TR-87-37

Operational Specification of
Update Dependencies

by
Leo Mark

Nick Roussopoulos

Operational Specification of
Update Dependencies

by
Leo Mark

Nick Roussopoulos

TR-87-37

February 18, 1987 DRAFT

Operational Specification of Update Dependencies

Leo Mark & Nick Roussopoulos

Department of Computer Science
and
Systems Research Center
University of Maryland
College Park, Maryland 20742
U.S.A.

Limited distribution notice: This paper is a draft under revision. Please do not copy and distribute.

February 18, 1987 DRAFT

Contents

1. Update Dependencies - Introduction
2. The Specification Language

2.1 Syntax

2.2 Sermantics

2.3 Application-Oriented Update Dependencies
3. Areas of Application

3.1 Integrity Constraints

3.2 Transactions

3.3 Normalization

3.4 View Updates

3.5 Metadata Management
4. The Interpreter
5. Research Issues

6. Conclusion

February 18, 1987 DRAFT

Operational Specification of Update Dependencies

Leo Mark & Nick Roussopoulos
Department of Computer Science
and
Systems Research Center
University of Maryland
College Park, Maryland 20742
US.A.

Abstract

Update dependencies are the basis of a new formalism for operational data-
base specification.

Update dependencies can be used to specify aspects of databases ranging
over integrity constraints, transactions, normalization, view maintenance
and update, and metadata rmnagerment.

In many situations, the update dependencies can be automatically produced
as an implication of, e.g. defining and normalizing a database schema.

The set of update dependencies specifying a database constitute a produc-
tion systemm. Update dependencies can be executed and tested, and form a
concise, precise, and implementation independent basis for implementation.

Future research issues include an algebra for update dependencies and a set
of control structure abstractions. The algebra would allow complementary
update dependencies to be automatically combined. The control structure
abstractions would give a more user friendly specification language.

1. Update Dependencies - Introduction

We introduce update dependencies as a means to specify and control the semantics of a
database under update. A set of update dependencies give an operational declarative
specification of an update on a relation in terms of a set of alternative sequences of implied
updates on the relation and possibly on other relations, and specifies the conditions under
which the implied updates must succeed for the original one to succeed.

Update dependencies can be used to specify aspects of databases ranging over integrity con-
straints, transactions, normalization, view maintenance and update, metadata management.

Research supported in part by the Systems Research Center, University of Maryland under the National Science Foun-
dation Grant OIR-85-00108.

a5

Februvary 18, 1987 DRAFT

A mnajor difference between this approach and conventional approaches to integrity con-
straint specification and enforcement is, that rather than specifying a set of rules for what
are the valid states of the database, we specify a set of rules for how the database can evolve
from one valid state to another. As an implication of a schema definition or change, we can
automatically generate update dependencies that specify and enforce a wide variety of con-
ventional integrity constraints, including keys, primary keys, referential integrity, functional
and multi-valued dependencies, total function constraints, cardinality constraints, numerical
constraints, subset constraints, set exclusion constraints, set partition constraints, is-a con-
straints, etc. Another difference is, that a system controlled by update dependencies does
not bluntly reject an update of a relation when a constraint is about to be violated, it tries
to execute a set of implied updates that in many situations lead to the desired consistent
state.

The notion of a database transaction [4] can be used to group together a set of database
updates, and to suspend the checking of integrity constraints until all the updates have been
carried out. To make this work, all the integrity rules should be explicitly represented in the
database and the database system should be able to check that the database state is con-
sistent with the integrity constraints. Since only few database systems supports any integrity
constraints at all, transactions are usually just used to group a set of update which the
application programmer "knows" must be executed together. A step in the right direction is
offered by the event-procedure concept [1]. An event-procedure checks an integrity rule
triggered by a database transaction. If the transaction violates an integrity rule, the event-
procedure executes a violation-action [5] which may have the nature of a corrective-action.
This notion of corrective-action is a very useful concept and one can think of update depen-
dencies as being a generalization of this concept. A system based on update dependencies is
flexible and cooperative - it takes over some of the work involved in forming acceptable
transactions. The system receives an update against the database and makes all the addi-
tional updates needed to arrive at a new consistent database state. Sometimes the system
may not be able to complete the transaction on its own in which case it will ask the user for
the additional information. However, the information on what data is required to carry out
the update and from where it would be obtained (the database or the user) is recorded in
update dependencies. Furthermore, we use a declarative representation of update depen-
dencies which is very flexible to change.

In spite of the well-known consistency problems, update anomalies, etc. many real-life data-
bases are not and will not be normalized. Reasonable objections to normalization are that it
splits up information that is naturally used together in an application, it makes queries more
complicated, and it decreases performance. Although the definition of views alleviate the
first two problems, it has an adverse effect on performance; furthermore the views do not
support updates. Update dependencies can solve the problem of keeping redundant
representations of a fact consistent during update by simply changing all the representations
of the fact whenever one of the representations is changed. In fact, update dependencies can
be automatically generated to enforce the non-full and the transitive functional dependen-
cies and maintain the consistency in an un-normalized database. Another problem with
normalization is that we can only get to 3.NF if we want to preserve the functional depen-
dencies we started out with; going from 3.NF to BCNF may cause loss of functional depen-
dencies. Again, we can automatically generate update dependencies that maintain the
inter-relational functional dependencies that are lost by going to BCNF.

February 18, 1987 DRAFT

Only a restricted set of the views on a database are theoretically updatable, but in several
situations we know precisely what we would like the effect of an update of a particular view
to be. The problem with views is that in the process of defining them, we sometimes throw
away some of the information the system needs in order to update them. Update dependen-
cies allow us to add this information again. Update dependencies allow us to define policies
for updating views. Sometimes it pays of to incrementally update a view rather that recom-
puting it when the base relations it is derived from are updated. Update dependencies allow
us to give a precise specification of the algorithm used.

Correct metadata management is essential in a database. There is no point in worrying
about consistency and integrity at the data level if things are messed up at the metadata
level. Update dependencies can be used to specify and enforce constraints at the metadata
level as well as the data level, as discussed above. But, in addition to this, update dependen-
cies can be used to specify and enforce the implications on data from changing the meta-
data. That is, if we know a rule that we would like to have automatically enforced on the
data whenever we change the metadata, then we can use the update dependencies to specify
and enforce this rule. Among the possible rules of this nature are rules for database reor-
ganization, rules for deleting non-empty relations or attributes, rules for adding attributes to
non-empty relations, and rules for deleting relations as an implication of the deletion of
other relations.

Finally, update dependencies can be used for a variety of watch-dog tasks, such as collecting
database usage statistics, security checking, logging, etc.

Related work on transaction specification and the goal oriented approach to constraint satis--
faction, that has influenced this work, can be found in the TAXIS system [2,6,8,10,11]. The
concept of defining higher abstractions on existing models such as the relational systems is
in line with that of the direction taken in [12,13,16]. The notion of a control abstraction has
been more fully exploited for software specification in [15]. The use of these abstractions to
maintain semantic integrity constraints has been influenced by the constraint connections of
the Structural Model [14].

In section 2 we present the syntax and semantics of the specification language for update
dependencies. In section 3 we discuss some of the applications of update dependencies,
including integrity constraint, transactions, normalization, views, and metadata manage-
ment. In section 4 we briefly describe the implementation of an interpreter for the update .
dependency specification language. Section 5 finally contains our conclusions and describes
issues for future research.

February 18, 1987 DRAFT

2. The Specification Language

A relational database consists of a set of relations that must obey a set of intra- and inter-
relational integrity rules. Because of the inter-relational integrity rules only few database
updates are atomic, that is, confined to updates within one relation. We introduce update
dependencies as a means to specify and control non-atomic transactions on relational data-
base.

To model this the database schema must contain declarative operational definitions of three
compound update operations:

- insert
- delete
- modify

for each relation defined in the schema. The only way a user can change the database state
is by invoking one of the compound update operations. This means, that the new opera-
tions are primitive to the user, but compound from the point of view of the system; just like
the operations of abstract datatypes. Other application dependent operations can be
defined as well, but before we do that we shall concentrate on the general ones above, from
which they are built.

We shall first define the syntax and the semantics of update dependencies. We then discuss
application dependent update operations and give some guidelines for how to program with
update dependencies.

2.1 Syntax

Each compound update operation is defined by an update dependency with the following
form:

<op>
- <c,>,
<op, ,>,
<op, ,>,

<op, ;>
- <c,>,

<op, >,

<op, ,>,

<Py 1p>-

where <op> is the compound update operation being defined, <op;;>, is either an implied

compound update operation or an implied primitive operation, and <c,> is a condition on
the database state.

February 18, 1987 DRAFT

A compound update operation <op,> has one of the following forms:

- insert(<relation_name>(<tuple_spec>))
- delete(<relation_name>(<tuple_spec>))
- modify(<relation_name>(<tuple_spec>),<relation_name>(<tuple_spec>))

where the <tuple spec> is a tuple variable for the relation with the name <relation name>
and consists of a list of <domain variable>s. The <tuple spec> in <op> is the formal
parameter for <op>. All the <domain variable>s in the <tuple spec> of <op> are
assumed to be universally quantified. All <domain variable>s in the <tuple spec>s of
<op;>, that are not bound to a universally quantified <domain variable> in <op>, are

assumed to be existentially quantified. All <domain variable>s are in caps; nothing else is.

The implied primitive operators are: ’add’ for adding a new tuple in a relation, remove’ for
eliminating one, ’'write’ and ’read’ for retrieving data from the user, 'new’ for creating a
unique new surrogate, and ’break’ for temporarily stopping the system to do some retrievel
before giving the control back to the system. The implied primitive operations <op;> have

the following forms:
- add(<relation name>(<tuple spec>))
- remove(<relation name>(<tuple spec>))
- write(’<any text>’), or write(<domain variable>)
- read(<domain variable>)
- new(<relation name>(<tuple spec>))
- break

The <relation name> used in the operation ’new’ must be the name of a unary relation
defined over a non-lexical domain. The conditions <cond> are expressions of predicates.
The connectives used in forming the expressions are A’ (and) and -’ (negation). The predi-
cates are of the form <relation name>(<tuple spec>) to determine whether or not a given
tupel is in a given relation; or of the form ’nonvar(X)’ or ’var(X) to decide whether or not a
<domain variable>, X, has been instantiated; or of the form X<comp>Y, where <comp> is
a comparison operator.

Conditions can also be used by the user to retrieve data from the system.
i
2.2 Semantics

A compound update operation succeeds if, for at least one of the alternatives in the its
update dependency, the condition evaluates to true and all the implied operations succeed.
It fails otherwise.

When a compound update operation is invoked its formal parameters are bound to the
actual parameters. The scope of a variable is one update dependency. Existentially
quantified variables are bound to values selected by the database system or to values sup-
plied by the interacting user on request from the database system. Evaluation of conditions,
replacement of implied compound update operations, and execution of implied primitive
operations is left-to-right and depth-first for each invoked update dependency. For the
evaluation of conditions we assume a closed world interpretation [4].

February 18, 1987 DRAFT

The non-deterministic choice of a replacement for an implied compound update operation is
done by backtracking, selecting in order of appearance the update dependencies with
matching left-hand sides. If no match is found, the operation fails.

An implied compound update operation matches the left-hand side of an update depen-
dency if:

- the operation names are the same, and
- the relation names are the same, and

- all the domain components match. Domain components match if they are the same
constant or if one or both of them is a variable. If a variable matches a constant it is
instantiated to that value. If two variables match they share value.

The semantics of the primitive operations are:

- add(r(t)); its effect is r := r U {t}; it always succeeds; all components of ’t’ are con-
stants.

- remove(r(t)); its effect is r := r\{t} where all components of ’t’ are constants. It always
succeeds.

- write(’text’); it writes the ’text’ on the user’s screen. It always succeeds.
- write(X); writes the value of ’X’ on the user’s screen. It always succeeds.

- read(X); reads the value supplied by the user and binds it to *X’. It always succeeds (if
the user answers).

- new(r(D))’; produces a new unique surrogate, [5], from the non-lexical domain over
which ’r’ is defined and binds the value of the variable D’ to this surrogate. It always
succeeds.

- break; suspends the current execution and makes a new copy of the interpreter avail-
able to the user, who can use it to retrieve the information he needs to answer a ques-
tion from an operation.

The list of primitive operations is minimal for illustrating the concept. It can easily be
extended.. It is emphasized that primitive operations are not available to the user; he cannot
directly invoke them.

The execution of ’add’ and ’remove’ operations done by the system in an attempt to make a
compound update operation succeed, will be undone in reverse order during backtracking.
This implies, that a (user invoked) compound update operation that fails will leave the data-
base unchanged.

2.3 Application-Oriented Update Dependencies

We now relax the syntax of an update dependency to allow the definition of application-
oriented compound update operations. An update dependency has the form:

<op>

- <c,>,

1
<op, >,

February 18, 1987 DRAFT

<op,; ;>»
<OP; 11>+
- <cp>
<0p2,i>,
<0p, ,>,
<0p, 13>+

where <op> is the application-oriented compound update operation being defined, and
<op;;>, is another application-oriented compound update operation or one of the compound

update operations, ’insert’, ’delete’, or ’modify’, defined above.

An application oriented compound update operation has one of the following forms:
- <operation_name>(<relation_name>(<tuple spec>))
- <operation_name>(<parameter>)

where <operation_name> is the name of the application-oriented compound update opera-
tion, and <parameter> is a tuple of <domain variable>s.

The semantics is as defined for the compound update operations.

It is a matter of taste whether these application-oriented compound update operations
should be defined only in terms of the compound ’insert’, ’delete’, and ’modify’ operations
above, or whether primitive update operations can be used too. In the first case, the user
can be allowed to define the application-oriented operations, whereas, in the latter case,
only the database designer should be allowed to define them. In our definition above we
have chosen the first alternative, and have thereby introduced a strict hierarchy.

application-oriented
compound update
operations
t
compound update
operations
t
primitive update
operations

We envision the compound update operations to be specified in the conceptual schema and
the application-oriented compound update operations to be specified in external schemata of
a database.

The application-oriented compound update operations support two alternative kinds of
external views on a database. Corresponding to the two syntactical forms above; they are:

February 18, 1987 . DRAFT

- arelation independent operation-oriented view, and

- arelation dependent view.

Only the relation dependent update operations will be used in the rest of this paper.

Because the application-oriented compound update operations are defined in terms of the
compound update operations on conceptual schema relations, view updates are fully sup-
ported. The update dependencies will prompt the user for data wherever needed to resolve
ambiguities.

The formalism for update dependencies is very flexible and can distinguish several cases. As
any other formalism it takes some practice getting used to, and we therefore give a few
guidelines below.

An update dependency of the form
<op> ~ <cond>.

is often used as part of an update operation specification to test if the database is already in
the state which the user intends to bring it in by invoking <op>. In that case <cond>
evaluates to true and <op> succeeds without changing the database state. As an example
consider

delete(r(T))

= x(T))

- x(T),
remove(r(T)).

Several alternative implications of an update operation, any of which may be chosen under
a certain condition, are specified as follows:

<op,>

- <cond, >,
<op,>.

-~ <cond, >,
<op,>.

If the choice of alternative depends on the condition, we specify them as follows:

<op,>

-~ <cond,>,
<op,>.

-~ <cond,>,
<op,>.

10

February 18, 1987 DRAFT

where <cond,> and <condy> depend on the parameter for <op,> and on the database
state.

A sequence of implications of an update operation is specified as follows:

<op,~>

- <cond>,
<op,>,
<op,>,
-
<op_ >.

Side-effects on the evaluation of conditions, resulting from the execution of operations, are
controlled by sequences of update dependencies. In

<op,>

- <cond > /\ <cond,>,
<op,>,
<op,>.

the evaluation of <cond,> and <cond,> is not affected by <op,> and <op,>. In

<op,>

-+ <cond,>,
<op,>,
<op,>.

<op,>

- <cond,>,
<op,>.

the evaluation of <cond,> is affected by <op,>.

In general, we shall allow the user to call any of the update operations with an actual
tuple-parameter which is only partially specified. To control this, a couple of alternatives in
an update dependency for a compound update operation will be responsible for producing or
requesting from the user any additional values needed for the update operation to be well-
defined. As an example consider

insert(person(Name,Soc_sec_no)) ’
-~ var(Name),

write(’person name?’),
break,

11

February 18, 1987 ‘ DRAFT

read(Name),
insert(person(Name,Soc_sec_no)).

- nonvar(Name) /\ nonvar(Soc_sec_no) /\
- (person(_,Soc_sec_no)),
add(person(Name,Soc_sec_no)).

where var(Name) is true if 'Name’ is uninstantiated in a call, like insert(person(_,111-22-
3333)).

We shall make extensive use of recursive calls with the following two benefits: First, each
alternative in a update dependency can concentrate on one aspect of the complete update
operation, as in the example above. Second, the recursive calls make the specification of
multi-tuple update operations particularly easy, as shown in the example below.

delete(person(Name,Soc_sec_no))

- nonvar(Name) /\ var(Soc_sec_no) /\
person(Name,S), :
remove(person(Name,S)),
delete(person(Name,Soc_sec_no)).

- nonvar(Name) /\ —(person(Name,_)).

This part of the delete operation on person will delete all persons with a given name pro-
vided the call is delete(person(n,_)).

Special attention must be paid to ensure that recursion stops. In the example above we use
the classic scheme. In the first update dependency we decrease the number of tuples in rela-
tion ’person’ by one each time. And, in the second update dependency, we specify the stop-
condition.

Special attention must be paid to conditions. In many cases all conditions or two sets of con-
ditions must be mutually exclusive. See the example above.

update dependencies that always lead to failure need not be specified.

Primitive operation calls in the specification of a compound update operation on relation ’r’
should only be given on relation ’r’. If operations on relation ’s’ need to be called from the
specification of operations on ’r’, it should be done through the compound update opera-
tions defined for ’s’. Anything else is considered bad manners.

All operations which can be invoked by a user and which insert or modify tuples in the
database should type-check all parameters. This should be done as part of the conditions in
the update dependencies. Operations communicating with the user to obtain data needed by
the update dependencies, like operation ’read’ above, should likewise type-check the actual
parameter values supplied by the user.

12

February 18, 1987 DRAFT

Precise messages to the user will in some situations require alternatives in an update depen-
dency to be split into more alternatives. Also explicit representation of update dependencies
leading to failure, including an error message just before the fail-operation, would be help-
ful to the user.

3. Areas of Application

Update dependencies can be used to specify aspects of databases ranging over integrity con-
straints, transactions, normalization, view maintenance and update, metadata management.
We shall discuss each of these issues in the following subsections.

3.1 Traditional Constraints

Although intended for more advanced uses, the update dependency formalism can be used
as a traditional tool for constraint specification and enforcement. A simple example of this is
allowing an insertion of tuple *I” in relation ’r’ only if the condition ’cond’ is true:

insert(r(T)) - cond, add(r(T)).

Corrective actions implied by a constraint violation can also be specified. A simple example
of this is the following:

delete(s(T)) - c, remove(s(T)).
delete(s(T)) - —(c), remove(s(T)), delete(r(T?)).

where ’c’ is false if the remove operation on ’s’ violates an integrity rule between ’s’ and ’r’;
e.g., if there is a referential integrity rule:

"r(T°) => s(T)", then the condition ’c’ would be "—(r(T))".

It seems to be fairly easy to autormtically generate update dependencies as an implication
of a schema definition (we assume a very powerful schema definition language with several
constraint types). In the following we give some examples of automatically generated
update dependencies for some standard types of constraints.

Exanple 1
R(A;:D,, .. ,A;:D)

insert R(A |, ... ,A)
- =(R(A,, ... ,A)),
add(R(A, ... ,A))).
~ R(Ap, A

delete R(A, ... ,A)
- —(R(A,, ... ,A)).
- R(A,..,A)

13

February 18, 1987 DRAFT

remove(R(A,, ... ,A)).

In this example we simply check that a relation is a set. If the tuple is not present in the
relation then we add it, if it is already present then we do nothing. For deletion, we check if
the tuple is in the database or not. If so, then we remove it. We assume that all variables
are instantiated in the call.

O
Exanyple 2
R(A;:D,, ... ,A;:D)
Key: A}, ..., A,

insert R(A,, ... ,A))
- (RA, A,)
add(R(A,, ... ,A)))
~ R(Ap oy Ay e o).

delete R(A,, ... ,A))
- (R(A, -, Ay e)
~ R(Ap s Apey 1),
remove(R(A,, ..., A, ... 1))

For insertion we check that the key constraint is not about to be violated and proceed by
adding the tuple. If the tuple is already then we do nothing. For deletion we check that the
tuple is present in the database before we proceed with the removeion. In the insert opera-
tion we again assume that all the variables are instantiated in the call. In the delete opera-

tion we only assume that the variables of the key are instantiated.
O

Example 3 .
In the following schema definition B, is a foreign key because it is defined over the primary

domain D E

R(A;:D,, .. ,A:D)
Primary key: A;
S(B,:D,, -);

In this example the insert operation for R is the same as above because we already assume
that the variables are instantiated. Or, maybe we want to distinguish between variables not
being instantiated and variables having some null value. In that case we want to produce an
insert operation for R which checks that the primary key value of R tuples is not null.

14

February 18, 1987 DRAFT

Anyway, the important thing to check here is the referential integrity constraint from B, to
A,.
insert S(Bl, «sB_)
- —1(S(B1, ,Bm)) /\ R(Bl,_, s 5)s
add(S(B,; - ,B_))-
- "(S(Bp ,Bm)) A "(R(Bp—’ e 3))s
insert(R(B,,—, «- »-))s
add(S(B,, -.. ,B_))-
- S(B,..,B).

delete R(A,, ... ,A) .
- R(A-p-—,) N\ _’(S(Ap—-’ e)
remove(R(A,, , ... »))-
- R(A-p—, aee ’-—) /\ S(A-p—’ vee a—)7
delete(S(A,,—y o »-))s
remove(R(A,, ... »-))-
- —‘(R(Ap—’ e 5))

The delete operation on relation S is trivial.

Exanple 4

In this example we merely check a post-condition constraint on the database after an opera-
tion. If the constraint is violated we undo the operation.

R(A,D,, .. ,A_:D)
post_condition: C(R);

insert R(A, ... ,A)
- add(R(A, .. ,A))),

check(C(R)).
check(C(R))
- C(R).

Checking the post_condition on R can of course be done directly if we allow the implications
to be a sequence of conditions and implied operations. I sort of like the more restrictive
approach with a condition followed by a sequence of implied operations.

The delete operation would be similar to the insert operation.

Checking a pre_condition is trivial.

15

February 18, 1987 DRAFT

3.2 Transactions

An update dependency is a control abstraction which defines an update operation by group-
ing together a set of other update operations. It is analogous to the concept of an abstract
data type and it is a generalization of the concept of a database transaction. A collection of
update dependencies constitutes a production system which helps and guides the user
through a database transaction once he has taken the first step.

The advantage of this approach is that it allows the database to encode the knowledge
required to guide the user in carrying out his original update request. We have included
into the update dependencies variables which get their bindings via a user interaction. The
user may be the update originator but it could also be some other user having the ability to
provide the necessary values.

This cooperative approach is based on knowledge specific to the application and it is more
useful to the user than that of providing a message about a possible set of constraint viola-
tions for which he is unaware. The only drawback to this interactive approach is the delays
it introduces waiting for a user response (it is so much faster to reject!). For this reason
update dependencies must be carefully constructed, thought through and tested out before
they are introduced to the database. In many situations the update dependencies need no
user interaction at all, and in the situations where user interaction is needed, there are ways
of postponing this interaction; e.g. by inserting null-values for missing data values. Having
the update dependencies in a declarative form that can be evaluated and tested gives a
chance to the database designer and maintainer to avoid costly errors caused by unrealized
update dependencies.

Example 5

In this example, we provide a set of update dependencies for operations on the relations in a
database. The similarity between the update dependencies and traditional transactions is
self evident.

sold insert sold(P,B,Q,)

p# | buyer | qty -~ part(P,_,),
delete part(P,_,Q,),
add sold(P,B,Q,).

- _'pa'rt(P)—»—))
write("part unknown").

ordered
p# | supplier | gty insert ordered(P,S,Q,)
- ordered(P,S,Q,),
modify ordered(P,S,Q,+Q,)-
-~ -ordered(P,S,.),
part add ordered(P,S,Q,).

p# | pname | gty

delete part(P,N,Q,)

- part(P,N,Q,) /\ Q,<Q,,
modify part(P,N,Q,-Q,),

- part(P,N,Q,) /\ Q,=Q,,

18

February 18, 1987 DRAFT

modify part (P9N3Q2'Q1)’
insert ordered(P, ,Q,*3).

17

February 18, 1987 DRAFT

3.3 Normalization

Update dependencies can be used to control some of all the well-known problems associated
with normalization and lack of normalization.

Example 6
Given the relation R and a functional dependency:

R(X,, ., X,),
FD: XX

We can automatically produce the following update dependency to enforce the functional
dependency in the relation.

insert R(XI,...,Xi,...,Xj,...,Xn)

= 2 R(X),
a.dd(R(Xl,...,Xi,...,Xj,...,Xn)).

+ R{ XX,
add(R(X oo Xperrs Koo X)-

= R(wXpennX,en) /\ —1(X=Xj),
add(R(X X,y X X)),
write(“currently”,X,,"has the associated value”,X,"not",X.),
write("the tuple”,X,,...,X;,....X,...,X ,"has been inserted").

Exanple 7

The mmltivalued dependency A -~ B (and A -- C) in the relation R(A,B,C) can be
enforced in the following way:

insert R(A,B,C)
(*new A*)
- —'R(Ar—r—))
add(R(A,B,C)).

(*old A, new B, old C*)

~ R(An) /\ ~R(AB,) A\ R(AC) /\ R(AC) /\ ~(C=C)),
add(R{A,B,C)),
(*insert other old Cs for the new B¥)
insert(R(A,B,C))).

- R(A7—)—) /\ _'R(A)B;—) /\ R(A,_,C) /\ __'(R(A)—:C]_) /\ —I(CZCI)),
add(R(A,B,C)).
(*no other old Cs to insert for the new B¥)

(*old A, new B, new C*)

18

February 18, 1987 DRAFT

-~ R(A) /\ -R(A,B,.) /A -R(A,_,C) /A R(A,B,,C)) /\ =(B;=B) /\ R(4,B,,C)) /\ -(C,=C),
add(R(A,B,C)),
(*snsert all old Cs for the new B¥)
insert(R(A,B,C,)),
(*insert the new C for all the old Bs*)
insert(R(A,B,,C)).

(*old A, old B, new C*)

-~ -R(A,B,C) /\ R(A,-) /A R(A,B,0) /A R(A,B,-) /\ ~(B,=B) /\ -R(A,B,,C),
add(R(A,B,C)),
(*insert the new C for all the old Bs*)
insert(R(A,B,,C)).

- ﬂR("’*,B)C) /\ R(A’—)—) /\ R(A’B7——) /\ ﬁ(R(A)Bp—) /\ ﬁ(B]_:B) /\ —‘R(A>B1)C)):
add(R(A,B,C)).
(*no more old Bs to insert the new C for*)

Exanmple 8

One of the problems in normalization theory is the conflict between decomposing a relation

into BCNF components and decomposing it into independent components. The problem is
described in [Date 86, p381].

Given the relation SJT(S,J,T) with the functional dependencies (S,J) - T and T - J, and
the candidate keys (S,J) and (S,T). The relation is in 3. NF, but not in BCNF. The relation
suffers from the well-known update anomalies cause by the fact that the determinant T is
not a candidate key.

Decomposing the relation into the two BCNF projections ST(S,T) and TJ(T,J) removes the
update anomalies, but unfortunately the two relations cannot be independently updated,
because the FD (S,J) - T cannot be deduced from the the only FD represented in the pro-
jections, namely T - J.

We can automatically generate update dependencies that control the inter-relational con-
straint introduced by the decomposition. We have to guarantee, that for each pair (sj) of
(8,J) there exist a single t€T in both ST and TJ.

insert ST(S,T)
-~ =(ST(8,T,) /\ TI(TJ,) /\ TI(TJ,) /\ ~(T,=T)),
add(ST(S,T)).
- ST(S’Tl) /\ TJ(TI)JI) /\ TJ(T’JI) /\ _‘(TI:T)'

Similarly, we have to create an insert operation on TJ enforcing the inter-relational con-
straint. And, let us not forget that deletions from ST or TJ may violate the inter-relational
constraint, so delete operations must be defined too.

We could in fact generalize this to cover any situation where we replace a relation by two of
its projections. Given the relation R(A,, A,, .. ,A)) with the functional dependencies

19

February 18, 1987 DRAFT

FD={fd,, fd,, ...}, and given the decomposition of R into R,(...) and R,(...) with the func-
tional dependencies FD,={ ... } and FD,={ ... }, respectively. For every functional depen-
dency fdGFD—(FDlUFDz), we have to create update dependencies that enforce the inter-

relational functional dependency.
O

Example 9

Another problem in normalization theory is that only some decompositions have the lossless
join property.

Assume that we want to replace the relation R(A,B,C) with functional dependencies A-B
and C-B by the two projections R (A,B) and R,(B,C). This decomposition is not “good”
because B is not the key in any of R, and R, and we cannot recreate R by joining them - we
fall into the connection trap. We can however define update dependencies so that we avoid
the connection trap.

At the time of decomposition we compute the complement of R wrt. RI*RZ:

Cp=R,*R, \ R

Now the idea is that we can insert anything we want in R, as long as the B-value does not
appear in a tuple in R,. However, if the B-value does occur in R,, then we have to add to
the complement all the extra tuples that would result in the join of R, and R, (and vice
versa for R,).

insert R (A,B)
- R,(AB).
~ =Ry(B.) /\ <R, (AB),
add(R,(A,B)).
- Rz(B)—) /\ ﬁR‘l(ArB)’
add(R,(A,B),
insert(CR(A,By—))'

insert CR(X,Y,Z)
- var(Z) /\ =(Ry(Y,V) /\ ~Cy(X,Y,V)),
- var(Z) /\ R,(Y,V) /\ -C;(X,Y,V),
add(CR(X,Y,V)),
insert(CR(X,Y,_)).

- var(X) /\ ...

It should be noted that these update dependencies guarantee that whenever we join R, and
R, and subtract C, we get the value of R at the time the decomposition was made no
matter which changes have been made to R, and R, in the meantime. I might seem more
appropriate to somehow let the value of R keep up with the changes made to R, and R,,
but there is no way we can guess what the value of R would have been had it not been

February 18, 1987 DRAFT

replaced by its projections.

Exarmple 10

In spite of the adverse effects, a user may have good reasons for replacing two 3rd NF rela-
tions by their join.

Let R,(A,A)) and R,(A,A;A,) be two 3rd NF relations with keys K ,={A,} and
K,={A,,A,}. (The A;s may be compound attributes.)

Let R be the join of R| and R, with key K=K UK,.

We define the following update dependency to maintain two relations CRIRI and CRtm such
that R1=R[A1,A2]UCRB1 and R2=R[A2,A3,A4]UCRIR2, and we use these formulas to compute
R, and R, whenever they are referenced.

insert R(A ,A,,A,,A))

- —(A;=null) /\ ~(A,=null) /\ A,=null /\ A,=null /\
ﬁR’(—rb*g ’-)—) ’
insert(CRlRl(Al,Az).

= =(A;=null) /\ -(A,=null) /\ A,=null /\ A =null /\
R(—’Ap—)—)'

= A;=null /\ ~(A,=null) /\ =(A,)=null) /\ —~(A,=null) /\
_'R(—)Ag’A:;)—);
insert(CRmz(Az,As,A4).

= A;=null /\ ~(A,=null) /\ -(A;)=null) /\ ~(A =null) /\
R(L,A A,).

= —(A,=null) ~(A,=null) /\ -(A,)=null) /\ ~(A,=null) /\
'ﬂR(—jAz)Ay—))
add(R(A},A,,A,,A))).

- -(A,;=null) ~(A,=null) /\ -=(A,)=null) /\ ~(A,=null) /\
R(A A,).

This update dependency avoids the update problems associated with monfull functional
dependencies created by joins.

Similarly, we could specify update dependencies avoiding the problems associated with tran-
sitive dependencies created by joins.

3.4 Views

It is well-known that views can often not be updated because the view definition does not
provide enough information for the system to decide what the corresponding update(s) on
the base relations should be.

An excellent way of providing more information at view definition time is suggested in
[Keller 86]. The idea is to provide the user with a choice of one among a set of alternative

21

February 18, 1987 DRAFT

view update policies provided by the system. The resulting update policy could easily be
specified in ternrs of update dependencies.

Using update dependencies at view definition time to describe the implications of a view
update on the corresponding base relations is a general solution to the view update problem.

This approach however highlights another problem, namely that we often do not know what
we want the corresponding updates on the base relations to be. The update dependencies
allow us to specify anything we want, but they cannot help us if we don’t know what we
want! The situations where we do know what we want are often those where certain policies
from real life are enforced.

Example 11
Assume that we have the following base relations:

EMPLOYEE(SSN, NAME, DEPARTMENT, DATE_HIRED)
WAITING_LIST(SSN, NAME, DATE_ENTERED)

and the view:

#EMPLOYEE_DEPARTMENT(DEPARTMENT, #EMPL)=
select DEPARTMENT, count(SSN)

from EMPLOYEE

group by DEPARTMENT

Now, assume that we have the following policies:

New employees are hired by the company in the order they appear on the waiting list:
first entered, first hired.

Employees are fired from departments following the principle: last hired, first fired.

modify #EMPLOYEE_DEPARTMENT(D,N)
(*computes the view to see if department D already has the desired size N*)
- #EMPLOYEE_DEPARTMENT(D,N).

(*bring department D down to N employees*)
- #EMPLOYEE_DEPARTMENT(D,NI) /\ N, >N / EMPLOYEE(SSNI, NAME,, D, DATEI)

/\ ~(EMPLOYEE(SSN,, NAME,, D, DATE,) /\ DATE,>DATE)),
delete(EMPLOYEE(SSN,, NAME,, D, DATE,)),
modify(#EMPLOYEE_DEPARTMENT(D,N)).

(¥bring department D up to N employees*)
- #EMPLOYEE_DEPARTMENT(D,Nl) /\ N, <N /\

WAITING_LIST(SSN,, NAME,, DATE,) /\ ~(WAITING_LIST(SSN,, NAME,, DATE,)
/\ DATE,<DATE,),

delete(WAITING_LIST(SSN,, NAME_, DATE,)),

insert(EMPLOYEE(SSN,, NAME, D, current_date)),

22

February 18, 1987 . DRAFT

modify(#EMPLOYEE_DEPARTMENT(D,N)).

A view definition consists of two parts:
- an intension definition, and

- an extension definition.

The intension definition consists of two parts:

- a relation name and a set of attribute names that together carry the meaning of the
relation, and

- a set of compound update operations that define and control all operations on the
extension of the view.

The extension definition defines the extension of the view in terms of the extensions of base
relations and other views.

The compound update operations on views are defined in terms of implied non-primitive
compound update operations on base relations and other views; and an actual view update
is executed through the primitive operations on the base relations implied by the compound
update operations on the base relations.

The compound update operations on views define a mapping from the views to the base
relations. This mapping is missing in the relational model where views are only extensionally
defined by a mapping from the base relations to the views. This means that our approach
supports updating through views. To resolve ambiguity of a view update, the compound
update operations on the view may have to request additional data from a user. If the addi-
tional data is outside of the view of the user who initiated the update, then another user
may have to supply it. Additional data will only be needed in situations where traditional
approaches to view update would fail.

A view-update-check is an important part of a compound update operation on a view. It
guarantees, that if a view update succeeds, then the extension of the view will be as
intended by the user who initiated the view update. We regard the incorporation of a view-
update-check in a compound update operation on a view as a programming discipline put
on the database designer. In some situations we actually have to accept view updates that
do not obey the view-update-check.

We can express the extensional part of a view definition by update dependencies as follows:

v(T) --> C.
where ’v’ is the name of the view, T’ is a tuple variable for ’v’, and ’C’ is a condition.

We illustrate this technique for the operators of the relational algebra below.

Union

23

February 18, 1987

v(T) => =(=(s(T) /\ ~(x(T)))-

Intersection

v(T) --> s(T) /\ =(T).

Minus

v(T) > s(T) /\ =(x(T)).
Times

V(A A L) >

s(A;, AL AN T(A L AL
Selection

v(T) --> s(T) /\ condition.
Projection

V(A o AL) > 8(A, A,)
Join

v(A,, - sALB,, B C, ,C,) —>

s(A,, ... ,A,B,, - B) /\ (B,B,C}, .. ,C,)-
Divide

Exercise!
Exanmple 12

We shall now give an example of a view definition following our approach.

Given:

base relation ’people’ and two compound update operations ’insert’ and ’delete’.

people

name l addr I age ‘

insert(people(N,A,Y))
--> nonvar(N) /\ nonvar(A) /\ var(Y),
write(*age?’),
break,
read(Y),
add(people(N,A,Y)).

DRAFT

February 18, 1987 DRAFT

delete(people(N,A,Y))
-

remove(people(N,A,Y)).

The definition of a view ’teenagers’ consists of:

Intension:
teenagers
rna.me l addr]

insert(teenagers(N,A))

--> teenagers(N,A).

S (seenagers(N,A)) /\ ~(people(N,A,)),
insert(people(N,A,),
insert(teenagers(N,A)).

delete(teenagers(N,A))

--> —(teenagers(N,A)).

--> - teenagers(N,A),
delete(people(N,A,_)),
delete(teenagers(N,A)).

Extension:

teenagers(N,A)
--> people(N,AY) /\ (12<Y<20).

The example is very simplified. For the base relation ’people’ we indicate two compound
update operations ’insert’ and ’delete’. These are defined in turn from primitive update
operations 'add’ and ’remove’. For the ’insert’ operation we have indicated the situation
where ’age’ is not instantiated and therefore requested from the user.

The intensional definition of the view relation ’teenagers’ consists of the definition of the
names for the relation and its attributes. And, it includes the definition of the two com-
pound view update operations.

Both the intensional and the extensional part of the view definition must be given before
any update or retrieval to the view takes place. Why this is the case, will be explained later.

The compound view insert operation succeeds if the tuple is already present in the view. To
test this, we need the extension definition as claimed above. If the tuple is not present, then
we call insert on ’people’ with the ’age’ uninstantiated, and the system will try to make this
operation succeed, and it will request the missing age from the user in the process of doing
so. If the insertion in people succeeds, then we are back in the insertion in ’teenagers’, where
we make a recursive call. The purpose of this recursive call is to check if the inserted tuple is
now visible through the view ’teenagers’. This recursive call plus the condition is what wer
have termed a view-update-check. If this check fails after the insertion in ’people’ succeeded,

25

AT ALK

February 18, 1987 DRAFT

then it nmist be because the user gave an age which does not qualify the person as a
teenager. The whole operation rmst therefore fail and the insertion in people will be
undone. If the check succeeds, that is, the user can through the view see the intended result
of his insertion, then the whole operation succeeds.

Without the view-update-check, not only would it be strange that the user can not see the
result of what he is doing, but he would also be able to insert something which is not part of
his view, namely people who are not teenagers.

In the delete operation on ’teenagers’ we use a view-update-check too; the user can only
delete things that are visible through his view.

Please note the strict hierarchy between compound update operations on views, compound
update operations on base relations, and primitive update operations on base relations.
a

Updates to base relations will always be reflected in a view defined on the base relations if
we recompute the view. However, recomputing a view every time one of its base relations is
updated may be a very high price to pay. In [Roussopoulos| techniques are presented for
maintaining a materialized view during updates to base relations.

An interesting idea is to include implied operations on materialized views in the specification
of operations on base relations. Ideally, these implied operations would be inserted automati-
cally in the specification of the operations on the base relations at view definition time.

Example 13

The update dependencies in this example specify that a materialized views is to be main-
tained during updates of the base relations it is derived from.

Base relations:
R(A,B) and S(B,C)

View:

T(A,B,C) = R(A,B) join S(B,C)

insert R(A,B)
- —R(A,B),
add(R(A,B)),
insert(R(A,B).

-~ R(A,B) /\ 8(B,C) /\ ~T(A,B,C),
add(T(A,B,C)),
insert(R(A,B)).

~ R(A,B) /\ =(8(B,C) /\ -T(A,B,C)).

26

February 18, 1987 DRAFT

3.5 Metadata Management

In this section we give a comprehensive example of the use update dependencies by defining
the compound update operations in a meta-schema for the relational data model.

The meta-schema defines and controls all operations on schemata defined in terms of the
relational data model.

The meta-schema is itself defined in terms of the relational data model, and a copy of the
meta-schema is explicitly stored as part of its own extension.

The beauty of this "stored self-describing meta-schema approach” is, that not only does it
break the infinite chain of meta-levels, it also allows us to use existing DML-processors to
retrieve and change schema definitions. This is illustrated in Figure 1.

int?eﬁ{a‘ce DL

Data core DBMS X
Management : :
ToolBox | 1 | = p----t-------- 5 '

1
data dictionary
1+ schema

data dictionary

r==--=-=-="
]

| WP S |
data

Figure 1.

For more information on self-describing meta-schema and databases we refer to [3,7].

27

February 18, 1987 DRAFT

3.5.1 The Meta-Schema

The part of the meta-schema we shall concentrate on in this example is defined in Figure 2.

Figure 2. Core Meta-Schema.

Lo attri-
; relation L bute
name
- : name
Fname rel | att | aname ‘
reln attn
"\ "~ .
attri-
relation > (bute I
relation \\I_,/ R attribute
att
domain dom ldnamel lex
domain [

e 5
5' doma.u; % lexi-
{ name: cality ;

o

Boxes represent meta-schema relations. Full circles represent non-lexical domains of surro-
gates used to model entities. Broken circles represent lexical domains used to model entity-
names. Arrows represent keys. There are several constraints not represented above: reln
[relation] = relation; [relation] D rdas [relation]; domn [domain| = domain; [domain] O rdas
[domain]; rdas [attribute] = attribute, [attribute] D attn [attribute]; also atttribute names
must be unique within relations.

All these constraints and more will be specified in the update dependencies below.

The meta-schema is so far "self-describing”; it is defined in terms relations, domains and
attributes, and its definition can be stored in the database it defines. See Figure 3. (We
have omitted the unary relations: ’relation’, ’domain’, and ’attribute’.)

28

Figure 3.

February 18, 1987 DRAFT
domn
reln dom: dname: Lex:
rname: rel: domain name domain lexicality
relation name | relation d, relation non-lexical
reln r, d, attribute non-lexical
domn r, d, domain non-lexical
attn r, d, relation name lexical
rdas r, d, attribute name lexical
dg domain name lexical
d, lexicality lexical
rdas attn
reln: dom: att: att: aname:
relation | domain | attribute attribute | attribute name
r, d4 a, a, rname
r, d1 a, a, rel
T, d3 ag a, att
1'2 ds a'g a 4 aname
r, d, a, a, rel
r, d, 3y ag dom
r, d5 a, a, att
T, d, ag ag dom
T, d, A, ay dname
r, d, a, a, lex

3.5.2 The update dependencies

We shall now use update dependencies to specify the following compound update operations
in the meta-schema, leaving out the modify operations.

Please note, that we do not in this example consider the important problem of propagating
schema changes to data.

February 18, 1987 DRAFT

insert | delete
domain
domm
relation
reln
attribute
attn
rdas
Figure 4.
Insert Operations
insert(domn(D,N,L)})
- var(D),
new(domain(D)),
insert(domn(D,N,L)).
- var(N),

get(’domain name’,N),
insert(domn(D,N,L})).
- var(L),
get(’lexicality’,L),
insert(domn(D,N,L}).
- nonvar(D) /\ nonvar(N) /\ nonvar(L) /\
~(domn(D,-,-))/\ —(domn(-,N,)),
add(domn(D,N,L)),
insert(domain(D)).
- nonvar(D) /\ nonvar(N) /\ nonvar(L) /\ domn(N,D,L).

The first three update dependencies in this compound update operation specification simply
serve to fully determine the tuple to be inserted in relation ’domn’. If the domain surrogate
is not specified in the call the system creates one using the primitive operation ’new’. If
domain name or lexicality are not specified the user is prompted for the values.

If or when all parameters are determined there are three possibilities. If the tuple is already
present in relation ’domn’ the operation succeeds with the database state unchanged. If nei-
ther the domain surrogate nor the name is used in relation ’domn’ we add the tuple and
propagate the update by a call of an insertion in relation ’domain’ of the new domain surro-
gate. If the domain surrogate and/or name are present in relation ’domn’, but not in the
same tuple the operation fails. The last of these three possibilities is taken care of by not
specifying an update dependency for it; see the definition of update dependencies. We

February 18, 1987 DRAFT

could have specified an update dependency with a condition evaluating to true in exactly
this situation followed by a call of the primitive operation ’fail’, which doesn’t change the
database state and always fails.

insert(domain(D))

-~ var(D),
new(dormin(D))
insert(domain(D)).

- nonvar(D) /\ domain(D).

- nonvar(D) /\ ~(dommin(D)) /\ ~(domm(D,_,_,),
add(domain(D)),
insert(dorm(D,_,_)).

~ mnonvar(D) /\ ~(domain(D)) /\ domn(D,_,),
add(domain(D)).

If the domain surrogate to be inserted is uninstantiated in the call the system creates a new
one and proceeds with the insertion. This is not in conflict with insertions in ’domn’
because a call of insertion in ’domain’ issued from ’domn’ will always instantiate the domain
surrogate. It will therefore be the same domain surrogate which is inserted both places.

If the domain surrogate value is known in the call and is already present in relation ’domain’
the operation succeeds with the database state unchanged. If the domain surrogate value is
known and not present in relation ’domain’ it is added; and if the domain is not recorded to
have a name we call an insertion on relation ’domn’ to take care of this.

insert(relation(R))

- var(R),
new(relation(R)),
insert(relation(R)).

- nonvar(R) /\ relation(R).

- nonvar(R) /\ -a(relation(R)),
add(relation(R)),
insert(reln(-,R)).

If the variable R is uninstantiated when the insertion into relation the insertion. If R is
instantiated there are two possibilities: R is already in relation ’relation’ in which case the
insertion succeeds with the database state unchanged; or R is not in relation ’relation’ in
which case we insert it, and since all relations must have a name we propagate by triggering
an insertion into the relation ’reln’ of the tuple (-,R) indicating that relation_name is at this
point unknown.

insert(reln(N,R))

31

February 18, 1987 DRAFT

- var(R),
new(relation(R)),
insert(reln(IN,R)).
- var(N),
get(’relation name’, N),
insert(reln(N,R)).
- nonvar(N) /\ nonvar(R) /\ reln(IN,R).
- nonvar(N) /\ nonvar(R) /\ ~(rela(Ny")) /\ ~(reln(-R)),
add(reln(N,R)),
insert(relation(R)).

The two first rules produce or request from the user any uninstantiated variable values. The
insertion operation succeeds with the database state unchanged if a relation with that par-
ticular name is already in the database. If no relation with the name N exists and the rela-
tion represented by surrogate R does not already have a name we add the tuple and pro-
pagate by inserting R in relation ’relation’. Note that O-ary relations are allowed, that is
relations without attributes and extension are allowed. Any other choice could just as easily
‘have been specified.

insert(attribute(A))

» var(A)),
new(attribute(A)),
insert(attribute(A)).

-+ nonvar(A) /\ attribute(A).

-~ nonvar(A) /\ —(attribute(A)),
add(attribute(A)),
insert(attn(A,_)),
insert(rdas(_,.,A).

The first alternative in the update dependency produces a new attribute surrogate if needed.
The second succeeds if the surrogate is already present. The third adds the tuple and pro-
pagates through insertions in attn and rdas.

insert(attn(A,N))
-~ var(A),
new(attribute(A)),

insert(attn(A,N)).
-~ var(N) /\ nonvar(A) /\ —(attn(A,_)),
get(’attribute name’, N),
insert(attn(A,N)).
- var(N) /\ nonvar(A) /\ attn(A,).
-~ nonvar{A) /\ nonvar(N) /\ attn(A,N).
- nonvar(A) /\ nonvar(N) /\ —(attn(A,N)) /\ —(attn(B,N) /\

32

February 18, 1987 . DRAFT

rdas(R,_,B) /\ rdas(R,,A) /\ (B#A4)),
add(attn(A,N)),

sert(attribute(A)),
insert(rdas(_,_,A)).

The first update dependency produces an attribute surrogate if needed. If the attribute
already has a name a new one will not be requested if missing in the call. Finally, if at this
point the uniqueness of attribute names in relations is not about to be violated the name is
added in attn, and propagation calls to ’attribute’ and 'rdas’ are made.

insert(rdas(R,D,A))

-~ nonvar(A) /\ rdas(_,_,A).

- var(A),
new(attribute(A)),
insert(rdas(R,D,A)).

- var(R) /\ —(nonvar(A) /\ rdas(_,,A)),
get(’relation surrogate’, R),
insert(rdas(R,D,A)).

-~ var(D) /\ —(nonvar(A) /\ rdas(_,.,A)),
get(’domain surrogate’, D),
insert(rdas(R,D,A)).

-~ nonvar(A) /\ nonvar(R) /\ nonvar(D) /\ —(rdas(_,—,A)) /\
~(rdas(R,_,B) /\ attn(A,N) /\ attn(B,N) /\ ~(A=B)),
add(rdas(R,D,A)),
insert(relation(R)),
insert(domain(D)),
insert(attribute(A)).

If needed a new attribute surrogate is produced. If the attribute is not already in ’rdas’ and
relation- and domain-surrogates are not provided then they are requested. Finally, if attri-
bute name uniqueness within relations is not about to be violated the tuple is added in
rdas’. This may cause propagation to ’relation’ and ’domains’ which is taken care of; and,
finally, propagation to ’attribute’ is called.

Delete Operations

In all the insertion operations above we have been very flexible wrt. the use of uninstan-
tiated variables in operation calls. For the deletion operations below we shall limit this
practice somewhat, not because we can’t specify the operations that way, but because we
don’t want to. The reason therefore is that some deletions with uninstantiated variables
would have too big an effect, e.g., delete(domain(_)) would delete all domains.

delete(domain (D))

33

February 18, 1987 DRAFT

- var(D),
get(’domain surrogate’, D),
delete(domain(D)).
- nonvar(D) /\ —(domain(D)).
-~ mnonvar(D) /\ domain(D) /\ —(protected_domain(D)),
remove(domain(D)),
delete(dorm(D,_,_)),
delete(rdas(_,D,.)).

If the variable D is unistantiated in the call the system prompts the user for the value. If
the domain ’D’ is not present the operation succeeds with the database unchanged. If the
domain ’D’ is present and not protected from deletion we remove it and propagate to
deleteions in ’domn’ and ’rdas’. The protected domains are those in the stored meta-schema

copy.

delete(domn(D,N,L))

- var(D) /\ var(N),
get(’domain_name’, N),
delete(domn(D,N,L)).

- nonvar(D) /\ var(N) /\ =(domn(D,_,_)).

- var(D) /\ nonvar(N) /\ -(domn(_,N,_)).

-~ nonvar(D) /\ nonvar(N) /\ —-(domn(D,N,_)).

- nonvar(D) /\ var(N) /\ domn(D,_,_) /\
—(protected_domain(D)),
remove(domn(D,_,_)),
delete(domain(D)).

- va,r(D) /\ nonvar(N) /\ domn(E)N)—-) /\
—(protected_domain(E)),
remove(domn(E,N,_)),
delete(domain(E)).

-~ nonvar(D) /\ nonvar(N) /\ domn(D,N,_) /\
-(protected_domain (D)),
remove(domn(D,N,_)),
delete(domain(D)).

To delete from domn we must know either D or N, the domain surrogate or name. If we only
know one of the two and no tuple containing it exist in domn we accept with the database
state unchanged. If we do know both, but no tuple in domn contain both we also succeed
with the database state unchanged. It is a reasonable precaution to require both surrogate
and name of the domain to match if the user has supplied both. Using that same precau-
tion the following three rules in the above allow deletion on the surrogate alone, or the
name alone, or both together. In all three situations, if the domain is not one of the pro-
tected ones, we removethe one tuple from ’domn’ and propagate the deletion to relation
’domain’.

February 18, 1987 " DRAFT

delete(rdas(R,D,A))

~ ~(rdas(R,D,A)).

~ var(A) /\ var(D) /\ var(R),
write(*nothing done’).

-~ nonvar(A) /\ rdas(R,D,A) /\ —(protected_attribute(A)),
remove(rdas(R;D,A),
delete(attribute(A)).

~ mnonvar(D) /\ var(A) /\ var(R) /\ rdas(R,D,A) /\
—(protected_domain(D)),

remove(rdas(R,D,A)),
delete(attribute(A)),
delete(rdas(_,D,_)).
- nonvar(R) /\ var(A) /\ var(D) /\ rdas(R,D,A) /\
—(protected_relation(R)),
remove(rdas(R,D,A)),
delete(attribute(A)),
delete(rdas(R,_,.)).
-~ nonvar(R) /\ nonvar(D) /\ var(A) /\ rdas(R,D,A) /\
—(protected_relation(R)),

remove(rdas(R,D,A)),
delete(attribute(A)),

delete(rdas(R,D,_)).

The relation ’rdas’ is central in the core meta-schema. Since we want domains to be allowed
to exist without being currently used in any relations, and since we want relations to be
allowed to exist without any attributes (that is, O-ary relations) the only propagation from
deleting tuples from ’rdas’ x is to ’attribute’ and ’attn’. The decisions above are reasonable
from the point-of-view of the DB-designer, because it allows him to also use the schema DB
as a list of what he must remember to complete during the design.

The definition of the compound update operation above is very special, because it allows the
user free use of unistantiated variables resulting in multiple tuple deletions, or all-constants
resulting in single tuple deletions. This is obtained through extensive use of recursion, and
it automatically propagates every single tuple update during the process.

Strictly, a proof for the above should be given, but the recursion scheme used is classic: all
recursive calls are at the bottom of each alternative of the update dependency; one tuple is
removed each time and none are inserted; finally, the first rule is the stop condition. It
couldn’t be more elegant!

Note, that it is recursion that allows the multiple tuple deletion. Had we tried to enforce
multiple deletions through backtracking enforced by repeated failures we would have gotten
in conflict with that part of our system, which undoes operations already done during an
attempt to succeed. This is important.

February 18, 1987 DRAFT

And, now the explanation of the operation. If no tuples matching the actual parameter is
present in ’rdas’ the operation succeeds with the DB being unchanged. If all variables are
uninstantiated we don’t allow any change. The operation succeeds with nothing done to
the database. There are now the following possible combination of
instantiated /uninstantiated parameter combinations left:

rdas

> oo
o
o
o
o

Because the attribute uniquely identify one tuple (one domain, relation) all operations with
an attribute surrogate cause one tuple deletion from ’rdas’, which is propagated to ’attri-
bute’. If only the domain-surrogate is give: rdas(_,d,_), we must delete all uses of that
domain in any relation and propagate each deletion to ’attributes’. If only the relation-
surrogate is given: rdas(r,._,.), all attributes for that relation is deleted frorm ’rdas’ and pro-
pagated to deletions in ’attributes’. Finally, if both relation and domain-surrogate are
given: rdas(r,d,_), we must delete all uses of the given domain in the given relation, and pro-
pagate to ’attribute’. The last, but two, rule obviously would be matched by a previous
domain deletion. And, the last, but one by a previous relation deletion.

delete(attribute(A))
-~ —(attribute(A)).
- nonvar(A) /\ attribute(A) /\ —(protected_attribute(A)),
remove(attribute(A)),
delete(rdas(_,,A)),
delete(attn(A,)).
- var(A),
get(’attribute surrogate’, A),
delete(attribute(A)).

If the attribute is not present in ’attribute’ the operation succeeds with the DB unchanged.
In the last update dependency, if no value is given, the user is prompted for one and the
operation is tried again. In the second update dependency, if a value is given and that
value is In ’attribute’ were move it and propagate by deleting all its names from ’attn’ and
all its uses from ’'rdas’.

It takes only simple arguments to see that if a deletion of an attribute is caused by a previ-
ous deletion from ’'rdas’, the propagation to 'rdas’ from this update dependency immediately
returns with success because that attribute is not used in ’rdas’ anymore (by the very first
update dependency).

February 18, 1987 DRAFT

If, on the other hand, this deletion from ’attribute’ is the original one, the propagation back:
to ’attribute’ later following the propagation back to rdas’, will succeed by the first update
dependency above.

delete(attn(A,N))

- —(attn(A,N)).

- var(A) /\ var(N),
write(’nothing done’).

~ mnonvar(A) /\ var(N) /\ attn(A,N) /\
—(protected_attribute(A)),
remove(attn(A))
delete(attribute(A)),
delete(attn(A,_)).

- var(A) /\ nonvar(N) /\ attn(AN) /\
—(protected_attribute(A)) /\ attn(A,M) /\ -(M=N),
remmove(attn(A,N)),
delete(attn(_,N)).

- var(A) /\ nonvar(N) /\ attn(A;N) /\
~(protected_attribute(A)) /\ —(attn(A,M) /\ -(M=N)),

remove(attn(A,N)),
delete(attribute(A)),

delete(attn(_,N)).

-~ monvar(A) /\ nonvar(N) /\ attn(A,N) /\
—(protected_attribute(A)) /\ attn(AM) /\ —~(M=N),
remove(attn(A,N)).

- mnonvar(A) /\ nonvar(N) /\ attn(A,M) /\
~(protected_attribute(A)) /\ -(attn(AM) /\
—|(1VL=N)),
remmove(attn(A,N)),
delete(attribute(A)).

Deletion from ’attn’ follow the same pattern: If only the attribute is given, all names are
deleted. If only a name is given, all attribute having only this name are deleted, whereas
those having other names left remains. (5th and 4th update dependency, respectively.) The
last update dependency, but one, if both name and attribute are given, but the given attri-
bute has other names we just remove this one name. In the last update dependency, if the
name was the only name, we must, in addition, remove the attribute.

Again, we must verify that delete(attn()) and delete(attribute()) work correctly. And, that
recursion within delete(attn()) is as we want it.

The latter first; all update dependencies removeone element from ’attn’ or stops. All recur-
sive calls have a matching update dependencies. Recursive calls follow either a certain
name or attribute. All recursive calls follow a one tuple removeion.

37

February 18, 1987 DRAFT

All calls to delete an attribute, except the first for each attribute, returns because of the first
update dependency in delete(attribute()). The first call for deleting an attribute, actually
returns a call to delete(attn()). Therefore there may at some point be two identical
delete(attn()), but the first and last of these will stop on the first update dependency of
delete(attn()), if the job is already done.

delete(relation(R))
~ —(relation(R)).
- var(R),
get(’relation surrogate’, R),
delete(relation(R)).
- nonvar(R) /\ relation(R) /\ —(protected_relation(R)),
remove(relation(R)),
delete(reln(_,R)),
delete(rdas(R,_,_)).

If a surrogate for the relation is given, and the relation exists, it is removed, its name is
deleted, and all attribute and domain relationships to the relation is deleted from ’rdas’.
Since deletions form ’rdas’ does not backfire to ’relation’ we only have to verify calls
between ’relation’ and ’reln’.

delete(reln(N,A))

-+ —(reln(N,R)).

-~ var(N) /\ var(R),
get(’relation name’, N),
delete(reln(N,_)).

= ~(var(N) /\ var(R)) /\ reln(N,R) /\
—(protected_relation(R)),
remove(reln(N,R)),
delete(relation(R)).

Only the relation surrogate or the name is needed to uniquely identify a tuple to be deleted,
so there is no internal recursion in this rule. The propagation of the deletion to ’relation’
succeeds with the job done, and the returning call of deletion(reln()) stops on the first rule.

We have now given a complete specification of insertion and deletion operations in the core
meta-schema for the relational data model. The two compound update operations defined
for each meta-schema relation guarantee that the extension of the meta-schema at all times
can be interpreted as a correctly defined relational schema.

38

February 18, 1987 ‘ DRAFT

4. The Interpreter

update dependencies, once specified, need to be thoroughly tested and validated. The logic
programming language Prolog is a convenient tool to implement update dependencies. How-
ever, it should be pointed out that despite certain similarities between update dependencies
and logical implications, update dependencies are not part of any formal logical system. The
update dependency language is a practical tool for specifying database updates.

Prolog’s treatment of database updates is based on ad hoc "extra logic” primitives which are
inadequate for update dependencies as we shall demonstrate. We propose extensions to Pro-
log to include programming language primitives for implementing update dependencies.

The main update primitives in Prolog are "assert” and “"retract”. A main problem with the
definition of assert and retract from a database point-of-view is that their effects are not
undone during backtracking. For example consider the following program.

insert(t(X,Y))

- pre_condition,
assert(t(X,Y)),
post_condition.

This rule specifies a database insertion operation of the tuple t(X,Y) into the database.
From a database point-of-view, the operation should work the following way: First, the con-
straints in the pre_condition are checked. If the pre_condition is true, then the tuple t(X,Y)
is asserted and the constraints in the post_condition are checked to determine whether the
updated database satisfies them. If not, then the inserted tuple violates the integrity con-
straints, and the assertion should be undone.

But, this is not the way Prolog works, the bad tuple will remain in the database! Simply
undoing assertions and retractions when backtracking is not sufficient either as shown by
the following example:

change(t(X,Y),t(X,Z))

- pre_condition,
t(X,Y),
compute(Y,Z),
retract(t(X,Y)),
assert(t(X,Z)),
post_condition.

This example illustrates an update of tuple t(X,Y) to tuple t(X,Z). Suppose, after the retrac-
tion and assertion, the post_condition fails. If we assume that the retraction and the asser-
tion are undone during backtracking, then tuple t(X,Z) will be retracted and tuple t(X,Y)
will be re-asserted back into the database. However, when asserting a tuple, Prolog appends
it to the end of the database. Physically the new t(X,Y) may be in a different location from

39

February 18, 1987 DRAFT

the previous t(X,Y). In this case, goal t(X,Y) will resatisfy because Prolog only looks for
physical tuples rather than logical tuples, and the program will go into an infinite loop. So,
care mmust be taken in undoing retractions and assertions. The undo operation nmst make
sure that the physical location of the tuples will not change during backtracking.

Since assert and retract can be used for other general programming purpose, we propose to
define three primitives for the purpose of database updates. They are: add, remove, and
modify.

Predicate add(X) has one argument: the tuple to be added into the database. X is restricted
to tuples only (unlike assert which allows a general rule to be asserted). Add will add the
tuple to the end of the database. Upon backtracking, the added tuple will be removed from
the database.

Predicate remove(X) also has one argument: the tuple to be removed from the database. X
again 1s restricted to tuples only. When executed, remove will mark the tuple being removed
so that later on it will not be used in the proof. However, the tuple being removed will not
physically be removed from the database until the top level goal succeeds. If backtracking
occurs, the mark on this tuple will simply be erased and the fact will remain unchanged
both physically and logically.

Predicate modify(X,Y) has two arguments: the tuple X to be modified and the tuple Y
which is the result of modifying X. Again, X and Y are both restricted to tuples only. Logi-
cally, modify(X,Y) is equivalent to remove(X) followed by add(Y), but physically it is
different. This is important to Prolog because the order of facts in Prolog is crucial. The
physical location of the tuple should not be changed. If we had used remove(X) followed by
add(Y), then the physical location would have been changed because add(Y) will always
add to the end of the database. We want modify(X,Y) to make an in place modification.

Execution of modify is as follows: first the address of tuple X is saved. Then tuple X is
modified to Y inplace. If backtrack occurs then X will simply be copied back to Y.

We have now defined the three database update primitives for Prolog. The main point is
that both remove and modify will not only undo the operation logically during backtracking,
they will also guarantee that the physical locations of the involved tuples are unchanged as
well.

The implementation of the other primitives described earlier in this paper were straightfor-
ward. However, we still have to include code that prevents surrogates created by the primi-
tive 'new’ from ever being visible to the user.

In general, Prolog fits our update dependency ideas very well with its backtracking, rule
matching, variable binding and other mechanisms. Also Prolog has proved to be very flexi-
ble to accommodate changes.

5. Research Issues

We are looking for elements of an "algebra" for conditional statements.

Suppose we have two relations R(A1,A2) and S(A2). The first operation below enforces a
key constraint on Al of R, and the second enforces a referential integrity constraint from A2
in R to A2 in S:

February 18, 1987 DRAFT

insert(llg((all,a)2)) inserg((hgz)ll,a@)
- not(R(aL,)), assert(R(a1,a2)).
assert(R(al1,a2)). - not(rSt((aS2()) 2,))
assert(R(al,a,Z)).

The "algebra” for update dependencies should make the system capable of combining
independently automatically produced update dependencies into one update dependency.
The one definition of the semantics of this resulting update dependency that makes sense so
far, is that the invariant it obeys should be the conjunction of the invariants obeyed by the
component update dependencies. However, this is not an operational specification, as we
want. .

Another issue for further research is operational abstractions of the update dependency for-
malism that make the specification language more user-friendly. This issue seems to have
fairly nice solutions. Next, we illustrate a couple of (very) informal examples.

while E do Stmt;

op, (t)
- E,
Stmt,
op, (t).
- =E.

repeat Stmt until E;

op, (t)

- Stmt,
check(E).

check(E

- E.

-~ -E

op ;(T).

case E of
Stmt,;

e: Stmt ;
n n
otherwise: Stmt ;

end;

op, (t)
- E=e|,
Stmtl.

- E=e,

February 18, 1987

= (E=) N e N\ o(B=ey),

St .

[o]

if E then Stmt, else Stmt,;

op, (t)
- E,.
Stmt .

Strt,.

DRAFT

February 18, 1987 DRAFT

References

[1] Breutman, B., Falkenberg, E., Mauer, R., "CSL, A Language for Defining Conceptual
Schemas,” in G. Gracchi, G.M. Nijssen (ed) "Database Architecture” North Holland Pub-
lishing Company, 1979.

[2] Brodie, M.L., "On Modelling Behavioural Semantics of Data”, Proc. 7th International
Entity-Relationship Conference, Cannes, France, Sept. 1981.

(3] Burns, T., Fong, E., Jefferson, D., Knox, R., Mark, L., Reedy, C., Reich, L., Rousso-
poulos, N., and Truszkowski, W., "Reference Model for DBMS Standardization,” Report
from the Database Architecture Framework Task Group of the ANSI/X3/SPARC Database
System Study Group, 1984.

[4] Gray, J.N., "Notes on Database Operations”, IBM Technical Report RJ2188, San Jose,
California, 1978.

(5] Hammer, M., and McLeod, D., "A Framework for Database Semantic Integrity”, Proc.
2nd International Conference on Software Engineering, San Francisco, California, Oct. 1976.

[6] Jarke, M., Clifford, J., and Vassiliou, Y., "An Optimizing PROLOG Front-end to a Rela-
tional Query Systems”, Proc. of ACM SIGMOD Conference on Management of Data, June,
1984.

[] Keller, A *** View Update policies ***

[7] Mark, L. and Roussopoulos, N., "The New Database Architecture Framework - A Pro-
gress Report,"” in Proceedings IFIP WG 8.1 Working Conference on Theoretical and Formal
Aspects of Information Systems, Sitges, Spain, April 16-18, 1985.

(8] Mylopoulos, J., Bernstein, P.A., and Wong, H.K.T., "A Language Facility for Designing
Interactive Database-Intensive Applications”, ACM Transactions on Database Systems, Vol.
5, No. 2, June 1980, pp. 185-207.

[9] Reiter, R., "On Closed-World Data Bases,” In Logic and Data Bases, Gallaire, H. and
Minker, J. (eds.), Plenum Press, 1978.

[10] Roussopoulos, N., and Mark, L., "A Self-Describing Meta-Schema for the RM/T Data
Model”, IEEE Workshop on Languages for Automation, Chicago, November 1983.

[11] Shepherd, A., and Kerschberg, L.,"PRISM: A Knowledge Based System for Semantic
Integrity Specification and Enforcement in Database Systems”, Proc. of ACM SIGMOD
Conference on Management of Data, June, 1984.

[12] Stonebraker, M., Anderson, E, Hanson, E., "QUEL as a Data Type", Proc. of ACM
SIGMOD Conference on Management of Data, June, 1984.

13] Tsur, K., and Zaniolo, C., "An Implementation of GEM - Supporting a Semantic Data
) H

February 18, 1987 DRAFT

Model on a Relational Back-end"”, Proc. of ACM SIGMOD Conference on Management of
Data, June, 1984.

[14] Wiederhold, G., and El-Masri, R., "A Structural Model for Database Systems", Com-
puter Science Department, Stanford University, Technical Report STAN-CS-79-722, Stan-
ford, California, 1979.

[15] Yeh, R.T., Roussopoulos, N., and Chu, B., "Reusable Software Management”, To
Proceedings for the IEEE COMPCON, Arlington, VA, Sept. 1984.

[16] Zaniolo, C., "Database Language GEM", Proc. of ACM SIGMOD Conference on
Management of Data, May 1983.

