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Global optimization is used to control complex systems whose response is an un-

known function on a continuous domain. Response values can only be observed empiri-

cally by simulations, and cannot be accurately represented using closed-form mathemat-

ical expressions. Prediction of true optimizer in this context is usually accomplished by

constructing a surrogate model that can be thought of as an interpolation of a discrete set

of observed design points.

This thesis includes study of convergence rates of epsilon-greedy global optimiza-

tion under radial basis function interpolation. We derive both convergence rates and con-

centration inequalities for a general and widely used class of interpolation models known

as radial basis functions, used in conjunction with a randomized algorithm that searches

for solutions either within a small neighborhood of the current-best, or randomly over the

entire domain. An interesting insight of this work is that the convergence rate is improved

when the size of the local search region shrinks to zero over time in a certain way. My

work precisely characterizes the rate of this shrinkage.



Gaussian process regression is another tool that is widely used to construct surro-

gate models. A theoretical framework is developed for proving new moderate deviations

inequalities on different types of error probabilities that arise in GP regression. Two spe-

cific examples of broad interest are the probability of falsely ordering pairs of points (in-

correctly estimating one point as being better than another) and the tail probability of the

estimation error of the minimum value. Our inequalities connect these probabilities to the

mesh norm, which measures how well the design points fill the space. Convergence rates

are further instantiated in settings of using a Gaussian kernel, and either deterministic or

random design sequences.

Convergence can be more rapid when we are not totally blind to the objective func-

tion. As an example, we present a work on simultaneous asymmetric orthogonal tensor

decomposition. Tensor decomposition can be essentially viewed as a global optimization

problem. However with the knowledge of the algebraic information from the observed

tensor, the method only requires O(log(log 1
ε
)) iterations to reach a precision of ε.
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Chapter 1: Introduction

Optimization is one of the most important quantitative problems in the world and it

is so close to affect our daily lives. The history and development of optimization is com-

prised of a board range of subjects. From statistics and operations research to computer

science and engineering, the logic is alike - to minimize or maximize the response of a

complex system whenever we can model the system as a real function of the configura-

tions we could make. The only difference over these subjects is that they characterize the

unknown under various background information and identify problem-specific input do-

mains. There are a number of branches under this general topic, as one can find papers for

single-objective or multi-objective optimizations, for categorical or continuous domains,

and for local or global optimization (unique or multiple extrema).

We will particularly focus on global optimization for single-objective settings in

this thesis. Global optimization is used to control multiple-extrema systems whose per-

formance can only be observed empirically, by running physics-based or stochastic sim-

ulations, and cannot be accurately represented using closed-form mathematical expres-

sions. For example, battery electric vehicle engineers use simulation-based optimization

to identify the most effective design variables and compare different configurations of

various car segments. Similar “knob tuning” is also used to select parameters for drilling
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new oil wells, or even to improve the predictive performance of high-dimensional neural

networks. In all of these cases, one can evaluate the performance of a particular config-

uration of parameters through a black-box simulator (or through a field experiment), but

each such evaluation is computationally expensive. Thus, exhaustive search is impossi-

ble, and one has to use the results of a small number of experiments to accurately predict

the outcomes of others.

Prediction is usually accomplished by constructing a surrogate model ( can be

thought of as an interpolation of the observed solutions). Using this model, one can make

an educated guess as to the best configuration, and potentially run additional experiments

based on this information. The final result thus depends on two factors - the specific tech-

nique used to construct the interpolation, and the logic used to design new experiments.

Researchers have developed a rich set of tools for both of these aspects, with most of the

literature focusing on their computational performance.

The theory behind these algorithms, however, is less developed, especially when

it comes to convergence rates, which rigorously quantify how much “effort” is needed

to solve a given problem with a certain degree of precision. The second chapter of this

thesis is one of a very small number of studies to investigate this issue. Both convergence

rates and concentration inequalities are derived for a general and widely used class of

interpolation models known as “radial basis functions,” used in conjunction with a ran-

domized algorithm that searches for solutions either within a small neighborhood of the

current-best, or randomly over the entire domain. This algorithm is simple, but theoret-

ically tractable, and it captures the basic tradeoff between local and global search that is

fundamental to virtually any global optimization algorithm.
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An interesting insight of this work is that the convergence rate is improved when

the size of the local search region shrinks to zero over time in a certain way. My paper

precisely characterizes the rate of this shrinkage - a slower rate will waste effort that could

have been used to explore the rest of the domain, while a faster rate runs the risk of stalling

at a suboptimal solution. On the other hand, the weight assigned to global search should

always be positively lower bounded, i.e., it is never safe to stop exploring the domain

entirely.

Gaussian process (GP) regression can be another tool that is widely used to con-

struct surrogate models. This is a classical model for geostatistics, Bayesian optimiza-

tion, and parameter tuning in machine learning. It also provides another perspective with

stochastic components to the radial basis function interpolation method, although there

might not be any change in our implementation empirically. So this part can be viewed

as a complementary work to the foremost convergence rate analysis under radial basis

function interpolation.

Chapter 3 contains a theoretical framework that is developed for proving new mod-

erate deviations inequalities on different types of error probabilities that arise in GP re-

gression. Two specific examples of broad interest are the probability of falsely ordering

pairs of points (incorrectly estimating one point as being better than another) and the

tail probability of the estimation error of the minimum value. Our inequalities connect

these probabilities to the mesh norm, which measures how well the design points fill the

space. Convergence rates are further instantiated in settings of using a Gaussian kernel,

and either deterministic or random design sequences.

The description of the term precision can be an interesting topic. Connecting chap-
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ter 2 and chapter 3, we see that when researcher seeks for less, or weaker precision, the

convergence rate can be improved. The result of chapter 2 shows that if one cares how

well the estimated minimizer in the domain approaches to the true point, the convergence

rate can be polynomial. This can be compared with the work in chapter 3 where a Gaus-

sian process prior is adopted to account for the randomness of responses. As we may use

the same formula to construct surrogates, the result from chapter 2 still works for chap-

ter 3. However the Gaussian model provides space for studying the convergence of the

probability of the extreme value estimation having an error larger than a preset threshold.

This convergence turns out to be on an exponential order.

More generally, if any additional information are there to help so that the objec-

tive is not any more a pure black box, we will have another dimension to improve the

convergence rate of global optimization. In this thesis, the last major work on tensor

decomposition can serve as a critical instance to support that argument. Decomposing a

tensor, although not necessarily based on any general optimization logic, is indeed equiv-

alent to a global optimization problem - the components are searched and adjusted to best

recover the observed tensor. Reader of this thesis will see that, by taking advantage of the

algebraic structure of the tensor data, we will be able to achieve a rapid convergence even

faster than exponential decays.

The work on simultaneous asymmetric tensor decomposition via alternating sub-

space iteration is presented in chapter 4. Tensor decomposition has a long history con-

nected with many scientific disciplines such as psychometrics and neuroscience. Bene-

fited from rapid development on hardware in the last decade, the significant interest in this

multi-way data is reflected in emerging engineering applications in biomedical area, sig-
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nal processing, data mining and computer vision. Specifically, for latent variable models

(including Gaussian mixture models, hidden Markov models, latent Dirichlet allocation,

etc.), tensor decomposition can be used to develop estimators by method of moments. The

method of moments is simple as first compute the tensor of empirical moments as sample

means and correlations, then solve for the model parameters that give rise to (nearly) the

observed quantities. This constructive method leads to consistent estimators which can be

efficiently computed by orthogonally decomposing a tensor of observed moments. This

efficiency becomes especially valuable in a high-dimension problem since the number of

cross-feature moments can be large.

In particular, we pay attention on a specific kind of tensor decomposition called

tensor CP decomposition. Existing popular approaches either recover components one by

one, not necessarily in the order of larger components first, or requires matrix decompo-

sition which requires a linear convergence rate. Recently developed simultaneous power

method, although achieves a quadratic convergence rate, obtains only a high probability

recovery of top r components even when the observed tensor is noiseless. For the purpose

of improving computational efficiency, a new algorithm is developed for decomposition

that is able to handle asymmetric tensors.

We propose a Slicing Initialized Alternating Subspace Iteration method and a Slice-

Based Initialization procedure that together guarantee the almost sure recovery of top

r components (ε-close) under noiseless cases. When tensor is noisy, our algorithm is

provably robust to noise and has high probability to achieve the goal. The alternating

subspace iteration method runs O(log(log 1
ε
)) steps of tensor subspace iterations while

the initialization takes only constant steps of matrix subspace iterations, which is a sign
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of efficiency.

Typically in this literature, the eigenvectors characterizing the decomposition are

found sequentially; the state of the art is able to recover them simultaneously, but only

for the symmetric case. My work is the first to guarantee simultaneous recovery in the

asymmetric setting, with rigorous convergence rates that hold even if the tensor rank is

misspecified. Furthermore, under the noiseless case my approach is guaranteed to con-

verge almost surely, covering both symmetric and asymmetric tensors, which is partic-

ularly notable because many prior methods in this area can only be proved to succeed

with high probability (not necessarily 1). When tensor is noisy, our algorithm is provably

robust to noise and has high probability to simultaneously recover top components.
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Chapter 2: Convergence Rates of Epsilon-Greedy Global Optimization

Under Radial Basis Function Interpolation

2.1 Introduction

Consider the optimization problem minx∈X f (x), where no explicit-form expres-

sion for f is available. We can observe the function values f (xn) at individual design

points {xn}n≥1 of our choosing (we assume that the observations are noiseless). f has

certain smoothness but we have no information about the derivative of f at these points.

This problem class is also known as “global optimization” and “derivative-free optimiza-

tion” [Conn et al., 2009a], and is often applied to tune parameters in engineering simu-

lators [Giuliani and Camponogara, 2015] or machine learning models [Eitrich and Lang,

2006].

When the domain X ⊆ Rd is compact and connected, at stage N we construct

a function f̂N (often called a “metamodel” or “surrogate model” ) that interpolates the

observed function values f (x1) , ..., f (xN) in some way. This allows us to predict val-

ues at points we have not yet observed, and to approximate the optimal solution x∗ =

arg minx∈X f (x) (assumed to be unique) by calculating x̂∗N = arg minx∈X f̂N (x) (ran-

domly selected if not unique). We can also use the interpolation to guide the selection
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of new design points, i.e., xN can be allowed to depend on f̂N−1. Thus, the quality of

our estimate of the optimal solution (i.e., the difference ‖x̂∗N − x∗‖) is determined by two

factors: 1) the particular interpolation method used to construct f̂N , and 2) the policy used

to determine {xn} based on previous observations.

In this chapter, we derive new results on the convergence rate of ‖x̂∗N − x∗‖ under

specific choices for the policy and interpolation. We assume that the metamodel f̂N is

constructed using the method of radial basis functions (RBFs), which is widely used in

global optimization, and is closely related to Gaussian process regression (itself a very

popular technique). As for the choice of design points, we focus on a relatively simple

sequential policy known as ε-greedy: at each time stage n, we either sample uniformly

from a small neighborhood of x̂∗n−1 (with probability ε > 0), or we sample uniformly from

the entire domain X (with probability 1− ε > 0); note that this policy is randomized. We

will explain the reasons for this choice of policy further down, but first we will state the

two main results of this chapter: the pathwise convergence rate

‖x̂∗N − x∗‖ = O

( logN

N

) k
2d
(

log (bN)

bN

) k2

4d

 a.s.,

where b is determined from ε (will later explain how) and k is a parameter of the interpo-

lation model that can be computed by user, and the concentration inequality

P

‖x̂∗N − x∗‖ > c

(
logN

N

) k
2d
(

log (bN)

bN

) k2

4d

 ≤ c′

N
,

where c, c′ are problem-specific constants. The pathwise rate is asymptotic, but at a fixed
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time N , the set of all sample paths that have not yet entered the asymptotic regime has

measure O
(

1
N

)
.

Although the global optimization literature has a long history, and many sophisti-

cated sampling procedures have been developed, results of the above type remain fairly

rare: most studies focus on empirical performance and/or on weaker theoretical guar-

antees such as convergence to a first-order critical point. Among papers that do study

convergence rates, many require additional structure on f , such as convexity [Bauschke

et al., 2015, Duchi et al., 2015] or strong convexity [Berahas et al., 2019]. Among the

very few papers that do not require such assumptions, we highlight Bull [2011], which

studies the a.s. convergence rate of E |f (x̂∗N)− f (x∗)| under Gaussian process interpo-

lation and the expected improvement sampling procedure; the rate obtained is similar to

ours. We also mention the recent work by Calvin et al. [2018], which obtains a very

strong rate of O
(
e−c
√
N
)

on the optimality gap min1≤n≤N f (xn)− f (x∗), but requires a

computationally expensive multilinear interpolation model as well as the numerical evalu-

ation of complicated integrals; the constant c also vanishes very quickly in the dimension

d. Lastly, Tikhomirov [2006] derives a bound on the time required to reach a certain

accuracy using randomized direct search (without any interpolation model).

In light of this, there is value in focusing on the ε-greedy policy, which has had

a long history in reinforcement learning [Sutton and Barto, 2018] and is still actively

used in applications such as recommender systems [Kamishima and Akaho, 2011] and

crowdsourcing [Raykar and Agrawal, 2014]. This simple policy captures the key tradeoff

between local and global search, governed by the parameter ε. It enables a tractable

analysis of convergence rates under RBF interpolation, and potentially would be scalable
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to high-dimensional problems where more sophisticated methods run into computational

bottlenecks. Furthermore, the rates that we derive also hold for generalizations of ε-

greedy where global search is conducted by sampling from an arbitrary density on X

(this changes the multiplicative constant, but not the order of the rate), so in that sense our

choice of policy is not restrictive. However, our analysis cannot improve the rates by using

non-uniform sampling, because our proof technique relies on a connection between the

estimation error ‖f̂N − f‖ under RBFs and the so-called “mesh norm,” which measures

how evenly the design points are spread out over X .

We do, however, obtain an insight into the optimal size of the local search region.

Namely, we find that the size of the neighborhood around x̂∗N should shrink over time,

at a rate proportional to
(

log(bN)
bN

) k
2d

. Essentially, if the local search region shrinks too

slowly, we will be wasting design points that should have been used to explore the domain;

however, if the local search region shrinks too quickly, there is a risk that it will no longer

cover x∗ even whenN is very large. Shrinking the local search region at the rate indicated

above improves the convergence rate to the one aforementioned by a factor of
(

log(bN)
bN

) k2

4d

that otherwise would not be there.

2.2 Literature review

There is a large class of global optimization methods that either do not require

a metamodel at all, or can be applied very generally (with virtually any metamodel).

These include heuristics such as evolutionary algorithms [Back, 1996], simulated anneal-

ing [Corana et al., 1987] and particle swarm [Hu et al., 2004] algorithms. Such approaches
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have shown promise in global optimization (see, e.g., Schutte and Groenwold, 2005 or

Yang, 2010). To give some examples of the available theory, Van den Bergh and Engel-

brecht [2006] proved convergence of particle swarm to stationary points, while Vaz and

Vicente [2007] proved the existence of a subsequence of design points that converges to

a first-order critical point. Orosz and Jacobson [2002] studied the expected number of

samples required by simulated annealing to identify a suboptimal solution within some

fixed tolerance level; the resulting bounds, however, are difficult to compute and have to

be evaluated numerically.

Direct search methods [Torczon, 1997] also do not require an interpolation model,

but rather move toward x∗ by a sequence of local directional searches. This methodology

can handle extensions such as constrained problems [Lewis and Torczon, 1999, 2000]; see

Kolda et al. [2003] for a review of various extensions and improvements. A major advance

in this literature was the development of mesh-adaptive direct search [Audet and Dennis,

2006], which allows substantially more flexibility in the choice of direction. Again, many

extensions are possible, for example to nonsmooth optimization [Audet et al., 2008] or

multiobjective optimization [Audet et al., 2010]. The theory generally focuses on conver-

gence to first-order critical points, with Abramson and Audet [2006] proving convergence

to second-order stationary points.

Trust-region methods conduct local search on a suitably defined region using a

metamodel, for example linear [Powell, 1994, Conn et al., 1997], quadratic [Powell,

2002], or polynomial [Shashaani et al., 2018] interpolation. The practical potential of

RBF interpolation within the trust-region framework was investigated by Wild et al.

[2008]. With regard to theory, fast convergence rates can be derived when the deriva-
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tive of f is observable [Shi and Guo, 2008], but in the derivative-free setting, the main

focus has been on global convergence to first-order [Wild and Shoemaker, 2011] and

sometimes second-order [Conn et al., 2009b] critical points.

By contrast, methods based on Gaussian process regression typically do not ex-

plicitly distinguish between local and global search, but rather accomplish this tradeoff

through a stochastic metamodel with built-in uncertainty quantification. The most popu-

lar algorithmic approach in this stream is expected improvement [Jones et al., 1998] and

its many variants [Sasena et al., 2002, Huang et al., 2006]. The theory primarily focused

on the pointwise consistency of the metamodel [Vazquez and Bect, 2010a] until the con-

vergence rate analysis of Bull [2011], which was discussed earlier. Closely related is the

probability of improvement criterion [Zhigljavsky and Zilinskas, 2008], which motivated

the rate analysis of Calvin et al. [2018], also discussed previously.

Lastly, RBF interpolation has had a long history in numerical analysis [Buhmann,

2003] outside the setting of global optimization. Our analysis draws on this literature,

specifically theory by Wu and Schaback [1993] characterizing the convergence rate of the

estimation error (under RBF interpolation) given an arbitrary collection of design points.

The first RBF-based global optimization procedure was proposed by Gutmann [2001],

with later improvements by Regis and Shoemaker [2007] and Holmström [2008]. Sam-

pling in these papers is based on a measure of the smoothness of the interpolation, with

additional logic for balancing global and local search. Other sampling criteria have also

been considered: for example, the method of Regis and Shoemaker [2005] aims to spread

out the design points to avoid excessive clustering. Extensions include parallelized meth-

ods [Regis and Shoemaker, 2009] and hybrid methods combining RBF with ideas from

12



coordinate search [Regis and Shoemaker, 2013]. Much of this work is computationally

oriented and focuses on complex engineering applications, with the theory mostly limited

to global convergence. In the computer science community, Srinivas et al. [2010] derived

rate results that apply to RBFs, but the setting there is online learning, where one opti-

mizes cumulative error over time, rather than the offline setting more typical of global

optimization (global search plays a much greater role in offline algorithms).

Overall, the approach and results presented here are intended, not to supplant the

existing work on global optimization with RBFs, but to complement it from a theoretical

viewpoint. Our paper adds to a very small number of prior studies of convergence rates

for derivative-free optimization.

2.3 Problem statement and RBF interpolation

Let f be a function defined on a compact and connected domain X ⊆ Rd, and

suppose that x∗ = arg minx∈X f (x) is the unique global minimizer of f . Let {xn}Nn=1 be a

finite sequence of design points inRd, where for each xn we observe f (xn) without noise.

The design points can be pre-determined by the decision-maker or chosen adaptively; for

the moment, however, suppose that they are simply given and that all the observations

have been made. Using these observations, we construct a radial basis function (RBF)

interpolation f̂N of f and use x̂∗N = arg minx∈X f̂N (x) as our estimate of x∗.

The RBF interpolation follows the method in Wu and Schaback [1993]. In order

to apply the result in Wu and Schaback [1993] we adopt their assumptions which are

introduced here. Let Pq be a space of polynomial functions on Rd with total order not
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exceeding q; when q > 0, suppose that, if for some p ∈ Pq we have p (xn) = 0 for

all n = 1, ..., N , then p ≡ 0. Now let φ : R+ → R be a function chosen to make

the mapping r 7→ φ (
√
r) conditionally positive definite of order q. This conditional

positive definiteness means that for all N the N × N kernel matrix, whose (i, j)th entry

is φ (‖xi − xj‖), is positive definite on the set of u ∈ RN satisfying

N∑
n=1

unpi (xn) = 0, i = 1, ..., Q,

where un is the n-th entry of u, Q =
(
q+d−1
d

)
is the dimension of Pq, and (p1, ..., pN) is

any basis of Pq. The interpolation f̂N then has the form

f̂N (x) =
N∑
n=1

anφ (‖x− xn‖) +

Q∑
i=1

a′ipi (x) ,

where the coefficients (a1, ..., aN) and
(
a′1, ..., a

′
Q

)
constitute the solution to the linear

system

N∑
n=1

anφ (‖xj − xn‖) +

Q∑
i=1

a′ipi (xj) = f (xj) , j = 1, ..., N,

N∑
n=1

anpi (xn) = 0, i = 1, ..., Q.

The conditional positive definiteness assumptions on φ guarantee that this system is non-

singular.

Given the RBF φ, let ψ (x) = φ (‖x‖) and take ψ̃ to be the Fourier transform of ψ.
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We define

c2
f,φ =

∫
Rd

∣∣∣f̃ (x)
∣∣∣2 ψ̃ (x)−1 dx

and require f to satisfy c2
f,φ < ∞, a condition that is also imposed in Wu and Schaback

[1993]. Moreover, although f itself is not required to be convex, for our proof we assume

local strong convexity of f around its global minimizer.

To measure the local density of the design points, denote by

hD = sup
x∈D

inf
n=1,...,N

‖x− xn‖2 (2.1)

the mesh norm of an arbitrary compact subset D. The naming is adopted following

the community of interpolation. Letting µ ∈ Nd with |µ| :=
∑

j µj , we use the stan-

dard multi-index notation f (µ) for the function obtained after sequentially applying to

f the µjth-order partial derivative with respect to xj , j = 1, ..., d. Also let B (x, r) =

{y : ‖x− y‖ ≤ r} be the ball of radius r > 0 centered at x ∈ Rd. We now formally state

the assumptions we make.

Assumption 2.1. Assume thatX is compact and connected, and f has unique global min-

imizer. Let the kernel function φ satisfy the (conditional) positive definiteness introduced

above, which is necessary to cite the result of [Wu and Schaback, 1993]. Suppose that f

is C2 on X with c2
f,φ < ∞, and the RBF φ is C2 on (0,∞) and C4 in a neighborhood of

zero, with k ≥ 2. Let k = 1
2
s∞ where s∞ satisfies

0 < ψ̃ (t) ≤ cψ‖t‖−d−s∞
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for ‖t‖ → ∞. Lastly, there exists a closed ball centered at x∗ with strictly positive radius

where f is strongly convex.

This condition on s∞ is satisfied by many commonly used kernels. For example,

if φ (r) = e−αr
2 is the Gaussian kernel (for some α > 0), we may have arbitrarily large

values of s∞, leading to arbitrarily large values of k, which in effect causes x̂∗n to converge

to x∗ even more quickly than the rate we derive in Section 3.3.4. However, k will be

bounded for other types of kernels.

With these preliminaries, we can now state a result from Wu and Schaback [1993]

that will be referenced and applied throughout this chapter.

Lemma 2.1. [Wu and Schaback, 1993] With assumption 2.1 made, given ρ > 0, there

exists k ∈ N+ and C ∈ R+ such that, for any {xn}Nn=1, any N and any x ∈ X satis-

fying hB(x,ρ)∩X < h0, with h0 being a constant whose value depends on k, we have the

inequality ∣∣∣f̂ (µ)
N (x)− f (µ) (x)

∣∣∣ ≤ cf,φCh
k−|µ|
B(x,ρ)∩X

for all µ satisfying |µ| ≤ k.

2.4 Properties of local mesh norms

Below, we show the equivalence of several measures of local data density, including

the basic local mesh norm defined in (2.1), on a particular class of domains. The relation-

ship between these measures will be useful in the subsequent analysis as we will draw on

results obtained for different mesh norms by different research communities.
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Definition 2.1. A compact set D ⊆ Rd is shape-regular if there exists a continuously

differentiable bijection LD, mapping points from either [0, 1]d or B (0, 1) (either can be

chosen as the domain) onto D, whose Jacobian has nonzero determinant everywhere on

the domain.

Definition 2.2. Let XN = {xn}Nn=1 ( X and define

h̆D (XN) = sup
y∈D

inf
x∈XN∩D

‖x− y‖2,

h̄D (XN) = sup
y∈D

inf
x∈XN∪∂D

‖x− y‖2,

h̃D (XN) = sup
y∈D

inf
x∈XN∪∂D

‖x− y‖∞,

whenXN∩D 6= ∅. For simplicity, we may omit the explicit dependence of these quantities

on XN from the notation when there is no ambiguity. Note that they are not really norms.

To compare these and other quantities, we introduce the following notation. For

two positive sequences {F 1
n}
∞
n=1 and {F 2

n}
∞
n=1 in R, we write F 1

n . F 2
n if there exists a

constant c, independent of n, such that F 1
n ≤ cF 2

n for all n. We write F 1
n
∼= F 2

n when

limn→∞
F 1
n

F 2
n

= 1 (note that this is stronger than having both F 1
n . F 2

n and F 2
n . F 1

n ).

Lemma 2.2. Let D ⊆ X . For any {XN}, we have h̄D . h̃D and h̃D . h̄D (the above

definition holds for N →∞). We also have h̄D ≤ hD ≤ h̆D.

Proof: The first statement follows from the equivalence of norms in finite-dimensional

spaces. The second statement follows from the relationshipXN∩D ⊆ XN ⊆ X∪∂D.

From Lemma 2.1, we know that on X the interpolation error is bounded by some

power of the local mesh norm. Therefore, in order to study the convergence rate of the
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interpolation error under any sampling scheme, we essentially require an appropriate de-

creasing rate for the local mesh norm. Janson [1987] derived such a rate for the specific

case where the design points are sampled from a uniform distribution on X . For conve-

nience, we state this result here.

Lemma 2.3. [Janson, 1987] Suppose that X = [0, 1]d or X = B (0, 1). Suppose also

that the design points {xn}Nn=1 are sampled i.i.d. from a uniform distribution on X . Then,

h̃X = O

((
logN

N

) 1
d

)
(2.2)

almost surely as N → ∞. Furthermore, the multiplicative constant in (2.2) is nonran-

dom, i.e., the limit superior lim supN→∞ h̃X
(

logN
N

)− 1
d is a.s. equal to a deterministic

quantity.

We also prove an analogous result for a more general case where the design points

are sampled from an arbitrary probability distribution. This result helps motivate our

subsequent focus on the epsilon-greedy policy, which uses uniform sampling for global

search, because the convergence rate of the mesh norm is faster when the essential infi-

mum of the sampling density is higher.

Lemma 2.4. Suppose that X = [0, 1]d or X = B (0, 1). Suppose also that the design

points {xn}Nn=1 are sampled independently from a probability distribution with density

g : X → R. Let gmin = ess infx∈X g (x) and suppose that gmin > 0. Then,

h̃X = O

((
log (gminN)

gminN

) 1
d

)
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almost surely.

Proof: We prove this lemma forX = [0, 1]d, as the proof for the closed ball is similar. De-

fine random variables zn ∼ Bernoulli (gmin). Then, the distribution of the design points

can be rewritten as follows: if zn = 1, draw xn ∼ U
(

[0, 1]d
)

, and if zn = 0, draw xn from

a distribution with density x 7→ g(x)−gmin

1−gmin
. We can also denote by X U

N = {xn : zn = 1} the

subset of the design points coming from the uniform density, with NU =
∑N

n=1 zn being

the size of this subset. By the strong law of large numbers, NU ∼= gminN almost surely.

Now, observe that for general D ⊆ X and Y1 ⊆ Y2 ⊆ X , we have h̃D (Y1) ≥

h̃D (Y2). Therefore, we have

h̃[0,1]d (XN) ≤ h̃[0,1]d
(
X U
N

)
= O

((
logNU

NU

) 1
d

)
a.s.

= O

((
log (gminN)

gminN

) 1
d

)
a.s.,

as required.

Using the above results, we can now obtain similar decreasing rates for other types

of mesh norms defined on a more general domain.

Lemma 2.5. Let X be compact and shape-regular, and suppose that the design points

x1, ..., xN are sampled independently from a uniform distribution on X . Then,

hX (XN) = O

((
logN

N

) 1
d

)
a.s.
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Proof: By Definition 2.1, there exists a continuously differentiable bijectionLX : [0, 1]d →

X whose Jacobian has nonzero determinant everywhere on the domain. Here we use

[0, 1]d as the domain of LX , but the proof is similar if B (0, 1) is used instead.

Since LX is continuously differentiable on a compact set, it is Lipschitz. Then,

hX ≤ h̆X

= sup
y∈X

inf
x∈X
‖x− y‖2

= sup
y∈[0,1]d

inf
x∈L−1

X (XN )
‖LX (x)− LX (y) ‖2

≤ sup
y∈[0,1]d

inf
x∈L−1

X (XN )
cLX ‖x− y‖2,

where cLX is the Lipschitz constant of LX .

Now, let us view L−1
X (XN) as a set of design points on [0, 1]d. It can be easily

shown that

h̆[0,1]d
(
L−1
X (XN)

)
≤
(

1 +
√
d
)
h̄[0,1]d

(
L−1
X (XN)

)
due to the geometry of the unit cube and the fact that h̄[0,1]d is the radius of the largest ball

inside [0, 1]d with no design points in its interior. By Lemma 2.2, we have

hX ≤ sup
y∈[0,1]d

inf
x∈L−1

X (XN )∪∂([0,1]d)
cLX

(
1 +
√
d
)
‖x− y‖2

. sup
y∈[0,1]d

inf
x∈L−1

X (XN )∪∂([0,1]d)
‖x− y‖∞

= h̃[0,1]d
(
L−1
X (XN)

)
.

Let |X | be the volume of the domain X under Lebesgue measure. The design points
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L−1
X (XN) are drawn from a distribution with density

g0 (y) =
1

|X |

∣∣∣∣det

(
dLX (y)

dy

)∣∣∣∣
whose essential infimum satisfies

g0,min = ess inf
y∈[0,1]d

g0 (y) > 0

due to the assumptions on LX . Then, by Lemma 2.4, for the mesh norm on [0, 1]d with

design points L−1
X (XN), we have

h̃[0,1]d
(
L−1
X (XN)

)
= O

((
log (g0,minN)

g0,minN

) 1
d

)
a.s.

= O

((
logN

N

) 1
d

)
a.s.

Putting everything together, we have

hX (XN) . h̃[0,1]d
(
L−1
X (XN)

)
= O

((
logN

N

) 1
d

)

almost surely, as required.

2.5 Algorithm and main results

We now give a formal statement of the sequential algorithm used to select design

points, and state our main theoretical results on its convergence rate. The remainder of
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the chapter will consist of the proofs of these results.

Let

S (x, r) =
{
y : ‖x− y‖∞ ≤

r

2

}
be the hypercube centered at x with sides of length r parallel to the coordinate axes.

The ε-greedy algorithm, as defined in this paper, will randomly choose between uniform

sampling inside this hypercube centered at the current-best solution x̂∗n (local search) and

uniform sampling on X (global search). Formally, let zn be a Bernoulli random variable

with success probability b · |X |, where b ∈
(

0, 1
|X |

)
is a constant and |X | is, again, the

volume of X under Lebesgue measure. The success probability b · |X | corresponds to

1− ε in the ε-greedy policy (we have b · |X | 1− ε), and governs the frequency of global

search.

The distribution of the nth design point xn is determined adaptively, after x0, ..., xn−1

and f (x0) , ..., f (xn−1) have been observed, in the following way: when zn = 1, xn is

sampled from the uniform distribution on X . When zn = 0, xn is sampled from the uni-

form distribution on S
(
x̂∗n−1, rn

)
, where the side length rn will be discussed later, but is

assumed small enough (or n large enough) to make S
(
x̂∗n−1, rn

)
⊆ X . Treating zn as a

latent variable, xn follows a distribution whose density gn is a weighted average of two

uniform distributions defined on distinct regions:

gn (x) =


b, x ∈ X \ S

(
x̂∗n−1, rn

)
,

tn x ∈ S
(
x̂∗n−1, rn

)
,

(2.3)

where tn is a constant satisfying tn > 1
|X | > b, whose value can be determined by the
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normalization condition

(tn − b) rdn + b |X | = 1 (2.4)

from the values of b and rn. Note that ess infx∈X gn (x) = b for all n.

In our analysis, the sequence {rn} of side lengths for the local search region is

chosen according to

rn = cr

(
log (bn)

bn

) k
2d

, (2.5)

where cr is a large enough constant, and k is the constant in Lemma 2.1. With rn chosen

in this way, we obtain the following results. First, we bound the convergence rate of

‖x̂∗N − x∗‖ on almost every sample path.

Theorem 2.6. Assume that X is shape-regular, f is locally strongly convex on B (x∗, ρ0)

for some constant radius ρ0 > 0, the RBF parameter k > 2, and {rn} is chosen according

to (2.5). Then, under assumption 2.1,

‖x̂∗N − x∗‖ = O

( logN

N

) k
2d
(

log (bN)

bN

) k2

4d

 a.s. (2.6)

It is worth noting that the decreasing rate of {rn} leads to an improvement in the

convergence rate, in the form of the second factor in the right-hand side of (2.6). If the

size of the local search region is constant, i.e., rn ≡ r0 for some r0 > 0, (2.6) becomes

‖x̂∗N − x∗‖ = O

((
logN

N

) k
2d

)
.

Thus, the local search region should shrink over time.
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The specific choice for the decreasing rate of {rn} is in some sense the best possible

under the foundation provided by Lemma 2.1. Since the convergence rate of the local

mesh norm (Lemma 2.3) is only able to guarantee a rate of O
((

logN
N

) 1
d

)
, we are not

able to shrink the radius of the local search region more quickly than this. At the same

time, our bound will be loosened (as will be seen in the proof) if the radius vanishes more

slowly than (2.5).

The second major result is a concentration inequality for the rate in Theorem 2.6.

Essentially, for any given N there may be a non-negligible set of sample paths on which

the rate in (2.6) does not hold. The probability measure of this set is bounded as follows.

Theorem 2.7. Under the assumptions made in Theorem 2.6, for all large enough N ,

P

‖x̂∗N − x∗‖ > c

(
logN

N

) k
2d
(

log (bN)

bN

) k2

4d

 ≤ c′

N
,

where c, c′ are constants.

We also considered a variant of the algorithm where b was also allowed to vary over

n (recall from (2.3) that b is the value of the sampling density outside the local search

region), as well as over X . However, using non-uniform global search does not help the

bound on the convergence rate, because our analysis relies on a connection between the

estimation error and the mesh norm, and the convergence rate of the mesh norm for an

arbitrary density g depends on ess infx g (x) as was seen in Lemma 2.4. If we then use

uniform global search, but allow b to vary over time, we find that the bound becomes

worse when lim infn bn = 0 (in fact, if bn vanishes too quickly, we may not even have

x̂∗N → x∗). On the other hand, when bn varies between constant, strictly positive lower

24



and upper bounds, the order of the rate does not change, and these bounds only contribute

to the multiplicative constant. For this reason, we decided not to overcomplicate the

presentation with these details, and have simply used a constant b in the following.

2.6 Proof of Theorem 2.6

The proof of this result is separated into two parts. Section 2.6.1 discusses situations

where x̂∗N ∈ X \B (x∗, ρ0), while Section 2.6.2 covers cases where x̂∗N ∈ B (x∗, ρ0). This

distinction is made because, as N increases, if x̂∗N is inside B (x∗, ρ0), the local strong

convexity of f makes the convergence behavior of the estimated optimal solution more

tractable. Thus, our first task is to show that x̂∗N ∈ B (x∗, ρ0) a.s. for large enough N .

2.6.1 Convergence of x̂∗N to a neighborhood of x∗

We first prove a technical lemma giving a lower bound for the probability that x̂∗N ∈

B (x∗, ρ0). Similarly to the proof of Lemma 2.4, we rewrite the distribution of xn as

follows. For any n, let zn ∼ Bernoulli (b · |X |) be a latent variable; then, if zn = 1,

draw xn ∼ U (X ), and if zn = 0, draw xn from a distribution with density x 7→ gn−b
1−b|X | ,

where gn is as in (2.3). We then denote by X U
N = {xn : zn = 1} the subset of the design

points coming from the uniform density, with NU =
∑N

n=1 zn being the number of such

samples.

Our analysis proceeds by deriving a lower bound on P (x̂∗N ∈ B (x∗, ρ0)). This

bound will eventually be shown to converge to 1. The first step is given in the following

lemma.
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Lemma 2.8. Define x̃ = arg minx∈cl(X\B(x∗,ρ0)) f (x) and

D =

{
x ∈ X : f (x) <

1

2
(f (x̃) + f (x∗))

}
.

There exists a positive constant cw, independent of the sampling policy and the design

points, such that

P (x̂∗N ∈ B (x∗, ρ0)) ≥ P
(
hX
(
X U
N

)
< cw

)
+ P

(
N⋃
n=1

{xn ∈ XN ∩ D}

)
− 1. (2.7)

The proof is moved to section 2.8 due to space considerations.

The next lemma, whose proof is also moved to section 2.8, bounds the first term on

the right-hand side of (2.7). This bound is then used in the next result (Lemma 2.10) to

further bound the left-hand side of (2.7).

Lemma 2.9. Let cw be the constant obtained from Lemma 2.8. There exists another

positive constant c̄w such that

P
(
hX
(
X U
N

)
< cw

)
≥ 1− c̄we−b

2|X |2N/2.

Lemma 2.10. There exists a positive constant ĉw such that

P (x̂∗N ∈ X \B (x∗, ρ0)) . e−ĉwN .
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Proof: Let x̃ and D be as in the statement of Lemma 2.8. We calculate

P

(
N⋃
n=1

{xn ∈ XN ∩ D} |NU

)
≥ 1− P

(
X U
N ⊆ X \ D |NU

)
= 1−

(
1− |D|
|X |

)NU

.

Taking the expectation over the distribution of NU , we obtain

1− P

(
N⋃
n=1

{xn ∈ XN ∩ D}

)
= E

((
1− |D|
|X |

)NU
)
.

By the independence of {zn}, we obtain

E

((
1− |D|
|X |

)NU
)

= E
N∏
n=1

(
1− |D|
|X |

)zn
=

((
1− |D|
|X |

)
b |X |+ 1− b |X |

)N
.

Then,

1− P

(
N⋃
n=1

{xn ∈ XN ∩ D}

)
= eN log(1−b|D|). (2.8)

Combining (2.8) with Lemmas 2.8 and 2.9, we obtain

P (x̂∗N ∈ B (x∗, ρ0)) ≥ P
(
hX
(
X U
N

)
< cw

)
+ P

(
N⋃
n=1

{xn ∈ XN ∩ D}

)
− 1

≥ 1− c̄we−b
2|X |2N/2 − eN log(1−b|D|),

whence the desired result follows.
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From Lemma 2.10, it follows that

∞∑
N=1

P (x̂∗N /∈ B (x∗, ρ0)) <∞.

By a direct application of the Borel-Cantelli lemma, we find that

P

(
lim sup
N→∞

{x̂∗N /∈ B (x∗, ρ0)}
)

= 0,

which means that, asymptotically, x̂∗N ∈ B (x∗, ρ0) w.p. 1.

2.6.2 Convergence rate around x∗

Using the results of Section 2.6.1, we know that there is an almost surely finite

random number Nω so that x̂∗N ∈ B (x∗, ρ0) whenever N > Nω. This condition will be

occasionally made in this section only. Keeping the notation introduced previously, we

begin by applying the strong law of large numbers to NU . Since

∞∑
n=1

1

n2
V ar (zn) <∞,

we have
NU−E(NU)

N
→ 0 as N →∞, i.e., NU ∼= |X | bN a.s. Hence,

hX
(
X U
N

)
= O

((
logNU

NU

) 1
d

)
= O

((
log (bN)

bN

) 1
d

)
a.s.
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Then,

hB(x∗,ρ0) (XN) ≤ hX (XN) ≤ hX
(
X U
N

)
= O

((
log (bN)

bN

) 1
d

)
(2.9)

almost surely as N →∞.

Applying Lemma 2.1 on B (x∗, ρ0), we have

sup
x∈B(x∗,ρ0)

∣∣∣f̂ (µ)
N (x)− f (µ) (x)

∣∣∣ ≤ cf,φCh
k−|µ|
B(x∗,ρ0)

for µ ∈ Nd with |µ| ≤ k. Because k > 2 by assumption, we can quantify the approxima-

tion error of f̂N and its Hessian as

sup
x∈B(x∗,ρ0)

∣∣∣f̂N (x)− f (x)
∣∣∣ ≤ cf,φCh

k
B(x∗,ρ0)

and

sup
x∈B(x∗,ρ0)

∣∣∣∣∣∂2f̂N (x)

∂xi∂xj
− ∂2f (x)

∂xi∂xj

∣∣∣∣∣ ≤ cf,φCh
k−2
B(x∗,ρ0), i, j = 1, ..., d.

At the same time, letting Hf (x) and Hf̂N
(x) be the Hessian matrices of (respec-

tively) f and f̂N at x, we can write the expansion

f (x̂∗N) = f (x∗) +∇f (x∗)> (x̂∗N − x∗) +
1

2
(x̂∗N − x∗)

>Hf (x̆) (x̂∗N − x∗)

for some x̆ on the segment joining x̂∗N and x∗, i.e.,

f (x̂∗N)− f (x∗) =
1

2
(x̂∗N − x∗)

>Hf (x̆) (x̂∗N − x∗) . (2.10)
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Similarly, we have

f̂N (x∗)− f̂N (x̂∗N) =
1

2
(x̂∗N − x∗)

>Hf̂N
(x̆N) (x̂∗N − x∗) (2.11)

for some x̆N on the segment joining x̂∗N and x∗. Adding (2.10) and (2.11), we obtain the

upper bound

1

2
(x̂∗N − x∗)

>
(
Hf (x̆) +Hf̂N

(x̆N)
)

(x̂∗N − x∗)

= f (x̂∗N)− f̂N (x̂∗N) + f̂N (x∗)− f (x∗)

≤
∣∣∣f (x̂∗N)− f̂N (x̂∗N)

∣∣∣+
∣∣∣f̂N (x∗)− f (x∗)

∣∣∣
≤ 2cf,φCh

k
B(x∗,ρ0) (XN) . (2.12)

A lower bound can be obtained via

1

2
(x̂∗N − x∗)

>
(
Hf (x̆) +Hf̂N

(x̆N)
)

(x̂∗N − x∗)

=
1

2
(x̂∗N − x∗)

>
(
Hf (x̆) +Hf (x̆N)−

(
Hf (x̆N)−Hf̂N

(x̆N)
))

(x̂∗N − x∗)

≥1

2
‖x̂∗N − x∗‖2

[
λmin (Hf (x̆)) + λmin (Hf (x̆N))− λmax

(
Hf (x̆N)−Hf̂N

(x̆N)
)]

≥1

2
‖x̂∗N − x∗‖2

[
2 inf
x∈B(x∗,ρ0)

λmin (Hf (x))− sup
x∈B(x∗,ρ0)

λmax

(
Hf (x)−Hf̂N

(x)
)]

.

(2.13)

Note that the constant

λ0 = inf
x∈B(x∗,ρ0)

λmin (Hf (x))

satisfies λ0 > 0 by the assumption that f is locally strongly convex inside B (x∗, ρ0). A
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further lower bound can be obtained from the following technical lemma (whose proof is

deferred to section 2.8).

Lemma 2.11. For a positive definite d× d matrix A satisfying |Aij| ≤ tA for all i, j, then

λmax (A) ≤ d · tA.

Applying Lemma (2.11) to (2.13) leads to

1

2
(x̂∗N − x∗)

>
(
Hf (x̆) +Hf̂N

(x̆N)
)

(x̂∗N − x̂)

≥ 1

2
‖x̂∗N − x∗‖2

[
2λ0 − d sup

x∈B(x∗,ρ0)

max
i,j

(
Hf (x)−Hf̂N

(x)
)
i,j

]
≥ 1

2
‖x̂∗N − x∗‖2

[
2λ0 − dcf,φChk−2

B(x∗,ρ0)

]
. (2.14)

Combining (2.12) with (2.14) yields

‖x̂∗N − x∗‖ ≤

(
4cf,φCh

k
B(x∗,ρ0) (XN)

2λ0 − dcf,φChk−2
B(x∗,ρ0)

) 1
2

= O
(
h
k
2

B(x∗,ρ0) (XN)
)

(2.15)

almost surely when N > Nω and hB(x∗,ρ0) is small enough. Considering the decreasing

rate of the mesh norm obtained from Lemma 2.5, this in turn implies

‖x̂∗N − x∗‖ = O

((
log (bN)

bN

) k
2d

)
a.s. (2.16)

The rate in (2.16) can be improved by narrowing the local search region over time, as long

as both x∗ and x̂∗N are elements of each region in the sequence, and we collect infinitely

many samples from these regions. The decay rate of {rn} begins to play an important

role in ensuring that these conditions hold. If rn decays too slowly, we will undersample
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in the local regions; if rn decays too quickly, our local regions may fail to cover x∗.

It turns out that the best possible rate for rn is cr
(

log(bn)
bn

) k
2d

for some large enough

and deterministic constant cr > 0. With this specific choice, the following result is ob-

tained.

Lemma 2.12. Suppose that xn is sampled from the density gn defined in (2.3). Let rn =

cr

(
log(bn)
bn

) k
2d

for cr > 0 and define

Sn = S

(
x∗, 2cb

(
log (bn)

bn

) k
2d

)
.

Then, for cr large enough, there exist a deterministic constant cb > 0 and a random

integer nr > max{Nω, 1} such that when N > nr,

SN ⊆
N⋂

n=nr

S
(
x̂∗n−1, rn

)

almost surely.

Proof: We have already obtained (2.16). From this result, there exist a deterministic

constant cb and a random integer nr such that, almost surely for all n ≥ nr,

‖x̂∗N − x∗‖ ≤ cb

(
log (bn)

bn

) k
2d

and (by the equivalence of vector norms),

‖x̂∗N − x∗‖∞ ≤ cb

(
log (bn)

bn

) k
2d

.
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Let cr be large enough to satisfy that, uniformly for all values of nr,

rn > cb

(
log (b (n− 1))

b (n− 1)

) k
2d

+ cb

(
log (bn)

n

) k
2d

, ∀n ≥ nr.

Then, we almost surely have rn > ‖x̂∗n−1−x∗‖∞+‖x̂∗n−x∗‖∞, whence x∗ ∈ S
(
x̂∗n−1, rn

)
and Sn ⊆ S

(
x̂∗n−1, rn

)
. Similarly, for all n,N satisfying N ≥ n ≥ nr > max{Nω, 1},

we almost surely have rn > ‖x̂∗n−1 − x∗‖∞ + ‖x̂∗N − x∗‖∞, whence we obtain SN ⊆

S
(
x̂∗n−1, rn

)
, as required.

From Lemma 2.12, it follows that the ball

BN = B

(
x∗, cb

(
log (bN)

bN

) k
2d

)

inscribed in SN satisfies BN ⊆
⋂N
n=nr

S
(
x̂∗n−1, rn

)
. Additionally, from the results of

Section 2.6.1 we have x̂∗N ∈ BN almost surely whenever N ≥ nω, a random number

greater than nr that is almost surely finite.

From (2.3), we almsot surely have gN (x) = tN for all x ∈ BN and N ≥ nω > nr.

Let

XBN = {xnω , xnω+1, ..., xN} ∩BN , NBN = card
(
XBN

)
.

Any x ∈ XBN was drawn from a uniform distribution on BN , conditional on nω. The

volume of BN satisfies

|BN | = cB · cdb
(

log (bN)

bN

) k
2

for some constant cB.
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Conditional on nω, for any fixed N ≥ nω, let z′nω |nω, ..., z
′
N |nω be independent

Bernoulli random variables, with the success probability of z′n|nω being tn |BN | for n =

nω, ..., N . Sampling xn from the density gn is equivalent to sampling uniformly on BN if

z′n|nω = 1, and sampling from a distribution with density function x 7→ gn (x)−tn1BN (x)

if z′n|nω = 0. Then, since NBN |nω =
∑N

n=nω
z′n|nω it follows by the strong law of large

numbers conditional on nω and the almost sure finiteness of nω that

NBN

N − nω + 1
∼= tn |BN | a.s.

Note that BN is shape-regular because we can use a shifting and scaling mapping

on B (0, 1) into BN . The scaling factor is precisely cb
(

log(bN)
bN

) k
2d

. The mesh norm of a

set D will be invariant if D is translated and the sampling density is changed accordingly.

If D is scaled isotropically and the sampling density is changed accordingly, the mesh

norm will be scaled by the same scaling factor.

Conditional on nω and NBN , XBN contains NBN points sampled uniformly on BN .

By Lemma 2.3, the equivalence of different types of mesh norms on a hypercube (Lemma

2.2), and the properties of the bijection LBN obtained from shape-regularity, we have

hBN
(
XBN

)
= O

(
cb

(
log (bN)

bN

) k
2d
(

logNBN

NBN

) 1
d

)

= O

(
cb

(
log (bN)

bN

) k
2d
(

log (tN · |BN | (N − nω + 1))

tN · |BN | (N − nω + 1)

) 1
d

)

= O

(
log (tn · |BN | ·N)

tnN

)
,

with each “inequality” holding a.s., as long as tN · |BN | · N does not converge to zero.
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We will now prove this last assertion.

Because x̂∗N , x
∗ ∈ BN when N ≥ nω, with ‖x̂∗N − x∗‖ = O

((
log(bN)
bN

) k
2d

)
almost

surely, we can obtain the a.s. inequality

‖x̂∗N − x∗‖2 ≤
4cf,φCh

k
BN

(XN)

2λN − dcf,φChk−2
BN

, (2.17)

similarly to (2.15), for hBN small enough and N ≥ nω, by repeating the steps of the

analysis done for B (x∗, ρ0) using the strong convexity of f on BN . The quantity λN in

(2.17) is defined as λN = infx∈BN λmin (Hf (x)).

Recall that hBN (XN) ≤ hBN
(
XBN

)
, and observe that λN → λmin (Hf (x∗)) as

N →∞. It follows, analogously to (2.16), that

‖x̂∗N − x∗‖ = O
(
h
k
2
BN

(XN)
)

= O

((
log (tN · |BN | ·N)

tNN

) k
2d

)
a.s. (2.18)

With rN = cr

(
log(bN)
bN

) k
2d

, the rate of tN follows from (2.4), and is given by

tN = b+
1− b |X |

rdN

= b+
1− b |X |

cdr

(
log (bN)

bN

)− k
2

= O

((
log (bN)

bN

)− k
2

)
. (2.19)

From this it follows that

rdN tNN =
(
1− b |X |+ brdN

)
N = O (N) ,
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which means that tN · |BN | · N = O (N), as required. Finally, substituting (2.19) into

(2.18) yields

‖x̂∗N − x∗‖ = O

( logN

N

) k
2d
(

log (bN)

bN

) k2

4d

 a.s.

as claimed by Theorem 2.6.

Note that, from (2.18), we see that the bound will be tightened if tN becomes larger.

The tightest possible bound is obtained when rN follows (2.5). At the same time, we

cannot make rN vanish more quickly than the rate obtained in (2.16) using the properties

of the mesh norm.

2.7 Proof of Theorem 2.7

For readability, the proof of this result is separated into three parts:

• In Section 2.7.1, the main goal is to derive a concentration inequality for the mesh

norm defined on [0, 1]d under uniform sampling. This inequality is obtained from

an analysis of uniform sampling applied to a finite partition of the domain, whose

size then grows at a suitably chosen rate.

• In Section 2.7.2, we then extend the results of the first part to the general domain

X under epsilon-greedy sampling.

• Finally, in Section 2.7.3, the concentration inequalities obtained for the mesh norm

are converted into analogous results for the estimation error ‖x̂∗N − x∗‖.
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Each part consists of multiple technical steps grouped together to make each subsection

as self-contained as possible.

2.7.1 Concentration of mesh norm on [0, 1]d under uniform sampling

In this section, we derive a concentration inequality on the mesh norm h[0,1]d
(
X U

0

)
with X U

0 being a set of uniformly sampled design points. To study the behaviour of the

mesh norm in finite time, we partition the domain into a finite number of subsets, then

grow the size of the partition as more design points are sampled at a suitably chosen rate.

The growth rate of the partition size can be related to the declining behavior of the mesh

norm.

Specifically, we consider m = Kd sets ζm,1, ..., ζm,m of the form
[
i1
K
, i1+1

K

]
×[

i2
K
, i2+1

K

]
× ... ×

[
id
K
, id+1

K

]
with ij = 0, 1, ..., K − 1 for j = 1, ...d. We then have⋃

i ζm,i = [0, 1]d and ζm,i ∩ ζm,j has zero Lebesgue measure for any i 6= j (also under the

measure induced by the uniform distribution). Each subset ζm,i also has the same volume

under either measure.

Given N design points, let M be the maximum number of subsets into which the

domain can be partitioned (according to the method described above) such that each sub-

set contains at least one design point in its interior. The probability that any design points

will fall exactly on the joint boundary of two adjacent subsets is zero. Formally,

M = max {m : ∀i = 1, 2, ...,m, XN ∩ int (ζm,i) 6= ∅} .

Thus, M is a random variable that takes positive integer values and is dependent on N .
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We are interested in the increasing rate of M as N becomes large.

First, for fixed positive integers m and N , let W (N,m) = (W1, ...,Wm) be a ran-

dom vector following a multinomial distribution with parameters (N,m) and probability

vector 1
m
· δ, where δj = 1 for each component j. The following result (proved in section

2.8) calculates the probability that no subsets will be empty.

Lemma 2.13. For any N and m,

P (W (N,m) � δ) =
1

mN

m∑
j=0

(
m

j

)
(−1)m−j jN . (2.20)

Now observe that

P (M ≥ m) = P (W (N,m) � δ) ,

because the maximum partition size is at least m if and only if, in the partition whose

size is m, each subset contains at least one design point. In another way of writing,

P (M ≥ m) = m!
mN

{
N
m

}
, where

{
N
m

}
represents a Stirling number of the second kind,

defined for general m,n as

{
n

m

}
=

1

m!

m∑
j=0

(
m

j

)
(−1)m−j jn.

By following the asymptotic analysis of Stirling numbers [Temme, 1993], we can obtain

the following lemma for the increasing rate ofM . The next result (whose proof is deferred

to section 2.8) then derives a more useful form for this approximation.
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Lemma 2.14. [Temme, 1993] The Stirling number of the second kind
{
n
m

}
can be ap-

proximated (uniformly in m, and asymptotically as n→∞) as

{
n

m

}
∼= eTmn−mτ

( n
m
− 1
)(n

m

)
, (2.21)

where

T = γ (y0)− n+m+ (n−m) log
( n
m
− 1
)
,

τ (s) =

√
ms

n (y0 − s)
,

γ (y) = −n log y +m log (ey − 1) ,

and y0 is the solution of m
n
y = 1− e−y.

Lemma 2.15. The Stirling number of the second kind
{
n
m

}
can be approximated (uni-

formly in m, and asymptotically as n→∞) as

{
n

m

}
∼= em−n

( n
m
− 1

n
m
− w

)n−m
mn−m

wm

√
n
m
− 1

n
m

(1− w)

(
n

m

)
,

where w = −W0

(
− n
m
e−

n
m

)
and W0 is the upper branch of the Lambert W function.

We can then apply Lemma 2.15 to obtain an asymptotic rate for P (M ≥ m) that is

expressible in closed form as a function of N and m. Consequently, as N grows large, we

can choose a suitable growth rate for m that would allow us to achieve a partition of size

m w.p. 1. The following bound (proved in section 2.8) provides a sufficient condition for

this growth rate to be suitable.
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Lemma 2.16. If m ≤ N and m,N → ∞ with N
m
→ ∞, then P (M < m) ≤ c′t

1
N−m for

some constant c′t > 0.

With these technical results, we return to the decreasing rate of the mesh norm on

[0, 1]d under uniform sampling. The following result follows fairly straightforwardly from

the preceding.

Lemma 2.17. LetX U
0 be a set ofN design points sampled independently from the uniform

distribution on [0, 1]d. There exist constants ch, ct > 0 such that, for any N > 1,

P

(
h[0,1]d

(
X U

0

)
> ch

(
logN

N

) 1
d

)
≤ ct

1

N
.

Proof: There exists a constant c′h such that the statement M ≥ m (for any m) implies

that h[0,1]d
(
X U

0

)
≤ c′hm

− 1
d . To match the almost sure convergence rate of the mesh norm,

choose m∗ ∼= N
logN

. Then, there exist constants ch, ct > 0 such that, for any N > 1,

P

(
h[0,1]d

(
X U

0

)
> ch

(
logN

N

) 1
d

)
≤ P (M < m∗)

≤ c′t
1

N −m∗
(2.22)

≤ ct
1

N
,

with (2.22) following from Lemma 2.16.

2.7.2 Concentration of mesh norm on X under ε-greedy sampling

The final result of this section is an analog of Lemma 2.17 from the previous section

with the general domain X and the design points XN obtained from ε-greedy sampling.
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We move to this more general case in several steps. First, we consider non-uniform

sampling while keeping the domain as [0, 1]d.

Let X ′N = {x′1, ..., x′N} where each x′n is sampled independently from a den-

sity g′n with support [0, 1]d. Let b′n = infx∈[0,1]d g
′
n (x) and suppose that b′n > 0 and∑N

n=1 b
′
n → ∞ as N → ∞. Let z′n be independent Bernoulli random variables with

success probabilities b′n so that, if z′n = 1, then x′n is sampled from a uniform distribution

on [0, 1]d, and if z′n = 0, then x′n is sampled from the density x 7→ g′n(x)−b′n
1−b′n

.

Let NU ′ =
∑N

n=1 z
′
n and b̄′N = 1

N

∑N
n=1 b

′
n. A direct application of Hoeffding’s

inequality yields

P

(∣∣∣NU ′ − b̄′NN
∣∣∣ > 1

2
b̄′NN − 1

)
≤ 2e−

2
N ( 1

2
b̄′NN−1)

2

= o

(
1

b̄′NN

)
. (2.23)

In later proofs, this will be combined with the following technical result (proved in section

2.8).

Lemma 2.18. If
∣∣NU ′ − b̄′NN

∣∣ ≤ 1
2
b̄′NN − 1, then

(
logNU ′

NU ′

) 1
d

≤ 2
1
d

(
log
(
b̄′NN

)
b̄′NN

) 1
d

.

The next result is a concentration inequality for the mesh norm on [0, 1]d under

non-uniform sampling.
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Lemma 2.19. There exist constants ch,1, ct,1 such that, for large enough N ,

P

h[0,1]d (X ′N) > ch,1

(
log
(
b̄′NN

)
b̄′NN

) 1
d

 ≤ ct,1
1

b̄′NN
.

Proof: For notational compactness, denote the event

E =

{∣∣∣NU ′ − b̄′NN
∣∣∣ ≤ 1

2
b̄′NN − 1

}
.

For any arbitrary positive value of ch,1, we derive

P

h[0,1]d (X ′N) > ch,1

(
log
(
b̄′NN

)
b̄′NN

) 1
d


≤ E

P
h[0,1]d (X ′N) > ch,1

(
log
(
b̄′NN

)
b̄′NN

) 1
d

|NU ′ , E

 |E
+ P (Ec)

≤ E

P
h[0,1]d (X ′N) > ch,12−

1
d

(
log
(
NU ′

)
NU ′

) 1
d

|NU ′ , E

 |E
+ o

(
1

b̄′NN

)
,(2.24)

where (2.24) is due to Lemma 2.18 as well as (2.23).

When N satisfies

N ≥ min
{
n : b̄′n′n

′ > e ∀n′ ≥ n
}
,

we have NU ′ ≥ 1
2
b̄′NN + 1 > 1 on the event E. Consequently, letting ch,1 = 2

1
d ch, where
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ch is the constant obtained from Lemma 2.17, we obtain

P

h[0,1]d (X ′N) > ch,1

(
log
(
b̄′NN

)
b̄′NN

) 1
d


≤ E

(
ct

1

NU ′
|E
)

+ o

(
1

b̄′NN

)
(2.25)

≤ ct
1

1
2
b̄′NN + 1

+ o

(
1

b̄′NN

)
≤ ct,1

1

b̄′NN
,

where (2.25) applies Lemma 2.17 to (2.24), and ct,1 is suitably chosen to dominate the

second term in (2.25).

The concentration inequality can now be generalized to the domain X . Since we

assume that X is shape-regular, there exists a continuously differentiable bijection LX :

[0, 1]d → X whose Jacobian has nonzero determinant everywhere on its domain. The

properties of this function are used in the proof.

Lemma 2.20. There exist constants ch,2, ct,2 > 0 such that, for all large enough N ,

P

(
hX (XN) > ch,2

(
log (bN)

bN

) 1
d

)
≤ ct,2

1

bN
. (2.26)

Proof: As in the proof of Lemma 2.5, we observe that the mapping LX is Lipschitz. The

Lipschitz condition implies

hX (XN) ≤ cLXh[0,1]d
(
L−1
X (XN)

)
.
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For each n, define a density

g′n (y) = gn (LX (y))

∣∣∣∣det

(
dLX (y)

dy

)∣∣∣∣ .
Then, letting b′n = infy∈[0,1]d g

′
n (y), we have b′n ≥ bcJ , where cJ = infy∈[0,1]d

∣∣∣det
(
dLX (y)
dy

)∣∣∣.
We also have b̄′N ≥ bcJ , where b̄′N = 1

N

∑N
n=1 b

′
n.

For any arbitrary positive value of ch,2, the inequalities

P

(
hX (XN) > ch,2

(
log (bN)

bN

) 1
d

)

≤ P

(
h[0,1]d

(
L−1
X (XN)

)
>
ch,2
cLX

(
log (bN)

bN

) 1
d

)

≤ P

h[0,1]d
(
L−1
X (XN)

)
>
ch,2
cLX

c′J

(
log
(
b̄′NN

)
b̄′NN

) 1
d

 ,

where c′J is some constant, hold for all N satisfying

N ≥ min

{
n : bn′ > max

{
e,
e

cJ

}
∀n′ ≥ n

}
. (2.27)

Now choose ch,2 = ch,1
cLX
c′J

, where ch,1 is the constant obtained from Lemma 2.19. It

follows that, for all N satisfying (2.27), we have

P

(
hX (XN) > ch,2

(
log (bN)

bN

) 1
d

)
≤ ct,1

1

b̄′NN
≤ ct,1

cJ

1

bN
,

where ct,1 is the constant obtained from Lemma 2.19. Letting ct,2 = ct,1
cJ

yields the desired

result.
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Note that, if (2.26) holds for a certain value of ch,2, it also holds for any larger value.

The same is true of the other concentration inequalities on the mesh norm that we derived

throughout this section.

2.7.3 Concentration inequality for estimation error

Finally, we connect the previously obtained results for the mesh norm to the esti-

mation error ‖x̂∗N −x∗‖. We first take care of the situation where x̂∗N converging to x∗ too

slowly, by deriving a bound on the probability of this event. This is done by building on

Lemma 2.10.

Then, conditional on the event {x̂∗N ∈ B (x∗, ρ0)}, we apply (2.15), which implies

the existence of a constant c′b such that, for all N ,

‖x̂∗N − x∗‖ ≤ c′bh
k
2

B(x∗,ρ0) (XN) . (2.28)

At this point, Lemma 2.20 provides a probabilistic bound for the right-hand side of (2.28).

By combining this bound with a finite-time analysis of the probability that x∗N is in a

suitable neighborhood of x∗, we will obtain the final concentration inequality.

Lemma 2.21. There exist constants cb, ct,3 > 0 such that, for all large enough N ,

P

(
x̂∗N ∈ X \B

(
x∗,min

{
ρ0, cb

(
log (bN)

bN

) k
2d

}))
≤ ct,3

1

bN
.
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Proof: We derive

P

(
x̂∗N ∈ X \B

(
x∗,min

{
ρ0, cb

(
log (bN)

bN

) k
2d

}))

= P

({
‖x̂∗N − x∗‖ > cb

(
log (bN)

bN

) k
2d

}
∪ {x̂∗N ∈ X \B (x∗, ρ0)}

)

≤ P

(
‖x̂∗N − x∗‖ > cb

(
log (bN)

bN

) k
2d

| x̂∗N ∈ B (x∗, ρ0)

)
+ P (x̂∗N ∈ X \B (x∗, ρ0))

≤ P

(
‖x̂∗N − x∗‖ > cb

(
log (bN)

bN

) k
2d

| x̂∗N ∈ B (x∗, ρ0)

)
+ o

(
1

bN

)
,

where the last line follows from Lemma 2.10. We then derive

P

(
‖x̂∗N − x∗‖ > cb

(
log (bN)

bN

) k
2d

| x̂∗N ∈ B (x∗, ρ0)

)

≤ P

(
c′bh

k
2
X (XN) > cb

(
log (bN)

bN

) k
2d

| x̂∗N ∈ B (x∗, ρ0)

)
(2.29)

where c′b in (2.29) is the same value as in (2.28). Now, if we choose cb = c′bc
k
2
h,2, where

ch,2 is the same as in Lemma 2.20, we obtain

P

(
‖x̂∗N − x∗‖ > cb

(
log (bN)

bN

) k
2d

| x̂∗N ∈ B (x∗, ρ0)

)
≤ ct,2

1

bN
,

where ct,2 is the same as in Lemma 2.20. The desired result follows.

The next step of our analysis is to show that, if rn is set according to (2.5) with

some sufficiently large cr, then the local sampling regions S
(
x̂∗n−1, rn

)
for n ≤ N will

cover

SN = S

(
x∗, cb

(
log (bN)

bN

) k
2d

)
, (2.30)
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where cb is the value obtained from Lemma 2.21, with sufficiently high frequency as

N →∞. In other words, there will be sufficiently many iterations n in which a rectangle

centered at x̂∗n will cover a rectangle centered at x∗, with the sizes of both rectangles

shrinking as n grows large.

Before we proceed, we slightly relax the constant ch,2 in Lemma 2.20. Note that,

from (2.9), we have

hX (XN) = O

((
log (bN)

bN

) 1
d

)

almost surely. From Lemma 2.3, we know that there exists a nonrandom constant ch,3

such that

hX (XN) ≤ ch,3

(
log (bN)

bN

) 1
d

(2.31)

for all large enough N (the exact threshold value of N at which this happens may be

random, however). Thus, we can let ch,4 = max {ch,2, ch,3} and replace ch,2 in Lemma

2.20 by ch,4 without changing the result. Similarly, ifN is large enough for (2.31) to hold,

then we will still have inequality (2.31) if we replace ch,3 by ch,4.

Now, consider the set Xn of the first n data points. We observe that hX (Xn) is

decreasing in n. Thus, if x̂∗N ∈ B (x∗, ρ0) and hX (Xn′) ≤ ch,4

(
log(bn′)
bn′

) 1
d

for some n′,
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then

‖x̂∗N − x∗‖ ≤ c′bh
k
2
X (Xn) (2.32)

≤ c′bh
k
2
X (Xn′)

≤ c′bc
k
2
h,4

(
log (bn′)

bn′

) k
2d

= cb

(
log (bn′)

bn′

) k
2d

(2.33)

for all n′ ≤ n ≤ N . The value of c′b in (2.32) is the same as in (2.28), and the value of

cb in (2.33) is obtained from Lemma 2.21 with ch,4 replacing ch,3 as discussed previously.

Consequently, for suitably chosen cr in (2.5), we have

SN ⊆ Sn′+1 ⊆ S (x̂∗n′ , rn′+1)

where SN , Sn′+1 are as in (2.30). It follows that the number of time stages n ≤ N in

which SN is covered by S
(
x̂∗n−1, rn

)
is equal to the number of times that

hX (Xn−1) ≤ ch,4

(
log (b (n− 1))

b (n− 1)

) 1
d

is achieved.

Let n be some fixed integer large enough to satisfy the inequality (2.27), and define

zSn′ =


1 hX (Xn′−1) ≤ ch,4

(
log(b(n′−1))
b(n′−1)

) 1
d
,

0 otherwise,
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with NS =
∑N

n′=n z
S
n′ . Thus, NS counts the number of time stages n ≤ n′ ≤ N in which

S
(
x̂∗n′−1, rn′

)
covers SN . Recall that (2.31) holds for all large enough n′, though the exact

threshold after which this occurs may be random. Therefore, zSn′ = 1 for all large enough

n′, whereupon

lim inf
N ′→∞

1

N ′

N ′∑
n′=n

zSn′ = 1 (2.34)

holds almost surely. We will discard a suitable set of measure zero from the outcome

space so that (2.34) can be assumed to always hold and we do not have to keep condition-

ing on this event in our analysis.

With this, let N ≥ n be a fixed value satisfying (2.27). Then,

P
(
NS = 0

)
= P

(
hX (Xn′−1) > ch,4

(
log (b (n′ − 1))

b (n′ − 1)

) 1
d

∀n ≤ n′ ≤ N

)

≤ P

(
hX (XN−1) > ch,4

(
log (b (N − 1))

b (N − 1)

) 1
d

)
≤ ct,2

1

b (N − 1)
(2.35)

where the last line follows by Lemma 2.20.

Analogous to Section 2.6.2, we can view the distribution of design points under

the ε-greedy policy as a mixture of uniform distributions. In those time stages n′ where

zSn′ = 1 (i.e., where SN is covered by the local search region), a portion of the design

points can be viewed as originating from a uniform density on SN . More precisely, we

can let z′n′ , for n ≤ n′ ≤ N , be independent Bernoulli random variables with success

probabilities tn′ |SN |. Then, NS,U =
∑N

n′=n z
S
n′z
′
n′ is the cardinality of the subset X S,U

N of

the data that was sampled from a uniform distribution defined on SN . Note that zSn′ and
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z′n′ are independent. We introduce the notation nk, for k = 1, 2, ..., NS , to represent those

time stages n′ for which zSn′ = 1, that is,

nk = min
{
n′ > nk−1 : zSn′ = 1

}
,

and use the notation N = {nk}N
S

k=1 to denote the entire sequence of such time stages (all

of which are random variables).

Recall from Lemma 2.17 that, if X U
0 is a set of i.i.d. samples from the uniform

density on [0, 1]d, then

P

h[0,1]d
(
X U

0

)
> ch

(
log
(∣∣X U

0

∣∣)
|X U

0 |

) 1
d

 ≤ ct
1

|X U
0 |

(2.36)

for some ch, ct. As we have observed previously in Section 2.6.2, when any setD is scaled

isotropically and the sampling density is also appropriately scaled, the mesh norm will be

changed by the same scaling factor. For this reason, we can apply inequality (2.36) to the

mesh norm on SN by treating it as a scaled mesh norm on [0, 1]d. That is, if we suppose

that the value of NS,U is given, and let

Ex
N = {x̂∗N ∈ B (x∗, ρ0) ∩ SN}

for notational convenience, we then have

P

(
hSN

(
X S,U
N

)
> chcb

(
log (bN)

bN

) k
2d
(

logNS,U

NS,U

) 1
d

|NS,U , Ex
N , N

S ≥ 1

)
≤ ct
NS,U

.

(2.37)
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Recall from (2.19) that tn = b+ 1−b|X |
rdn

= O

((
log(bn)
bn

)− k
2

)
. Now, we define

t̄S =
1

NS

NS∑
k=1

tnk ,

and repeat the proof of Lemma 2.18 to obtain the inequality

(
logNS,U

NS,U

) 1
d

≤ 2
1
d

(
log
(
t̄S · |SN | ·NS

)
t̄S · |SN | ·NS

) 1
d

(2.38)

under the condition that NS,U > 1
2
t̄S · |SN | · NS . This allows us to improve the lower

bound on hSN
(
X S,U
N

)
in the event whose probability is computed in (2.37) to match the

asymptotic a.s. rate of hSN . The resulting inequality can then be directly connected to the

estimation error.

First, we give a technical lemma characterizing the probability that the condition

required for (2.38) is not satisfied.

Lemma 2.22.

P

(
NS,U <

1

2
t̄S |SN |NS + 1 |Ex

N , N
S ≥ 1

)
= O

(
1

(tN |SN |)2N

)
.

Proof: Conditional on N , NS,U is a sum of independent Bernoulli random variables.
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Applying Hoeffding’s concentration inequality, we derive

P

(
NS,U <

1

2
t̄S |SN |NS + 1 |Ex

N , N
S ≥ 1

)
≤ P

(∣∣NS,U − t̄S · |SN | ·NS
∣∣ > 1

2
t̄S |SN |NS − 1 |Ex

N , N
S ≥ 1

)
= E

[
P

(∣∣NS,U − t̄S · |SN | ·NS
∣∣ > 1

2
t̄S |SN |NS − 1 | N , Ex

N , N
S ≥ 1

)
|Ex

N , N
S ≥ 1

]
≤ 2E

[
e−

2

NS
( 1

2
t̄S |SN |NS−1)

2

|Ex
N , N

S ≥ 1

]
. E

[
1

(t̄S |SN |)2NS
|Ex

N , N
S ≥ 1

]
= E

[
1

(t̄S)2NS
|Ex

N , N
S ≥ 1

]
1

|SN |2
. (2.39)

Provided that NS ≥ 1 and lim infN→∞
NS

N
= 1, the inequality NS ≤ nNS implies that

nNS
∼= N , whence, applying (2.19), we obtain

tN ∼= tn
NS
∼= t̄S,

whence lim supN→∞
tN
t̄S

= 1 and lim supN→∞
N
NS = 1. Therefore,

lim sup
N→∞

(
tN
t̄S

)2
N

NS
≤ lim sup

N→∞

(
tN
t̄S

)2

· lim sup
N→∞

N

NS
= 1.

Since t̄S and NS are all strictly positive random variables when NS ≥ 1, we can apply
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Fatou’s lemma to obtain

lim sup
N→∞

E
[

t2NN

(t̄S)2NS
|Ex

N , N
S ≥ 1

]
≤ E

[
lim sup
N→∞

t2NN

(t̄S)2NS
|Ex

N , N
S ≥ 1

]
≤ 1,

which yields a further bound on (2.39) due to the relation

E
[

1

(t̄S)2NS
|Ex

N , N
S ≥ 1

]
.

1

t2NN
,

for any N satisfying (2.27). This completes the proof.

Now, letting ch,5 = 2
1
d ch, where ch is the value obtained from (2.37), and also

letting ES
N =

{
NS ≥ 1

}
for notational convenience, we can derive

P

hSN (XN) > ch,5

(
log
(
t̄S · |SN | ·NS

)
t̄SNS

) 1
d

| N , Ex
N , E

S
N , N

S,U >
1

2
t̄S · |SN | ·NS

)

= P

hSN (XN) > ch,5cb

(
log (bN)

bN

) k
2d

(
log
(
t̄S · |SN | ·NS

)
t̄S · |SN | ·NS

) 1
d

| N , Ex
N , E

S
N , N

S,U >
1

2
t̄S · |SN | ·NS

)
≤ P

(
hSN (XN) > 2−

1
d ch,5cb

(
log (bN)

bN

) k
2d
(

logNS,U

NS,U

) 1
d

| N , Ex
N , E

S
N , N

S,U >
1

2
t̄S · |SN | ·NS

)
(2.40)

= P

(
hSN (XN) > chcb

(
log (bN)

bN

) k
2d
(

logNS,U

NS,U

) 1
d

| N , Ex
N , E

S
N , N

S,U >
1

2
t̄S · |SN | ·NS

)
, (2.41)
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where (2.40) is obtained by applying (2.38), while (2.41) follows from the definition of

ch,5.

We then derive the bound

P

hSN (XN) > ch,5

(
log
(
t̄S · |SN | ·NS

)
t̄SNS

) 1
d

|Ex
N , E

S
N


= E

P
hSN (XN) > ch,5

(
log
(
t̄S · |SN | ·NS

)
t̄SNS

) 1
d

| N , Ex
N , E

S
N

 |Ex
N , E

S
N


≤ E

P
hSN (XN) > ch,5

(
log
(
t̄S · |SN | ·NS

)
t̄SNS

) 1
d

| N , Ex
N , E

S
N , N

S,U >
1

2
t̄S · |SN | ·NS

)
+P

(
NS,U <

1

2
t̄S · |SN | ·NS + 1 | N , Ex

N , E
S
N

)
|Ex

N , E
S
N

]
(2.42)

≤ E

[
P

(
hSN (XN) > chcb

(
log (bN)

bN

) k
2d
(

logNS,U

NS,U

) 1
d

| N , Ex
N , E

S
N , N

S,U >
1

2
t̄S · |SN | ·NS

)
|Ex

N , E
S
N

]
+O

(
1

(tN |SN |)2N

)
(2.43)

≤ ctE
[
E
[

1

NS,U
|Ex

N , E
S
N , N

S,U >
1

2
t̄S · |SN | ·NS

]
|Ex

N , E
S
N

]
+O

(
1

(tN |SN |)2N

)
(2.44)

≤ 2ct
|SN |

E
[

1

t̄SNS
|Ex

N , E
S
N

]
+O

(
1

(tN |SN |)2N

)
.

In this derivation, (2.43) is obtained by applying (2.41) to the first term of (2.42), and

Lemma 2.22 to the second term. Then, (2.44) is due to (2.37).
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By repeating the proof of Lemma 2.22, we can derive

E
[

1

t̄SNS
|Ex

N , E
S
N

]
.

1

tNN

for any N satisfying (2.27). Because tN |SN | = O (1), this yields

P

hSN (XN) > ch,5

(
log
(
t̄S · |SN | ·NS

)
t̄SNS

) 1
d

|Ex
N , E

S
N


= O

(
1

tN · |SN | ·N

)
+O

(
1

(tN · |SN |)2 ·N

)
= O

(
1

N

)
.

Similarly to (2.18), when x̂∗N ∈ B (x∗, ρ0) ∩ SN , we can bound the error of x̂∗N by the

local mesh norm on SN as

‖x̂∗N − x∗‖ = O
(
h
k
2
SN

(XN)
)
.

It follows from the preceding that there exists a constant cb,1 such that

P

‖x̂∗N − x∗‖ > cb,1

(
log
(
t̄S · |SN | ·NS

)
t̄SNS

) k
2d

|Ex
N , E

S
N

 = O

(
1

N

)
.
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Using the fact that tN ∼= t̄S and NS ∼= N , there exists a constant cb,2 such that

P

(
‖x̂∗N − x∗‖ > cb,2

(
log (tN · |SN | ·N)

tNN

) k
2d

)

≤ P

(
‖x̂∗N − x∗‖ > cb,2

(
log (tN · |SN | ·N)

tNN

) k
2d

|Ex
N , E

S
N

)
+P (1− Ex

N) + P
(
1− ES

N

)
≤ P

‖x̂∗N − x∗‖ > cb,1

(
log
(
t̄S · |SN | ·NS

)
t̄SNS

) k
2d

|Ex
N , E

S
N

+O

(
1

bN

)

= O

(
1

N

)
,

shown by applying Lemma 2.21 together with (2.35). By combining this bound with the

preceding analysis on the rate of tN , we obtain constants c, c′ for which

P

‖x̂∗N − x∗‖ > c

(
logN

N

) k
2d
(

log (bN)

bN

) k2

2d

 ≤ c′

N
,

for sufficiently large finite N .

2.8 Appendix: proofs

In this section, we provide full proofs for all results that were stated in the main

text.
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2.8.1 Proof of Lemma 2.8

First, observe that x̂∗N ∈ B (x∗, ρ0) if

sup
x∈X\B(x∗,ρ0)

∣∣∣f̂N (x)− f (x)
∣∣∣ < f (x̃)− min

1≤n≤N
f (xn) , (2.45)

where x̃ = arg minx∈cl(X\B(x∗,ρ0)) f (x). This is because for a point outside B (x∗, ρ0) to

be the global minimizer, the interpolant value at this point has to dive deep at least below

the lowest response, which means a big interpolation error.

The inequality (2.45) is implied if

sup
x∈B(xρ,ρ)

∣∣∣f̂N (x)− f (x)
∣∣∣ < f (x̃)− min

1≤n≤N
f (xn) (2.46)

holds for any xρ, ρ satisfying B (xρ, ρ) ⊆ cl (X \B (x∗, ρ0)). Note that the sufficient

event (2.46) implicitly excludes the situation where no design points are in B (x∗, ρ0).

Next, by Lemma 2.1, for all large enough N and all xρ, ρ satisfying B (xρ, ρ) ⊆

cl (X \B (x∗, ρ0)), we have

sup
x∈B(xρ,ρ)

∣∣∣f̂N (x)− f (x)
∣∣∣ ≤ cf,φCh

k
B(xρ,ρ) (XN) ≤ cf,φCh

k
X (XN) ,

where hX (XN) does not depend on xρ, ρ. Thus, the sufficient condition (2.46) is attained
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if

cf,φCh
k
X (XN) < f (x̃)− min

1≤n≤N
f (xn)

= f (x̃)− f (x∗)−
(

min
1≤n≤N

f (xn)− f (x∗)

)
,

or, equivalently,

cf,φCh
k
X (XN) +

(
min

1≤n≤N
f (xn)− f (x∗)

)
< f (x̃)− f (x∗) . (2.47)

Now, define

cw =

(
1

2cf,φC
(f (x̃)− f (x∗))

) 1
k

,

D =

{
x ∈ X : f (x) <

1

2
(f (x̃) + f (x∗))

}
.

On the event {hX (XN) < cw}∩
⋃N
n=1 {xn ∈ D}, the inequality (2.47) is attained, which,

in turn, implies x̂N∗ ∈ B (x∗, ρ0) as desired.

Because X U
N ⊆ X , we can easily see that hX (XN) ≤ hX

(
X U
N

)
, and hence it is

sufficient to restrict ourselves to the event
{
hX
(
X U
N

)
< cw

}
∩
⋃N
n=1 {xn ∈ XN ∩ D}.

So, we conclude that

P (x̂∗N ∈ B (x∗, ρ0)) ≥ P
(
hX
(
XU
N

)
< cw, ∃xn ∈ XN ∩ D

)
≥ P

(
hX
(
X U
N

)
< cw

)
+ P

(
N⋃
n=1

{xn ∈ XN ∩ D}

)
− 1,

as required.
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2.8.2 Proof of Lemma 2.9

By Lemma 2.5, we have

hX
(
X U
N

)
= O

((
logNU

NU

) 1
d

)
a.s.

Therefore, with probability 1, there exists a finite but random value cw,h that

hX
(
X U
N

)
≤ cw,h

(
logNU

NU

) 1
d

, NU > 1.

It follows that

cw,h
(
NU
)− 1−εw,h

d < cw ⇒ cw,h

(
logNU

NU

) 1
d

< cw

⇒ hX
(
X U
N

)
< cw

for any εw,h ∈ (0, 1) when NU > N0. Taking εw,h = 1
2
, we let c′w =

(
cw,h
cw

)2d

which is

also random and obtain hX
(
X U
N

)
< cw when NU > c′w.

Consequently,

P
(
hX
(
X U
N

)
< cw

)
≥ P

(
hX
(
X U
N

)
< cw |NU > N0

)
P
(
NU > N0

)
≥ P

(
NU > c′w |NU > N0

)
P
(
NU > N0

)
= P

(
NU > max {c′w, N0}

)
. (2.48)

To bound (2.48), we require a concentration inequality forNU . Note thatNU =
∑N

n=1 zn,
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where zn are i.i.d. Bernoulli (b |X |) random variables. The expected value of NU in-

creases to infinity with N .

We derive

P
(
NU > max {c′w, 1}

)
= P

(
NU − E

(
NU
)
> −

(
E
(
NU
)
−max {c′w, 1}

))
= 1− P

(
NU − E

(
NU
)
< −

(
E
(
NU
)
−max {c′w, 1}

))
≥ 1− P

(
NU − E

(
NU
)
< −

(
E
(
NU
)
−max {c′w, 1}

) ∣∣∣1
2
E
(
NU
)
> max {c′w, 1}

)
≥ 1− P

(∣∣NU − E
(
NU
)∣∣ > E

(
NU
)
−max {c′w, 1}

∣∣∣1
2
E
(
NU
)
> max {c′w, 1}

)
.

Since, by Hoeffding’s concentration inequality, we can obtain

P
(∣∣NU − E

(
NU
)∣∣ > E

(
NU
)
−max {c′w, N0}

∣∣c′w)
≤ 2 exp

{
− 2

N

(
E
(
NU
)
−max {c′w, 1}

)2
}
,

we get

P

(∣∣NU − E
(
NU
)∣∣ > E

(
NU
)
−max {c′w, N0}

∣∣∣1
2
E
(
NU
)
> max {c′w, 1}

)
≤ 2 exp

{
− 2

N

(
b |X |N

2

)2
}

. e−b
2|X |2N/2.

The desired result follows.
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2.8.3 Proof of Lemma 2.11

For any vector v 6= 0 in Rd,

v>Av

‖v‖2
≤

(∑
i

∑
j A

2
ij

) 1
2
(∑

i

∑
j v

2
i v

2
j

) 1
2

‖v‖2

≤
(d2t2A)

1
2

(∑
j v

2
j

)
‖v‖2

= d · tA.

The desired result follows by taking the supremum over all nonzero v.

2.8.4 Proof of Lemma 2.13

We prove this result by induction. When m = 1, it is obviously correct; when

m = 2, we have P (W (N, 2) � δ) = 1− 1
2N−1 , also according to (2.20).
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Suppose now that (2.20) holds for W (N,m′), m′ = 1, ...,m. Then,

P (W (N,m+ 1) � δ)

= 1−
m∑
k=1

P

(∑
j

1{Wj>0} = k

)

= 1−
m∑
k=1

(
m+ 1

k

)(
k

m+ 1

)N
P (W (N, k) � δ)

= 1− 1

(m+ 1)N

[
m∑
k=1

(
m+ 1

k

)
kN +

m∑
k=2

(
m+ 1

k

) k−1∑
j=1

(
k

j

)
jN (−1)k−j

]

= 1− 1

(m+ 1)N

[
m∑
k=1

(
m+ 1

k

)
kN +

m−1∑
j=1

jN
m∑

k=j+1

(
m+ 1

k

)(
k

j

)
(−1)k−j

]

= 1− 1

(m+ 1)N

[
m∑
k=1

(
m+ 1

k

)
kN +

m−1∑
j=1

jN
(
m+ 1

j

) m∑
k=j+1

(
m+ 1− j
k − j

)
(−1)k−j

]

= 1− 1

(m+ 1)N

[
m∑
k=1

(
m+ 1

k

)
kN +

m−1∑
j=1

jN
(
m+ 1

j

)m−j∑
k=1

(
m− j + 1

k

)
(−1)k

]

= 1− 1

(m+ 1)N

[
m∑
k=1

(
m+ 1

k

)
kN +

m−1∑
j=1

jN
(
m+ 1

j

)(
(−1)m−j − 1

)]

= 1− 1

(m+ 1)N

[(
m+ 1

m

)
mN +

m−1∑
j=1

(
m+ 1

j

)
jN (−1)m−j

]

= 1− 1

(m+ 1)N

m∑
j=1

(
m+ 1

j

)
jN (−1)m−j

=
1

(m+ 1)N

m+1∑
j=0

(
m+ 1

j

)
jN (−1)m−j+1 ,

thus verifying (2.20) and completing the proof.
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2.8.5 Proof of Lemma 2.15

Let y0 be the solution of the equation m
n
y = 1− e−y, and let s = n

m
. Then, we have

y0 − s
s

= −e−y0

(y0 − s) ey0 = −s

(y0 − s) ey0−s = −se−s.

This implies y0 = s − w, where w = −W0 (−se−s). From Lemma 2.14 we have (2.21),

and we can derive

eTmn−mτ (s0)

(
n

m

)
= eγ(y0)−n+m+(n−m) log(s−1)mn−m

√
s− 1

s (x0 − s+ 1)

(
n

m

)

= em−n
(
s− 1

y0

)n−m
mn

(m (s− y0))m

√
s− 1

s (x0 − s+ 1)

(
n

m

)

= em−n
(
s− 1

s− w

)n−m
mn−m

wm

√
s− 1

s (1− w)

(
n

m

)
,

as required.
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2.8.6 Proof of Lemma 2.16

Let T and τ be as in the statement of Lemma 2.14, and let w be as in the statement

of Lemma 2.15. Also let s = N
m

. First, we derive

P (M < m) = 1− m!

mN

{
N

m

}
= 1− m!

mN
eTmN−mτ

(
N

m
− 1

)(
N

m

)
+
m!

mN
eTmN−mτ

(
N

m
− 1

)(
N

m

)
− m!

mN

{
n

m

}
≤

∣∣∣∣∣1− m!

mN
em−N

(
s− 1

s− w

)N−m
mN−m

wm

√
s− 1

s (1− w)

(
N

m

)∣∣∣∣∣
+

∣∣∣∣ m!

mN

(
eTmN−mτ (s− 1)

(
N

m

)
−
{
N

m

})∣∣∣∣ . (2.49)

Consider the decreasing rate of the first term on the right-hand side of (2.49). Taking

advantage of Stirling’s formula

n! =
√

2πn
(n
e

)n(
1 +O

(
1

n

))
,
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we derive

∣∣∣∣∣1− m!

mN
em−N

(
s− 1

s− w

)N−m
mN−m

wm

√
s− 1

s (1− w)

(
N

m

)∣∣∣∣∣
=

∣∣∣∣∣1− em−N

mN

(
1

s− w

)N−m
(N −m)N−m

1

wm

√
N −m

N (1− w)

N !

(N −m)!

∣∣∣∣∣
=

∣∣∣∣∣1− N !

mN

(
1

s− w

)N−m
1

wm

√
1

N (1− w)

√
N −m

(
N−m
e

)N−m
(N −m)!

∣∣∣∣∣
=

∣∣∣∣∣1− N !

mN

(
1

s− w

)N−m
1

wm

√
1

N (1− w)

1√
2π

(
1 +O

(
1

N −m

))∣∣∣∣∣
=

∣∣∣∣∣1− N !

mN

(
1

s− se−s −O (s2e−2s)

)N−m
1

(se−s +O (s2e−2s))m
1√

2πN

·

√
1

1− se−s −O (s2e−2s)

(
1 +O

(
1

N −m

))∣∣∣∣∣ (2.50)

=

∣∣∣∣∣1− N !

mN

1

sNe−sm

(
1

1− e−s −O (se−2s)

)N−m
1

(1 +O (se−s))m
1√

2πN

·

√
1

1− se−s −O (s2e−2s)

(
1 +O

(
1

N −m

))∣∣∣∣∣
=

∣∣∣∣∣1− N !(
N
e

)N √
2πN

(
1 +O

(
(N −m) e−s

)) (
1 +O

(
Ne−s

)) (
1 +O

(
se−s

))
·
(

1 +O

(
1

N −m

))∣∣∣∣
=

∣∣∣∣1− (1 +O

(
1

N

))(
1 +O

(
1

N −m

))∣∣∣∣
= O

(
1

N −m

)
,

where (2.50) is obtained by first using the Lagrange inversion theorem to derive the ex-

pansion

W0 (y) =
∞∑
k=1

(−k)k−1

k!
yk = y − 1

2
y2 +O

(
y3
)
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for the upper branch W0 of the Lambert W function when y → 0−, and then observing

that

w = se−s +O
(
s2e−2s

)
(2.51)

for large s.

Now consider the decreasing rate of the second term on the right-hand side of

(2.49). Based on Temme [1993], one can show that

{
n

m

}
− eTmn−mτ (s− 1)

(
n

m

)
∼= −eTmn−m

(
n

m

)
τ1 (s− 1)

m
(2.52)

whereupon, with some tedious algebra, one finds τ1 (s− 1) ∼= 1
3τ(s−1)s

. Then,

∣∣∣∣ m!

mN

(
eTmN−mτ (s− 1)

(
N

m

)
−
{
N

m

})∣∣∣∣
∼=

m!

mN
eTmN−m

(
N

m

)
τ1 (s− 1)

m
(2.53)

=
eT

mm+1

N !

(N −m)!
τ1 (s− 1)

=
1

mm+1

N !

(N −m)!

(
1

s− w

)N−m
(N −m)N−m

mN−m
em−N

wm
τ1 (s− 1) (2.54)

∼=
1

mN+1

N !

(N −m)!

(
N −m
e

)N−m(
1

s− w

)N−m
1

wm
1

3τ (s− 1) s

∼=
N !

mN+1

1√
2π (N −m)

1

(s− se−s)N−m
1

sme−N
1

3s

√
N

N −m
(2.55)

=
1

3 (N −m)

N !

NNe−N
√

2πN

1

(1− e−s)N−m

∼=
1

3 (N −m)
,

where (2.53) follows by (2.52), equation (2.54) follows from eT = em−N 1
wm

(
s−1
s−w

)N−m,

and (2.55) follows from (2.51) and the fact that τ (s− 1) =
√

s−1
s(1−w)

. Since we have
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found that both terms on the right-hand side of (2.49) are O
(

1
N−m

)
, the desired result

follows.

2.8.7 Proof of Lemma 2.18

For 0 < z < y and y − z > 1, we have the inequality

y

log y
≤ y − z

log (y − z)
+

z

log (y − z)
.

Take y = b̄′NN and z = 1
2
b̄′NN − 1, divide both sides by y−z

log(y−z) and we can conclude

b̄′NN

log
(
b̄′NN

) logNU ′

NU ′
≤ b̄′NN

log
(
b̄′NN

) log
(

1
2
b̄′NN + 1

)
1
2
b̄′NN + 1

≤ 1 +
1
2
b̄′NN − 1

1
2
b̄′NN + 1

≤ 2,

which leads to the desired result.
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Chapter 3: Moderate deviations inequalities for Gaussian process regres-

sion

3.1 Introduction

Given a compact domain D ⊆ Rd, let {E (x)}x∈D be a centered Gaussian process

(Gaussian random field) on a probability space (Ω,F , P ). Define

f (x) = m (x) + E (x) , x ∈ D, (3.1)

where m : D → R is a pre-specified unknown “mean function.” Suppose that we are

given the values f (x1) , ..., f (xn) of f at the design points x1, ..., xn ∈ D. Then, we

can construct an estimator f̂n of f using Gaussian process regression [Rasmussen and

Williams, 2006]. This is a Bayesian method when we take the unconditinoal Gaussian

process as a prior: for each x, f̂n (x) is the conditional mean of the random variable

f (x) given f (x1) , ..., f (xn). The covariance function of the Gaussian process, assumed

known, is used to infer the value of f at unobserved x from information collected about

the design points.

Gaussian process regression is widely used to interpolate and predict the values of

black-box functions in simulation calibration [Scott et al., 2010] and optimization [Jones
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et al., 1998, Ankenman et al., 2010], biomedical applications [Lee et al., 2014], risk as-

sessment of civil infrastructure [Sheibani and Ou, 2021], tuning of machine learning mod-

els [Snoek et al., 2012], and many other problems from diverse branches of science. In

all such applications, f models the output of a complex system (physical or virtual), with

x being the input. There is no closed form for f , but it is possible to observe f (x) at indi-

vidual x values, e.g., by running expensive lab, field, or computer experiments with those

particular inputs. The goal is to obtain accurate estimates at unobserved values using as

few experiments as possible. Often, the function f represents a performance metric, such

as the predictive power of a machine learning model with a given set of parameters, and

the goal then becomes to optimize f (x) over x ∈ D.

The analysis of this chapter is motivated by concerns that arise in design of experi-

ments, though we do not explicitly model any design problem. Our main contribution is a

theoretical framework for studying the large deviations behavior of random vectors of the

form
(
f̂n (x) , f̂n (x∗) , f (x) , f (x∗)

)
for two fixed but arbitrary points x, x∗ ∈ D. This

framework can be applied to prove new convergence rates for different types of “error

probabilities” related to GP regression. We demonstrate the usefulness of the theory with

two specific applications, though others may be possible. The first application deals with

probabilities of the form

πn (x, x∗) = P
(
f̂n (x) ≤ f̂n (x∗)− δ | f (x) ≥ f (x∗)

)
, (3.2)

where δ > 0 is a small threshold. In words, it is given to us that x∗ has a smaller function

value than x, but interpolation error may cause us to falsely reverse this ordering (the
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threshold δ makes (3.2) well-defined). When f is an objective function, this is the proba-

bility of reporting x as being “better” than x∗ when in reality the opposite is the case. For

this type of error probability, we leverage our theory to prove a new moderate deviations

inequality

P
(
f̂n (x) ≤ f̂n (x)− δ | f (x) ≥ f (x∗)

)
. exp

(
−δ2Ch

− 1
2
s

n

)
(3.3)

where C, s > 0 are constants depending on the specification of the Gaussian process, and

hn = max
y∈D

min
m=1,...,n

‖y − xm‖2

is the mesh norm measuring the density of the design points. In a special case where the

design points are uniformly distributed on D, it has been shown [Janson, 1987] that hn is

of order
(

logn
n

) 1
d , which justifies the interpretation of (3.3) as a moderate deviations rate.

The second application deals with the error incurred when using the plug-in esti-

mate minx∈D f̂n (x) to predict the minimum value minx∈D f (x). For this error, we prove

the moderate deviations rate

P

(∣∣∣∣min
x∈D

f̂n (x)−min
x∈D

f (x)

∣∣∣∣ ≥ δ

)
. exp

(
−δ2C ′h

− 1
2
s

n

)
. (3.4)

Although (3.4) does not explicitly fix x, x∗, it can be obtained from the same theory

because the mesh norm bound is uniform.

Both types of error probabilities are of broad interest in simulation, statistics, and

uncertainty quantification. In particular, the pairwise comparison in (3.2) is motivated
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by the approach developed by Glynn and Juneja [2004] for the ranking and selection

problem, where one collects samples from a finite number of populations in an effort to

select the one with the highest mean. The probability of correct selection can be related

to the probability of false ordering between pairs of populations. The quantity πn (x, x∗)

is the analog of this concept in the GP regression setting, with the additional complication

that we are using a Bayesian model of f , so the event in (3.2) can only be viewed as an

error conditionally given f (x) ≥ f (x∗).

Interestingly, the mesh norm is actually in use as a criterion for design of exper-

iments, in the literature on so-called space-filling designs [Pronzato and Müller, 2012,

Joseph et al., 2015]. As early as Johnson et al. [1990], statisticians have proposed to

spread out the design points in D in a way that essentially minimizes the mesh norm.

From (3.3), we can see that this has the effect of speeding up the rate at which (3.2) con-

verges to zero, uniformly over all x, x∗. Essentially, if we have no specific x∗ to serve

as the reference solution, we can view space-filling designs as a way to minimize the

probability of false ordering across all possible x∗.

The available theory for Gaussian process regression has extensively studied (point-

wise) consistency; see, e.g., Ghosal and Roy [2006] or Bect et al. [2019]. With regard to

convergence rate theory, our result is closest to the literature on design of experiments,

where the design points are pre-selected; within this stream, Teckentrup [2020] and Wang

et al. [2020] are two recent studies focusing on convergence rates for the estimation error

of GP regression. Their object of study is different from the tail probabilities considered

in our work, and so the rates have completely different orders, although their analysis

also makes some connections to the mesh norm. A different, less directly related stream
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of literature focuses on online optimization problems where the goal is to maximize the

sum of the function values of the design points; a representative example of this type of

work is Srinivas et al. [2012], with many subsequent developments focusing on algorith-

mic issues such as parallelization [Desautels et al., 2014]. In general, many of the existing

rate results are derived for specific classes of kernels, such as squared exponential [Pati

et al., 2015] and Matérn [Teckentrup, 2020, Vakili et al., 2020], or specific choices of the

design points [Bull, 2011]. Some general tail probabilities were derived by Adler [2000]

and Ghosal and Roy [2006], but they pertain to generic Gaussian processes, rather than

the GP regression mechanism.

To our knowledge, this chapter presents the first moderate deviations results for

Gaussian process regression estimators. It is well-known [Dembo and Zeitouni, 2009]

that sample averages of i.i.d. Gaussian observations satisfy large deviations laws. Sim-

ilar laws hold for ordinary least squares estimators under Gaussian residuals [Zhou and

Ryzhov, 2021], extrema of Gaussian vectors [van der Hofstad and Honnappa, 2019], and

various finite-dimensional statistical estimators [Arcones, 2006]. Gaussian process re-

gression can be viewed as an infinite-dimensional generalization of linear regression, but

the analysis is made much more complicated because, essentially, the dimensionality of

the objects used to construct the estimator grows over time, and their asymptotic behavior

heavily depends on the covariance kernel. One could perhaps recover large deviations

laws for certain specific choices of the kernel and design, but it is far from clear whether

this is possible in general. In the process of proving our results, we also establish a mod-

ified version of the Gärtner-Ellis theorem [Dembo and Zeitouni, 2009], which may be of

stand-alone interest.
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Section 3.2 describes the GP regression framework, states the assumptions used

throughout this chapter, and gives important technical preliminaries. Section 3.3 gives

the bulk of our analysis, which relies on a general large deviations law for random vec-

tors. This latter result also requires some new technical developments, but since they are

unrelated to GP regression, they are deferred to Section 3.5 for readability. Section 3.4

applies our analysis to derive (3.3) and (3.4), and presents several more explicit examples.

Section 3.6 concludes.

3.2 Gaussian process regression and approximation theory

Section 3.2.1 presents some definitions, assumptions and properties pertaining to

Gaussian process regression. Section 3.2.2 describes some important technical prelimi-

naries from approximation theory.

3.2.1 Definitions and assumptions

Recalling the model in (3.1), we assume that the mean function m is Lipschitz

continuous, and the Gaussian process E is specified by

E (E (x)) = 0,

Cov (E (x) , E (x′)) = k (x, x′)

for all x, x′ ∈ D. We assume that k : D ×D → R is a fixed, symmetric kernel function

mapping D×D into R+. The kernel is required to be positive definite, meaning that, for
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any n, any set of n distinct design points {xm}nm=1 ⊆ D, and any vector v ∈ Rn, we have

∑
m,m′

vmvm′k (xm, xm′) > 0.

Without this assumption, the Gaussian process would be degenerate.

In addition, we assume that there exists a function φ on R+ such that k (x, x′) =

φ (‖x− x′‖) for all x, x′. Such a φ is called a radial basis function. We assume that φ

is twice differentiable at zero with φ′′ (0) < 0. Many commonly used covariance ker-

nels satisfy this requirement, including Gaussian, multiquadric, inverse quadratic, inverse

multiquadric and others.

Denote by Xn = {xm}nm=1 the set of design points. We treat the design points as

a deterministic sequence, as is standard in the literature on design of experiments, and

assume that {xn} becomes dense in D as n→∞, a common condition in the theoretical

literature [Vazquez and Bect, 2010b]. For convenience, we introduce the notation

f (Xn) = (f (x1) , ..., f (xn))> ,

m (Xn) = (m (x1) , ...,m (xn))> ,

K (Xn, x) = (k (x, x1) , ..., k (x, xn))> ,

as well as K (x,Xn) = K (Xn, x)>. We also denote by K (Xn, Xn) the matrix whose

(m,m′)th entry is k (xm, xm′).

Given the design points Xn and observations f (Xn), the posterior distribution of
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f (x), at any arbitrary x ∈ D, is Gaussian with mean

f̂n (x) = K (x,Xn)K (Xn, Xn)−1 f (Xn) ,

and variance

PXn (x) = k (x, x)−K (x,Xn)K (Xn, Xn)−1K (Xn, x) . (3.5)

This specific structure of the mean and variance is what is referred to by the name of

Gaussian process regression. The variance PXn (x), viewed as a function of x, is also

sometimes called the “power function” in the literature on interpolation. In this chapter,

we use the posterior mean f̂n to interpolate the observed function values f (Xn) over the

design space D and make predictions at unobserved points.

We let H denote the reproducing kernel Hilbert space (RKHS) whose reproducing

kernel is k. The construction and uniqueness ofH are discussed in Wendland [2004]. For

our purposes, it is sufficient to review the following properties. Letting 〈·, ·〉H be the inner

product ofH, we know that:

1. k (·, x) ∈ H for all x ∈ D.

2. g (x) = 〈g, k (·, x)〉H for all g ∈ H and x ∈ D.

3. k (x, x′) = 〈k (·, x) , k (·, x′)〉H for all x, x′ ∈ D.

Additionally, from the usual properties of the inner product, we have the Cauchy-Schwarz

inequality |〈g1, g2〉H| ≤ ‖g1‖H‖g2‖H, where ‖ · ‖H is the norm induced by the inner
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product.

3.2.2 Approximation theory

With the assumptions made in Section 3.2.1, Gaussian process regression can be

seen as a special case of radial basis function (RBF) interpolation, enabling us to make use

of some results from interpolation theory. We should note, however, that this theory treats

interpolation models as purely deterministic, and thus has very different assumptions and

interpretations than GP regression. Below, we present key facts from the theory that will

be important for our analysis, and discuss their applicability to our setting when necessary.

Like GP regression, RBF interpolation requires a kernel k with the properties de-

scribed in Section 3.2.1, as well as a matrix Xn describing n design points. Recall that,

under these assumptions, we have k (x, x′) = φ (‖x− x′‖). Denote by Lk,Xn the operator

mapping some fixed function g : D → Rd to its interpolant according to

Lk,Xng (x) =
n∑

m=1

αmk (x, xm) , (3.6)

where the coefficients αm solve the linear system

n∑
m=1

αmk (xm, xm′) = g (xm′) , m′ = 1, ..., n. (3.7)

In fact, Wu and Schaback [1993] presents a more general form where (3.6)-(3.7) include

additional polynomial functions, but this will not be necessary for our purposes. It can

be shown that Lk,Xng (x) = K (x,Xn)K (Xn, Xn)−1 g (Xn), similar to the calculations
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used in GP regression.

Let g̃ be the Fourier transform of g, and suppose that the generalized Fourier trans-

form of the function x 7→ φ (‖x‖) exists and coincides with a continuous function φ̃ on

Rd \ {0} satisfying

0 < φ̃ (x) ≤ cφ̃‖x‖
−d−s∞ as ‖x‖ → ∞ (3.8)

for suitable constants cφ̃, s∞ > 0. Define

c2
g,φ =

1

(2π)d

∫
Rd
|g̃ (x)|2 φ̃ (x)−1 dx.

The results below require c2
g,φ <∞, which essentially means that g resides in the RKHS

whose reproducing kernel is k.

Before stating the key results, we should make it clear that we will not require

c2
f,φ < ∞, i.e., we will not apply the above definitions with f as the choice of g. It was

shown in Lukić and Beder [2001] that a sample from a GP prior is almost surely not in

the RKHS induced by the kernel assumed in the prior. Therefore, it is not possible for

the function f to satisfy c2
f,φ <∞. This is a major difference between GP regression and

interpolation theory, where f is modeled as a deterministic function and so the condition

c2
f,φ < ∞ is seen as fairly innocuous (for example, it is assumed in Wu and Schaback,

1993 and many other papers in pure interpolation theory, e.g., Li and Ryzhov, 2021). In

the present work, however, we cannot make this assumption, and will instead apply this

framework to other choices of g related to the kernel, for example the function k (·, x) for
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fixed x.

For any compact E ⊆ D, let hn (E) = maxy∈E minm=1,...,n ‖y− xm‖2 be the mesh

norm of E. We slightly abuse notation by using hn to denote hn (D) when the entire

domain is considered. Denote by Bx,ρ the closed ball of radius ρ centered at x ∈ Rd. We

can now state the results that will be referenced and applied throughout this chapter.

Lemma 3.1 (Wu and Schaback, 1993). Fix ρ > 0 and assume that the kernel k satisfies

(3.8) with some s∞. Then, there exist positive constants h̄ and cP such that, for any Xn

and any point x ∈ Rd with hn (Bx,ρ ∩D) < h̄, the power function PXn defined in (3.5)

satisfies

PXn (x) ≤ cP (hn (Bx,ρ ∩D))s∞ .

Lemma 3.2 (Wu and Schaback, 1993). Fix g satisfying cg,φ < ∞ and assume that the

kernel k satisfies (3.8) with some s∞. Then, for any Xn and any x ∈ Rd, we have

|g (x)− Lk,Xng (x)|2 ≤ c2
g,φPXn (x) .

We note that, in Lemma 3.1, the constant cP only depends on d and s∞, but not on

the fixed value ρ. The same is true of the ratio h̄
ρ
, indicating that h̄ is proportional to ρ.

3.3 Large deviations for a fixed pair of points

We now fix x, x∗ ∈ D and focus on the sequence of random vectors

Zn =
(
f̂n (x) , f̂n (x∗) , f (x) , f (x∗)

)>
.
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Letting µn be the probability law of Zn, we will apply the inequality

lim sup
n→∞

1

an
log µn (E) ≤ − inf

u∈E
I (u) , (3.9)

which holds for any closed measurable setE and any sequence {an} satisfying limn→∞ an =

∞. Our end goal is to characterize I and specify an and E in a manner that causes (3.9)

to yield results such as (3.3) or (3.4).

Inequalities of the form (3.9) can be obtained by invoking the Gärtner-Ellis theorem

from large deviations theory [Dembo and Zeitouni, 2009]. In general, the function I is

derived in the following manner. First, denote by

Ψn (γ) = logEµn
(
e〈γ,Zn〉

)

the cumulant-generating function of Zn. Here 〈·, ·〉 is the usual L2 inner product on Rp.

Then, define

Ψ (γ) = lim sup
n→∞

1

an
Ψn (anγ) , (3.10)

which is allowed to take values on the extended real number line (i.e., may be +∞ for

some γ). Then, I is obtained via the Fenchel-Legendre transform

I (u) = sup
γ∈Rp
{〈γ, u〉 −Ψ (γ)} (3.11)

of Ψ. Inequality (3.9) then follows under certain technical conditions on Ψ.

Unfortunately, the technical conditions of the classical Gärtner-Ellis theorem do
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not hold in our setting, so additional analysis is required to obtain (3.9). This analysis is

carried out in the setting of general random vectors, and thus is somewhat tangential to

the setting of Gaussian process regression. For this reason, we defer it to Section 3.5 at

the end of the chapter; the core result of that section is Theorem 3.14, which recovers the

desired inequality. Here, we take (3.9) as given, referring readers to Theorem 3.14 for the

proof, and focus on applying this inequality to the specific sequence {Zn}.

Section 3.3.1 studies the cumulant-generating functions of {Zn} and characterizes

Ψ. Section 3.3.2 then studies the Fenchel-Legendre transform of Ψ, and Section 3.3.3

analyzes the convergence rates of various terms that appear in the transform. Section

3.3.4 concludes the main moderate deviations inequality.

3.3.1 Analysis of cumulant-generating functions

We write Zn as



f̂n (x)

f̂n (x∗)

f (x)

f (x∗)


=



K (x,Xn)K (Xn, Xn)−1 f (Xn)

K (x∗, Xn)K (Xn, Xn)−1 f (Xn)

f (x)

f (x∗)



=



K (x,Xn)K (Xn, Xn)−1 0 0

K (x∗, Xn)K (Xn, Xn)−1 0 0

0 1 0

0 0 1


f
(
X̄n

)
,
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where X̄n = Xn∪{x, x∗}. The distribution of Zn is Gaussian with mean vectorAm
(
X̄n

)
and covariance matrix Vn = AΣnA

>, where

A =



K (x,Xn)K (Xn, Xn)−1 0 0

K (x∗, Xn)K (Xn, Xn)−1 0 0

0 1 0

0 0 1


,

Σn =


K (Xn, Xn) K (Xn, x) K (Xn, x

∗)

K (x,Xn) k (x, x) k (x, x∗)

k (x∗, Xn) k (x∗, x) k (x∗, x∗)

 .

For convenience, we introduce the notation

QXn (x) = K (x,Xn)K (Xn, Xn)−1K (Xn, x) ,

QXn (x, x∗) = K (x,Xn)K (Xn, Xn)−1K (Xn, x
∗) .

Then, the power function PXn in (3.5) can be written as PXn (x) = k (x, x) − QXn (x).

We also use the analogous notation PXn (x, x∗) = k (x, x∗) − QXn (x, x∗). With some

trivial computation, we obtain

Vn =



QXn (x) QXn (x, x∗) QXn (x) QXn (x, x∗)

QXn (x, x∗) QXn (x∗) QXn (x, x∗) QXn (x∗)

QXn (x) QXn (x, x∗) k (x, x) k (x, x∗)

QXn (x, x∗) QXn (x∗) k (x, x∗) k (x∗, x∗)


.
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Since Zn follows a multivariate normal distribution, it straightforwardly follows that

Ψn (γ) = γ>Am
(
X̄n

)
+

1

2
γ>Vnγ

for any γ ∈ R4. Then, by (3.10),

Ψ (γ) = γ>
(

lim
n→∞

Am
(
X̄n

))
+

1

2
lim sup
n→∞

γ> (anVn) γ, (3.12)

provided that the limit on the right-hand side of (3.12) exists.

To study these limits, it is helpful to observe that QXn (x, x∗) can be viewed as the

RBF interpolant of the function k (x, ·) evaluated at the point x∗, or, equivalently, the RBF

interpolant of k (x∗, ·) evaluated at the point x. This allows us to leverage the results from

approximation theory that were stated in Section 3.2.2.

First, we consider the limit of this 4 dimensional vector

Am
(
X̄n

)
=
[
K (x,Xn)K (Xn, Xn)−1m (Xn)

K (x∗, Xn)K (Xn, Xn)−1m (Xn) m (x) m (x∗)
]
.

We may observe that Lk,Xnm (x) is a (differentiable) linear combination of the values

k (x, xm). Hence, the difference y 7→ m (y) − Lk,Xnm (y) is a Lipschitz function with

scattered zeros, which are asymptotically dense around x and x∗. Consequently, m (x)−

Lk,Xnm (x)→ 0, whence limn→∞Am
(
X̄n

)
= m0, with

m0 = (m (x) ,m (x∗) ,m (x) ,m (x∗))> .
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Thus, (3.12) becomes

Ψ (γ) = γ>m0 +
1

2
lim sup
n→∞

γ> (anVn) γ. (3.13)

The precise behavior of the limit superior will depend on an and the asymptotics of the

matrix Vn.

3.3.2 Analysis of Fenchel-Legendre transform

We begin by examining the limit of Vn. It is easy to see that PXn (y) ≥ 0 for

all y ∈ D. Furthermore, by Lemma 3.1 we can see that PXn (y) → 0 if the design

points are asymptotically dense in D. This implies that QXn (x)→ k (x, x) and similarly

QXn (x∗) → k (x∗, x∗), with k (x, x) = k (x∗, x∗) by the properties of the radial basis

function. Although we do not know the sign of PXn (x, x∗), we can note that

PXn (x, x∗) = k (x, x∗)− (Lk,Xnk (·, x∗)) (x) = k (x∗, x)− (Lk,Xnk (·, x)) (x∗) .

By Lemma 3.2, we have PXn (x, x∗)2 ≤ c2
k(·,x∗),φPXn (x). The finiteness of ck(·,x∗),φ

can be verified. Therefore, if we are given an asymptotically dense design, we have

PXn (x, x∗) → 0, whence QXn (x, x∗) → k (x, x∗). Thus, we have shown that Vn → V
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entrywise, where

V =



k (x, x) k (x, x∗) k (x, x) k (x, x∗)

k (x, x∗) k (x, x) k (x, x∗) k (x, x)

k (x, x) k (x, x∗) k (x, x) k (x, x∗)

k (x, x∗) k (x, x) k (x, x∗) k (x, x)


.

It is easy to verify that V has eigenvalues

λ1 = 2 (k (x, x) + k (x, x∗)) , λ2 = 2 (k (x, x)− k (x, x∗))

with respective eigenvectors

U1 =
1

2
(1, 1, 1, 1)> , U2 =

1

2
(1,−1, 1,−1)> ,

and λ3 = λ4 = 0 with respective eigenvectors

U3 =
1√
2

(1, 0,−1, 0)> , U4 =
1√
2

(0, 1, 0,−1)> . (3.14)

Similarly, denote by λi,n and Ui,n (for 1 ≤ i ≤ 4) the eigenvalues and corresponding

eigenvectors of Vn. Since Vn → V , we also have λi,n → λi. Accordingly, we also have

U1,n → U1 and U2,n → U2. However, the zero eigenvalue of V has multiplicity 2, so

U3,n, U4,n will converge to limits U ′3, U
′
4 that belong to the span of U3, U4, but these limits
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need not be U3, U4 themselves. We know, however, that

(U ′3, U
′
4) = (U3, U4)T (3.15)

where T ∈ R2×2 is an orthonormal matrix.

Looking back to (3.11) and (3.13), we can write the Fenchel-Legendre transform as

I (u) = sup
γ∈R4

{
(u−m0)> γ − 1

2
lim sup
n→∞

γ> (anVn) γ

}
= sup

γ∈R4

{
(u−m0)> Uγ − 1

2
lim sup
n→∞

γ>U> (anVn)Uγ

}
= sup

γ∈R4

{
(u−m0)> Uγ − 1

2
lim sup
n→∞

anγ
>U>UnΛnU

>
n Uγ

}
= sup

γ∈R4

{
(u−m0)> Uγ − 1

2
lim sup
n→∞

γ>U> (anVn)Uγ

}

= sup
γ∈R4

(u−m0)> Uγ − 1

2
lim sup
n→∞

∑
j

(∑
i

γiU
>
i Uj,n

)2

anλj,n

 .

Observe that limn→∞ U
>
i Uj,n = 1{i=j}, whence

lim sup
n→∞

(∑
i

γiU
>
i Uj,n

)2

anλj,n = γ2
jλj lim

n→∞
an =∞

as long as γj 6= 0 for j ∈ {1, 2}. Therefore, the supremum in (3.11) can only be achieved

85



at γ for which γ1 = γ2 = 0, whence

I (u) (3.16)

= sup
γ3,γ4

{
(u−m0)> U3γ3 + (u−m0)> U4γ4

−1

2
lim sup
n→∞

∑
j

(∑
i

γiU
>
i Uj,n

)2

anλj,n


≥ sup

γ3,γ4

(u−m0)> U3γ3 + (u−m0)> U4γ4 −
1

2

2∑
j=1

λj lim sup
n→∞

(
4∑
i=3

γiU
>
i Uj,n

)2

an

−1

2

4∑
j=3

lim sup
n→∞

(
4∑
i=3

γiU
>
i Uj,n

)2

lim sup
n→∞

anλj,n


= sup

γ3,γ4

(u−m0)> U3γ3 + (u−m0)> U4γ4 −
1

2

2∑
j=1

λj lim sup
n→∞

(
4∑
i=3

γiU
>
i Uj,n

)2

an

−1

2

4∑
j=3

(T1,j−2γ3 + T2,j−2γ4)2 lim sup
n→∞

anλj,n

}
. (3.17)

The supremum value in (3.11) is thus governed by the rate at which an increases. If this

rate is fast, we will have to take γ3 = γ4 = 0, leading to I = 0. To avoid this situation, an

should be assigned the highest order that makes one of the limits superior in (3.17) finite.

Some matrix perturbation analysis is required to understand the rate that an can take.
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3.3.3 Perturbation analysis for rate function

Define the notation

Ṽ = V − Vn =



PXn (x) PXn (x, x∗) PXn (x) PXn (x, x∗)

PXn (x, x∗) PXn (x∗) PXn (x, x∗) PXn (x∗)

PXn (x) PXn (x, x∗) 0 0

PXn (x, x∗) PXn (x∗) 0 0


.

Let us also write Uj,n =
∑

i νijnUi. Then,

λj,nUj,n =
(
V − Ṽ

)
Uj,n

=
∑
i

νijnV Ui − Ṽ Uj,n

=
∑
i

νijnλiUi − Ṽ Uj,n,

where the last line follows because λi is an eigenvalue (and Ui is an eigenvector) of V .

Left-multiplying by the unit vector Ui, we obtain

νijnλj,n = νijnλi − U>i Ṽ Uj,n. (3.18)

Recalling that λ3 = λ4 = 0 and λj,n > 0, we find that

νijn = −U
>
i Ṽ Uj,n
λj,n

, i ∈ {3, 4} , j ∈ {1, 2} . (3.19)
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This allows us to bound the limits superior in (3.17) as shown in Lemmas 3.3 and 3.4

below.

Lemma 3.3. For fixed γ3, γ4 ∈ R, we have

(
4∑
i=3

γiU
>
i Uj,n

)2

= O
(
P 2
Xn (x) + P 2

Xn (x, x∗) + P 2
Xn (x∗)

)
, j ∈ {1, 2} .

Proof: Using (3.19), we write

(
4∑
i=3

γiU
>
i Uj,n

)2

= (ν3jnγ3 + ν4jnγ4)2 =

(
U>j,nṼ (γ3U3 + γ4U4)

)2

λ2
j,n

.

Plugging in the closed-form expressions for U3, U4 from (3.14) yields

Ṽ U3 =
1√
2

(0, 0, PXn (x) , PXn (x, x∗))> , Ṽ U4 =
1√
2

(0, 0, PXn (x, x∗) , PXn (x∗))> .

Since γ3, γ4 are fixed and U3, U4 are unit vectors, the Cauchy-Schwarz inequality yields

(
4∑
i=3

γiU
>
i Uj,n

)2

≤ max {γ2
3 , γ

2
4}

2λ2
j,n

(
P 2
Xn (x) + P 2

Xn (x, x∗) + P 2
Xn (x∗)

)

as desired.

Lemma 3.4. Suppose that the matrix T defined in (3.15) has no zero-valued entries. Then,

λj,n =

(
1

2
+ o (1)

)(
PXn (x) +

T2,j−2

T1,j−2

PXn (x, x∗)

)
=

(
1

2
+ o (1)

)(
PXn (x∗) +

T1,j−2

T2,j−2

PXn (x, x∗)

)
. (3.20)
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for j ∈ {3, 4}.

Proof: Recall (3.18) and note that νijn → Ti−2,j−2 for i, j ∈ {3, 4}. Since T is assumed

to have no zero-valued entries, we do not need to worry about zero values of νijn. Then,

(3.19) can be rewritten as

λj,n = −U
>
i Ṽ Uj,n
νijn

, i, j ∈ {3, 4} . (3.21)

The first equality in (3.20) can be obtained by setting i = 3, whence (3.21) yields

λj,n = − 1

ν3jn

√
2

(0, 0, PXn (x) , PXn (x, x∗)) · Uj,n.

By expressing (0, 0, 1, 0) and (0, 0, 0, 1) in terms of Ui, we obtain

λj,n = − 1

ν3jn

√
2

(
PXn (x)U ·

(
1

2
,
1

2
,− 1√

2
, 0

)>

+PXn (x, x∗)U ·
(

1

2
,−1

2
, 0,− 1√

2

)>)>
Uj,n

= − 1

ν3jn

√
2

(
PXn (x) ·

(
1

2
,
1

2
,− 1√

2
, 0

)
+PXn (x, x∗) ·

(
1

2
,−1

2
, 0,− 1√

2

))
v·jn

=

(
1

2
+ o (1)

)(
PXn (x) +

T2,j−2

T1,j−2

PXn (x, x∗)

)
,

where the last line follows from the fact that νijn → 0 for i ∈ {1, 2} and j ∈ {3, 4},

while νijn → Ti−2,j−2 for i, j ∈ {3, 4}. The second equality in (3.20) can be obtained by

repeating the above arguments with i = 4.
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The analysis in Lemma 3.4 is easily extended to handle situations where T has

zero-valued entries. If this occurs, we must have either T11 = T22 = 0 or T12 = T21 = 0

because T is orthonormal. In the first case, we can repeat the proof of Lemma 3.4 with

i = 4, j = 3 and i = 3, j = 4 and obtain

λ3,n =

(
1

2
+ o (1)

)
PXn (x∗) , λ4,n =

(
1

2
+ o (1)

)
PXn (x) . (3.22)

In the second case, we repeat the same proof with i = 3, j = 3 and i = 4, j = 4 and

obtain

λ3,n =

(
1

2
+ o (1)

)
PXn (x) , λ4,n =

(
1

2
+ o (1)

)
PXn (x∗) .

In general, the bounds in Lemmas 3.3 and 3.4 depend on PXn (x, x∗), which is a

difficult object to study. Lemma 3.5 establishes a bound that relates this quantity to a

simpler function of the design points. Then, Lemma 3.6 derives a similar lower bound

on PXn (x). Note that these results provide lower bounds; we will later multiply them by

negative quantities to convert them to upper bounds, which will enable additional analysis

of the terms in (3.17).

Lemma 3.5. Let λmin (·) denote the smallest eigenvalue of a square matrix. The following

bound holds:

2PXn (x, x∗) + PXn (x) + PXn (x∗) ≥ 2λmin

(
K
(
X̄n, X̄n

))
.

Proof: For notational convenience, define a vector κ (x) = K (x,Xn)K (Xn, Xn)−1.
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Note that κ (x) takes values in Rn, and observe the identities

n∑
m=1

(κm (x) + κm (x∗)) k (xm, x) = QXn (x) +QXn (x, x∗)

n∑
m=1

(κm (x) + κm (x∗)) k (xm, x
∗) = QXn (x∗) +QXn (x, x∗)

and

∑
m,m′

(κm (x) + κm (x∗)) (κm′ (x) + κm′ (x
∗)) k (xm, xm′)

=QXn (x) + 2QXn (x, x∗) +QXn (x∗) .

We extend κ to Rn+2 by taking κn+1, κn+2 ≡ −1
2
. Plugging in the above identities,

we derive

n+2∑
m,m′=1

(κm (x) + κm (x∗)) (κm′ (x) + κm′ (x
∗)) k (xm, xm′)

= (κn+1 (x) + κn+1 (x∗))2 k (x, x) + (κn+2 (x) + κn+2 (x∗))2 k (x∗, x∗)

+2 (κn+1 (x) + κn+1 (x∗)) (κn+2 (x) + κn+2 (x∗)) k (x, x∗)

+2 (κn+1 (x) + κn+1 (x∗)) (QX (x) +QX (x, x∗))

+2 (κn+2 (x) + κn+2 (x∗)) (QX (x∗) +QX (x, x∗))

+QXn (x) + 2QXn (x, x∗) +QXn (x∗)

= 2PXn (x, x∗) + PXn (x) + PXn (x∗) .

91



Thus, we arrive at

2PXn (x, x∗) + PXn (x) + PXn (x∗)

= (κ (x) + κ (x∗))>K
(
X̄n, X̄n

)
(κ (x) + κ (x∗))

≥ ‖κ (x) + κ (x∗) ‖2
2 · λmin

(
K
(
X̄n, X̄n

))
=

(
n∑

m=1

(κm (x) + κm (x∗))2 + 2

)
λmin

(
K
(
X̄n, X̄n

))
≥ 2λmin

(
K
(
X̄n, X̄n

))
,

which completes the proof.

Lemma 3.6. Let X ′n = Xn ∪ {x}. Then,

PXn (x) ≥ λmin (K (X ′n, X
′
n)) .

Proof: Define κ (x) as in the proof of Lemma 3.5 and extend it toRn+1 by taking κn+1 ≡

−1. Then, by repeating the arguments in the proof of Lemma 3.5, we obtain

PXn (x) =
n+1∑

m,m′=1

κm (x)κm′ (x) k (xm, xm′)

≥ λmin (K (X ′n, X
′
n))

n+1∑
m=1

κ2
m (x)

≥ λmin (K (X ′n, X
′
n)) ,

as desired.

Now, we can study the rate at which λmin (K (X ′n, X
′
n)) or λmin

(
K
(
X̄n, X̄n

))
con-
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verges to zero. For this, we cite the following result (Theorem 12.3 of Wendland, 2004).

Lemma 3.7 (Wendland, 2004). Define qXn = minxm 6=xm′ ‖xm − xm′‖2 and φ0 (M) =

inf‖y‖2≤M φ̃ (y), where φ̃ is the generalized Fourier transform of the radial basis function

φ. Then,

λmin (K (Xn, Xn)) ≥ Cdφ0

(
Md

qXn

)
q−dXn ,

where the constants Cd,Md depend only on d.

Combining Lemmas 3.5-3.7, we have

PXn (x) ≥ Cdφ0

(
Md

qX′n

)
q−dX′n .

Consequently, the inequality in Lemma 3.5 becomes

2PXn (x, x∗) + PXn (x) + PXn (x∗) ≥ 2Cdφ0

(
Md

qX̄n

)
q−d
X̄n
. (3.23)

The lower bound in (3.23) can be connected back to the upper bound obtained in Lemma

3.4 in the following manner. Note that, if T has no zero-valued entries as assumed in

Lemma 3.4, by orthogonality we either have T11

T21
> 0 and T12

T22
< 0, or vice versa (note also

that T11 = −T22). Without loss of generality, we only treat the first case here.

93



Supposing that T12

T22
< 0, we apply (3.23) to (3.20) with j = 4 and argue

λ4,n ≤
(

1

2
+ o (1)

)[
PXn (x)− T22

2T12

(
PXn (x) + PXn (x∗)− 2Cdφ0

(
Md

qX̄n

)
q−d
X̄n

)]
(3.24)

=

(
1

2
+ o (1)

)[(
1− T22

2T12

)
PXn (x)− T22

2T12

PXn (x∗) +O
(
qs∞
X̄n

)]
, (3.25)

= O (hn (Bx,ρ ∩D)s∞) . (3.26)

In this derivation, (3.24) uses the fact that T12

T22
< 0 to convert the lower bound in (3.23)

into an upper bound, while (3.25) applies (3.8) to bound φ0. Noting that the multipliers

1 − T22

2T12
and − T22

2T12
are both strictly positive, we then obtain (3.26) by applying Lemma

3.1 together with the fact that

hn (Bx,ρ ∩D) ≥ qXn ≥ qX̄n .

Next, we return to (3.20) with j = 3 and obtain

λ3,n ≤
(

1

2
+ o (1)

)(
PXn (x) +

T21

T11

√
φ (0)

√
PXn (x)

)

by using the Cauchy-Schwarz inequality for the RKHS inner product to produce the sim-

ple bound

|PXn (x, x∗)| ≤
√
φ (0)

√
PXn (x).

Applying Lemma 3.1, we conclude that λ3,n = O
(
hn (Bx,ρ ∩D)

1
2
s∞
)

. Finally, applying
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Lemma 3.1 to the bound in Lemma 3.3 straightforwardly yields

(
4∑
i=3

γiU
>
i Uj,n

)2

= O (hn (Bx,ρ ∩D)s∞) .

When the design points are asymptotically dense in D, we have hn (Bx,ρ ∩D) ≤ hn (D)

with hn (D) → 0. Thus, among the limits superior in (3.17), one is O
(
h

1
2
s∞

n

)
, and the

others are O (hs∞n ). This will also happen in the symmetric situation where T12

T22
> 0, but

with the order switched for λ3,n and λ4,n.

3.3.4 Main moderate deviations inequality

The conclusions of Section 3.3.3 suggest that an should have the exact order h
− 1

2
s∞

n ,

which we denote by an ∼ h
− 1

2
s∞

n . Then, we obtain

(
4∑
i=3

γiU
>
i Uj,n

)2

an → 0

in (3.17), and bound I (u) ≥ I l (u), where I l is defined as

I l (u) = sup
γ3,γ4∈R

{
(u−m0)> U3γ3 + (u−m0)> U4γ4 −

1

2
c3 (T11γ3 + T21γ4)2

}

when T12

T22
< 0, and

I l (u) = sup
γ3,γ4∈R

{
(u−m0)> U3γ3 + (u−m0)> U4γ4 −

1

2
c4 (T12γ3 + T22γ4)2

}
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when T12

T22
> 0, for some suitable constants c3, c4. Furthermore, recalling (3.14) and the

definition of m0, we find that m>0 U3 = m>0 U4 = 0. Now, applying (3.9), we can finally

state our main result.

Theorem 3.8. Let T be as in (3.15), take an ∼ h
− 1

2
s∞

n and let cl be a constant satisfying

lim supn→∞ anλj,n ≤ cl for j ∈ {3, 4}. If ||T11| − |T21|| 6= 1, we have

lim sup
n→∞

1

an
log µn (E) ≤ − inf

u∈E
I l (u) (3.27)

for any closed E ⊆ D, with

I l (u) = sup
γ3,γ4∈R

{
u>U3γ3 + u>U4γ4 −

1

2
cl (|T11| γ3 + |T21| γ4)2

}
. (3.28)

Throughout this analysis, we have assumed that the design is asymptotically dense,

but it is possible to recover Theorem 4.10, for fixed x, x∗, as long as the design is dense

only in neighborhoods of those two points, e.g., in Bx,ρ ∪ Bx∗,ρ for some ρ > 0. In that

case an will take the order of min
{
hn (Bx,ρ)

− 1
2
s∞ , hn (Bx∗,ρ)

− 1
2
s∞
}

.

Finally, we note that the right-hand side of (3.27) is some strictly negative, problem-

specific constant, and it is the order of an that governs the convergence rate of µn (E).

Our result shows how the rate depends on the kernel through the quantity s∞. Examples

of various kernels and their s∞ values can be found in Wu and Schaback [1993]. Note that

the rate function I l has no dependence on the mean function m of the Gaussian process

model.
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3.4 Applications: pairwise comparisons and estimation error

Sections 3.4.1-3.4.2 apply Theorem 4.10 to prove (3.3) and (3.4), respectively. It

is interesting to note that the proofs are overall very similar, but use different definitions

of the error set E in (3.27). This illustrates the flexibility of our framework, as one can

obtain very different types of inequalities simply by changing the error set. Section 3.4.3

presents several other results of interest where the moderate deviations bound can be made

more explicit.

3.4.1 Moderate deviations for false ordering

We return to (3.2) and write

πn (x, x∗) =
P
(
f̂n (x) ≤ f̂n (x∗)− δ, f (x) ≥ f (x∗)

)
P (f (x) ≥ f (x∗))

. (3.29)

For fixed x, x∗, the denominator is a strictly positive constant, so we can focus on the

numerator, which fits into the framework of Section 3.3 with

E =
{
u ∈ R4 : u1 ≤ u2 − δ, u3 ≥ u4

}
. (3.30)

We will apply Theorem 4.10 and derive a more explicit form for (3.28). First, note that

the supremum in (3.28) can only be finite when

u>U3

|T11|
=
u>U4

|T21|
. (3.31)
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Letting η be the value in (3.31), we then have I l (u) = η2

2cl
. Then, we minimize I l (u)

subject to (3.30)-(3.31). From the optimality conditions, it can be seen that the inequalities

in (3.30) must be binding at optimality, which leads to

inf
u∈E

I l (u) =
δ2

4cl

1

(|T11| − |T21|)2 .

Applying Theorem 4.10, we complete the proof of (3.3). The formal statement of the

result is as follows.

Theorem 3.9. Let T be as in (3.15), take an = O
(
h
− 1

2
s∞

n

)
and let cl be a constant

satisfying lim supn→∞ anλj,n ≤ cl for j ∈ {3, 4}. If ||T11| − |T21|| /∈ {0, 1}, we have

πn (x, x∗) ≤ C1 exp

(
− δ2C2

4cl (|T11| − |T21|)2h
− 1

2
s∞

n

)

where C1, C2 are positive constants.

In fact, we can show that the moderate deviations bound holds uniformly for all

x, x∗ ∈ D. To do so, we must make sure that the denominator of (3.29) is well-behaved.

It is easily seen that

P (f (x) ≥ f (x∗)) = Φ

(
m (x)−m (x∗)√

2 (k (x, x)− k (x, x∗))

)
,

where Φ is the standard Gaussian cdf. We let cL be the Lipschitz constant of m, and
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derive

lim
‖x−x∗‖→0

(m (x)−m (x∗))2

2 (k (x, x)− k (x, x∗))
≤ lim

‖x−x∗‖→0

c2
L‖x− x∗‖2

2

2 (φ (0)− φ (‖x− x∗‖))

=
c2
L

2
lim
y↘0

y2

φ (0)− φ (y)

= −c2
L lim
y↘0

y

φ′ (y)

= − c2
L

φ′′ (0)

< ∞

using the assumption made in Section 3.2.1 that φ is twice differentiable at zero with

φ′′ (0) < 0. Because D is compact, there exists some cD > 0 satisfying

inf
x,x∗∈D

P (f (x) ≥ f (x∗)) ≥ cD.

Furthermore, the constant C2 in Theorem 3.9 does not depend on x, x∗. The constant C1

may depend on x, x∗, but we can take C ′1 to be its largest value over the compact set D.

We then conclude the following.

Corollary 3.10. Suppose that we are in the situation of Theorem 3.9. Then,

sup
x,x∗∈D

πn (x, x∗) ≤ C ′1
cD

exp

(
− δ2C2

4cl (|T11| − |T21|)2h
− 1

2
s∞

n

)

where C ′1, C2, cD are positive constants.

Finally, we consider two special cases not covered by Theorem 3.9. First, in the
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case where T11 = T21 or T12 = T22, we straightforwardly obtain

πn (x, x∗) ≤ C1 exp
(
−δ2Csh

− 1
2
s∞

n

)

for any Cs > 0.

The second and more important special case arises when ||T11| − |T21|| = 1, i.e.,

T ∈


 ±1 0

0 ±1

 ,
 0 ±1

±1 0




We only present the first case, as the second is handled symmetrically. Recall that, in this

situation, the rate behavior of λ3,n, λ4,n is described by (3.22). Repeating the analysis of

Sections 3.3.2-3.3.3, we can take an ∼ h−s∞+ε
n for any ε > 0. Then, all of the limits

superior in (3.17) vanish to zero, yielding

I (u) = sup
γ3,γ4∈R

{
u>U3γ3 + u>U4γ4

}
=


0 u>U3 = u>U4 = 0,

∞ otherwise.

However, the error set E does not contain any u that would satisfy u>U3 = u>U4 = 0, so

infu∈E I (u) =∞. Consequently, we may conclude that

πn (x, x∗) = o
(
exp

(
−δ2Csh

−s∞+ε
n

))
, ∀ε > 0.
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3.4.2 Moderate deviations for estimation error

Let x̂n = arg minx∈D f̂n (x) and x̄ = arg minx∈D f (x). We will study the conver-

gence rate of the tail probability P
(∣∣∣f̂n (x̂n)− f (x̄)

∣∣∣ ≥ δ
)

of the estimation error.

First, we write

P
(
f̂n (x̂n) ≤ f (x̄)− δ

)
= P

(
f̂n (x̂n) ≤ f (x̄)− δ, f (x̂n) ≥ f (x̄)

)
≤ sup

x,x∗∈D
P
(
f̂n (x) ≤ f (x∗)− δ, f (x) ≥ f (x∗)

)
,

where the first line uses the fact that f (x̂n) ≥ f (x̄) by the definition of x̄. Now, we may

obtain a rate for P
(
f̂n (x̂n) ≤ f (x̄)− δ

)
by repeating the analysis of Section 3.4.1, but

with (3.30) replaced by

E ′ =
{
u ∈ R4 : u1 ≤ u4 − δ, u3 ≥ u4

}
. (3.32)

Minimizing I l (u) subject to (3.31) and (3.32), we find that

inf
u∈E′

I l (u) =
δ2

4clT 2
11

.

For the other side of the error event, we write

P
(
f̂n (x̂n) ≥ f (x̄) + δ

)
= P

(
f̂n (x̂n) ≥ f (x̄) + δ, f̂n (x̄) ≥ f̂n (x̂n)

)
≤ sup

x,x∗∈D
P
(
f̂n (x) ≥ f (x∗) + δ, f̂n (x∗) ≥ f̂n (x)

)
.
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Again, we repeat the analysis of Section 3.4.1, but with (3.30) replaced by

E ′′ =
{
u ∈ R4 : u1 ≥ u4 + δ, u2 ≥ u1

}
. (3.33)

Minimizing I l (u) subject to (3.31) and (3.33), we find that

inf
u∈E′

I l (u) =
δ2

4clT 2
21

.

We then combine the preceding results with the arguments of Corollary 3.10 to complete

the proof of (3.4). The final result is formally stated as follows. The situation where

||T11| − |T21|| = 1 can be handled using the same arguments that were presented in Sec-

tion 3.4.1.

Theorem 3.11. Let T be as in (3.15), take an = O
(
h
− 1

2
s∞

n

)
and let cl be a constant

satisfying lim supn→∞ anλj,n ≤ cl for j ∈ {3, 4}. If ||T11| − |T21|| 6= 1, we have

P

(∣∣∣∣min
x∈D

f̂n (x)−min
x∈D

f (x)

∣∣∣∣ ≥ δ

)
≤ 2C ′1 exp

(
− δ2C2

4cl max {T 2
11, T

2
21}

2h
− 1

2
s∞

n

)

where C ′1, C2 are positive constants.

3.4.3 Other results of interest

In the following, we give several examples in which our main results can be made

more explicit. To avoid excessive repetition, we focus on the uniform bound in Corollary

3.10 in our presentation, but analogs of the other results in Sections 3.4.1-3.4.2 can be
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straightforwardly obtained as well. For simplicity, let us take D = [0, 1]d.

Gaussian kernel. Suppose that k is the Gaussian kernel with parameter α, that is,

k (x, x∗) = exp (−α‖x− x∗‖2
2). For this particular kernel, it is known that s∞ can take

arbitrarily large values. However, Theorem 11.22 of Wendland [2004] proves the bound

PXn (x) ≤ exp

(
cα

log hn
hn

)
,

where cα depends only on α, d and D. In addition, Corollary 12.4 in Wendland [2004]

provides a modified version of Lemma 3.7 for this setting, namely,

λmin (K (Xn, Xn)) ≥ c′α exp

(
−40.71

d2

αq2
Xn

)
q−dXn .

Thus, using the above results instead of Lemmas 3.1 and 3.7, we can repeat our analysis

with an ∼ exp
(
−cα log hn

hn

)
and obtain, e.g.,

sup
x,x∗∈D

πn (x, x∗) ≤ c1 exp

(
−δ2c2 exp

(
−cα

2

log hn
hn

))

under the same assumptions as Corollary 3.10.

Uniform design. Consider a uniform grid, discretized evenly in each dimension,

with n being the total number of points in the discretization. One can find that hn =

O
(
n−

1
d

)
, leading to the explicit rate

sup
x,x∗∈D

πn (x, x∗) ≤ C ′1
cD

exp

(
− δ2C2

4cl (|T11| − |T21|)2n
1
2d
s∞

)
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under the assumptions of Corollary 3.10.

Uniform random design. Suppose that the design points are sampled from a uniform

distribution on [0, 1]d. By adapting results in Janson [1987], one can show that hn =

O
((

logn
n

) 1
d

)
, leading to the explicit rate

sup
x,x∗∈D

πn (x, x∗) ≤ C ′1
cD

exp

(
− δ2C2

4cl (|T11| − |T21|)2

(
n

log n

) 1
2d
s∞
)

under the assumptions of Corollary 3.10. One can also extend this result to a setting with

independent, but non-uniform sampling. Suppose that the nth design point is sampled

independently from some fixed density gn with support [0, 1]d. Then, one can show that

hn = O

((
log (cgn)

cgn

) 1
d

)
,

and the rate follows.

We remark that the above discussion implicitly assumes that ||T11| − |T21|| /∈ {0, 1}.

However, the exceptions can be handled using the same arguments that were presented in

Section 3.4.1.

3.5 General large deviations inequality

Let {Zn} be a sequence of random vectors taking values in Rp, and let µn denote

the probability law of Zn. Let Ψn be the cumulant-generating function of Zn, and let {an}

be a sequence satisfying an → ∞ as n → ∞. Define Ψ (γ) as in (3.10). The functions

Ψn and Ψ are convex. Let DΨ = {γ ∈ Rp : Ψ (γ) <∞} be the convex support set of Ψ
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and note that 0 ∈ DΨ.

Let I be the Fenchel-Legendre transform of Ψ as in (3.11). The classical Gärtner-

Ellis theorem [Dembo and Zeitouni, 2009] establishes the inequality (3.9) for any closed

measurable set E, under the condition that the origin belongs to the interior of DΨ. This

condition will fail to hold in our setting, because we will consider situations in which DΨ

is a subspace of Rp. Thus, it is necessary to prove (3.9) under weaker conditions.

In the following, let P be the orthogonal projection operator onto the subspace DΨ,

and define PE = {Pu : u ∈ E} to be the projection of any E ⊆ Rp. Let µPn be the

probability law of the random variable PZn.

Our goal is to prove (3.9), for any closed measurable set E, under the assumption

that DΨ 6= {0} is a subspace of Rp. This is accomplished in three steps with progres-

sively fewer assumptions on E. In the first two steps (Lemma 3.12), the large deviations

inequality is proved for PE, with the first step making the additional assumption that this

projected set is compact. The final step (Theorem 3.14) then proves the inequality for E.

Lemma 3.12. Suppose that DΨ 6= {0} is a subspace ofRp, and E ⊆ Rp has the property

that PE is compact and measurable. Then,

lim sup
n→∞

1

an
log µPn (PE) ≤ − inf

u∈PE
I (u) .

Proof: First notice that

I (u) = sup
γ∈Rp
{〈γ, u〉 −Ψ (γ)} = sup

γ∈DΨ

{〈γ, u〉 −Ψ (γ)}
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Let Iτ (u) = min
{
I (u)− τ, 1

τ

}
for τ > 0. By definition of this function, for any

u ∈ PE we can pick γu ∈ DΨ for which 〈γu, u〉 − Ψ (γu) ≥ Iτ (γu). We can also pick

ρu such that ρu‖γu‖ ≥ τ and let Bu,ρu be the closed ball of radius ρu centered at u.

By Chebyshev’s inequality,

µPn (G) = E
(
1{PZn∈G}

)
≤ E

[
exp

(
〈γ,PZn〉 − inf

u∈G
〈γ, u〉

)]

for any n, γ ∈ Rp and measurable G ⊆ DΨ. In particular,

µPn (PBu,ρu) ≤ E [exp (an〈γu,PZn〉)] exp

(
− inf

u′∈PBu,ρu
〈anγu, u′〉

)
.

For any u ∈ PE,

− inf
u′∈Bu,ρu

〈anγu, u′〉 ≤ anρ
u‖γu‖ − an〈γu, u〉 ≤ anτ − an〈γu, u〉,

whence

1

an
log µPn (PBu,ρu) ≤ 1

an
logE [exp (an〈γu,PZn)] + τ − 〈γu, u〉

≤ 1

an
logE [exp (〈anPγu, Zn)] + τ − 〈γu, u〉 (3.34)

=
1

an
Ψn (anPγu) + τ − 〈γu, u〉,

where (3.34) follows from the fact that P is self-adjoint.

Since PE is compact, we can select a finite covering from the open covering⋃
u∈PE Bu,ρu of PE. Let N be the number of balls in this covering, and denote their
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centers by ui, i = 1, ..., N . For simplicity, let γi, ρi denote the corresponding γu, ρu

values. Then,

1

an
log µPn (PE) ≤ 1

an
logN + τ − min

1≤i≤N

{
〈γi, ui〉 −

1

an
Ψn (anPγi)

}
,

and we can take the limsup of both sides to obtain

lim sup
n→∞

1

an
log µPn (PE) ≤ τ − min

1≤i≤n

{
〈γi, ui〉 − lim sup

n→∞

1

an
Ψn (anPγi)

}
= τ − min

1≤i≤n
{〈γi, ui〉 −Ψ (Pγi)} .

Recalling the properties of γi, we arrive at

lim sup
n→∞

1

an
log µPn (PE) ≤ τ − min

1≤i≤n
Iτ (γi) ≤ τ − inf

u∈PE
Iτ (u) .

This holds for any τ > 0, so we take τ ↘ 0 to prove the desired result.

Lemma 3.13. Suppose that DΨ 6= {0} is a subspace of Rp, and E ⊆ Rp is closed and

measurable. Then,

lim sup
n→∞

1

an
log µPn (PE) ≤ − inf

u∈PE
I (u) .

Proof: Let u1, ..., u` be a basis for the subspace DΨ, with ` < p being its dimensionality.

Denote by µjn the probability law of 〈uj, Zn〉.
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Let γ = anuj and take some ζ > 0. By Chebyshev’s inequality,

µjn ([ζ,∞)) ≤ E
[
exp

(
〈anuj,PZn〉 − inf

u:〈uj ,u〉≥ζ
〈anuj, u〉

)]
≤ E [exp (an〈uj,PZn〉)] exp (−anζ) ,

whence

lim sup
n→∞

1

an
log µjn ([ζ,∞)) ≤ Ψ (uj)− ζ <∞.

Consequently,

lim
ζ→∞

lim sup
n→∞

1

an
log µjn ([ζ,∞)) = −∞

for all j = 1, ..., `. Using symmetric arguments, one can also obtain

lim
ζ→∞

lim sup
n→∞

1

an
log µjn ((−∞,−ζ]) = −∞.

Now define the compact set Gζ = {u ∈ Dψ : 〈uj, u〉 ∈ [−ζ, ζ] ∀j = 1, ..., `}. We then

derive

lim
ζ→∞

lim sup
n→∞

1

an
log µPn (Dψ \Gζ)

≤ lim
ζ→∞

lim sup
n→∞

1

an
log
∑̀
j=1

µjn ((−∞,−ζ]) + µjn ([ζ,∞))

≤ lim
ζ→∞

lim sup
n→∞

1

an
log

(
2`max

j

{
µjn ((−∞,−ζ]) , µjn ([ζ,∞))

})
= −∞, (3.35)

where the first inequality uses a union bound together with the monotonicity of probability
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measures.

Observing that PE ∩Gζ is compact, we can apply Lemma 3.12 to obtain

lim sup
n→∞

1

an
log µPn (PE ∩Gζ) ≤ − inf

u∈PE∩Gζ
I (u) ≤ − inf

u∈PE
I (u) .

On the other hand, PE ∩Gc
ζ ⊆ Dψ \Gζ , so

lim sup
n→∞

1

an
log µPn

(
PE ∩Gc

ζ

)
≤ lim sup

n→∞

1

an
log µPn (Dψ \Gζ) .

Combining both inequalities, we find that

lim sup
n→∞

1

an
log µPn (PE) ≤ 2 max

{
− inf

u∈PE
I (u) , lim sup

n→∞

1

an
log µPn (Dψ \Gζ)

}
.

Taking ζ →∞ and applying (3.35) yields the desired result.

Theorem 3.14. Suppose that DΨ 6= {0} is a subspace of Rp, and E ⊆ Rp is closed and

measurable. Then,

lim sup
n→∞

1

an
log µn (E) ≤ − inf

u∈E
I (u) .

Proof: We rewrite (3.11) as

I (u) = sup
γ∈DΨ

〈γ, u〉 −Ψ (γ) ,
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because Ψ (γ) takes finite values only for γ ∈ Dψ. Observe, however, that

sup
γ∈DΨ

〈γ, u〉 −Ψ (γ) = sup
γ∈Rp
〈Pγ, u〉 −Ψ (γ)

= sup
γ∈Rp
〈γ,Pu〉 −Ψ (γ)

= I (Pu)

because P is self-adjoint. Therefore, by Lemma 3.13,

lim sup
n→∞

1

an
log µn (E) ≤ lim sup

n→∞

1

an
log µPn (PE) ≤ − inf

u∈PE
I (u) ≤ − inf

u∈E
I (u) ,

which completes the proof.

We remark that the large deviations inequality can be recovered under the weaker

condition 0 /∈ relint (Dψ), without requiring Dψ to be a subspace of Rp. However, this is

beyond the needs of the present work and so we do not give the proof here.

3.6 Conclusion

We have presented a theoretical framework that leverages the connections between

Gaussian process regression and approximation theory to derive new moderate deviations

inequalities for different types of error probabilities. The utility of these results is demon-

strated through two applications of broad interest: probabilities of pairwise errors between

fixed errors of points, and tail probabilities for the estimation error of the minimum value.

Furthermore, our results illustrate the effect of the kernel on the convergence rate.

It is difficult to say whether it is possible to improve on these bounds; perhaps this
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also depends on the class of kernels that is chosen. The main limitation of this work is

that, for purposes of tractability, we bound difficult posterior covariances by the much

more tractable mesh norm. The mesh norm only measures the extent to which the design

points are evenly spread out, and thus has limited ability to distinguish between different

strategies for choosing the design points. We leave this problem for future work, noting

that the results presented here are the first of their kind.
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Chapter 4: Efficient Top-r Simultaneous Asymmetric Orthogonal Tensor

Decomposition

4.1 Introduction

Tensor decomposition has been a key spectral algorithm for solving many ML prob-

lems. In recent years, rapid improvements in hardware have driven new emerging appli-

cations in biomedicine, signal processing, data mining and computer vision. Specifically,

it works for latent variable models, a very broad class of probabilistic models encompass-

ing Gaussian mixture models, hidden Markov models, and latent Dirichlet allocation, all

widely used in machine learning. Tensor decomposition can be used to develop estimators

for the high dimensional structure that is complex and hidden. In solving such models,

the method of moments Anandkumar et al. [2014a], Hall [2005] relates the observed data

moments with model parameters using tensor CANDECOMP/PARAFAC (CP) decom-

positions Kolda and Bader [2009]. Consistent model parameter estimators are obtained

through orthogonal tensor decompositions Anandkumar et al. [2014a].

A few challenges remain unsettled in this context. First, these consistent estimators

through orthogonal tensor decompositions have to be efficiently computed via orthogonal

decomposition of a tensor of observed moments. This efficiency is especially valuable

112



in high-dimensional problems where the number of cross-feature moments can be large.

Second, a full recovery is not always attractive - we may only care about the dominant/top

components in the hidden structure. Moreover, in these applications, we may observe an

empirical moment T̂ , a noisy version of the data moment T . It is assumed that T̂ can be

decomposed as T̂ = T + Φ, where Φ is the noise tensor. Therefore, the core objective is

to find robust-to-noise methods that provide guaranteed recovery of top components of T

using T̂ , within a small number of iterations.

Consider a 3-order underlying tensor T with components A,B, C, and let T =∑R
i=1 λiai ⊗ bi ⊗ ci, where ai, bi, ci are the columns of A, B, C respectively. If T is

symmetric, it permits a symmetric CP decomposition A = B = C. If T is asymmetric,

T must be decomposed via an asymmetric decomposition A 6= B 6= C.

Efficient Convergence Rate Kolda [2015a] argues that symmetric orthogonal tensor de-

composition is trivial. A method is proposed in this paper to compute an orthogonal

decomposition of an m-way d-dimensional symmetric tensor. The problem is then re-

duced to an d × d symmetric matrix eigen-problem. The convergence rate of the matrix

eigen-problem solver is inevitably linear (O(log 1
ε
)) for an ε-close recovery, slower than

the convergence rate of tensor power methods (convergence rate increases with tensor

order m, for instance, a 3-way tensor achieves quadratic convergence rate O(log log 1
ε
)).

Simultaneous Recovery Popular tensor decomposition methods such as tensor power

method, although achieve quadratic convergence rate for 3-way tensors, recovers com-

ponents one by one. Unlike previous schemes based on deflation methods that recover
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factors sequentially Anandkumar et al. [2014b], our scheme recovers any number of top

components simultaneously even when R is unknown. This is a more practical setting.

In numerous machine learning settings, data is generated in real-time, and sequential re-

covery of factors may be inapplicable under such online settings. Prior work Wang and

Lu [2017] considers a simultaneous subspace iteration, but is only limited to symmetric

tensors.

Asymmetric Tensors Many alternative methods exist that are popular in the symmetric

case (e.g. Brachat et al. [2010], Kolda [2015b], Nie [2017]), but the symmetric assump-

tion required by these methods is restrictive. In most applications, multi-view models or

HMMs, in which information is asymmetric along different modes, are needed. Decom-

position of symmetric tensors is easier than that of asymmetric ones, as the constraints of

symmetric entries vastly reduce the number of parameters in the CP decomposition prob-

lem. There are prior work Anandkumar et al. [2014a], Anandkumar et al. [2016], Goyal

et al. [2014], Sharan and Valiant [2017], Wang and Lu [2017] on decomposing symmet-

ric tensors with identical components across modes. All these methods require multiple

random sampling initializations which inevitably induce convergence of the algorithms,

only with high probability.

In this paper, we consider simultaneous top r components recovery of asymmet-

ric tensors with unknown R number of orthonormal components. Our goal is to recover

top r components simultaneously and almost surely when noiseless. Our Slicing Initial-

ized Alternating Subspace Iteration (s-ASI) uses a tensor subspace iteration method, i.e.,

orthogonalized alternating least square (o-ALS).
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4.1.1 Summary of contribution

Contribution to Asymmetric Tensor Decomposition We provide the first guaran-

teed decomposition algorithm, Slicing Initialized Alternating Subspace Iteration (s-ASI),

for asymmetric tensors with a convergence rate O(log log 1
ε
) independent of the rank and

dimension. Thanks to Slice-Based Initialization using only O(1/ log( λr
λr+1

)) steps, s-ASI

recovers the top r components (corresponding to the largest r singular values) simultane-

ously with probability 1 under the noiseless case when R is unknown. Our s-ASI is also

robust to noise smaller than min{
√

2
8

∆ε√
R

, δ0
λ2
r−λ2

r+1

8‖λ‖ , δ0
∆

2
√
d
}, where ∆ = minr(λr − λr+1)

denotes the spectral gap of the tensor, d the dimension and δ0 a constant proportional to

the failure probability of initialization.

Contribution to Symmetric Tensor Decomposition Our Slice-Based Initializa-

tion procedure applies to symmetric orthogonal tensor decomposition to (1) provide an

initialization that guarantees convergence to top r components almost surely when the

tensor is noiseless (in contrast to the random sampling based initialization method Wang

and Lu [2017] which leads to convergence with some high probability); (2) improve the

robustness of the algorithm by allowing larger noise min{O( ∆ε√
R

), O(δ0
∆√
d
)}, in contrast

to the state-of-the-art noise level min{O( ∆ε√
R

), O(δ0
∆2
√
dR

))) allowed. Here we use the fact

that the bound can be loosened by replacing λ2
r − λ2

r+1 with ∆2.

Theorem 4.1 (Informal s-ASI Convergence Guarantee). Let a tensor permit a noisy or-

thogonal CP decomposition form T̂ =
∑R

i=1 λiai⊗bi⊗ci+Φ with bounded noise, where

λi are in descending order. After running O(log(log 1
ε
)) steps of tensor subspace itera-

tion in our Alternating Subspace Iteration (Procedure 1), the estimated ith component a∗i
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converges to the i-th component ai with high probability ‖ai − a∗i ‖ ≤ ε for ∀1 ≤ i ≤ r.

Note that the results are identifiable up to sign flips only. In contrast to rank-1

methods, which are identifiable up to both sign flip and column permutation, our s-ASI

identifies the top-r components with largest λi in the correct order. We shall also empha-

size that 1 ≤ r ≤ d can be an arbitrary number without any required knowledge of R.

This fact is critical because it saves computing resources from recovering insignificant or

unwanted components.

4.2 Related works

Rank-1 methods Both popular rank-1 power methods Anandkumar et al. [2014a],

Wang and Anandkumar [2016] (on orthogonal symmetric tensors using random initial-

ization and deflation) and rank-1 ALS Anandkumar et al. [2014b] (on incoherent tensors

via optimizing individual mode of the factors while fixing all other modes, and alternat-

ing between the modes) require recovery of all R components sequentially to determine

the top r components. This is becuase top components are not necessarily first recovered.

Therefore the convergence rates will inevitably contain a factor ofR making their method

slower than our s-ASI.

Rank-r methods (1) Comparison with rank-r power method. Wang et al. Wang

and Lu [2017] use subspace iteration and prove the simultaneous convergence of the top-

k singular vectors for orthogonal symmetric tensors. A sampling-based procedure is used

for initialization. Their sampling-based initialization inevitably introduces a high prob-

ability bound even when the observed data is noiseless. (2) Comparison with rank-r
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orthogonal ALS. Convergence of a variant of ALS using QR decomposition Sharan

and Valiant [2017] with random initialization for symmetric tensors has been proven to

require number of iterations with a factor of R. Their method converges to the top r

components only when the rank R is known and r = R. Their convergence bound of

sequential analysis is found to be loose.

Gradient-based methods Stochastic gradient descent is used to handle tensor decom-

position problems. In Ge et al. [2015], an objective function for tensor decomposition

is proposed where all the local optima are globally optimal. However, the polynomial

convergence rate is slower than the double exponential rate achieved in our paper.

Matrix-based methods Tomasi and Bro [2006] provides a general survey on some early

efforts on matrix-based methods. Most are based on reduction to matrix decomposi-

tion (including subroutines that solves CP decomposition for two-slice tensors through

joint diagonalization( Domanov and Lathauwer [2014] Roemer and Haardt [2008])). Our

method improves upon the line of work mentioned due to the following reasons. (a) We

propose a noise-robust algorithm that fast converges to top-r components. In contrast,

neither Domanov and Lathauwer [2014] nor Roemer and Haardt [2008] present a con-

vergence rate analysis or robustness analysis under noise. (b) Tomasi and Bro [2006]

also discussed several types of trilinear decomposition methods (TLD), which call ma-

trix decompositive subroutines that limit their convergence rates to be slower than ours.

For others mentioned in Tomasi and Bro [2006], our method outperforms them in terms

of either convergence rate, memory expense, resistance of over-factoring, or ability of

simultaneous recovery of top-r components.

It is empirically shown in Faber et al. [2003] that a preliminary version of ALS
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outperforms a series of trilinear decomposition methods (DTLD, ATLD, SWATLD). Our

algorithm outperforms the state-of-the-art ALS method in experiments. The method in

De Lathauwer et al. [2004] also fulfills simultaneous recovery, but it involves interations

essentially using eigenvalue decomposition and a step of minimizing a cost function, for

which the convergence is not ensured to be global. More recent works in this direction

include Kuleshov et al. [2015] and Pimentel-Alarcón [2016]. Kuleshov et al Kuleshov

et al. [2015] proposed a sophisticated way of projection such that the gaps of eigenvalues

are preserved with high probability. However there is no guarantee of top r recovery.

Matrix-decomposition-based methods generally have a linear (logarithmic) conver-

gence rate. Eigen-decomposition based methods are promising, for example the one

introduced in Kolda [2015a]. Even so, our method still wins its place by requiring less

iterations (O(log(log 1
ε
)) versus O(log 1

ε
) from Kolda [2015a]), and possibly even for less

computational complexity. The total computation cost of our method isO(d3r log(log 1
ε
))

whereas the method in Kolda [2015a] takes O(d3 log 1
ε
), dominated by the cost for full

eigen-decomposition. Our cost would indeed be much less when the number of compo-

nents wanted is a constant r = O(1) in terms of dimension d and recovery precision ε.

Very importantly, we remark that doing a truncated eigen-decomposition will not nec-

essarily recover top components of the tensor. Another advantage of our method is the

analysis for noise tolerance for (a)symmetric tensors, which is either not allowed or miss-

ing in the eigen-decomposition based methods.
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4.3 Tensor & subspace iteration preliminaries

Let [n] := {1, 2, . . . , n}. For a vector v, denote the ith element as vi. For a matrix

M, denote the ith row as mi, j th column as mj , and (i, j)th element as mij . Denote the

first r columns of matrix M as Mr. An n-order (number of dimensions, a.k.a. modes)

tensor, denoted as T , is a multi-dimensional array with n dimensions. For a 3-order tensor

T , its (i, j, k)th entry is denoted by Tijk. A tensor is called cubical if every mode is of

the same size. A cubical tensor is called supersymmetric (or simply refered as symmetric

thereafter) if its elements remain constant under any permutation of the indices.

Tensor product is also known as outer product. For a ∈ Rm,b ∈ Rn and c ∈ Rp,

a⊗ b⊗ c is a m× n× p sized 3-way tensor with (i, j, k)th entry being aibjck,∀1 ≤ i ≤

m, 1 ≤ j ≤ n, 1 ≤ k ≤ p.

Multilinear Operation The tensor-vector/matrix multilinear operation of T and matrices

A, B, C is defined as: [T (A,B,C)]ijk =
∑

a,b,c TabcAaiBbjCck. The tensor-vector

multiplication is defined similarly.

Tensor operator norm The operator norm for tensor T ∈ Rd1×d2×d3 is defined as

‖T ‖op = max
µi∈Rdi\{0},i=1,2,3

|T (µ1,µ2,µ3)|
‖µ1‖·‖µ2‖·‖µ3‖ .

Matricization is the process of reordering the elements of anN -way tensor into a matrix.

The mode-n matricization of a tensor T ∈ RI1×I2×...×IN is denoted by T(n) and arranges

the mode-n fibers Kolda and Bader [2009] to be the columns of the resulting matrix,

i.e., the (i1, i2, ..., iN)th element of the tensor maps to the (in, j)
th element of the matrix,

where j = 1 +
∑N

k=1,k 6=n(ik − 1)
∏k−1

m=1,m 6=n Im.
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Khatri-rao product A�B :=


a11b1· · ·a1pbp

.

.

.
. . . ...

am1b1· · ·ampbp

, for A∈Rm×p, B∈Rn×p.

Tensor CP decomposition A tensor T ∈ Rd1×d2×d3 has CP decomposition if the tensor

could be expressed exactly as a sum of R rank-one components, i.e. ∃ Λ, A, B, C such

that T =
∑R

i=1 λiai⊗bi⊗ ci, where R is a positive integer, Λ = Diag([λ1, λ2, · · · , λR]),

A = [a1, a2, . . . , aR] ∈ Rd1×R , B = [b1,b2, . . . ,bR] ∈ Rd2×R and C = [c1, c2, . . . , cR] ∈

Rd3×R. If so, we donote the CP decomposition as T = JΛ; A,B,CK and call A, B, C

factors of this CP decomposition. The rank of T is the smallest number of rank-one

components that sum to T .

Subspace similarity The definition follows Zhu and Knyazev [2013].

Definition 4.1 (Subspace Similarity). Let S1, S2 be twom-dimension proper subspaces in

Rn spanned respectively by columns of two basis matrices M1,M2. Let Mc
2 be the basis

matrix for the complement subspace of S2. The principal angle θ formed by S1 and S2 is

cos(θ) = min
y∈Rm

‖M>1 M2y‖
‖M2y‖ = σmin(M

>
1 M2), sin(θ) = max

y∈Rn−m
‖M>1 Mc

2y‖
‖Mc

2y‖ = σmax(M
>
1 Mc

2),

tan(θ) = sin(θ)
cos(θ)

=
σmax(M>1 Mc

2)

σmin(M>1 M2)
, where σmin(·) / σmax(·) denotes the smallest / greatest

singular value of a matrix.

4.4 Asymmetric tensor decomposition model

Consider a rank-R asymmetric tensor T ∈ Rd×d×d with latent factors Λ, A, B and

C

T = JΛ; A,B,CK ≡
R∑
i=1

λiai ⊗ bi ⊗ ci (4.1)
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where Λ=Diag([λ1, · · · , λR]), A=[a1, . . . , aR] ∈ Rd×R and A>A=I (similarly for B,

C). Without loss of generality, we assume λ1 > λ2 > · · · > λR > 0. Our analysis

applies to general order-n symmetric and asymmetric tensors. In this paper, A,B,C are

all orthonormal matrices, and therefore the tensor we find the CP decomposition on has a

unique orthogonal decomposition, based on Kruskal’s condition Kruskal [1977].

Our goal is to discover a CP decomposition with R orthogonal components that

best approximates the observed T̂ . This can be formulated as solving the following opti-

mization problem:

arg min
Λ∗,A∗,B∗,C∗

∥∥∥T̂ − JΛ∗; A∗,B∗,C∗K
∥∥∥2

F

s.t. Λ∗i,j = 0,∀i 6= j,A∗>A∗ = I,B∗>B∗ = I,C∗>C∗ = I

We denote the estimated singular values and factor matrices as Λ∗, A∗, B∗ and C∗ re-

spectively.

4.4.1 Difficulty of asymmetric tensor decomposition

Asymmetric tensor decomposition is more difficult than symmetric tensor decom-

position due to the following reasons: (1) the number of parameters required to be esti-

mated is a factor of the tensor order more than the symmetric tensor decomposition (2)

the missing symmetry imposes additional difficulty for simultaneous recovery of top-r

components of the tensor.
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Symmetrization Instability Existing works often assume that an asymmetric tensor can

be symmetrized by a multilinear operation, i.e., T (Ma,Mb, I) becomes symmetric, and

thus only prove convergence of symmetric tensor decomposition. Here the symmetriza-

tion matrices Ma = T (b, I, I)> T (I, I, a)−1 and Mb = T (I,b, I)> (T (I, I, a)>)−1

with a and b sampled from a unit sphere. For a proof of the symmetrization, see Ap-

pendix 4.7.2. However, the computation of Ma and Mb can be unstable due to the inver-

sion of T (I, I, a)−1. Specifically, the inversion of T (I, I, a) can be ill-conditioned, i.e.,

the condition number κ(T (I, I, a)) = maxi λi(a
>ci)

mini λi(a>ci)
can be high. Therefore, we consider

the direct asymmetric tensor decomposition.

4.5 Simultaneous asymmetric tensor decomposition

One way to solve the trilinear optimization problem in Equation (??) is through

the alternating least square (ALS) method Carroll and Chang [1970], Harshman [1970],

Kolda and Bader [2009]. The ALS (without orthognalization) approach fixes B,C to

compute a closed form solution for A, then fixes A,C for B, and fixes A,B for C. The

alternating updates are repeated until the convergence criterions are satisfied. By fixing

all but one factor matrix, the problem reduces to a linear least-squares problem over the

matricized tensor

arg min
A∗,Λ∗

‖T̂(1) −A∗Λ∗(C∗ �B∗)>‖2
F, (4.2)

where there exists a closed form solution A∗Λ∗ = T̂(1)[(C
∗ �B∗)>]†, using the pseudo-

inverse. ALS converges quickly and is usually robust to noise in practice. However,

the convergence theory of ALS for asymmetric tensors is not well understood. We fill
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the gap in this paper by introducing an alternating subspace iteration (ASI) as shown in

Algorithm 1, for asymmetric tensors.

We provide the convergence rate proof of our s-ASI for asymmetric tensor using

two steps. (1) Under some r-sufficient initialization condition (defined in Definition 4.2),

we prove an O(log(log(1
ε
))) convergence rate of ASI (Algorithm 1). (2) We propose

a Slice-Based Initialization (Algorithm 2), and prove that after O(1/log λr
λr+1

) steps of

matrix subspace iteration, r-sufficient initialization condition is satisfied. We call our

algorithm Slicing Initialized Alternating Subspace Iteration (s-ASI).

4.5.1 ASI under r-sufficient initialization condition

We define the sufficient initialization condition in Definition 4.2, under which our

Alternating Subspace Iteration algorithm is guaranteed to converge to the true factors of

the tensor T .

Definition 4.2 (r-Sufficient Initialization Condition). The r-sufficient initialization con-

dition is satisfied if tan
(
Ar,Q

(0)
Ar

)
< 1, tan

(
Br,Q

(0)
Br

)
< 1, and tan

(
Cr, Q

(0)
Cr

)
< 1.

Under a satisfaction of the r-sufficient initialization condition in Definition 4.2, we

update the components Q
(k+1)
A , Q

(k+1)
B and Q

(k+1)
C as in line 3,4,5 of Algorithm 1. We save

on expensive matrix inversions over (Q
(k)
C �Q

(k)
B ) as (Q

(k)
C �Q

(k)
B ) = [(Q

(k)
C �Q

(k)
B )>]† due

to the orthogonality of Q
(k)
B and Q

(k)
C . We obtain the following conditional convergence

theorem.

Theorem 4.2 (Noiseless Conditional Simultaneous Convergence). Under the r-sufficient

initialization condition in definition 4.2 and noiseless scenario, afterK = O(log(log(1
ε
)))
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Algorithm 1: Alternating Subspace Iteration (Alternating Subspace Iterationshort)
for Asymmetric Tensor Decomposition

Input: d× d× d sized tensor T̂ , a tentative rank r, precision ε
Output: Λ∗, A∗,B∗,C∗, such that ‖Ar −A∗‖, ‖Br −B∗‖, ‖Cr −C∗‖ ≤ ε

1 Initialize Q
(0)
A ,Q

(0)
B ,Q

(0)
C through Algorithm 2

2 for k = 0 to K = O(log (log 1
ε
)) do

3 Q
(k+1)
A R

(k+1)
A ← QR

(
T̂(1)(Q

(k)
C �Q

(k)
B )
)

4 Q
(k+1)
B R

(k+1)
B ← QR

(
T̂(2)(Q

(k)
C �Q

(k+1)
A )

)
5 Q

(k+1)
C R

(k+1)
C ← QR

(
T̂(3)(Q

(k+1)
B �Q

(k+1)
A )

)
6 end
7 (Λ∗,A∗,B∗,C∗)← Algorithm 4(T̂ , r, Q

(K)
A , Q

(K)
B , Q

(K)
C )

steps, our Alternating Subspace Iteration in Algorithm 1 recovers the estimates of the

factors a∗i , b∗i , and c∗i that correspond to the top-r true components with largest λi up to

sign flip, i.e., ‖ai − a∗i ‖2 ≤ 2ε, ∀1 ≤ i ≤ r. Similarly for b∗i , c∗i , ∀1 ≤ i ≤ r.

Theorem 4.2 guarantees that the estimated factors recovered using Alternating Sub-

space Iterationshort converges to the true factors A, B and C when noiseless. We also

provided the guarantee for the noisy case in Section 4.7. The convergence rate of Alternat-

ing Subspace Iteration is log(log(1
ε
)) when the r-sufficient initialization condition is satis-

fied. The convergence result requires careful manipulation of three different modes. Most

ALS methods assume a relaxation to asymmetric tensors, however the existing works

only provide convergence results for symmetric tensors. Our work closes the gap be-

tween theory and practice. The proof sketch is in Appendix 4.7.3. We now propose a

novel initialization method in Algorithm 2 which guarantees that the r-Sufficient Initial-

ization Condition is satisfied.
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Algorithm 2: Slice-Based Initialization

Input: Tensor T̂ , r
Output: Q

(0)
A ,Q

(0)
B ,Q

(0)
C

1 ei← ith column of identity matrix
2 if T̂ is asymmetric then
3 MA ←

∑d
i=1 T̂ (I, I, ei)T̂ (I, I, ei)

>

4 MB ←
∑d

i=1 T̂ (ei, I, I)T̂ (ei, I, I)>

5 MC ←
∑d

i=1 T̂ (I, ei, I)>T̂ (I, ei, I)

6 else
7 MA ← T̂ (I, I,vC) // vCi = trace(T̂ (I, I, ei))

8 MB ← T̂ (vA, I, I) // vAi = trace(T̂ (ei, I, I))

9 MC ← T̂ (I,vB, I)> // vBi = trace(T̂ (I, ei, I))

10 end
11 Q

(0)
A ← output of Algorithm 3 on MA

12 Q
(0)
B ← output of Algorithm 3 on MB

13 Q
(0)
C ← output of Algorithm 3 on MC

4.5.2 r-Sufficient Initialization: Slice-Based Initialization and Matrix Sub-

space Iteration

We provide a guaranteed r-Sufficient Initialization Q
(0)
A ,Q

(0)
B ,Q

(0)
C using a 2-step

procedure:

• Prepare matrix MA (MB, MC) such that the left eigenspace is the column space

of A (B, C). Unlike in Sharan and Valiant [2017] or Wang and Lu [2017], Algo-

rithm 2 recovers MA with preserved order of tensor components.

• Recover r-sufficient Q
(0)
A ( same for Q

(0)
B and Q

(0)
C ) from the matrices above,

achieved by Algorithm 3 almost surely in the noiseless case ( the discussion of

noisy setting is deferred to section 4.7 ).

We assume a gap between the rth and the (r + 1)th singular values for all r ≤
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R. Lemma 4.13 in Appendix 4.7.3.4 provides the key intuition behind our initialization

procedure. Lemma 4.13 shows that given a matrix M ∈ Rd×d, matrix subspace iteration

in Algorithm 3 recovers the left eigenspace spanned by eigenvectors of M corresponding

to p largest eigenvalues. Therefore, matrix subspace iteration provides insight into how

the factors should be initialized. It suggests that as long as we find a matrix whose left

eigenspace is the column space of A, we can use matrix subspace iteration to prepare an

initialization for Alternating Subspace Iterationshort.

Algorithm 3: Matrix Subspace Iteration
Input: Matrix M, r
Output: Left invariant subspace approximation Q(J)

1 Initialize random orthogonal Q(0) ∈ Rd×r from Haar distribution Mezzadri [2006]

2 for j = 1 to J = O(log(C)/ log(| λr
λr+1
|)) do

3 Q(j)R(j) ← QR
(
MQ(j−1)

)
4 end

Theorem 4.3 (Noiseless). Assume that C ≥ 1 (otherwise r-Sufficient Initialization Con-

dition is met after one iteration), after we run Algorithm 2 and 3 with

J = O(log(C)/ log(| λr
λr+1

|))

steps, we guarantee under noiseless scenario, up to sign flip only tan
(
Ar,Q

(0)
A

)
<

1, same for Q
(0)
B and Q

(0)
C .

Theorem 4.3 guarantees that r-Sufficient Initialization Condition (Definition 4.2)

is satisfied after O(log(C)/ log(| λr
λr+1
|)) steps of matrix subspace iteration. The proof of

Theorem 4.3 (appendix) follows directly from Lemma 4.13 by setting the convergence
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tolerance to 1.

Algorithm 4: Singular Value Computation

Input: T̂ , r, Q
(K)
A , Q

(K)
B , Q

(K)
C

Output: Λ∗,A∗,B∗,C∗

1 for i = 1 to r do
2 a∗i , b∗i , c∗i ← the ith column of Q

(K)
A , Q

(K)
B , Q

(K)
C respectively

3 λ∗i ← T̂ (a∗i ,b
∗
i , c
∗
i )

4 end
5 Λ∗ ← Diag(λ∗1, · · · , λ∗r), A∗ ← QA

(K), B∗ ← Q
(K)
B , C∗ ← Q

(K)
C

4.6 Slice-Based Initialization

For matrix subspace iteration in Algorithm 3 to work, we prepare a matrix that spans

the space of eigenvectors of A using Slice-Based Initialization in Algorithm 2 for sym-

metric and asymmetric tensors. matrix subspace iteration is on T̂ (I, I,vC) where vCi =

trace(T̂ (I, I, ei)),∀i ∈ [d] for symmetric tensor, and is on
∑d

i=1 T̂ (I, I, ei)T̂ (I, I, ei)
> for

asymmetric tensor.

4.6.1 Performance of Slice-Based Initialization algorithm for symmetric

tensors

Both the performance of symmetric tensor decomposition using rank-1 power method

Anandkumar et al. [2014a] and that of simultaneous power method Wang and Lu [2017]

will be improved using our initialization procedure. Consider a symmetric tensor with

orthogonal components T =
∑R

i=1 λiui⊗ui⊗ui where ui ⊥ uj and u>i ui = 1. We start

with a vector vC which is the collection of the trace of each third mode slice of tensor T ,
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i.e., the ith element of vector vC is vCi =
∑d

l=1

∑R
m=1 λmulmulmuim∀i ∈ [d].We then take

mode-3 product of tensor T with the above vector vC . As a result, we have Lemma 4.14.

Rank-1 Power Method with deflation Anandkumar et al. [2014a] uses random

unit vector initializations, and the power iteration v(k+1) = T (I,v(k),v(k)) converges to

the tensor eigenvector with the largest |ciλi| among |c1λ1|, · · · , |cRλR| where ci = v>ui.

A drawback of this property is that random initialization does not guarantee convergence

to the eigenvector with the largest eigenvalue.

Lemma 4.4 (Slice-Based Initialization improves the rank-1 power method). For each

power iteration loop in rank-1 power method with deflation Anandkumar et al. [2014a]

for symmetric tensors, procedure 2 guarantees recovery of the eigenvector corresponding

to the largest eigenvalue.

Slice-Based Initialization for symmetric tensors recovers the top-r subspace of the

true factor U as descending order of λ2
i is the same as descending order of λi. Algorithm 2

uses vk = trace
(
T (I, I, ek)

)
and thus v =

∑R
m=1 λmum. Therefore we obtain ci =

v>ui = λi, and the power method converges to the eigenvector u1 which corresponds to

the largest eigenvalue λ1.

Likewise, Rank-r Simultaneous Power Method for symmetric tensors also be-

comes more efficient when Algorithm 2 is adopted as an initialization procedure.

Lemma 4.5 (Slice-Based Initialization improves the rank-r simultaneous power method).

If algorithm 2 is used to provide an initialization for the matrix subspace iterations

in Wang and Lu [2017], sampling and averaging will not be required. This can save

O( 1
γ2 log d) steps of iterations inWang and Lu [2017] where γ = min

1≤i≤R

λ2
i−λ2

i+1

λ2
i

.
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In the initialization phase of the algorithm in Wang and Lu [2017], the paper gener-

ates random Gaussian vectors w1, · · · ,wL ∼ N (0, Id) and let w̄ = 1
L

∑L
l=1 T (I,wl,wl).

By doing T (I, I, w̄), Wang and Lu [2017] builds a matrix with approximately squared

eigenvalues and preserved eigengaps. We improve this phase by simply obtaining vector

v as (v)k = trace
(
T (I, I, ek)

)
and substitute T (I, I, w̄) by T (I, I,v).

Our Slice-Based Initialization for the symmetric case is slightly different from the

asymmetric case for consideration of computational complexity (saving the multiplica-

tion of two d × d matrices). However, the asymmetric Slice-Based Initialization applies

to symmetric case and allows a larger noise. Symmetric Slice-Based Initialization re-

quires the operator norm of the noise tensor to be O(δ0 min{λ
2
r−λ2

r+1

4‖λ‖ , λr−λr+1

2d(3/4) }), while the

asymmetric Slice-Based Initialization requires the operator norm of the noise tensor to be

O(δ0 min{λ
2
r−λ2

r+1

8‖λ‖ , λr−λr+1

2
√
d
}).

4.6.2 Performance of Slice-Based Initialization algorithm for asymmet-

ric tensor

We provide the first initialization approach for asymmetric tensors, and prove the

first convergence result for asymmetric tensors. With our Slice-Based Initialization, which

involves a different procedure for asymmetric tensors than for symmetric tensors, the top-

r components convergence rate of asymmetric tensors matches that of symmetric tensors.

Now let us consider the asymmetric tensor T with orthogonal components A, B and C.

We start with taking the quadratic form of each slice matrix along the third mode of the

tensor, i.e., T (I, I, ei)T (I, I, ei)
>. We obtain T (I, I, ei)T (I, I, ei)

> =
∑R

j=1 λ
2
jc

2
ijaja

>
j
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which implies
d∑
i=1

T (I, I, ei)T (I, I, ei)
> =

R∑
j=1

λ2
jaja

>
j as C is orthonormal.

Lemma 4.6 (Preserved Component Order). Aggregated quadratic form of slices of asym-

metric tensor satisfies
∑d

i=1 T (I, I, ei)T (I, I, ei)
> = AΛA> where

Λ = Diag((λm)1≤m≤R).

Our Slice-Based Initialization for asymmetric tensors recovers the top-r subspace

of the true factors A, B, and C as the descending order of λ2
i is the same as descending

order of λi.

4.7 Robustness of the convergence result

We now extend the convergence result to noisy asymmetric tensors. For symmetric

tensors, there are a number of prior efforts Sharan and Valiant [2017], Wang and Lu

[2017], Anandkumar et al. [2016] showing that their decomposition algorithms are robust

to noise. Such robustness depends upon restriction on tensor or structure of the noise such

as low column correlations of factor matrices (in Sharan and Valiant [2017]) or symmetry

of noise along with the true tensor (in Wang and Lu [2017]). We provide a robustness

theorem of our algorithm under the following bounded noise condition.

Definition 4.3 (δ0-bounded Noise Condition). A tensor satisfies the δ0-bounded noise

condition if the noise tensor is bounded in operator norm that ∀1 ≤ r ≤ R,

‖Φ‖op ≤ min

{√
2

8

(λr − λr+1)ε√
r

, δ0

λ2
r − λ2

r+1

8‖λ‖
, δ0

λr − λr+1

2
√
d

}
.

Under the bounded noise model, we have the following robustness result.
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Theorem 4.7 (s-ASI Convergence Guarantee). Assume the tensor T permits a CP de-

composition form JΛ; A,B,CK + Φ where A,B,C are orthonormal matrices and the

noise tensor Φ satisfies the δ0-bounded noise condition. For all 1 ≤ r ≤ R, after

J = O(1/ log(| λr
λr+1
|)) matrix subspace iterations in procedure 3 and O(log(log 1

ε
)) Al-

ternating Subspace Iteration iterations in procedure 1, s-ASI is guaranteed to return esti-

mated Λ∗,A∗,B∗ and C∗ with probability > 1−O(δ0). And the estimations satisfy, up to

sign flip, ‖ai − a∗i ‖ ≤ ε, ∀1 ≤ i ≤ r. Similarly for b∗i and c∗i ∀1 ≤ i ≤ r.

The proof follows from the main convergence result 4.10 and is in Appendix 4.7.5.

Remark 1. We make a few points below.

1. If the goal is to recover all components AR,BR,CR, then the preservation of eigen-

value order is not required. Thus the bound on the operator norm of the noise tensor

can be relaxed to O(λmin√
d
ε),

2. For the robustness theorem the worst case is considered (rather than considering

the average case associated with a specific family of noise distribution), without

any structural assumption. In the general case, the noise can be “malicious” if

there is a sharp angle between subspace of Φ and subspace of T for every modes.

4.7.1 A naive initialization procedure

Based on the CP decomposition model in Equation (4.1), it is easy to see that the

frontal slices shares the mode-A and mode-B singular vectors with the tensor T , and the
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kth frontal slice is MCk = AΛCkB
> where ΛCk =


λ1ck1 0

. . .

0 λRckR

. It is natural

to consider naively implementing singular value decompositions on the frontal slices to

obtain estimations of A and B.

Failure of Naive Initialization Consider the simpler scenario of finding a good initial-

ization for a symmetric tensor T which permits the following CP decomposition

T =
R∑
i=1

λiui ⊗ ui ⊗ ui (4.3)

Specifically we have

T (I, I,vC) = UΛ2U>

where U = [u1, · · · ,uR],Λ = diag(λ1, · · · , λR). However the first method gives us a

matrix without any improvement on the diagonal decomposition, i.e. UΛUU>, where

ΛU = diag(λ1uk1, · · · , λRukR)

For each eigenvalue of matrix UΛUU>, it contains not only the factor of a tensor singular

value which we care about, but also some unknowns from the unitary matrix. This induces

trouble when one wants to recover the subspace relative to only some leading singular

values of the tensor if the rank R is believed to be in a greater order of the dimension
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d. Although the analogous statement in matrix subspace iteration is true almost surely

(with probability one), in tensor subspace iteration we indeed need to do more work than

simply taking a slice. It is highly likely that the unknown entries uk1, · · · , ukR permute

the eigenvalues into an unfavorable sequence. Meanwhile, since Λ2 is ideally clean, we

see success when we use the second method to recover the subspace relative to a few

dominant singular values of a symmetric tensor.

They are all qualified in the sense that they own A as the left eigenspace exactly.

However we can generalize this scheme to a greater extent. Frontal slicing is just a specific

realization of multiplying the tensor on the third mode by a unit vector. Mode-n product

of a tensor with a vector would return the collection of inner products of each mode-n

fiber with the vector. The mode-3 product of tensor T with ek will give the kth slice of

T .

4.7.2 Unreliability of symmetrization

In multi-view model, Anandkumar et al. [2012] introduced a method to symmetrize

an asymmetric tensor. Here we change the notations and restate it below.

Proposition 4.8. Let T =
∑R

i=1 λiui ⊗ vi ⊗ wi have components U,V,W, then for

some vectors a and b chosen independently, tensor

T (T (b, I, I)>T (I, I, a)−1, T (I,b, I)>(T (I, I, a)>)−1, I) (4.4)

is symmetric.
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Proof.

T (I, I, a) =
R∑
i=1

λi(w
>
i a)ui ⊗ vi = UDiag(λi(w

>
i a))V>

(T (I, I, a))−1 = VDiag
( 1

λi(w>i a)

)
U>

Similarly,

T (b, I, I) = VDiag(λi(u
>
i b))W>, T (I,b, I) = UDiag(λi(v

>
i b))W> (4.5)

Therefore,

T (T (b, I, I)>T (I, I, a)−1, T (I,b, I)>(T (I, I, a)>)−1, I)

= T (WDiag
(u>i b

w>i a

)
U>,WDiag

(v>i b

w>i a

)
V>, I)

=
R∑
i=1

λi
u>i b

w>i a

v>i b

w>i a
wi ⊗wi ⊗wi

shows the symmetry.

However, in practice the condition number for T (I, I, a) could be very large. So

symmetrization using matrix inversion is not reliable since it is sensitive to noise.

Indeed, we can analyze this assuming a is a fixed vector. Proposition 4.9 by Jiang

et al. Jiang [2006] provides a good tool for our analysis.

Proposition 4.9. Let Md = (mij)1≤i,j≤d, where mij’s are independent standard Gaus-

sian, Xd = (xij)1≤i,j≤d be the matrix obtained from performing the Gram-Schmidt pro-
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cedure on the columns of Md, {nd < d : d ≥ 1} be a sequence of positive integers

and

εd(n) ≡ max
1≤i≤d,1≤j≤n

∣∣√dxij −mij

∣∣,
we then have

(1) the matrix Xd is Haar invariant on the orthonormal group O(n);

(2) εd(nd)→ 0 in probability, provided nd = o(d/ log d) as n→∞;

(3) ∀α > 0, we have that εd([dα/ log d])→ 2
√
α in probability as d→∞.

This proposition states that for an orthonormal matrix generated by performing

Gram-Schmidt procedure to standard normal matrix, , the first o(d/ log d) columns, scaled

by
√
d, asymptotically behave like a matrix with independent standard Gaussian entries

and this is the largest order for the number of columns we can approximate simultane-

ously.

The condition number of matrix T (I, I, a) is

K(T (I, I, a)) =
max

1≤i≤R
|λiw>i a|

min
1≤i≤R

|λiw>i a|
, (4.6)

which is nondecreasing as the rank of tensor R increases. So we can indeed assume

R = o(d/ log d) and study the badness of condition number for such W’s as worse cases.

Remark 2. We treat W as the left d × R sub-block of some orthonormal matrix. Thus

by assuming R = o(d/ log d),
√
dW could be approximated by a matrix of i.i.d. N (0, 1)
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variables when d is large, which is common in practice.

Since condition number K is taking ratio, without loss of gernerality we can let

‖a‖ = 1. Then,

K(T (I, I, a)) =
max

1≤i≤R
|λi(
√
dwi)

>a|

min
1≤i≤R

|λi(
√
dwi)>a|

. (4.7)

For 1 ≤ i ≤ R, λi(
√
dwi)

>a are independent to each other and approximately has distri-

bution N (0, λ2
i ). So the condition number is approximately the ratio between maximum

and minimum of absolute value of N (0,Diag(λ2
i )). One can imgine if the tensor has one

or more small singular values then it is highly likely for the condition number to be high.

4.7.3 Procedure 1 noiseless convergence result

4.7.3.1 Conditional simultaneous convergence

Theorem 4.10 (Main Convergence). Using the initialization procedure 2, Denote the re-

covered tensor as T ∗ = JΛ∗; A∗,B∗,C∗K after J = O(log(C)/ log(| λr
λr+1
|)) iterations in

initialization procedure 2 and K = O(log(log 1
ε
)) iterations in main procedure1 applied

on T , ∀ε > 0. We have

‖T ∗ − T ‖s ≤ ε.

To prove the main convergence result, just combine all of the rest results together.

Lemma 4.11. Let Q
(0)
Ar
,Q

(0)
Br
,Q

(0)
Cr
, ∀r ∈ {1, 2, · · · , R}, be d× r orthonormal initializa-
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tion matrices for the specified subspace iteration. Then after K iterations, we have

t
(K)
A(r)
≤
(λr+1

λ(r)

)2K−1(
t
(0)
A(r)

t
(0)
B(r)

t
(0)
C(r)

) 2K

3

[ (
t
(0)
A(r)

)2

t
(0)
B(r)

t
(0)
C(r)

] (−1)K

3

, ∀K ≥ 1.

where t(k)
A(r)

= tan
(
Ar,Q

(k)
Ar

)
, t(k)
B(r)

= tan
(
B(r),Q

(k)
Br

)
, t(k)
C(r)

= tan
(
C(r),Q

(k)
Cr

)
, ∀k ≥

0. Similarly for B(r) and C(r).

The proof is in Appendix 4.7.3.2.

Remark 3. Given that the initialization matrices Q
(0)
Ar
,Q

(0)
Br
,Q

(0)
Cr

satisfy the r-sufficient

initialization condition, the angles between approximate subspaces and true spaces would

decrease with a quadratic rate. Therefore, only K = O(log(log 1
ε
)) number of iterations

is needed to achieve tan(Ar,Q
(K)
Ar

) ≤ ε.

The following result shows that if we have the angle of subspaces small enough,

column vectors of the approximate matrix converges simultaneously to the true vectors of

true tensor component at the same position.

Lemma 4.12 (Simultaneous Convergence). For any r ∈ {1, 2, · · · , R}, if

tan(Ar,QAr) ≤ ε (4.8)

for some d× r matrix QAr = [q1, · · · ,qr], then

‖qi − ai‖2 ≤ 2ε, ∀1 ≤ i ≤ r.

Similarly for B(r) and C(r).
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The proof is in Appendix 4.7.3.3.

4.7.3.2 Proof for lemma 4.11

Proof. We only prove the result for the order of A. The proofs for the other two orders

are the same.

For rank-R tensor T = JΛ; A,B,CK ≡
∑R

i=1 λiai⊗bi⊗ci, its mode-1 matriciza-

tion T(1) = AΛ(C�B)>. So in each iteration,

Q
(k+1)
Ar

R
(k+1)
Ar

= T(1)(Q
(k)
Cr
�Q

(k)
Br

) = AΛ(C�B)>(Q
(k)
Cr
�Q

(k)
Br

)

= AΛ(C>Q
(k)
Cr

) ∗ (B>Q
(k)
Br

)

by property of Hadamard product and Khatri-Rao product Liu and Trenkler [2008], Kolda

and Bader [2009].

We can expand matrices A,B,C to be a basis for Rd, and we can for example for

Ar, let Ac
r be the matrix consisted of the rest (d − r) columns in the expanded matrix.

Now the column space of Ac
r is just the complement space of column space of Ar in Rd.

And
[
Ar Ac

r

]
is a d× d orthonormal matrix.

With that notation, we have for 0 ≤ k ≤ K,

A>r Q
(k+1)
Ar

R
(k+1)
Ar

=
[
Ir 0r×(R−r)

]
Λ
(
C>Q

(k)
Cr

)
∗
(
B>Q

(k)
Br

)
Ac>
r Q

(k+1)
Ar

R
(k+1)
Ar

=

0(R−r)×r I(R−r)×(R−r)

0(d−R)×r 0(d−R)×(R−r)

Λ
(
C>Q

(k)
Cr

)
∗
(
B>Q

(k)
Br

)
.
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Now fix k and focus on a single iteratoin step,

t
(k+1)
Ar

= tan(Ar,Q
(k+1)
Ar

) =
sin(Ar,Q

(k+1)
Ar

)

cos(Ar,Q
(k+1)
Ar

)
=
σmax(A

c>
r Q

(k+1)
Ar

)

σmin(A>r Q
(k+1)
Ar

)

=
∥∥∥Ac>

r Q
(k+1)
Ar

∥∥∥
s

∥∥∥(A>r Q
(k+1)
Ar

)−1∥∥∥
s

=
∥∥∥Ac>

r Q
(k+1)
Ar

(
A>r Q

(k+1)
Ar

)−1∥∥∥
s

=
∥∥∥Ac>

r Q
(k+1)
Ar

R
(k+1)
Ar

(
A>r Q

(k+1)
Ar

R
(k+1)
Ar

)−1∥∥∥
s

≤
σmax

(
Ac>
r Q

(k+1)
Ar

R
(k+1)
Ar

)
σmin

(
A>r Q

(k+1)
Ar

R
(k+1)
Ar

)
≤
λr+1σmax

[(
Cc>

(r)Q
(k)
Cr

)
∗
(
Bc>
r Q

(k)
Br

)]
λrσmin

[(
Cc>
r Q

(k)
Cr

)
∗
(
Bc>
r Q

(k)
Br

)]
For Hadamard product, σmax(M1 ∗M2) ≤ σmax(M1)σmax(M2)

and σmin(M1 ∗M2) ≥ σmin(M1)σmin(M2)see Liu and Trenkler [2008]

≤ λr+1

λr

σmax

(
Cc>
r Q

(k)
Cr

)
σmin

(
Cc>
r Q

(k)
Cr

) σmax

(
Bc>
r Q

(k)
Br

)
σmin

(
Bc>
r Q

(k)
Br

)
=
λr+1

λr
· tan

(
Br,Q

(k)
Br

)
· tan

(
Cr,Q

(k)
Cr

)

Therefore we get ∀0 ≤ k ≤ K,

t
(k+1)
Ar

≤ λr+1

λr
t
(k)
Br
t
(k)
Cr
.

And similarly,

t
(k+1)
Br

≤ λr+1

λr
t
(k)
Ar
t
(k)
Cr
,
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t
(k+1)
Cr

≤ λr+1

λr
t
(k)
Ar
t
(k)
Br
.

Sequentially,

t
(K+1)
Ar

≤ λr+1

λr
t
(K)
Br
t
(K)
Cr
≤
(λr+1

λr

)3

(t
(K−1)
Ar

)2t
(K−1)
Br

t
(K−1)
Cr

≤ · · · ≤
(λr+1

λr

)1+2m( m∏
i=1

(t
(K−i)
Ar

)2
)
t
(K−m)
Br

t
(K−m)
Cr

∀m = 1, 2, . . . , K

Easy to see that all historical tangents of principal angle in approximation for Ar

appear in the upper bound for the tangent-measured approximation distance after a new

iteration. So in order to solve for the explicit upper bounds, we can assume the form of

the upper bounds has a recursive formula for each exponents. Specifically, assume for

some sequences uK , aK , bK , we can conclude

tK+1
Ar

≤
(λr+1

λr

)uK+1(
t
(0)
Ar

)aK+1
(
t
(0)
Br
t
(0)
Ar

)bK+1

On the other hand, for fixed K ≥ 1,

tK+1
Ar

≤
(λr+1

λr

)1+2K( K∏
i=1

(t
(K−i)
Ar

)2
)
t
(0)
Br
t
(0)
Cr

≤
(λr+1

λr

)1+2K
K∏
i=1

[(λr+1

λr

)uK−i(
t
(0)
Ar

)aK−i(t(0)
Br
t
(0)
Ar

)bK−i]2

· t(0)
Br
t
(0)
Cr

=
(λr+1

λr

)1+2K+2
∑K
i=1 uK−i(

t
(0)
Ar

)2
∑K
i=1 aK−i

(
t
(0)
Br
t
(0)
Ar

)1+2
∑K
i=1 bK−i

Now we have gained the recursive formulas for sequence on exponents in the upper
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bound

uK+1 = 1 + 2K + 2
K∑
i=1

uK−i

aK+1 = 2
K∑
i=1

aK−i

bK+1 = 1 + 2
K∑
i=1

bK−i.

The formula system works on when K ≥ 1, so we can check the upper bounds for

several initial iterations.

For K = 0,

t
(1)
Ar
≤ λr+1

λr
t
(0)
Br
t
(0)
Cr

For K = 1,

t
(2)
Ar
≤
(λr+1

λr

)3(
t
(0)
Ar

)2
t
(0)
Br
t
(0)
Cr

For K = 2,

t
(3)
Ar
≤
(λr+1

λr

)7(
t
(0)
Ar

)2(
t
(0)
Br
t
(0)
Cr

)3

We have

u0 = 0, u1 = 1, u2 = 3, u3 = 7, u4 = 15, . . .

a0 = 1, a1 = 0, a2 = 2, a3 = 2, a4 = 6, . . .

b0 = 0, b1 = 1, b2 = 1, b3 = 3, b4 = 5, . . .
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One can solve and check the general formula for these sequences

uK = 2K − 1, aK =
2

3
(2K−1 + (−1)K), bK =

1

3
(2K + (−1)K−1), ∀K ≥ 1.

In conclusion,

t
(K)
Ar
≤
(λr+1

λr

)2K−1(
t
(0)
Ar
t
(0)
Br
t
(0)
Cr

) 2K

3

[(
t
(0)
Ar

)2

t
(0)
Br
t
(0)
Cr

] (−1)K

3

, ∀K ≥ 1.

The proofs of upper bounds for Br and Cr are the same.

4.7.3.3 Proof for lemma 4.12

Proof. First, we denote Qi := [q1, · · · ,qi] only in this proof. Then

tan(Ar−1,Qr−1) =

√
1− σ2

min(A
>
r−1Qr−1)

σmin(A>r−1Qr−1)

=

√
1

σ2
min(A

>
r−1Qr−1)

− 1

by Cauchy interlacing theorem

≤
√

1

σ2
min(A

>
(r)Q(r))

− 1

= tan(A(r),Q(r))
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Inductively, ∀1 ≤ i ≤ r, tan(Ai,Qi) ≤ ε. Then ∀2 ≤ i ≤ r,

cos2(Ai,Qi) = min
y∈Ri

‖Q>i Aiy‖2

‖Aiy‖2

≤ ‖Q>i ai‖2 as letting y to be [0, · · · , 0, 1]>

= ‖Q>i−1ai‖2 + (q>i ai)
2

≤ sin2(Ai−1,Qi−1) + (q>i ai)
2,

since ai ∈ C (Ai−1)⊥ , the complement space of column space of Ai−1 , and

(q>i ai)
2 ≥ 1

1 + tan2(Ai,Qi)
− tan2(Ai−1,Qi−1)

1 + tan2(Ai−1,Qi−1)

≥ 1

1 + ε2
− 1 +

1

1 + ε2
= 1− 2ε2

1 + ε2
≥ 1− 2ε2.

For i = 1,

cos2(A1,Q1) = (q>1 a1)2 =
1

1 + tan2(A1,Q1)
≥ 1

1 + ε2
≥ 1− 2ε2.

To conclude, ‖qi − ai‖2 = 2− 2q>i ai ≤ 2ε, ∀1 ≤ i ≤ r. And the proofs for Br

and Cr are the same.

4.7.3.4 Lemma 4.13 and proof

Lemma 4.13. Let Up,Vp ∈ Rd×p respectively be the orthonormal complex matrix whose

column space is the left and right invariant subspace corresponding to the dominant p
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eigenvalues of M ∈ Rd×d. Assume for fixed initialization Q(0), V>p Q(0) has full rank.

Then after ∀k ≥ 1 steps (independent of ε) of matrix subspace iteration Q(k)R(k) ←

QR
(
MQ(k−1)

)
, we obtain tan(Up,Q

(k)) ≤ C ·
∣∣∣σp+1(M)

σp(M)

∣∣∣k for a finite constant C, where

σp(·) denotes the pth singular value.

Proof. Since A is orthogonal in the way AA∗ = A∗A, A is a normal matrix. So its

Schur decomposition and eigendecomposition coincides to A = PDP∗. Here PP∗ =

P∗P = I. D is a diagonal matrix with all eigenvalues of A on diagonal and with-

out loss of generality we can permutate them to be in a decreasing order, i.e. D =

diag(λ1, · · · , λp, λp+1, · · · , λd). We can furthermore denote D =

D1 0

0 D2

, where D1

contains eigenvalues up to λp and D2 contains eigenvalues λp+1 to λd.

Inspired by Arbenz et al. [2012], without making any restriction to the matrix to

initialize the algorithm, we can assume the iterations take place in the space of {PQ}

without loss of generality because P is invertible. Then we notice that for the iteration

formula, it becomes

PQ(k)R(k) := APQ(k−1)

Q(k)R(k) := P∗APQ(k−1)

Q(k)R(k) := DQ(k−1)

So analytically, the convergence for an arbitrary matrix is the same to the conver-

gence for the diagonal matrix formed from the eigenvalues of that matrix. And the left

invariant eigenvector subspace for D is nothing but Ep = [e1, · · · , ep]. Imgine now Q(0)

is prepared to run the algorithm for D, next we will show the subspace of Q(k)’s will
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converge to column space of Ep.

First, partition Q(k) to

Q
(k)
1

Q
(k)
2

 such that Q
(k)
1 ∈ Cp×p. D1 ∈ Cp×p is invertible

because of the eigenvalue gap. By the assumption that V∗pQ has full rank, here we have

Q
(0)
1 has full rank and thus invertible. Q

(k)
1 is therefore invertible.

Notice that inductively,

Q(k)R(k) = DQ(k−1)

Q(k)R(k)R(k−1) = DQ(k−1)R(k−1) = D2Q(k−2)

Q(k)R(k)R(k−1) · · ·R(1) = DkQ(0) = Q(k)R

for some upper-triangular matrix R. Then

Q(k)R = DkQ(0) =

Dk
1Q

(0)
1

Dk
2Q

(0)
2

 .

Q(k) =

Dk
1Q

(0)
1 R−1

Dk
2Q

(0)
2 R−1


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To study tangent, first look at

sin(Ep,Q
(k)) = ‖

[
0 Id−p

]>
Q(k)‖s = ‖Dk

2Q
(0)
2 R−1‖s

=
‖Dk

2Q
(0)
2 R−1(Dk

1Q
(0)
1 R−1)−1‖s√

1 + ‖Dk
2Q

(0)
2 R−1(Dk

1Q
(0)
1 R−1)−1‖2

s

Denote M(k) := Dk
2Q

(0)
2

(
Q

(0)
1

)−1
D−k1

=
‖M(k)‖s√

1 + ‖M(k)‖2
s

.

Correspondingly,

cos(Ep,Q
(k)) =

1√
1 + ‖M(k)‖2

s

Since spectral radius ρ(D−1
1 ) = |λp|−1, ρ(D2) = |λp+1|, for any ε > 0, there exists

a norm ‖ · ‖(1) such that ‖D−1
1 ‖(1) ≤ |λp|−1 + ε, and another norm ‖ · ‖(2) such that

‖D2‖(2) ≤ |λp+1|+ ε. By equivalence of norms, There exists constants C1, C2 <∞ such

that ‖M‖s ≤ C1‖M‖(1) and ‖M‖s ≤ C2‖M‖(2) for any matrix M.

As a consequence,

tan(Ep,Q
(k)) = ‖M(k)‖s ≤ ‖Dk

1‖s‖M(0)‖s‖D−k2 ‖s

≤ C1C2‖Dk
1‖(1)‖M(0)‖s‖D−k2 ‖(2)

≤ C1C2 tan(Ep,Q
(0))‖D1‖k(1)‖D−1

2 ‖k(2)

≤ C
((
|λp+1|+ ε

)( 1

|λp|
+ ε
))k
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for some constant C after an initialization is chosen and fixed.

Let ε0 be (|λp+1|+ 1
|λp| + ε)ε, then equivalently,

tan(Ep,Q
(k)) ≤ C

(∣∣∣λp+1

λp

∣∣∣+ ε0

)k
, ∀ε0 > 0.

This shows the convergence of subspace iteration algorithm on recovering the left

eigenspace of a matrix in complex diagonal orthonormal matrix space with a specific

eigenvalue gap. By the analytical equivalence dicussed before, we have identical conver-

gence on recovering the left eigenspace of an arbitrary orthonormal matrix. In this way,

equivalently, if Q(0) is for this algorithm on A,

tan(Up,Q
(k)) ≤ C

(∣∣∣λp+1

λp

∣∣∣+ ε0

)k
, ∀ε0 > 0.

By taking infimum on ε0, it becomes

tan(Up,Q
(k)) ≤ C ·

∣∣∣λp+1

λp

∣∣∣k

Remark 4. The condition that V>p Q has full rank assumed in lemma 4.13 is satisfied

almost surely (with probability 1).

Proof. As a common procedure, to generate a random (d× r)-sized orthonormal matrix,

one could first generate a matrix of r columns sampled i.i.d. from d-dimensional standard

normal distribution, and then perform Gram-Schmidt algorithm on columns. Consider
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Gram-Schmidt algorithm as a mapping. Then under such mapping, the pre-image of a

orthonormal matrix [q1,q2, · · · ,qr] is [s1q1, s21q1 + s22q2, · · · , sr1q1 + · · ·+ srrqr], for

some constants s1, s21, · · · , srr ∈ R. The columns of the pre-image (sampled from i.i.d.

N (0, Id)) belong to a subspace in Rd.

The condition that V>p Q has full rank is equivalent to the condition that there exists at

least one column of Q that is in the complement of column space of Vp in Rd. So as long

as the column space of Vp is not the whole Rd, in order to make V>p Q not a full-rank

matrix, at least one column of the random normal matrix has to take place in a proper

subspace in Rd. The multi-variate normal distribution is also a finite measure on Rd.

Therefore the measure of that proper subspace (i.e. the probability that we fail to have a

full-rank V>p Q) is zero.

4.7.4 Lemma 4.14 and proof

Lemma 4.14. Mode-3 product of symmetric tensor T with vector vC has the form

T (I, I,vC) = UΛ2U> where Λ = Diag((λm)1≤m≤R),U = [u1, . . . ,uR].

Proof. We will prove a more general case for asymmetric tensor. T (I, I,vC) is a matrix.
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The (i, j)th entry of the matrix would be

[T (I, I,vC)]ij =
d∑

k=1

( d∑
l=1

R∑
m1=1

λm1alm1blm1ckm1

)
·
( R∑
m2=1

λm2aim2bjm2ckm2

)
=

R∑
m1,m2=1

d∑
l=1

λm1λm2alm1aim2blm1bjm2

d∑
k=1

ckm1ckm2

Because
d∑

k=1

ckm1ckm2 =


= 0 if m1 6= m2

= 1 if m1 = m2

.

=
R∑

m=1

(
λ2
m

d∑
l=1

almblm

)
aimbjm

=
R∑

m=1

(λ2
ma>mbm)aimbjm.

The symmetric tensor proof is trivial after achieving the above argument.

4.7.5 Robustness of our algorithm under noise

Let T be the true tensor, T̂ = T + Φ be the observed noisy tensor, where Φ is the

noise. Let M and M̂ be the matrix prepared from T and T̂ by Procedure 2 for matrix

subspace iteration.

4.7.6 Perturbation bounds

Lemma 4.15 (Perturbation in slice-based initialization step).

‖M̂−M‖op ≤ 2‖λ‖‖Φ‖op + d‖Φ‖2
op (4.9)
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Proof.

‖M̂−M‖op ≤ 2‖
d∑

u=1

T (I, I, eu)Φ(I, I, eu)
>‖op + ‖

d∑
u=1

Φ(I, I, eu)Φ(I, I, eu)
>‖op

Let E1 :=
∑d

u=1 T (I, I, eu)Φ(I, I, eu)
> and E2 :=

∑d
u=1 Φ(I, I, eu)Φ(I, I, eu)

> respec-

tively. We have:

E1 =
R∑
r=1

λrar ⊗ Φ(I,br, cr)

Then ∀x,y ∈ Rd,

x>E1y =
R∑
r=1

λra
>
r xΦ(y,br, cr)

≤ (
R∑
r=1

λra
>
r x)‖Φ‖op‖y‖‖br‖‖cr‖

Since {ar}Rr=1 are orthogonal, ∀x ∈ Rd,∃x′ ∈ RR such that x′r = a>r x and ‖x′‖ ≤ ‖x‖.

Thus

x>E1y ≤ ‖Φ‖op

R∑
r=1

λrx
′
r‖y‖ ≤ ‖Φ‖op‖λ‖‖x‖‖y‖

For E2 (which is a symmetric matrix),

x>E2x =
d∑

u=1

‖Φ(x, I, eu)‖2 ≤ d‖Φ‖2
op‖x‖2
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That is, ‖E1‖ ≤ ‖Φ‖op‖λ‖, and ‖E2‖ ≤ d‖Φ‖2
op.

Lemma 4.16 (Perturbation in initialization step for symmetric case). For symmetric or-

thogonal tensor, for the matrix generated with trace-based initialization procedure for

matrix subspace iteration of the first component, there exists {λ′r}Rr=1 satisfies the follow-

ing:

M̂ =
R∑
r=1

λ′rar ⊗ ar + ΦM (4.10)

and

‖ΦM‖op ≤ ‖λ‖‖Φ‖op + d3/2‖Φ‖2
op. (4.11)

Proof. By the linearity of trace and tensor operators, we have the following results:

M̂ = T (I, I,v) + T (I, I,vφ) + Φ(I, I,v) + Φ(I, I,vφ) (4.12)

where

(v)k = trace(T (I, I, ek)) =
d∑
i=1

R∑
r=1

λr(air)
2akr =

R∑
r=1

λrakr

(vφ)k = trace(Φ(I, I, ek))

First we notice that ‖vφ‖ is upper bounded:

‖vφ‖2 =
d∑

k=1

trace2(Φ(I, I, ek)) ≤
d∑

k=1

(d‖Φ(I, I, ek)‖)2
op ≤ d3‖Φ‖2

op (4.13)
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Similarly

‖v‖2 =
d∑

k=1

(
R∑
r=1

λrakr)
2 =

d∑
k=1

R∑
ρ,r

λρλrakrakρ =
∑
r,ρ

λrλρa
>
r aρ =

R∑
r=1

λ2
r

Thus the last two operator norm of terms of Eqn (4.12) can be bounded by

‖Φ‖op(‖v‖+ ‖vφ‖) ≤ ‖λ‖‖Φ‖op + d3/2‖Φ‖2
op

The second term of Eqn (4.12) has the following form

T (I, I,vφ) =
R∑
r=1

λrc
>
r vφar ⊗ ar

Thus ∃x ∈ RR : ‖x‖ ≤ 1, such that λ′r = λ2
r + λrxr‖vφ‖

Lemma 4.17 (Perturbation in convergence step).

‖A>r Φ(1)(Q
(k)
Cr
�Q

(k)
Br

)‖op ≤
√
r‖Φ‖op

‖(Ac
r)
>Φ(1)(Q

(k)
Cr
�Q

(k)
Br

)‖op ≤
√
r‖Φ‖op

Proof.

(A>r Φ(1)(QCr �QBr))ij =
∑

(k,z,u)∈[d]×3

Φkzu(Ar)ki(QBr)zj(QCr)uj
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∀x,y ∈ Rr such that ‖x‖, ‖y‖ ≤ 1:

x>(A>r Φ(1)(QCr �QBr))y =
∑

i,j∈[r]×2

xiyj
∑

k,z,u∈[d]×3

Φkzu(Ar)ki(QB)zj(QC)uj

=
∑
j∈[r]

Φ(Arx, (QBr)j, (QCr)j)yj

By the definition of tensor operator norm, we have that ∀1 ≤ j ≤ r:

Φ(Arx, (QBr)j, (QCr)j) ≤ ‖Φ‖op‖Arx‖‖(QBr)j‖‖(QCr)j‖

≤ ‖Φ‖op‖Ar‖op‖x‖

= ‖Φ‖op‖x‖

Thus

x>(A>r Φ(1)(QCr �QBr))y ≤ ‖Φ‖op‖x‖
∑
j=1

yj

≤ ‖y‖1‖Φ‖op‖x‖

≤
√
r‖Φ‖op

The proof for A>r Φ(1)(QCr �QBr) is similar.
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4.7.7 Proof of theorem 4.7

We prove the theorem by examine the success and convergence rate of the initial-

ization stage (lemma 4.18) and the convergence stage (lemma 4.19).

We first provide a few facts that will be used in the proofs.

Fact 1. The convex combination of scalars is smaller than the largest scalar. That is,

∀α ∈ [0, 1]:

αx1 + (1− α)x2 ≤ max{x1, x2}

Fact 2. For all θ ∈ (0, 1) and A,B ≥ 0:

A

A+ θB
≤ 1

1 + θB
A

≤ 1

(1 + B
A

)θ
= (

A

A+B
)θ

Lemma 4.18 (Initialization step for noisy tensors). If the operator norm of the noise

tensor is bounded in the following way with a small enough constant δ0:

‖Φ‖op ≤ min{δ0

λ2
r − λ2

r+1

8‖λ‖
,
√
δ0
λr − λr+1

2
√
d
}

Then with probability 1−O(δ0) matrix subspace iteration procedure yields a r-sufficient

initialization in O(1) time. To be more specific, the tangent value of the subspace angle

converges with a rate |λr+1

λr
|.

Proof. For matrix subspace iteration of M̂ = M + ΦM = ADA> + ΦM, we have the
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following:

t
(k+1)
Ar

≤
σmax((Ac

r)
>ADA>QAr) + σmax((Ac

r)
>ΦMQ

(k)
Ar

)

σmin(A>r ADA>QAr)− σmax(A>r ΦMQ
(k)
Ar

)

≤
dr+1 sin θkA + ‖ΦM‖op

dr cos θkA − ‖ΦM‖op

where θkA is the principle angle between the subspace spanned by Ar and Q
(k)
Ar

, and t(k)
Ar

is

tan θkA.

Let u denote ‖ΦM‖op

gap′r cos θkA
, where gap′r := dr − dr+1. We have:

t
(k+1)
Ar

≤ dr+1 sin θkA + ugap′r cos θkA
dr cos θkA − ugap′r cos θkA

≤ dr+1

dr − ugap′r
t
(k)
Ar

+
ugap′r

dr − ugap′r

=
dr − 2ugap′r
dr − ugap′r

· dr+1

dr − 2ugap′r
t
(k)
Ar

+
ugap′r

dr − ugap′r
· 1

≤ max{ dr+1

dr − 2ugap′r
t
(k)
Ar
, 1} (By Fact 1)

= max{ dr+1

dr+1 + (1− 2u)gap′r
t
(k)
Ar
, 1}

≤ max{(dr+1

dr
)θt

(k)
Ar
, 1} (By Fact 2)

where θ := 1 − 2u ≤ 1. Since Pr{cos θ0
A > 0} = 1, by bounding ‖ΦM‖op ≤ dr−dr+1

2
δ0

with small enough constant δ0, combined with Proposition B.2 in Wang and Lu [2017],

we can verify that 2u ≤ 1 with probability 1 -O(δ0). It is worth noticing that in the noise-

less case, we can find a good initialization for matrix subspace iteration with probability

1.
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By lemma 4.15, for the slice based initialization, dr = λ2
r , and ‖ΦM‖ ≤ 2‖λ‖‖Φ‖op

+ d‖Φ‖2
op, we have 1− 2u ≥ 0 by bounding:

‖Φ‖op ≤ min{δ0

λ2
r − λ2

r+1

8‖λ‖
,
√
δ0
λr − λr+1

2
√
d
}

Lemma 4.19 (Convergence step for noisy tensors). Assume we have the noise tensor

bounded in operator norm such that:

‖Φ‖op ≤
1

2
√

2

ε′gapr√
r

(4.14)

where

gapr := λr − λr+1

Then we have either (1) tAr is small enough:

t
(k+1)
Ar

≤ ε′

Or (2) converges by the following rule:

t
(k+1)
Ar

≤ (
λr+1

λr
)θt

(k)
Br
t
(k)
Cr

where

θ := 1− 2

gapr
(

√
2

ε′
+ 1)
√
r‖Φ‖op (4.15)
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Proof. The proof for Theorem 4.19 follows the same style of Lemma B.1 in Wang and

Lu [2017]. Similar to the noiseless case, we have:

t
(k+1)
Ar

≤
λr+1 sin θ

(k)
B sin θ

(k)
C + σmax((Ac

r)
>Φ(1)(Q

(k)
C(r)
�Q

(k)
B(r)

))

λr cos θ
(k)
B cos θ

(k)
C − σmax(A>r Φ(1)(Q

(k)
C(r)
�Q

(k)
B(r)

))

where θkU is the principle angle between the subspace spanned by Ur and Q
(k)
Ur

for U ∈

{A,B.C}, and t(k)
Ar

is tan θkA. Let σ denote the maximum of σmax((Ac
r)
> Φ(1) (Q

(k)
C(r)
�

Q
(k)
B(r)

)) and σmax(A>r Φ(1)(Q
(k)
C(r)
�Q

(k)
B(r)

)), and let r1 :=
√

2σ
ε′gapr

, r2 := 2σ
gapr

. Thus

t
(k+1)
Ar

≤ λr+1 sin θ
(k)
B sin θ

(k)
C + σ

λr cos θ
(k)
B cos θ

(k)
C − σ

=
λr+1 sin θ

(k)
B sin θ

(k)
C + r1gaprε

′
√

2
2

λr cos θ
(k)
B cos θ

(k)
C − 1

2
r2gapr

For bounded θ(k)
B and θ(k)

C such that tan θ
(k)
B and tan θ

(k)
C are less than 1, we have cos(θ

(k)
B −

θ
(k)
C ) ≥

√
2

2
, and cos θ

(k)
B cos θ

(k)
C ≥ 1

2
. Thus

t
(k+1)
Ar

≤ λr+1 sin θ
(k)
B sin θ

(k)
C + r1gaprε

′ cos(θ
(k)
B − θ

(k)
C )

λr cos θ
(k)
B cos θ

(k)
C − r2gapr cos θ

(k)
B cos θ

(k)
C

=
λr+1 + r1gaprε

′

λr − r2gapr

sin θ
(k)
B sin θ

(k)
C

cos θ
(k)
B cos θ

(k)
C

+
r1gapr

λr − r2gapr
ε′

=
λr+1 + r1gaprε

′

λr − r2gapr
t
(k)
Br
t
(k)
Cr

+
r1gapr

λr − r2gapr
ε′

=
λr+1 + r1gaprε

′

λr+1 + (1− r2)gapr
t
(k)
Br
t
(k)
Cr

+
r1gapr

λr+1 + (1− r2)gapr
ε′

= (1− α)
λr+1 + r1gaprε

′

λr+1 + (1− r1 − r2)gapr
t
(k)
Br
t
(k)
Cr

+ αε′
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where

α =
r1gapr

λr+1 + (1− r2)gapr

Thus

t
(k+1)
Ar

≤ max{ λr+1 + r1gaprε
′

λr+1 + (1− r1 − r2)gapr
t
(k)
Br
t
(k)
Cr
, ε′}

Similarly,

λr+1 + r1gaprε
′

λr+1 + (1− r1 − r2)gapr
= (1− β)

λr+1

λr+1 + (1− 2r1 − r2)gapr
+ βε′

where

β =
r1gapr

λr+1 + (1− r1 − r2)gapr

Let θ denote 1− 2r1 − r2. As long as θ > 0 (that is, ),

t
(k+1)
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≤ max{max{ λr+1

λr+1 + θgapr
, ε′}t(k)
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, ε′}

≤ max{max{(λr+1
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)θ, ε′}t(k)
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t
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If ε′ ≥ (λr+1

λr
)θ and the r−sufficient condition is met,

t
(1)
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≤ ε′t

(0)
Br
t
(0)
Cr
≤ ε′
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Either the convergence requirement is met after the first iteration, or the procedures

converges following:

t
(k+1)
Ar

≤ (
λr+1

λr
)θt

(k)
Br
t
(k)
Cr

Combined with lemma 4.17, the condition θ > 0 is equivalent to:

‖Φ‖op ≤
gapr

2(
√

2
ε′

+ 1)
√
r

(4.16)

Condition (4.16) is satisfied ∀1 ≤ r ≤ R as long as:

‖Φ‖op ≤
1

2(
√

2
ε′

+ 1)

minr gapr√
R
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Chapter 5: Conclusion and future works

We have presented new convergence rate results for global optimization using radial

basis function interpolation and an ε-greedy algorithm which randomly chooses between

uniform sampling on the entire domain vs. uniform sampling on a local neighborhood of

the current-best solution. This sampling method is simple to implement, but captures the

key distinction between local and global search that is present in many other algorithms

that are not amenable to theoretical analysis. We find that convergence rates are improved

when the size of the local search region is made to shrink over time at a suitable rate, i.e.,

local search concentrates around the current-best solution over time.

The theory of RBF interpolation relies on a connection between the interpolation

error and the distribution of design points on the domain. The latter is measured using

the mesh norm, which improves when the design points are more evenly spread out; thus,

although it is possible to obtain very similar rates for the case where global search is

conducted using non-uniform sampling, it is not possible to improve the rates using this

analytical technique. To obtain such improvements, it would be necessary to develop new

theory that makes a closer connection between the error of RBF interpolation and the

shape of the underlying function; we leave this problem for future work.

Our contribution to Gaussian process regression includes a large deviation principle
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for the variate vector consists of true function values at two distinct points and their re-

spective estimations. A variant of classic Gartner-Ellis theorem with weaker conditions is

estiblished to support our analysis. Later we apply our large deviation principle to obtain

the convergence rates of the probability of making two erroneous judgements - reporting

one solution as being better than another when in reality the opposite is true, and making

large minimum estimation error in an optimization problem.

Essentially, the work aims to precisely characterize the heaviness of the tails of a

GP. This is a fundamental property that has rarely been approached in prior work. The

results reveal high relevance with the density of experimental points throughout the do-

main. Aligning with the goal to make the probability of error converge to zero as quickly

as possible, this work makes sense of an optimal allocation of experimental effort put

across the entire design space.

Lastly, we present a super fast method for tensor decomposition problems which

can be met when discovering latent variable models over large datasets. Recovering top r

components of asymmetric tensors is often required for many learning scenarios. Existing

theory for tensor decompositions guarantee results when the tensor is symmetric. Also,

in practice, the tensors are noisy due to finite examples, and also inherently asymmetric.

Our efficient algorithm can guarantee recovery of tensor factors for an asymmetric noisy

tensor.

There has been a critical factor we have not yet addressed in these chapters - noise.

The interpolant may be greatly fooled under the presense of noise, however the fooling

effect will be relieved in the setting of Gaussian process regression. The posterior mean

will account for the noise and produces a curve or surface that is not an interpolation us-
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ing the kernel, but an interpolant using a revised kernel function that is not differentiable

at zero. Then the theory framework of using interpolation error analysis to handle opti-

mization error in the setting of Gaussian process cannot work in the noisy problem. Some

literature review can be done to explore new mathematical tools that are suitable for this

case, after which an extension of the accomplished to adapt for noise may then become

possible. Another direction is that, as one may notice, in general optimization problems

the error are typically related to mesh norm and in the end we cannot avoid the conclusion

that uniformity is the most efficient to reduce error over the domain. Intuitively this is ac-

ceptable as that once we don’t know anything about the function prior to experiments, we

might as well just distribute our budget evenly throughout the domain. Although this is

good to accept, one might just be unsatisfied with the uniformity and may wonder in what

situations uniformly reducing the mesh norm is not the ultimate suggestion. These can all

become ideas for future works.
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