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Urbanization significantly affects storm water runoff through the creation of new impervious 

surfaces such as highways, parking lots, and rooftops. Such changes can adversely impact the 

downstream receiving water bodies in terms of physical, chemical, and biological conditions. In 

order to mitigate the effects of urbanization on downstream water bodies, stormwater control 

measures (SCMs) have been widely used (e.g., infiltration basins, bioswales). A suite of 

observations from an infiltration basin installed adjacent to a highway in urban Maryland was 

used to evaluate stormwater runoff attenuation and pollutant removal rates at the well-

instrumented SCM study site. In this study, the Storm Water Management Model (SWMM) was 

used to simulate the performance of the SCM. An automatic, split-sample calibration framework 

was developed to improve SWMM performance efficiency. The results indicate SWMM can 

accurately reproduce the hydraulic response of the SCM (in terms of reproducing measured 

inflow) during spring, fall, and winter, but is less accurate in reproducing measured outflow 

during summer time. Similar results were found for the modeled (and observed) inflow water 

quality constituent, total suspended solids (TSS). 
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CHAPTER 1: INTRODUCTION 

1.1.Research Motivation 

The rapid development of urban areas leads to an increase of impervious cover that results in 

higher peak runoff, increased runoff volumes, faster runoff velocities, shorter lag times, 

increased water contamination, and more frequent downstream flooding (Dunne and Leopold 

1978; Kibler 1982; Burszta-Adamiak and Mrowiec 2013). These changes can affect the 

downstream receiving water bodies in terms of physical, chemical, and biological conditions 

(Paul and Meyer 2001; Wang et al. 2003; Konrad and Booth 2005). 

In order to control the water quantity and pollution exacerbated by urbanization, stormwater 

control measures (SCMs) have been widely installed at the source, along the line, or at the end of 

the line of the drainage system (Kibler 1982). Infiltration basins and wetponds are examples of 

two common structural SCMs employed to control urban runoff flows and pollutant loadings 

near the source before the runoff reaches downstream water bodies (Kibler 1982). 

Based on previous studies (Lindsey et al. 1992; Emerson and Traver 2008), the performance 

of infiltration basins could decline over time, especially during the first two years, when it would 

be defined as a ‘failed’ SCM (Natarajan 2012). From an engineering perspective, a ‘failed’ 

infiltration basin exhibits permanent ponding of water without active infiltration (Natarajan 

2012). It can no longer capture, temporarily store, infiltrate, and percolate the stormwater as 

originally designed (Ferguson 1990; Birch et al. 2005; Barraud et al. 2005). On the other hand, a 

few research studies have monitored the long-term hydrologic performances of infiltration basins 

that did not find any function degradation (Dechesne et al. 2005; Emerson and Traver 2008). 
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However, relatively few research studies have focused on the environmental function of 

‘failed’ infiltration facilities in mitigating stormwater runoff flows and reducing pollutant loads. 

Based on a recent research (Natarajan 2012), degraded infiltration basins can gradually transform 

into wetponds or wetland-like behavior that still possesses water quantity management, water 

quality control functionality, and suitability for wildlife habitat (Natarajan 2012). Rather than 

being removed or restored, the ‘failed’ infiltration facilities can remain on site and be considered 

as beneficial stormwater management practices that provide environmental and ecological 

benefits in urban and suburban areas (Natarajan 2012).  

More research is needed to quantify the potential benefits of infiltration basins in urbanized 

and suburbanized area. However, measuring SCMs effectiveness is a challenge for researchers 

(Singh et al. 2011). Also, it is hard to predict the hydrologic and water quality behaviors of 

SCMs under future climate change scenarios, which is critical for designing an SCM (Pyke et al. 

2011). 

One means of better characterizing and predicting SCMs is with the use of performance 

computer models. Defined as a mathematical description of physical, chemical, and biological 

processes, a model can evaluate the function of infiltration basins or other SCMs in a more 

quantitative fashion and at a lower cost than extensive field studies (Kibler 1982; Bertrand-

Krajewski et al. 2000).  

This study employed the Storm Water Management Model (SWMM) to investigate its ability 

to reproduce hydrologic performance of a SCM installed adjacent to a major highway. SWMM is 

a publically-available dynamic hydrology-hydraulic water quality simulation model developed 

by United States Environmental Protection Agency (Gironas et al. 2009). It can model both 

urban and suburban hydrologic processes and track both the quantity and quality of runoff 
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through a SCM (Gironas et al. 2009). The application of SWMM across a wide range of 

hydrologic regimes is well-documented and has been successfully employed to model the 

hydrologic improvement and non-point source pollution (NPS) reduction by implementing best 

management practices (BMPs) and SCMs in urban and suburban areas (Aad et al. 2009; Lee et 

al. 2010; Tobio et al. 2015; Rosa et al. 2015; Li et al. 2015).  

1.2. Objectives and Research Benefits 

    The purpose of this study is to apply and calibrate SWMM using observed runoff flows and 

pollutant concentration measurements collected from an existing infiltration basin installed 

adjacent to Highway 175 in Columbia, Howard County, Maryland. The infiltration basin is 

designed to treat the runoff from a small portion of the highway (Natarajan 2012). The main 

objectives of the research are: 

1. To setup the SWMM model for the study watershed. 

2. To automatically calibrate (and validate) the SWMM model for the MD 175 infiltration 

basin. The ability of calibrated model to reproduce the past hydrological and water 

quality-related features of the study area will be evaluated.  

3. To explore model sensitivities related to parameters, which can be used to improve model 

calibration via a reduction in the parameter dimensionality.  

An automatic calibration routine will be developed for SWMM model calibration and 

validation, which can improve calibration efficiency and can eventually be used by the greater 

SWMM modeling community.  
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

The following chapter describes background information related to urbanization and storm 

water management. It also introduces the Storm Water Management Model (SWMM).  

 

2.1. Effects of Urbanization on Storm Water Management 

    Urbanization is the change in land use, e.g., from forested or agricultural land to urban and 

suburban areas, which can influence the downstream water bodies in terms of physical, chemical, 

and biological conditions.  

 

Figure 2.2.1-1. Urban storm-drainage system [Reproduced from (Kibler 1982)]. 
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Figure 2.2.1-1 shows a schematic of an urban stormwater drainage system. A small portion of 

rainfall within the basin is first captured by the depression storage from where it is either 

intercepted by plants, infiltrates into the subsurface or evaporates from standing water, soil 

moisture, or plants (transpiration). Depending on the degree of development in the basin and the 

existence of a storm drainage system, all or a portion of the ensuing runoff is intercepted by 

storm drains or combined sewers and then conveyed to treatment facilities, detention or retention 

storage facilities, or spilled at an overflow point (Kibler 1982).  

Urbanization significantly affects the rainfall-runoff process in a variety of ways. The 

replacement of vegetation with the creation of new impervious surfaces such as highways, 

parking lots, and rooftops, results in a large reduction of interception. Without vegetation, the 

amount of infiltration and evapotranspiration is reduced, which has a significant effect on the 

downstream water balance (Ng and Miller 1980; Simmons and Reynolds 1982; Rose and Peters 

2001). In general, over 40 to 90 percent of the rainfall becomes surface runoff in urban areas 

(Roesner and Bledsoe 2003). In addition, the extensive network of pipes and channels that are 

designed into the urban environment intensifies the rate of stormwater runoff, which results in a 

reduction of the lag time (i.e., the time delay between peak rainfall and peak runoff as shown in 

Figure 2.2.1-2) to 10-25% of its natural basin value (Anderson and County 1970; Akan and 

Houghtalen 2003). Depending on the water balance, the surface stormwater runoff would have 

higher peaks,  greater runoff volumes, and faster runoff rates that can produce flooding as well as 

watercourse and habitat destruction in low-lying areas when compared to natural areas (Zoppou 

2001; Bengtsson et al. 2005).  
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Figure 2.2.1-2. Urbanization impacts on basin response [Reproduced from (Leopold 1968)]. 

Stormwater quantity is not the only problem associated with urbanization. Stormwater quality 

is impaired as well (Akan and Houghtalen 2003). Typical stormwater pollutants include lead, 

chloride, and biochemical oxygen demand (BOD), which are generated from the vehicle exhaust 

emissions, the wear of tires and the roadway (Shaheen 1975). In addition, application of 

fertilizers and pesticides results in high concentration of dissolved nitrate, total nitrogen, 

phosphate, and total phosphorus loads in stormwater runoff (Groffman et al. 2004). Pollutants 

(e.g., dust, dirt, and sediments) generated by urban activities (or settled from the atmosphere) are 

generally accumulated on land surfaces between storm events, and eventually washed off during 

a rain event (Kibler 1982). The process of urbanization results in nonpoint source pollution, the 

primary source of water quality impairment in the United States (Akan and Houghtalen 2003). It 

has caused an increase of pollutant loads by at least one order of magnitude over natural 

catchment conditions (Kibler 1982).  
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The changes that comes with urbanization have a profound effect in many ways. Impaired 

stormwater has negative impact on aquatic life in ways of polluted aquatic habitat, altered energy 

pathways in streams, and loss of riparian areas (Allan 2004). Although a formal risk analysis of 

the human health caused by stormwater runoff is not yet quantified, some studies have pointed 

out that the higher health risks are associated with swimming at storm-drain locations (Haile et 

al. 1999). 

To mitigate environmental deterioration of increased urbanization, the concept of stormwater 

management was introduced for environmental protection, in terms of monitoring and analysis of 

constituents entering the system, implementation of preventive practices to control the quantity 

and quality of runoff and prevent the flooding of the downstream watersheds (Tsihrintzis and 

Hamid 1997). In fact, many innovative practices have been developed over the last two decades 

to mitigate the detrimental effects of urbanization on stormwater runoff. These practices are 

often referred to as stormwater control measures (Akan and Houghtalen 2003). 

 

2.2. Stormwater Control Measure (SCM) 

    The term stormwater control measure (SCM) is, in general, synonymous with the term best 

management practice (BMP). A broadly stated goal of SCMs is to attenuate runoff and reduce 

pollutant loads to downstream waterbodies (Strassler et al. 1999).  

There are two broad categories of SCMs, which include structural and non-structural practices. 

Structural SCMs are defined as any constructed facilities that treat the stormwater at the source 

of runoff or discharge point (Strassler et al. 1999). Non-structural SCMs are longer-term and 
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lower-maintenance practices that are designed at the runoff source based on the local land use. 

This study will focus on two structural SCMs: infiltration basins and retention ponds.  

   2.2.1. Infiltration Basin 

Infiltration basins are designed to control the water quantity and quality through capturing 

stormwater runoff and temporarily retaining it while allowing the stormwater to infiltrate 

(Ferguson 1990; Strassler et al. 1999; Winer 2000). As shown in Table 2.2.1-1, infiltration basins 

have high pollutant removal efficiencies, especially for heavy metals. Infiltration basins attenuate 

stormwater runoff via enhancing infiltration into the subsurface, thereby increasing baseflow and 

recharge to underlying aquifers (Strassler et al. 1999).  The mechanisms for treating water in 

infiltration basins are filtration, adsorption, and biological conversion. As runoff infiltrates into 

the underlying soils, particulates and the attached contaminants such as metals and nutrients are 

filtered from the stormwater while some of the dissolved constitutes are adsorbed onto the 

surface of particles. Moreover, some organic pollutants can be metabolized by the micro-

organisms in the soil (Strassler et al. 1999).  

Table 2.2.1-1. Pollutant removal efficiency of infiltration basins 

[Adapted from (Winer 2000)]. 

PARAMETER MEDIAN REMOVAL EFFICIENCY 

TOTAL PHOSPHORUS (𝑻𝑷) 70% 

AMMONIA-NITROGEN (𝑵𝑯𝟑 −𝑵) 83% 

NITRATE (𝑵𝑶𝟑) 82% 

TOTAL NITROGEN (𝑻𝑵) 51% 

TOTAL SUSPENDED SOLIDS (𝑻𝑺𝑺) 76% 

LEAD (𝑷𝒃) 98% 

ZINC (𝒁𝒏) 99% 
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    Although an infiltration basin has many benefits, it also has some disadvantages. First, 

infiltration basins usually can only intercept a certain volume of runoff. Any excess runoff will 

be bypassed through the system without control and treatment (Strassler et al. 1999). Moreover, 

frequent maintenance of the infiltration basin is required to maintain the capacity of the system 

and prevent clogging due to excessive sediment accumulation. Common maintenance activities 

include annual cleaning and removal of debris, removal of accumulated sediment from forebays 

every 3-5 years, and maintenance of upland vegetated areas (Livingston et al. 1997). 

Figure 2.2.2.1-1 shows a typical design of an infiltration basin. The bottom of the infiltration 

basin is normally covered with 6 to 12 inches of thick sand, which traps and filters sediment 

from runoff (Pazwash 2011). The bottom elevation of the basin should be located above the high 

water table or the bedrock by 2 to 3 feet. Pazwash (2011) recommended the percolation rate of 

the soils should be at least 1 inch per hour since the infiltration rate diminishes with time due to 

silting. In order to prevent insect and odor problems, infiltration basins are typically designed to 

not retain a permanent pool volume. The volume of water in the infiltration basins should be 

drained within 72 hours to ensure the basin is operational by the arrival of the next rainfall-runoff 

event (Strassler et al. 1999). 

Infiltration basins have relatively high failure rates compared to other SCMs (Hilding 1994). In 

this research, the infiltration basin is defined as a permanently ponded ‘failed’ facility by the 

Maryland State Highway Administration (SHA). The infiltration basin transitioned to a wet pond 

early in its operation (Natarajan 2012). 
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Figure 2.2.2.1-1. Infiltration basin [Reproduced from (Schueler et al. 1992)]. 

   2.2.2. Wet Pond 

    Wet ponds (also known as retention ponds) have similar functions as infiltration basins. 

However, wet ponds are designed to capture stormwater volume, store, and improve the quality 

of the stormwater runoff. Unlike infiltration basins, wet ponds are intended to store water 

permanently. Figure 2.2.2.2-1 shows a typical design for a wet pond. The volume available for 

storage is defined as the permanent pool level of the system. The portion of water in the pond 

above the permanent pool level will be replaced by subsequent stormwater runoff (Strassler et al. 

1999). Except for filtration, adsorption and biological conversion, the aquatic plants in wet ponds 

can provide pollutant control via uptake and transformation processes. As shown in Table 2.2.2-

1, wet ponds are efficient at removing pollutants. Compared to infiltration basins, wet ponds can 



11 
 

help mitigate a large variety of pollutants. Moreover, wet ponds have ecological value by 

providing habitat for a variety of aquatic plants and animals (Strassler et al. 1999). Common 

maintenance activities include annual repair of the embankments, side slopes and control 

structure, and removal of accumulated sediment and debris from the pond every 5 to 10 years 

(Livingston et al. 1997). 

 

Figure 2.2.2.2-1. Design of a wet pond [Reproduced from (Michael Clar 2001)]. 

In the context of stormwater management, long-term effectiveness of SCMs is important. 

However, only short-year observational records are available. Therefore, the Storm Water 

Management Model is needed here to assess SCM performance over larger time periods beyond 

that which is observationally available. 
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Table 2.2.2.2-1. Typical pollutant removal efficiencies for wet ponds 

[Adopted from(Winer 2000)]. 

PARAMETER MEDIAN REMOVAL EFFICIENCY 

TOTAL PHOSPHORUS (𝑻𝑷) 46% 

AMMONIA-NITROGEN (𝑵𝑯𝟑 −𝑵) 23% 

NITRATE (𝑵𝑶𝟑) 23% 

TOTAL NITROGEN (𝑻𝑵) 30% 

TOTAL SUSPENDED SOLIDS  (𝑻𝑺𝑺) 70% 

COOPER (𝑪𝒖) 55% 

LEAD (𝑷𝒃) 67% 

ZINC (𝒁𝒏) 51% 

        

2.3. Storm Water Management Model (SWMM) 

   2.3.1. Introduction and Model Capabilities 

The Environmental Protection Agency (EPA) developed the Storm Water Management Model 

(SWMM), which is used widely in urban and non-urban hydrologic modeling. As a physically-

based, discrete-time simulation model, SWMM employs principles of conservation of mass, 

energy and momentum (Rossman 2010).  

SWMM is typically used for planning, analysis, and design related to stormwater runoff, 

combined and sanitary sewers, and other drainage systems. Typical applications of SWMM in 

stormwater and sewer studies include flood control, water quality protection, design of control 

strategies, controlling site runoff using LID practices, and evaluating the effectiveness of SCMs 

in reducing pollutant loading (USEPA 2015).  
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There are four compartments in SWMM: (1) the atmospheric compartment (via rain gages), 

(2) the land surface compartment (via subcatchments), (3) the groundwater compartment (via 

aquifers), and (4) the transport compartment (via links and junction nodes). 

As shown in Figure 2.3.1.-1., SWMM accounts for various hydrologic processes that produce 

runoff from urban and suburban areas. These include time-varying rainfall, rainfall interception 

from depression storages, evaporation from standing water, snow accumulation, infiltration of 

rainfall into unsaturated soil layers, percolation of infiltrated water into underlying soils, 

interflow between groundwater and the drainage system, nonlinear reservoir routing of overland 

flow, and runoff reduction via low impact development controls (Rossman 2010).  

SWMM also tracks the quantity of runoff flow rate, flow depth, and quality of the water in the 

routing network (Gironas et al. 2009). It mimics the function of SCMs during the routing of 

water through treatment storage units or by natural processes in pipes and channels (USEPA 

2015). 

 

Figure 2.3.1.-1. Simple schematic of SWMM process representations 

 [Reproduced from (USEPA 2012)]. 
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2.3.2. SWMM Applications 

The application of SWMM in hydrologic and water quality assessments in urban areas is well 

documented (Huber et al. 1988; Rossman 2010). SWMM has been successfully applied to all 

types of storm water management, including urban drainage, natural watersheds, and flood 

routing (Hsu et al. 2000; Zaghloul 1998). It is capable of simulating small, medium, and large 

urban and suburban catchments (Tsihrintzis and Hamid 1998; Jang et al. 2007; Khader and 

Montalto 2008; Barco et al. 2008; Shinma and Reis 2014). SWMM also shows some skill at 

modeling first flush phenomenon, which is defined as the discharge of a larger mass of a 

contaminant in the early part of a storm relative to the later part (Stenstrom and Kayhanian 2005; 

Modugno et al. 2015). Moreover, SWMM can help investigate the optimal design of SCMs and 

predict the optimal physical characteristics and rainfall design criteria for an existing LID (Li et 

al. 2015; Tobio et al. 2015) 

SWMM provides two ways to model SCMs. One is to model SCMs with the ‘LID’ block. A 

variety of SCMs, such as rain barrels or gardens, detention ponds, infiltration trenches and green 

roofs, can be modeled by SWMM (Bengtsson et al. 2005; Khader and Montalto 2008; Li et al. 

2015; Tobio et al. 2015). However, SWMM has limited capabilities at simulating pollutant loads 

on pervious surfaces such as permeable pavements (Rosa et al. 2015). 

Many studies have investigated the effects of spatial resolution on SWMM model output. 

There are two basic approaches to model the urban hydrologic processes based on the scale and 

level of investigation: the micro-approach and macro-approach (also known as lumped parameter 

model approach)  (Kibler 1982). The results indicate that peak runoff is more sensitive to spatial 

scale than runoff volumes, especially for small storm events (Warwick and Tadepalli 1991; 

Ghosh and Hellweger 2011). However, the spatial resolution of SWMM did not significantly 
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affect the modeled flows in combined sewer systems (Zaghloul 1998; Khader and Montalto 

2008) 

Multiple studies investigated the calibration of SWMM. Barco (2008) proposed an automatic 

calibration approach for a large urban catchment. The approach can be applied to any objective 

functions. When coupled with GIS, this research provides a new procedure to model extremely 

large watersheds (Barco et al. 2008). In order to deal with increasing data availability, Shinema 

et al. (2014) proposed the use of multi-site approaches and multi-events during calibration. In the 

multi-site approach, the objective functions were calculated by weighting each site’s objective 

function by it respective drainage area. In the multi-events approach, calibration was conducted 

simultaneously for upstream and downstream watersheds for all rainfall events at once. It 

produced better objective function values, reduced uncertainties, and improved computing 

efficiency (Shinma and Reis 2014). Gaume and Desbordes (1998) also presented a global 

approach to identify the best set of parameters and reduce the uncertainties with SWMM (Gaume 

et al. 1998). A genetic algorithm (GA) was applied to search for the optimal values of catchment 

calibration parameters. The results show that GA can improve the calibrating efficiency and 

yields relatively high prediction accuracy (Liong et al. 1995). 
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CHAPTER 3: METHODS 

In this study, Storm Water Management Model (SWMM) was utilized as the modeling 

environment. The development of a SWMM model for the study area was performed in two 

major steps: model setup and model calibration (with validation). An automatic calibration 

procedure was developed in MATLAB©. To improve calibration efficiency, the sensitivity of 

SWMM parameters was analyzed. The research methods are described in detail in this chapter.   

 

3.1. Storm Water Management Model (SWMM) 

As discussed in Section 2.3, SWMM is a physically based, discrete-time simulation model, 

which employs principles of conservation of mass, energy and momentum (Rossman 2010). 

There are four compartments in SWMM: (1) the atmospheric compartment (via rain gages), (2) 

the land surface compartment (via subcatchments), (3) the groundwater compartment (via 

aquifers), and (4) the transport compartment (via links and junction nodes). The following 

sections will discuss the properties of these compartments related to the study area for this study. 

   3.1.1. Land Properties 

Land surface is represented as “subcatchments” in SWMM, which can receive precipitation 

and consequently can generate runoff and pollutant loads. Subcatchment areas are hydrologic 

units of land containing both pervious and impervious surfaces whose runoff drains to a common 

outlet (Rossman 2010).  
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3.1.1.1. Water Quantity 

Subcatchment surfaces are treated as nonlinear reservoirs in SWMM. Inflow to the reservoir 

originates from precipitation and any designated upstream subcatchments. Outflows leave the 

reservoir in the form of infiltration, evaporation, and surface runoff. The capacity of this 

reservoir is the maximum depression storage, or the maximum surface storage provided by 

surface ponding (Rossman 2010). Water stored as depression storage on pervious areas is subject 

to infiltration (and evaporation), while water stored in depression storage on impervious areas is 

depleted only by evaporation (Huber et al. 1988). The conceptual view of surface runoff is 

illustrated in Figure 3.1.1.1.-1. 

 
 

Figure 3.1.1.1.-1. Nonlinear reservoir representation of subcatchment 

[Reproduced from (Rossman 2010)]. 

Surface runoff (Q) occurs only when the water depth in the reservoir exceeds the maximum 

depression storage (dp). Surface runoff is given by Manning’s equation, 

                                                𝑄 = 𝑊
1.49

𝑛
(𝑑 − 𝑑𝑝)

5/3𝑆1/2                                     (3.1.1.1 − 1)                                      

where Q is the subcatchment surface runoff (cfs); W is the subcatchment width (ft); n is the 
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Manning’s roughness coefficient; d is the water depth (ft); dp is the depth of depression storage 

(ft); and S is the surface slope (ft/ft). 

The infiltration method used in this study is the Curve Number method, which has the least 

number of parameters in SWMM. It assumes the total infiltration capacity of a soil can be found 

from the soil’s tabulated Curve Number. During a rain event, this capacity is depleted as a 

function of cumulative rainfall and remaining capacity (Rossman 2010). 

The Curve Number method is derived from the Soil Conservation Service (SCS) Curve 

Number method used in the runoff model (Gironas et al. 2009), which can be written as, 

                                                       𝑅 =
(𝑃 − 𝐼𝑎)

2

(𝑃 − 𝐼𝑎) + 𝑆𝐷
                                              (3.1.1.1 − 2) 

where 𝑅 is the runoff (inch); 𝑃 is the precipitation (inch); 𝐼𝑎 is initial abstraction, includes the 

water intercepted by vegetation, the water retained in surface depressions, evaporation, and 

infiltration before runoff begins (inch); and 𝑆𝐷 is soil moisture storage deficit (inch) at the time 

runoff begins (Akan and Houghtalen 2003), which can be written as, 

                                                      𝑆𝐷 =
1000 − 100𝐶𝑁

𝐶𝑁
                                             (3.1.1.1 − 3) 

where 𝐶𝑁 is runoff curve number. With a reasonable assumption about the relationship between 

𝐼𝑎 and 𝑆𝐷, runoff (𝑅) can be written as a function of soil moisture storage (total infiltration 

capacity).  

    3.1.1.2. Water Quality 

Pollutants build up in an urban watershed between storm events (dry weather) at different rates 

(Kibler 1982). The rate of this accumulation is most rapid during the first 2 to 3 days after a 
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significant rainstorm and subsequently decreases over time (Sartor et al. 1974). Therefore, an 

exponential buildup function in SWMM was selected. Pollutants build up can be computed as, 

                                               𝐵𝑢𝑖𝑙𝑑𝑢𝑝 𝑀𝑎𝑠𝑠 = 𝐶𝑚𝑎𝑥(1 − 𝑒
−𝐶2𝑡)                      (3.1.1.2 − 1)                                       

where Buildup Mass is the amount of buildup pollutant (kg/ha); Cmax is maximum possible 

buildup (kg/ha); C2 is buildup rate constant (1/days); and t is the number of antecedent dry days 

(days). 

Pollutants wash off from a land during storm events (wet weather). To maintain model 

consistency, an exponential washoff function in SWMM was selected. Pollutants wash off can be 

computed as, 

                                                      𝑊𝑎𝑠ℎ𝑜𝑓𝑓 𝑀𝑎𝑠𝑠 = 𝐶1𝑞
𝐶2𝐵                                (3.1.1.2 − 2)                                                      

where Washoff Mass is the amount of washoff load (kg/hr); C1 is washoff coefficient 

(dimensionless); C2 is washoff exponent (dimensionless); B is pollutant buildup in mass units 

(kg); and q is the runoff rate per unit area (mm/hr).  

   3.1.2. Channel Properties 

Channels and culverts in urban watersheds are represented via “conduits” in SWMM, which 

apply Manning’s equation to calculate flow rate as, 

                                                               𝑄 =
1.49

𝑛
𝐴𝑅2/3𝑆1/2                                         (3.1.2 − 1)               

where Q is the runoff discharge (cfs); n is the Manning’s roughness coefficient; A is the cross 

sectional area of the conduit (ft2 ); R is the hydraulic radius (ft); and S is the surface slope (ft/ft).        
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   3.1.3. Stormwater Control Management (SCM) Properties 

SCMs can be represented as “LID controls” or “storage units” in SWMM. LID controls, 

including infiltration trenches, bio-retention cells, continuous porous pavement, rain barrels, and 

vegetative swales are designed to capture surface runoff and reduce runoff through some 

combination of detention, infiltration, and evapotranspiration (Rossman 2010). Storage units can 

model the reduction of stormwater runoff and removal of pollutants from the flow streams. In 

fact, storage units could represent “storage facilities as small as a catch basin or as large as a 

lake”, which provide storage volume. With a user-defined mathematical function, storage units 

can model the change of runoff quality through SCMs (Gironas et al. 2009).   

 

3.2. SWMM Model Calibration 

    SWMM is a mathematical simulation model that mimics the performance of a storm under 

various conditions (Rossman 2010). The correct use of the SWMM is based on the premise that 

it reproduces the real-life hydraulic and hydrologic behaviors with acceptable accuracy (Kibler 

1982). However, there are many difficulties due to the scarcity of data, uncertainty of parameters 

and inherent model assumptions (Huber et al. 1979). Manual calibration is not a feasible option. 

Therefore, an auto-calibration strategy was developed with MATLAB© for this study. 

   3.2.1. Auto-Calibration Procedure 

The auto-calibration procedure is based on Monte Carlo simulation techniques. To perform a 

Monte Carlo simulation, the first step is to define the critical parameters with their boundaries 

(feasible ranges) and statistical characteristics (Ayyub and McCuen 2011).  
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In this study, the boundaries (feasible ranges) of input parameters were defined based on peer-

reviewed literature. The distribution of the input parameters was assumed to be uniform (non-

informative) and no serial correlation between these characteristic. Therefore, the parameters can 

be calculated within feasible boundaries as follows: 

                                                   𝑋𝑖,𝑗 = 𝐿𝑖 + 𝑟𝑖,𝑗(𝑈𝑖 − 𝐿𝑖)                                           (3.2.1 − 1)                                                

where  Xi,j is the value of the ith parameter in the jth replicate; Ui is upper bound of the ith 

parameter; Li is lower bound of the i th parameter; ri,j is random variable that has a uniform 

distribution on the continuous range [0, 1]; i is ith parameter; and j is j th replicate for a set of 

size J (Barco et al. 2008).  

3.2.2. Objective Functions 

The objective function, which is defined as an optimization procedure used to select better 

solutions over poorer solutions (King and Wallace 2012), is critical for model calibration and 

validation. Several objective functions were applied for hydrology and water quality analyses in 

this study. 

 3.2.2.1. Nash-Sutcliffe Model Efficiency Coefficient 

The Nash-Sutcliffe efficiency (NSE) is a normalized statistic estimator that determines the 

magnitude of the modeled runoff discharge, relative to the measured runoff discharge (Nash and 

Sutcliffe 1970), 

                                                   𝑁𝑆𝐸 = 1 −
∑ (𝑄0

𝑡−𝑄𝑚
𝑡 )

2𝑡2
𝑡1

∑ (𝑄0
𝑡−𝑄0̅̅̅̅ )

2𝑡2
𝑡1

                                      (3.2.2.1 − 1) 
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where 𝑁𝑆𝐸 is the Nash-Sutcliffe model efficiency coefficient; 𝑄0̅̅ ̅̅  is the time-averaged mean of 

observed discharge (LPS); 𝑄𝑚
𝑡  is the SWMM modeled discharge (LPS) at time t; 𝑄0

𝑡  is observed 

discharge at time t (LPS); 𝑡1is start time of simulation; and 𝑡2 is end time of simulation.  

     3.2.2.2. Bias 

    As a systematic error, bias results from systematic distorting of the data (Ayyub and McCuen 

2011), such that bias can be computed as 

                                                                 𝐵 =
∑ (𝑦𝑖̂−𝑦𝑖)
𝑛
1

𝑛
                                                   (3.2.2.2 − 1)                                                

where 𝐵 is the bias; 𝑦𝑖̂ is the model predicted data; 𝑦𝑖 is the measured data; and 𝑛 is the number 

of values. Relative bias provides a measure of the magnitude of the bias and is computed as 

                                                                   𝑅𝑒𝑙. 𝐵 =
𝐵

𝑦̅
                                                      (3.2.2.2 − 2) 

where 𝑅𝑒𝑙. 𝐵 is the relative bias; and 𝑦̅ is the mean of the measured data. 

     3.2.2.3. Root Mean Squared Error 

    As a measure of model accuracy, root mean squared error (RMSE), can help estimate the 

closeness of measured and modeled data as 

                                                               𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖̂−𝑦𝑖)

2𝑛
1

𝑛
                                  (3.2.2.3 − 1)                                        

where RMSE is the root mean squared error; 𝑦𝑖̂ is the model predicted data; 𝑦𝑖 is the measured 

data; and 𝑛 is the number of data. 

     3.2.2.4. Correlation Coefficient 
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    As an index of the degree of association as a function of time, correlation coefficients quantify 

the degree of association between the elements of two samples of data (McCuen 1989), 

                            𝑅 =
∑ 𝑥𝑖𝑦𝑖
𝑛
1 − (∑ 𝑥𝑖

𝑛
1 )(∑ 𝑦𝑖)

𝑛
1 /𝑛

(∑ 𝑥𝑖2
𝑛
1 − (∑ 𝑥𝑖

𝑛
1 )2/𝑛)0.5 ∙ (∑ 𝑦𝑖2

𝑛
1 − (∑ 𝑦𝑖

𝑛
1 )2/𝑛)0.5

         (3.2.2.4 − 1) 

where 𝑅 is the correlation coefficient; 𝑥𝑖 is the 𝑖𝑡ℎ variable of 𝑥; and 𝑦𝑖 is the  𝑖𝑡ℎ variable of 𝑦. 

3.2.3. Sensitivity analysis for SWMM parameters       

There are roughly 100 parameters that need to be calibrated in the study. Based on literature 

(Tsihrintzis and Hamid 1997; Barco et al. 2008), SWMM parameters exhibit different sensitivity 

when modeling different watersheds. Therefore, a sensitivity analysis was conducted to improve 

calibration efficiency and reduce the overall parameter dimensionality in this study.  

Defined as the rate of change of one factor with respect to change in another factor, sensitivity 

analysis is important in model simulation (McCuen 2002). There are three types of sensitivity 

indicators: (1) deviation sensitivity, (2) absolute sensitivity, and (3) relative sensitivity (McCuen 

2002). In this study, relative sensitivity was used to quantify the relative importance of each 

parameter.  

The normalized sensitivity coefficient (or sensitivity index) is calculated through the following 

formula,  

𝑁𝑆𝐶 =
(∅ − ∅0)/∅0
(𝑃 − 𝑃0)/𝑃0

                                                    (3.2.3 − 1) 

where NSC is the normalized sensitivity coefficient; P0 is the nominal (initial) parameter value; P 

is the perturbed parameter value (perturbation size is ±10%); ∅0 is the nominal (initial) model 

output; and ∅ is the perturbed model output associated with P. 
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In this study, the parameters related to subcatchment (width, surface slope, Manning’s N for 

impervious/pervious area, depression depth on impervious/pervious area, percent of impervious 

area with no depression storage, runoff curve number, and drying day) were calculated by 

weighting proportionally to their drainage areas.  

3.3. Study Domain 

    The study site is located along MD 175 East in Columbia, Howard County, Maryland (Figure 

3.3.-1.). It is a small drainage area (2.9 ha) that includes an existing infiltration basin. 

Figure 3.3.-1. Area map of the study site location along MD 175 East. 

    Based on SHA investigation report, the total area of the study site is 2.9 ha of which 33% is 

impervious. The weighted curve number for infiltration is 75. The drainage area consists of 

impervious highway surfaces and grassy areas directly connected to the infiltration basin. Runoff 
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from the entire drainage area is concentrated into the grassy area and then flows into the 

infiltration basin. 

The infiltration basin has one inflow and one outflow point via installation of calibrated weirs. 

The source of inflow is sheet flow from the highway, along with culvert and swale flow. All of 

these flows lead into a vegetated swale as inflow to the infiltration basin through wooden V-

notch weirs (Natarajan 2012). The water quantity and quality data from the infiltration basin 

were collected from August 2009 to August 2012 by Dr. Allen Davis’ research group. The basic 

characteristics of the SCM are listed in Table 3.3.-1. 

Table 3.3.-1. Basic characteristic of the MD 175 infiltration basin site 

[Adopted from (Natarajan 2012)]. 

CHARACTERISTIC VALUE 

STORAGE CAPACITY 650 𝑚3 

SIDE SLOPE 4: 1 

DEPTH 0.91 𝑚 

LENGTH 71 𝑚 

BOTTOM WIDTH 3.7 ~7.6 𝑚 

SOIL TYPE AROUND THE BASIN USDA Loam 

 

 

   3.3.1. Model Setup 

In this study, both water quantity and water quality variables were of interest. Therefore, the 

study area was modeled in SWMM for both runoff and pollutant loads. 
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     3.3.1.1. Land Properties 

    At the land surface, a portion of the precipitation is intercepted by vegetation, a portion will 

infiltrate into soil, and a portion may evaporate from the soil (Akan and Houghtalen 2003). What 

remains consequently can generate runoff and pollutant discharges.  

The delineation of the study area was performed in SWMM. Based on the hydrologic behavior 

of the study area, four “subcatchments” were established in SWMM model that included two 

highways and two grassy areas (Figure 3.3.1.1.-1.). The area of each subcatchments was 

estimated using the dot grid method, which is a simple method to calculate areas on a map. 

 

Figure 3.3.1.1.-1. Topographic delineation of the study site. 
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     3.3.1.1.1. Water Quantity 

This study aims to evaluate the performance of SWMM during storm events when the actual 

air vapor pressure is close to saturation. Therefore, it is reasonable to assume there is negligible 

evaporation in the subcatchments during the storm period. 

To simplify the model, the internal routing of runoff between pervious and impervious areas in 

one subcatchment was set to “outlet”, which means all the runoff from both areas flows directly 

to an outlet (Rossman 2010). Based on an investigation of the topography, groundflow in this 

area can be neglected. Snow pack melting is not considered in this study either since most of the 

measured storm events took place during relatively warm weather. All candidate subcatchment 

hydrology-related parameters are listed in Table 3.3.1.1.1.-1. 

Table 3.3.1.1.1.-1. Parameters Related to Hydrology. 

Hydrology Parameters Definition 

Width Width of overland flow path 

%Slope Average surface slope 

N-imperv Manning’s N for impervious area 

N-per Manning’s N for pervious area 

S-Imperv Depth of depression storage on impervious area 

S-Perv Depth of depression storage on pervious area 

PctZero Percent of impervious area with no depression storage 

CurveNum SCS runoff curve number 

DryTime Time for a fully saturated soil to completely dry 

 

     3.3.1.1.2. Water Quality 

In SWMM, buildup and washoff of pollutants from subcatchments are associated with the 

“land uses” assigned to the subcatchment (Rossman 2010). Two land uses were created for the 

entire study area: grass land and paved highway.  
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Also for further simplification, three assumptions were made in the study: (1) the pollutants in 

infiltration flow was negligible, (2) all pollutants were assumed to be conservative (i.e., no 

decay) in the process, and (3) there were no co-pollutants for all kinds of pollutants. All 

candidate subcatchments pollutants parameters are listed in Table 3.3.1.1.2.-1. 

Table 3.3.1.1.2.-1. Parameters Related to Pollutants. 

Parameters Definition 

DRY_DAYS Number of antecedent dry days prior to the start of the simulation 

Rain Concen. Concentration of the pollutant in rain water 

Max. Buildup Maximum possible buildup 

Rate Constant Rate constant of buildup function 

Coefficient Exponential coefficient in washoff function 

Exponent Runoff exponent in washoff function 

% of Area Assignment of land uses (percentage) to subcatchment 

     

     3.3.1.2. Runoff Routing        

To reproduce the flow routing for the study domain, two channels and one culvert were 

established in SWMM. All candidate channels properties parameters are listed in Table 3.3.1.2.-

1. 

Table 3.3.1.2.-1. Parameters Related to Channels. 

Parameters Definition 

Roughness Manning’s roughness coefficient 

       

     3.3.1.3. Infiltration Basin        

Based on previous field observations, the infiltration basin in the study area was ponded with 

water through the entire study period. The water level inside the infiltration basin was ranged 

from 0.18 𝑚 to 1.2 𝑚 (Natarajan 2012). Therefore, it is reasonable to treat the infiltration basin 
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as a wet pond, which can be represented as a node “storage unit” in SWMM. The shape of the 

storage unit was described by a user-defined curve. All candidate infiltration basin properties 

parameters are listed in Table 3.3.1.3.-1. 

Table 3.3.1.3.-1. Parameters Related to Infiltration Basin. 

Parameters Definition 

InitDepth Initial depth of water in the storage unit 

Psi Soil capillary suction head 

Ksat Soil saturated hydrologic conductivity 

IMD Difference between soil porosity and initial moisture content 

MaxDepth Maximum depth of the storage unit 

Fevap Fraction of evaporation rate realized 

 

   3.3.2. Data 

     3.3.2.1. Meteorological Boundary Conditions 

Hourly precipitation observations were obtained from the NOAA’s National Climate Data 

Center Quality Controlled Local Climatological Database (QCLCD).  There are about 1600 land-

based observation stations in the United States. The station USW00093721, which is closest to 

the study site, was selected for this research. Figure 3.3.2.1.-1. shows the location of QCLCD 

stations relative to study area, where station USW00093721 is circled in yellow. 
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Figure 3.3.2.1.-1. QCLCD station location. 

The QCLCD station is located southeast of the study area at distance of 12.5 km. This study 

assumed the precipitation at the station is similar to that at the study area. The average wind 

speed across whole period recorded by the station is about 3.5 m/s out of the west. Therefore, it 

is reasonable to assume the arrival time of precipitation at the study area is about one hour early 

than the recorded precipitation. This temporal lag was accounted for by shifting the timestamp of 

the QCLCD observations by one hour. 
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 3.3.2.2. Topography 

The topography of the study area was investigated by the Maryland State Highway 

Administration in 1999. The engineering drawing provides details about the elevation and 

physical properties of the constructions in this area.  

     3.3.2.3. Measurement Datasets 

The runoff and water quality data collected from 2009 and 2012 by Dr. Allen Davis’ research 

group were used for the model calibration and validation. The runoff flows at the inlet and outlet 

of the infiltration basin were recorded continuously at a 2-minute interval for 103 different storm 

events (Natarajan 2012). Meanwhile, water quality samples were collected at the inlet and the 

outlet of the infiltration basin during a subset of these rainfall events. A total of nine different 

kinds of pollutants were analyzed: total suspended solids (TSS), nitrate, nitrite, total Kjeldahl 

nitrogen (TKN), total phosphorus, total copper, total lead, total zinc, and chloride (Natarajan 

2012). 

Low flow discharge is unlikely to cause downstream flooding or exacerbate waterbody 

contamination. Therefore, two lower thresholds were used for selection of inflow and outflow 

measurement datasets, 

                                                         𝑀 = ∫ 𝑄 𝑑𝑡 > 10𝐿                                       (3.3.2.3 − 1)
𝑡2

𝑡1
   

where M is the integrated inflow (L); Q is the measured inflow discharge (LPS); t1 is the start 

time (s) of the storm runoff event; and t2 is the end time (s) of the storm runoff event. Similarly, 

the peak discharge was required to meet a minimum threshold defined as:  

                                                             𝑄𝑝𝑒𝑎𝑘 = 𝑚𝑎𝑥(𝑄) > 2 𝐿𝑃𝑆                             (3.3.2.3 − 2)                                  
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where  Qpeak is the maximum peak measured inflow discharge (LPS); and Q is the measured 

inflow discharge (LPS). 

    However, due to the limitation of in-situ sensors, measurements of outflow from the SCM may 

occasionally be inaccurate (e.g., Figure 3.3.2.3-1). Therefore, the selection for outflow 

measurements were more heuristic compared to the selection of valid inflow observation. An 

example of measurement errors selected out in this process is shown in Figure 3.3.2.3.-1. 

 

        Figure 3.3.2.3.-1. Examples of measurement errors. 

   3.3.3. Model Calibration (and Validation) 

The feasible ranges for each parameter were found in peer-reviewed literature (Gironas et al. 

2009; Rossman 2010), as listed in Table 3.3.3.-1.and Table 3.3.3.-2. 

Table 3.3.3.-1. Parameters Ranges for Flows. 

Model Input Definition 
Value 

Ranges 

Width [m] Width of overland flow path 0.01~200 
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%Slope [%] Average surface slope 0.0001~50 

N-imperv [-] Manning’s N for impervious area 0.011~0.8 

S-imperv [mm] 
Depth of depression storage on 

impervious area 
0.01~20 

S-per [mm] 
Depth off depression storage on 

pervious area 
0.01~20 

CurveNum [-] SCS runoff curve number 10~98 

PctZero [%] 
Percent of impervious area with 

no depression storage 
1~80 

Roughness [-] 
Manning’s  roughness coefficient 

for inlet channel 
0.011~0.8 

InitDepth [m] 
Initial depth of water in the 

storage unit 
0~0.91 

Psi [mm] Soil capillary suction head 40~320 

Ksat [mm/hr] 
Soil saturated hydrologic 

conductivity 
1~125 

IMD [-] 
Difference between soil porosity 

and initial moisture content 
0~50 

Roughness [-] 
Manning’s  roughness coefficient 

for outlet channel 
0.011~0.8 

 

Table 3.3.3.-2. Parameters Ranges for Water Quality. 

Model Input Definition 
Value 

Ranges 

Percent [%] 
Assignment of land uses to each 

subcatchment 
0~50 

Coeff1 [kg/ha] Maximum possible buildup 0.011~1.5 

Coeff2 [kg/day] Rate constant of buildup per day 0.01~0.9 

Coeff1[kg/ha] Washoff coefficient 1~200 

Coeff2 [kg/day] Runoff exponent in washoff 0.1~6 

Crain [mg/L] 
Concentration of the pollutant in 

rain water 
0.01~100 

Buildup [kg/ha] 
Initial pollutant buildup on 

subcatchment 
0~1000 

 

In order to find the best estimate of the parameter set (i.e., 𝛼̂), the parameter dimensionality is 

sampled and systematically evaluated across the entire parameter space as defined in Table 
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3.3.3.-1.and Table 3.3.3.-2. Next, an individual replicate from 𝛼̂ is drawn and used to define a 

single SWMM simulation. This process is repeated for all 𝐽 replicates within the parameter set 𝛼. 

The model output from each of the 𝐽 simulations is compared against the available 

observations after which the objective function, ℒ, is subsequently computed for that simulation. 

This process is repeated for all 𝐽 replicates. Next, from this computed set the argument is then 

maximized (or minimized depending on the definition of the objective function) such that the 

“best” parameter fit, 𝛼̂, is determined automatically. Additionally, the parameter uncertainty 

(based on the parameter ranges listed in Table 3.3.3.-1.and Table 3.3.3.-2.) is implicitly 

contained in the output ensemble such that the model response with respect to parameter 

uncertainty can be illustrated in Figure 4.3.1.-1. The shaded gray area represents the range of 

model output with respect to the different combinations of parameter values. The blue line 

represents the single, “best” parameter set, which yields the closest agreement with the 

observations. 

    In this study, inflows and outflows were simulated at a 2-minute interval for all measured 

storm events. The objective functions for water quantity were calculated by weighting the 

importance of inflow and outflows,  

                                                 {

𝑁𝑆𝐸 = 𝛼 ∙ 𝑁𝑆𝐸𝑖𝑛𝑓𝑙𝑜𝑤 + 𝛽 ∙ 𝑁𝑆𝐸𝑜𝑢𝑡𝑓𝑙𝑜𝑤 

𝑅𝑒𝑙. 𝐵 = 𝛼 ∙ 𝑅𝑒𝑙. 𝐵𝑖𝑛𝑓𝑙𝑜𝑤 + 𝛽 ∙ 𝑅𝑒𝑙. 𝐵𝑜𝑢𝑡𝑓𝑙𝑜𝑤
𝑅 = 𝛼 ∙ 𝑅𝑖𝑛𝑓𝑙𝑜𝑤 + 𝛽 ∙ 𝑅𝑜𝑢𝑡𝑓𝑙𝑜𝑤

             (3.3.3. −1) 

where 𝑁𝑆𝐸, 𝑅𝑒𝑙. 𝐵, 𝑎𝑛𝑑 𝑅 are Nash-Sutcliffe coefficient, relative bias and correlation coefficient 

for the model, respectively; 𝑁𝑆𝐸𝑖𝑛𝑓𝑙𝑜𝑤, 𝑅𝑒𝑙. 𝐵𝑖𝑛𝑓𝑙𝑜𝑤, 𝑎𝑛𝑑 𝑅𝑖𝑛𝑓𝑙𝑜𝑤 are for model inflows; 

𝑁𝑆𝐸𝑜𝑢𝑡𝑓𝑙𝑜𝑤, 𝑅𝑒𝑙. 𝐵𝑜𝑢𝑡𝑓𝑙𝑜𝑤 , 𝑎𝑛𝑑 𝑅𝑜𝑢𝑡𝑓𝑙𝑜𝑤 are for model outflows; 𝛼 is weighted factor for 
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inflows (0 < 𝛼 < 1); and 𝛽 is weighted factor for outflows (0 <  𝛽 < 1). The values of 𝛼 and 𝛽 

are based on the following equation, 

                                                                  𝛼 + 𝛽 = 1                                                           (3.3.3.−2) 

The objective functions for water quality were relative bias, root mean square error, and 

correlation coefficient. In this study, only the inflow water quality was calibrated due to the lack 

of outflow water quality data. 
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Chapter 4: Results and Discussion 

    In this chapter, the results of hydrologic and water quality model development are presented. 

The drainage area delineation is presented in section 4.1. The results of parameter sensitivity are 

presented in section 4.2. The results of model calibration and validation are presented in section 

4.3 and 4.4. 

 

4.1. Model Setup 

    The delineation of study area was based on the hydrologic behavior, which has been discussed 

in section 3.3.  There are four “subcatchments”, two channels and one culvert established in 

SWMM model (Figure 4.1.-1). Subcatchments “highway_1” (0.7405 ha) and “highway_2” 

(0.4443 ha) represent disconnected impervious highways. Subcatchments “grass_right” (0.8145 

ha) and “grass_left” (0.1481 ha) represent two grassy areas in the study area.  

    Runoff from “highway_1” flows into the culvert. Runoff generated from “highway_2” flows 

into one of the grassy areas labeled “grass_right”. Then runoff from “grass_right” and 

“grass_left” flow into the channel inlet. Finally, runoff from the entire drainage area flows into 

the infiltration basin (a.k.a., storage unit). Through a short outlet channel, the runoff from the 

infiltration basin flows out of the infiltration basin outlet. 
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Figure 4.1.-1. Modeled study site in SWMM. 

4.2. Parameter Sensitivity Analysis for Inflows 

    A sensitivity analysis was carried out to reduce the parameters dimensionality for model 

calibration (Section 3.2.3). In this study, parameters sensitivity was only analyzed for inflows. 

Parameter sensitivity on modeled outflows was not conducted due to water quantity outflow 

measurement noise. Initial calibration was conducted with all candidate inflow-related 

parameters to identify the most appropriate storm events (𝑁𝑆𝐸 > 0.90) in order to focus the 

parameter sensitivity investigation. The number of all candidate inflow-related parameters was 

38. The results suggested five storm events had calibrated inflow with NSE greater than 0.93 

(e.g., Figure 4.2.-1). 
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Figure 4.2.-1. Example of “best” calibrated storm event. 

    Based on the five storm events, the relative sensitivities as measured with NSC of inflow peak 

discharge, peak time, and integrated inflow to parameters were analyzed. The perturbation size 

was set to be ±10%. The mean relative sensitivity (Rel. Sens.) over the five storm events and the 

standard deviation of NSCs are listed in Table 4.2.-1. 

Based on the sensitivity analysis result, parameter sensitivity to peak discharge time was much 

lower relative to peak discharge and integrated inflow. The order of magnitude for parameters 

sensitivities relative to peak discharge and integrated inflow were similar. The results indicate 

that all inflow hydrology-related parameters were much more sensitive to peak discharge and 

integrated inflow compared to peak discharge time in this model. 

    Two subjective thresholds were chosen for the selection of sensitive parameters relative to 

peak discharge and integrated inflow, 

                                                          {
|𝑅𝑒𝑙. 𝑆𝑒𝑛𝑠.̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ | > 0.01

𝑆𝑡𝑑. 𝑆𝑒𝑛𝑠. > 0.1
                                             (4.2. −1)  
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where |𝑅𝑒𝑙. 𝑆𝑒𝑛𝑠.̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ | is the absolute value of mean relative sensitivity across the five storm events; 

and 𝑆𝑡𝑑. 𝑆𝑒𝑛𝑠. is the standard deviation of these five relative sensitivities. 

Similar subjective thresholds were chosen for the selection of sensitive parameters relative to 

peak discharge time, 

                                                  {
|𝑅𝑒𝑙. 𝑆𝑒𝑛𝑠.̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ | > 1 × 10−8

𝑆𝑡𝑑. 𝑆𝑒𝑛𝑠. > 1 × 10−9
                                             (4.2. −2) 

where |𝑅𝑒𝑙. 𝑆𝑒𝑛𝑠.̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ | is the absolute value of mean relative sensitivity across the five storm events; 

and 𝑆𝑡𝑑. 𝑆𝑒𝑛𝑠. is the standard deviation of these five relative sensitivities. 

Table 4.2.-1. Relative Sensitivity of Parameters. 

Hydrology 

Parameters 

Peak Discharge 

(LPS) 

Peak Time 

 

Integrated Inflow 

(L) 

Rel. Sens. Std Rel. Sens. Std Rel. Sens. Std 

Curve Number [-] 6.2 ∙ 10−1 6.5 ∙ 10−1 −1.5 ∙ 10−8 3.5 ∙ 10−8 4.6 ∙ 10−1 3.8 ∙ 10−1 

Drying Time [day] 2.2 ∙ 10−2 3.7 ∙ 10−2 −3.8 ∙ 10−9 5.2 ∙ 10−9 1.6 ∙ 10−2 2.3 ∙ 10−2 

N-imperv [-] −3.5 ∙ 10−3 2.3 ∙ 10−1 5.7 ∙ 10−9 5.2 ∙ 10−9 1.2 ∙ 10−1 2.7 ∙ 10−1 

N-per [-] −4.7 ∙ 10−2 2.4 ∙ 10−2 5.7 ∙ 10−9 5.2 ∙ 10−9 −1.3 ∙ 10−3 4.3 ∙ 10−3 

S-imperv [mm] −2.3 ∙ 10−1 3.5 ∙ 10−1 1.1 ∙ 10−8 1.7 ∙ 10−8 −3.9 ∙ 10−1 5.5 ∙ 10−1 

S-per [mm] −1.5 ∙ 10−2 3.2 ∙ 10−1 7.6 ∙ 10−9 1.2 ∙ 10−8 −4.4 ∙ 10−2 3.9 ∙ 10−1 

Channel Rough [-] −1.7 ∙ 10−1 1.1 ∙ 10−1 1.3 ∙ 10−8 1.1 ∙ 10−8 7.7 ∙ 10−3 3.5 ∙ 10−3 

Culvert Rough [-] −6.4 ∙ 10−4 3.9 ∙ 10−3 3.8 ∙ 10−9 5.2 ∙ 10−9 1.2 ∙ 10−4 3.1 ∙ 10−4 

PctZero [%] 6.0 ∙ 10−2 1.2 ∙ 10−1 −3.8 ∙ 10−9 5.2 ∙ 10−9 1.2 ∙ 10−1 1.6 ∙ 10−1 

%Slope [%] 2.7 ∙ 10−2 1.0 ∙ 10−1 1.9 ∙ 10−9 1.6 ∙ 10−8 −1.3 ∙ 10−2 4.2 ∙ 10−2 

Width [m] 1.3 ∙ 10−1 6.5 ∙ 10−2 −1.1 ∙ 10−8 1.0 ∙ 10−8 7.0 ∙ 10−3 1.4 ∙ 10−2 

 

Therefore, the final parameter dimensionality for model inflow calibration was reduced from 

38 to 29. Critical parameters selected for model inflow calibration included subcatchment width, 

slope, Manning’s N for impervious area, depression storage for impervious/pervious area, runoff 
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curve number, percent of impervious area with no depression storage and inlet channel 

roughness. 

 

4.3. Model Calibration and Validation Results for Flows 

   4.3.1. Model Calibration and Validation Results 

    The model calibration period was from August, 2009 to April, 2011, while the validation 

period was from April, 2011 to August, 2012. There were total 36 storm events used during 

calibration period. And during validation period, there were a total of 36 storm events used. The 

parameter dimensionality for model inflow and outflow was 34. A total of 20,000 input 

replicates were simulated. The parameters and their calibrated values are listed in Table 4.3.1.-1. 

Table 4.3.1.-1. Parameters Being Calibrated for Flows. 

Model 

Elements 
Model Input Definition 

Calibrated 

Value 

Highway_1 

Width [m] 
Width of overland flow 

path 
147 

%Slope [%] Average surface slope 49.5 

N-imperv [-] 
Manning’s N for 

impervious area 
0.53 

S-imperv [mm] 
Depth of depression storage 

on impervious area 
10.2 

S-per [mm] 
Depth off depression 

storage on pervious area 
19.4 

CurveNum [-] SCS runoff curve number 17.1 

PctZero [%] 
Percent of impervious area 

with no depression storage 
25 

Highway_2 

Width [m] 
Width of overland flow 

path 
78.8 

%Slope [%] Average surface slope 40.4 

N-imperv [-] 
Manning’s N for 

impervious area 
0.10 
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S-imperv [mm] 
Depth of depression storage 

on impervious area 
5.85 

S-per [mm] 
Depth off depression 

storage on pervious area 
3.48 

CurveNum [-] SCS runoff curve number 43.4 

PctZero [%] 
Percent of impervious area 

with no depression storage 
25 

Grass_left 

Width [m] 
Width of overland flow 

path 
138 

%Slope [%] Average surface slope 34.8 

N-imperv [-] 
Manning’s N for 

impervious area 
0.63 

S-imperv [mm] 
Depth of depression storage 

on impervious area 
0.26 

S-per [mm] 
Depth off depression 

storage on pervious area 
3.46 

CurveNum [-] SCS runoff curve number 19.3 

PctZero [%] 
Percent of impervious area 

with no depression storage 
25 

Grass_right 

Width [m] 
Width of overland flow 

path 
173 

%Slope [%] Average surface slope 32.6 

N-imperv [-] 
Manning’s N for 

impervious area 
0.07 

S-imperv [mm] 
Depth of depression storage 

on impervious area 
10.5 

S-per [mm] 
Depth off depression 

storage on pervious area 
7.72 

CurveNum [-] SCS runoff curve number 31.7 

PctZero [%] 
Percent of impervious area 

with no depression storage 
25 

Inlet_Channel Roughness [-] 
Manning’s  roughness 

coefficient 
0.66 

BMP 

InitDepth [m] 
Initial depth of water in the 

storage unit 
0.83 

Psi [mm] Soil capillary suction head 233 

Ksat [mm/hr] 
Soil saturated hydrologic 

conductivity 
29.6 



42 
 

IMD [-] 

Difference between soil 

porosity and initial moisture 

content 

38.0 

Outlet_Channel Roughness [-] 
Manning’s  roughness 

coefficient 
0.09 

 

It is possible to find more than one “best” estimate given the maximization (or minimization 

depending on the selected objective function) given the vast parameter dimensionality searched 

during the auto calibration routine. Therefore, the selection of parameter sets is based on 

rationality. As listed in Table 4.3.-3., the calibrated model results yielded a Nash-Sutcliffe 

Coefficient (NSE) equal to 0.95 for storm event 2010/11/03 (Figure 4.3.1.-1.). However, the 

parameters values for subcatchment “Highway_1” are much different. 

 

Figure 4.3.1.-1. Storm event 2010/11/03. 
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Table 4.3.1.-2. Calibrated Parameters Values. 

Element Model Input 𝑵𝑺𝑬 = 𝟎. 𝟗𝟓 𝑵𝑺𝑬 = 𝟎. 𝟗𝟓 

Highway_1 

Width [m] 182 104 

%Slope [%] 27.1 41.5 

N-imperv [-] 0.56 0.17 

S-imperv [mm] 19.1 1.73 

S-per [mm] 4.13 4.23 

CurveNum [-] 40.0 90.5 

PctZero [%] 25 25 

 

It is also possible to find the different “best” estimate based on different objective functions. 

As listed in Table 4.3.1.-2, the calibrated model results yielded a NSE equals to 0.95, R equals to 

0.98, and Rel. B equals to 0.0014. But the parameter values for subcatchment “Highway_1” are 

much different. 

Table 4.3.1.-3. Calibrated Parameters Values. 

Element Model Input 𝑵𝑺𝑬 = 𝟎. 𝟗𝟓 𝑹 = 𝟎. 𝟗𝟖 
Rel. B = 

0.0014 

Highway_1 

Width [m] 182 18.9 47.2 

%Slope [%] 27.1 47.9 7.69 

N-imperv [-] 0.56 0.09 0.08 

S-imperv [mm] 19.1 14.6 8.63 

S-per [mm] 4.13 6.83 13.3 

CurveNum [-] 40.0 12.8 38.7 

PctZero [%] 25 25 25 

 

    In this study, the statistics for model inflows and outflows including the model Nash-Sutcliffe 

Coefficient (NSE), relative bias (Rel-B), and correlation coefficient (R), were computed as 
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{
 
 

 
 

𝑁𝑆𝐸 = 𝛼 ∙ 𝑁𝑆𝐸𝑖𝑛𝑓𝑙𝑜𝑤 + 𝛽 ∙ 𝑁𝑆𝐸𝑜𝑢𝑡𝑓𝑙𝑜𝑤 

𝑅𝑒𝑙. 𝐵 = 𝛼 ∙ 𝑅𝑒𝑙. 𝐵𝑖𝑛𝑓𝑙𝑜𝑤 + 𝛽 ∙ 𝑅𝑒𝑙. 𝐵𝑜𝑢𝑡𝑓𝑙𝑜𝑤
𝑅 = 𝛼 ∙ 𝑅𝑖𝑛𝑓𝑙𝑜𝑤 + 𝛽 ∙ 𝑅𝑜𝑢𝑡𝑓𝑙𝑜𝑤

𝛼 = 0.8
𝛽 = 0.2
             

         (4.3.1. −1) 

in which 𝑁𝑆𝐸, 𝑅𝑒𝑙. 𝐵, and 𝑅 are the model Nash-Sutcliffe Coefficient, model relative bias, and 

model correlation coefficient, respectively; 𝑁𝑆𝐸𝑖𝑛𝑓𝑙𝑜𝑤, 𝑅𝑒𝑙. 𝐵𝑖𝑛𝑓𝑙𝑜𝑤, and 𝑅𝑖𝑛𝑓𝑙𝑜𝑤 are the Nash-

Sutcliffe Coefficient, relative bias, and correlation coefficient for inflow, respectively; 

𝑁𝑆𝐸𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑅𝑒𝑙. 𝐵𝑜𝑢𝑡𝑓𝑙𝑜𝑤, and 𝑅𝑜𝑢𝑡𝑓𝑙𝑜𝑤 are the Nash-Sutcliffe Coefficient, relative bias, and 

correlation coefficient for outflow, respectively; 𝛼 is the weighting factor for inflows; and 𝛽 is 

the weighting factor for outflows. 

In this study, measured outflow discharge was much smaller in magnitude than inflow. To 

represent the importance of inflow and outflow, the weighting factor 𝛼 for inflows was assigned 

as 0.8, while the weighting factor 𝛽 for outflows was assigned as 0.2 in this study. This explicitly 

represents more confidence in the inflow observations relative to the outflow observations. The 

calibration and validation results for flows are listed in Table 4.3.1.-4. 

Table 4.3.1.-4. Statistics of Model Flows. 

Hydrology 

Parameters 

Calibration Period 

2009/08-2011/04 

Validation Period 

2011/04-2012/08 

NSE [-] 0.430 0.16 

R [-] 0.69 0.40 

Relative Bias [%] −8.38% −39.6% 

 

The NSE in both the calibration and validation periods were greater than 0, which indicated 

the flow discharges simulated by SWMM model was better than the mean of observed discharge. 

For the calibration period, the values indicates good model performance. As expected, statistics 
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in the validation period were slightly worse than those obtained in the calibration period. 

Generally speaking, the statistics suggested a robust calibration of the calibrated model in terms 

of water flows during storm events. Figure 4.3.1.-2 and Figure 4.3.1.-3 shows the comparison of 

hydrographs between SWMM and field-observations for water flows in calibration and 

validation periods. 

For calibration period, the relatively high values of NSE indicate good model performance in 

capturing SCM response. The correlation coefficients R shows a relatively good linear 

relationship between the simulations and the observations. Relative bias was -8.38%, which 

showed a fair model simulation accuracy. The negative sign of relative bias indicated the model, 

in general, underestimated the discharge.  

To investigate the model performance for inflow and outflow, the objective functions were 

calculated in calibration and validation periods for both inflow and outflow. The results are listed 

in Table 4.3.1.-4 and Table 4.3.1.-5. 

Table 4.3.1.-5. Statistics of Calibrated Model Inflow and Outflow in Calibration Period. 

Calibration Period 

2009/08-2011/04 
Inflow Outflow 

NSE [-] 0.45 0.36 

R [-] 0.69 0.66 

Relative Bias [%] 4.58% −60.2% 

 

Table 4.3.1.-6. Statistics of Calibrated Model Inflow and Outflow in Validation Period. 

Validation Period 

2011/04-2012/08 
Inflow Outflow 

NSE [-] 0.16 0.14 

R [-] 0.41 0.40 

Relative Bias [%] −32.4% −68.3% 
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For the calibration period, the inflow statistics were relatively good, especially for relative 

bias. The relative bias value of 4.58% suggests a significant model accuracy. During the 

validation period, the inflow statistics were relatively poor. The model underestimated the inflow 

by about 32.4%. One possible reason is the model was unable to capture the characteristics of 

several big storm events, especially the extreme storm event at Sep. 05, 2011 (Figure 4.3.1.-3).  

In both calibration and validation periods, the statistics for outflow were worse than inflow, 

which indicated the model had relatively poor performance in reproducing outflow. The most 

likely explanation is the outflow discharges were too low to be measured accurately by sensors 

through the V-notch weirs. 
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Figure 4.3.1.-2. Inflow and outflow in field-observation and SWMM (calibration). 

Figure 4.3.1.-3. Inflow and outflow in field-observation and SWMM (validation). 
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   4.3.2. Seasonal Water Quantity Calibration Results 

To further investigate the model performance, the seasonality effect of model inflows during 

the calibration period was analyzed in this study (Spring: March, April, Mary; Summer: June, 

July, August; Fall: September, October, November; Winter: December, January, February). The 

results are listed in Table 4.3.2.-1.  

Table 4.3.2.-1. Seasonal Statistics of Model Calibrated Inflows. 

Calibration 

Period 

Spring 

(03 /04 /05) 

Summer 

(06/07/08) 

Fall 

(09/10/11) 

Winter 

(12/01/02) 

NSE [-] 0.61 0.20 0.59 0.42 

R [-] 0.78 0.46 0.82 0.72 

Relative Bias [%] −3.28% −9.28% 15.7% −9.93% 

         

The statistics for spring and fall were the best among the four seasons. The high values of 

NSE, R, and small relative bias suggested the model had high accuracy in reproducing inflows in 

spring and fall. These two seasons had modest inflows. Summer season had the poorest 

performance statistics with the highest inflows among the four seasons. The model highly 

underestimated the inflows in summer time. Winter had fair model accuracy with lowest inflows 

among the four seasons. Figure 4.3.2.-1 shows the comparison of hydrographs between SWMM 

and field-observations for water inflows in four seasons. To better visualize the results, the x-axis 

represents the number of measurements instead of date or time. 

One possible reason to explain the seasonality effect is the uncertainty between forcing data 

and true data, in this case, QCLCD precipitation and local precipitation. In this study, the field-

measured precipitation (2-minute interval) was treated as “true” precipitation (locally measured 

adjacent to the study site). To compare field-measured and QCLDC (hourly) precipitation data, 
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field-measured precipitation was integrated hourly. The results of seasonal statistics of 

precipitation are listed in Table 4.3.2.-2. 

Figure 4.3.2.-1. Inflow in field-observation and SWMM (four Seasons in calibration period). 

Table 4.3.2.-2. Seasonality Statistics of Precipitation. 

Calibration 

Period 

Spring 

(03 /04 /05) 

Summer 

(06/07/08) 

Fall 

(09/10/11) 

Winter 

(12/01/02) 

RMSE [mm/hr] 1.32 3.07 1.32 0.72 

R [-] 0.61 0.40 0.65 0.60 

Relative Bias [%] 5.67% −48.3% 6.66% 6.20% 
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The statistics of spring and fall were the best among the four reasons. It suggests QCLCD 

precipitation in these two seasons had the best fit with “true” precipitation. Summer season had 

the poorest performance statistics, which indicate the QCLCD precipitation had relatively big 

errors. Winter season had the best statistics with low RMSE, relative bias, and relatively high R. 

However, the model inflow in winter was not the best fit. It further indicated the relatively poor 

model performance in reproducing low flows in this study.  

The seasonal phenomena can be explained by the formation of clouds and precipitation. 

During the summer time, the mechanism of cloud formation is associated with strong vertical 

ascent over fairly small horizontal areas, which tends to generate heavy and local precipitation. 

During spring and fall season, the mechanism of cloud formation is largely frontal convergence 

with gradual air uplift, which tends to generate relatively light precipitation with wide spatial 

coverage (Shuttleworth 2012). Considering the location of QCLCD station and study area 

(Section 3.3.2.1.), the distance effect is negligible during the spring and fall seasons.  

 

4.4. Model Calibration and Validation Results for Water Quality 

The model calibration period for water quality was from August, 2009 to December, 2010, 

while the validation period was from February, 2011 to May, 2012. There were total 13 storm 

events during the calibration period. And during the validation period, there were a total of 13 

storm events. In this study, only inflow water quality was simulated due to the lack of outflow 

water quality observations. The parameter dimensionality for model inflow and outflow was 21. 

A total of 1,000 input replicates were simulated. Although there were 9 kinds of pollutants in 

field-measured datasets, only one pollutant (TSS) was simulated in this study due to the lack of 
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peer-reviewed parameters ranges for use during constraint of relevant parameter values. The 

parameters are listed in Table 4.4.-1.  

Table 4.4.-1. Parameters Being Calibrated for TSS. 

Model Input Definition 
Calibrated 

Value 

Crain [mg/L] 
Concentration of the pollutant 

in rain water 
22.1 

Highway_1 

Buildup [kg/ha] 
Initial pollutant buildup on 

subcatchment 
796 

Percent [%] 
Assignment of “grass” land 

uses to this subcatchment 
40.1 

Percent [%] 
Assignment of “high” land 

uses to this subcatchment 
39.2 

Highway_2 

Buildup [kg/ha] 
Initial pollutant buildup on 

subcatchment 
738 

Percent [%] 
Assignment of “grass” land 

uses to this subcatchment 
43.2 

Percent [%] 
Assignment of “high” land 

uses to this subcatchment 
29.9 

Grass_left 

Buildup [kg/ha] 
Initial pollutant buildup on 

subcatchment 
294 

Percent [%] 
Assignment of “grass” land 

uses to this subcatchment 
18.3 

Percent [%] 
Assignment of “high” land 

uses to this subcatchment 
10.6 

Grass_right 

Buildup [kg/ha] 
Initial pollutant buildup on 

subcatchment 
185 

Percent [%] 
Assignment of “grass” land 

uses to this subcatchment 
42.5 

Percent [%] 
Assignment of “high” land 

uses to this subcatchment 
43.6 

Land-Use 

Grass 

Coeff1 [kg/ha] Maximum possible buildup 1.47 

Coeff2 [kg/day] 
Rate constant of buildup per 

day 

0.21 

Coeff1[kg/ha] Washoff coefficient 166 

Coeff2 [kg/day] Runoff exponent in washoff 1.78 

Coeff1 [kg/ha] Maximum possible buildup 1.05 
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Land-Use 

Highway 
Coeff2 [kg/day] 

Rate constant of buildup per 

day 

0.89 

Coeff1[kg/ha] Washoff coefficient 121 

Coeff2 [kg/day] Runoff exponent in washoff 3.51 

 

The statistics for model water pollutant TSS include model root mean square error (RMSE) 

and correlation coefficient (R). Figure 4.4.-1. shows the comparison between SWMM and field-

observations for inflow TSS concentration in calibration and validation periods. The model 

calibration and validation results are listed in Table 4.4.-2.  

           Table 4.4.-2. Statistics of Model Inflow Water Quality. 

Water Quality 

Parameters 

Calibration 

2009/08-2010/10 

Validation 

2011/02-2012/05 

R [-] 0.35 0.23 

RMSE [mg/L] 169 138 

Relative Bias [%] -1196% 5772% 

 

 

Figure 4.4.-1. Inflow TSS concentration in field-observation and SWMM. 
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    The statistics for inflow quality (TSS) were poor for both calibration and validation. The 

results reflect that simulation of urban runoff quality is difficult. Large uncertainties arise both in 

the representation of the physical, chemical and biological processes and in the acquisition of 

data and parameters for model algorithm (Gironas et al. 2009). 
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Chapter 5: Conclusion and Discussion 

5.1. Summary and Discussion of the Study 

         In this research, SWMM model was developed for a small urban basin with an infiltration 

basin. The model was calibrated to simulate the performance of the SCM in terms of inflow, 

outflow, and inflow water quality during storm events. An auto-calibration procedure was 

developed that accelerated the calibration process for this study. The sensitivity analysis for 

inflows reduced the parameters dimensionality and improved the calibration efficiency. It further 

testified that parameter sensitivity varies with study area.  

         The model calibration and validation results suggested the model can reproduce relatively 

accurate water discharge, especially during the spring and fall. However, the model had poor 

performance for simulating low flows, in this case, outflows from the infiltration basin during 

summer time. The model underestimated the outflow. The results of seasonal analysis suggested 

one possible reason to explain the model poor performance was inaccurate forcing data (i.e., 

precipitation data). The QCLCD product (precipitation data) had better fit with “true” values 

measured adjacent to the study site (i.e., field-measured precipitation data) during the spring and 

fall.  

        The model was unable to reproduce accurate pollutant concentration in water. One of the 

reason was that empirical model can not fully represent the complex behavior for water 

pollutants. Moreover, the limited field-measured data also restrained the model calibration.   

       Generally speaking, the SWMM model had a good performance in simulating water flows 

during storm events and a relatively poor performance in simulating water quality results. These 
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findings suggest the “storage unit” in SWMM can fully represent the “ponded” infiltration basin 

in the study. 

5.2. Recommendations for Future Research 

       One of the most important advantages of model is to predict the future. Coupled with future 

climate change projections (i.e., projected rainfall amounts), the calibrated model could 

potentially predict the performance of the infiltration basin and the hydrologic behavior of the 

urban site under a changing climate. Moreover, more precipitation products can be tested as 

forcing data for the model to find the best for calibration in this study area. In addition, the 

parameter sensitivity can be analyzed using outflows to further improve calibration efficiency.  
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