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Fish have a specialized organ called the olfactory epithelium that enables 

them to detect chemical cues in water. Among these cues are progestogens excreted 

by females that function as pheromones and stimulate male reproductive behavior and 

spermiogenesis.  The olfactory epithelium is hypothesized to contain receptors that 

are activated by these pheromones. In this study, I compared the expression of 

nuclear and membrane progesterone receptors in reproductive and non-reproductive 

fathead minnows and in male versus female fish. I found changes in mPR expression 

over time in both comparisons of reproductive adults to juveniles, and reproductive 

adults to non-reproductive adults, and no differences between sexes. This is the 

second study to examine gene expression in the olfactory epithelia of fish and is novel 

in the experimental approach taken.  Results from this research will inform future 

studies aiming to make the functional linkage between pheromones and the regulation 

of teleost fish reproduction. 
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Overview 

Progestogens are endogenous ligands that bind and activate progesterone 

receptors and are best known for preparing and maintaining the body for pregnancy in 

mammalian species. These steroid hormones also play a large role in non-reproductive 

functions across a wide array of species. In mammals, progesterone (P4) is the 

physiological progestogen with 4,4-dimethyl-5α-cholesta-8, 14,24-trien-3β-ol being the 

progestogen to stimulate final oocyte maturation (Voronina & Wessel, 2003). However, 

in fish the known physiological progestogens are 17α,20β-dihydroxy-4-pregnen-3-one 

(DHP) and 17,20β,21-trihydroxy-4-pregnen-3-one (20-βS) (Nagahama & Adachi, 1985; 

Trant et al., 1986). DHP is obtained from the conversion of 17α-hydroxyprogesteone 

under the influence of gonadotropins from the pituitary (Habibi et al., 1989). 

 In female mammals, the reproductive cycle induces at least one oocyte to mature 

in the ovary. The corpus luteum (CL) is formed once the oocyte is ovulated, and will 

begin producing P4 (Moyes & Schulte, 2008). If pregnancy does not occur, then the CL 

will degrade and the cycle will begin again. However, if pregnancy does occur the CL 

will continue to grow and secrete P4 until the placenta eventually takes over in the 

production of P4. The presence of the right circulating concentration of P4 promotes 

ovulation, implantation, decidualization, parturition, and mammary gland development 

(Gellersen et al., 2009).  

In female teleost fish,  specific progestogens are the maturation inducing 

substance (MIS). MIS initiates oocyte maturation, which enables the oocyte to leave 

meiotic arrest (Figure 1).  For the males in fish and mammalian species, progestogens aid 

in increasing spermiation and sperm motility. In certain cases, such as the Japanese eel 
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(Anguilla japonica), DHP supports the initiation of meiosis in the testis (Miura et al., 

2006; Hamdani & Doving, 2007). Progestogens also have responsibilities in other 

functions not related to reproduction that take place in the intestines, kidneys, and neural 

tissue. They are also an important intermediary for the synthesis of androgens and 

estrogens (Figure 2). 

In this literature review, I will explain the mode of action that enables 

progestogens to cause biological effects, explore what is already known about 

progesterone receptors across species, and summarize what work still needs to be done to 

help further our understanding of progestogen function. Throughout this thesis I will refer 

to gestagens, the collective term for progestogen, endogenous ligands for progesterone 

receptors, and progestins, synthetic ligands for progesterone receptors (Orlando, 2014). 
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Figure 1: Final oocyte maturation in teleost. GnRH secretion 
from the hypothalamus stimulates LH release from the 
anterior pituitary. LH stimulates the production of DHP in 
follicular cells. This leads to the breakdown of the oocyte 
nucleus and the germinal vesicle. Finally the mature oocyte 
is ovulated (Norris & Carr, 2013). 
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Figure 2: Cholesterol can be transformed into a variety of steroid hormones. Notice that 
progesterone is an intermediary for most other steroid hormones.  (Tulane/Xavier Center for 
Bioenvironmental Research, http://e.hormone.tulane.edu/learning/progestins.html) 
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Progesterone Receptors 

Certain functions regulated by progestogens follow the classical pathway and 

genomic actions of the well-studied nuclear progesterone receptors (nPRs) found in the 

cytosol (Tuohimaa et al., 1996). However, there is evidence of nongenomic actions by 

progestogens. These actions have been explained by the presence of progesterone 

receptors in the cell membrane (mPRs). It is important to note that progesterone receptor 

membrane components (PGRMCs) also play a role in carrying out progestogen functions. 

PGMRCs have been found in heart, liver, placenta, and human sperm (Wendler et al., 

2012), and they may influence the acrosomal reaction in mammalian sperm and the 

regulation of anti-apoptoic actions of P4 in granulosa/luteal cells (Zhu et al., 2008). A 

more in-depth role of PGMRCs will not be examined in this thesis; for further review, see 

(Thomas, 2008). 

Genomic Actions of Nuclear Receptors 

Nuclear receptors require the ligand to diffuse through the plasma membrane in 

order to bind to the receptor. The receptor-steroid hormone complex is then able to 

dimerize and enter the nucleus (Norman et al., 2004). There it binds to the sex steroid 

response element on the gene and together with accessory transcriptional factors enable 

the appropriate gene to be expressed and protein to be made. For this reason, it may take 

hours or days to see a cellular response to the steroid hormone binding with its receptor 

(Figure 3). 
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Figure 3: Comparison of the two pathways where the steroid hormone binds to 
either a nuclear receptor (left) or a membrane receptor (right) (modified from 
Norman et al., 2004). 

(open/close) 
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In mammals, nPRs are found to occur as two subtypes: nPR-A and nPR-B. nPR-A 

has been found to play a major role in mediating the actions of P4 in the uterus and 

ovary, whereas nPR-B is more important in mammary gland development (Stormshak & 

Bishop, 2008). nPR-A also induces the expression of genes responsible for structural 

processes. These processes included vascular development, tissue and cell morphology, 

lipid and carbohydrate metabolism, and skeletal and muscular development (Fair & 

Lonergan, 2012). nPR-B was found to induce genes associated with inflammatory 

cytokine networks such as IL-1 and TNF (Fair & Lonergan, 2012). Interestingly, in one 

study nPR-B acts as a strong activator of gene transcription, and that nPR-A is a ligand-

dependent transrepressor of nPR-B (Chaudhary et al., 2013).  

In domestic animals, nPRs are targeted in order to promote growth, synchronize 

estrus, and maintain pregnancy (Stormshak & Bishop, 2008). In the beef cattle industry, 

P4, both alone and combined with other hormones, is given to cattle to help promote 

rapid growth by increasing the conversion of feed to muscle mass. These supplements 

function by increasing body protein, metabolism of fat stores, and mineral uptake across 

the gut and by decreasing amino acid metabolism (Meyer, 2001). One progestin, 

melengestrol acetate (MGA), is FDA approved for use in beef cattle in the US, and it is 

used as an estrus suppresser (Preston, 1999). MGA functions by suppressing ovulation 

and allowing for continuous follicle development.  By repressing the estrus cycle, the 

animal likely utilizes the conserved energy from reproduction to growth. Through 

suppression of estrus, facilities are also able to better manage herds containing maturing 
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steers and bulls that would otherwise be interested in females during estrus, making them 

aggressive towards male cattles (Preston, 1999).  

In contrast to the multiple types of nPRs found in mammals, only a few teleost 

species express multiple subtypes of nPRs (Ikeuchi et al., 2002). For most teleost fish, 

only mRNA expression of one nPR has been found. In zebrafish (Danio rerio), nPRs are 

expressed in the ovary, testis, and preoptic region of the hypothalamus (Hanna et al., 

2010). These findings support the concept that nPRs play a role in a variety of 

reproductive processes, including testicular germ cell proliferation in males and 

oocyte/follicle development and ovulation in females. The role of nPRs in development is 

critical for both early stage oocytes growth and development of follicles in later stages 

(Hanna et al., 2010). In both mammalian and fish species, nPRs act as regulators of 

reproduction by influencing gene expression. However, these are not the only 

progesterone receptors responsible for these actions.  

Nongenomic Actions of Membrane Progesterone Receptors 

Unlike nPRs, mPRs do not require regulation of gene expression in order to 

obtain a response from the cell. Membrane bound progesterone receptors (mPRs) work 

via a nongenomic pathway (Norman et al., 2004). Activation of the mPRs alters the 

synthesis of a secondary messenger, which causes a response in the cell (Figure 3). This 

response leads to an influx of ions, the activation of an enzyme, or even cause a change in 

gene expression. Due to the fact that this binding calls for activation of a secondary 

messenger that is able to immediately cause a response in the cell, this receptor has a 

much faster response time compared to nPRs. While nPRs take hours or days to initiate a 

response, mPRs takes seconds or minutes (Norman et al., 2004).  
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mPRs are important to the cell for a variety of reasons, aside from them being 

able to respond quickly to the presence of a ligand. There are a few special circumstances 

where the responding cell cannot undergo genomic action (Revelli et al., 1998). This is 

due to the cell not containing the appropriate machinery to undergo the synthesize mRNA 

or proteins, such as spermatozoa. Also if the steroid were conjugated to a substance with 

a high molecular weight, then it would be unable to cross the plasma membrane, and 

therefore would not be able to reach an nPR (Revelli et al., 1998).  

There are at least three mPR subtypes found in most mammals, amphibians, and 

teleost fish, mPRα, mPRβ, and mPRγ (with two variants mPRγ -1 and mPRγ -2). In 

humans, there are two additional mPRs, mPRδ and mPRε (see Pang, 2013 for more 

information).  Tissue distribution of the mPRα, mPRβ, and mPRγ has been performed in 

human tissue cultures, and shows tissue specific localization of these receptors at the 

mRNA level (Zhu et al., 2003). mPRα is localized in reproductive tissues including 

ovary, testis, and placenta. There was also a small amount of mPRα mRNA detected in 

the uterus, bladder, kidney, and adrenal gland. mPRβ was exclusively localized to neural 

tissues and was detected throughout the brain and in the spinal cord but not in the 

pituitary. mPR-γ was present in the kidney, intestine, and the adrenal gland and lung (Zhu 

et al., 2003).  

mPRα is the most abundantly and widely expressed receptor in human tissues and 

is found in many reproductive tissues of fish (Labombarda et al., 2010; Hanna & Zhu, 

2009). In order to enable final maturation of oocytes, progesterone bound mPRα activates 

an inhibitory G protein, down-regulating adenylyl cyclase activity and inhibiting protein 

kinase A (Thomas, 2012). This will then lead to the release of the oocyte from meiotic 
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arrest, a crtical step in final maturation of the oocyte (Thomas, 2012). In Atlantic croaker 

(Micropogonias undulatus) spermatozoa, it was shown that mPRα is coupled to a 

stimulatory olfactory G protein. Once activated, this leads to an increase in cAMP 

production and will increase motility of sperm (Tubbs & Thomas, 2009). Although 

females and males have the same receptors, different pathways can be utilized to allow 

for different functions to occur.  

In comparison to mPRα, there are fewer studies on mPRβ, and even less on 

mPRγs. mPRβ is often co-expressed with mPRα, and is coupled to inhibitory G proteins 

(Dosiou et al., 2008). However, mPRγs are shown to be present in excretory tissues, such 

as the kidney, but their function remains unclear (Zhu et al., 2003). In general, mammals, 

amphibians, and fish utilize mPRs in a similar fashion. However, there are some class 

and species differences, which will be discussed in the following sections. 

Membrane Progesterone Receptors in Mammals 

mPRs are widely distributed in mammalian tissues. This coincides with their 

functions in labor, neuroendocrine control of the reproductive cycle, sperm motility, the 

development of breast cancer, and immune responses (Sriraman et al., 2010; Peluso, 

2006; Blackmore et al., 1990; Dressing et al., 2012).  

The existence of mPRs in mice became apparent when it was observed that for 

nPR-A null mice, the development of pre-ovulatory follicles was normal, but ovulation 

did not occur (Sriraman et al., 2010). Further in the corpus luteum (CL) of hormonally 

primed mice, entrapped oocytes were present. It was also found that luteal cells isolated 

from mice and rats do not express nPR, and therefore a different receptor must be 

responsible for the P4 actions in these cells (Peluso, 2006). During pregnancy, prolactin 
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(the major luteotrophic hormone in mice) regulates the expression of mPRs in the CL. 

Prolactin is required to maintain CL structure and to produce the P4 necessary for 

maintenance of pregnancy. When mPR gene expression levels were measured throughout 

gestation in mice it was found that mPRβ levels remained almost constant; whereas, 

mPRα and mPRγ levels increased with advancing gestation. Near the end of pregnancy 

mPRα and mPRβ levels decreased while mPRγ levels remained constant (Cai & Stocco, 

2005). The changes in these receptors during mammalian pregnancy suggest that they 

assume important physiological roles in the ovaries and that mPRα, mPRβ, mPRγ are the 

key regulators in mice (Charles et al., 2010). 

These results also compare to what is seen in humans during pregnancy. During 

pregnancy, P4 is vital to keep the myometrium quiescent and not contracting. mPRα and 

mPRβ proteins have been detected in pregnant female myometrial cells (Karteris et al., 

2006). Right before the end of pregnancy mPRα and mPRβ levels decreased, as seen in 

mice, implying that they contribute to progesterone withdrawal in the human 

myometrium during labor (Peluso, 2006). This change in mPR expression leads to (1) 

down-regulation of steroid receptor co-activator 2 (SRC2) mRNA and decreased 

mPRβ:mPRα ratio resulting in decrease mPRβ transactivational activity, and (2) 

inhibition of adenylyl cyclase and increased phosphorylation of the myosin light chain 

(Karteris et al., 2006). These results provide further proof that mPRs are critical for 

maintaining a pregnancy, and for ensuring that labor is able to ensue at the right time. 

Due to the expression and hormonal activation of mPRs throughout a reproductive 

cycle, progestins can be administered to inhibit ovulation and proliferation of the 
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endometrium, and therefore, are used as human contraception and in estrus regulation of 

beef cattle in the US and Canada (Zeilinger et al., 2009; Mauleon, 1974). 

Membrane PRs are not only important in female reproductive physiology, but also 

in male fertility. When human spermatozoa are in the presence of P4, there is an influx of 

calcium (Blackmore et al., 1990). It has been shown that sperm is transcriptionally 

inactive, therefore, this is not a genomic process, suggesting that mPRs are responsible 

for this function (Thomas et al., 2004). Calcium influxes increase sperm hyperactivity. 

Hyperactivity is important for fertility because it allows the sperm to reach the oocyte 

within the oviduct and then penetrate the zona pellucida (Suarez, 2008). The role of P4 in 

increasing calcium concentrations at the time of fertilization also extends to the sperm 

undergoing the acrosome reaction. The acrosome reaction, release of enzymes from the 

sperm, is important for the sperm to penetrate the zona pellucida and fuse with the oocyte 

plasma membrane, thereby finalizing fertilization (Osman et al., 1989). 

 Yet another role of mPRs is in the development of both breast and ovarian cancer. 

P4 has been shown to be important in breast tissue development and cause proliferation 

of immortalized breast cancer cell lines (Dressing et al., 2012). Furthermore, P4 was able 

to inhibit apoptosis in both nPR-positive and nPR-negative breast cancer cell lines, 

suggesting that mPRs may be responsible for these actions. All mPRs are expressed in 

breast cancer cell lines, but mPRα is more abundantly expressed compared to mPRβ, 

mPRγ-1, and mPRγ-2. This indicates that mPRα likely contributes to the P4 inhibition of 

apoptosis in breast cancer cells, and may lead to the further development of breast cancer 

(Dressing et al., 2012).  
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 Progesterone plays a more protective function regarding ovarian cancer. It has 

been shown that women that have multiple pregnancies, twins, pregnancies later in life, 

or take estrogen-progesterone containing oral contraceptives all have lower incidence of 

ovarian cancer, possibly due to higher amounts of progesterone in their system (Charles 

et al., 2010). This is especially apparent when compared to the increases rate of ovarian 

cancer in women who are post-menopausal or progesterone deficient. Studies have shown 

in HEY ovarian cancer cell lines that through mPRs, progestogens are able to increase 

cAMP levels, thereby decreasing proliferation of the cancer cells. Membrane PRs may 

also work by increasing the activation rate of apoptosis signal-regulating kinases. Both of 

these pathways together suggest a way to treat ovarian cancer (Charles et al., 2010).  

Membrane Progesterone Receptors in Amphibians 

Membrane progesterone receptors were first identified in the African clawed frog 

(Xenopus laevis, here on called Xenopus). When the maturation inducing substance 

(MIS) for Xenopus was injected directly into the oocyte, oocyte maturation did not occur 

(Godeau et al., 1978). However, oocytes in the presence of MIS bound to a polymer, 

ensuring the MIS would not be able to cross the membrane, were able to undergo 

maturation. Furthermore, as receptor activity increased, so did progestogen-binding 

activity (Liu & Patino, 1993). Very little transcription occurred during the maturation 

process, and the addition of transcriptional inhibitors had no effect on steroid-mediated 

maturation in vitro (Deng et al., 2009). The removal of the nuclei from oocytes also had 

no effect on inducing final oocyte maturation. These factors all indicate that no genomic 

actions were taking place during oocyte maturation. When Xenopus oocytes were 

injected with an antibody against the mPRβ isoforms, there was inhibition of 
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progesterone-mediated oocyte maturation (Deng et al., 2009).  These studies support the 

necessity for mPRs, and not nPRs, for final oocyte maturation in Xenopus.  

Once confirming the presence of mPRs at the membrane of oocytes, focus turned 

towards determining the mechanism that controlled oocyte maturation. For frog and fish, 

maturation occurs through the regulation of adenylyl cyclases (Thomas, 2008). High 

intra-oocyte levels of cAMP are responsible for its meiotic arrest. Adenylyl cyclases 

catalyze the conversion of ATP to AMP. If progestogens were able to inhibit the activity 

of adenylyl cyclases, then the oocyte would leave its arrested state (Thomas, 2008). It is 

through the presence of mPRs that progestogens are able to perform this function. 

Membrane Progesterone Receptors in Female Teleost Fish 

Final Maturation of Gametes 
The initial discovery of mPRs in spotted seatrout (Cynoscion nebulosus) was 

similar to that of Xenopus. In the spotted seatrout, induction of oocyte maturation 

occurred rapidly after exposure to 20β-S (Thomas et al., 2001). Binding of 20β-S 

occurred at the cell surface, and when transcription was inhibited due to a lack of 

transcriptional machinery. From these results, researchers hypothesized that another 

receptor besides nPR was responsible for these actions (Thomas et al., 2002; Stormshak 

& Bishop, 2008) 

As in Xenopus, in teleost fish, like the spotted seatrout, mPRα is required for the 

MIS induction of oocyte maturation. Large amounts of mPRα mRNA exist in the oocyte 

before it became sensitive to MIS. In teleost fish, DHP and 20β-S have been identified as 

the major MIS (Thomas, 2012). With an increase in mPRs, oocytes increased their ability 

to respond to the presence of MIS and go through final meiotic maturation (Tokumoto et 
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al., 2006). Increases in mPRα protein levels induced by human chorionic gonadotropin 

coincided with the development of oocyte maturational competence, which allows for the 

oocyte to undergo successful fertilization. Membrane PRα involvement in this process 

was furthered by protein localization at the oocyte plasma membrane. The abundance of 

mPRα was also increased during the reproductive cycle when oocyte maturation was 

occurring; both naturally and when induced by gonadotropins (Thomas, 2008). 

Abundant expression of mPRα and mPRβ mRNA in testis and ovaries of the 

zebrafish was consistent with their role in nongenomic reproductive processes, with 

mPRα being the key player in the process (Hanna & Zhu, 2009). mPRα interprets 

extracellular signaling of progestogen, and initiates meiosis resumption in zebrafish. By 

injecting oocytes with mPRα, mPRβ, and nPR transcripts and then exposing the oocytes 

to DHP the rate of DHP induced oocyte maturation was significantly accelerated for 

those oocytes injected with mPRα compared to those injected with mPRβ, nPR, and 

control injected oocytes (Hanna & Zhu, 2011).  

Although evidence supports mPRα inducing the maturational process of oocytes, 

it is still unclear as to how this occurs. In follicle-enclosed oocytes when mPRα 

expression is increased more than normal, the oocyte was able to go through maturation 

even in the absence of exogenous progestogen, due to the increased MAPK activation 

followed by increased cyclin B production within the enclosed oocyte (Hanna & Zhu, 

2011). The author has hypothesized that a signal transduction repressor is present 

normally, but it can be dissociated by an increased amount of receptor (Hanna Zhu, 

2011). Another hypothesis is that a secondary messenger is always being produced by the 

mPRα present in low quantities. When mPRα is activated or up-regulated, it is then able 
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to produce more of this secondary messenger and reach the necessary threshold to allow 

for final oocyte maturation to occur (Hanna & Zhu, 2011). 

Further support of mPRα as the mPR responsible for oocyte maturation in 

zebrafish is that DHP induced oocyte maturation was almost completely blocked by the 

microinjections of mPRα antisense oligonucleotides into the oocytes (Thomas et al., 

2004). When using mPRβ antisense oligonucleotides, the same result was reported, 

showing that mPRβ also plays a role in oocyte maturation. In fact, greater inhibition of 

oocytes completing maturation was seen when the experiment was performed with the 

mPRβ subtype. Zebrafish antisense oligonucleotides to mPRα and mPRβ together also 

blocked the response to the MIS in inducing maturation suggesting that both subtypes 

may be required to initiate this progestogen response in oocytes (Thomas et al., 2004). 

When similar studies were performed in goldfish (Carassius auratus), mPRβ, 

mPRγ-1, and mPRγ-2 antisense oligonucleotides reduced the protein levels of all three 

mPRs (Tokumoto et al., 2012). However, there was no significant difference in the 

number of oocytes that underwent oocyte maturation when mPRγ-1 and mPRγ-2 

antisense oligonucleotides were used. mPRβ antisense oligonucleotides decrease oocyte 

maturation from to 50% from 85% in the control group (Tokumoto et al., 2012). 

This same group also performed binding assays with the endocrine disruptor 

diethylstilbestrol, DES. This synthetic hormone has been shown to induce oocyte 

maturation via mPRα (Tokumoto et al., 2006), and the binding studies performed with 

mPRβ, mPRγ-1, and mPRγ-2 showed that DES had a high affinity for mPRβ as opposed 

to mPRγ-1 and mPRγ-2 (Tokumoto et al., 2012). These results once again suggest that 

mPRβ may play a role together with mPRα in initiating final oocyte maturation. 
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However, it is important to note that mPRγ-1 had high affinity for androgens, which have 

also been shown to induce oocyte maturation in goldfish.  

While many studies suggest that mPRs are responsible for oocyte maturation, 

there are still varying pathways by which these receptors could potentially elicit a 

response. A common mechanism is the decrease of cAMP levels that leads to germinal 

vesicle breakdown. In the Atlantic croaker, the naturally occurring MIS, 20β-S, did 

indeed reduce cAMP levels and induced germinal vesicle breakdown. However, exposure 

of follicles to cAMP-dependent protein kinase inhibitors in the absence of 20β-S was not 

able to promote germinal vesicle breakdown (Pace & Thomas, 2005). Through the use of 

inhibitors of phosphatidylinositol-3-kinase (Pl3K)/Akt signaling pathways, 20β-S was 

blocked from promoting germinal vesicle breakdown. Thus, 20β-S and the use of 

Pl3K/Akt signaling pathways in the Atlantic croaker is important for germinal vesicle 

breakdown, an important component of final oocyte maturation. Further studies are 

required to see if this is the same in all teleost fish, or if more than one mechanism 

occurs. 

Membrane Progesterone Receptor Role in Apoptosis 
Besides final oocyte maturation, membrane progesterone receptors also seem to 

play a role in the apoptotic/antiapoptotic process, specifically mPRα. In the Atlantic 

croaker, mPRα is present on plasma membrane of granulosa and theca cells. In these 

granulosa and theca cells it was once again shown that 20β-S caused a down-regulation 

of cAMP (Dressing et al., 2010). In this same study, these cells were placed in a serum-

starvation culture to induce cell death. When the cells were exposed to 20β-S, or the 

progestin Org OD 0-02, the percentage of cell death was significantly decreased, 
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compared to cell death in the control group and the group expose to the nPR agonist 

R5020. The finding that 20β-S and Org OD 0-02, and not R5020, was able to decrease 

the incident of cell death helps supports the hypothesis that an mPR, most likely mPRα, is 

present at the plasma membrane of granulosa and theca cells and prevents apoptosis 

(Dressing et al., 2010). This was further supported when a siRNA was used against 

mPRα and caused a loss of this antiapoptotic effect. The use of an nPR siRNA did not 

alter the ability to avoid starvation induced cell death. It is also most likely that this 

response occurs via an Erk/Akt pathway due to the increase of both Erk phosphorylation 

and Akt phosphorylation when the cells were exposed to 20β-S (Dressing et al., 2010).  

Membrane Progesterone Receptors and Regulation of GnRH 
Other studies on the Atlantic croaker have observed the effect of 20β-S on 

gonadotropin regulation in both sexes. When preoptic anterior hypothalamus tissue is 

exposed to 20β-S there is an immediate down-regulation in the amount of gonadotropin-

releasing hormone (GnRH) secreted (Mathews et al., 2002). This rapid action indicates 

that the response is due to the binding of 20β-S to a mPR, hypothesized to be mPRα, 

implying that progesterone receptors play a role in the negative feedback action of 20βS 

on neuroendocrine function (Thomas et al., 2004). Once the largest, most MIS-

responsive oocytes have gone through final maturation, gonadotropin secretion is 

inhibited in order to prevent smaller, less developed oocytes from maturing. This 

neuroendocrine function suggests that mPRs may be present on GnRH secreting neuronal 

membranes.  
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Membrane Progesterone Receptors in Male Teleost Fish 

While the binding of 20β-S to mPRs decreases gonadotropins, thereby regulating 

oocyte maturation in females, in males the up-regulation of gonadotropins increases the 

abundance of sperm progestogen receptors (Thomas et al., 2006). Studies examining the 

types of mPR expressed along the sperm membrane have shown that there was a 33% 

higher mPRα expression in Atlantic croaker sperm with high motility, as compared to 

sperm with low motility (Tubbs et al., 2010). This suggests a relationship with mPR gene 

expression and motility in sperm (Thomas, 2008). Sperm motility is not the only factor 

affected by 20β-S.  When Atlantic croaker sperm was treated with 20β-S for five 

minutes, there was a significant increase in sperm motility, as well as sperm velocity 

(Thomas et al., 2004). The same study showed that other steroids were ineffective at 

influencing change in sperm motility and velocity. Since sperm is considered 

transcriptionally inactive, and these actions occur too quickly to be mediated by nPRs 

genomic action, these findings suggest that these responses are likely regulated through 

mPRs in the spermatozoa membrane. These findings suggest that mPR is critical for 

fertility in males. 

Research done on salmonids conflicts with results found in Atlantic croaker. In 

masu salmon (Oncorhynchus masou), it was shown that MIS increases sperm motility via 

a genomic action acting at the sperm duct to increase the pH of the seminal fluid; thereby, 

increasing cAMP levels (Miura et al., 1992). However, with Atlantic croaker MIS has 

been shown to act directly on the plasma membrane in order to cause rapid changes in 

intracellular cAMP concentrations (Thomas et al., 2004). Although this nongenomic 

mechanism is the same mode of action that has been seen in Southern flounder 
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(Paralichthys lethostigma), and seems to be widespread among fish species (Tubbs et al., 

2011), it is still possible that there are exceptions where genomic actions occur in sperm.  

Membrane Progesterone Receptors and Pheromones 
The olfactory system allows for response to stimuli in the water responsible for 

homing, schooling, locating food, predator avoidance, social behaviors, and reproduction. 

In some fish, progestogens, and other hormones, secreted by one sex function as 

pheromones for the opposite sex. mPRs present in the specialized sensory organ, the 

olfactory epithelium (OE), coordinate reproductive behaviors. When progestogens bind 

to mPRs in the OE, they activate the Gαi (pertussis toxin sensitive) proteins to reduce 

cAMP levels (Sorenson & Sato, 2005). Both mPRγ-1 and mPRγ-2 are commonly found in 

epithelial tissues, making them candidates for the receptors responsible for actions within 

the OE (Kolmakov et al., 2008). Transcriptome evidence was found for mPRγ-1 and 

mPRγ-2 in both goldfish and zebrafish OE. mPRβ was also detected in both species, and 

mPRα was not detected. These receptors have a high affinity for progestogens but not 

other steroid hormones, further indicating their specific role in detecting pheromonal 

progestogens in fish (Kolmakov et al., 2008). Although mPRγ-1 and mPRγ-2 seem like 

the strong candidate for phermonal regulation in teleost fish, mPRα has been detected to 

be expressed in the olfactory epithelium of Atlantic croaker, and may also be the 

potential mediator for the phermonal effect of progestogens (Tubbs et al., 2010). 

Electro-olfactograms performed in the OE of goldfish showed that neurons 

responding to sex pheromones differed from those responding to amino acids and the 

neurons responding to reproductive pheromones activate cAMP regulated pathways 

(Sorenson & Sato, 2005). The importance of pheromones is that they allow for 
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conspecifics to synchronize reproduction. At the time prior to ovulation, there is an LH 

surge that, in goldfish, causes the females to release a mixture of androstenedione and 

DHP (Kobayashi et al., 1987). Once the male perceives this signal via receptors in the 

OE, they too will have an LH surge that causes testicular production of DHP in order to 

increase sperm motility (Defraipont & Sorensen, 1993). Altogether, progestogens and 

their receptors allow for reproduction to occur on multiple levels. Not only does it prime 

the male and female so they have fully mature gametes, but it also helps in the 

coordination of reproduction so that once the female is ready for ovulation, the male will 

be ready as well.  

Other Functions of Progestogens 

Progestogens also have roles independent of reproductive physiology and 

behavior. In humans, progesterone has been shown to have a neuroprotective function, 

therefore leading to its use to treat traumatic brain injuries (Wright et al. 2007). It 

functions by blocking voltage-gated calcium channels and inhibiting depolarization-

induced cell death. This protects the brain from inflammation, edema, demyelination, and 

excitotoxicity (Luoma et al., 2011). 

 In T cell lines, progesterone has the ability to aid in the differentiation of 

lymphocytes into one of three subsets of cluster of differentiation 4+ T helper cells. 

Progesterone promotes T cell differentiation into the T helper cells 2 type which is 

responsible for producing interleukin-4 and interleukin-5 (Piccinni et al., 1995). While 

neither of these progestogen functions shows a direct use of mPRs, mPRα and mPRβ are 

expressed in human peripheral blood cells, isolated T cells, and Jurkat T cells. Also, the 

exact pathway in which progestogens exert this immune function is still unknown, but 



 

 23 
 

one possibility is that T cells activate inhibitory G protein pathways via these receptors 

(Piccinni et al., 1995).  

Progestogens also affect calcium currents in smooth muscle and renal cells via 

nongenomic actions, which leads to potassium concentration alterations (Steidl et al., 

1991).  This affects Na+ and Cl- reabsorption across the nephron, which will alter the 

electrolyte balance of the body. Smooth muscle contractions are also important for 

reproduction in order to help expel the ovulated oocyte or milt. This shows that even the 

seemingly unrelated functions of progestogens can still be important for reproduction. 

Conclusions 

Progestogens and their receptors are vital for both reproductive and non-

reproductive functions across all species. The information provided in this literature 

review has shown that in mammalian, amphibian, and fish species progestogens work via 

nongenomic pathways to induce final oocyte maturation in females, sperm motility in 

males, neuroprotective functions, and much more. Progestogens work by coupling to G 

proteins and regulating synthesis of cAMP, MAPK and many other enzymes. However, 

there are many questions left unanswered, for example, what are the roles of mPRγ-1 and 

mPRγ-2? While mRNA expression patterns have been studied, their functional role has 

been left unexamined. Are they required for the pheromone detection as suggested by 

Kolmakov et al.? Are these receptors responsible for initiating reproductive behaviors in 

teleosts such as goldfish and fathead minnow (Pimephales promelas)? Could they have 

other functions in the olfactory epithelium? How do they exert these actions? Are there 

other receptors expressed in fathead minnow olfactory epithelia? Does their expression 

change over their life cycle from juveniles to reproductive adults to non-reproductive 
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adults? Does the expression differ between male and females? The following chapter 

contains my thesis research in which I have begun the journey to explore some of these 

questions further and with the broad goal to increase our understanding of PRs in the 

olfactory epithelium of teleost fish. 
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Chapter 2. A Comparison of Progesterone Receptor Gene 

Expression in the Olfactory Epithelium of Reproductive and 

Non-Reproductive Fathead Minnows, Pimephales promelas 
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Abstract 
Fish species have a specialized organ called the olfactory epithelium that enables 

them to detect chemical cues in water. Among these cues are progestogens excreted by 

females that function as reproductive pheromones and stimulate male reproductive 

behavior and spermiogenesis. The olfactory epithelium is hypothesized to contain 

receptors that are activated by these pheromones. Here, I have begun to test this 

hypothesis by comparing the expression of nuclear and membrane progesterone receptors 

in reproductive and non-reproductive fathead minnows and in male versus female fish. I 

expected to find a lower expression of progesterone receptors in the non-reproductive 

compared to reproductive fish, and higher expression in males compared to females. This 

is the second study to examine gene expression in the olfactory epithelia of fish and is 

novel in the experimental approach taken. Results from this research will inform future 

studies aiming to make the functional linkage between pheromones and the regulation of 

teleost fish reproduction. 
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Introduction  

Structure of the Olfactory Epithelium 

The olfactory epithelium (OE) is a chemosensory organ required for the detection 

of social, food, and reproductive pheromonal cues in fish and other animals (Hansen, 

2007). Pheromonal cues help alert fish to changes in the surrounding environment and 

allow them to respond accordingly. The OE is a paired structure located on the dorso-

anterio aspect of the head (Burne, 1909) (Figure 4A). This structure is rosette shaped with 

multiple lamellae (Figure 4B, C) and has two nares.  Water enters through the anterior 

nare and exits through the posterior nare.  Through this passage, chemicals in the water 

bind to receptors on the apical surface of the OE and induce a behavior response. 

 

Sensory Neurons of the Olfactory Epithelium 

Within the OE there are three types of olfactory response neurons that project to 

the olfactory bulb (Figure 4D) (Bazáes et al., 2013). These include the ciliated neurons 

(cORNs), microvillus neurons (mORNs), and the crypt cells (CCs) (Figure 4E). The 

cORNs are characterized by long dendrites and a few cilia (Kermen et al., 2013). The 

cORNs project to the dorsal medial olfactory bulb via the olfactory-specific G-protein, 

Gαolf, and an adenylyl cyclase-based transduction pathway. Due to sequence analysis, 

localization of mRNA, and the similarity in the mechanism of action, these receptors are 

said to be homologous to the mammalian olfactory receptors (Kermen et al., 2013). 

These projections go to the dorso-medial olfactory bulb along the medial bundle of the 

medial olfactory tract (mMOT) (Figure 4F, blue). The mMOT has been shown to respond 
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to alarm substances in the crucian carp (Carassius carassius) (Hamdani et al., 2000; 

Weltzein et al., 2003). However, another receptor type may also be present in the cORNs 

called trace amine associated receptors (TAARs). These TAARs are known to function as 

either a social or pheromonal detector, but their roles are not completely understood 

(Liberles, 2009). 

The mORNs contain shorter dendrite microvilli and are said to be homologous to 

mammalian V2R-type receptors (Kermen et al., 2013). Although, the transduction 

pathway is not well understood, the goldfish (Carassius auratus) and zebrafish (Danio 

rerio) express transient receptor potential C2 ion channel (TrRPC2). The similarities in 

transduction pathways between fish and mammals indicate that teleost mORNs may be 

similar to the group of mammalian mORNs that act via a phospholipase C-dependent 

transduction pathway (Bazáes et al., 2013). The mORNs respond to amino acids and 

nucleotides. Their signals project to the lateral olfactory bulb by the lateral olfactory tract 

(Figure 4F, green) (Hamdani et al., 2000; Weltzein et al., 2003). These two pieces of 

evidence suggest that mORNs are important for responding to food odorant stimuli. 

The CCs are a unique cell type for teleost fish, for there appears to be no 

homologous structure in any other vertebrate (Bazáes et al., 2013). Crypt cells are also in 

lower abundance compared to the other ORNs. CCs are caused by an apical invagination 

that opens towards the pit. They are oval shaped, have no dendrites, few cilia, multiple 

microvilli, and are surrounded by one or two supporting cells. Many studies have been 

performed to identify the ligands that activate the wide variety of G-protein coupled 

receptors that are expressed among teleost CCs. Such examples include channel catfish 

(Ictalurus punctatus), rainbow trout (Oncorhynchus mykiss), and round goby (Neogobius 
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melanostomus) whose CCs express Gαo proteins. Goldfish CCs express both Gαo and Gαq 

G-proteins, and zebrafish CCs express Gi1b (Belnager et al., 2003; Hansen et al., 2003; 

Oka & Korschung, 2011; Bazáes & Schmachtenberg, 2012).  

Crypt cell neurons project to the ventral olfactory bulb via the lateral bundle of 

the medial olfactory tract (Figure 4F, red) (Bazáes & Schmachtenberg, 2012; Kermen et 

al., 2013). In crucian carp (Carrasius carrasius) and goldfish, this pathway transmits 

reproductive information to both males and females by responding to reproductive 

hormones released by conspecifics. Pheromones bind to mPRs and enable the 

coordination of behavior and gamete release in both sexes (Hamdani et al., 2000; 

Sorensen et al., 1991).  

Particularly relevant to my research, is that CCs have been shown to change in 

localization and number depending on which season during the year samples were 

collected. In crucian carp, there were a higher abundance of CCs present and more 

localized in the apical layer of the OE during spawning seasons than in non-spawning 

seasons (Hamdani et al., 2008). This same result was not seen in zebrafish, but this may 

be due to the fact that although zebrafish and other tropical species have a seasonal aspect 

to their reproduction, the period of active reproduction is broad and not as sharply 

defined as temperate zone species. In temperate zone species, photoperiod and 

temperature provide strongly demarcated environmental cues (Munro, 1990; Hansen & 

Finger, 2000; Spence et al., 2008). 
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Figure 4: A. Dorsal view of adult fathead minnow (FHM) head. Triangles indicate nuptial 
tubercles and arrows point to olfactory nares that contain olfactory epithelium (OE). B. 
Photograph of dissected adult female FHM OE collected from our lab that shows lamellae 
epithelial structure. C. Scanning electron microscope of the olfactory epithelium of Triplopjysa 
dalaica (Waryani et al., 2013). D. Schematic diagram of the paired OE connected to the olfactory 
bulb via the olfactory nerves. E. Cell types within the OE. Abundant presence of ciliated 
olfactory receptor neurons (ORNs) and microvillus ORNs with crypt cells scarce in comparison 
(Bazáes et al., 2013). F. Diagram of the three pathways responses travel from the OE to the 
olfactory bulb (Hamdani & Doving, 2007) Lateral olfactory tract (LOT), lateral bundle of the 
medial olfactory tract (l MOT), medial bundle of the medial olfactory tract (m MOT). 
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Another study examined the differences of CCs in juvenile and adult rainbow 

trout (Bazáes & Schmachtenberg, 2012). It was found that the percentage of apical CCs 

was higher in both sexes of adults and the adults had larger CCs than juveniles. However, 

there was no significant difference in either of these characteristics between adult males 

and females. The CCs were then exposed to various odorants, andjuveniles responded to 

all presented odors with no specificity for any particular class. The CCs had no response 

to the female sex hormones estrogen, prostaglandin F2α (PGF2α), or 17α,20β-dihydroxy-4-

pregnen-3-one (DHP) in adult females. Female CCs did response strongly to testosterone, 

seminal fluid, and testicular extracts. In contrast, adult male CCs have elevated responses 

to female ovarian extracts, and to the progestogen, DHP. Both mature females and males 

had a low-to-no response rate to all other odors. One characteristic that remained constant 

among all three groups was that most of the CCs responded to only one odorant, with 

only a small percentage responding to two or more. Results from this study show that 

CCs begin as generally tuned responders in juvenile rainbow trout and become more 

reproductive-based stimuli sensors as rainbow trout mature (Bazáes & Schmachtenberg, 

2012). 

Two other cell types found in the OE are ciliated non-sensory cells and basal 

cells.  Ciliated non-sensory cells are scattered throughout the OE and help to distribute 

mucus over the surface of the OE (Kermen et al., 2013). The basal cells are a layer of 

undifferentiated cells that are crucial for the life-long regeneration of sensory and 

accessory neurons (Bazáes et al., 2013) 



 

 32 
 

Physiology of the Olfactory Epithelium 

Olfactory sensory neurons are responsible for sensing social, feeding, or 

reproductive cues and mediating a response. The social response is one that is neither  

related to feeding nor reproduction. One of these behaviors is the alarm and fear 

response. In species such as zebrafish, catfish, and rainbow trout, specialized cells in the 

epidermis release alarm substances due to trauma or disease (Speedie & Gerlai, 2008). 

Other fish are able to detect these substances and react by rapid swimming, grouping, 

hiding, darting, freezing, and general excitation (Bazáes et al., 2013; Kermen et al., 

2013). It has been hypothesized that two types of alarm substances are responsible for 

these actions. First, it was thought that hypoxanthine-3-N-oxide was responsible, but it 

was found that it does not trigger a true alarm response on its own (Whitlock, 2006).  

Later, it was found that in zebrafish, mucus containing chondroitin fragments caused a 

true alarm response (Mathuru et al., 2012). Whether this is the same across fish species, 

or if there are other substances to create this response, is not fully known. Finally, 

homing is a social behavior seen in diadromous species such as salmonids. This is 

another response that uses amino acids and possibly bile salts to elicit a social interaction. 

Bile salts, such as taurocholic acid and glycocholic acid, are steroid acids that emulsify 

fats. When these compounds are released into the water through feces and urine, 

salmonids are able to detect the initial territory where they were hatched after being away 

in the ocean for years (Bazáes et al., 2013). 

The next response, feeding, is especially crucial for fish when finding food late at 

night or in other low-visibility waters where the animal may not be able to rely on sight 

to find food (Bazáes et al., 2013). As a result, these receptors are highly sensitive to food-
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related compounds. Neurons that are responsible for sensing food activate in the presence 

of amino acids, polyamines (i.e., spermine and putrescine), and nucleotides. While amino 

acids make up most food compounds, polyamines indicate the presence of decaying 

tissue. In comparison, adenosine triphosphate (ATP) and inosine triphosphate (ITP) relay 

information on the freshness of food (Kermen et al., 2013).  Fish exposed to these signals 

have been shown to increase the number of turns and swimming speed in the direction of 

stimuli (Kermen et al., 2013).   

The ability to detect and locate members of the opposite sex in the surrounding 

water is of utmost importance for aquatic species. It has been shown that amino acids 

may be involved in pheromonal signaling and reproductive behaviors. One example is in 

masu salmon (Oncorhynchus masou), in which females excrete a tryptophan metabolite 

to attract males and trigger male reproductive behaviors (Yambe et al., 2007). Bile salts 

have been shown to be a species-specific tracer, guiding orientation, and territorial 

marker (Bazáes et al., 2013). However, PGF2α and steroids, such as androstenedione and 

DHP, are the critical players in pheromonal communication in the cyprinid species, 

including goldfish, crucian carp, common carp (Cyprinus carpio), common roach 

(Rutilus rutilus), and tench (Tinca tinca) (Lastein et al. 2006; Chung-Davidson et al. 

2008; Scott et al., 2010). These hormones are produced by the gonads of fish and are able 

to cause an endocrinological and/or behavioral response in the opposite sex (Stacey et al., 

2003). For example, the release of certain pheromones, such as androstenedione and 

testosterone by male goldfish, has been shown to regulate oocyte maturation and 

ovulation timing in conspecific females (Sorensen et al., 2005). When a female is ready 

to ovulate a specific mixture of compounds, such as PGF2α, DHP and sulphated DHP, 
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are released into the water (Bayunova et al., 2011).  When detected by conspecific males, 

DHP causes an increase in luteinizing hormone, which in turn causes an increase in 

sperm and milt production and reproductive behavior (Defraipont & Sorensen, 1993). 

Overall, the particular composition of secreted steroid hormones is crucial for a species to 

specifically target a member of the opposite sex for mating (Bazáes et al., 2013). 

Progesterone Receptors in the Olfactory Epithelium 

Although the OE is a sense organ that plays a role in the regulation of many 

behaviors in teleost fish, the focus of this study will be on progesterone receptors in the 

OE. Progesterone and other progestogens play a key role in the regulation of reproductive 

functions of both female and male vertebrates. In teleost fish, the endogenous 

progestogens that are responsible for reproductive actions are DHP and 17,20β,21-

trihydroxy-4-pregnen-3-one (20β-S). In females, DHP is important for initiating oocyte 

final maturation, when the oocyte leaves its state of meiotic arrest and reenters the cell 

cycle making the egg fertilizable (Thomas, 2008). In male teleosts, progestogens play a 

role stimulating spermiation, sperm motility, and behavior. Atlantic croaker 

(Micropogonias undulatus) and Southern flounder (Paralichthys lethostigma) sperm 

increased motility, velocity, and turning rate when exposed to 20β–S, and in the Japanese 

eel (Anguilla japonica), there was a study done that supports a role for DHP in the 

initiation of meiosis during early spermatogenesis within the testis (Miura et al., 2006; 

Hamdani & Doving, 2007; Thomas, 2012). Progestogens can also affect courtship 

behaviors in some fish. For example,  when goldfish were exposed to DHP or its sulfated 

form, DHP-S, there was an increase in courtship behaviors by the males. This included 

increased pursuit nudging of females (Poling et al., 2001). 
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The classical pathway and genomic actions of the well-studied nuclear 

progesterone receptors (nPRs) explain slower progestogen actions such as gene 

transcription and the translation of protein. In mammalian reproduction, progesterone 

(P4) plays a critical role in ovulation and maintaining pregnancy through feedback loops 

of the hypothalamic pituitary gonadal axis (Moyes & Schulte, 2008). After ovulation, 

increased circulating P4 levels are synthesized by the corpus luteum. This helps to 

prepare and maintain the uterus for implantation of the embryo. P4 does so by promoting 

endometrium maturation as well as reducing muscle contractions of the uterus. 

Eventually, the corpus luteum will begin to degenerate, and P4 will be secreted from the 

newly formed placenta in eutheria mammals. These increased levels continue to repress 

smooth muscle contractions in the uterus and prevent ovulation (Moyes & Schulte, 2008). 

Progesterone also helps in vascular development, tissue and cell morphology, 

lipid and carbohydrate metabolism, skeletal and muscular development, testicular germ 

cell proliferation, and neuroprotection. Nuclear receptors require the binding ligand to 

diffuse through the plasma membrane in order to be able to bind to the receptor (Norman 

et al., 2004). The receptor is then able to activate transcription factors that allow gene(s) 

to be expressed or repressed (Figure 3, left side). For this reason, it may take hours or 

even days to see a cellular response to a progestogen binding to the nuclear receptor.  

Membrane progesterone receptors (mPRs), on the other hand, cause a relatively 

immediate biological change within the cell. This was first observed when maturation-

inducing steroids were able to quickly induce an oocyte to leave meiotic arrest and re-

enter the cell cycle (Hanna & Zhu, 2011). After that initial discovery, these fast actions 

have been explained by the nongenomic pathway of both membrane-bound progesterone 
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receptors (mPRs) and progesterone receptor membrane components (PGRMCs) (Figure 3 

above) (Thomas, 2012). This means that these receptors allow for a substrate to have an 

effect on the cell without first initiating transcription and translation.  These actions are 

able to occur rapidly due to the ligand being able to bind directly to a receptor in the 

plasma membrane and activate a secondary messenger, which will then produce a 

response in the cell (Norman et al., 2004) (Figure 3, right side). This action allows for a 

response time of seconds to minutes as compared to these minutes or hours of the nuclear 

receptor response. In spotted seatrout (Cynoscion nebulosus), activation of mPRα has 

been shown to couple to an inhibitory G-protein and cause down regulation of adenylyl 

cyclase activity (Thomas et al., 2007). This leads to inhibition of protein kinase A and 

induces the release of the oocyte from meiotic arrest and for oocyte maturation to occur. 

In Atlantic croaker, binding of 20β-S to this receptor couples to stimulatory olfactory G-

protein at the sperm membrane and causes an increase in intracellular cAMP and Ca+2 

production (Moussatche & Lyons, 2012; Tubbs & Thomas, 2009). As for mPRβ, limited 

studies have been done to determine its function. What has been done shows that mPRβ 

works with mPRα to induce oocyte maturation, and it may also have a role in 

neuroprotection (Thomas, 2012; Thomas & Pang, 2012). While there are currently no 

studies to determine the exact role of mPRγ1 and mPRγ2, they have been detected at the 

mRNA level in the OE of goldfish and zebrafish, along with mPRβ, and, therefore, they 

may have a role in pheromonal detection (Kolmakov et al., 2008). 

Ontogeny of Progesterone Receptors and other Steroid Receptors 

Many studies have focused on the ontogeny of steroid receptor gene expression. 

One of the more commonly studied receptors are the estrogen receptors (ERs). In fathead 
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minnows (FHMs), studies have shown the changes of Er mRNA expression during early 

development. One study, looking from 0 days post fertilization (dpf) to 28 dpf shows that 

Er2b increases and then returns to prehatch values (Johns et al., 2009). A more recent 

study continued this to 45 dph and also found that Er1 increased in expression, but that 

the pattern was more erratic with some decreasing and increasing over this time period 

(Leet et al., 2013).  

Another comprehensive study examined the mRNA expression of all three Ers, 1, 

2a, and 2b, in FHMs (Filby & Tyler, 2005). All three were detected at all stages of 

development and their expression varied between 5 and 20 days post fertilization (dpf). 

Their expression patterns also varied in different tissue types including liver, gonads, and 

brain, with sexual dimorphism observed as well. During early development in other fish 

species, Ers are undergoing vast changes in transcription levels. In rainbow trout, all four 

Er subtypes (a1, a2, b1, and b2) initially begin at low levels and then increase until each 

reach a peak, and then begin to decline (Boyce-Derricott et al., 2010). In medaka 

(Oryzias latipes), Era, Erb1, and Erb2 are low during embryonic development, but there 

is an increase of Erb2 at 6 dph and then a gradual decrease after 7 dpf (Chakraborty et al., 

2011).  

Studies examining the developmental expression of PRs are limited, but a study 

was conducted on female rat brains suggests that there is a change in the expression of 

PRs at the transcript level over time. This study showed two isoforms of PR (A and B) 

and looked at the change of both in two portions of the brain throughout early 

development, 2 days before birth to 8 weeks of age (Kato et al., 1993).  In both the 

cerebral cortex and hypothalamus preoptic area, there was an increase in PR-A over time. 
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In both of these structures, there was also an increase in PR-B. However, in the cerebral 

cortex there was an initial increase followed by a decrease in the mRNA levels of PR-B. 

In the hypothalamus preoptic area, there was a much slower increase in PR-B overtime 

(Kato et al., 1993). 

Studies have also focused on early expression of these PRs. In zebrafish it was 

found that nPR was initially detected in the ovulated oocyte, but then was not detected 

until 24 and 48 hours post fertilization (hpf) (Pikulkaew et al., 2010). mPRα and mPRβ 

were also detected in the ovulated oocyte and continued to be expressed for the first 4 

hours. However, in another study done in zebrafish, nPR was found to be present 

beginning at 8 hpf (Chen et al., 2010). This same study also reported that at 4 weeks post 

hatch, nPR levels were higher in the female ovarian tissue than male testicular tissue. 

Then by 8 weeks there was a 20-fold increase in both males and females. The males then 

maintained this expression until 12 weeks, whereas, the nPR expression in females began 

to decrease (Chen et al., 2010). 

Connecting Everything Together 

Previous studies show that the OE plays a role in the regulation of reproduction in 

some fish by allowing specific ligands to induce action potentials in olfactory sensory 

neurons. It appears that the receptors present in the OE that enable this to occur are mPRs 

that can bind progestogenic pheromones released by conspecifics. While there has been 

one study that shows mPRs mRNA transcripts are present in the OE of goldfish and 

zebrafish, specifically mPRγ-1, mPRγ-2, and mPRβ (Kolmakov et al., 2008), there have 

not been any studies that specifically connect how PRs in the OE can cause reproductive 

changes in fish after exposure to pheromones released from a member of the opposite 
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sex. More research is needed to support these findings and influence further research into 

the role of mPRγ-1, mPRγ-2, and mPRβ in the transduction of pheromonal signaling.   

 I hypothesize that all four mPRs will be expressed in the OE, but not nPR, and 

that the expression of mPR will be greatest in reproductive adults and lower in juveniles 

and photothermally shifted, non-reproductive adult FHMs. Finally, I expect that there is a 

sexual dimorphism in the expression of mPRs and that males will have higher expression 

of mPRs than females.	  

Materials and Methods 

Fish Husbandry 

This research was conducted at the University of Maryland, College Park, 

Maryland. The fish in this study were housed in an environmental chamber in sixteen, 

ten-gallon tanks (Figure 5A). Eight tanks were designated for the adult groups and eight 

tanks were designated for the juvenile group. The adult tanks were divided into two, five-

gallon sections. One side housed reproductively mature males and females (150-220 

dph). The other side housed male and female subadults (120-150 dph) (Figure 5B). Both 

sides contained two males and four females. Two breeding tiles were placed on each side. 

The juvenile tanks contained 25 young fish (80-100 dph). Fish were obtained from 

Aquatic BioSystems Inc. (Fort Collins, CO).  

Once the fish were placed into the system they were held at 24 ± 0.5°C and a 

light:dark cycle of 15:9 hours for two weeks. Ammonia levels (< 0.05mg/L) and pH 

levels (7.4-7.6) were tested weekly. A 10-15% water change was also performed weekly. 
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Anesthetization and Dissections 

After the two-week acclimation period, the reproductively active adults and the 

juveniles were sacrificed. They were placed into an anesthetic overdose solution of 

buffered MS-222 (500 ppm, pH ~7.4). The wet mass and fork length of each fish was 

measured. Next, the OEs were collected and snap-frozen in liquid nitrogen. Each side 

was collected separately. The right side was used for quantitative PCR and the left side 

was saved at -80°C for future use. The gonad was collected, weighed, and one lobe was 

fixed to determine sex and reproductive status, at the gross morphological and 

histological levels. The other lobe was snap-frozen for future research by others. As the 

tank is the statistical unit, the two male OEs in each tank were pooled to represent the 

male unit of that tank and four female OEs in each tank were pooled to represent the 

female unit of that tank.  

Photothermal Manipulation  

The remaining subadults went through a faux regression towards quiescence (non-

reproductive) season. This was achieved through lowering the room temperature by 

0.5°C daily and decreasing the photoperiod by ten minutes daily. Once 12°C was 

reached, one male and female were sacrificed and checked for reproductive quiescence 

by gonadosomatic index and histology of the gonads. They were then examined for early 

stages follicular development in the females and early stages of spermatogenesis in males 

(as described by Dietrich and Krieger, 2009) At this time, based on histology, the fish did 

not appear to be fully non-reproductive. I continued to drop the air temperature and 

photoperiod and sampled at 10°C and 8°C water temperature.  Once reaching 8°C  water 
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temperature the environmental chamber was at 4°C air temperature and could not be 

lowered past this point. However, I did continue to lower the photoperiod for two weeks 

and allowed the fish to acclimate to 8°C. After two weeks, the same procedure used in 

the previous groups for dissecting samples was employed for this group of adult fish.  
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A 

B 

Figure 5: A. Layout of all sixteen tanks. B. Tank on left has a divider with the non-
reproductive adults on the left and the reproductive adults on the right. Right tank 
contains juveniles.  
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Histology 

All chemicals were purchased from Thermo Fisher Scientific (Waltham, MA) or 

VWR International (Radnor, PA). Fixatives were made following protocols taken from 

Humason’s Animal Tissue Techniques (Humason, 1997). Gonadal samples were 

collected from both males and females, then immediately placed in Davidson’s fixative 

for 24 hours. The samples were stored in 10% neutral buffered formalin until they are 

ready for sectioning. Samples were dehydrated by placing them in graded ethanol series 

from 75 to 100% for one-hour each, cleared in xylene for two one-hour baths, and cleared 

through four, one-hour wax baths. Wax baths were held within a vacuum oven set at 

57°C. Every hour, pressure increased 5mmHG starting at -10mmHg and reaching -

25mmHg for the last hour.  Samples were then embedded in paraffin wax. Samples were 

sectioned frontally at 5 µm using a rotary microtome. Sections were floated on a water 

bath and mounted onto a glass slide. These slides were stained using Harris’ hematoxylin 

and counterstained with eosin-Y, mounted with permount, and coverslipped following 

standard procedures depicted in (Humason, 1997). Finally, these tissues were observed 

using a Carl Zeiss Axioplan microscope (model number 451888) (Oberkochen, 

Germany) and for follicular development and oocyte maturation in the females and 

development of spermatozoa in the males (Smith, 1978).  Micrographs were taken using 

a Carl Zeiss AxioCam MRC by Zeiss imaging software (Oberkochen, Germany). 

Quantitative Real Time PCR  

The right side of the OE was used for quantitative real time PCR (qPCR). 

Procedure for qPCR followed recommendation by Bustin et al., 2009. Tissue was 
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homogenized in a lysis buffer using a tissue homogenizer (Fisher Scientific® 

PowerGen™ Model 125 Homogenizer) and purified using a Genesee Scientific Quick-

RNA™ MicroPrep kit (San Diego, CA). This kit provided a DNase step to ensure our 

final RNA product is DNA free. Since the sample size is based on the number of tanks 

used, all samples were homogenized separately, but all the females from the same tank, 

and all the males from the same tank were pooled prior to continuing with the RNA 

purification process. This created a sample size of eight for each sex and each life stage. 

Quantification and quality assurance of RNA was determined using Experion™ RNA 

StdSens chips and Experion™ Automated Electrophoresis station (Bio-Rad). The 

ExperionTM software performs an automatic RNA integrity assessment with RNA quality 

indicator (RQI). The RQI was used to determine if a sample was acceptable for use. An 

RQI between 7-10 was acceptable. Total RNA (500 ng) was used for reverse 

transcription reactions using Invitrogen™ SuperScript® III First-Strand Synthesis System 

(Grand Island, NY). SYBR® Green qPCR was used to detect gene expression of each 

progesterone receptor using Bio-Rad’s CFX96™ Real-Time System. A standard curve of 

known cDNA concentrations for each PR and RPL8 was used to determine the absolute 

quantity of transcripts present in the tissue samples. The standards were made by 

amplifying the open reading frame for each gene via PCR, running each sample on an 

agarose gel, and then extracting the PCR product. The samples were then quantified 

using a GE Healthcare Life Sciences GeneQuant spectrophotometer (Pittsburgh, PA). 

The copy number of each gene was determined by the following formula: (X g/µL 

DNA/[plasmid length product in base pairs * 660]) * 6.022 * 1023. For each standard this 

was diluted so that each standard began with =1.5x10^10 amplicons. From this starting 
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concentration, a 4-fold serial dilution was created for each known standard and each 

unknown was compared to the qPCR results of that curve. Reproductive adults and 

juveniles were performed on the same plate (Figures C.1-C.6 A) while non-reproductive 

adults were performed on a separate plate (Figures C.1-C.6 B). All samples were 

duplicated on the qPCR plate and an average of the results were taken. Results collected 

were normalized by ribosomal protein L8 (Rpl8) gene expression.  

Statistical Analysis 

Data analysis was performed using SAS 9.3 (SAS Institute, Cary, NC). An 

LSMEANS statement using the DIFF adjustment for Tukey’s was used for comparison of 

least square means. Two different models were used. One to compare the gene expressed 

in each group, and one to compared the groups to one another. In the first model sex, life 

stage, and gene were still fixed effects. For the second model, only sex and life stage 

were included as fixed effects. For both models, the design was blocked by tank to ensure 

no significant differences were observed among all the tanks. For our second model, 

comparisons were only observed for reproductive adults versus juveniles, and 

reproductive adults versus non-reproductive adults. Results were deemed significant if 

the p <0.05.  
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Results 

Fish 
 At reproductive photoperiods and temperatures adult fish were actively spawning 

and laying eggs on breeding tunnels provided. Juveniles were not breeding and none 

appeared to show any sexual dimorphisms in coloration and size. At non-reproductive 

photoperiods and temperatures, reproduction was not observed below 20 °C and a 

light:dark cycle below 14 h:10 h.  

Histology 

Histology confirmed immature gonads for both juvenile male and female FHMs 

(Figure 6A and 6B). Juvenile female ovaries contained only primary follicles with 

perinucleolar oocytes. Juvenile males had small sized seminiferous tubules, which were 

surrounded by small cysts containing early stage spermatogonia, with little to no 

spermatozoa in the lumen. Histology also confirmed reproductively active adult male and 

females (Figure 6C and 6D). Adult females had all stages of oocytes present; 

perinucleolar oocytes, cortical alveolar oocytes, and early/late vitellogenic oocytes. 

During dissections, it was also noted that 2 females were ovulating. Reproductive males 

had much large cysts, and large diameter seminiferous tubules with lumens full of 

spermatozoa. Cysts containing the various stages of spermatogenesis are present, but are 

much smaller in comparison to the large lumen. Compared to juveniles, by direct 

observation, both reproductive females and males had large gonads. Gonadosomatic 

index (GSI), mass of gonad/mass of weight *100%, was not calculated for juveniles 

because gonads were too small for dissection; therefore, no comparison can be made 
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between GSI of juveniles and reproductive adults. As for the non-reproductive adult 

group, we cannot confidentially say that they are indeed non-reproductive. While during 

this time period no eggs were being deposited and fertilized, from the histology we do not 

see full regression of late stage oocytes in females and regression of spermatozoa 

production in the males (Figure 6E and 6F). A comparison of GSI can be found in Table 

1. Surprisingly, non-reproductive females had a significantly higher GSI than 

reproductive females (p<0.001). There was no significant difference between GSI of non-

reproductive males and reproductive males (p=0.113). 

 

 

Group	   GSI	  
Reproductive	  Female	   11.56% 
Non-‐Reproductive	  Female	   17.78% 
Reproductive	  Male	   1.28% 
Non-‐Reproductive	  Male	   1.09% 

 

Table 1: The gonadosomatic index (GSI) calculated for all 
four adult treatment groups.  GSI = (gonad mass/ fish mass) 
x 100. 
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Figure 6: Micrographs of H and E stained gonad sections. A. Juvenile female. B. Juvenile male.  
C. Reproductive female. D. Reproductive male. E. Non-reproductive female. F. Non-reproductive 
male.  PO refers to the early stage perinucleolar oocytes, CO refers to the slightly later stage cortical 
alveolar oocytes, V refers to the later developed vitellogenic oocytes. An asterisk (*) points out the 
lumen of the seminiferous tubules. In juveniles (B) this space is emptied, while in the adults (D and F) 
it is filled with spermatozoa. The arrow points out cysts, which make up the seminiferous tubules, 
and are filled with the varying stages of gametes proceeding through spermatogenesis. 
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Quantitative Real Time PCR  

All four mPRs were expressed, whereas nPR was not (Figure 7). When examining 

the effect of sex between each group and the interaction across stages, we found that sex 

had no effect on PR gene expression (See Appendix D for figures). From this point on 

comparisons were made based on life stages as a whole, where sex was combined (Figure 

8).  

In the juvenile group, we found that mPRα and mPRβ both have significantly 

higher expression than mPRγ-1 and mPRγ-2 (pα,γ-1<0.0001, pα,γ-2<0.0001, pβ,γ-1<0.0001, 

pβ,γ-2<0.0001) (Table 4 for p-values). However, mPRγ-1 and mPRγ-2 had no significant 

difference in expression and the same is found for mPRα and mPRβ (p=1.00, p=0.999 

respectively). As for the reproductive adult group, similar results were seen as with the 

juvenile group; however, only mPRα is expressed significantly higher than mPRγ-1 and 

mPRγ-2 (pα,γ-1=0.002, pα,γ-2=0.005). In the non-reproductive adult group we found no 

significant differences in the expression of all mPR genes (p=1.00 for all groups). 

When comparing juveniles to the reproductive adults it was observed that all 

genes except mPRγ-2 significantly differed (Figure 8). From the juvenile life stage to the 

sexual mature adult stage mPRγ-1 increased, whereas mPRα and mPRβ decreased 

(pα=0.024, pβ=0.006, pγ-1=0.005). Although not significant, there was a decreasing trend 

for mPRγ-2 (p γ-2=0.24)(Figure 8, Table 4). 

Finally when examining changes from reproductively active adults to adults that 

have been raised in photoperiod and temperature not conducive to reproduction, it was 

found that there was only a significant change in the expression of mPRα (pα=0.024) and 

mPRγ-2 (pγ-2=0.044). As fish were photothermally shifted to a non-reproductive state 
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mPRγ-2 increased, whereas mPRα expression decreased. It is important to remember that 

although the non-reproductive group of fish were not actively spawning, histology of the 

gonads did not confirm a non-reproductive state, therefore these results may be distorted 

and not fully representing non-reproductive fish. Summary of these results are in Table 2. 
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Figure 7: Progesterone receptor (PR) expression levels in the olfactory epithelium of all six 
experimental groups. (A) mPRα and mPRβ (B) mPRγ-1 and mPRγ-2. Absolute 
quantification of PR expression was determined by the use of a standard curve comprised of 
a serial dilution of PR cDNA and SYBR Green QPCR. Values were then normalized by 
ribosomal protein L8 (RPL8). n=8 (except reproductive male=7 and juvenile 
female=6).JF=juvenile females, RF= reproductive adult females, NF=non-reproductive 
adult females, JM=juvenile males, RM=reproductive adult males, NM=non-reproductive 
adult males. 
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Figure 8: Progesterone receptor (PR) expression levels in the olfactory epithelium from 
Figure 7 but with sexes combined. (A) mPRα and mPRβ (B) mPRγ-1 and mPRγ-2. SAS 
results showed there was no statistical significant between sexes in each life stage. Both 
male and female data was averaged and SEM is shown. * Represents a significant 
difference in gene expression either between juveniles and reproductive adults or 
reproductive adults and non-reproductive adults. No comparison was performed 
between juveniles and non-reproductive adults. Sample size of juveniles=14, 
reproductive adults=15 and non-reproductive adults=16. J=juveniles, R=reproductive 
adults, N=non-reproductive adults 
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Table 2: Summary of qPCR results. (A) Comparing mPR gene expression in each group individually. 
Arrow refers to first gene mentioned expression compared to second gene mentioned expression. 
N.S.=no difference 

 mPRα 
vs. 

mPRβ 

mPRα 
vs. 

mPRγ-1 

mPRα 
vs. 

mPRγ-2 

mPRβ 
vs. 

mPRγ-1 

mPRβ 
vs. 

mPRγ-2 

mPRγ-1 
vs. 

mPRγ-2 
Juveniles N.S. !  !  !  !  N.S. 

Reproductive 
Adults N.S. !  !  N.S. N.S. N.S. 

Non-
reproductive 
Adults 

N.S. N.S. N.S. N.S. N.S. N.S. 

 
 
 
Table 3: Summary of qPCR results comparing reproductive adults to both non-reproductive groups 
for each mPR. Arrows represents the change of the reproductive adult compared to the other group. 
N.S.=no difference. 	  

 mPRγ-1 mPRγ-2 mPRα mPRβ 

Reproductive 
Adults vs. 
Juveniles 

!  N.S. "  "  

Reproductive 
Adults vs. Non-
reproductive 
Adults 

N.S. "  !  N.S. 
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Table 4: Comparisons were made between each gene for each treatment group, between juvenile and 
reproductive adults for each gene, and between reproductive adults and non-reproductive adults for 
each gene based off of qPCR data. p values for all comparison were performed in SAS and are based 
off of data normalized by the housekeeping gene RPL8. *Represents significant value. 
	  

Comparison P value 
Juvenile: mPRα vs. mPRγ-1 <0.0001* 
Juvenile: mPRα vs. mPRγ-2 <0.0001* 
Juvenile: mPRα vs. mPRβ 0.998 
Juvenile: mPRβ vs. mPRγ-1 <0.0001* 
Juvenile: mPRβ vs. mPRγ-2 <0.0001* 
Juvenile: mPRγ-1 vs. mPRγ-2 1.000 
Reproductive: mPRα vs. mPRγ-1 0.002* 
Reproductive: mPRα vs. mPRγ-2 0.004* 
Reproductive: mPRα vs. mPRβ 0.984 
Reproductive: mPRβ vs. mPRγ-1 0.130 
Reproductive: mPRβ vs. mPRγ-2 0.192 
Reproductive: mPRγ-1 vs. mPRγ-2 1.000 
Non-Reproductive: mPRα vs. mPRγ-1 1.000 
Non-Reproductive: mPRα vs. mPRγ-2 1.000 
Non-Reproductive: mPRα vs. mPRβ 1.000 
Non-Reproductive: mPRβ vs. mPRγ-1 1.000 
Non-Reproductive: mPRβ vs. mPRγ-2 1.000 
Non-Reproductive: mPRγ-1vs. mPRγ-2 1.000 
mPRα: Juvenile vs. Reproductive 0.024* 
mPRα: Reproductive vs. Non-Reproductive 0.024* 
mPRβ: Juvenile vs. Reproductive 0.006* 
mPRβ: Reproductive vs. Non-Reproductive 0.073 
mPRγ-1: Juvenile vs. Reproductive 0.008* 
mPRγ-1: Reproductive vs. Non-Reproductive 0.999 
mPRγ-2: Juvenile vs. Reproductive 0.226 
mPRγ-2: Reproductive vs. Non-Reproductive 0.044* 
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Discussion 

Many anatomical and physiological changes occur during life stage transitions. In 

the present study, gonadal histology and PR mRNA gene expression in in the OE of three 

distinct fathead minnow (FHM) life stages were examined. Histological analysis clearly 

identifying the differences between juvenile gonads and reproductive adults gonads. 

However, it was found that the non-reproductive adults were not fully quiescent. Gene 

expression analysis revealed that all four mPRs, and not nPR, were expressed in the OE 

across all life stages. Gene expression levels of mPRs varied from group to group in a 

manner that was not expected. Compared to the reproductive adults, juveniles expressed 

higher levels of mPRα and mPRβ, and non-reproductive adults expressed higher levels of 

mPRγ-1 and mPRγ-2.  

Gonadal Histology 
 

Upon examining the histological differences between the gonads from juveniles 

and the gonads from adults, substantial changes consistent with what was expected were 

observed. In juveniles, germ cells in early stages of development were apparent in both 

sexes. As the fish mature, the gonad is able to increase in size due to the maturation 

process of these germ cells. As the germ cells of females undergo oogenesis, the follicle 

fills with yolk that will eventually nourish the growing embryo and the post-hatch larva 

(Lubzens et al., 2010). Spermatogenesis is the process of maturing the primary 

spermatogonia to fully functioning spermatozoa in reproductive male adults. The lumen 

of the seminiferous tubules fills with spermatozoa, increasing the size of the testes.  

Spermatogenesis in fish occurs synchronously through cysts that are formed from Sertoli 

cells (Schultz et al., 2010). This corresponds to our results as cysts with the various 
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stages of spermatogenesis were observed. Our results also concur with a histological 

study performed on FHMs by others. Vitellogenic oocytes begin to form in females as 

early as 60 days post-fertilization (dpf, and continued to grow until the end of sampling at 

150 dps (Uguz, 2008). While most of the juvenile female samples had only primary 

follicles, some show signs of larger follicles beginning to form. In males, 

spermatogenesis was not observed until 120 dpf past the age of our juveniles, where we 

observed mostly early spermatogonia. This also confirms that sex could be determined 

via histology at the age we collected the juveniles at (84-104 dpf). 

The next life stage was from a reproductively active adult to a reproductively 

quiescent adult, initiated due to seasonal changes. It was expected that in decreased 

photoperiod and water temperatures, the gonads would regress as the response to 

reproduce declined. During regression of the ovaries, it was expected that the follicle 

would become atretic. The atretic follicle would degenerate and be reabsorbed by the 

body (Saidapur, 1978).  Histologically, one should observe breakdown of the nuclear 

membrane, a yolk mass that is liquified, an increased invasion of in-folding follicular 

layers, and phagocytosis of the granulosa cells (Coward & Bromage, 1998). The 

vitellogenic oocytes would disappear, and there should be a predominance of primary 

follicles. This is not what was observed in the fish collected for this study. Instead, we 

continued to see later stage oocytes with no appearance of atresia. 

During testicular regression in males, it was expected to see the formation of 

collagenous capsules containing degenerating germ cells and blood cells, the cysts would 

appear as a colloidal mass, and the lumen would be emptied of spermatozoa (Singh et al., 

2010). Once again, our results were not fully consistent with the work done in other fish 
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species. We continued to see spermatozoa in the lumen, although, based solely on 

observation, there appeared to be fewer spermatozoa in this group of fish than the 

reproductive group. Both results, from male and female, suggest that the fish are just 

beginning the regression process and have not fully reached a quiescent state, as was 

anticipated.  

The lack of fully quiescent fish was most likely due to limitations on time. The 

nonspawning environment induced for this experiment occurred in 45 days. This 

timetable did not allow for photoperiod or temperature to reach what may have been 

necessary for full quiescence, and/or fish should have been at those conditions longer to 

fully regress. To get results based off of fully non-reproductive adults,  is crucial that this 

portion of the experiment is repeated to allow for enough time to induce a full change in 

the reproductive status of these fish. Also, we began the induced non-reproductive season 

with subadult fish as opposed to already sexually mature adults. This may mean that 

subadult fish are still able to mature under the decreasing photoperiods and temperatures. 

If this experiment were to be repeated, it would be necessary to begin the nonspawning 

induction with reproductive adults.  

Specified spawning seasons are crucial for maintaining adequate energy budget 

during times when nutrients are not as readily available. For most seasonal breeders, this 

time is during the winter when day length is short and temperatures are low (Mommsen 

& Walsh, 1988). While resources are limited, it would be beneficial for fish to save 

energy for maintenance and growth, therefore, reducing the energy put towards 

reproductive growth. At the same time, it would not be beneficial for offspring to be born 

during the time of year when nutrients are low.  By ensuring that hatching occurs during 
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times of prime nutrient availability, offspring have a greater chance of growing and 

surviving to adulthood.  

Another interesting observation was that the GSI of the non-reproductive females 

was larger than the GSI for reproductive females. Most studies examining GSI post 

reproductive seasons show that the GSI of non-reproductive females should be lowered 

due to a lack of late stage oocytes, as seen in walleye pollock (Theragra chalcogramma) 

(Stahl & Kruse, 2008). However, since the fish of this study were still in a regressing 

state and not fully quiescent the oocytes may be beginning the apoptosis process. 

Histological analysis of oocytes undergoing apoptosis in the zebrafish shows evidence of 

hypertrophy and hyperplasia occurring in the granulosa cells (Üçüncü & Çakici, 2009). 

This would cause an enlargement of the oocyte, adding to the weight of the ovary, and is 

consistent with why the GSI of non-reproductive females would be larger than the 

reproductive females. If full regression was to take place, the granulosa cells would 

eventually be engulfed by phagocytes and leave behind a large cavity called the atrium 

(Üçüncü & Çakici, 2009). At this point, it would be expected that the space would fill 

with primary follicles and become smaller in size. These results could also be affected by 

the phase of the spawning cycle of the reproductive females. When studying FHMs 

throughout a reproductive cycle it was found that their GSI was lowest the day of 

spawning compared to the 45% GSI increase two days later just before the peak 

spawning period (Jensen et al., 2001). If a large portion of the female fish from my study 

had recently spawned, which was possible since eggs were observed to be deposit on the 

breeding tile, then this could also explain why there is a discrepancy with my results 

compared to other studies that showed lowered GSI post spawning season. If the large 
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mature oocytes are causing the increased mass of the ovaries, then once they are 

deposited after ovulation this would cause the ovary mass to decrease. 

Progesterone Receptor Gene Expression in the Olfactory Epithelium 
 

It was hypothesized that due to the specific reproductive function of these 

receptors, a greater abundance of PR transcripts would be found in the reproductive 

adults than in the juveniles. While changes in gene expression occurred, these results 

were not completely as predicted. It was observed that mPRα and mPRβ were expressed 

higher in juveniles than in the reproductively active adults. The other two mPRs, mPRγ-1 

and mPRγ-2, while still expressed in juvenile OEs, increased over the pubertal transition 

as expected. It is interesting to find that receptors crucial for coordinating reproduction 

are found during this non-reproductive life stage in FHMs.  

This may imply that these receptors have other regulatory functions that could be 

important for the transition from juvenile to adults. mPRs are hypothesized to be in crypt 

cells, and in a study examining the odorant tuning of crypt cells in rainbow trout, isolated 

crypt cells in juveniles responded to a wide variety of odorants, whereas adults only had a 

response to sex steroids and extracts from conspecifics (Bazáes & Schmachtenberg, 

2012). This odorant tuning change overtime could possibly be due to the change in the 

expression pattern of mPRs. These receptors may not be initially tuned to detect 

pheromones only, but require some adjustment during the transition from juvenile to 

adult. It could even be possible that the initial expression patterns help activate the onset 

of puberty. Once reaching the age conducive to start reproducing, pheromones from 

conspecifics could trigger a response from the hypothalamic-pituitary-gonadal axis to 

stimulate the onset of puberty. This has been previously demonstrated in mice, where 
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females exposed to the odor of male urine had an earlier onset of puberty compared to the 

age of puberty in mice not exposed to male urine (Flanagan et al., 2011). Similar results 

have long been known for swine, where puberty onset occurs in a gilt when she comes in 

direct contact with a boar (Pearce & Paterson, 1992). mPRs present in juvenile fish prior 

to being reproductive may be functioning as the trigger for puberty in FHMs. Once initial 

growth of the gonad has finished for both sexes, pheromones secreted by conspecifics 

may activate the onset of puberty. This process would be important, especially in FHMs, 

due to seasonal breeding and the importance of needing reproductively active fish during 

the mating season.  

It was hypothesized that reproductive quiescence would decrease the expression 

of all mPRs. However, qPCR results showed that while mPRα and mPRβ declined, 

mPRγ-1 and mPRγ-2 increased. These results could be due to the fact that the fish were 

not fully quiescent; therefore if the fish were reproductive quiescent the results may 

differ. However, expression of mPRγ-1 and mPRγ-2 is consistent with the mPRγ mRNA 

expression in the ovaries of the channel catfish (Ictalurus punctatus) (Kazeto et al., 

2005). The spawning season of channel catfish is early to mid-July and ovarian 

regression is seen starting in August with reproductive quiescence occurring during the 

winter months. When assessing the mRNA abundance of mPRγ in catfish ovarian 

follicles, it was found that the expression of mPRγ levels peaked at the time when the 

reproductive cycle was in a quiescent state (Kazeto et al., 2005). The initially high level 

of mPRα and mPRβ mRNA expression in reproductive adults and the decrease in mRNA 

expression in non-reproductive adults suggests that mPRα and mPRβ, and not mPRγ-1 
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and mPRγ-2, are the receptors responsible for coordinating reproduction in the OE of 

FHMs.  

While it is suspected that mPRγ-1, mPRγ-2, and mPRβ play a role in pheromone 

communication in goldfish and zebrafish, mPRα was not detected in goldfish or zebrafish 

OE transcriptome (Kolmakov et al., 2008). The difference in receptor expression already 

demonstrates a species difference among goldfish, zebrafish, and FHMs. This suggests 

that there may also be a difference in which mPR(s) are responsible for pheromonal 

communication among teleost fish.  

The question still remains: what is the role of mPRγ-1 and mPRγ-2 and why 

would their expression levels increase in the non-reproductive state? While it is clear that 

mPRs likely play a role in reproductive behaviors, they are potentially important for other 

social behaviors. The presence of mPRs outside of the spawning season corresponds with 

work done in waigieu seaperch (Psammoperca waigiensis). Peaked progesterone levels 

were measured in November and measurements of significantly high levels of 

progesterone continued into December even though their spawning season is March 

through September (Pham et al., 2012).  

Detecting progestogens from others in conspecifics may also help with social 

hierarchy. Salmonids, rainbow trout, and cichlids are known to form social hierarchies 

when limited resources are available (Chapman, 1966; McCarthy et al., 1992; O'Connell 

et al., 2013). A dominant fish is able to gain access to more food, space, and mates 

(McCarthy et al., 1992). In Astatotilapia burtoni, dominant males and females have 

higher circulating progestogen levels than the levels in subordinates  (O'Connell et al., 

2013). Male FHMs are also known to show dominance after exposure to pheromones 
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excreted by females. The dominant male will defend the breeding nest and the 

subordinate male is less likely to defend a nest in the presence of a dominant male 

(Danylchuk & Tonn, 2001). Although all these studies presented were performed with 

reproductively active adults, it may be possible that this hierarchy continues past the 

spawning season. This may lead to better reproductive success during the next spawning 

season because it can help ensure that the dominant males and females are already 

hormonally primed to reproduce right away and it may allow for them to already have a 

mate lined up. 

These non-reproductive functions could also account for why there were no 

sexually dimorphic observations in the expression pattern of mPRs in any of the groups 

examined in this study. This is surprising because it was expected that males would have 

a higher abundance of PRs than females.  This was based on results seen in our pilot 

study (Appendix A). Males had all around higher PR expression than females. However, 

this was based off of a sample size of one male and one female; therefore, no statistics 

were performed on the data collected. The tissue collected for this pilot study was also 

from fathead minnows of different strains, ages, and environmental conditions than the 

one used in this thesis study. Also the higher expression in males than females was 

expected due to the fact that females are the progestogen secreting sex and, therefore, 

males would be the ones required to perceive progestogens as pheromones. The possible 

social function of mPRs could explain why there is no difference between both sexes. 

This could be because both males and females are responding to progestogens as another 

form of social stimuli then both sexes would have to express mPRs in a similar manner. It 

is also possible that females are able to respond to their own progestogen secretions. This 
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may allow for feedback that continues the female’s reproductive activity and allows for a 

continuation of ovulation until her egg supply is depleted.  

Finally, it is important to think about the redundancy of having all four mPRs 

present in the olfactory epithelium at each life stage no matter the expressional pattern. Is 

it possible that all four are able to respond to the same pheromones? Do some respond to 

free progestogens, while others respond to the conjugated forms? Does the expression of 

one affect the expression of another? Or is each PR responsible for a specific 

reproductive function? At this time cross-talk has been shown to occur between mPRs 

and nPRs in human myometrium cells that help with maintaining a quiescent state of the 

myometrium during pregnancy, and helps with progesterone withdrawal at the time of 

labor (Karteris et al., 2006). It may be possible that mPRs within the OE work together to 

coordinate the crucial reproductive behaviors that help males and females find each other 

to spawn.  

Future Direction  
 

This study showed that in different life stages, mPRs in the OE vary in their 

mRNA expression. While some studies suggest that pheromonal communication occurs 

by progestogens binding to mPRs in the OE, how this mechanism occurs has not been 

explored in great detail. This information is critical for understanding how fish are able to 

coordinate finding a mate and spawning at the right time. Furthermore, no studies have 

looked at why mPRs are expressed in non-reproductive life stages. As seen in this study, 

specific mPRs have higher mRNA expression in non-reproductive fish than in 

reproductive fish. While I have made suggestions as to why this may occur, further 

studies need to be performed to determine the non-reproductive role of mPRs in the OE.  
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There is a potential ecotoxicology aspect to this research. It is important to 

determine the potential effect pollutants in the water can have on normal reproductive 

behaviors. Environmental gestagens have been measured in paper mill plant effluents, 

wastewater treatment plant effluents, and runoff from animal agriculture (Koplin et al., 

2002; Jenkins et al., 2003; Change et al., 2009; Bartelt-Hunt et al., 2012). These studies 

have measured gestagen compounds ranging from few to hundreds of ng/L, and these 

concentrations have been used in exposure studies to determine their biological 

significance.  

In adult FHMs, exposures to the progestins, levonorgestrel (<1 to 30 ng/L) and 

drospirenone (<1 to 70 µg/L), have deleterious effects on reproduction (Zeilinger et al., 

2009). In females, these effects include inhibited egg production, increased numbers of 

atretic follicles, decreased numbers of other follicular stages,  enlarged ovaries, and, at 

higher exposure concentrations, masculinization, which included development of male 

coloration and nuptial tubercles. Inhibition of egg production was seen at biologically 

relevant concentrations of levonorgestrel. For male fish, effects included enlarged testes 

and advanced spermatogenesis (Zeilinger et al., 2009).  In  another study, norethindrone 

caused masculinization of the female FHM and decreased egg production in exposed 

adult medaka (Paulos, et al., 2010). For a further review on environmental gestagens, 

refer to Orlando & Ellestad, 2014. Given the presence of mPRs in the OE, it is likely that 

gestagens are able to interfere with normal binding of the endogenous hormones and 

hinder the normal reproductive function of the OE. This could have dire consequences on 

normal aquatic life, leading to decreases in the population of many aquatic species and 

potential decline in aquatic ecosystem health.  
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Significance 
This study is the first to compare PR gene expression in the OE of reproductive 

fish to that of non-reproductive fish. It is also the first to compare progesterone receptor 

expression between males and females. Progesterone receptors in the OE play a major 

role in reproduction. Endogenous pheromones secreted by conspecifics have a beneficial 

role in initiating behavior, oocyte maturation, and sperm maturation. 

FHMs are sexually dimorphic and males portray overt reproductive behaviors, 

such as aggression towards other males, defending the nest, and spawning with females. 

Studies looking into the expression of PRs in the OE and behavioral studies on ways to 

influence PR binding will provide crucial information to make a final linkage between 

the roles that OEs, PRs, and pheromones play in regulating reproduction in teleost. 

Fish are an extremely important commodity, providing a source of high quality 

protein, amino acids, and omega-3 fatty acids to over 4.3 billion people each year (Tacon 

& Metian, 2013).  As a result of their high nutritional and economic value, the demand 

for seafood has increased drastically over the past few decades resulting in the decline 

and collapse of many wild capture fisheries (Villasante et al., 2013; Natale et al., 

2013).  To help mitigate the gap between supply and demand, and relieve pressures on 

wild fish stocks, greater emphasis has been placed on aquaculture.  A clear understanding 

of reproductive physiology and morphology is limited for many of the species currently 

cultured, creating a potential limitation for production rates.  One area that is under-

investigated is the role that pheromones play in regulating spawning behavior.  By 

increasing our understanding of the role that pheremonal signaling play among 

individuals and their effects on spawning behavior, we may be able to increase the 

productivity of fish farms and their resultant contributions to the world's food supply. We 
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can also better understand the ramifications of environmental gestagens in freshwater 

systems (Orlando, 2014). If it is found that these gestagens bind to the PRs in the OE and 

affect reproductive outcomes, then this could lead to decreased fish populations. This 

would be detrimental to aquatic ecosystem health and information from these studies 

would be crucial to those who regulate the quantity and quality of the Nation’s water 

resources. 
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Appendix A: Pilot Study of Progesterone Receptor Gene 
Expression in the Olfactory Epithelium 
 

Prior to my thesis research, a pilot study by our lab was performed to determine 

the potential presence of PR mRNA transcripts and to determine the concentration of 

RNA extracted from a pooled sample of OEs. 

Methods & Materials  

Three adult male FHMs and three adult female FHMs were euthanized in a strong 

dose a MS-222 anesthetic (500 ppm, buffered pH=7.4). The left and right OEs were 

dissected out, and separately snap frozen in liquid nitrogen. All of the male right side 

OEs were combined into one pool, and all of the right side female OEs were pooled, 

giving a sample size of one male and one female. RNA was extracted, quantified, and 

reverse transcribed into cDNA. Male-pooled sample underwent both PCR and 

quantitative real time PCR (qPR), while only qPCR was performed on the female pool. 

Both of these were performed to gain visual and quantitative confirmation of which 

progesterone receptor mRNA transcripts were present in the OE.  

Results 

PCR results from male FHMs showed the presence of mPRα, mPRβ, and mPR 

total γ (at the time we did not have separate mPRγ-1 and mPRγ-2 primers) and no nPR 

expression (Figure A.1). qPCR confirmed these results. For these results, they were 

normalized by RPL8 and the no RT results were negligible. At this time we had two 

primer sets for each splice variant of γ and these results indicated that mPRγ-2 had the 

highest expression levels followed by mPRγ-1, with lower expression of mPRα and mPRβ 

(Figure A.2). These results also demonstrated that male FHMs expressed these receptors 
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more abundantly than female FHMs. Statistical analysis was not performed on this data 

because we only had a sample size of one.  

 

 

 

 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

Figure A.1: Progesterone receptor (PR) PCR products run on a 2% agarose gel stained 
with ethidium bromide, visualized on a Biorad Molecular Imager® ChemiDocTM XRS.  
Lanes from left to right: protein marker, nuclear progesterone receptor (nPR), 
membrane PR (mPR) α, mPR β, mPR total γ (does not distinguish between mPRγ-1 and 
mPRγ-2), and ribosomal protein L8 (RPL8). 
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Figure A.2: Progesterone receptor (PR) expression levels in the olfactory epithelium of 
pooled female and male FHMs, measured by SYBR Green QPCR. Absolute 
quantification of PR expression was determined by the use of a standard curve 
comprised of a serial dilution of PR cDNA. Values were then normalized by ribosomal 
protein L8 (RPL8).  Expression levels of RPL8 were not different between sexes. (n=1) 

 
    nPR                mPRα              mPRβ          mPRγ-1        mPRγ-2 
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Appendix B: Photothermal Manipulation 

Temperature and daylight hours were logged over the month long photothermal 

manipulation (Figure B.1). The variation in room temperature and water temperature is 

due to the fact that the water pump produced heat that raised the water temperature by 

about 4 °C.  The room contained a monitor that recorded the temperature at all times 

which allowed for determination of the maximum and minimum daily room temperature. 

The water temperature was recorded once a day in the early morning. Temperature and 

daylight hours were changed every morning. The plateau in temperature and daylight 

hours was when we began the weeklong acclimation period.  
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Appendix C: Quantitative Real Time PCR Primers, Annealing 
Temperatures, Standard Curves, and Efficiencies  
 

The table below shows the accession number, qPCR forward and reverse primers, 

and annealing temperature for each gene (Table C.1). The following figures show the 

qPCR results for each PR. Reproductive adults and juveniles were performed on the same 

plate (Figures C.1-C.6 A) while non-reproductive adults were performed on a separate 

plate (Figures C.1-C.6 B). For each graph, the standard curve is plotted (filled circles) 

with the trend line, equation, and R2 value shown. Unknown samples are also plotted on 

each graph with open squares. 

Table C.1: For every gene examined in this experiment this table give the NCBI accession number, 
both the forward and reverse primers, and the annealing temperature used. 

 

Gene Accession 
Number 

Forward Primer Reverse Primer Annealing 
Temperature 
(°C) 

RPL8 AY919670 AACTACGCCACAG
TCATCTC 
 

AGCAACAACACC
AACAACAG 
 

59.0 

nPR JX012230 AGTTTGATGAAAT
GAGACAGA 
 

TGACCTTCTTTAC
AATCTCG 
 

58.2 

mPRα JX012231 AAGTTCGTTCACA
AGCTATT 
 

TTATAGATGCGA
TGGAACAC 
 

57.2 

mPRβ JX012232 CTGGAAGCAATAT
TTAGAGATTATC 
 

GCACCAATAAGA
AGAAGGAT 
 

58.2 

mPRγ-1 JX012233 TGGCCTGCTACTCC
AGATTC 

TCAGTGCAACCC
TCACCTAC 

57.2 

mPRγ-2 JX012234 TCGTGGGTGAACA
GCACATT 

TAGTGTAGGAAT
GGTAGGCCAAGC 

57.2 
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Figure C.1: A. Standard curve and unknowns for reproductive adults and juveniles. 
(Efficiency=97.7%) B. Standard curve and unknowns for non-reproductive adults.  (Efficiency= 
98.3%) 

A 

B 

RPL8 

Log (transcript number) 

Log (transcript number) 
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mPR α 

Figure C.2: A. Standard curve and unknowns for reproductive adults and juveniles. 
(Efficiency=95.9%) B. Standard curve and unknowns for non-reproductive adults.  
(Efficiency=97.3%) 

A 

B 

Log (transcript number) 

Log (transcript number) 
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Figure C.3: A. Standard curve and unknowns for reproductive adults and juveniles. 
(Efficiency=98.4%) B. Standard curve and unknowns for non-reproductive adults.  
(Efficiency=99.9%) 

mPR β 
A 

B 

Log (transcript number) 

Log (transcript number) 
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Figure C.4: A. Standard curve and unknowns for reproductive adults and juveniles. 
(Efficiency=96.7%) B. Standard curve and unknowns for non-reproductive adults.  
(Efficiency=96.1%) 

A 

B 

mPR γ-1 

Log (transcript number) 

Log (transcript number) 
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Figure C.5: A. Standard curve and unknowns for reproductive adults and juveniles. 
(Efficiency=98.7%) B. Standard curve and unknowns for non-reproductive adults.  
(Efficiency=94.4%) 
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B 

mPR γ-2 

Log (transcript number) 
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Figure C.6: A. Standard curve and unknowns for reproductive adults and juveniles. 
(Efficiency=102%) B. Standard curve and unknowns for non-reproductive adults.  
(Efficiency=100.4%) 
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Appendix D: Quantitative Real Time PCR Results for each 
Receptor, and Split by Sex 
 
 
 
 
  

A 

B 

mPRα and mPRβ 

Figure D.1: Comparing membrane progesterone receptor (mPR) α (A) mPRβ (B) expression 
levels in the olfactory epithelium between sexes in each life stage group. Absolute 
quantification of PR expression was determined by the use of a standard curve comprised of 
a serial dilution of PR cDNA and SYBR Green QPCR. Values were then normalized by 
ribosomal protein L8 (Rpl8). For both genes and all three life stages, there was no 
significant difference between the sexes. n=8 (except reproductive male=7 and juvenile 
female=6). 

            Juvenile                       Reproductive Adults         Non-Reproductive Adults 

            Juvenile                       Reproductive Adults         Non-Reproductive Adults 
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Figure D.2: Comparing membrane progesterone receptor (mPR) γ-1 (A) mPR γ-2 (B) 
expression levels in the olfactory epithelium between sexes in each life stage group. Absolute 
quantification of PR expression was determined by the use of a standard curve comprised of 
a serial dilution of PR cDNA and SYBR Green QPCR. Values were then normalized by 
ribosomal protein L8 (Rpl8). For both genes and all three life stages, there was no 
significant difference between the sexes.  n=8 (except reproductive male=7 and juvenile 
female=6). 

A 

B 

mPRγ-1 and mPRγ-2 

 

 

            Juvenile                       Reproductive Adults         Non-Reproductive Adults 

            Juvenile                       Reproductive Adults         Non-Reproductive Adults 
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