, while slot control generates revenues, additional cost can
result from government administration in response to slot controls. The distribu-
tion of rents from slot controls among carriers, airports or public authorities would
further depend upon the initial allocation procedures. These uncertainties suggest
the need to set a relatively high threshold for either the passenger queuing delay
savings (as is the case in the paper) or the estimated net passenger benefits in order
to make more affirmative recommendations.

Even when slot control is economically justified, several practical issues need
to be carefully considered and addressed before any successful implementation of
airport slot control schemes. First is the access of small communities. Due to the
relative sparse schedule, undifferentiated slot control policies can exert dispropor-
tionately adverse impact on small communities. This has been widely acknowledged
and used as an argument for opposing slot control (FAA|2006, PANYNJ|2008). Po-

litically acceptable airport demand management schemes have to demonstrate their
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ability to insure adequate access of these small communities. A second issue con-
cerns who should be responsible for making and implementing demand management
policies. While airport authorities might be the natural candidates for this role, sev-
eral arguments suggest the FAA would be a more appropriate choice. As natural
monopolies, airports are highly regulated in the U.S. The revenue-neutral objective
combined with arbitrary size of revenue generated by slot control requires that slot
control be implemented by an entity other than the airport itself. The FAA has
the legal responsibility for the efficient operations of the National Airspace System
and therefore, when controlling access at individual airports, can bear a national
perspective in mind. An ideal solution would be taking both national and local per-
spectives into account in devising and instituting slot controls. A third issue is slot
allocation, or, more pointedly, the determination of which carriers must eliminate or
re-schedule flights. While an auction appears to be a reasonable allocation mecha-
nism, this has proved to be highly problematic in practice. As a fourth issue, the very
concept of slot ownership deserves further attention. Through secondary markets,
slot owners in the U.S. include non-air-carriers (e.g. banks). Local communities can
be part of the slot owners to insure access to the major airport in questions. There
could be unintended consequences, however, such as airport opponents purchasing
slots in order to retire them. Slot control also needs to be reconciled with interna-
tional bilateral agreements and should avoid creating substantial inconvenience for
international /domestic connections. Finally, slot control, while reducing queuing
delay which is a typical signal to indicate the needs for infrastructure investment,

should maintain its appropriate signaling mechanism (e.g. high slot prices) so as to
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not unduly suppress new infrastructure investment.

Even after these challenges are resolved, implementing slot controls at all the
airports simultaneously may be a high-risk endeavor. Practical issues like equitable
allocation among the airlines of the exact flights to be reduced from the congested
time-slots; settlement time for the new schedules to take effect; training of various
personnel in the airline industry, airports, and the FAA; adaptation of IT systems
and services etc would need to be handled in a careful manner so as to not disrupt the
passenger service. Indeed, the entire exercise may seem too daunting to undertake
despite the economic benefits, although the same might be said for the alternative
of capacity expansion in the case of many airports. Interestingly, the list of airports
identified as suitable for slot controls is diverse in many respects: it includes airports
spanning the entire geography; of small, medium, and larger capacities; from mildly
to highly congested regions; and has recommendations at various slot levels. This
could prove useful in de-risking the entire initiative, by phasing the implementation
at carefully selected lower-risk pilot airports first. The implementation may be
conducted at the pilot airports, and the benefits — as well as challenges — established

before taking upon the other airports.
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Chapter A: (Appendix to Chapter 2)

A.1  FlightMove Simulation Algorithm

We present a sketch of the simulation procedure here, the cost determination

aspect is explained in the following subsection.

Initialize. Set iteration counter:

7+ 1.

Repeat steps 1-4 while there are time-points that have flights in excess of the given
slot level:
max (pt) > 0,
where p! is a vector of 64 non-negative real numbers comprising of the excess

of flights over the slot level for each time-period:

{pi | pi<—maX<0,ZNét—SL> v tel,...,64}.
d

Step 1. Make a multinomial draw to select time-period to move flights from:

s' ~ multinomial (64, pi) .t =argmaxs’.
t

s' is a vector of 64 non-negative integers that sum to 64, resulting from a

single multinomial draw. p! is normalized to sum to 1 before the draws are
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made. The time-periods where total flights are below the given slot level have
0 probability of being selected for moves. This scheme favors the time-slots
with more excess flights to be selected for move. Note that it does so only in
probability, as against always selecting the time-period with maximum excess

as the target.

Step 2. Make a multinomial draw to compute destination-wise proportions of ex-

cess flights to move from the target time-point:
m' ~ multinomial (|D|, N%;) .

D is the vector of all destinations. This draw generates a vector m! of non-
negative integers that sum to total number of destinations, using the number
of flights to each destination at the selected time-points as probability distri-
bution (after normalizing so as to sum to 1). Next, a logit-link is applied to

the draw:

e )

fi is a vector with a non-negative real number for each destination, its entries
sum to 1. Multiplying this vector with the total excess flights at target time-

point results in a vector of flights to move for each destination:

{ei | e@efé-(ZNéf—SL> v d}.
d

Step 3. Make a multinomial draw to determine direction of move for each desti-

nation:

{¢! | ¢~ multinomial (1,{"/3," /3," /3}) V d}.
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c! is a vector with 3 entries for each destination, with a single entry as 1 and
other two entries as 0 — drawn with equal probability for all the three positions.
The three positions depict respectively, ¢ — 1 (one time-point earlier than the
t), t (implying no move), £+1 (one time-point later than #). Finally, the flights

are moved in the selected direction for each destination:
N e Ny+ep-cp vV d ¥V je{t—14i+1},
followed by move out from target time-point:
Nflzrl — Néf —el-cy vV od
Step 4. Update iteration counter:
141+ 1.

There are further technical implementation details to get a quick convergence

that we omit here for brevity.

A.2  FlightMove Simulation Results

Table reports the results obtained over 50 simulation runs for FlightMove
model for each airport in the study. The first set of columns is for incremental queu-
ing delay costs, and the other set is for incremental schedule delay costs. We report
here the standard deviations over the runs, followed by z-scores of the minimum and
maximum values obtained over the runs (means are reported in Table 2.2)). Most of

the z-scores are within F3, indicating robustness over runs.
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Standard Deviations, MQDC z-Score of (Min, Max), MQDC Standard Deviations, MSDC z-Score of (Min, Max), MSDC
Airport || MQDC80 MQDC90 MQDC_100 | MQDC80 MQDC.90 MQDC_100 || MSDC_80 MSDC90 MSDC_100 | MSDC_80 MSDC90 MSDC_100
ATL 371 853 3007 | (-2.37,2.01) (-2.26,2.59) (-2.26,1.82) 6141 2761 836 | (-1.27,2.78) (-1.49.2.53) (-1.34,1.86)
BOS 127 68 23 | (-2.22,1.69) (-2,1.74)  (-2.37,2.44) 267 29 11| (-1.42,2.25) (-1.93,1.61) (-1.49,1.78)
BWI 0 1 4 (-2.03,1.8) (-1.62,2.02) 31 20 15 | (-1.74,1.53) (-1.72,1.97) (-1.93,1.59)
CLE 281 399 580 | (-2.21,2.91)  (-24,2.4) (-2.22,1.89) 819 447 422 | (-1.4,1.93) (-2.21,1.81) (-1.33,1.87)
CLT 444 454 1142 | (-1.99,1.88) (-1.81,2.06) (-1. 84 2.85) 569 516 190 | (-1.6,2.03) (-1.8,2.06) (-1.54,2.31)
CVG 0 1 15 ~ (-1.99,2.06) (-2.15,1.99) 101 49 6| (-1.82,221) (-1.77.2.24) (-1.73,1.95)
DCA 0 28 384 ~ (-2.92,1.52) (-2 07 2.48 811 497 340 | (-1.81,1.52) (-1.33,2.41) (-1.58,1.59
DEN 5 53 0] (-1.94201) (-2.152.13) 89 10 0| (-1.7,1.62) (-1.26,1.57) -
DFW 0 0 0 - - - 0 0 0 - - -
DTW 96 315 375 | (-2.29,3.01) (-2.27,2.76) (-1.84,3.52) 1353 771 425 | (-1.43,1.79)  (-2.09.2.01) (-1.48,2.36)
EWR 1842 1039 1715 | (-1.5,1. )3) (-1.78,2.3)  (-2.59,1.94) 39568 10000 2139 | (-2.06,1.6 (-2.06,1.5) (-1.37,2.49)
FLL 0 0 0 - - 0 0 0 - - -
HNL 0 0 0 0 0 0
TAD 414 437 713 | (-1.06,3.39) (-2.25,2.72) (-1.76,2.79) 497 377 201 | (-1.34,1.9) (-1.86,2.23) (-1.45,1.78)
IAH 369 84 0| (-2.06,2.37) (-1.88,2.59) 112 52 0| (-1.74238)  (-1,2.44)
JFK 4227 2227 1221 | (-2.31,0.93) (-2.16,2.67) (-2.49,2.07) 19948 4006 1536 | (-1.17,2.18)  (-21,1.62)  (-1.5,2.62)
LAS 137 150 127 | (-2.28,2.92) (-2.14,1.29) (-2.63,2.08) 302 117 15| (-1.332.3)  (-1.92.62) (- 1 21,2.14)
LAX 0 333 103 (-1.75,2.15) ( 1.89,2.74) 1009 178 52 ( 56,1 r) (-1.53,1.9) (-2.17,1.97)
LGA NA 870 1419 NA (-1.34,2.45)  (-2.88,1. s) NA 10863 483 (71.07,2.25) (-1.55,1. 72)
MCO 0 0 0 - 0 0 0
MDW 43 47 23 (-2.1,1. ()-1) (-2.35,2.22)  (-1.98,2.67) 83 22 5 (-2.17,1. 88) (-2.11,1.42) (-1.42,1.88)
MEM 8 8 5| (-1.32,3.11)  (-1.9,2.32) (-2.19,1.89) 66 36 7| (-1.77,1.89) (-1.63,1.22) (-1.81,1.75)
MIA 0 0 0 0 0 0
MSP 1181 1197 516 | (-1.73,1.92) (-1.84,2.37) (-2.02,2.25) 750 272 180 | (-2.01,1.35) (-1.77,1.68) (-1.18,2.82)
ORD NA 282 1241 NA  (-1.7822) (-1.99,2.13) NA 5955 546 NA  (-1,243) (-1.77,1.72)
PDX 0 0 0 0 0 0
PHL 2128 1361 757 | (-2.73,2.09) (-2.94,1.57) (-2.79,1.66) 11032 3347 485 | (-1.97,2.44) (-1.07,1.74) (-1.62,1.38)
PHX 43 52 399 | (-0.62,3.57) (-3.71,1.02) (-3.16,1.12) 836 512 329 | (-1.45,1. 86) (-1.44,1. 44) (-1.32,2.02)
PIT 0 0 0 - - - 0 0 0 -
SAN 0 0 216 - ~ (-2.13,1.63) 2719 788 156 | (-1.71,1.33) (-1.67,1.87) (-1.35,1.94)
SEA 0 298 187 ~ (-1.78,1.92) (-2.51,1.58) 2291 106 26| (-1.64,1.6) (-2.15,1.67) (-1.56,1.91)
SFO 349 193 46 | (-1.77,2.36)  (-2.5,2.57) (-2.01,2.25) 99 28 5] (-1.66,1.93) (-1.63,1.5) (-1.74,1.82)
SLC 3 36 55| (-2.36,1.8) (-2.5,1.74) (-1.51,2.85) 180 108 29 | (-1.89,1.92)  (-2.2,1.83)  (-1,1.98)
STL 0 0 0 0 0 0
TPA 0 0 0 0 0 0

Table A.1: FlightMove model results for OEP35 airports — spread of results over 50

simulation runs (based on daily values)

A.3 U.S. Operational Evolution Partnership (OEP) 35 Airports

Refer Table
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Airport code | Airport City State
ATL Atlanta Hartsfield Intl Atlanta GA
BOS Boston Logan Intl Boston MA
BWI Baltimore-Washington Intl Baltimore MD
CLE Cleveland Hopkins Intl Cleveland OH
CLT Charlotte Douglas Intl Charlotte NC
CVG Cincinnati-Northern Kentucky Intl ~ Covington-Cincinnati, OH KY
DCA Washington Reagan Natl Washington DC
DEN Denver Intl Denver CcO
DFW Dallas-Ft Worth Intl Dallas-Ft Worth X
DTW Detroit Metropolitan Wayne County Detroit MI
EWR Newark Intl Newark NJ
FLL Ft Lauderdale-Hollywood Intl Ft Lauderdale FL
HNL Honolulu Intl Honolulu HI
IAD Washington Dulles Intl Washington DC
IAH George Bush Intercontinental Houston X
JFK John F Kennedy Intl New York NY
LAS Las Vegas McCarran Intl Las Vegas NV
LAX Los Angeles Intl Los Angeles CA
LGA La Guardia New York NY
MCO Orlando Intl Orlando FL
MDW Chicago Midway Chicago IL
MEM Memphis Intl Memphis TN
MIA Miami Intl Miami FL
MSP Minneapolis-St Paul Intl Minneapolis MN
ORD Chicago O’Hare Intl Chicago IL
PDX Portland Intl Portland OR
PHL Philadelphia Intl Philadelphia PA
PHX Phoenix Sky Harbor Intl Phoenix AZ
PIT Pittsburgh Intl Pittsburgh PA
SAN San Diego Intl-Lindburgh Field San Diego CA
SEA Seattle-Tacoma Intl Seattle WA
SFO San Francisco Intl San Francisco CA
SLC Salt Lake City Intl Salt Lake City uT
STL Lambert-St Louis Intl St Louis MO
TPA Tampa Intl Tampa FL

Table A.2: List of the U.S. Operational Evolution Partnership (OEP) 35 Airports
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Chapter 3: Designing the Noah’s Ark:
A Multi-objective Multi-stakeholder

Consensus Building Method

A significant challenge of effective air traffic flow management (ATFM) is to
allow for various competing airlines to collaborate with an air navigation service
provider (ANSP) in determining flow management initiatives. This challenge has
led over the past 15 years to the development of a broad approach to ATFM known
as collaborative decision making (CDM). A set of CDM principles has evolved to
guide the development of specific tools that support ATFM resource allocation.
However, these principles have not been extended to cover the problem of providing
strategic advice to an ANSP in the initial planning stages of traffic management
initiatives. In the second essay, we describe a mechanism whereby competing airlines
provide “consensus” advice to an ANSP using a voting mechanism. It is based on
the recently developed Majority Judgment voting procedure. The result of the
procedure is a consensus real-valued vector that must satisfy a set of constraints
imposed by the weather and traffic conditions of the day in question. While we
developed and modeled this problem based on specific ATFM features, it appears

to be highly generic and amenable to a much broader set of applications. Our

67



analysis of this problem involves several interesting sub-problems, including a type
of column generation process that creates candidate vectors for input to the voting

process.

3.1 Introduction

A shared perception of a common, imminent, unavoidable, impactful threat
or opportunity oftentimes leads even fierce competitors to seek consensus solutions.
The mythical Noah’s Ark is indeed witnessed in the real-world of business. For ex-
ample, technology standards bodies have been the foundation for inter-operability
of the products and services offerings of firms competing for the same or similar
customers. American National Standards Institute (ANSI), a consortium of indus-
try and researchers, performed this key function during the entire Industrial Age;
while the more recent Internet Society serves similarly in the Information Age. In
the highly competitive airline industry, we see examples of airline alliances which
have helped airlines maximize their offerings and reach through collaborating with
other competing airlines. At another level, whenever there is bad weather, the air-
lines come together with the Air Navigation Service Provider — namely, the Federal
Aviation Administration (FAA) in the US — to devise effective means to handle the
constrained system resources.

Future visions of Air Traffic Flow Management (ATFM) — both in the U.S.
and Europe — support a “performance-based” approach that employs collaboration

between the air navigation service providers (ANSPs) and the airlines (ICAO|2005,
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JPDO 2007, SESAR|2006)). A key feature of this outlook is to support the airline
operators’ business objectives in the ANSP’s traffic management initiatives (TMIs),
subject only to system-level constraints like safety and security. Our focus is on a
performance-based framework that addresses the strategic level planning in advance
of the implementation of a TMI. These overarching system performance expecta-
tions may then serve as the basis for design and operation of a specific TMI (or a
coordinated set of TMIs) that aim to meet the stated expectations.

The framework must (a) be founded upon commonly agreed definitions of
service expectations among the several stakeholders, and (b) result in a consensus
on the service expectations over independent stakeholders, with possibly conflicting
business objectives. We use the Global Air Traffic Management Operational Concept
(ICAO|)2005) to address the former requirement. Unanimously approved by the U.S.
and 187 other States in the eleventh global Air Navigation Conference, it dedicates
a section on “expectations of the AT[F]M community.” Among 11 performance
expectations, three are more specific to the airline operators’ business objectives,
while the others are more generic to the entire framework — predictability, capacity-
utilization, and efficiency. Our focus in this work is on the latter aspect of the
framework: given that there is intent to collaborate among the stakeholders, how
to design an effective consensus solution that encompasses multiple inter-related
objectives.

We postulate six properties as highly desirable for any effective solution for
the stated problem: (i) consensus-building, (ii) single solution determination, (iii)

practicality, (iv) equitability, (v) confidentiality, and (vi) strategy-proof. These are
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consistent with the principles of mechanism design (Maskin [2008)), and also take
into account some specific needs of our application environment.

The first three are desirable for purely pragmatic reasons: it is our stated wish
that the method determines an acceptable solution among the multiple stakehold-
ers; the method would be most effective if the method results in an unambiguous
solution; and that the method does not take inordinate time and / or effort on the
part of the decision makers to yield its solution.

The latter three are higher-level properties. Given that we are dealing with
possibly competing stakeholders, we shall like the method to adhere to well-accepted
notions of equitability, specifically we shall like the voice of each stakeholder to be
fairly represented in the decision making process. Further, as we are likely dealing
with independently operating businesses, the method should not require information
that may be deemed confidential. Finally, we shall like the method to discourage
any strategic behavior among the decision makers.

A recently proposed voting scheme called “Majority Judgment” has many
desirable properties (Balinski and Laraki 2011]). Of primary interest to us has been
its high strategy-resistance — while it does not preclude gaming of the system, the
probability of a single player to significantly game the system is severely restricted
in this design. We therefore base our proposal on Majority Judgment.

In section [3.2] we describe the problem and present related literature. Section
focuses on the mathematical models that underpin the proposed mechanism.
After reasonably structuring the underlying information, it presents efficient solution
methods. Validation is provided in Section through simulation experiments on
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a large dataset motivated from real-life. Section concludes.

3.2 General Problem Statement and Related Work

The general context for the problem we address involves a group of n stake-
holders, N, who jointly seek to make a decision. It is not necessarily the case that
these stakeholders are cooperative or have common goals: in our application, the
stakeholders are the flight operators who in fact are competitors. The form of the
decision we seek is a numeric vector m that is subject to a set of feasibility con-
ditions p so that m € pu. The m we seek should represent a consensus among a
majority of the stakeholders. Fach stakeholder i € N has a value or value function
Vi() that maps each m € p to a real number that represents the value of m to i.
The problem we address is to design a mechanism in which a coordinator exchanges
information with the stakeholders and produces the desired m. Of course, this is
hardly a well-defined problem yet, as in particular, we have not precisely defined
a majority consensus m. Nonetheless, this description does allow us to place our
problem in a broader context and to discuss the nature of our contributions. In par-
ticular, attacking this problem would seem to require key elements from two large
bodies of literature: Voting, and Multi-criteria decision making (MCDM).

The case where m is of dimension 2 and p = {(1,0),(0,1)} can be viewed
as a classic election among two contenders. Each stakeholder would “vote” for
either (1,0), expressing a preference for the first candidate or (0, 1), expressing a

preference for the second candidate. The vector output would indicate the winning
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candidate. The case of higher dimensional m with p consisting of all unit vectors
would correspond to an election with several candidates where one must be chosen.
The instant runoff voting mechanism and majority judgment represent mechanisms
that would produce a single winner candidate/vector.

Voting in particular, and social choice in general, is concerned with aggre-
gating evaluations over a multitude of voters, in ways that the final outcome has
appeal to a large section of the decision-makers. Over centuries, investigators de-
vising a fool-proof voting system have been riddled by a result — famously known
in social choice theory as Arrow’s Impossibility Theorem (Arrow||1951)). It states:
“when voters have three or more distinct alternatives, no voting system can con-
vert the ranked preferences of individuals into a community-wide (complete and
transitive) ranking while also meeting a certain set of criteria, namely: unrestricted
domain, non-dictatorship, Pareto efficiency, and independence of irrelevant alterna-
tives.” Majority Judgment is a recently proposed procedure (Balinski and Laraki
2011)), that “bypasses” this result. And hence, its authors claim it to be “a better
alternative to all other known voting methods, in theory and in practice.”

Majority Judgment involves grading — instead of preference rankings — of each
candidate, by all voters, in a common language. It is a natural, rich preference
elicitation method, already being practiced in spirit in many contests and juries
around the world, as well as a few political elections. It has many good properties;
among them, high resistance to strategic voting — which makes it appealing for our
work. An outline of the procedure with an example follows later.

A key feature of our problem is that u is very large; in fact, the p we employ is
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a polyhedron and so has the structure of the feasible region of a linear programming
problem. Our consideration of, and modeling of, this large space of feasible candidate
vectors represents the most essential contribution of this paper.

The decision-making framework in the general MCDM involves a decision
maker evaluating a set of candidates on the basis of multiple criteria or attributes
(Wallenius et al.2008]). A common assumption about the decision maker’s or group’s
actions is consistency with maximization of a utility or value function that depend
on the attributes (Raiffa and Keeney|[1976). |Wallenius et al.| (2008) characterize the
distinctions between the discrete and the continuous candidate space versions of the
MCDM problem. Our work is related to both the versions. Like the continuous ver-
sion, we iteratively search a continuous candidate space. However, like the discrete
version, we do specify a functional form of the decision makers’ value functions, and
estimate its parameters over several candidates over the iterations.

We generally assume that V;() is known in some way to each stakeholder i.
Thus, we do not devote attention to methods to “discovering” V;(). We note a signif-
icant body of research that focuses on this aspect of the problem. In this literature
it is generally assumed the stakeholders can provide some preference information,
e.g. the ability to choose between pairs of alternatives. The stakeholders are then
asked to make various preference decisions to elicit functional forms, e.g. the V;()’s,
that allow a decision on a complete option to be made. We note in particular the
Analytic Hierarchy Process (AHP), which is a well-regarded tool for multi-criteria
decision making (Saaty and Vargas 2012)). It relies on pairwise comparisons over
a set of alternatives, eliciting preference rankings on several criteria organized in
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a hierarchy on a nine-point scale. The group version of AHP aggregates the indi-
vidual scores into group scores using their geometric means — similar to the way it
aggregates the scores over the hierarchy of criteria. Any mean is less resistant to
extremes (and thus strategic behavior) than median — which is used by Majority
Judgment.

Green and Rao| (1971) introduced conjoint analysis into marketing literature —
which has enjoyed considerable success in marketing applications (Green et al.|2001)).
A decompositional technique, the method presents respondents with descriptions
of alternatives with differing levels on a number of attributes, and records their
preference order over the alternatives. For reasons just discussed we do not use
these methods to determine utility functions but we do use the functional forms
from this literature as part of our estimation process.

As the research progresses, there will be need to approximate the efficient fron-
tier of the feasible candidate space using historical or simulated data on candidate
realizations. Hence, on the computational side, research dealing with the problem
of approximating the efficient frontier of the continuous candidate space is also rel-
evant to our work, e.g. Data Envelopment Analysis (see Charnes et al.| (1978),
Cook and Seiford| (2009)) and potentially, multi-objective linear programming, (see
Ruzika and Wiecek (2005), including methods to approximate the efficient frontier
(see Saymn (2000) and |[Karasakal and Koksalan| (2009)).

A multi-criteria decision analysis based approach was adopted in a strategic
decision making context by Eurocontrol (Grushka-Cockayne et al.[|2008)). Similar to
our setting, the problem involved the ANSP and the airlines collaboratively arriving
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at a common decision for selecting operational improvements. Further, the decision
was subject to constraints like safety and environmental impact, and was expected to
improve on objectives like predictability and efficiency. However, unlike our problem
that seeks to evaluate at a day-of-operations level, the Eurocontrol was faced with

a one-time strategic decision.

3.2.1 Majority Judgment

Majority Judgment is defined as a social decision function. It involves grading
— instead of preference rankings — of each candidate, by all voters, in a common
language. It is a natural, rich preference elicitation method, already being practiced
in spirit in many contests and juries around the world, as well as a few political
elections.

It takes as input the Grades given by the voters, and produces “Majority
Grade” of each candidate as an output. These can be used to compute rank-
orderings as well (called “Majority Ranking”). Majority Grade of a candidate is
the highest grade approved by an absolute majority of the voters. In case of an odd
number of voters, it is the median of the grades; if there are even number of voters,
then it is the lower middlemost of the grades. Its high resistance to strategic voting
primarily results due to this median-seeking property.

Suppose there are six voters, voting on three candidates: C;, Cs, C3. They
assign one of these five grades to each candidate: Excellent, Very Good, Good,

Passable, and Reject. The grades thus obtained by voting are then sorted from
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Candidates: & Oy Cs Maj. Gr.
Worst Grade: | Passable Reject Reject MG-5
Passable  Passable Reject MG-3
Good Passable Good MG
Very Good  Good  Very Good | MG-2
. Very Good  Good  Very Good | MG-4
Best Grade: | Excellent Good  Very Good | MG-6

Table 3.1: Majority Judgment example

worst to best, as given in Table

The majority grade for each candidate (marked “MG” in the last column) is
the top fourth grade, as majority (four of six) would give at least that grade to the
candidate. Row “MG-2” is found similarly after hiding the “MG” row, and so on;
these are useful for tie-breaks when ranking candidates. Majority Ranking for the
example is: C7 = C3 = Cs.

Majority Judgment requires a common language accepted by all the voters for
grading the candidates. Grades may be either continuous or discrete (like above).
A continuous grading language could be: {0,...,100}, where 0 is commonly under-
stood as “unacceptable”, and 100 as “most favorable”.

The aspect of common language, while being very intuitive and simple to
express, is critical to the overall procedure. Any practical implementation has to
carefully come up with the common language that is accepted by all the voters. For
some applications, the common language is easier to identify as it forms part of the
trade, e.g., tea or wine tasting within a company, or assignment grading in classes.
In new applications however, specific focus groups with the voters are sometimes

conducted to establish the common language. Furthermore, special training and
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communication procedures are developed to ensure that new entrants to the system

are well-conversed with the common language.

3.3  Mechanism Design and Underlying Models

As discussed in the preceding sections, Majority Judgment provides a solution
to the challenge we have outlined. However, Majority Judgment cannot be directly
applied due to the very large — in fact, infinite — size of the set of “candidates”. In
this section, we develop an analytical framework and set of models for addressing

this issue.

3.3.1 Majority Judgment Winner

Suppose N is the set of n stakeholders — hereafter referred to as players — faced
with a potentially infinite set of feasible candidates p. As discussed in Section 2,
each player has a value function V; that assigns each candidate m € p a value. In
this section we make use of a grade function g;, which is similarly a function defined
on . The grade function will be employed by player ¢ to assign a grade to each m
as part of the Majority Judgment process. While g; is clearly closely related to V;
(and higher V; values would generally induce higher g; values), it is possible that a
player may consider various strategies for setting g; based on V;. However, at this
time, we will assume that a simple linear transform is used to produce g; based on
V; and we will refer to g;(m) as the value of m to ¢. In fact, the only reason that

we do not use V; directly is that we require all grades to use a “common language”.
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Here this implies 0 < g;(m) <1 for all m.

Let b denote a minimal majority-forming subset of N, and let S denote the set
of all possible minimal majority-forming subsets of N. In a “one-person, one-vote”
situation, a majority-forming subset is any set of size § + 1 for n even and {%W
for n odd. In the weighted case addressed here, each player 7 is given a weight w;;
the total weight of a minimal majority-forming subset b just exceeds half the total

weight of all players:

W < Zwi; where W = ZgeN 7

1€b

(3.1)

Requiring the set to be minimal implies that if any element is deleted from b then
equation would no longer hold. Note that the complement N — b clearly does
not form a majority.

The min grade for a specific b and candidate m is u(m, b) = min;ep, g;(m). The
Majority Grade v(m) for a candidate m is the highest grade a majority of players

is agreeable to assign it, i.e.

v(m) = max u(m, b)

A Majority Judgment winner is the candidate m* with the highest Majority
Grade v*:
v(m*) =" = réllgﬁv(m).
A Majority Judgment winner m* thus guarantees a majority of the players a grade
of at least v*.
Determining a winner over a “small” set of candidates is straight-forward in

the presence of a trusted, benign “central planner”. The players submit their grades
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for each candidate to the central planner. The planner then sorts the grades for each
candidate, and identifies the median grade for each (lower median in case of even
number of players) — this is the majority grade. The candidate with the highest
majority grade is deemed the winner.

Our challenge is to determine such a winner when the size of p is very large
— perhaps infinite. In fact, the proceeding discussion already implicitly associated
a subset of players with the winning candidate. This in turn provides a potential
approach to making the candidate search finite in the sense that we could search for
the winning minimal majority forming subset rather than the winning candidate.

Specifically, if we define for any b € 3

0(b) = max u(m, b)

then it is easy to see that

v* = max 0(b). (3.2)

While we have now made a search over a potentially infinite set finite, this
reduction depends on the ability to efficiently find ©(b). The following optimization
model can accomplish this:

Subset_Opt(b)

st. z<ux V 1€b
r; = gi(m) V i€
mec

79



C, [ Gy | Gy | Cy
g1 | 1.00 | .70 | .40 | .50
go | 1.00 | .90 | .70 | .85
g5 | .80 | 1.00 | .80 | .90
g | 60 | .75 | 1.00 | .80
g5 | 40 | 50 | .60 | .30

Table 3.2: Sample grade functions for four candidates

We will later show that for applications of interest to us this model can be
cast as a linear program.

A special type of minimal majority-forming subset is relevant in Majority
Judgment: a majoritarian set is a minimal majority forming subset that gives the

highest grade to some candidate m. That is,

a b € [ is a majoritarian set if there exists an m € p such that

u(m, ') = maxpep u(m, b)

To illustrate these concepts consider the example provided in Table |3.2]

Assuming all weights are one, there are (g) = 10 minimal majority forming
subsets but only two majoritarian sets: {1,2,3} and {2,3,4} ({2,3,4} produces
the highest grade for each of candidates C},Cs, C3). Note that player 5 is in no
majoritarian set since this player tends to give all candidates a low grade. While
the grade functions prevent player 5 from being in any majoritarian set, in the
weighted case it is possible that a player could be in no majoritarian set because
that player was not in any minimal majority-forming subset. An extreme example

could occur if the weight of a single player 7 was greater than W. In such a case,

{E} would be the only minimal majority forming subset and by necessity the only
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majoritarian set. All other players could be in no majoritarian set irrespective of
how they graded. Of course, we may wish to impose rules or assumptions that
prevent some of these extreme cases. For example, we will only consider weighting
schemes that do not make a single player a majority and we may also require that
each player give at least one candidate a grade of one.

The concept of a majoritarian set can potentially allow us to reduce the search
space size since if we define 8’ to be the set of all majoritarian sets then we can
replace Equation ((3.2) with:

* = 0(D).
v Igé%)/w()

However, we can in fact reduce the search even more. It should be clear from
the preceding discussion that for any b €  there is an m € p and an ¢ € b such that
gi(m) = u(m, b) = 0(b), i.e. i is the element of b that assigns m its minimum grade.
In general, a given player ¢ might play such a role for several sets b. We can thus
define an optimization problem that determines the highest value of ©(b) achievable

where ¢ € b and ¢ defines the minimum grade, i.e.
0; = max{g;(m) : g;(m) = u(m,b),7 € bym € pu}

We note in general it can be the case that the set optimized over in this
expression can be null, in which case v; is defined to be zero. For example, a player
that consistently grades very high could be in many majoritarian sets but might not
define the minimum grade for any of them.

We have now developed a new approach to finding v*, namely:

v = maxa,. (3.3)
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We now define an optimization model that determines a value closely related

to ¥; and will allow us to compute v* using an equation similar to (3.3)).

optimization model is defined for any i’ € N.

Player_Opt(i’)

Ziy = max Ty

s.t.

zy < G"(1 = ) + V ieN
Zwi[iZW,

iEN

I, eB V 1N
r; = g;(m) V ieN
mec yu

This

Here, G™" is the maximum grade value and W' is the smallest number greater

than W that can be achieved as the sum of the weights of a subset of players. Note

there are two sets of variables. The continuous x; variables define the grades assigned

by each player. The binary I; variables define the players in the majority forming

subset; specifically, I; = 1 implies player ¢ is in the majority forming subset and

I; = 0 implies it is not. Constraint (3.4) insures that z; is the minimum grade in

the set. Constraint (3.5)) insures that the set has total weight larger than V.

Proposition 1 The following hold true:

1. v* = max;cn 2i;

2. any 1 that solves max;ey v; also solves max;en Z;,
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3. for any i* that solves max;en U;, the corresponding majoritarian set b when
converted to an I vector and the corresponding grade vector when expressed as

an x vector are an optimal solution to Player_Opt(i*).

Proof All three results follow from two observations. First, consider any optimal
solution to Player_Opt(i) for some i and let b* be the set corresponding to the
optimal I vector. Constraint set implies that b* is a majority forming subset.
If b* is not minimal then there is a minimal &’ C b* with 0(b') < 0(b*). In particular,
if 0(0') < 0(b*) then there exists an ¢ € ¥’ such that Z; < Z;. Second, any majori-
tarian set b together with a grade minimizing ¢ € b generates feasible solution to

Player Opt(i). O

3.3.2 Structural Assumptions and Efficient Modeling of Feasible Set
of Candidates and Grade Functions

We now describe some assumptions regarding the structure of the set of feasible
candidates and the grade functions. These are appropriate for our target applica-
tions (as well as many others) and also aid in the tractability and modeling of the

problem.

Assumption 1 The feasible candidate space ;i C Ry is continuous and has a con-

cave “efficient frontier”.

The concave efficient frontier is a reasonable assumption if: (a) larger values
of each individual metric are desirable, and (b) there is a tradeoff required among
the metrics — that is, increasing the value of one metric comes at the expense of
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other(s). The first requirement can be met by suitable transformations if smaller
values are more desirable than larger. Tools like Data Envelopment Analysis are

dedicated to finding such efficient frontiers among a miscellany of metrics.

Assumption 2 Fach player’s value function V;(m) is non-negative, continuous,

non-decreasing and concave.

The non-negativity assumption could be resolved by transformation if the
original value function did not have this property. Continuity would seem to be
a reasonable assumption (for many applications): very small changes in candidate
component values should not induce jumps in value. Non-decreasing is related to the
discussion above: higher component values are better. The concavity might perhaps
fail in certain settings but in many it could be quite reasonable — expressing a type

of diminishing returns property.

Assumption 3 The common grading language allows for continuous grades in G =

[0, 1], where a higher grade implies better acceptability by a player.

This assumption defines a common voting language, which is necessary in

Majority Judgment.

Assumption 4 Fach player derives its grade function by a simple linear trans-
formation of its value function. Specifically, define V;™** = maxme, Vi(m); then

7

gi(m) = Vi(m)/V;me".

We also might consider slightly more general transformations. However, in
general it is possible (and perhaps profitable) for a player to consider a variety
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of strategies to set the grade function based on their own value function and also
knowledge or assumptions regarding the value functions and/or strategies of the
other players. Reducing or eliminating the gain that could be achieved by such
“strategic” voting is a very important design consideration. We will address it
in future research, currently relying on the strategy-resistance claims of Majority

Judgment by its authors.

3.3.2.1 Linear Representation of Feasible Candidate Set and Grade
Functions.

The assumptions just described allow us to produce an efficient form of the
optimization models previously described. Specifically, Assumption 1 allows us to
use a piecewise linear approximation to represent the space of feasible candidates

and we can replace m € p with:
c'my +c?my + -+ cPm, < c° (3.6)

where c¢’s are appropriately defined coefficient vectors.
Assumptions 2 and 3 allow us to use similar piecewise linear approximations

in place of the grade functions. We approximate z; = g;(m) with
d'imy 4+ d*my + -+ d%m, + 2; < d%

where d;’s are appropriately defined coefficient vectors. The fact that higher grades
are always preferred allows us to replace each equality constraint with a set of

inequalities that approximate the grade functions.
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3.3.2.2 Grade Function Model.

In the prior Section we showed how to represent the grade functions using linear
constraints. However, doing this requires knowledge of the grade functions. In fact,
the central planner will only observe the players’ voting behavior. Our candidate
generation process requires that we approximate player grade function based on
these observations. We will do this using statistical models that assume a particular
functional form for the grade functions. The functional form we assume is based
on well-accepted notions developed by economists and marketing researchers in the
fields of choice modeling and multi-attribute valuation (e.g. Meyer and Johnson
(1995))).

Each player takes three steps to determine the grade of a given candidate.
The first two involve the value function (V) and the last converts the value function
approximation into the grade function (g;). First, she determines the value of each
individual component of the candidate — holding the other components at constant
levels. Second, she integrates the individual valuations of the components into an
overall value of the entire candidate. Third, she normalizes the value of the candidate
into its grade.

Specific models are now proposed for each step. First, the value of an indi-
vidual component m,. to i is modeled as a non-decreasing concave function v, (m,).
The value can be visualized as net profitability gain as the metric value is increased,
holding other metrics at constant levels. The concavity assumption models dimin-

ishing marginal returns as the metric value increases. Second, the integration step
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combines the individual value functions as a multiplicative-multilinear function of
vr,(m,.)’s, modeling complementarities among the valuations over the different com-

ponent metrics:

Vi(m) = ry,vy,(ma) + ra,va,(ma) + rig,vn, (ma)ve, (mo) + ..

with non-negative coefficients ry,, 75, 712,,- -+ > 0. The non-negativity of the con-
stants implies that higher values are better, and that the individual components are
not substitutes to each other. For more than two components, pair-wise interaction
terms are added; higher-order interaction terms are ignored. Finally, the normal-
ization step converts the integrated value into a grade, using a simple linear scaling
based on the maximum value f/im‘”. The grade function for player ¢ is thus specified

as:

r1,01,(ma) + ro,va, (Ma) + 112,11, (M1 ), (Ma) + . ...

¥ max
Vi

gi(m) =

Y

Appendix provides further implementation details.

3.3.3 Iterative Procedure

In practice, the true grade functions g;(m) will be confidential to the players.
We use the functional form just described in a procedure that statistically approx-
imates the grade functions based on each player’s observed grades, denoted ¢;(m).
Appendix provides details on the estimation procedure.

The optimization problems Subset_Opt(b) and / or Player_Opt(i) can be
solved with the estimated grade functions g;(m), for some or all b € S or i € N
respectively. The resultant candidates will be an approximation to those computed
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Algorithm 1 Algorithm for Proposed Mechanism
Initialize consideration set of feasible candidates

repeat
Obtain players’ grades on the consideration set
Estimate players’ grade function coefficients
Generate new feasible candidates and / or ask players for new feasible candi-
dates
Introduce some or all new candidates into consideration set

until stopping criteria met

with the true grade functions. All or a subset of these “generated” candidates are
put to vote by the players. This cycle of estimation, new candidate generation,
voting is repeated until a stopping criterion is met. Algorithm (1| summarizes the

entire mechanism:

3.3.4 Evaluation

The “optimal” candidate m* uses the “true” grade functions g;(m), while the
“winning” candidate m* emerges after the mechanism run using estimated grade
functions g;(m). The two are compared to evaluate accuracy of the procedure.

Deviation between candidates is determined as the Euclidean distance between

the two. For p-dimensional candidate space:

dy, =0 zp: (mr —m#)°.

s=1

o = *1 assigns a sign to differentiate outcomes with negative versus positive devi-
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ation.
Recall the majority grade of the optimal candidate is v(m*), or v*. The “true”
majority grade of the winning candidate is computed with the true grade functions

for the players, and denoted v(m*). Deviation in majority grades is determined as:

d, = <”(ﬁ‘*) - 1) % 100.

v(m*)

By definition, d, cannot exceed 0; however, errors in the piecewise linear approxi-
mations of the grade functions may lead to violations.

d, is an absolute measure, useful in comparing several variants of the mecha-
nism. d, is relative — akin to “optimality gap”, it can be used to assess the overall

quality of the mechanism itself.

3.4 Experimental Results

A large simulation experiment was conducted to validate the proposed mech-
anism using data from real-life operations. The data selection and preparation is
explained first. Instead of randomly fixing the “true” grade functions for the dif-
ferent airlines, some judgment was exercised to mimic reality. This intuition was
vetted within the research team which has expertise in air traffic flow management.
The procedure to draw the coefficients for grade function with quadratic functional
form is detailed in the appendix. Determination of each airline’s weight is also a

practical challenge. Multiple weighting schemes are explained.
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3.4.1 Data

October 10, 2007 was selected as the sample date. It was a mid-week (Wednes-
day), with no exceptional events like holidays or expectations of severe weather. The
entire day’s scheduled departures were included in the dataset.

In terms of geographical scope, the Chicago area airports — ORD (O’Hare)
and MDW (Midway) — were included. Operations of feeder airlines were merged
into their main airlines’ operations. OAG schedule data was used for calculating
the number of flights impacted, the left panel of Table sums up results. The
setup is representative of real-life: impact of the weather on a part of the National
Air Space spanning multiple airports of differing sizes, dominance of a few larger
airlines, and a long-tail of smaller airlines.

Heterogeneity in airline operations is evident. The final dataset comprises
of 47 airlines, totaling 1603 operations. Six hub-and-spoke airlines make up more
than 3/,-th of the operations — 1243 in total. Eight point-to-point airlines make up
the next largest group, with 292 operations. 25 international airlines have total 50
operations, three charter airlines have 11 operations, and five cargo airlines have
seven operations.

At the airline-level operations, four groups emerge. The first group has three
large airlines with large presence: United, American, and Southwest. With over 100
operations each, these make up over 85% of total operations. The second group has
five large airlines with small presence: Northwest, Delta, US airways, Continental,

and Airtran. With operations between 10 and 100 each, these make up about 8% of
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total. The third group has between 2 and 9 operations, and comprises of 20 airlines.

The fourth group has 19 airlines with a single operation.

3.4.2 Feasible Candidate Space

An adversely impacted day-of-operations will suffer loss in the service perfor-
mance metrics as compared to a normal day-of-operations. The metrics are inter-
related, requiring trade-offs amongst them. For instance, an “aggressive” approach
might yield a high capacity-utilization, but at the expense of delaying the time
when final decisions on releasing flights are made, thus reducing predictability. On
the other hand, a “conservative” strategy may release fewer flights that are closely
tracked by the air traffic controllers; thereby yielding a high predictability, but low
capacity-utilization. Infinitely many “moderate” strategies can be proposed in the
intervening space.

Research conducted by other members of our research team has shown a con-
cave relationship among representative metrics for three performance categories:
efficiency, predictability and capacity (Ball et al.|2011]). The relationships are devel-
oped for a single airport, by varying the time-period during which the airport suffers
a reduced capacity due to bad weather. The metrics are normalized to lie between
0 and 1; the infeasible “ideal point” (1,1,1) represents a normal day-of-operations
where all the performance metrics are realized at 100% levels. The envelope forms
the efficient frontier, while all the interior points serve as feasible region. Two met-

rics — capacity-utilization and predictability — are used for illustrative purposes here,
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Airline MDW ORD |Characteristics Profile nops log.2 root.10
United (UA) @ 10 625|Large hub & spoke, large presence HL | 635 (39.6) 9.31 (10.8) 8.85 (10)
American (AA) ® 500|Large hub & spoke, large presence HL | 500 (31.2) 8.97 (10.4) 8.16 (9.2)
Southwest (WN) ¢ 242 Large point-to-point LH |242 (15.1) 7.92(9.2) 6.39 (7.2)
Northwest (NW) ¢ 11 23|Large hub & spoke, small presence SS 34 (2.1) 5.09 (5.9) 3.29 (3.7)
Delta (DL) © 6  22|Large hub & spoke, small presence SS 28 (1.7) 4.81 (5.6) 3.08 (3.5)
US Air (US) 27|Large hub & spoke, small presence SS 27 (1.7) 4.75 (5.5) 3.04 (3.4)
Continental (CO) 2 17|Large hub & spoke, small presence SS 19 (1.2) 4.25(4.9) 2.70 (3.1)
Airtran (FL) 18 Large point-to-point LH 18 (1.1) 4.17 (4.8) 2.65 (3)
Air Canada 8|International, neighboring regions ~LH 8 (0.5) 3 (3.5) 2.02(2.3)
ExpressJet 3 4|Small point-to-point LH 7(0.4) 2.81(3.3) 1.93(2.2)
Jetblue 7|Small point-to-point LH 7(0.4) 2.81(3.3) 1.93(2.2)
Chautauqua 6|Small point-to-point LH 6 (0.4) 2.58 (3) 1.83 (2.1)
Frontier 6 Small point-to-point LH 6 (0.4) 2.58 (3) 1.83 (2.1)
Mexicana 6 |International, neighboring regions ~LH 6 (0.4) 2.58 (3) 1.83 (2.1)
Lufthansa 5 |International, business-dominant HL 5(0.3) 2.32(2.7) 1.72(1.9)
Primaris 5 Small charter HL 5(0.3) 2.32(2.7) 1.72(1.9)
Alaska 4|Small point-to-point LH 4 (0.2) 2 (2.3) 1.60 (1.8)
Air Midwest 4 Small charter HL 4 (0.2) 2 (2.3) 1.60 (1.8)
Aeromexico 3|International, neighboring regions LH 3(0.2) 1.58 (1.8) 1.45(1.6)
British Airways 3|International, business-dominant HL 3(0.2) 1.58 (1.8) 1.45 (1.6)
Polar Air Cargo 3|Cargo SS 3(0.2) 1.58 (1.8) 1.45 (1.6)
Spirit 2|Small point-to-point LH 2 (0.1) 1(1.2) 1.26 (1.4)
Aer Lingus 2|International SS 2 (0.1) 1(1.2) 1.26 (1.4)
Air Canada Jazz 2|International SS 2 (0.1) 1(1.2) 1.26 (1.4)
Lot - Polish 2|International SS 2 (0.1) 1(1.2) 1.26 (1.4)
SAS Scandinavian 2|International SS 2 (0.1) 1(1.2) 1.26 (1.4)
Singapore 2|International SS 2 (0.1) 1(1.2) 1.26 (1.4)
USA 3000 2|Small charter HL 2 (0.1) 1(1.2) 1.26 (1.4)
Air France 1|International SS 1(0.1) - 1(1.1)
Air India 1|International, economy-dominant LH 1(0.1) - 1(1.1)
Air Jamaica 1|International SS 1(0.1) - 1(1.1)
Alitalia 1|International SS 1(0.1) - 1(1.1)
All Nippon 1|International SS 1(0.1) - 1(1.1)
British Midland 1|International SS 1(0.1) - 1(1.1)
Iberia 1|International SS 1(0.1) - 1(1.1)
Japan International 1|International SS 1(0.1) - 1(1.1)
KLM-Royal Dutch 1|International SS 1(0.1) - 1(1.1)
Korean 1|International SS 1(0.1) - 1(1.1)
Martinair Holland 1|International SS 1(0.1) - 1(1.1)
Pakistan International 1|International, economy-dominant LH 1(0.1) - 1(1.1)
Swiss 1|International SS 1(0.1) - 1(1.1)
Turkish 1 |International SS 1(0.1) - 1(1.1)
Virgin Atlantic 1|International SS 1(0.1) - 1(1.1)
ABX 1|Cargo SS 1(0.1) - 1(11)
Cargoitalia 1|Cargo SS 1(0.1) - 1(1.1)
Custom Air 1|Cargo SS 1(0.1) 1(1.1)
Kalitta 1|Cargo SS 1(0.1) - 1(1.1)
TOTAL 307 1296 1603 (100) 86.03 (100) 88.38 (100)

@includes several United feeders like Go Jet, YV, Shuttle America, United / Skywest, Trans Air; Pincludes American
Eagle; ¢includes ATA; %includes Mesaba; ¢includes Skywest, Comair, Atlantic Southeast.

Table 3.3: MDW and ORD airline-wise scheduled departures on 10 Oct, 2007.
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the proposed procedures extend to any number of metrics.

3.4.3 “True” Grade Functions

Airlines can be broadly classified along several dimensions. (i) number of
operations: large, medium, or small airline. (ii) type of network: hub-and-spoke
airline, or point-to-point. (iii) type of operations: cargo or passengers. (iv) customer
focus: business-dominant, or economy-dominant, or type-independent. (v) distance
of markets: long-haul, or short-haul. (vi) political markets served: domestic, or
international.

To make the setup realistic, these differentiating factors should be reflected in
the grade function of the airlines. Some judgment was exercised in modeling the
airline grading behavior; it was vetted within the extended research team, which
has expertise in air traffic flow management.

Between the two metrics, we first assessed how each airline would value the
two relatively. The possibilities are: “HL”, “LH”, “SS”, where H indicates High, L
Low, and S Same; the letters pertaining to predictability and capacity utilization
respectively. It does not matter if absolute levels are either both H or both L, as
the normalization process would not differentiate between the two. Airline charac-
terizations and their posited profiles are summarized in the middle panel of Table
3.3

We posit large hub-and-spoke airlines with a significant presence, United and

American in this instance, to have HL profile, as they have a large pool of aircrafts
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to re-balance the impacted passengers — so long as they know the impact adequately
in advance. Hence, they would care a lot more about predictability than capacity
utilization. However, this cannot be said of the other large hub-and-spoke airlines
with a small presence (Northwest, Delta, US Air, Continental), hence we assign
them the neutral SS profile.

The low-cost point-to-point airlines — of any size — are hypothesized to pre-
fer capacity utilization than predictability. Their predominantly economy passen-
gers are likely interested in completing their itinerary, without a significant time-
sensitivity. Hence, we assign LH to large point-to-point airlines (Southwest and
Airtran), as well as the smaller ones (ExpressJet, Jetblue, Chautauqua, Frontier,
Alaska, and Spirit). We posit the opposite should hold for luxury or time-sensitive
passenger focused Charter airlines. Primaris, Air Midwest, USA 3000 are, therefore,
assigned HL profile.

We treat the international airlines serving the neighboring countries to be sim-
ilar to the point-to-point operators, and assign Air Canada, Mexicana De Aviacion,
and Aeromexico LH profile too. Lufthansa and British Airways are posited to cater
to more time-sensitive passengers, hence assigned HL profile, while Air India and Air
Pakistan are treated as opposite and therefore assigned LH profile. All the remain-
ing international airlines are assigned the neutral SS profile . Finally, cargo carriers
are also posed to value the two metrics similarly — and are assigned SS profile.

Next, we assessed the degree of curvature for the value function of each indi-
vidual metric. The possibilities are: small curvature (straight-line like) and large
curvature (more concave). We posit that the airlines with smaller operations would
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have a straight-line like curvature, as they would not have as much degree of freedom
as the airlines with larger presence. The latter are more likely to observe increasingly
diminishing returns, and hence, would have a more concave shape.

Appendix explains implementation of this intuition using quadratic func-
tional form for the airlines’ grade functions. The grade-maximizing candidates are
plotted in Figure for the various groups of airlines. The diversity shows the

effectiveness of the procedure.

3.4.4 Weights

The democratic “one-person, one-vote” assigns a weight of one to all the air-
lines (“eqwt”). This may be perceived as inequitable in many practical decision-
making contexts though. E.g., in our case, it implies that airlines with a single
operation get same representation as those with hundreds of operations. Nonethe-
less, this is a benchmark for evaluating other weighting schemes.

Proportional representation can be achieved by replicating each voter’s grade
as many times as her weight. A basis is needed for determining the weights. To
keep matters simple, practical, and minimal in private information, we use publicly
available data on total operations impacted as the basis. It is also a very relevant
measure to use in the current context.

The weights are traditionally seen as integers, with the interpretation as given
above. In our case though, weights can be fractional. A majoritarian set is formed

by a set of voters if the proportion of their combined weight is strictly above 0.5.
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Figure 3.1: Grade-maximizing candidates for different groups of airlines
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A simple scheme could use the number of operations as weights (“nops”). How-
ever, few voters may get significantly high influence. In this instance, United alone
has about 40% operations, the top two airlines make over 70% of total operations.
Thus, it may be beneficial to balance the influence of the larger voters.

Logarithmic and power-root transforms on the number of operations would
reign in the large positive numbers. However, the choice of base is an open decision.
We tried logarithms to three well-known bases: 10, e, and 2, and selected the base 2
for our experiment (“log.2”). The other two bases had lesser differentiation among
the airline weights — for the two largest airlines: log;,(635) = 2.8;1log,,(500) = 2.7
and In(635) = 6.45;1n(500) = 6.21. As log(1) = 0, the log transform assigns weight
of zero to the airlines with a single operation — which may or may not be desirable.
In this instance, the airlines with single operations are mostly international and
cargo airlines. If eliminating these is seen as inequitable, a log(.) + 1 would ensure
that all airlines have some say in the mechanism.

Alternately, fix the largest airline’s proportion of total weight at some desired
level, say mnqe. Power-root transforms can accomplish this. To get 7,4, of 30%,
20%, and 10% (“root.30”, “root.20”, “root.10”) in our example, these are respec-
tively: 1.32585, 1.80390, and 2.96015.

While all of these are valid choices, the exact decision of which one to choose
would not be taken at the time of each mechanism run. This decision should be
made experimentally, and then left unchanged for a relatively long period of time,
until there are reasons to reconsider.

We will evaluate results with four weighting schemes: eqwt, nops, log.2, and
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root.10. log.2 eliminates the 19 airlines with a single operation. root.10 has similar

proportional weight for United as log.2.

3.4.5 Mechanism Design Choices

At this stage, all the inputs for running the procedure are ready. There are a

few design choices still to be made though.

3.4.5.1 Initial consideration set.

To initiate the mechanism, the ANSP could provide the airlines a set of can-
didates. The airlines may heuristically arrive at the grades, through possibly com-
paring the candidates among themselves.

Alternately, it could communicate the feasible candidate space, and request the
airlines to provide their grade-maximizing candidates — to be graded 1. This may be
perceived as equitable as the airlines get to submit their most preferred candidates
upfront. It also addresses the scaling problem, as the grade of 1 is clearly established
for each airline at the outset. However, it does need the airlines to solve a type of
profit-maximization problem with feasibility constraints.

Our initial experiments found the former approach converging faster than the
latter. Hence, we initialize the consideration set with five or more equally spaced
candidates, as there are five coefficients to be estimated for the quadratic value

functions.
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3.4.5.2 Extent of agreement.

Majority Judgment is a median-seeking procedure. The median has the desir-
able property that it exactly balances the number of votes that find a candidate’s
grade too high with those that find its grade too low (Galton|1907). This property
will be lost in seeking a non-median based solution, and may encourage strategic
behavior.

Having said that, the procedure can be easily extended to allow for any higher
(or lower) level of agreement. When seeking a higher (lower) agreement, the Major-
ity Grade of the final candidate could be smaller (higher). Alternate criteria may
be explored, for instance, one that seeks a minimum number of airlines to be in
the majoritarian set. Any deviations should be subjected to a strategic behavior
analysis. In the experiment, the extent of agreement is set at the original, 50% of

total weight.

3.4.5.3 Voter input.

At the end of any round, the ANSP may ask for the grade-maximizing candi-
dates from the airlines (if not already done). Alternatively, the ANSP may choose
not to ask the airlines for their input. In our experiments, we adopted the latter.

Variants of this alternative may be adopted in practice. For instance, it may
be made optional for certain airlines — e.g. those with smaller number of operations,
who may possibly not have sufficient infrastructure, and / or stake in the current

decision-making context. Furthermore, smaller subsets of airlines may be requested

99



after each round. This would ensure that the consideration set is kept manageable
over the rounds. For maintaining equity though, the selection of airlines may be

made random, or through a preset procedure.

3.4.5.4 Consideration set update.

At the end of each round, the voter input and the ANSP-generated new candi-
dates are available. A balance has to be made between the size of the consideration
set and its quality. Among the new candidates, one could select few candidates
with the highest Majority Grades. In our initial experiments, we found that this
strategy led to inferior final winners. The inherent error in the estimation of the
grade functions is likely the cause.

On the other hand, adding all the new candidates would lead to very large
consideration sets. The ANSP may select few diverse candidates among the voter
input and new candidates — or it could randomize the selection.

In our experiments, we added all the new candidates generated at the end of
each round into the consideration set. This was so we could learn about convergence
of the overall procedure with a large input. Results from this experiment would serve

to benchmark other strategies in future.

3.4.5.5 Consistency in grading.

We assume the airlines grade every candidate precisely, and report the grades

truthfully. In real-life, one or both of the assumptions may not hold, necessitating
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establishment of consistency rules. In our experiments though, no consistency checks
are required. This experiment establishes a benchmark to evaluate the results with

different consistency rules.

3.4.5.6 Stopping criterion.

We chose a simple stopping criterion of six rounds for the experiments — in the
interest of convergence. More sophisticated stopping criteria should be evaluated

against the benchmark established herein.

3.4.6 Mechanism Evaluation

Several runs of the mechanism were conducted with varying parameters. This
section reports evaluations in terms of accuracy and technical performance measures.

Figure |3.2| shows the optimal and the winning candidates for different weight-
ing schemes, for one of the runs. In this run, apart from root.10, all the other
weighting schemes produced winners very close to the optimal candidates.

As just explained, the initial consideration set is a key parameter of interest.
We increased the size of the initial consideration set from 5 through 35, in steps
of 10 — the respective runs are called “Init5” through “Init35”. Experiments with
larger sizes did not yield any significant improvements.

Figure plots the percentage deviation in the majority grades of the win-
ning candidate relative to that of the optimal candidate, d,. The median absolute

percentage error is about 0.013%. By complete enumeration of the majority grades

101



1.0

Tty root.10

0.8
3
3

Capacity Utilization
0.7
L

0.6

0.5

05 06 07 08 09 1.0
Predictability

Figure 3.2: Optimal vs. winning candidates for the different weighting schemes
Optimal (“/7) and winning (“\”) candidates for the different weighting schemes. Initial
consideration set size is 15; the winner is declared after six iterations.

using true grade functions over the entire efficient frontier, we found its range to be
(0.88, 0.98) — over all the weighting schemes. Hence, the optimality gap is about
0.013%/(0.98 — 0.88) = 0.13%, which indicates the high quality of the mechanism
outcome.

Figure plots the signed Euclidean distances between the winning and
optimal candidate, d,. A negative sign was ascribed to d, if the predictability
metric of the winning candidate was less than the optimal candidate’s (the winning
candidate lay to the “left” of the optimal candidate in Figure (3.2)).

We observe that the winning candidates obtained by the mechanism are quite
close to the optimal ones. A larger size does not necessarily mean better solutions

consistently — only Inith seems to suffer in overall quality, but the others are quite
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Figure 3.3: Evaluation results over several initial consideration set sizes and weight-
ing schemes

similar. Recall this is after six rounds of grading.

Figure [3.4]reports on convergence over the rounds. It plots the signed distances
for winning candidate in each round over the one in the previous round. We note
that except for Init5, all the higher initial consideration set sizes practically converge
at the end of the first round itself. However, it may still be beneficial to have at
least two rounds.

These experiments were conducted on a personal laptop with Intel Celeron
Dual-core CPU (1.8 GHz), having 2 GB RAM, running 32-bit Microsoft Windows
7 Home Premium operating system. Computing environment used was R version
13.0, with API Replex to interface with the CPLEX 12.0 solver, obtained through
IBM Academic Initiative.

Figure [3.5 plots the computational times for running six rounds for the re-

spective weighting scheme-initial consideration set size combination. log.2 scheme

103



Init5 Init15

—g— —

-0.04 0.00 0.04
-0.04 0.00 0.04

tn:2 1tn:3  Itn:4 tn:2 1tn:3  Itn:4

Init25 Init35

—a— ——

-0.04 0.00 0.04
-0.04 0.00 0.04

tn:2 1tn:3  Itn:4 tn:2 1tn:3  Itn:4

Sequence of bars: eqwt,root.10,log.2,nops

Figure 3.4: Euclidean (signed) distance of winning candidates for each round over
the previous round — for several initial consideration set sizes and weighting schemes.

eliminates the airlines with single operation, hence takes the smallest time. nops
gives largest weight to the largest airline, hence takes lesser time than the root-
transformed schemes. The computational times increase as the largest airline is ap-
portioned smaller weight: root.10 takes longest, followed by root.20, then root.30,
which takes about same time as nops. eqwt interestingly does not take the longest,
which gives all airlines equal weight. Finally, an interesting observation is that
higher initial consideration set sizes take lesser time to compute.

All the computations were run serially. As each airline’s process is independent
of other’s, there is scope for parallelization. In effect, the computational times could
be %—th of those reported. Moreover, for just two rounds, the computation time

should further reduce by 67%.
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Figure 3.5: Computation time in minutes for several initial consideration set sizes
and weighting schemes.

3.5 Conclusions

In this paper, we have described a mechanism for generating a consensus vector
for use in strategic planning in air traffic flow management. Our approach is based
on Majority Judgment but it employs a novel extension: the ability to handle very
large sets of candidates. Our experimental results show the methods developed are
very effective and can be efficiently carried out.

Several additional steps are required (and currently being carried out) to
achieve practicality in the ATFM context. These include developing intuitive mech-
anisms for the flight operators to understand the performance vectors and to grade

them, development of methods to generate the constraints defining the feasible vec-
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tor space (u) based on the current weather conditions and air traffic demand, esti-
mation of benefits and human-in-the-loop experiments.

Of particular importance both to the ATFM application and more general ap-
plications is the issue of the potential for strategic grading/voting. Our experiments
assumed that flight operators graded in a manner that was consistent with their
true value functions. While Majority Judgment is generally (somewhat) immune
to gaming, this issue deserves further analysis. For example, it could be the case
that certain rules should be put in place to help insure reasonable behavior and
outcomes, e.g. rules against collusion seem to be warranted.

Finally we note that we are quite excited about the potential application of
this mechanism in other areas. There would seem to be a natural fit for many other

application contexts.
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Chapter B:  (Appendix to Chapter 3)

All appendices deal with individual players; subscript i for player is suppressed.

B.1 Grade Function Specification

Without loss of generality, the individual component metrics are normalized
to have support in [0, 1]. Two components are used for explanation, but the speci-
fication easily extends to any number of components.

A quadratic form is specified for the value functions of individual components,
ve(ms) = agm? + bymy,

without an intercept. To obtain the desired increasing function over the range of

my, the values of a, and b, need to be constrained such that:
—1<a,<0;0 < —2a, <b, <1—as,.

This yields:

aS
—-0.5 < — .
O5_b<0

s

Substituting v’s into the grade function, normalizing and renaming the coeffi-
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cients gives:
g(m) = kymy + kymy + ksm? + kym3 + ksmyme + kemimy + kymims + ksmims,
with following constraints for concavity and the integration rule:
k1> 0;ky > 0; —0.5k; < k3 < 0;—0.5ky < ky < 0;k5 > 0.

The renaming yields:

]f3 a; ky Q2

B b ke by

and thus:
—0.5k; < ]{53 < 0; —0.5ky < ky < 0; —0.5]{35 < k6 < 0; —0.5]{75 < k?7 <0;0< k)g < 025]65

Note that the normalization involves V;"** which can be computed using the
optimization model provided in Subset_Opt(b), as follows. Specify b = {i}, and
replace the constraint z; = g;(m) with x; = V;(m) — that is, the (un-normalized)
value function. This would yield the V™** for the player ¢ at optimality.

Normalization would only be required if the grade function is specified from
the value functions of the individual components of the candidate space. Instead, if
the specification with k’s is used directly, and the constraints as mentioned above
are honored for all £’s, then the resulting grade function would automatically have
the support in [0, G™**]. However, it is not possible to recover the original constants

a’s and b’s from the k’s. Only global concavity remains to be ensured.
Proposition 2 Any one of the following constraints is a sufficient condition for

global concavity of the grade function as specified above:

kl + 3k3m1 S 0, k‘Q + 3k4m2 S 0.
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Proof. The Hessian matrix of a function being negative definite in a given region
is a necessary and sufficient condition for concavity of the function within it. The
region of interest here is: m € ((0,0),...,(1,1)]. Denote the Hessian matrix of the

grade function as:

g11  g12
H, =

g12 922,
where gy, is the partial derivative of the g(m) with respect to m, and m;:

o 0 <8g(m1,m2))
g11 =
(9m1

8m1

0
= am (k?l + 2]{337711 + k:5m2 + 2/€6m1m2 + l{?7m§ + Qk:gmlmg)
1

= 2k3 + 2/€6m2 + ngmg

0 (0g(m1,m2))
922 =
Gmg

amg

= % (kg + 2k4m2 + k5m1 -+ k(;m% + 2k7m1m2 -+ ngm%mg)
2

= 21{34 + 2k7m1 + 2]{?877’1?

o 0 <8g(m1,m2))
J12 =
8m1

8m2

= 87 (kjg + 2ksma + ksmq + kaf + 2krmyimey + 2/€8m§m2)
1

= ]f5 + 2k6m1 + 2]4)77712 + 4k8m1m2
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For m # 0, non-negative r’s and the above relationships for £’s:

gi11 912 mi
m' H,m =
g my; Mo

g12. G2 |2
= m3g11 + 2mimagia + Miga
= 2 [ksm} + kemima + ksmimj]
+2 [k;5m1m2 + 2kemima + 2kzmim; + 4k8mfm§}
+ 2 [kam3 + kymym3 + ksmimj)

= 2 [ksm? + kym3] + 2 [ksmima + 3kemims + 3kzmym3 + 6ksmim3]

k k ks k
=2 [k'?,m% + k4m§} + 2k5m1m2 1 + 3—3m1 + 3—4m2 + 6—3—4m1m2
ky ko ky ko

k k k
=2 [k‘gm% + k4m%} + 2ksmims |1 + 3—3m1 + 3—4m2 1+ 2—3m1
~ A k1 ko k1

<0 20
?

The first bracketed term is negative as k3, ks < 0, and m # 0 by hypothesis.
Further, as k5 > 0, if the final bracketed term is negative, the entire expression
m”H,m would be negative, and the Hessian would be negative definite. However,
it is not guaranteed to be so, as explained below.

Re-express the final bracketed term as: [1 + 3:—?m1 + Bi—ng + 6:—? %mlmg]

k k k k k k
-1+ 3k—jm1 + :ak—:‘m2 <1 + zk—i’ml) — 14+ zak—;%n2 + 3k—jm1 (1 + 2k—;‘m2>
\—v—/\ ~ N - )
h$ hg hg h% R4 K

Recall that & = ‘;—11, hence for 0 < m; < 1:

1

k- k k-
05< B 0= -1<22 c0= —m <22m <0
ks K, &,
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=1-m; <h;<1=0<hs<l1.

Similarly for 0 < me < 1: —1.5 < h§ < 0. Correspondingly, for m # O:

0 < h <1;—1.5 < h} < 0. Thus, following hold true for m # 0:
—1.5 < hjhs <0
—1.5 < h5hS < 0.
Consider the following two cases for h;’s.

Case 1 h$ <0 or h? < 0. This would directly imply that m’Hgm < 0, and is thus

a sufficient condition for concavity of the grade function.

Case 2 h¢ > 0 and h} > 0. It follows then that:

kg kS 1 k3
1+3— >0=1>-3— = —— < — <0
+ k’lml k’lml 3 klml 3

and, similarly:

1 Kk
—— < — 0.
3 < k2m2 <

A feasible range exists for hohs’s that allows the bracketed term to be positive.
There are other negative terms in the entire expression, which could result in
m’Hym > 0 even in these two Cases. This is why Case 1 conditions are also
not necessary; however they do guarantee concavity. Either constraint in the propo-

sition rules out Case 2. O

B.2 Grade Function Estimation Procedure

Note from (B.1)) that the grade function g(m) is linear in the parameters k.
Further, only five of the eight k’s are independent. Treat the observed grade z as

111



the dependent variable, and my, ma, m%, m3, myms, as five explanatory variables. The
observational data over h candidates can be represented as: X = Mk, where X 1)
is the vector of observations, M, ys) is the matrix with the five columns computed
as above from the graded candidates, and k(sx1) is the vector of the coefficients.
The sum of squared errors is: e(k) = (X —Mk)T (X —Mk) = XTX - 2XTMk+
ETMTME. There are additional constraints to be observed on k’s, as derived in
Appendix B.I} A constrained least-squares procedure is specified as the following

quadratic program:

1
min  — XTMk + 5lcTMTMk

sit. ATk > ko,
where:

1 0 0 0 0]
0O 1 0 0 0
0 0 -1 0 0
AT=10 0 0 -1 0
o 0 0 0 1
-2 0 1 0 0
0 -1 0 1 0]

and kg is vector of seven €’s

—~

small positive constant), thus forcing strict in-

equalities as desired by the constraints.

B.3 Airlines’ “True” Coefficients for Quadratic Grade Functions

We fix the coefficients for each airline’s value function, following the intuition

developed in Section [3.4.3
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Figure B.1: Feasible values for a and b for value functions for individual metrics

B.3.1 Coefficients for Individual Value Functions

The quadratic value function is: v(m) = am? + bm, where a € [—1,0), and
b € [—2a,1 — a] are the coefficients to be fixed. At the higher values of a, that is,
near zero, the shape of the value function is similar to a straight line with slope b.
On the other hand, the lower end of a’s range provides a more concave curvature.
Fig shows the feasible values of b over the range of a. Note that b has a larger
feasible range at higher values of a. The lower end of a’s range allows a much smaller
flexibility in choice of b; indeed, at a = —1,b = 2.

The highest possible value obtainable by the airline from a metric (i.e. at
m = 1), is a+ b. Hence, an airline with profile “HL” would have a + b of the former

metric higher than that of the latter. For an “H”-profile metric, high a would yield
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a straight-line like value function, while low a would yield a more concave one. On
the other hand, since low a + b allows only higher values for a, an “L”-profile metric
will be straighter. Once a + b is fixed, only one of the two coefficients has to be
chosen, say a.

Three ranges within the support of a + b are defined thus: {L : (0,! /5,5 :
[1/3,2 /3], H : (*/2,1]}. Following are repeated for each airline and metric. First, a+b
is drawn randomly from the designated ranges in accordance with the airline-metric
profile. Next, a is drawn according to the relative number of operations of the airline,
such that larger operations imply smaller a. We employ an acceptance sampling
based approach for achieving this, described below and presented in Algorithm [2
This approach accounts for likely errors in our hypotheses, allowing some airlines to
have different preference structures than what we posited. Finally, b is computed,
and if not feasible, a is drawn again until a feasible b is found. We summarize this
procedure in Algorithm [3]

The acceptance sampling algorithm for drawing values of a takes as input
the vector of airline-wise operations A4, the index 4., of the focal airline whose
number of operations are reported as i.ig-th entry in A,.y, and num.draws for
number of draws to return for the focal airline. A, is sorted, and new position
of the ig,-th airline is identified — stored as A and 4 respectively. If there are
multiple airlines with exactly same number of operations, any one of those could be
designated as 7, as the procedure treats similarly sized airlines in a similar fashion.

A proposal probability distribution from which random variables will be drawn
is specified as uniform (0,1), such that each draw has mapping onto the desired
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coefficient a. In this case, a = —v. A proposed draw v for the ith airline will be
accepted if it falls within its “valid range”. If the ith airline has a unique value
for number of operations, then its valid range is the width of the ¢th interval. If
multiple airlines have the same number of operations, then the valid range extends
to the width of these contiguous intervals. Thus, the ordering of airlines with same
number of operations does not matter — which is desirable, as the sorting order for
such airlines would be arbitrary.

We wish to allow some probability of accepting a v that happens to fall outside
its valid range. Following scheme is adopted. Another iid random variable r is next
drawn. v is accepted if r falls in the valid range. Thus, we accept v if either v or r
fall within the valid range. Note that the valid range for r need not be the same as
that of v; a different range could be used for fine-tuning the acceptance probabilities.

We show the simulation results for a hypothetical set of airline operations:
A={1,1,4,4,4,7,9,10}. The first two airlines should predominantly have higher
a, followed by the next three, and so on. The last airline should have predominantly
lower values of a. We make 1000 draws and plot the histogram in Fig The

results are clearly as desired.

B.3.2 Coefficients for Integration of Individual Value Functions

The integration rule states: V = rivi(my) + rave(mse) + rigvy(my)va(ms).
Recall that r’s are all non-negative by assumption. That is, the interaction between

the two metrics cannot decrease the overall value to an airline. If the value derived
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Algorithm 2 Acceptance sampling algorithm for drawing a values

sample.a(Aorig, torig, RUM.draws)
A < sort(Aorig); i < min{k|A[k] = Aorigliorig]} {sort and identify new position
of Gopig}
n < |A|; Acc < {} {initialize}
{compute range for valid draws}
J < min{k|A[k] = Ai]}; tnin < J%l
j + max{k|A[k] = A[i]}; tias L
{make draws}
for iter € {1,...,num.draws} do
while true do
v~ unif(0,1) {draw (negative) value for a}
r ~unif(0,1) {draw whether to accept v or reject it}
it (0 € {twnootmad)or((0 ¢ {buin o bueDandr €
{tmin: -+ tmaz}) ) then
Acc « Acc U {—v}; break {accept and break out of while loop}
end if
end while
end for

return Acc
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Figure B.2: Acceptance sampling results for hypothetical data of airline operations

from the two metrics are independent of each other to the airline, 15 — 0.

r1, 79 have to be fixed with respect to the profile for the metric. As these will
finally be normalized by V™" for each airline, the same positive range can be used
for all the airlines without any loss in generality. The following ranges are used:
{L:]2,4],S :[2,6],H : [4,6)}. The interaction effect is constrained to be smaller
than the major effects, hence the range for 715 is taken as: [0, 2].

To ensure global concavity, the drawn values for a, b, r for each airline have to

meet the necessary and sufficient condition over the support of (mq,ms), as shown

in Appendix [B.I}
ks ky ks k
TH m=2 [kgml + k4m2] 4+ 2ksmima |1 4+ 3—my +3—mgy + 6— 3 4m1m2 < 0,
ky ko ky ko
where,
1 1 1 1 T12 1
ki =rb ko b ks = —— kg = —— ks = —— .
1=n 1Vmax> =T2 2me7 3 =Tay Vmaz’ "4 202 Vmaz ' 5 byby Ve

(B.1)
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Since V™% is positive by assumption, it has no role in determining the curva-
ture of the grade function. For ensuring concavity, we need to test that the necessary

condition below is met at several sample points over the unit square of the metrics:

nec(my, my) =

r a a aLa
[rlalm% + rgagmg} + imlmg 1+ 3—1m1 + 3—2m2 + 6—1—2m1m2 < 0.
blbg bl b2 bl b2

Treating V™% = 1, un-normalized k’s are computed using (B.1). The LP
corresponding to Subset_Opt(b) is solved (with individual airline as input) to de-
termine the airline’s grade-maximizing candidate. The associated optimal solution

is V% for the airline. This is then used to normalize the k coefficients using (B.1]).

B.3.3 Overall Procedure

The overall algorithm for making the draws is now presented in Algorithm [3|
The coefficients a, b and r thus drawn are shown in the left panel of Table —
a1, by are the a, b coefficients for mq, while as, by are for msy. The grade maximizing
candidate and V™ for each airline are shown in the middle panel of Table [B.1]
Finally, the normalized k coefficients for each airline are in the right panel. Only

kq,--- , ks are shown, the other three can be directly computed using these five.
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Algorithm 3 Algorithm for drawing a and b values

gen.true.abr()
for all airlines in A do
repeat
for all metrics do
lookup profile P for the given metric and airline
repeat
if P =“H” then
a.plus.b ~ unif(*/2,1))
r ~unif(4,6)
else if P =“L” then
a.plus.b ~ unif(0,! /3))
r~unif(2,4)
else if P =“S” then
a.plus.b ~ unif(1/3,2 /3))
r ~unif(2,6)
end if
a <—sample.a(A4,1,1)
b+ a.plus.b —a
until b € {—2qa,...,1—a}
end for
r12 ~ unif(0,2)
until necessary condition for concavity met at each of several sample (mq,ms) points
determine grade-maximizing candidate and associated V'™*
normalize coefficients using equations

end for
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Airline al b1 as ba 1 ro  r12 || mPPT mprer | ymar k1 ko k3 kq ks
United -0.55 1.20 |-0.06 0.44 |5.84 2.79 0.02 || 0.9500 0.8168 4.67 || 1.50 0.26 -0.69 -0.03 0.00
American -0.41 1.04|-0.27 0.70|5.78 3.12 0.30 || 0.9679 0.7930 490 || 1.23 0.44 -0.48 -0.17 0.04
Southwest -0.11 0.49 |-0.82 1.82|2.69 5.06 1.72 ]| 0.8639 0.8906 6.35 (| 0.21 1.45 -0.05 -0.66 0.24
Northwest -0.45 1.03|-0.25 0.66|3.30 3.10 0.46 || 0.9172 0.8503 3.15 || 1.08 0.65 -0.47 -0.24 0.10
Delta 0.00 0.36 |-0.59 1.21|5.96 3.86 0.46 || 0.9829 0.7668 4431/ 0.48 1.06 -0.01 -0.51 0.04
US Air -0.13 0.48 |-0.15 0.74|3.55 5.95 0.44 || 0.7451 0.9506 4.46 || 0.38 0.99 -0.11 -0.20 0.03
Continental -0.30 0.88 |-0.47 0.97|5.78 3.48 0.94 || 0.9829 0.7668 5.22 (| 0.97 0.65 -0.33 -0.31 0.15
Airtran -0.24 0.63 |-0.28 1.26 |3.37 4.02 1.37 | 0.7547 0.9468 5.39 || 0.40 0.94 -0.15 -0.21 0.20
Air Canada -0.06 0.31]-0.82 1.81|2.62 5.02 1.84 || 0.8094 0.9219 5.79 || 0.14 1.57 -0.03 -0.71 0.18
ExpressJet -0.30 0.77-0.01 0.87|3.15 5.00 0.50 || 0.6708 0.9752 5.58 || 0.43 0.78 -0.17 -0.01 0.06
Jetblue -0.03 0.11|-0.45 1.19|2.63 5.13 0.18 || 0.5767 0.9946 3.91 (| 0.07 1.56 -0.02 -0.59 0.01
Chautauqua -0.15 0.64 |-0.71 1.71|2.37 5.42 0.70 || 0.8045 0.9244 6.55 || 0.23 1.42 -0.05 -0.59 0.12
Frontier -0.22 0.59|-0.55 1.47|3.74 5.06 1.73 || 0.7896 0.9316 6.26 || 0.35 1.19 -0.13 -0.44 0.24
Mexicana -0.07 0.29|-0.76 1.56|2.06 5.29 0.02 || 0.7466 0.9500 4.61 (| 0.13 1.79 -0.03 -0.87 0.00
Lufthansa -0.69 1.57(-0.17 0.55|5.36 3.00 0.32 || 0.9501 0.8167 5.80 || 1.45 0.29 -0.63 -0.09 0.05
Primaris -0.67 1.58 |-0.26 0.57 | 4.33 3.83 1.86 || 0.9580 0.8069 5.52 || 1.24 0.40 -0.53 -0.18 0.30
Alaska -0.34 0.75|-0.62 1.55|3.22 5.27 1.00 || 0.7518 0.9480 6.34 || 0.38 1.29 -0.17 -0.51 0.18
Air Midwest -0.30 0.98 |-0.42 0.91|5.40 3.90 0.06 || 0.9829 0.7668 5.42 11 0.98 0.65 -0.30 -0.30 0.01
Aeromexico -0.25 0.68 |-0.61 1.49|2.11 5.93 1.70 || 0.7552 0.9466 6.44 || 0.22 1.37 -0.08 -0.56 0.27
British Airways -0.56 1.19|-0.17 0.43|5.32 3.01 1.72 || 0.9501 0.8167 4.32 || 1.47 0.30 -0.69 -0.12 0.21
Polar Air Cargo -0.58 1.20 |-0.29 0.70|2.27 2.84 0.27 || 0.8688 0.8873 2.56 || 1.06 0.78 -0.51 -0.32 0.09
Spirit -0.44 0.93]-0.49 1.00|3.77 5.42 1.23 || 0.9174 0.8501 4.79 1/ 0.73 1.13 -0.35 -0.56 0.24
Aer Lingus -0.43 1.03|-0.43 1.06 |5.27 2.25 0.57 || 0.9502 0.8166 4.61 | 1.18 0.52 -0.50 -0.21 0.14
Air Canada Jazz -0.26 0.91|-0.28 0.76 |2.96 3.33 0.59 || 0.9508 0.8159 3.50 || 0.77 0.73 -0.22 -0.26 0.12
Lot - Polish -0.21 0.84 [-0.12 0.54 | 4.08 4.44 0.22 || 0.9503 0.8164 4.17 1/ 0.82 0.58 -0.20 -0.13 0.02
SAS Scandinavian | -0.37 0.88 |-0.33 0.72|2.26 2.75 0.73 || 0.9172 0.8502 2.28 || 0.87 0.87 -0.37 -0.40 0.20
Singapore -0.49 1.06 |-0.44 0.92|3.06 5.12 0.32 || 0.9134 0.8536 4.17 1/ 0.78 1.13 -0.36 -0.54 0.07
USA 3000 -0.45 1.35[-0.31 0.75|5.13 2.54 0.97 || 0.9900 0.7494 595 (| 1.17 0.32 -0.39 -0.13 0.17
Air France -0.21 0.80|-0.37 0.87|3.09 5.45 0.17 || 0.9184 0.8492 4.31 (| 0.57 1.10 -0.15 -0.47 0.03
Air India -0.23 0.47]-0.25 0.93|2.27 5.85 0.87 || 0.6411 0.9828 4.50 || 0.24 1.20 -0.11 -0.33 0.08
Air Jamaica -0.35 0.86|-0.29 0.84|2.55 4.45 0.55 || 0.8391 0.9058 3.65 (| 0.60 1.02 -0.25 -0.36 0.11
Alitalia -0.37 0.78 |-0.27 0.72|5.42 5.58 0.92 || 0.8500 0.8993 4.71 1/ 0.89 0.85 -0.42 -0.32 0.11
All Nippon -0.01 0.57 |-0.37 0.96 |2.01 3.04 0.16 || 0.9332 0.8351 2.74 1| 0.42 1.06 -0.01 -0.41 0.03
British Midland -0.43 0.93|-0.01 0.62|5.77 4.93 0.76 || 0.7995 0.9268 5.71 1/ 0.94 0.53 -0.43 -0.01 0.08
Iberia -0.31 0.93|-0.40 0.83]3.60 4.68 0.98 || 0.9530 0.8131 4.36 || 0.77 0.89 -0.26 -0.43 0.17
Japan Int’l -0.35 0.98 |-0.10 0.65]|5.36 2.49 0.07 || 0.9530 0.8131 4.44 1| 1.18 0.36 -0.42 -0.06 0.01
KLM-Royal Dutch | -0.30 0.91 | -0.36 0.75|3.81 2.36 1.24 || 0.9879 0.7555 3.43 || 1.01 0.52 -0.33 -0.25 0.25
Korean -0.49 1.12-0.18 0.59|4.89 5.01 0.54 || 0.9035 0.8619 4.99 (| 1.09 0.59 -0.48 -0.18 0.07
Martinair Holland |-0.22 0.82|-0.07 0.50 | 2.15 3.38 0.04 || 0.8837 0.8770 2.50 || 0.71 0.68 -0.19 -0.10 0.01
Pakistan Int’l -0.42 0.88 |-0.52 1.20|2.04 4.26 1.56 || 0.8144 0.9194 4.14 | 0.43 1.23 -0.21 -0.54 0.40
Swiss -0.26 0.74]-0.12 0.54 | 5.61 4.80 0.58 || 0.9233 0.8447 4.44 11 0.93 0.58 -0.32 -0.14 0.05
Turkish -0.29 0.92|-0.13 0.76 | 4.46 5.31 0.30 || 0.8540 0.8969 5.72 (| 0.72 0.70 -0.23 -0.12 0.04
Virgin Atlantic -0.21 0.80|-0.17 0.62|2.85 5.53 0.21 || 0.8738 0.8840 3.87 (| 0.59 0.89 -0.16 -0.24 0.03
ABX -0.37 0.80|-0.39 0.88|4.59 3.98 0.46 || 0.9084 0.8578 3.92 11 0.94 0.90 -0.43 -0.39 0.08
Cargoitalia -0.16 0.65|-0.25 0.83|4.38 4.69 0.06 || 0.9174 0.8501 4.54 11 0.63 0.86 -0.15 -0.26 0.01
Custom Air -0.12 0.67(-0.33 0.67|2.13 4.50 0.23 || 0.9630 0.8002 2.64 || 0.54 1.15 -0.10 -0.57 0.04
Kalitta -0.37 0.98|-0.31 0.87|4.06 5.63 1.75 || 0.8886 0.8734 5.85 (| 0.68 0.84 -0.26 -0.30 0.26

Table B.1: Table with the draws of a, b, r, grade-maximizing candidate and its value,
and the normalized k coefficients
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Chapter 4: Strategic Grading Opportunity in COuNSEL —
A Consensus-Building Mechanism

for Setting Service Level Expectations

The consensus-building mechanism described in the second essay has been
accepted as a technically viable solution for the stated problem — although many
practical challenges still remain before it may be deployed in operations. A key
issue worthy of further investigation is its strong strategy-resistance — as claimed by
the authors of Majority Judgment, the voting procedure embedded in COuNSEL.
Using the broad ideas of Nash Equilibria, we characterize the necessary and sufficient
conditions for an airline to benefit from unilaterally deviating from truthfully grading
one or more candidates. The framework provides the airline with all the other
airlines’ grades on a set of candidates, and allows it an opportunity to present new
grades. The analysis is repeated over multiple instances, and likelihood of beneficial

strategic opportunity is presented.
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4.1 Introduction

COuNSEL is a multi-objective multi-stakeholder consensus-building mecha-
nism that has several desirable properties. It is based on Majority Judgment voting
procedure, in which players provide a grade for each candidate in the consideration
set, in a common language. The procedure uses the input of grades to compute a
Majority Grade for each candidate; the candidate with the highest Majority Grade
is deemed winner. Majority Judgment is described by its authors as being highly
strategy-resistant (Balinski and Laraki [2011). We wish to verify this claim using
simulations.

Our framework is as follows. Assume each player is provided an opportunity
to unilaterally change her grade after observing everyone else’s grades for a given
consideration set of candidates. In practice, such opportunity would not exist —
and the likelihood of hurting oneself would deter the players from strategic grading.
Thus, this analysis provides the worst-case strategy proneness of the procedure.

The core idea behind this framework for analysis is similar to Nash Equi-
libria. It has origins in mechanism design, particularly in implementation theory
(Maskin/[1999)). Gibbard and Satterthwaite’s impossibility theorem established that
true incentive-compatibility is not attainable if there is no restriction on the players’
preference structure, unless a player is dictatorial. This realization led to investi-
gation of weaker notions of strategy-proofness. Many solution concepts have been
studied, e.g., Bayesian and sub-game perfect equilibria; however Nash equilibrium

and Pareto optimality have been of particular interest. Such mechanisms are termed
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Nash implementable. Maskin identified two properties that the social choice rule
underlying a mechanism with three or more players must possess in order to be
Nash implementable: monotonicity and no veto power. These results were tight-
ened later, and extended to two players (Moore and Repullo|1990) — with potential
applications in contracting theory, which invariably deals with two-party settings.

The Nash equilibrium solution concept assumes complete information and al-
lows unrestricted domain of preferences — albeit observing convexity, continuity, and
monotonicity. Maskin| (1985) provides justifications for using such a complete infor-
mation solution concept for an inherently incomplete information process like these
social choice rule mechanisms. First, by definition, Nash equilibrium is a fixed-point
among players’ strategy spaces. Thus, it represents a stationary point in a process
whereby players (with incomplete information) iteratively adjust their preference
elicitations, until no unilateral deviation from true preferences benefits any player.
Second, Nash equilibrium is a fitting solution concept in cases where the planner has
incomplete information (or may not even exist), but the players are well-informed
about each others preferences, such as in committee decisions.

Given that complete strategy-proofness is ruled out in any mechanism, it is of
interest to quantify the extent of manipulability. This is particularly important in
our case, as Majority Judgment is not a traditional voting procedure, and is therefore
not as well-studied. Moreover, we intend to use weights for the players, and not the
traditional “one person-one vote” setting. Of course, no single player will be given
50% or more of the total weight over all players to disallow dictatorial powers.

However, this uneven distribution of decision power is worthy of investigation with
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regard to strategy-proneness. Finally, while unrestricted domain is of interest in
itself, it would be useful to compare against a scenario where the players’ preferences
are convex.

Untruthful or strategic grading by a player may take several forms. She may
increase the grade of one or more candidates, and / or decrease the grade of one or
more candidates, possibly leaving grades on some candidates unchanged. Strategic
grading is beneficial to a player only if the majority judgment winner is replaced by
a candidate that she regards more preferable to it. Indeed, strategic grading can
hurt the player if the new winner is less preferred by her than the existing winner.
Or, it may not yield any change to the existing winner.

Some consideration sets may inherently be more manipulable than others —
depending on the number of players, their grades, and number of candidates. Pro-
portion of manipulable candidates to the total number of candidates is one measure
of strategy-proneness. However, that does not imply that each such candidate can
be manipulated by all the players. Some players may not have any candidate that
they prefer over the current winner — these players will not have an incentive to
deviate unilaterally. Among the remaining players, there may be some for whom
there are no beneficial opportunities for the candidates that they prefer more than
the current winner. These players too would not deviate unilaterally and benefit
themselves. The proportion of the players that have any opportunity to benefit
from strategic grading is a second measure of strategy-proneness. Another mea-
sure of strategy-proneness is the proportion of the total number of such beneficial
player-candidate combinations.
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Section 4.2]intuitively describes the procedure to identify strategic opportunity
within this framework, using an illustrative example. Section formalizes the
description, and exhaustively identifies the necessary and sufficient conditions for
beneficial strategic opportunities for a player. The measures for strategy-proneness,
or manipulability, are also formally defined. Results from simulations for six types
of scenario configurations are presented in Section [4.4] The first three allow the
players unrestricted domain in grading; that is, no preference structure is imposed
on the players. The latter three impose a convex grading function for each player.
The three scenarios with these two assumptions on preference structures that were
simulated are: players have equal weights, 5 players with differential weights, and
25 players with differential weights. The very first scenario, namely players have
equal weights, and are allowed unrestricted domain in grading, is the basic Majority
Judgment procedure. The last scenario, namely 25 differentiated players with a
convex preference structure, is closer to the proposed COuNSEL procedure. The
progression from the basic Majority Judgment to the last scenario is instructive.

Section [4.5] concludes.

4.2 Tlustration

Suppose five players (of equal weight) provide grades to three candidates as
summarized in Table [£.Ta] The grades are unrestricted, that is, no structure is
imposed on the preferences. Of course, the grades should be within the allowable

range — in this case in [0...1]. The grades are sorted for each candidate, and
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Player m; m,; mg m; m, Ims

1 06 03 0.2 0.1 03 0.2
2 0.1 03 0.5 0.1 03 0.3
3 0.1 06 0.6 M.G. 0.2 04 05
4 0.2 0.7 0.3 0.6 06 0.6
5 0.8 0.4 0.7 0.8 0.7 0.7
(a) Grades provided by five players to three (b) Grades in increasing order for each can-
candidates didate
Player m; m, ms;
1 0.1...0.2] [0.4...0.6] [0.5...0.6]
2 0.2...0.6] [04...0.6] [0.3...0.6]
3 0.2...0.6] [0.3...0.4] [0.3...0.5]
4 [0.1...0.6] [0.3...0.4] [0.5...0.6]
d [0.1...0.2] [0.3...0.6] [0.3...0.5]

(c) Each players’ manipulable range for each candidate.

Table 4.1: Illustrative example.

presented in Table[d.Ib] The majority grades are marked as “M.G.”. The candidate
mg3 is the winner in this example.

We highlight several observations relevant to unilateral grading decisions. First,
not all players have an incentive to deviate, as the consideration set does not have
better candidate for them. In the example, players 2 and 3 are such players.

Second, to influence the majority grade of any candidate, a player has to grade
towards its majority grade. In other words, if her grade for a particular candidate
is higher (lower) than the current majority grade, then her new grade for it must be
smaller (greater) than her current grade to have any chance to change the majority
grade. This also implies that if her grade is higher (lower) than the current majority
grade, then she can only decrease (increase) the new majority grade. If her grade

is same as the majority grade for the candidate, then she can influence it upwards
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or downwards. Player 1 in this example clearly does not like the current winner,
and would rather prefer m; as the winner. However, her decreasing the grade on
myg will not change its majority grade — nor would increasing her grade on m;. The
only way for her to change the new majority grade for m; is to decrease her new
grade on it, resulting in a lower majority grade; the opposite holds for ms.

The third observation relates to the extent of strategic grading opportunity
available for a given candidate. A player can unilaterally influence the majority
grade of a candidate within a specific range determined by the ordering of the grades
provided by all the players. If player 1’s new grade for mjs is below the current
majority grade of 0.5, the majority grade remains at 0.5. Any grade between 0.5
and 0.6 would become the new majority grade, but any higher than 0.6 would not
increase it beyond 0.6. Thus, player 1’s “manipulable” range for mjs is [0.5,0.6].
Similarly for m;, a new grade by player 1 above the current majority grade of 0.2
will not have any impact. Any grade between 0.1 and 0.2 would become the new
majority grade, any lower than 0.1 would keep it 0.1. Player 1’s manipulable range
for my is [0.1,0.2].

Clearly, player 1 has no opportunity to make her most preferred candidate
m; as the winner in this example. The fourth observation is regarding comparative
grading over multiple candidates. Following the last two observations for my, player
1 can only increase its majority grade, and that increase is bounded between 0.4 and
0.6. The range of grades between 0.5 and 0.6 overlaps with that of her manipulable
range of mg, the current winner. Thus, player 1 can provide new grades for the two

vectors my and my within [0.5,0.6] such that the grade for the former is less than
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that of the latter. This would make my the new winner, which she prefers over the
current winner mg. The manipulable ranges for each candidate for the players who
have an opportunity to benefit from strategic grading are reported in Table [4.1d

Building on the previous observation, the fifth observation characterizes strategy-
proneness of a given candidate for a player. A candidate is prone to (beneficial)
strategy only if its manipulable range has an overlap with that of the current win-
ner for any player. m;’s manipulable ranges for players 1 and 5 have no such overlap,
similarly my’s manipulable range for player 4 has no such overlap with those of the
winner.

The sixth observation is about the relative position of a player’s grade for a
candidate with respect to its majority grade — in relation to those of the winner.
When the player’s grade is not same as majority grade for a candidate, its relation
to the majority grade should be same as that for the winner. For player 1, the grade
(0.2) for the winner my is below the majority grade (0.5). This is also true for my:
her grade (0.3) is below the majority grade (0.4) — but not for m;. The former is
manipulable, but the latter is therefore not. The converse also holds, though there is
no instance in this example. Such an opportunity also exists when a player provides
the same grade as the majority grade for a candidate, and grades the winner lower
than its majority grade. For example, player 4 grade for m; is its majority grade,
while she grades lower (0.3) than the majority grade for the winner (0.5). Another
case is when a player grades the same as majority grade for the winner, and has a
higher grade for a candidate than its majority grade. There is no instance in this
example of this happening. These relationships are established formally in a later
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section.

Seventh, at an overall level, a candidate would not yield any benefit to any
player if no player has an overlap of its manipulable range with that of the winner.
In this example, all the candidates have an overlap with the winner’s. Consider a
candidate whose sorted grades are: {0.1,0.15,0.2,0.25,0.8}. Its manipulable range
for any player has to be within [0.15,0.25], while the winner’s has to be within
[0.3,0.6]. Indeed, any candidate for which the grade just above the majority grade
(the second highest grade in this example) is lower than the grade just below the
winner’s majority grade will not yield any benefit to any player. Each candidate in
the consideration set should be pre-screened using this observation before analyzing
at player-level.

Measures for Strategy-Proneness. Let us analyze the example with re-
gard to strategy proneness. As just noted, all of the candidates (100%) in the
consideration set are potentially manipulable. However, that does not mean that
each player can unilaterally manipulate the grades to benefit.

We already identified that player 1 can benefit by manipulating m, and /
or ms. Also, we noted that the players 2 and 3 already have their most-preferred
candidate in the current winner ms — and hence do not have incentive to manipulate.
Player 4 has an overlap between the manipulable ranges for m; and ms — but its
preference for m; being lesser, it has no incentive to manipulate these. There is
no overlap for its most preferred candidate my with ms. Thus, player 4 actually
has no opportunity to strategically grade that might benefit her. Similarly, player 5
has only an opportunity with ms, but since it prefers it less than the mgs, it cannot
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benefit by manipulating her grades.
Thus, of the five players, only one — 20% — has a beneficial strategic oppor-
tunity. Among the 15 player-candidate opportunities, only two — about 13% — are

beneficial to any player.

4.3 Conditions for Beneficial Strategic Grading

We formalize the observations regarding beneficial strategic grading opportu-
nities for a player i with respect to a candidate m’, whose majority grade is v'. For
ease of exposition, the analysis and development begins with the equally weighted
players case, that is, where all the players have the same weight. We relax this
restriction later in the section, and explain the approach for the more general case

of differentially weighted players.

4.3.1 Equally Weighted Players

Sorted in increasing order, the grade just before the majority grade is denoted
v/, and the grade just after the majority grade as ©v’. Player i’s grade for m’ is

*

denoted y.. Denote the winning candidate as m*, and the notation regarding it
replaces the prime (") with asterisk (*) in above.

A simple line diagram is used extensively in this section, it is explained below.

S|
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A candidate m’ is depicted with a vertical bar, which represents the allowable
grading range as per the common grading language. The majority grade v’ is marked
with a circle, and the two neighboring grades v and ¥’ are marked with upwards
and downwards pointing arrowheads. Player i’s grade for the candidate is marked
with a horizontal tick marks.

For any strategic grading by ¢ for m’ that changes its majority grade, the

manipulable ranges are defined as below.
(

0] if yl <

5 =4

/
%

W' o] ify

/ /

v iy =v

\

Looking at each candidate against the winner, the overlap of manipulable

ranges between m’ and m* is a necessary condition:
v >0 (4.1)

For instance, in the following, m’ is potentially manipulable, but m” cannot

be beneficially manipulated by any player.

The proportion of the candidates in the consideration set that meet the con-
ditions of (4.1)) gives an idea of strategy proneness of the setting at an overall level.
A strategy-proof consideration set would have no candidate with such an overlap —
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although it would be quite unlikely in practice. Indeed, as the seventh observation
in Section implied, this would be an overly strong measure, and an investigation
of player-wise opportunities is required for a better and tighter quantification of
strategy-proneness.

At a player level, a necessary condition for player i to strategically grade m’

is that she grades it higher than she does the winner: y, > y?.

This is not sufficient, as noted in the observations. Specific relationships among
her grades for m’ and m* are required. We examine all possible relationships in Table
[4.2] and summarize the necessary and sufficient conditions.

Combining cases 1 and 9, we see that among candidates that have: (y, <
V') & (y; < v*), if there exists a candidate with ¥ > v*, then player ¢ could increase
its grade to anywhere in (v*, 7] without changing grades of the rest of the candidates.
This is also a sufficient condition for a beneficial strategic grading opportunity for ¢,
as she can only manipulate her grade for a single candidate and benefit herself. Of
course, if multiple candidates meet the conditions, then she could only manipulate
the candidate that she grades highest amongst these. Hence, one sufficient condition
is:

(i > yp) & (y; <v) & (y; <) & (T > 07)

Cases 2 and 8 can be combined as: (y; > v') & (yf > v*). A candidate could
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Case  Relative Positions m’ m* Required Condition Manipulable Range
Lo <) & <) vyt 7> v, 7]
yl'- vl
Y T yr
2. (y; > UI) & (y: > U*). v e v v Z Q* [Q*,Ul]
=4 y:‘
3. (<) & (yp>v). wiel? NA
yi T
Yi T
4. (yh>v) & (yF<v*). vV NA
=4 y;
5. (yi=v) & (g =), yelu NA
6. (y. <) & (yf=v*). v s tyr NA
yi T
=4 y:‘
=) & =) el NA
Yi T
v*,
8. (y; > U/) & (yz* = ”U*). o e | P v Z y* [Q*,'Ul]
9. (=) & (yr <v). el 7 >0 w*, 7]
Yi

Table 4.2: Examination of relative positions between the majority grade and a
player’s grade for a non-winner candidate m’ and the winner m*,
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be potentially graded strategically to benefit ¢ if v/ > v* is also met. However,
this is not a sufficient condition. For, the required strategy is to down-grade the
winner as well as any other candidates whose majority grade lies between v' and
v*, so that their majority grade becomes lower than v’. Such candidates may not
be manipulable by the player i. Some more screening conditions need to be added
in this case.

First, recall that any candidate with y < v” cannot be manipulated by i
so as to reduce its majority grade. Thus, the highest majority grade among such
candidates, say v”"™** forms a bound below which 7 cannot reduce the majority
grade of the other candidates. For example, examine the following consideration
set. Player i prefers m’ the most. Candidate m* is currently winning. Now, i can
reduce its majority grade down to v*, but this will make m” as the new winner,

not m’. While m” is much to her dislike, she cannot influence its majority grade

downwards.

1
pltmaz

1

Yi

Secondly, for a candidate with y)” > v", she could reduce its majority grade
to v"”. If she were to down-grade all of these candidates, the highest majority grade

"t would form a similar bound as above. Pictorially, examine

among these, say v
the following consideration set. Player ¢ likes the m’ over the current winner m*.

She could reduce the majority grade of the winner to lower than v, but she would
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also need to reduce the majority grade of m” and other such candidates to make

m’ as the new winner. However, the lowest majority grade she can get for all such

candidates is v"™*,

m’ m* m'”’

/

. 11
yl * yi
Yi
U* UNI
y///ma:c
’Ul *

IS4

Finally, the two conditions are combined as follows. To decide whether m can
be made the new winner by ¢, all the remaining candidates are evaluated. Depending
on the relative position of her grade with respect to its majority grade, the candidate
is marked as one of m” or m”. The bounds v"™* and v""™** are determined, and

the higher of these two is taken as wj:

'max "max
L0,

w; = max(v

If v/ > w,, then ¢ can make m’ as the winner, otherwise not. This will form the

other sufficient condition for beneficial strategic grading:

(yi > i) & (g7 >0") & (y; > ') & (V' > wy)

Putting it all together, the following is the necessary and sufficient condition
that allows beneficial strategic grading opportunity to a player via a non-winner

candidate m’:

o> e { (0 <o) el <&@ 20 | (002 ) e > ) &> u) |
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The first term in (4.2)) states simply that the player has to prefer an alternate
candidate over the winner. The first two terms of the two groups of conditions
within the bracket state the relative positioning of the player’s grade with respect
to the majority grade for the alternate candidate and the winner. The two groups
are mutually exclusive. Note that the beneficial opportunities are only likely if the
player’s grade is on the same side of the majority grade for both the candidates.
Depending on which side of the majority grade the player’s grades fall, specific
conditions are required to be met for her to benefit — as stated in the final condition
in the two groups of conditions.

In terms of exact strategies, if the player’s grades are below the majority grades
for both the candidate and the winner, she could simply raise her grade on the
alternate candidate all the way to the maximum possible grade, G™** (though the
majority grade of the candidate would remain at @' by her doing so), while keeping
the grade on the winner at the same level. Of course, this is the simplest strategy for
her; one can imagine several other strategies that would result beneficially to her.
For instance, she could increase the grade of the winner too — while ensuring that
her grade on the winner is smaller than the grade on the alternate candidate. Or,
she could increase the grade of the alternate candidate barely above the winner’s
majority grade, or may be at any other level above it.

On the other hand, if her grades are both higher than the majority grades,
her simplest strategy would be to keep the grade on the alternate candidate at the
same level, and give all the other candidates the lowest possible grade. Unlike the

previous case, it is necessary that she down-grades the other candidates as well —
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as just down-grading the winner does not guarantee that the alternate candidate
becomes the winner.

Measures for Strategy-Proneness. Suppose the consideration set com-
prises of M candidates, and there are N players. We formally define the three

measures of interest.

1. Likelihood of manipulability of a candidate, ©“: the number of non-winner

candidates that meet condition (4.1)) +~ (M —1).

2. Likelihood of manipulability by a player, ¢*: the number of players for whom

any candidate meets condition (4.2) ~ N.

3. Likelihood of manipulability of the consideration set, ¢°: the number of player-

candidate pairs that meet condition (4.2)) ~ (M x N).

4.3.2 Differentially-Weighted Players

In COuNSEL, the airlines are assigned different weights which are a function
of the impact they suffer from the weather. The equally weighted case explained
thus far needs four types of modifications to account for the players’ weights.

First, the definitions of the Majority Grade v’, and its neighbors v" and ¥’ are
modified. Instead of a simple median, a weighted median is sought for identifying
v

Table provides an example with six players, whose grades for a candidate
and their weights are listed. The players are then sorted in the increasing order of

their grades, as shown in Table [4.3b] In this ordered list, the cumulative weights
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are computed for each player. 7 is the proportion of each individual player’s weight
to the total weight (20 in this example). II is the cumulative proportional weight
in the increasing order of grades. The player whose cumulative weight meets or
exceeds half the total weight (20/2=10 in this example) provides the majority grade
v" — player B in this example. Coincidentally, if the players had equal weight, the
majority grade would have been the same — but this need not be the case, as we
shall see shortly. The grades just below and above v’ are respectively marked v" and
v, as earlier. The majoritarian set in this example is formed by players B, C, D,
and F.

Recall that no player is assigned a weight that is larger than half the total
weight, to avoid giving it dictatorial powers. This implies that when the players are
ordered in increasing order of their grades for a given candidate m’, the weighted
majority grade v’ is always flanked by at least one grade on either side. That is,
with three or more players, v' and v’ are always defined in the differentially weighted
case — just like the equally weighted case.

Aside from this modification, the rest of the procedure for determining the
winning candidate over a consideration set remains the same. That is, the weighted
majority grade is computed for each candidate in the consideration set, and the
candidate with the largest majority grade is declared the winner.

The second modification has to do with manipulability of a candidate m’

/

by a player ¢ with proportional weight m;, whose grade for m’ is y,. Like in the
equally weighted case, to influence the majority grade of m’, ¢ has to provide a new

grade towards v. However, the equally weighted case ensured that each player could
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Players Grades Weights

0.15 6
0.24
0.96
0.33
0.18
0.63

OTEHIOQE >
— = Ot

(a) Example grades

Players Ordered Grades Weights Cumulative Weights 7 IT

A 0.15 6 6 0.30 0.30
B 0.18 1 7 0.05 0.35 ¢
B 0.24 ) 12 0.25 0.60
D 0.33 3 15 0.15 075 ¥
F 0.63 1 16 0.05 0.80
C 0.96 4 20 0.20 1.00

(b) Players ordered by grades

Table 4.3: Weighted Majority Grade example

Ordered Grades Players Weights Cumulative Weights II

A 0.15 6 6 0.30  0.30
E 0.18 1 7 0.05 0.35
F 0.20 1 8 0.05 0.40
B 0.24 ) 13 0.25 0.65
D 0.33 3 16 0.15 0.80
C 0.96 4 20 0.20 1.00

(a) Player F has provided a reduced grade

Ordered Grades Players Weights Cumulative Weights II

A 0.15 6 6 0.30  0.30
E 0.18 1 7 0.05 0.35
C 0.20 4 11 0.20 0.55 o
B 0.24 ) 16 0.25 0.80
D 0.33 3 19 0.15 0.95
F 0.63 1 20 0.05 1.00

(b) Player C has provided a reduced grade

Table 4.4: Manipulation in Differentially-Weighted Case: Downwards Revision
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influence v — by grading in this fashion, ¢ could move from majoritarian set to the
non-majoritarian set and vice-versa. This was possible due to the fact that in the
equally weighted case, the majoritarian set is a minimal majority-forming set: if any
player moved out, it no more forms the majority. The converse held true for the
non-majoritarian set: if any player moved in, it would now have formed a majority.

As weights are “lumpy”, this no more holds true for the differentially weighted
case. For instance, consider player F in Table She is currently in the majori-
tarian set for the given candidate. Hence, she has to provide a grade below the
majority grade of 0.24 to influence it downwards — she cannot increase it by increas-
ing her grade, and any grade above 0.24 also would not change anything. Suppose
she provides 0.20, Table is the amended table. Note that the majority grade
remains at 0.24, as player F’s weight is insufficient to move the new cumulative
proportional weight II to 0.5 or above.

To formalize this observation, denote the cumulative proportional weight of
the player that provided the majority grade v’ for the candidate m’ as II'. For the
player that provided v/, it is denoted as IT'; and for the player that provided 7, it is
denoted as IT. In Table M I’ = 0.35, I = 0.60, and II = 0.75.

So, for a player ¢ whose grade y; > v’, the only way to influence the majority
grade would now be qualified by the additional condition that II' +7; > 0.5. Player
B in Table [4.3b| could only get 0.354-0.05=0.40, which being less than 0.5, was not
sufficient, as seen in the amended Table [£.4al Player C, on the other hand, could
manipulate its majority grade: 0.3540.20=0.55 clearly crossed 0.5, as seen in Table
.45l
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Ordered Grades Players Weights Cumulative Weights 7 IT

A 0.15 6 6 0.30 0.30
B 0.24 ) 11 0.25 0.55
E 0.30 1 12 0.05 0.60
D 0.33 3 15 0.15 0.75
F 0.63 1 16 0.05 0.80
C 0.96 4 20 0.20 1.00

(a) Player E has provided an increased grade

Ordered Grades Players Weights Cumulative Weights 7 IT

B 0.18 1 1 0.05 0.05
B 0.24 ) 6 0.25 0.30
A 0.30 6 12 0.30 0.60
D 0.33 3 15 0.15 0.75
F 0.63 1 16 0.05 0.80
C 0.96 4 20 0.20 1.00

(b) Player A has provided an increased grade

Table 4.5: Manipulation in Differentially-Weighted Case: Upwards Revision

Conversely, a player with y; < v’ can influence the majority grade upwards only
if I[" — m; < 0.5. Table shows player E could not influence, as 0.60-0.05=0.55
exceeded 0.5; while player A could do so, because 0.60-0.30=0.30 was below 0.5.

Finally, for a player with y, = v’, manipulability is possible in either direction,
so long as v/ < v/ < ¥'. Indeed, even if strict inequality does not hold, manipulation
by such a player is possible due to differential weights — as we shall see next.

The third modification has to with the manipulable ranges. With differential
weights, it is possible that a player can manipulate the majority grade beyond v’
and 7. For instance, see Table In Table player C reduced her grade
further, below that of E — who in the original Table [4.3b| had provided v'. This

caused the new majority grade to become lower than the original v'. Conversely,
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Ordered Grades Players Weights Cumulative Weights 7 IT

A 0.15 6 6 0.30 0.30
C 0.16 4 10 0.20 0.50
E 0.18 1 11 0.05 0.55
B 0.24 5 16 0.25 0.80
D 0.33 3 19 0.15 0.95
F 0.63 1 20 0.05 1.00

(a) Player C has provided a further reduced grade

Ordered Grades Players Weights Cumulative Weights 7 IT

B 0.18 1 1 0.05 0.05
B 0.24 ) 6 0.25 0.30
D 0.33 3 9 0.15 045
A 0.60 6 15 0.30 0.75 o
F 0.63 1 16 0.05 0.80
C 0.96 4 20 0.20 1.00

(b) Player A has provided a further increased grade

Table 4.6: Manipulation in Differentially-Weighted Case: Larger Revisions

player A in Table effectively changed the majority grade above the original 7'.
The manipulable ranges are thus not constrained to be within v" and 7'

For player i with y; > v’, the lower bound for the manipulable range is given
by the grade of the player j with the smallest II;, where II; +m; > 0.5. Denote this
grade as u, — note that it depends on the particular player ¢ under consideration.
Conversely, for player i with y; < ¢’, the upper bound for the manipulable range is
given by the grade of the player j with the smallest II;, where II; —m; > 0.5. Denote
this grade as u,.

For any strategic grading by 7 for m’ that changes its majority grade, the
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manipulable ranges are defined as below.

@] ifyl <o

J; = 4 [w), V'] if yl >

i

VAN |
=

|l w] ity

The fourth and final modification updates the necessary and sufficient con-
ditions for manipulability over multiple candidates in the candidate set. The core
necessary condition that y! > yf remains — ¢ must grade the alternate candidate
higher than she grades the winning candidate. The observations made in the first
two columns of Table [4.2] continue to hold — the only ways to benefit from strategic
grading via a candidate m’ require the player’s grades for both the winner and m’

to be on the same side of their respective majority grades. Specifically:
a. (y <v") & (y; <0'), or

b. (y; >v") & (y; > 0').

However, the latter columns need an update, as described above.
Case (a) requires a simpler manipulation — grade for only m’ needs to be
increased to make it a winner. The sufficient condition in this case is that there is

room for benefit:

(y; > yi) & (yi <v”) & (y; <) & (@ > 07).

Case (b) requires a complex manipulation — grades for multiple candidates

need to be decreased, to make them all losers against m’. Using a similar approach
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as developed in the equally-weighted case, the rest of the consideration set is split

into two categories: (i) with y/ < v” and (ii) y/” > ¢"”. Among category (i) can-

'max

didates, the highest majority grade v is the lower bound below which majority
grade cannot be decreased by i. This is same as the equally-weighted case. Among

category (ii) candidates, there is a modification: the highest w”™** forms the lower

bound. Thus, g; needs to be updated as:

I'max "max

y =

w! = max(v

Putting it all together, for the differentially-weighted case, the following is the
necessary and sufficient condition that allows beneficial strategic grading opportu-

nity to a player via a non-winner candidate m’:

W e{ (0 <o) el e @z )| (0020 00> e 1)) |
(4.3)
Measures for Strategy-Proneness. Suppose the consideration set com-
prises of M candidates, and there are N players. We formally define the three

measures of interest.

1. Likelihood of manipulability of a candidate, ¢“: the number of non-winner

candidates that meet condition (4.1) +~ (M —1).

2. Likelihood of manipulability by a player, ©*: the number of players for whom

any candidate meets condition (4.3) ~ N.

3. Likelihood of manipulability of the consideration set, ¢°: the number of player-
candidate pairs that meet condition (4.3) + (M x N).
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Preference structure

Relative weights of the players P1: None (“unrestricted domain”) P2: Convex function
R1: Equal weights (“unweighted”) P1R1 P2R1
R2: Differential weights (N=5) P1R2 P2R2
R3: Differential weights (N=25) P1R3 P2R3

Table 4.7: Design of experiments for investigation of strategy resistance

0% uses the same condition as the equally-weighted case, as it is at the overall

consideration set level. ¢ and ¢° are now updated with the modified condition

derived in this section.

4.4 Simulation Results

To get a sense of strategy resistance of the procedure, we conducted a number
of simulations systematically varying some key parameters. The design of experi-
ments is summarized in Table [4.7

The intent behind this design has been to contrast the proposed COuNSEL
procedure with several other plausible implementations. At the simplest extreme,
P1R1 is the basic Majority Judgment, as laid out by its authors. At the other
extreme lies P2R3, which is closest to the real-life scenarios that COuNSEL may
be deployed for. The progression in the two directions from P1R1 to P2R3 is
instructive. R2 and R3 address the proportional representation aspect of COuNSEL,
which is a key design element that adds equitability. R2 is a very small setup, and
might represent the initial deployment phase of COuNSEL, in which fewer airlines
may participate. R3 is a more likely setup reflecting the later phases of deployment.

P2, on the other hand, addresses the key assumption in structuring of the grade
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functions. An unrestricted domain would easily lead to inconsistent grading over
rounds, which is highly undesirable.

With this broad overview, the specific details for each scenario are now ex-
plained. Consideration set sizes of 5, 10, or 15 candidates are simulated in all the
scenarios. The players’ grades for the consideration set are generated randomly
within the grading range of {0 ...1} for the unrestricted domain scenarios (P1).
An increasing quadratic function of a randomly generated number that restricts
the function maxima to be within the grading range is used for convex preference
scenarios (P2).

In the equal weight scenarios (R1), number of players is one of 5, 15, 25, 35,
and 45. Five different weighting schemes are simulated in the differential weight
scenarios. In the differential weight (N=5) scenarios (R2), the number of players is
fixed at 5; while the differential weight (N=25) scenarios (R3) have 25 players.

Table summarizes the weighting schemes for the R2 scenarios. The first
scheme gives all players equal weight for comparison. The proportion of largest
weight to the total weight is 0.20 in this case. The Herfindahl-Hirschman Index,
or HHI, is reported as a measure of the “market concentration”. HHI is computed
as sum of the square of the market shares of all players, where market share of a
player is the proportion of her weight to the total weight. From scheme 1 through 5,
the HHI keeps increasing, as two players (namely A and B) are given progressively
higher weights. Player A has the largest weight; its proportion to total weight never
crosses 50%, as that would provide it dictatorial power.

Table 4.9 summarizes the weighting schemes for the R3 scenarios. These have
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Weighting Player Weights ) Largest
Scheme A B C D E Weight to Total HHI

1 1 1 1 1 1 5 0.20 0.20
2 2 1 1 1 1 6 0.33 0.22
3 2 2 1 1 1 7 0.29 0.23
4 3 2 1 1 1 8 0.38 0.25
5 3 3 1 1 1 9 0.33 0.26

Table 4.8: Weights for the different weighting schemes for R2 scenarios

Weighting Player Weights Total Largest
Scheme A BCDEFGHIJKLM ... Y Weight to Total HHI
1 1 111111111111 °. 1 25 0.04 0.040
2 2 22 2222 222221. 1 37 0.05 0.045
3 4 4 4 4 22 2 222221. 1 45 0.09 0.054
4 8 84 4 22 2 22222 1. 1 53 0.15  0.073
5} 16 8 44222 222221. 1 61 0.26  0.107

Table 4.9: Weights for the different weighting schemes for R3 scenarios

25 players each, marked A through Y. The first scheme gives all players equal weight
for comparison. The thirteen players marked M through Y have the same weight
of 1 for all the schemes. Weights for the initial twelve players are systematically
varied, so that the HHI increases as we go down the list. Player A has the largest
weight; its proportion to total weight is kept below 50%.

A hundred simulations runs were conducted for each of the four scenarios. The

averages of the three metrics for strategy proneness are reported.

4.4.1 PI1R1: Unrestricted domain, Equal weights

In this scenario, the numbers of candidates (M) and players (N) are system-

atically varied; each player having the same weight as others. This is very similar
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Number of players, N
Number of candidates, M 5) 15 25 35 45

3 69.25 43.50 32.00 25.75 22.00
10 69.44 30.44 25.56 16.89 14.67
15 64.21 28.07 22.29 2229 13.57

(a) PIR1: Mean ¢ (%)

Number of players, N
Number of candidates, M 5 15 25 35 45

5 9.60 8.73 6.68 4.43 4.49
10 15.20 10.07 7.52 6.00 6.47
15 19.40 9.67 812 7.74 587

(b) P1R1: Mean o (%)

Number of players, N
Number of candidates, M 5 15 25 35 45

o 240 2.01 148 1.02 1.00
10 246 125 090 0.65 0.76
15 216 0.81 0.66 0.62 0.46

(c) P1IR1: Mean ¢° (%)
Table 4.10: Strategy-proneness Measures for P1R1
to the basic Majority Judgment procedure described by its authors. It thus forms
a benchmark to which results from the other scenarios are compared.

At a broad level, many candidates appear to be manipulable overall, as Table
reports. However, when it comes to individual players, a much smaller pro-
portion of players actually have beneficial opportunities, as reported in Table [£.10b]
More specifically, as each player evaluates each candidate, the likelihoods are even
smaller, as reported in Table [£.10d This is as expected.

Figure pictorially depicts the information in the tables. The top row has
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groups of bars for consideration set sizes, M of 5, 10, 15 respectively. Within each
group, the individual bars represent the measures for the different number of players,
N of 5,15,25,35,45. The bottom row presents the same information, but groups them
in the other way: the broad groups are for various N’s, and the individual bars within
each group have measures for different M. The patterns are clearly noticeable with
this layout.

For a fixed size of consideration set, all the three measures decline as more
players are included — as the top row depicts. This effect tapers off as the number
of candidates increase. This makes intuitive sense — as more grades are provided by
the increased number of players for each candidate, the gap between the v and v
narrows. This gap is a decisive factor in manipulability of a candidate.

For a fixed number of players, ©¢ and ¢° decrease as the consideration set
size increases, while the opposite holds true for o*. This trend also tapers off with
larger consideration set sizes. The decrease in the ¢© and ¢ has the same intuitive
explanation as above. More candidates being available increases chance of a player
to look forward to strategic grading — thus, ¢! increases with consideration set size.
This has design implications — if COuNSEL has to be initiated in a region that has
smaller number of airlines, then it should force them to grade more candidates in
order to minimize strategic grading opportunities.

Equal weight to each airline is clearly ruled out in the implementation of
COuNSEL. For, it would imply that airlines with large impact due to the weather
would have the same voice in the decision-making as other airlines with perhaps a
single impacted flight. However, this forms a benchmark for our investigation, as
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Figure 4.1: Strategy-proneness Measures for P1R1

Measures for proneness to beneficial strategic opportunity in P1R1 scenario. Within each of the three groups of
bars in the top row, the consideration set size, M is fixed to one of 5, 10, 15. Across the five groups of bars in the
bottom row, the number of candidates, N is fixed to be one of 5,15,2,53,45. Players have equal weight. Players’
grades are unrestricted within the allowable range.

the proposed procedure should retain Majority Judgment’s key desirable property

of strategy resistance.

4.4.2 P1R2: Unrestricted domain, Differential weights with 5 players

In this scenario, the number of players is fixed at N = 5, and the consideration
set size is one of M = 5,10, 15. Players may have different weights; the five weighting
schemes reported in Table 4.8 are simulated. This represents a likely scenario in the
initial pilot phase of COuNSEL, in which a small number of airlines may be involved.
A key difference from COuNSEL is the unrestricted domain, as COuNSEL assumes
a structured grade function for each airline.

Tables and figures similar to those in the equal weights scenario are reported
for the three measures. Very broadly, the strategy-proneness measures are not sig-
nificantly different with differential weighting schemes as compared to the equal

weighted scheme. A mild systematic pattern is evident from the top row of Figure
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Weighting Scheme
Number of candidates, M 1 2 3 4 5)

5 69.25 69.00 69.50 60.25 73.25
10 69.44 63.11 64.44 58.44 63.67
15 64.21 59.07 65.21 5893 58.14

(a) P1R2: Mean ¢¢ (%)

Weighting Scheme
Number of candidates, M 1 2 3 4 5

5 960 780 1440 7.20 11.80
10 15.20 13.40 13.40 11.60 17.20
15 19.40 16.40 18.80 15.20 16.40

(b) P1R2: Mean o (%)

Weighting Scheme
Number of candidates, M 1 2 3 4 5

5 240 204 4.04 192 292
10 246 192 210 1.50 2.50
15 216 169 197 151 1.73

(c) P1R2: Mean ¢° (%)
Table 4.11: Strategy-proneness Measures for P1R2
4.2l For a fixed size of consideration set, the weighting scheme appears to have
smallest strategy-proneness; this scheme has the largest proportional weight to the
player A. No clear patterns are visible with respect to HHI. The bottom row con-
tinues the pattern with the equal weights scenario. Given a weighting scheme, ¢
and ¢° decrease as the consideration set size increases, while ¢* increases. The

intuition behind this remains the same.
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Figure 4.2: Strategy-proneness Measures for P1R2

Measures for proneness to beneficial strategic opportunity in P1R2 scenario. Number of candidates IV is fixed at 5.
The players have same weight in the first weighting scheme, and different weights in the others. Within each of the
three groups of bars in the top row, the consideration set size, M is fixed to one of 5, 10, 15. Across the five groups
of bars in the bottom row, the weighting scheme is varied so that HHI increases from left to right. Players’ grades
are unrestricted within the allowable range.

4.4.3 P1R3: Unrestricted domain, Differential weights with 25 play-
ers

In this scenario, the number of players is fixed at N = 25, and the consideration
set size is one of M = 5,10, 15. Players may have different weights; the five weighting
schemes reported in Table [4.9] are simulated. This represents a later deployment
phase of COuNSEL, whereby several airlines are involved in the decision-making
process. Again, the unrestricted domain of preferences is a key difference from
COuNSEL.

Tables and figures are reported for the three measures. A systematic pattern
is evident from the top row of Figure for a fixed consideration set size, increas-
ing HHI (which also increases the proportional weight of the largest player in this
scenario) tends to reduce strategy-proneness. The bottom row continues the pattern

with the equal weights scenario. Given a weighting scheme, ¢ and ¢° decrease as
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Weighting Scheme
Number of candidates, M 1 2 3 4 5)

5 32.00 29.25 25.00 21.75 18.50
10 2556 22.11 21.44 15.11 9.56
15 2229 2043 18.79 13.71 10.71

(a) P1R3: Mean ¢¢ (%)

Weighting Scheme
Number of candidates, M 1 2 3 4 5

5 6.68 512 456 476 6.20
10 752 7.04 10.04 748 7.32
15 812 9.16 10.36 9.32 11.04

(b) P1R3: Mean o (%)

Weighting Scheme
Number of candidates, M 1 2 3 4 5

5 148 1.11 095 0.99 1.32
10 090 085 1.16 0.80 0.78
15 0.66 0.71 0.89 0.75 0.88

(c) P1R3: Mean ¢° (%)

Table 4.12: Strategy-proneness Measures for P1R3

the consideration set size increases, while ¢” increases. The intuition behind this

remains the same.

4.4.4 P2R1: Convex preference structure, Equal weights

In this scenario, the numbers of candidates (M) and players (N) are system-
atically varied; each player having the same weight as others. The key difference
from P1R1 is that the players have a convex grading function of a special type. The

mechanics of drawing such convex grades are summarized in Appendix [C.1]
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Figure 4.3: Strategy-proneness Measures for P1R3

Measures for proneness to beneficial strategic opportunity in P1R3 scenario. Number of candidates N is fixed at
25. The players have same weight in the first weighting scheme, and different weights in the others. Within each of
the three groups of bars in the top row, the consideration set size, M is fixed to one of 5, 10, 15. Across the five
groups of bars in the bottom row, the weighting scheme is varied so that HHI increases from left to right. Players’
grades are unrestricted within the allowable range.

Compared to P1R1 scenario, the strategy-proneness measures are all dramat-
ically lower. The convex structure forces the grades to be more concentrated near
the peaks for each player. This potentially reduces the gap between v' and ?’ for all
the candidates, leading to reduction in strategy proneness.

The general pattern of reductions in all the strategy-proneness measures within
a fixed consideration set size continues, as the top row of Figure [£.4] shows. The
tapering off effect is also evident in the top row. The bottom row has similar
patterns as P1R1 for ¢“ and ¢” — the former is more or less similar within each
group having the same number of players, while the latter increases within each
group. However, the ¢ measure increases as the consideration set size increases,
with fixed number of players. Recall ¢ counts a player as potentially manipulative
if she has opportunity via even a single candidate, whereas ¢° counts exact player-
candidate pairs that are manipulable. Compared to P1R1, this implies that more

candidates are manipulable for the players who have an opportunity to manipulate
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Number of players, N

Number of candidates, M 5 15 25 35 45

) 30.00 16.75 9.25 7.50 7.25
10 30.67 1322 789 6.00 6.11
15 36.43 15.29 10.14 5.36 4.93

(a) P2R1: Mean ¢¢ (%)

Number of players, N
Number of candidates, M 5 15 25 35 45

5 3.00 2.80 1.16 0.97 0.91
10 920 493 4.12 326 3.24
15 1420 8.60 8.40 4.71 4.42

(b) P2R1: Mean o (%)

Number of players, N
Number of candidates, M 5 15 25 35 45

o 0.64 0.65 0.27 0.19 0.18
10 1.04 0.61 048 0.38 0.32
15 1.55 0.68 0.68 0.37 0.31

(c) P2R1: Mean ¢° (%)

Table 4.13: Strategy-proneness Measures for P2R1

at all, as the number of candidates increase. Note, however, that the overall levels

of ¥ and ® are both lower than those in P1R1. All the three measures taper off

as number of players increases.

4.4.5 P2R2: Convex preference structure, Differential weights with

5 players

In this scenario, the number of players is fixed at N = 5, and the consideration

set size is one of M = 5,10, 15. Players may have different weights; the five weighting
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Figure 4.4: Strategy-proneness Measures for P2R1

Measures for proneness to beneficial strategic opportunity in P2R1 scenario. Within each of the three groups of
bars in the top row, the consideration set size, M is fixed to one of 5, 10, 15. Across the five groups of bars in the
bottom row, the number of candidates, N is fixed to be one of 5,15,2,53,45. Players have equal weight. Players’
grades are convex within the allowable range.

schemes reported in Table are simulated. The key difference from P1R2 is that
the players have a convex grading function of a special type — as specified for the
P2R1 scenario.

As with P2R1 versus P1R1, there is a dramatic reduction in the strategy-
proneness measures compared to its analogous unrestricted domain, namely P1R2.
The main observation continues from P1R2: compared to the equal-weighted sce-
nario with convex grading functions, the measures do not change dramatically due
to introduction of weights — especially for ¢“. The patterns for the other two remain
similar to those in the equal-weighted scenario as well — as the bottom row of Figure
shows. The top row shows no systematic patterns are discernible as the HHI
changes for fixed consideration set sizes; however, like P1R2, the weighting scheme

4 has the smallest strategy-proneness measures.
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Weighting Scheme

Number of candidates, M 1 2 3 4 5
5 30.00 32.25 33.75 26.50 30.50
10 30.67 34.00 33.22 33.89 34.33
15 36.43 33.07 32.21 34.29 33.07

(a) P2R2: Mean ¢¢ (%)

Weighting Scheme
Number of candidates, M 1 2 3 4 5

5 3.00 1.40 3.20 0.20 2.40
10 920 540 820 3.40 8.20
15 1420 820 11.20 6.20 13.80

(b) P2R2: Mean o (%)

Weighting Scheme
Number of candidates, M 1 2 3 4 5

D 0.64 0.28 0.80 0.04 0.60
10 1.04 0.74 1.04 0.42 0.98
15 1.55 0.79 1.35 0.69 1.43

(c) P2R2: Mean ¢° (%)

Table 4.14: Strategy-proneness Measures for P2R2

(a) Mean ¢© (b) Mean (c) Mean °

Figure 4.5: Strategy-proneness Measures for P2R2

Measures for proneness to beneficial strategic opportunity in P2R2 scenario. Number of candidates N is fixed at 5.
The players have same weight in the first weighting scheme, and different weights in the others. Within each of the
three groups of bars in the top row, the consideration set size, M is fixed to one of 5, 10, 15. Across the five groups
of bars in the bottom row, the weighting scheme is varied so that HHI increases from left to right. Players’ grades
are convex within the allowable range.
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4.4.6 P2R3: Convex preference structure, Differential weights with
25 players

In this scenario, the number of players is fixed at N = 25, and the consideration
set size is one of M = 5,10, 15. Players may have different weights; the five weighting
schemes reported in Table are simulated. This scenario closely resembles the
likely final deployment phase of COuNSEL.

The key difference from P1R3 is that the players have a convex grading func-
tion of a special type — as specified for the P2R1 scenario. All the strategy-proneness
measures are significantly lower as compared to the unrestricted domain case of
P1R3. The top row shows no systematic patterns are discernible as the HHI changes
for the smaller consideration set sizes of 5 and 10. However, a decline in the measures
is apparent with increase in HHI for consideration set comprising of 15 candidates.
The main observation continues from P1R2: compared to the equal-weighted sce-
nario with convex grading functions, the measures do not change dramatically due
to introduction of weights — especially for . Unlike P1R3, where ¢© decreased
with increase in HHI, % does not seem to have any pattern. The patterns for the
other two remain similar to those in the P2R1 as well as P2R2 — as the bottom
row of Figure shows. That is, for each weighting scheme, ¢“ and ¢° generally
increase with increase in consideration set size.

These have implications on the implementation design parameters for the
mechanism. As far as possible, consideration set sizes should be kept small, not

only for increased cognitive load to the players, but also for strategy-proneness. Ad-
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Weighting Scheme

Number of candidates, M 1 2 3 4 5)
5 9.25 9.25 8.00 9.25 8.25
10 7.89 889 10.89 833 7.78
15 10.14 7.93 8.07 8.43 7.43
(a) P2R3: Mean ¢¢ (%)
Weighting Scheme
Number of candidates, M 1 2 3 4 5
5 1.16 2.00 1.36 0.80 1.56
10 4.12 524 4.64 248 2.72
15 8.40 7.28 544 588 4.24
(b) P2R3: Mean o (%)
Weighting Scheme
Number of candidates, M 1 2 3 4 5
5 0.27 0.41 0.27 0.17 0.33
10 048 0.59 0.53 0.32 0.31
15 0.68 0.58 0.41 0.48 0.34

(c) P2R3: Mean ¢° (%)

Table 4.15: Strategy-proneness Measures for P2R3

while eliminating such opportunities for the smaller players.

4.5 Conclusion

159

dition of weights not significantly impacting the strategy-proneness measures is a
useful observation in itself. However, these should be investigated for different types

of players — as it must be giving larger strategic opportunities to the larger players,

Impossibility results due to Arrow, Gibbard and Satterthwaite, have ruled

out existence of strategy-proof mechanisms in which no player has dictatorial pow-
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Figure 4.6: Strategy-proneness Measures for P2R3

Measures for proneness to beneficial strategic opportunity in P2R3 scenario. Number of candidates N is fixed at
25. The players have same weight in the first weighting scheme, and different weights in the others. Within each of
the three groups of bars in the top row, the consideration set size, M is fixed to one of 5, 10, 15. Across the five
groups of bars in the bottom row, the weighting scheme is varied so that HHI increases from left to right. Players’
grades are convex within the allowable range.

ers — especially with unrestricted domain. Majority Judgment is a recent proposal
that bypasses this result, and is claimed to be highly strategy resistant by its au-
thors. In this paper, we characterized and quantified the proneness of Majority
Judgment-based voting procedure to beneficial strategic opportunities by the play-
ers. We employed a framework similar to Nash equilibrium concept, which has been
extensively used in mechanism design literature as a solution concept.

Specific to Majority Judgment in general, we developed the necessary and
sufficient conditions for a player to benefit by reporting untruthful grades for one
or more candidates. The conditions were then used as basis for quantifying three
measures of strategy proneness.

Finally, we simulated several scenarios starting from basic Majority Judgment
procedure, systematically varying assumptions and key parameters, leading up to
scenarios that closely resemble initial and later deployment phases of COuNSEL.

We found that the most obvious measure for strategy proneness, the one based on
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proportion of manipulable candidates, is deceptive — it consistently reports very high
likelihood of manipulation, typically upwards of 50%. However, the likelihood of an
individual player to find a beneficial strategic opportunity drops in the regions of
10% or less. Moreover, as the specific candidates via which the individual players
may benefit are also brought into consideration, the likelihood drops to 1-2% levels.

A surprising, though useful, observation has been the rather insignificant im-
pact of attaching weights to the players. Weights are a significant design element
in COuNSEL, wherein unlike the democratic “one-person one-vote” scenario, it is
essential to provide the airlines differential weight in the overall decision-making,
for equity reasons.

Another key observation has been the drastic reduction in strategy proneness
when the unrestricted domain of grades is replaced with a convex preference struc-
ture. Convexity, continuity, and monotonicity have been standard extensions in the
literature. These are also reasonable in our application area, whereby players would
more likely have a possibly “single-peaked” preference structure over the feasible
candidate space.

The results in themselves are quite encouraging. Even with complete knowl-
edge of everyone’s grades, and then being provided with an opportunity to benefit
oneself, the likelihood of a particular player to find a beneficial opportunity via a
candidate is in the region of 2% or below. In real-life, such opportunity would of
course not exist. Moreover, untruthful reporting has a good possibility of hurting
the player, as it may result with a new winner that is less preferred than the current

winner.
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These observations are based on simulations with simple preference struc-
ture, whereas COuNSEL design allows for a more nuanced structure over a multi-
dimensional candidate space. Furthermore, it deals with feasibility constraints on
the candidate space. Experiments incorporating these details, and with realistic
application scenarios should be conducted before finalizing the design parameters of
COuNSEL.

It should be mentioned here that the simulations assumed that a player had
complete knowledge of other players’ grades, and then had an opportunity to unilat-
erally deviate from truthful grading if it led to a more preferable candidate than the
current winner. In practice, this will not be the case. There are three implications
and possible directions for future research. One pertains to the information dissem-
ination at the end of each round. The FAA could possibly release all the grading
information, but that could incentivize airlines to collude among themselves — which
would defeat the purpose of the entire mechanism. It could also lead to an infor-
mation overload. On the other hand, the FAA need not release any information
until the final round, but that may call into question the FAA’s trust-worthiness. A
middle ground that encourages the airlines to productively contribute to the process
without divulging unnecessary information needs to be found.

The second implication has to do with the possible strategic uses of the partial
knowledge that does get disseminated at the end of each round. As the airlines gain
experience, they may be able to anticipate other airlines’ behavior probabilistically,
and use the information to update their beliefs. Instead of Nash equilibrium, a

Bayesian Nash equilibrium may then serve as a more appropriate solution concept.
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The modeling details would depend on the type of information released.

Finally, with the probabilistic knowledge of other airlines’ grade functions
replacing the full knowledge as in this paper, it would be imperative to quantify the
expected loss due to strategic grading. We have identified the best case scenarios
for an airline to benefit from strategic grading; this investigation would form the

worst case for an airline.
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Chapter C:  (Appendix to Chapter 4)

C.1 Convex Preference Structure

The procedure for drawing grades so that they follow a convex structure is
detailed in this section.

Suppose the candidates are drawn randomly from a fixed range: = ~ [0...1].
For a given candidate z, a special quadratic function maps these values into the grade
for each player i: y; = a;2% +b;, where a; and b; are player i-specific coefficients. The
coefficients for each player are constrained such that: (a) the grade function is convex
in the allowable grading range of [0...1], (b) the grade function is non-negative
in the allowable range, (c¢) the grade function has its global maxima within the
allowable range, and (d) the grade function has its maxima as the largest allowable
grade of 1.

(a) and (c) are inter-related for quadratic functions. For it to have a global
maximum, following necessary and sufficient conditions must be met (dropping sub-

script 7 for ease of notation):

dy —b
—= =0 2aqx" +b =0 e —
1z = Z2ax” + =T 5

d2
—y<0:>2ax*<0:>a<0.
dz?
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For the maxima to be within the given range as required in (c), we want:

For the last inequality, recall —2a < 0 as required in the previous statement.
Further, recall that the specified function has y = 0 at = 0. To satisfy (b),
we need to ensure that y > 0 at the largest allowable value of x — which is 1 in this

case. Thus, we get another bounding constraint for b:
0<ylp=1<1=20<a+b<1=-a<b<1l-a.
Putting the two bounding constraints for b, we get:
0<—-—0a<b<-2a<1—a.
The tighter of the bounds require that:
—a <b< —2a.

For (d), we evaluate y at the maxima, and set it to the largest allowable grade,
that is, 1:
—b

b
Ypwe = 12> — [a(%) + b} —1=b=2V/"a

Thus the bounds derived above imply:
—a<2vV—a< 20a=—-1<a<—4.

Some sample grade functions are shown in Figure
The procedure for generating the coefficients for each player is summarized

as follows. For each player i, draw a coefficient: a; ~ [-4--- — 1], and compute
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Figure C.1: Sample convex grade functions

Generating the grades for a given consideration set of M candidates is straight-
forward. Player i’s grade for a candidate x is computed as: vy; = a;2? + b;x. For all
the M candidates the same coefficients are used for a given player. The procedure
is repeated for all N players.

It should be mentioned here that COuNSEL employs a more nuanced grading
function, and allows for arbitrary number of dimensions for the candidates. It also
has the additional complexity of the feasible candidate space. Nonetheless, this
simple model allows us to study the strategy proneness with structured preferences,

and contrast the results with no structure.
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