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The retroviral reverse transcription reaction normally occurs in capsid-like 

structures in the cytoplasm of infected cells. Reverse transcription can also be carried out 

in vitro in totally reconstituted reactions with purified enzymes and model RNA 

templates. However, in this case fully synthesized DNAs are rarely generated from 

genomic RNA. This could be because the capsid creates an extremely concentrated and 

specific environment that cannot be completely reproduced in vitro. An in vitro system 

that closely mimics replication and that can be easily manipulated would enhance our 

understanding of the replication process. In this thesis report, in vitro reaction conditions 

that allowed efficient synthesis of DNA products up to 4 kb from genomic RNA 

segments of Human Immunodeficiency Virus (HIV) were generated. The reactions



required high amounts of HIV reverse transcriptase enzyme (RT) and nucleocapsid 

protein (NC) sufficient to completely coat the RNA template in the reaction. Synthesis of 

long DNA products required the formation of high molecular weight aggregates with 

nucleic acids, RT and NC. Removal of the dimerization region did not affect synthesis of 

long DNA products in vitro. Processivity of RT does not play a role in the synthesis of 

long DNA products. NC finger mutants lacking either finger or with the finger positions 

switched were all effective in synthesizing long DNA products suggesting that the 

aggregation/condensation activity but not the unwinding activity of NC is required for the 

synthesis of long DNAs in vitro. These results taken together, we propose that high 

molecular weight aggregates promote synthesis of long reverse transcription products in 

vitro by concentrating nucleic acids, RT enzyme and NC into a smaller area, thereby 

mimicking the role of the capsid environment within the host cell.

In addition, strand transfer assays indicate that strand transfer is the molecular 

mechanism involved in the synthesis of long DNAs and the rate of transfer (cross-over 

events per nucleotide synthesized) is higher than that found in tissue culture-based 

recombination assays. An in vitro system that closely mimics what occurs in the cell 

could be used to screen inhibitors on RT, NC and recombination.
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Chapter 1    Human Immunodeficiency Virus (HIV); Discovery, 

 Pathogenesis and Life Cycle                

1.1 Introduction

Human Immunodeficiency Virus (HIV) is a member of the lentivirus genus 

(Latin, lentus: slow, pertaining to slow growth) of the family Retroviridae (Retroviruses) 

which comprises a large and diverse group of enveloped RNA viruses (1, 2). Retroviruses 

were so named because their growth cycle includes a very important step of copying of 

the genomic RNA into DNA by a virus-coded polymerase called ‘reverse transcriptase’, 

thereby reversing the flow of genetic information. This was an exception to the then-

accepted ‘Central Dogma’ of Molecular Biology that the flow of genetic information is 

unidirectional from DNA to RNA to protein. HIV (Human Immunodeficiency Virus) is 

the causative agent of Acquired Immune Deficiency Syndrome (AIDS). AIDS is called a 

syndrome as it is a collection of about 27 known diseases (mostly opportunistic 

infections) and symptoms resulting from severe impairment of the immune system. 

According to the Centers for Disease Control and Prevention, Atlanta, Georgia, a person 

is diagnosed with AIDS, if he or she tests positive for antibodies to HIV and has a T4 

lymphocyte count below 200/µl of blood or has any of the 27 diseases (3) .

HIV was first isolated in January 1983 from the lymph node of a patient with 

lymphadenopathy by Françoise Barré-Sinoussi with a group headed by Luc Montagnier 

in the laboratory of Jean-Claude Chermann at the Pasteur Institute in Paris (4). They 
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named the virus “lymphadenopathy-associated virus” (LAV) (5). It was also isolated by 

Robert Gallo and coworkers at the U.S National Institutes of Health and named Human 

T-Cell Lymphotropic Virus III (6). At around the same time it was also isolated by Jay 

Levy and coworkers at the University of California, San Francisco and named AIDS-

related virus (ARV) (7). Electron microscopic studies revealed that all these virus isolates 

were morphologically similar and hence in 1986, the Human Retrovirus Sub-committee 

of the International Committee on the Taxonomy of Viruses coined its current name: 

human immunodeficiency virus which has now been accepted worldwide. In 1986, 

François Clavel and coworkers isolated a novel type of HIV that is prevalent in some 

parts of West Africa and was called HIV-2 to distinguish it from the original isolate, 

HIV-1 (8). HIV-1 and HIV-2 are the only known human Lentiviruses. Of the two, HIV-1 

is predominant and found throughout the world, whereas HIV-2 has been isolated 

primarily in West Africa with some cases in America and Europe. Individuals infected 

with HIV-2 also develop AIDS but studies suggest that the incubation period for HIV-2 

for the development of progression of disease is longer than for HIV-1 (9) and HIV-2 is 

not as easily transmitted perinatally as HIV-1 (10). HIV-1 has been categorized into three 

groups; Group M (for main) is comprised of viruses responsible for the majority of 

infections throughout the world, Group O (for outlier), a rare group found in Cameroon, 

Gabon and France and Group N (new group) was found in AIDS patients from 

Cameroon. Group M is further divided into ten subtypes or clades (A through K) (11, 12). 

All work done in this dissertation report applies to HIV-1 although similarities between 

the two viruses suggest that the general conclusions would hold for both types. 
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1.2 Transmission of HIV

HIV is transmitted by sexual contact through vaginal, rectal and penile tissues; by 

direct injection with HIV-contaminated drugs, needles, syringes, blood or blood products; 

and from an HIV-infected mother to her fetus in utero, from a mother to her infant during 

childbirth or via breast milk (13). There is no evidence that the virus can be transmitted 

by casual contact or by insect vectors. The predominant mode of transmission in the 

United States and Western Europe is by homosexual contact and by sharing of 

contaminated needles during drug use. A large majority of infections worldwide, 

especially in the developing countries is via heterosexual contact. HIV can be transmitted 

to either partner during vaginal intercourse (14) with a probability of a woman becoming 

infected by her HIV-positive male partner during vaginal intercourse being less than 

0.2% and the risk of infection from a woman to a man during vaginal intercourse is even 

less likely (15). The presence of ulcerative genital lesions due to other sexually 

transmitted diseases increases the susceptibility to HIV infection. This may be due to a 

greater chance of HIV entering the bloodstream through such a lesion or a higher 

incidence of T4 target cells in the lesion. Of the routes for sexual transmission, receptive 

anal intercourse appears to have the highest risk per incident rate. Before HIV was

identified as the causative agent of AIDS, it was accidentally transmitted by 

contaminated blood and blood products. Screening of the blood supply and preventing 

recognized at-risk individuals from donating blood has significantly reduced the number 

of cases infected via this mode. The risk of infection of a health care worker from an 

infected individual via a sharp object such as a needle stick is approximately 1 in 300 

(13). More than 90% of HIV infections in infants and children are by vertical 
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transmission. The rate of mother-to-infant transmission of HIV in absence of intervention 

range from 13%- 42%. HIV may be transmitted when maternal blood enters fetal 

circulation or by mucosal exposure to HIV during labor and delivery. Breast-feeding adds 

an estimated 14% additional risk over the risk of intrapartum or perinatal HIV infections. 

A specific regimen of zidovudine (AZT) has been found to reduce the risk of perinatal 

transmission of HIV (16).

1.3 Origin of HIV

There are two possibilities for the origin of HIV. One possibility is that the virus 

has always existed in isolated populations and may not have been recognized due to low 

prevalence or geographical confinement. Modern society, urbanization and extensive 

world travel would have made the virus recognizable on a global front. Another 

possibility is that HIV-1 may have recently entered the human population from another 

species. The most likely origin may be a combination of the above two possibilities. 

Which possibility is correct may never be resolved. Recent evidence shows that all HIV-1 

strains known to infect man, including HIV-1 groups, M, N and O are closely related to 

one SIVcpz lineage found in Pan troglodytes troglodytes, a chimpanzee subspecies in 

Africa and  Pan troglodytes troglodytes is the primary natural reservoir for HIV-1 (17, 

18). The date of the last common ancestor of the main group of HIV-1 is estimated to be 

1931 (19). HIV-2 infection in humans in western Africa may have emerged or may be 

still occurring by cross-species transmission from sooty mangabey monkeys (20). The 

forested regions of western Africa which is the natural habitat of these monkeys almost 

coincides with the region where HIV-2 human infection is endemic and the sequences of 



5

HIV-2 isolates are within the range of variation of known SIV isolates infecting sooty 

mangabey monkeys (21). 

1.4 AIDS Epidemiology

Since the first clinical evidence of HIV/AIDS in 1981, AIDS has killed more than 

25 million people (22). The epidemic claimed 3.1 million lives in 2005 alone, more than 

half a million were children. Nearly 5 million people were newly infected with the virus 

in 2005 making the total number of people living today with HIV reach its highest level 

with an estimated 40.3 million people infected with HIV, double the number (19.9 

million) in 1995 (22). Sub-Saharan Africa continues to be the hardest hit with 

approximately 25.8 million people infected with HIV. There is an increase in the 

proportion of women being infected with HIV. In 2005, 17.5 million women were living 

with the virus which is one million more than in 2003. Approximately 2.3 million 

children under 15 years of age were living with the virus in 2005 with 700,000 new 

infections in 2005 alone (22). Prevention of HIV in healthy individuals and providing 

health care and affordable treatment presents one of the biggest challenges facing us 

today.

1.5 Pathogenesis of HIV

HIV enters the body via infected body fluids like blood, semen and vaginal 

secretions. Once inside the body, HIV attacks a subset of lymphocytes called T4 

lymphocytes. The T4 lymphocytes are called Helper T cells. These cells by means of 

their T cell antigen receptor (TCR) recognizes antigenic peptides in association with self
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major-histocompatibility-complex (MHC) molecules displayed on the surface of antigen-

presenting cells (APC) like B cells or macrophages, interact with killer T cells and B cells 

and help them respond to foreign antigens. The primary receptor for HIV on the T4 cell is 

CD4 (23, 24). T4 cells carry about 10,000 copies of CD4 molecules on their surface. CD4 

molecule serves as an adhesion molecule that stabilizes the interaction between the APC 

displaying the antigenic peptide and the TCR (25, 26). In addition to the primary 

receptor, a co-receptor is also required for HIV entry into the host cell (27, 28, 29). These 

co-receptors normally function as chemokine receptors and are believed to be involved in 

migration of cells to areas producing chemokines (small secreted molecules that serve as 

chemo-attractants). Different variants of HIV-1 can use different chemokine receptors 

with the fusin (CXCR4) and CCR5 receptors being the most common. Chemokine 

receptors and CD4 molecules are also present on macrophages which are also 

productively infected by HIV. Upon entry, HIV destroys the T4 cell in various ways. The 

copious budding of HIV from the T4 cell surface results in disruption of integrity of the 

cell membrane. Cellular RNA and protein synthesis is also disrupted due to high levels of 

viral RNA and unintegrated viral DNA into the cell (30). The binding of gp120 (viral 

envelope protein) to CD4 causes the T4 cells to lose their immune function and can cause 

them to become targets for immune attack by antibody mediated antibody-dependent cell 

cytotoxicity (ADCC). Formation of syncytia or multinucleated giant cells is one of the 

causes of death of cells that are not directly infected with HIV (31, 32). During HIV 

infection, cross-linking of CD4 molecules by HIV gp120 or gp120-anti- gp120 immune 

complexes prepares the cell for apoptosis (33, 34). The activation of a prepared cell by an 

antigen or superantigen could lead to death of the cell by apoptosis without direct 



7

infection with HIV (35). Uninfected cells may also be destroyed by autoimmune 

mechanisms. Antigenic cross-reactivity exists between HIV proteins (gp120 and gp41) 

and MHC class I and II determinants (31, 36), which causes anti-HIV antibodies to 

eliminate uninfected MHC class I and II bearing cells via ADCC. The decline in T4 cells 

that occurs during viral infection may be in part due to the inability of the immune system 

to regenerate the T4 cell pool (37). This may be due to the destruction of lymphoid 

precursor cells by infection as they get activated to divide and also due to disruption of 

the microenvironment required for efficient regeneration of immune competent cells. A 

healthy individual has T4 cell counts between 800 to 1200/µl of blood. Immediately 

following initial infection by HIV, there is a steep decline in the number of T4 cells with 

subsequent recovery to near normal level. This is followed by an average yearly loss of 

about 60 T4 cells/µl (38). An HIV positive person is diagnosed with AIDS when the T4 

counts drop below 200/µl. This state is also associated with profound immunodeficiency 

and multiple or disseminated opportunistic infections (39). In general, this would take 

from 8 to 12 years from initial infection in the early years of the AIDS epidemic (40-42). 

Better detection of HIV infection, antiretroviral therapy and effective prophylaxis for 

opportunistic infections today has considerably slowed down progression of HIV disease 

and has increased life expectancy in HIV-positive individuals in those areas where 

treatment is available (43, 44).
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1.6 Opportunistic infections (OIs) and neoplasms in AIDS patients

Primary infection with HIV results in acute mononucleosis-like clinical syndrome 

approximately 3-6 weeks following infection. This syndrome is accompanied by a burst 

of viral replication that can be detected in blood approximately 3 weeks following 

infection (45, 46). An antiviral immune response is detected approximately 3-6 weeks 

after infection (47, 48). Following the induction of an immune response, there is a very 

long period of clinical latency characterized by very few and mild, if any, clinical 

manifestations. When T4 cell counts drop below 500/µl, usually the first symptoms 

appear in the HIV-positive individual. When the counts fall below 200/µl, the patient is 

susceptible to AIDS-defining opportunistic infections (OIs) and neoplasms. About 90% 

of AIDS related deaths are caused by OIs, 7% are due to neoplasms and 3% due to other 

causes. A wide range of bacteria, fungi, protozoans and viruses, most of which are 

harmless commensals in a healthy individual become opportunistic pathogens in an AIDS 

patient due to a failing immune system. Some of the common OIs associated with AIDS 

are candidiasis, Pneumocystis carinii pneumonia (PCP) and cytomegalovirus infections. 

About 40% of AIDS patients develop neoplasms like Burkitt’s lymphoma, Kaposi’s 

sarcoma, B cell lymphomas and cervical carcinomas. Various neurological symptoms 

like AIDS dementia complex (ADC), aseptic meningitis and various myelopathies are 

also seen in some full blown AIDS patients (13).
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1.7 Anti-HIV therapy

There are four main classes of anti-HIV drugs. They are:

• Nucleoside analog RT inhibitors (NRTIs) eg. Zidovudine, Didanosine, 

Lamivudine. These nucleoside analogs prevent HIV replication by their 

incorporation into the elongating strand of viral DNA thereby causing chain 

termination.

• Non-nucleoside analog RT inhibitors (NNRTIs) eg. Nevirapine, Delvaridine. 

These drugs inhibit HIV replication directly by binding noncompetitively to 

reverse transcriptase enzyme.

• Protease inhibitors eg. Saquinavir, Ritonavir, Indinavir. These drugs are made up 

of a small number of amino acids (up to 15) or amino acid analogs and bind to the 

active site of the viral protease enzyme and inhibit its activity. This inhibition 

prevents cleavage of long HIV protein precursors, resulting in the formation of 

immature noninfectious HIV particles.

• Fusion inhibitor eg. Enfuvirtide (Fuzeon). Enfuvirtide was approved by the U.S. 

FDA in March 2003. Enfuvirtide is approved for HIV patients who have tried all 

the currently available antiretrovirals but have failed to keep their viral loads to 

undetectable levels. It is not approved for people who are starting anti-HIV drugs 

for the first time. When administered it must be used in combination with other 

drugs. Enfuvirtide belongs to a category of medications called fusion inhibitors or 

entry inhibitors. It is a peptide which binds to gp41 protein on HIV's surface. 

Once it does this, HIV cannot successfully bind with the surface of T-cells, thus 

preventing the virus from infecting healthy cells (49).
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All the above drugs are administered as multi-drug cocktails to overcome the rapid 

emergence of drug resistant mutants. This combination therapy is called HAART (Highly 

Active Anti-Retroviral Therapy). Although in past years patients were typically started on 

HAART therapy immediately after HIV diagnosis, current protocols suggest waiting until 

T helper counts are at or below 350 cells/µl.  AIDSVAX, developed by a company in 

Brisbane, California, is the only FDA approved vaccine to have reached phase III trials 

(50). This vaccine uses recombinant gp120, an envelope glycoprotein. However, the 

vaccine failed to prevent HIV infection in the study population after three years of 

clinical trial (51). There are several experimental recombinant vaccines produced by 

various companies that are undergoing Phase I and Phase II trials (52). 

1.8 HIV structure and genetic organization

HIV is about 80-100 nm in diameter (see Figure 1-1). The outer lipid layer of the 

virus is derived from the cell lipid bilayer into which glycoproteins (gp120 and gp41)

encoded by the env region of the viral genome are incorporated. Internal to the envelope 

is the matrix made up of the MA protein (for membrane associated or matrix). The matrix 

encapsidates the shell referred to as capsid and made up of the CA protein (for capsid). 

The capsid together with the components it encloses is referred to as the “core” which is 

cone-shaped (53). Within the core is the RNA genome which is approximately 9.7 kb and 

is linear, single-stranded, non-segmented and of positive polarity (53). There are two 

completely identical or nearly identical copies of the RNA genome non-covalently linked 

in an apparent parallel orientation close to their 5’ ends by a structure called the Dimer 

Linkage Structure (DLS) or the Dimer Initiation sequence (DIS) (Figure 1-2). Although 
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there are two copies, generally only one provirus (virus encoded dsDNA that is integrated 

into the host genome) is detected in a single infection, hence retroviruses are considered 

to be pseudodiploid (54). The existence of two genomes probably helps retroviruses 

survive and complete replication in case of damage to any or both of the genomes and 

may also account for the high rate of genetic recombination seen in these viruses (54, and 

see below). The genome RNA is coated along its length with a viral nucleocapsid protein 

(NC). The HIV genome contains nine genes, which produce at least nine proteins (see 

Figure 1-3). These proteins are classified into: three structural polyproteins encoded by 

gag, env and pol genes, two regulatory proteins encoded by tat and rev genes and four 

accessory proteins encoded by nef, vif, vpu and vpr. The gag (for group-specific antigen) 

gene codes for the above mentioned MA, CA and NC proteins. The pol gene codes for 

the viral enzymes RT (Reverse Transcriptase), PR (Protease) and IN (Integrase) while 

env codes for the two glycoproteins also mentioned above: gp120 which forms the 

external “spikes” of the virus and gp41 which forms the transmembrane protein that 

connects gp120 to the viral capsid surface. Table 1-1 lists the nine genes, their proteins 

and functions.
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Figure 1-1: Human Immunodeficiency Virus

Shown is a schematic of HIV. It is an enveloped virus containing glycoproteins gp 120 
and gp 41. Within the envelope are the matrix protein (MA) and the capsid (CA) protein. 
The capsid encloses two copies of single-stranded plus sense RNA genomes coated with 
nucleocapsid protein. The capsid also contains several copies of reverse transcriptase, 
integrase and protease enzymes. Figure adapted from www.en.wikipedia.org 
http://en.wikipedia.org/wiki/HIV_structure_and_genomehttp://en.wikipedia.org/wiki/HI
V_structure_and_genome
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Figure 1-2: Dimer Initiation Sequence 

Localization and structure of Dimer Initiation Sequence (DIS) of HIV-
1. Bases that constitute the kissing loop as well as the flanking purines 
are in red. 

a. shows the secondary structure of the packaging signal 
consisting of the four stem loops, SL1, SL2, SL3 and SL4. 

b. Secondary structure of the DIS dimer forming a kissing-loop 
complex.

c. Secondary structure of the extended duplex
Figure taken from Ennifar E. et al, 2001. Nature Structural Biology 8: 
p. 1064-1068
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Figure 1-3: The HIV genome and the proteins encoded by the HIV genes

Shown are the HIV genome and the proteins encoded by the genes. The nine 
genes, their relative positions, and the positions of the LTRs or long terminal 
repeats are shown. The products resulting from gag, pol and env are described. 
Tat and rev are both shown upstream and downstream of env since splicing 
within the env gene is required to complete the coding of the tat and rev
proteins. Figure adapted from www.cat.cc.md.us 
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Table 1-1: Genes of HIV-1 and function of corresponding proteins
Gene name(s) Mol.

Mass
(kDa)1

Function

gag (group
Antigen)

p17

p24
p7 

Matrix (MA, interphase between capsid and 
envelope, virion structural protein)
Capsid (CA, protection, virion structural protein)
Nucleocapsid (NC, protection, packaging, 
dimerization, reverse transcription)

pol (polymerase) p10
p66/
p51

p31

Protease (PR, cleavage of polyproteins)
Reverse transcriptase (RT, converts viral RNA into 
double-stranded DNA, functions as a p66/p51 
heterodimer with the latter being the N-terminal 
cleavage product of p66)
Integrase (IN, integrates proviral DNA into host cell 
DNA)

env (envelope) gp120

gp41

Surface glycoprotein binds to receptor molecule 
during viral entry
Transmembrane glycoprotein fuses with cell 
membrane during viral entry

tat (transactivator      
protein)

p14 Stimulates viral transcription by binding to TAR2

region to facilitate initiation and elongation of viral 
transcription

rev(differential 
regulator of 
expression of virus 
protein 

p13/
p19

Binds to RRE3 to facilitate nuclear export of 
unspliced or singly spliced RNA and increases 
production of structural proteins

vif (virus infectivity 
factor)

p23 Increases virus infectivity, affects virion assembly 
and viral DNA synthesis and suppresses inhibition of 
replication by human anti-HIV component 
APOBECC3G

nef (negative 
regulatory factor)

p27 Increases or decreases virus replication, affects T-cell 
activation and enhances virus infectivity 

vpr (virus protein 
R)

p15 Causes G2 arrest, aids in the nuclear transport of pre-
integration complexes

vpu (virus protein 
U)

p16 Destroys CD4 on the surface of infected cell thereby 
allowing budding of virions

1Table I lists the size of the functional proteins
2TAR or the trans-activation response sequence is a stable, stem-loop present at the 5’end 
of all HIV RNAs. It is highly conserved and required for Tat function
3RRE or Rev response element is a highly structured 351 nt coding region within the env
region. It is present in RNAs that are dependent on Rev protein for their expression in the 
host cytoplasm
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1.9 HIV life cycle

Viral entry: The process of entry of HIV into the target cell is the first step in the 

infection cycle. It is initiated through the binding of viral surface glycoprotein (gp120) to 

CD4 receptor molecule on the outer membrane of the target cell. Gp120 together with a 

membrane-spanning protein (gp41) constitute the envelope glycoprotein complex. In 

addition to CD4 receptor molecule, viral entry requires a second receptor, β-chemokine 

receptor called “FUSIN” or CXCR4 present on T cells and CCR5 present on 

macrophages. The binding of gp120 to CD4 molecule apparently triggers a 

conformational change in the glycoprotein (55) which activates the membrane fusion-

inducing potential of gp41 (56) which then mediates fusion of the lipid bilayers of the 

cell and viral membranes (57). Initially, it was shown that HIV enters the cell by 

receptor-mediated endocytosis (58), later on, it was shown that entry is via a pH-

independent method (59, 60). For fusion to occur adjacent membranes merge and a 

fusion pore is formed but not much is known about these steps and this is an area of 

current investigation.

Reverse transcription: The process of reverse transcription was studied by 

identifying replication intermediates synthesized in reconstituted or endogenous reactions 

and also by analysis of viral DNA isolated from infected cells (61-64). Reverse 

transcription begins when the viral particle enters the cytoplasm of the host cell. The viral 

genome enters the cytoplasm in the form of a ribonucleoprotein complex that also has 

reverse transcriptase (RT), nucleocapsid protein (NC) and presumably Vpr (65) The exact 

nature of the replication complex is unclear and its form presumably changes as reverse 
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transcription proceeds. RT is a multifunctional enzyme that has RNA directed and DNA 

directed polymerase activity and RNase H activity (ribonuclease H) that cleaves the RNA 

strand that is part of an RNA:DNA duplex. NC is a viral protein that has numerous roles 

(see below) and is known to increase the efficiency of reverse transcription. NC is a 

nucleic acid chaperone protein (66, 67). Like other chaperones NC presumably binds 

nucleic acids and aids in proper folding by preventing misfolding and resolving 

incorrectly folded structures (see below). Although the genomic RNA of HIV contains 

immediately translatable information, the virus during its life cycle goes through an 

intermediary double-stranded DNA stage via reverse transcription (68) as shown in 

Figure 1-4.

The HIV RNA is derived from the double-stranded integrated viral DNA by the 

RNA synthesis machinery of the host and bears the structural features of a cellular 

mRNA in that it has a 7-methylated-G cap and a polyadenylated 3’ end. Immediately 

adjacent to the 5’ cap and the 3’ poly (A) tail at the 5’ and 3’ end respectively, lie the 

direct repeats, termed R for repeat sequences (69). Adjacent and internal to the R 

sequence on each end are sequences that are unique to that end called U5 (unique to 5’ 

end) and U3 (unique to 3’ end). PBS is the primer binding site for tRNA primer. The 

tRNA primer and PPT (the polypurine tract) serve as RNA primers for minus and plus 

strand DNA synthesis respectively. The gag, pol and env genes are also shown in Figure 

1-3. The overall arrangement of these different sequences on the HIV genome is 5’ cap, 

R, U5, PBS, gag, pol, env, PPT, U3, R, poly (A). LTR or long terminal repeats at both 



18

ends are seen only in the proviral DNA (Figure 1-4). These are formed as a result of 

duplication of U5 and U3 sequences. The generation of the two LTRs at both ends of the 

proviral DNA is essential to establish DNA that can be integrated into the host 

chromosome and to regenerate sequences (the promoter and polyadenylation sites), 

which are essential for viral transcription.

Following are the steps of reverse transcription:

1. The process of reverse transcription is initiated from a host-derived tRNALys3 that is 

packaged in the virion during assembly. The tRNA partially unwinds and the first 18 

bases at the 3’ end bind to the complementary primer binding site (PBS) near the 5’ end 

of the genomic RNA. The process is aided by NC protein (70). The RT enzyme using its 

RNA dependent DNA polymerase activity synthesizes the minus strand DNA until the 5’ 

end of the genomic RNA is reached generating what is referred to as minus-strand strong-

stop DNA. The minus-strand strong-stop DNA (-sss DNA) is about 150 bases long.

2. When the minus strand strong-stop DNA is formed, the RNase H activity of RT 

degrades the RNA strand of the RNA:-sssDNA hybrid. This releases the DNA and allows

the first strand transfer (also referred to as template jumping or template switching) to 

occur and the –sssDNA binds to the complementary repeat (R) region at the 3’ end of the 

same (intramolecular) or the second genomic RNA (intermolecular) (71). This process is 

also aided by NC (72).

3. The –sss DNA annealed near the 3’ end of the template is extended up to the PBS on 

the RNA template. The RNA template is simultaneously degraded by RT’s RNase H 

activity. The RNase H cleavage products include a polypurine tract or PPT that serves as 
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primer for synthesis of plus strand DNA (73). The PPT is a highly conserved 15 base 

oligomer that is resistant to degradation by RNase H activity of RT.

4. RT uses the DNA dependent DNA polymerase activity to synthesize the second strand 

from the 3’ end of the PPT using the minus strand DNA as template until it reaches the 

first modified base (19th base from the 3’ end of the tRNA) on the tRNA primer that 

cannot serve as template for reverse transcription (74). The resultant DNA product is 

called plus strand strong-stop DNA or +sssDNA.

5. The tRNA at this point is removed by RNase H activity of RT, which allows the 

second strand transfer to occur involving the +sssDNA. At this point, the minus strand of 

the PBS is copied from the viral RNA and the plus strand of the PBS sequence is copied 

from the tRNA primer. In the second strand transfer, the PBS sequence near the 3’ end of 

the +sssDNA binds to the PBS sequence near the 3’ end of the minus strand DNA. This 

transfer is intramolecular and leads to the formation of a circular DNA molecule with 

overlapping 5’ ends. Synthesis of both the plus and minus strand DNAs are completed to 

produce a linear double stranded viral DNA molecule with long terminal repeats (LTRs) 

(75).

This molecule then integrates into the host chromosome in a reaction catalyzed by 

integrase enzyme (76). Integration is random although sites of active transcription appear 

to be favored (77). Integrase which is proteolytically cleaved from the carboxy-terminal 

portion of Pol polyproteins recognizes specific target sequences that are approximately 

15 nucleotides in length at the ends of the linear proviral DNA and promotes their 

integration into the host chromosomal DNA (78). Once integrated (now referred to as a 
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provirus), the viral DNA is stable and the virus now utilizes the host RNA synthesis 

machinery for transcription of viral DNA into new copies of the viral genome and also 

mRNAs that encode viral proteins. The proteins are assembled (some as precursors and 

others in mature forms) and packaged into virions along with two copies of RNA 

genome. The new viral particles are released from the cell by budding. After the budding 

process protein precursors are cleaved by PR and the core structure is formed, generating 

infectious viral progeny.
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Figure 1-4: Model for HIV replication Shown here is the model for 
retroviral replication. The synthesis of proviral DNA begins when a tRNA 
primer binds to the primer binding site (PBS). Synthesis of this DNA 
extends to the 5’ end of the viral genome. This segment of DNA is called 
‘minus strand strong-stop DNA’ (-sssDNA). The –sssDNA undergoes 
transfer from the 5’ end to the 3’end of the same or different RNA genome. 
After transfer, synthesis continues to the 5’ end of the RNA. At the same 
time, the RNA gets cleaved by the RNase H activity of RT. The ppt or 
polypurine tract is the RNase H resistant segment of the genome that 
primes the plus strand DNA synthesis. This phase of synthesis produces a 
segment called ‘plus strand strong-stop DNA’ (+sssDNA). The second 
transfer involves binding of the complementary PBS regions of minus and 
plus DNA strands. Complete synthesis yields a double stranded DNA with 
long terminal repeats (LTRs).
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1.10 Genetic recombination in HIV

Recombination occurs at a high rate during the retroviral replication cycle. 

Recombination is one of the means by which the virus generates genetic diversity. 

Because of this genetic diversity, HIV-1 has been defined as a quasispecies which is a 

population of closely related yet genetically distinct viruses within the same infected 

individual (79). Retroviruses including HIV copackage two RNA genomes. A 

consequence of this packaging is a high rate of recombination (54). These genomes are 

identical or genetically distinct. Genetically distinct genomes can arise if a single cell has 

been coinfected by two different viruses (80) resulting in more than one provirus in 

which case the RNA genomes could be generated from different proviruses and 

copackaged into the same virion. Also, the viral RNA genomes are transcribed from the 

integrated provirus by host RNA polymerase II which could introduce some errors.. This 

can give rise to genetically distinct RNA genomes that may be copackaged into the same 

virion. Recombination in retroviruses is mechanistically different from what occurs in 

higher life forms. Recombination in retroviruses occurs during synthesis of the double-

stranded DNA from the genomic RNA. It occurs by a process called strand transfer (also 

referred to as ‘strand jumping’ or ‘template switching’). Strand transfer involves the 

switching of DNA being synthesized on one template (referred to as ‘donor’) to 

homologous regions on the same or on a second template (referred to as ‘acceptor’) 

where synthesis of DNA continues. When strand transfer occurs on to a genetically 

distinct template, the proviral DNA so obtained is a chimera of the original parent 

templates. The first and second strand transfers (called minus strand and plus strand 

strong stop DNA transfers respectively) are obligatory strand transfers, which occur at 
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the termini of genomic RNA during reverse transcriptase (described above). These 

transfers are essential steps without which viral replication cannot proceed to completion. 

In addition to these obligatory transfers, internal transfers can take place potentially at 

any position on the genome (81, 82). Such internal strand transfers may increase the 

probability of successful DNA synthesis by providing a salvage pathway for damaged or 

broken RNA genomes (83). These internal transfers also help in generating genetic 

diversity in the population (84-86) thereby allowing viruses to escape the host immune 

response and evade drug therapy. Internal strand transfer can occur during minus and plus 

strand DNA synthesis (84). However, these transfers occur to a lesser extent during plus-

strand DNA synthesis compared to minus strand DNA synthesis (71). Internal strand 

transfers occur between homologous regions of two genomic RNAs or DNAs synthesized 

from those RNAs (54). Non-homologous recombination is very rare occurring at a rate of 

about 1/100th to 1/1000th of the rate of homologous recombination (87). It has been

shown that HIV-1 recombines approximately two to three times in every replication cycle 

(81). More recent results indicate that the virus may be more recombinogenic with an 

average of nine recombination events per virus in T lymphocytes and about thirty 

crossover events in macrophages (88). These very high rates for HIV are in contrast to 

some simpler retroviruses like Moloney murine leukemia virus and spleen necrosis virus 

that show rates about 1/10 to 1/50th the rate for HIV (54, 89).  

Two models have been proposed for the mechanism of retroviral recombination: 

copy-choice model and strand-displacement assimilation model (90). There is 

experimental evidence for both and they are not mutually exclusive. The copy-choice 
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model explains recombination during minus-strand DNA synthesis and the strand-

displacement assimilation model explains recombination during plus-strand DNA 

synthesis. The copy-choice model (Figure 1-5) postulates that recombination occurs 

when the growing DNA molecule switches from one RNA template to another during 

minus-strand DNA synthesis. The copy-choice model is a modified version of the 

original ‘forced copy-choice’ model. The forced copy-choice model proposed that strand 

transfer occurs when there is a break or damage in the template RNA and this forces the 

growing strand to a homologous region of the copackaged RNA (83). However, this 

model did not explain all types of transfers during minus strand synthesis. For example, 

Hu and Temin (91) introduced breaks into genomic RNA by gamma radiation but this did 

not significantly enhance recombination. Template switching has been shown to occur 

efficiently from regions of unbroken RNA (92). In undamaged or broken RNA, 

secondary structures and/or sequences were shown to be responsible for pausing or 

stalling of RT which could result in strand transfer (93, 94). Misincorporation by RT is 

also known to induce strand transfer (95). Thus, the modified version called copy-choice 

was proposed to account for all types of transfers that occur during minus strand DNA 

synthesis. The transfer of the growing DNA molecule can occur by two proposed 

methods (96): DNA dissociation and acceptor RNA invasion. In the DNA dissociation 

method, the growing DNA dissociates from the original template (called donor) before 

annealing to the second template (called acceptor). This DNA dissociation is independent 

of the acceptor template. In the acceptor RNA invasion method, the acceptor RNA 

actively displaces the growing DNA from the donor template by invading the donor 
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RNA-growing DNA hybrid. During this invasion, a trimeric structure is formed 

transiently with the DNA bound to both donor and acceptor templates. The existence of 

such a transient trimeric structure has been shown both in vitro and in cell culture (95, 

97). There is evidence for transfer by DNA dissociation method also. It is however not 

known whether transfer during minus strand DNA synthesis occurs by one or both these 

methods.

The strand-displacement assimilation model (Figure 1-6) explains strand transfer 

occurring during plus strand DNA synthesis (98). Plus strand DNA synthesis originates 

primarily from the polypurine tract although it can be initiated at multiple alternative 

points (73). Therefore plus strand DNA synthesis is discontinuous. The strand-

displacement assimilation model postulates that during such a discontinuous synthesis, 

the 5’ ends of the growing plus strand DNA are displaced by the 3’ ends of adjacent plus 

strands. These strands are now free and can base pair with another minus strand DNA. 

This model requires the presence of two minus strand DNA molecules containing the 

region where recombination will occur. Evidence also suggests that concomitant DNA 

synthesis may be required for strand displacement to occur (99).
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Figure 1-5: Copy-choice model

Shown here is the copy-choice model. This model proposes a mechanism for strand 
transfer during minus strand DNA synthesis. HIV genes gag, pol and env and their 
alleles are represented as g/G, p/P and e/E respectively. Figure adapted from 
Principles of Virology, Molecular Biology, Pathogenesis and Control.
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Figure 1-6: Strand displacement-assimilation model

Shown here is the strand displacement-assimilation model. This model proposes a 
mechanism for strand transfer during plus strand DNA synthesis. HIV genes gag, pol and 
env and their alleles are represented as g/G, p/P and e/E respectively. Figure adapted from 
Principles of Virology, Molecular Biology, Pathogenesis and Control.
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1.11 Reverse Transcriptase 

Reverse Transcriptase (RT) was discovered independently by David Baltimore 

and Howard Temin (100, 101). RT is encoded by the pol gene and is a multifunctional 

enzyme (Figure 1-7) possessing RNA dependent DNA polymerase, DNA dependent 

DNA polymerase and Ribonuclease H (RNase H) activity. The latter acts to degrade the 

RNA that is part of an RNA-DNA duplex (102). The DNA polymerase activity of RT is 

similar to that of most cellular DNA polymerases. It requires a primer with a 3’-OH 

terminus, either DNA or RNA annealed to an RNA or DNA template (103), a divalent 

metal cofactor (preferably Mg2+) and incorporates dNTPs forming 3’-5’ phosphodiester 

bonds with the release of pyrophosphate. RT is a relatively slow enzyme incorporating 

about one nucleotide per second to the growing chain in vitro (104) although rates in vivo

are slightly higher. RT has modest processivity (the average number of nucleotides 

incorporated during a single binding event between the enzyme and primer-templates)

incorporating on average about 100 bases before dissociation. RT lacks proof reading 

activity in that it does not possess 3’-exonuclease activity capable of excising mispaired 

nucleotides (105) and hence is more error prone than cellular DNA polymerases. RT has 

an error rate between 10-4 and 10-5 per base per replication cycle (106, 107). Therefore, 

RT contributes to the high mutation rate in retroviruses. Since RT plays a very important 

role in reverse transcription it has been an anti-HIV drug target. There are two categories 

of anti-RT drugs: nucleoside analogs and non-nucleoside analogs, which are used in

combination with protease inhibitors to reduce viral loads in patients. 
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HIV-RT exists as a heterodimer consisting of two subunits of approximately 66 

and 51 kDa (p66 and p51 respectively). The p66 subunit contains both the DNA 

polymerase and RNase H domains and the p51 subunit contains only the polymerase 

domain (108). The p51 subunit, which is derived from p66 by protease cleavage, is 

missing the carboxy-terminal region of p66 which contains the RNase H domain. The 

role of p51 in the function of RT is not clear. Evidence suggests that p51 subunit is not 

involved in the DNA polymerase and RNase H activities of RT (109). All known 

activities of RT lie in the p66 subunit of RT as determined from studies in which p51 

subunit was inactivated by mutations (108). Postulated roles for p51 include stabilizing 

and protecting p66, helping to load p66 on the primer-template, and interacting with 

tRNA (110, 111, 112). The polymerase and the RNase H active site of RT have a 

catalytic core of negatively charged amino acids that interact with the metal cofactor 

(Mg2+). Mutagenesis studies have shown that the polymerase domain has three conserved 

aspartate residues, Asp-185, Asp-186 and Asp-110 that are absolutely essential for 

polymerase function (113, 114). The RNase H active site has four conserved residues, 

Asp-443, Glu-478, Asp-498 and Asp-549 (115, 116). The structure of RT is similar to 

other DNA polymerases exhibiting an open right hand conformation containing 3 

domains- the fingers, the palm and the thumb. The nucleic acid is bound to RT such that 

the primer terminus is in the region between the thumb and fingers and the double-

stranded region is in the palm domain.  The RNase H active site is about 18 base pairs 

removed from the polymerase site and there is a pronounced bend in the duplex between 

the two sites (Fig. 1-7).
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Figure 1-7: HIV Reverse Transcriptase

Shown is the ribbon diagram of HIV-1 RT bound to a space-filling model of a 19 
nucleotide oligonucleotide helix substrate. The regions of A-form, B-form and bent 
DNAs are indicated. The various domains of RT are color-coded as: fingers-blue, palm-
red, thumb-green and connection-yellow. The RNase H domain which is part of the p66 
subunit is shown in orange. Figure taken from Jacoba-Molina et al. 1993. Proc. Natl. 
Acad. Sci. 90: p 6320-6324.
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1.12 Nucleocapsid protein

Nucleocapsid protein (NC) of Human Immunodeficiency Virus type 1 (HIV-1) is a 

small protein comprised of 55 amino acid residues (Figure 1-8). It is a highly basic and 

positively charged protein with a pI of 10.0 to 11.0. HIV-1, like all retroviruses encodes a 

gag gene product, which play an important role in viral assembly by recognizing and 

packaging two copies of viral RNA. After assembly and release of the viral particle, these 

gag gene products undergo proteolytic processing by viral protease to give several 

structural proteins (117). One of these proteins is the nucleocapsid protein that binds to 

genomic RNA (117, 118). NC proteins can bind non-specifically to single-stranded and 

double-stranded DNA and to single-stranded RNA in vitro with a preference for single-

stranded molecules, it binds to RNA in the following order of affinity: retroviral RNA> 

mRNA> rRNA> poly(rA) (119, 120). At saturating concentrations, NC protein covers 

nucleic acids and offers an incomplete protection from nuclease attack (121). Initially, 

NC protein was purified from virions (122) but now the protein is obtained by 

transforming E. coli cells with recombinant vector and overexpression of protein (123). 

HIV-1 NC has two rigid zinc-binding domains or zinc fingers also called zinc 

“knuckles”. The two fingers are covalently linked to each other by a small flexible basic 

amino acid region called the linker (RAPRKKG sequence) and are flanked by flexible, 

basic N- or C- terminal “tails” (119, 124). Each zinc finger contains a 14- amino acid 

metal ion-binding motif, C-X2-C-X4-H-X4-C where X denotes variable amino acids. Each 

zinc finger of NC coordinates one zinc ion, both in vitro and in virions (119, 125, 126). 

This tight binding of NC to zinc ions is essential to maintain stability of the zinc fingers 

and also ensures spatial proximity of the two fingers (127, 128). The two zinc fingers 
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may exhibit weak interactions with one another (129). NC is susceptible to anti-viral 

agents that have the ability to eject zinc, which interferes with the normal functions of 

NC (130-132). The two zinc fingers have similar structures (133) although the amino acid 

sequences surrounding the CCHC motifs are different (124). The biological activities of 

the two fingers are not equivalent (134, 135) and the presence of both fingers is crucial 

for the production of replication-competent virus (136). Also, the positions of the zinc 

fingers cannot be exchanged (134). NC protein of HIV has highly conserved hydrophobic 

residues at positions 13, 16, 24 and 25, a basic residue at position 26 and glycine residues 

at positions 19 and 22 (122, 137). NMR studies are used to determine the three-

dimensional structure of NC protein. It has been shown that NC binds to several nucleic 

acid targets during the viral life cycle. The hydrophobic residues of NC located in the 

second position of each zinc finger exhibit strong stacking interactions with nucleic acid 

bases (138). This stacking was found to be most efficient with G bases, especially when 

preceded by T (139, 140). Binding of NC to stem-loop sequences (SL1, SL2, SL3, SL4) 

that constitute the ψ genomic packaging signal were studied. Close interactions were 

observed between Phe16 and Trp37 and purine residues in single stranded regions of SL2 

and SL3 RNA hairpins in ψ genomic packaging signal of HIV-1 (141, 142). Binding of 

NC to SL1 and SL4 is weak. In addition, DNA analogs of the RNA stem-loops bound to 

NC less efficiently than the corresponding RNA (140). NMR studies also showed that 

basic residues of NC help in formation of intramolecular salt bridges that stabilize folding 

of NC zinc fingers and also participate in forming electrostatic interactions with the RNA 

(141, 142). Computational studies were done to determine NC’s nucleic acid binding 

properties and the ability of NC’s zinc co-ordinating Cys residues of finger 2 were found 
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to be more susceptible to electrophilic attack with Cys49 of finger 2 being the most labile 

to electrophilic attack which is in agreement with experimental observations (143).

NC exhibits several important functions in the life cycle of HIV. These functions 

can be attributed to its ‘nucleic acid chaperone’ activity. This activity allows NC to 

catalyze the rearrangement of nucleic acids into a more thermodynamically favorable 

conformation (124, 144). For NC, the chaperone activity has two components: helix-

destabilization and condensation/aggregation. Studies with mutant proteins showed that 

the basic regions of NC are necessary for NC chaperone activity (145, 146). Work has 

shown the helix-destabilization also requires the zinc fingers with finger 1 playing the 

major role (134, 135). The condensation/aggregation activity is probably due mostly to 

the basic nature of NC as cations like poly-lysine and spermidine also show this effect on 

nucleic acids (147). This activity is responsible for NC’s ability to increase the rate of 

annealing, even for complements without secondary structure (135). NC and other 

chaperones appear to function by causing transient unpairing of bases. These bases are 

now free and available for pairing with other bases to attain the most favorable 

conformation thereby permitting the bases to escape from less energetically favorable 

conformations. NC’s chaperone activity aids in a variety of functions like nucleic acid 

unwinding, nucleic acid annealing and strand exchange. NC can thereby promote 

unwinding of structured RNAs like tRNA and the TAR stem-loop of the viral RNA and 

annealing of complementary strands as well as facilitate transfer of nucleic acid from a 

thermodynamically less stable hybrid to one that is more favorable (119, 144). In this 
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regard, NC behaves like the single strand DNA binding (SSB) proteins of E. coli and the 

RNA binding proteins like heterogeneous nuclear ribonucleoprotein A1 (148). The 

participation of NC has been implicated in almost every process of the viral life cycle. In 

vitro studies have shown that NC has several important roles in reverse transcription. 

Reverse transcription begins when the 18 nucleotides near the 3’ end of host cell derived 

tRNALys3 anneals to a complementary region on the genomic RNA of HIV called the 

primer binding site (PBS). NC helps in the unwinding of the 3’ end of tRNALys3 (149, 

150) and also helps its annealing to the PBS (151-153). During reverse transcription, 

there are two obligatory strand transfers that occur at the termini of the genomic RNA 

without which reverse transcription cannot proceed to completion (83, 84, 86). NC 

protein enhances these obligatory transfers (154-157). In the first strand transfer, the -

sssDNA that is synthesized by 3’ extension of the tRNA primer bound near the 5’ end of 

the genome is translocated to the complementary R region at the 3’ end of the genome for 

continuation of synthesis. It has been found in in vitro assays that the first strand transfer 

is about 25 times more efficient in the presence of high concentrations of NC (124). The 

second strand transfer involves the +sssDNA that is generated by extension of the 

polypurine tract up to the modified base on tRNA. For synthesis to continue, this tRNA 

must be removed so that the complementary PBS sequences on the minus strand and plus 

strand DNA can anneal. NC has been shown to enhance both tRNA removal and aid in 

annealing of the complementary PBS sequences (158).

In addition to the two obligatory transfers, the growing DNA molecule can 

transfer to another template at any internal position along the genome. This is called an 
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internal strand transfer and is the mechanism by which recombination occurs. The copy-

choice model described earlier in this chapter explains these internal strand transfers. It 

has been shown that secondary structures or sequences along the genome make it difficult 

for RT to read through. These regions are referred to as ‘pause sites’ as they cause RT to 

pause during reverse transcription. At these sites, synthesis can continue if the stalled 

DNA transfers to the second RNA of the virion. NC is found to reduce pausing at some 

but not all pause sites (159, 160) and also facilitates transfer of the nascent DNA from 

these sites (161, 162). This activity of NC is due to its helix-destabilizing and nucleic 

acid annealing properties (155, 160, 163-65). NC is also known to have a modest positive

effect on the processivity of reverse transcriptase during DNA synthesis, probably by 

making it easier for RT to traverse secondary structures (160, 166, 167). Another 

important aspect of NC’s chaperone activity is its ability to aggregate nucleic acids 

thereby facilitating attraction between nucleic acid strands (121, 168-171). 

Complementary sequences can thereby search for each other within such aggregates. 

Work done in this thesis shows how aggregates formed by NC play an important role in 

the synthesis of long DNA products from genomic RNA of HIV in vitro. 

After reverse transcription, NC has been shown to play a role in the integration of 

proviral DNA into the host chromosome by stimulating IN activity (121, 172-174). Also, 

NC sequences in the Gag precursor specifically interacts with an intact packaging signal 

on the viral genome (141) and participates in recognition and packaging of viral RNA 

into the virion (134, 175-177). NC has also been implicated in the dimerization of the two 

viral RNAs and the maturation of this genomic RNA dimer (178, 179). 
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The important functions carried out by NC during replication and infection make 

it an ideal target for drug therapy (180-182) and vaccine development (183). Work done 

in this thesis shows how NC plays an important role in the synthesis of long DNA 

products from HIV genome regions in vitro. 

1.13 Goals: Improving in vitro reverse transcription reactions and 

understanding how RT produces long DNAs in the cell

Reconstituted in vitro reverse transcriptase reactions have greatly contributed to 

the current understanding of the reverse transcription process. However, before this work 

the systems did not faithfully mimic reverse transcription in the cell with respect to the 

synthesis of long DNA products (184). In the cell synthesis of an approximately 10,000 

nucleotide minus strand from the RNA genome must occur. In vitro reactions were only 

capable of producing RNAs of a few thousand nucleotides with the vast majority of 

products being less than 1,000 in reactions with templates of several thousand bases. 

There are several possible reasons for this including cellular or virion factors that may be 

missing in vitro, or a structural framework provided by virion components in the 

replication complex. For example, the complex could provide a tightly packed and 

condensed environment that helps RT overcome its low processivity. The goal of the 

current thesis was to generate in vitro reaction conditions that produced DNA products 

that are several thousand nucleotides long. This in vitro system could be used to screen 

inhibitors of NC, RT and recombination. Such a system could also be useful for synthesis 

of long cDNAs from RNA.
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Figure 1-8: HIV Nucleocapsid protein

Shown above is a ribbon diagram of HIV-1 NC-SL3 Ψ-RNA complex. The color codes: 
310 helix-purple, first zinc finger-blue, second zinc finger-green, zinc atoms-white 
spheres, RNA-gray except the guanosine residues which are colored (Figure taken from 
Ref 142). Shown below is the 55 amino acid sequence of HIV-NC protein (Figure 
adapted from Ref 124). The amino and carboxyl terminals are shown. Each NC molecule 
has two zinc fingers F1 and F2, each of which has the C-X2-C-X4-H-X4-C motif, where C 
denotes the variable amino acids. The two fingers differ from each other by five amino 
acid residues.
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Chapter 2  Formulation of reaction conditions in vitro for the synthesis 

                   of long reverse transcription products from genomic RNA 

                   segments of Human Immunodeficiency Virus (HIV)

2.1  Introduction

Human Immunodeficiency virus (HIV-1), like all retroviruses, undergoes reverse 

transcription during its replication cycle. This process involves copying of its single 

stranded RNA genome into double-stranded DNA that later gets integrated into the host 

chromosome. Although some viral particles may initiate reverse transcription before 

entering cells (185-189), the process generally begins when the viral particle enters the 

cytoplasm of the host cell and occurs exclusively in the host cytoplasm. HIV cores are 

very fragile and are disrupted shortly after virus-cell fusion and entry into the host cell 

(190). The disassembly of the HIV core is crucial for the initiation of reverse 

transcription (191). The viral RNA and associated proteins are released into the 

cytoplasm and can interact with the cytoskeleton. They were found to specifically 

localize with actin microfilament components and disruption of this microfilament 

cytoskeleton inhibited reverse transcription in cells (192). Although HIV cores are 

dissociated shortly upon viral entry, reverse transcription is known to occur within a 

confined environment in capsid-like structures permeable to dNTPs and derived from the 

virion core (193, 194). Such a structure is referred to as reverse transcription complex 

(RTC). The RTC perhaps provides an optimal environment by preventing loss of factors 

required for reverse transcription and also offers protection from cellular nucleases. 
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Reverse transcription intermediates and products identical to those made in 

infected cells can be synthesized in the purified virions. This requires application of mild 

detergents to permeabilize the envelope and addition of deoxyribonucleoside 

triphosphates and a divalent cation as the metal cofactor (referred to as endogenous 

reverse transcription or ERT) (195-198). This process can even occur in the absence of 

added detergent (referred to as natural endogenous reverse transcription or NERT) (199-

201). In this case, the amphipathic domains of C-terminus of gp41 make the envelope 

naturally permeable to dNTPs (201). However, the yield of completed products in ERT 

and NERT reactions is extremely low. It can be concluded that the virion environment is 

not sufficient to allow efficient replication or that certain cellular components or 

structural alterations are essential for efficient replication. 

Reverse transcription can also be carried out in vitro in totally reconstituted 

reactions including only a primed RNA template and purified reverse transcriptase (RT). 

Several effects of the viral nucleocapsid protein (NC) have been demonstrated in these 

reactions including: enhancing binding of the host tRNA primer to the primer binding site 

on the viral RNA (as part of the gag precursor protein) (150, 202, 203), increasing the 

processivity of RT (166, 204) promoting dimerization between the two genomes in the 

viral capsid (205, 206) and stimulating strong-stop minus and plus strand transfer and 

viral recombination in general (154-162). In fact, all the reactions and steps required to 

produce complete double-stranded DNA appear to reside in RT and viral NC enhances 

many of these reactions. It has also been suggested that other viral proteins (Tat, for 

example) may play a role, but are probably not major constituents of the replication 
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complex (207). Also, both RT and NC are highly stable in vitro. Therefore, given enough 

time, one would predict the production of completely processed double-stranded DNA 

from genomic RNA in in vitro systems. However, this is not observed and even fully 

synthesized single stranded DNAs (minus strand) are not generated from genome length 

RNA. Most products are only a few hundred and at most a few thousand nucleotides in 

length when templates of several thousand bases are used (184), indicating that these 

reactions are even less efficient than NERT or ERT reactions. This could be because the 

capsid creates an extremely concentrated and specific environment that cannot be 

completely reproduced in vitro. The concentrated environment within the capsid may 

promote rebinding of nucleic acids and/or reverse transcriptase by keeping molecules in 

close proximity, and may constrain the template and help preserve the replication

intermediate. In the more dilute test tube environment, there could be a greater chance of 

dissociation of the replication intermediates and more difficulty of rebinding after 

dissociation. 

In the presence of specific amounts of NC and high RT concentrations an increase 

in reverse transcription efficiency in in vitro reactions can be observed. Results showed 

that at greater than or equal to 50% saturation of NC binding sites (one NC coats 

approximately 7 nucleotides(120, 123, 208), there is up to a 90% decrease in total DNA 

synthesis, as measured by incorporation of dNTPs (209). However, the cDNA products 

made are almost exclusively full-length, although in this case an RNA template of only 

874 bases was used. 
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As part of an effort to produce an in vitro system that more closely mimics 

cellular replication, in this report conditions that produced DNA products up to 4 kb from 

genomic RNA of HIV at relatively high efficiency are described. These reactions 

included high concentrations of RT and enough NC to completely coat all the nucleic 

acids in the reaction. In addition to enhancing our understanding of the replication 

process, an in vitro system that mimics cellular replication could potentially be used to 

screen reverse transcription inhibitors. 
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2.2  Materials

Plasmid pBKBH10S was obtained through the AIDS Research and Reference 

Reagent Program, Division of AIDS, NIAID, NIH, from Dr. John Rossi. This plasmid 

contains an 8.9 kb SstI fragment (nt 222-9154 of the RNA genome) from HIV-1 BH10 

inserted into the SstI site. The fragment has all HIV-1 gene coding regions but does not 

contain the HIV-1 LTR (210). Plasmid pNL4-3 was also obtained through the AIDS 

Research and Reference Reagent Program, Division of AIDS, NIAID, NIH: pNL4-3 from 

Dr. Malcolm Martin. This plasmid contains a full-length, replication and infection 

competent chimeric DNA i.e. the 5’ SmaI-EcoRI fragment of proviral NY5 (5’ SmaI in 

flanking sequences to 3’ EcoRI) and the 3’ fragment of proviral LAV (5’ EcoRI to 3’ 

NruI in flanking sequences) that was blunt-end cloned into pUC18 at the PvuII site after 

removal of polylinker sites. Plasmid pBR322 with hepatitis delta virus (HDV) ribozyme 

and 2 tandem T7 terminators (pBR322dR) was a gift from Dr. Siba Samal, VA-MD 

Regional College of Veterinary Medicine. PCR primers and primers used to prime 

templates in reverse transcription assays were obtained from Integrated DNA 

Technologies, Inc. The HIV-RT clone was a generous gift from Dr. Samuel H. Wilson 

(National Institute of Environmental Health Sciences, Research Triangle Park, NC). HIV-

RT was purified according to the protocol described (211). The protein was purified to 

homogeneity and the purity of the protein was evaluated using Coomassie Blue staining 

of 10 % SDS-PAGE gels (212). The subunits p51 and p66 of RT were in a 1:1 ratio. 

Aliquots of HIV RT were stored frozen at -80°C and fresh aliquots were used for each 

experiment. The HIV NC clone was a generous gift from Dr. Charles McHenry 

(University of Colorado). NC was purified to apparent homogeneity (as judged from 
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Coomassie Blue staining of 17.5% SDS-PAGE gels (212)) according to the protocol 

described (123). Quantification was by absorbance at 280 nm using a molar extinction 

coefficient of 8350 cm-1 M-1 (123). Aliquots of NC were stored frozen at -80 °C, and 

fresh aliquots were used for each experiment. Taq polymerase was from Eppendorf. T7 

RNA polymerase, DNase I-RNase-free and RNase-DNase-free were from Roche 

Diagnostics. RNase inhibitor was from Promega. T4 polynucleotide kinase and 

Restriction enzymes EcoRI, HincII, Asc I, Age I and Rsr II were obtained from New 

England Biolabs. Proteinase K was obtained from Eastman Kodak Co. Radiolabeled 

compounds were obtained from Amersham. Sephadex G-25 spin columns were from 

Amika Corp. RNA cleanup kit was from Qiagen. All other chemicals were from Sigma or 

Fisher Scientific.
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2.3  Methods

PCR Amplification of DNA substrates for cloning into pBR322 plasmid with HDV 

ribozyme and 2 tandem T7 terminators - Two PCR primers, 5’-

GATCGGCGCGCCTAATACGACTCACTATAGGGGGGTCTCTCTGGTTAGACCA

GATCTG -3’ and 5’- AAATTTGATATGTCCATTGGCCTTG -3’ were designed to 

amplify DNA from position 1 to position 3573 of the HIV insert on pNL4-3. The 

sequence indicated in bold is the recognition site for restriction enzyme AscI. Also, two 

PCR primers, 5’- GCACTAACAGAAGTAGTACCACTAAC-3’ and 5’-

AGCTCGGACCGCGAGGAGGTGGAGATGCCATGCCGACCCTTAATCCTCATCC

TGTCTACTTGCCAC-3’ were designed to amplify DNA from position 3411 to 5096 of 

the HIV insert on pNL4-3. The sequence indicated in bold is the recognition site for 

restriction enzyme RsrII. and used for cloning as described below.

Preparation of plasmid pBR322 with HDV ribozyme and T7 terminators 

(pBR322dR) containing the HIV sequences- The construct developed to make genomic 

RNA segments of HIV was prepared by inserting fragments of the HIV sequence derived 

from pNL4-3 which contains a cDNA copy of HIV genome cloned into pUC18 as 

described above. The PCR products obtained using the first set of primers described 

above were digested with AscI and AgeI. The PCR products obtained using the second 

set of primers described above were digested with AgeI and RsrII. The construct was 

designed by first inserting a 3485 base pair AscI-AgeI PCR fragment (obtained as 

described above) into the AscI and AgeI site on pBR322dR. The second 1611 base pair 

AgeI-RsrII PCR fragment (obtained as described above) was then inserted into the AgeI 
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and RsrII sites on pBR322dR to get a 5096 base pair cDNA copy of HIV genome in 

pBR322dR. 

Preparation of RNA substrates- RNAs of approximately 1.9 and 4 kb were made 

by first digesting pBKBH10S with restriction enzymes HincII and EcoRI, respectively. 

RNA of approximately 5.1 kb was made by first digesting pBR322dR with the HIV insert 

(described above) with AseI. The digests were then extracted with 

phenol:chloroform:isoamyl alcohol (25:24:1) and precipitated with ethanol. Run-off 

transcription (performed according to the enzyme manufacturer’s protocol) was then 

conducted using 5 µg of the digest plasmid and T7 RNA polymerase enzyme to generate 

1.9, 4 and 5.1 kb RNAs. The transcription reactions were treated with 2 µl of 10 units/µl 

of DNase I-RNase-free enzyme for 15 min to digest away the template DNA. The RNA 

was purified using the Qiagen RNA cleanup kit. The amount of recovered RNA was 

determined spectrophotometrically from optical density. The integrity of the RNA was 

checked on a 1% agarose gel. Typically, two bands corresponding to 800nts and 1200 nts 

of dsDNA were seen with the 1.9 kb RNA

RNA-DNA Hybridization- DNA primers that bound specifically to the RNA 

templates: 5’-CTGAAGCTCTCTTCTGGTGG-3’ to the 1.9 kb template and 5’-

GCTTGATTCCCGCCCACCAA-3’ to the 4 kb template were 32P-labeled at the 5’-end 

with T4 polynucleotide kinase according to the manufacturer’s protocol. The 1.5 kb RNA 

template was hybridized to its complementary labeled primer by mixing primer: 

transcript at a ~ 1:1 ratio and the 4 kb RNA template was hybridized to its 
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complementary labeled primer by mixing primer: transcript at a ~ 4:1 ratio in 50 mM 

Tris-HCl (pH 8.0), 1mM dithiothreitol and 80 mM KCl. The mixture was heated to 70°C 

for 5 min and then slowly cooled to room temperature.

Reverse transcription reactions with or without NC- RNA template-DNA primer 

hybrids (4 nM final concentration of RNA) were pre-incubated for 5 min along with 

additional template RNA (12 nM) in the presence or absence of NC (4 µM) in 21 µl of 

buffer (see below) at 37°C. The reactions were initiated by addition of 4 µl of HIV-RT 

(80 nM final in reactions). The following reagents at the indicated final concentrations 

were also included in the reaction mixtures: 50 mM Tris-HCl (pH 8.0), 1 mM 

dithiothreitol, 80 mM KCl, 6 mM MgCl2, 100 µM dNTPs, 5 mM AMP (pH 7.0), 25 µM 

ZnCl2 and 0.2 units/µl RNase inhibitor. Reactions were allowed to incubate for 75 min. 

The reactions were stopped by adding 2 µl of a solution containing 250 mM EDTA (pH 

8.0) and 5 ng of RNase-DNase-free enzyme and allowed to digest for 20 min at 37°C. 

Nine µl of proteinase K at 2 mg/ml in 1.25 % SDS, 15 mM EDTA (pH 8.0) and 10 mM 

Tris (pH 8.0) was then added to the above mixture, which was placed at 65°C for 1 hour. 

Finally 7 µl of 6X alkaline dye (300 mM NaOH, 6 mM EDTA, 15% glycerol, 0.15% 

bromophenol blue) was added to the mixture and the samples were resolved on 1% 

alkaline agarose gel containing 50 mM NaOH and 1 mM EDTA (pH=8). Similar 

reactions were conducted for enzyme titration experiment and for reactions with excess 

template (which were carried out with increasing amounts (4, 8, 12 and 32 nM) of 

template (1.9 kb)) Extended DNA products were observed using a Bio-Rad Molecular 

Imager FX.
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Time course reaction- The 1.6 kb RNA template was hybridized to DNA primer 

as described above (4 nM final concentration of RNA in reaction) and was pre-incubated 

for 5 min along with acceptor RNA (12 nM) in the presence of NC (4 µM) in 21 µl of 

buffer (as in reverse transcription experiment) at 37°C. The reactions were initiated by 

addition of 4 µl of HIV-RT (80 nM final in reactions). The reactions were stopped as 

described above at time points- 2, 5, 10, 15, 30, 45, 60 and 75 mins and samples were 

resolved on 1% alkaline agarose gel containing 50 mM NaOH and 1 mM EDTA (pH=8). 

Extended DNA products were observed using a Bio-Rad Molecular Imager FX.

Gel electrophoresis- One percent alkaline agarose gels containing 50 mM NaOH 

and 1 mM EDTA (pH=8), 1 % native agarose gels in Tris-Borate-EDTA buffer were 

prepared and subjected to electrophoresis as described (212).
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2.4 Results

Optimization of reaction conditions for the synthesis of long DNA products in 

vitro- The general approach used for the reverse transcription assay is depicted in Figure 

2-1. RNA templates for the reverse transcription assay were derived from pBKBH10S 

plasmid by run-off transcription. These templates were then hybridized near their 3’ end 

to 5’ radio labeled primers and reaction was initiated by addition of RT enzyme. 

Synthesis of the 1.5 kb DNA product from HIV genomic RNA in vitro- Reaction 

conditions were optimized first for the synthesis of a 1538 nucleotide DNA product in 

vitro. This was done by performing the reverse transcription assay with different 

concentrations of NC (Figure 2-2) and also with different concentrations of HIV-RT 

(Figure 2-3). In the reverse transcription assay with different NC concentrations, some 

fully extended products were observed with 2 µM NC and most products were full-length 

when 4, 6, or 8 µM NC was used. Reactions with one µM NC resembled those without 

NC. It can be noted here that in the absence of NC, there is primer extension resulting in 

synthesis of small DNAs and no full-length products. In the presence of NC, there is a 

decrease in total synthesis and most products formed are full length (Figure 2-2). With 2, 

4, 6, and 8 µM NC, primer extension was 80, 62, 40, 16%, respectively, of reactions 

without NC. The level of extension with NC varied to some extent depending on the 

RNA preparation used and other factors and was typically between 35-70% with 4 µM 

NC. The decrease in primer extension should be accompanied by a corresponding 

increase in unextended primer, but this is not typically observed because a large portion 

of the  small primers diffuse out of the alkaline agarose gel during electrophoresis and 
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processing. The unextended primers were evident on denaturing polyacrylamide gels 

although large products cannot be resolved on these gels (data not shown). The reactions 

in this assay included 16 nM of the 1.9 kb RNA template and 4 nM 20 nucleotide primer 

or about 26 µM total nucleotide. Assuming one NC molecule can coat about 7 

nucleotides (120, 123, 208) and most molecules are bound to nucleic acid under the 

conditions, approximately 3.7 µM NC would be required for complete coating. The 

appearance of mostly long products at 4 µM NC and essentially no long products at 1 µM 

were consistent with complete or nearly complete coating being required for their 

production. At very high NC concentrations (8 µM), there is a decrease in synthesis of 

full-length DNA products due to inhibition by NC of synthesis at very high 

concentrations. 

In the reverse transcription assay with different concentrations of RT enzyme, 

there is an increase in full-length DNA formed with increasing enzyme concentration. At 

least 80 nM RT was required for optimum production of full-length products. When RT 

concentrations are further increased (160 nM) as shown, full length DNA synthesis did 

not improve indicating that 80 nM RT enzyme was the optimal concentration for 

synthesis of full-length DNA products under the conditions used in this assay. Hence 80 

nM RT was used in the experiments.

Time course assay- A time course reverse transcription assay was performed to 

determine the time required for the generation of full-length DNA products. This was 

done by performing the reaction with 4 µM NC and 80 nM RT (concentrations of NC and 



50

A

B

Figure 2-1: A) Schematic representation of HIV-1 BH10 genome (8932 nucleotides-

from nucleotide 222-9194 of HIV-1 HXB2) in pBlueScript II KS+. The 1.9 kb RNA is 

1857 nt (from 222-1759 on HIV-1 HXB2) and the 4kb RNA is 4007 nt (from 222-4228 

on HIV-1 HXB2) B) Schematic representation of the reverse transcription assay. 

Genomic RNA used as template for the reverse transcription assay was derived from 

pBKBH10S plasmid by run-off transcription. The RNA was hybridized to a radiolabeled 

DNA primer and the assay carried out by adding RT. The DNA products obtained were 

run on a 1% alkaline agarose gel. The template lengths were 1857 (1.9 kb) and 4007 (4 

kb) nucleotides and fully extended DNA products were 1538 and 4007 nucleotides for 

the short and long templates, respectively.
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Figure 2-2: Reverse transcription assay with different concentrations of wild type 

NC using 1.9 kb RNA as template.  

Shown is an autoradiogram of an assay with 1.9 kb RNA using different NC 
concentrations (0.5, 1, 2, 4, 6 and 8 µM ) or in the absence of NC (0 µM) performed 
under conditions as indicated under “Methods”. Positions of size marker (in nucleotides) 
are shown on the left and full-length products are indicated on the right (“1538”) along 
with the primer location. 
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Figure 2-3: Reverse transcription assay with different concentrations of wild type 

RT using 1.9 kb RNA as template.  

Shown is an autoradiogram of an assay with 1.9 kb RNA using different RT 
concentrations (0, 10, 20, 40, 80, 160 nM) in the presence of NC (4 µM) performed under 
conditions as indicated under “Methods”. Positions of size marker (in nucleotides) are 
shown on the left and full-length products are indicated on the right (“1538”) along with 
the primer location. 
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RT that were found to be optimum from NC and RT titrations respectively) and stopping 

the entire reactions at the end of 2, 5, 10, 15, 30, 45, 60 and 75 min (Figure 2-4). The full-

length products are observed only after 45 minutes of the start of reaction and increased 

up until 60 min with no further increase at 75 min indicating that it takes at least 45 min 

for the full-length DNA products to be synthesized. Given the approximately 1500 

nucleotide size of the template this implies a maximum synthesis rate of about 33 

nucleotides per minute in the reactions. This rate is somewhat lower than the 150-180

nucleotide/min estimate for cellular synthesis during infection (213).

Increase in synthesis of full-length DNA is observed with an increase in template 

concentration- Since the amount of primer extension was lowered in the presence of NC, 

experiments were conducted to determine if adding different amounts of template could 

change the level of extension. Varying the template would change the number of primer 

binding sites. The amount of fully extended products and total primer extension were 

increased in the presence of excess template (Figure 2-5). At 1:1 template: primer (4 nM 

each) only a small amount of extended primer was observed (34% of –NC reaction). The 

amount of primer extension increased with 42, 52, 70, and 83% of –NC reactions 

observed with 2:1, 3:1, 4:1 and 8:1 template:primer, respectively. The experiment shows 

that the apparent inhibition of primer extension in the presence of NC can be mostly 

overcome by adding extra primer binding sites. 
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Figure 2-4: An autoradiogram of a time course experiment.

 The reverse transcription reactions were carried out in presence of 4 µM NC for time 

points 2, 5, 10, 15, 30, 45, 60 and 75 mins as shown from left to right. The positions of 

full length DNA products from the donor 1538) is indicated. ML denotes lane with 

molecular marker (in nucleotides). 

-1538
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Figure 2-5: Reverse transcription assay with increasing concentrations of template.

Shown is an autoradiogram of an assay using 1.9 kb RNA as template with no excess 
template (1:1 template: primer) and with increasing concentrations of template (2, 3, 4, 
and 8 template: primer).  Lanes with – indicate reactions without NC and those with + 
indicate reactions with NC (4 µM). ML denotes lane with molecular marker (in 
nucleotides). 
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Figure 2-6: Reverse transcription assay using 4 kb genomic RNA segment as 

template.

Reactions are performed with (+) or without (-) NC (4 µM) as indicated. Increasing 
amounts of reaction material were loaded in lanes with reactions without NC. The 
amount of material in the last lane without NC is equal to the amount in the lane with 
NC. ML denotes lane with molecular marker (in nucleotides). 
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Figure 2-7: RT titration assay using 4 kb genomic RNA segment as template.

Reactions with or without NC (as indicated) are shown with increasing concentrations of 
HIV-RT. The amounts used were (from left to right) 20, 40, 80, 160 and 320 nM. The 
position of full length DNA products is indicated (“4007”). ML denotes lane with 
molecular marker (in nucleotides). 
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Synthesis of the 4 kb DNA product from HIV genomic RNA in vitro- Reverse 

transcription was then performed using a longer RNA on which fully extended primers 

produced products of approximately 4 kb. Various experiments were performed to 

characterize these reactions and to optimize reaction conditions. The reactions required 

high amounts of RT and NC. With the longer template also, enough NC to coat all the 

RNA in the reactions was required based on one molecule of NC coating 7 bases. The 

amount of NC required to produce optimal results varied to some extent from one RNA 

preparation to the next and the “window” was relatively small with inhibition observed at 

high concentrations. Reactions worked best using synthesis conditions that were optimal 

for HIV-RT (6 mM MgCl2, 100 µM dNTPs, pH=8). Reactions were not very sensitive to 

salt concentrations showing little difference at 10 vs. 80 mM KCl (data not shown). The 

addition of “crowding” agents like polyethylene glycol (PEG) did not reproducibly 

stimulate the reactions. In Figure 2-6, the reactions were performed with 2 nM template 

and 8 nM primer and 80 nM RT in the presence and absence of NC (4 µM) as indicated. 

Serial 1:2 dilutions of the reaction performed in the absence of NC were made and these 

dilutions were loaded in lanes as indicated. In the last lane without NC (undiluted 

reaction), the amount of reaction material loaded is equal to that loaded in the adjacent 

lane, which is the reaction with NC. Fully extended products were only observed with 

NC, although there was about an 80-90 % reduction in total primer extension in these 

reactions. The total primer extension in the reaction with NC can be compared to 1/8th of 

the reaction without NC. Figure 2-7 shows an enzyme titration in the presence and 

absence of NC (4 µM). In the presence of NC, inhibition of primer extension was 

observed along with a significant increase in the proportion of full-length DNA products 
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when higher enzyme concentrations were used (80, 160, and 320 nM in the 3 lanes on the 

right). Full-length DNA products were also produced in the absence of NC at the two 

highest enzyme concentrations (160 and 320 nM), although the proportion of these long 

products was very low. Increasing the amount of template in these reactions modestly 

increased the level of primer extension but the effect was much less dramatic than with 

the smaller template, and even at 16 nM template and 4 nM primer, only a fraction of the 

primers were extended in reactions with NC (data not shown). Reactions with the longer 

template were also less reproducible as not all preparations of the RNA yielded long 

products. Attempts to synthesize even longer products were made using a 7 kb HIV-

derived RNA. Inhibition of primer extension by NC was observed in these reactions but 

no full-length products were made. Attempts were made to synthesize RNA from the 

HIV insert cloned into pBR322dR downstream of the T7 promoter for use as template in 

reverse transcription assays. The pBR322dR is the pBR322 plasmid having a T7 

promoter, HDV ribozyme and T7 terminators (Figure 2-8). The construct was first 

digested with restriction enzyme AseI that has a recognition site downstream of the 

ribozyme sequence and a run-off transcription was performed using T7 RNA polymerase. 

Full-length DNA synthesis products would have been about 5 kb with this template. 

Similar to the 7 kb template, inhibition of extension but no full length DNA products 

were observed. 
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Figure 2-8: pBR322dR is the pBR322 plasmid having a T7 promoter, HDV 

                    ribozyme and T7 terminators

Shown in A is pBR322dR which is the pBR322 plasmid having a T7 promoter, HDV 
ribozyme and T7 terminators and the HIV sequence inserted into the vector at Asc I and 
Rsr II sites. Shown in B is the linker region of pBR322. C shows the position of the 
inserted HIV sequence with respect to the hepatitis delta virus (HDV) ribozyme and two 
tandem T7 terminators in pBR322dR.
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2.5  Discussion

In this report in vitro reverse transcription reactions capable of efficiently 

producing single stranded DNA up to 4 kb from genomic RNA of HIV were 

characterized. The reactions required large amounts of RT (at least 80 nM) and enough 

NC to coat the template RNA (Figure 2-2, 2-3, 2-6 and 2-7). NC clearly increased the 

proportion of full-length DNA products (Figure 2-2, 2-6 & 2-7). This effect of NC is 

consistent with data from a previous report using a smaller (874 nucleotide) template 

(209), and was observed only at high NC concentrations, i.e. 4 µM or higher. At these 

concentrations there is enough NC to completely coat all the nucleic acids in the reaction 

at approximately 1 NC per 7 nucleotides. This is typically observed in the HIV virion 

with the ribonucleoprotein complex consisting of the dimeric RNA genome in association 

with 2000 to 3000 molecules of NC protein (117). Inhibition of total DNA synthesis was 

also observed with high NC concentrations, again consistent with previous reports (167,

209). Very high concentrations of NC were however inhibitory to DNA synthesis in 

vitro. This could be because of formation of precipitates rather than functional aggregates 

at high concentrations of NC. The time course assay (Figure 2-4) shows that it takes at 

least 45 minutes for the appearance of full-length products in vitro. This is because RT is 

a very sluggish enzyme incorporating 1 to 1.5 nucleotides per second in vitro which is 

approximately 1/10th the rate of eucaryotic DNA polymerases (104, 214-217). A 

relatively long time is required to generate retroviral DNA in vivo (~ 4 hours from 

infection to the appearance of a 9.7 kb DNA) and about 8-12 hour for the completion of 

reverse transcription (218). Using PCR analysis of products produced during reverse 

transcription a rate of about 150-180 nucleotides/min was calculated during infection of 
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cell with HIV (213). This rate as about 5 times as fast as the rate in the in vitro reactions 

performed here. The reason for the discrepancy is not clear but there are a number of 

possibilities. First, the cellular rate seems quite high in comparison to the times estimated 

to complete proviruses by others.  The four hour completion time stated above would 

suggest a rate of about 83 nucleotides/min based on 20,000 base incorporated for the plus 

and minus strands together. Also, since strand transfer is likely to be slower than 

continuous synthesis, the high rate of transfer in vitro may make the process somewhat 

slower (see Chapter 5).

Since more primers are extended in reactions without NC this suggests that NC 

somehow destabilizes primer-template interactions, a finding that is consistent with NC’s 

helix destabilizing activity (129, 149, 163). Consistent with these findings using longer 

primers (50 rather than 20 nucleotides) improved primer utilization and adding a large 

excess of template also improved primer utilization (Figure 2-5). Another explanation for 

decrease in primer extension in the presence of NC is that NC may not completely coat 

all the nucleic acids in the reaction pool in vitro even when added at concentrations 

enough to completely coat all nucleic acids. Synthesis to the end of the RNA template 

may occur only if these templates are completely coated with NC as in case of the virion 

where the genomic RNA exists as a ribonucleoprotein complex. NC bound to nucleic 

acids may also help preserve the replication intermediate and help prevent RT from 

falling off the growing DNA thereby promoting synthesis to the end of the template. In 

Figure 2-6 full-length DNA products are observed at high enzyme concentrations even in 

the absence of NC. This could be because at very high enzyme concentrations, there are 
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many more molecules of enzyme in the vicinity of the growing DNA molecule. Hence 

even if RT falls off the replication complex, RT molecules in close proximity can quickly 

bind to the RNA template thereby allowing synthesis to proceed to the end of the RNA 

template explaining why fully extended DNA products are seen at high enzyme 

concentrations in the absence of NC. 

Interestingly, reactions with the 4 kb template showed a much higher level of 

inhibition than the shorter template (Figure 2-2 and 2-7), while attempts to synthesize 

even longer products (7 kb) failed. The 4 kb template is essentially a longer version of the 

1.9 kb template that extends further toward the 3’ end of the HIV genome. It was not 

clear whether the lower efficiency resulted from the increased length or a different 

priming position. However, length does not appear to be the only factor in the efficiency 

of primer extension in the reactions. The much smaller template used in the previous 

report noted above was also strongly inhibited by NC (209). Taken together the results 

suggest that a combination of template length and primer location/sequence may be 

important in determining how efficient primer extension is in the presence of NC. Note 

also that the efficiency of synthesizing full-length RNA transcripts in vitro decreases with 

increasing size (219). Therefore for the 4 and 7 kb transcripts a large proportion of the 

RNA likely consists of incompletely synthesized strands lacking the primer binding site. 

How this would affect the reverse transcription reaction is unclear.

An attempt was made to synthesize RNA from the HIV sequence cloned into 

pBR322dR downstream of the T7 promoter. This approach was tried as run-off 
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transcription often gives 3’ heterogeneous ends by adding additional non-template-

directed bases to the 3’ end. Also, RNA polymerases have a tendency to fall-off the 

template before reaching the end of the DNA especially with longer templates (220-222). 

A self-cleaving ribozyme sequence near the 3’ end of the linearized template self cleaves 

the 3’ end of newly formed transcripts producing RNA with homogeneous 3’ ends (223). 

Although RNA was successfully produced from this approach, no fully extended DNA 

products (5 kb) were observed with or without NC. It was not clear whether this was due 

to length restrictions for long DNA synthesis or the integrity of the RNA. Although this 

approach generates unique 3’ ends if RNA polymerase synthesized through the ribozyme 

region, polymerase that terminate before this point can still produce smaller RNAs that 

could interfere with synthesis.
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Cha pter 3  Role of high molecular weight aggregate complexes in the 

       synthesis of long reverse transcription products from 

                   genomic RNA segments of HIV

3.1 Introduction

HIV nucleocapsid protein (NC) is known to play an important role in several 

crucial steps of reverse transcription. These roles of NC can be credited to its nucleic acid 

chaperone activity. It has been shown that RT pauses at discrete stem structures in the 

genomic template during minus strand DNA synthesis (184, 224, 225). NC has been 

shown to melt such structures (also called NC’s helix destabilizing activity) of RNA 

allowing synthesis to continue. Therefore, NC affects RT cDNA synthesis. In vitro, NC 

has been shown to increase the proportion of long cDNA transcripts from genomic RNA 

produced by reverse transcriptase (209). In addition to the helix destabilizing activity of 

NC described above, NC has the ability to aggregate nucleic acids (121, 168-171). The 

NC-induced aggregation of single-stranded RNA was studied using quasielastic dynamic 

light scattering and optical density measurements (170) and also with electron 

microscopy (169). The ordered growth of large nucleic acid-NC aggregates was found to 

be independent of the length and sequence of RNA molecules (169). These aggregates 

grew with time by fusion of smaller aggregates to give larger aggregates similar to the 

Ostwald ripening mechanism. 

The ability of NC to aggregate nucleic acids promotes the nucleation step of the 

annealing reaction. Nucleation is a diffusion-limited association and is often retarded by 
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electrostatic repulsion between annealing strands and also by the low probability of 

correct positioning of nucleotides for annealing. The nucleic acid aggregation by NC 

facilitates attraction between nucleic acids strands (121, 168-171) and complementary 

sequences can search for each other within the aggregate. NC is highly cationic, with 15 

positively charged amino acids distributed throughout its 55 amino acids. Hence NC does 

not self-aggregate even at high concentrations and is known to bind nucleic acids non-co-

operatively (139, 140, 208, 226). Various reports suggest that NC is highly mobile when 

bound to nucleic acids (154, 227-231). This mobility may be an important feature for 

efficient aggregation as observed with multivalent cationic ligands, which are 

aggregating agents in their nucleic acid-bound state (232-235). Therefore, NC-induced 

nucleic acid aggregation appears to be facilitated by polyelectrolyte attraction similar to 

that observed for multivalent cations (235). The main aggregating ability of NC was 

mapped to its N-terminal 310 helix (68, 119, 121, 169, 170). The role of zinc fingers in the 

aggregation of nucleic acids was studied using fingerless NC mutants (171). It was found 

that efficient aggregation of nucleic acids occurred only at very high concentrations of 

the NC mutants suggesting that these fingers were important for effective aggregation.

Various reports have demonstrated that under the right conditions, NC can 

stimulate the rapid formation of large aggregated complexes that contain NC, RT and 

RNA (167, 236). These complexes are functional as isolated complexes can synthesize 

DNA in the presence of dNTPs, use tRNAs to prime viral RNA synthesis and catalyze 

minus strand strong-stop strand transfers (236). Such complexes also protect viral RNA 

against nuclease degradation (236). NC within these complexes directly interacts with RT 
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and plays an important role in recruiting RT into the complexes during viral DNA 

synthesis (167). Experiments conducted in this section, show that such high molecular 

weight aggregate complexes are formed during synthesis of long DNA products and that

these aggregates play an important role in the synthesis of long DNAs in vitro. Also, 

reverse transcription assays using the long RNAs was conducted with NC finger mutants, 

1.1, 2.2 and 2.1 to show that the aggregation activity of NC is important for the synthesis 

of long DNAs in vitro.
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3.2  Materials 

Plasmid pBKBH10S was obtained through the AIDS Research and Reference 

Reagent Program, Division of AIDS, NIAID, NIH, from Dr. John Rossi. This plasmid 

contains an 8.9 kb SstI fragment (nt 222-9154 of the RNA genome) from HIV-1 BH10 

inserted into the SstI site. The fragment has all HIV-1 gene coding regions but does not 

contain the HIV-1 LTR (210). Primers used to prime templates in reverse transcription 

assays were obtained from Integrated DNA Technologies, Inc. The HIV-RT clone was a 

generous gift from Dr. Samuel H. Wilson (National Institute of Environmental Health 

Sciences, Research Triangle Park, NC). HIV-RT was purified according to the protocol 

described (211). The protein was purified to homogeneity and the purity of the protein 

was evaluated using Coomassie Blue staining of 10 % SDS-PAGE gels (212). The 

subunits p51 and p66 of RT were in a 1:1 ratio. Aliquots of HIV RT were stored frozen at 

-80°C and fresh aliquots were used for each experiment. The HIV NC clone was a 

generous gift from Dr. Charles McHenry (University of Colorado). NC was purified to 

apparent homogeneity (as judged from Coomassie Blue staining of 17.5% SDS-PAGE 

gels (212)) according to the protocol described (123). Quantification was by absorbance 

at 280 nm using a molar extinction coefficient of 8350 cm-1 M-1 (123). Aliquots of NC 

were stored frozen at -80 °C, and fresh aliquots were used for each experiment. NC finger 

mutants 1.1, 2.2 and 2.1 were a gift from Dr. Robert Gorelick (SAIC, Frederick, MD). 

These proteins were expressed and purified as described (237), and quantified by amino 

acid analysis on a Beckman Systems 6300 amino acid analyzer (Beckman Coulter, Inc., 

Fullerton, CA). T7 RNA polymerase, DNase I-RNase-free, and RNase-DNase-free were 

from Roche Diagnostics. RNase inhibitor was from Promega. T4 polynucleotide kinase 
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and restriction enzyme HincII was obtained from New England Biolabs. Proteinase K 

was obtained from Eastman Kodak Co. Radiolabeled compounds were obtained from 

Amersham. Sephadex G-25 spin columns were from Amika Corp. RNA cleanup kit was 

from Qiagen. All other chemicals were from Sigma or Fisher Scientific.
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3.3  Methods

Preparation of RNA substrates- RNA of approximately 1.9 kb was made by first 

digesting pBKBH10S with restriction enzyme HincII. The digest was then extracted with 

phenol:chloroform:isoamyl alcohol (25:24:1) and precipitated with ethanol. Run-off 

transcription (performed according to the enzyme manufacturer’s protocol) was then 

conducted using 5 µg of the digest plasmid and T7 RNA polymerase enzyme to generate 

1.9 kb RNA. The transcription reactions were treated with 2 µl of 10 units/µl of DNase I-

RNase-free enzyme for 15 min to digest away the template DNA. The RNA was purified 

using the Qiagen RNA cleanup kit. The amount of recovered RNA was determined 

spectrophotometrically from optical density. The integrity of the RNA was checked on a 

1% agarose gel as described before.

RNA-DNA Hybridization- DNA primer 5’-CTGAAGCTCTCTTCTGGTGG-3’ 

that bound specifically to the 1.9 kb RNA template was 32P-labeled at the 5’-end with T4 

polynucleotide kinase according to the manufacturer’s protocol. The RNA template was 

hybridized to the complementary labeled primer by mixing primer: transcript at a ~ 1:1 

ratio in 50 mM Tris-HCl (pH 8.0), 1mM dithiothreitol and 80 mM KCl. The mixture was 

heated to 70°C for 5 min and then slowly cooled to room temperature.

Reverse transcription reactions with or without NC mutants- RNA template-DNA 

primer hybrids (4 nM final concentration of RNA) were pre-incubated for 5 min along 

with additional template RNA (12 nM) in the presence or absence of the NC mutants (4 

µM) in 21 µl of buffer (see below) at 37°C. The reactions were initiated by addition of 4 
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µl of HIV-RT (80 nM final in reactions). The following reagents at the indicated final 

concentrations were also included in the reaction mixtures: 50 mM Tris-HCl (pH 8.0), 1 

mM dithiothreitol, 80 mM KCl, 6 mM MgCl2, 100 µM dNTPs, 5 mM AMP (pH 7.0), 25 

µM ZnCl2 and 0.2 units/µl RNase inhibitor. Reactions were allowed to incubate for 75 

min. The reactions were stopped by adding 2 µl of a solution containing 250 mM EDTA 

(pH 8.0) and 5 ng of RNase-DNase-free enzyme and allowed to digest for 20 min at 

37°C. Nine µl of proteinase K at 2 mg/ml in 1.25 % SDS, 15 mM EDTA (pH 8.0) and 10 

mM Tris (pH 8.0) was then added to the above mixture, which was placed at 65°C for 1 

hour. Finally 7 µl of 6X alkaline dye (300 mM NaOH, 6 mM EDTA, 15% glycerol, 

0.15% bromophenol blue) was added to the mixture and the samples were resolved on 

1% alkaline agarose gel containing 50 mM NaOH and 1 mM EDTA (pH=8). Extended 

DNA products were observed using a Bio-Rad Molecular Imager FX.

Experiments testing aggregate formation- Reactions were set up and initiated 

similar to the reverse transcription experiment described above except that the final 

reaction volume was 50 µl. As indicated in Figure 3-1 and 3-2, the reactions were 

centrifuged for 1 min at 12,000 x g at the end of 60 min and at the end of 2, 10 or 60 min 

respectively after initiating with RT. The pellet and the supernatant fractions from the 2 

and 10 min samples were then subjected to reverse transcription (58 and 50 min, 

respectively) after adding back the reverse transcription buffer described above to the 

pellet fractions only. Pellet and supernatant fractions from all reactions were stopped and 

treated with proteinase K and samples were resolved on alkaline agarose gels as 

described above.
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Reverse transcription assay with excess template- Reactions were set up and 

initiated similar to the reverse transcription experiment described above. In one set of 

reactions, RNA template-DNA primer hybrids (4 nM final concentration of RNA) were 

pre-incubated for 5 min along with additional template RNA (12 nM) in the presence or 

absence of the NC (4 µM) in 21 µl of buffer (described above) at 37°C and in the other 

set of reactions, additional template RNA (12 nM and 28 nM, as indicated) was added 

after adding NC to the primer-template hybrid. Reactions were carried out as described 

above and extended DNA products were resolved on 1% alkaline agarose gels observed 

using a Bio-Rad Molecular Imager FX.

Gel electrophoresis- One percent alkaline agarose gels containing 50 mM NaOH 

and 1 mM EDTA (pH=8), 1 % native agarose gels in Tris-Borate-EDTA buffer were 

prepared and subjected to electrophoresis as described (212). 
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3.4 Results

Long DNA products in vitro are synthesized in a high molecular weight aggregate 

that forms rapidly in the presence of NC and contains NC, RT, primer, and RNA- Stable 

HIV-1 nucleocapsid complexes can be generated in vitro when NC protein is added to 

RNA (169, 170, 236). The NC within these nucleoprotein complexes recruits reverse 

transcriptase into the complexes during viral DNA synthesis through NC-RT interactions 

(167). The complexes were large and could be pelleted by slow speed centrifugation and 

were found to be competent for DNA synthesis (236). To test for the formation of 

aggregates in the reactions that produce long DNAs, the assay was performed using the 

1.9 kb RNA as template in the presence or absence of NC.  After 1 hour the material was 

centrifuged for 1 min at 12,000 x g in a microfuge. The pellet and supernatant fractions 

were then run on a 1 % alkaline agarose gel. The pellet fraction of the reactions with NC 

had the full-length DNA while the supernatant fraction showed no products (Figure 3-1). 

Some smaller products were apparent in the supernatant fractions using darker exposures. 

All products in reactions without NC were short and contained in the supernatant. The 

results suggest that high molecular weight aggregates are formed during synthesis of long 

DNA products. 

NC is known to form precipitates at high concentrations so the high molecular 

weight pellet fractions could be a result of NC precipitation rather than a discrete high 

molecular weight functional aggregate. In order to determine whether these high 

molecular weight aggregates were functional and promoted synthesis of long DNA, the 
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Figure 3-1: Reverse transcription assay showing formation of high molecular  

weight aggregates.

 The 1.9 kb RNA was used as template. Lanes with reactions with NC (4 µM) are 
denoted as + and those without NC as -. U denotes lanes with uncentrifuged control 
reactions. Pellet (P) and supernatant (S) fractions of the reactions with and without NC 
were obtained after centrifuging reactions at the end of one hour for 1 min at 12,000 x g 
as described in “Methods”. ML denotes lane with molecular marker (in nucleotides). 
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Figure 3-2: Reverse transcription assay to determine formation of high molecular 

weight aggregates promoting synthesis of long DNA in vitro.

 The 1.9 kb RNA was used as template. Lanes with reactions with NC (4 µM) are 
denoted as + and those without NC as -. U denotes lanes with uncentrifuged control 
reactions. 2 min, 10 min and 1 hr denote the time at which reactions were centrifuged 
after the start of reverse transcription. Pellet (P) and supernatant (S) fractions were 
obtained after centrifuging reactions for 1 min at 12,000 x g. The pellet and supernatant 
fractions obtained after centrifugation at 2 and 10 min were further subjected to reverse 
transcription as described in “Methods”. ML denotes lane with molecular marker (in 
nucleotides). 
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Figure 3-3: Reverse transcription reaction to show that inefficient primer-templates 

binding in reactions with NC

The 1.9 kb RNA was used as template. Lanes with reactions with NC (4 µM) are denoted 
as + and those without NC as -. In all reactions primers were hybridized to templates in a 
1:1 ratio (4 nm primer: 4 nM template). In reactions marked A, 3-fold excess template 
(12 nM) was added before adding NC to the reaction and in reactions marked B, 3-fold 
(12 nM) and 7-fold (21 nM) excess template were added after adding NC such that the 
ratio of primer to template in these reactions is 1:4 and 1:8 respectively. ML denotes lane 
with molecular marker (in nucleotides).
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reactions were centrifuged early (2 and 10 min of Figure 3-2) after the start of reverse 

transcription and pellet and supernatant fractions were incubated for 58 and 50 min 

respectively, at 37oC. In these experiments the pellet was resuspended in buffer 

containing divalent cation and dNTPs. In each case, the pellet fractions of the reactions 

with NC had the larger products and the supernatant fractions showed no DNA products. 

Once again darker exposures did reveal some small products in the supernatants. The 

results show that aggregates are formed early in the reactions. The full-length DNA 

products are not formed early in the reverse transcription. Results from time-course 

experiments have shown that it takes at least 45 min for full-length DNA to be generated, 

suggesting that these aggregates are functional and play an important role in the synthesis 

of long DNA products in vitro. Figure 3-3 is an experiment done to compare DNA 

synthesis when excess template is added before and after addition of NC. The addition of 

excess template improves total DNA synthesis irrespective of whether the excess 

template is added before or after pre-incubation of the reaction with NC. This suggests 

the primers in the reaction bound inefficiently to templates in the aggregates and excess 

template is required to get more primers bound and extended.

NC finger mutants lacking either finger 1 or 2 or switching their positions also 

stimulate the synthesis of long DNA products in vitro- HIV-NC has two non-identical 

zinc fingers, an N- and a C- terminal finger, denoted 1 and 2, respectively. Three NC 

mutants, 1.1 NC, 2.2 NC and 2.1 NC were used. In mutant 1.1, finger 1 replaces finger 2 

giving the protein two copies of finger 1. In 2.2, finger 2 replaces finger 1 giving this 

protein two copies of finger 2 and 2.1 NC is a finger switch mutant in which the positions 
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of the zinc fingers are switched. It was previously reported that the N- and C-terminal 

zinc fingers of NC are not biologically equivalent (134, 135, 238). Previous work from 

several laboratories has shown that the two fingers possess different functional activities 

with finger 1 being more important for helix-destabilizing activity than finger 2 (135, 

238). Results showed that 1.1 and 2.1 retained helix-destabilizing activity while 2.2 had 

little. In contrast, all the mutants were able to stimulate the annealing of non-structured 

complements, suggesting that they retained “aggregating/condensing” activity that is 

required to bring nucleic acids into close proximity (135). To determine if the finger 

mutants could stimulate the production of long DNAs, an NC titration was performed as 

described for wild-type NC using the 1.9 kb RNA as template, and the DNA products 

were run on a 1% alkaline agarose gel (Figure 3-4). All three NC finger mutants 

increased the proportion of full-length DNA products similar to wild-type NC.  These 

results are consistent with data from the previous report using the 874 nucleotide 

template (209). Since results with 2.2, which has little unwinding activity, were similar to 

those with wild type, this suggests that the unwinding activity of NC may not play a role 

in the synthesis of long DNAs in vitro.
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Figure 3-4:  Reverse transcription assay with increasing concentrations of NC 

finger mutants. 

 Shown are autoradiograms of assays with 1.9 kb RNA template with increasing 
concentrations (left to right, 0, 0.5, 1, 2, 4, 6, 8 µM) of NC finger mutants 2.2, 1.1 and
2.1 (as indicated). See “Results” for description of NC mutants. ML denotes lane with 
molecular marker (in nucleotides). 
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3.4  Discussion

In this report in vitro synthesis of long reverse transcription products from genomic 

RNA of HIV in high molecular weight aggregates is described. The aggregates formed 

rapidly and were pelleted by low speed centrifugation indicating that they were large 

(Figure 3-1, 3-2). The aggregates were functional and synthesize long DNAs in the 

presence of RT and NC when supplemented with dNTPs and Mg2+. They were consistent 

with previously reported NC aggregates that were able to carry out reverse transcription 

(see Introduction), but were not examined for the ability to produce long DNAs. A 

possible explanation for the large products made in aggregates is that RNA molecules 

would be in close proximity to each other thereby allowing strand transfers to occur more 

easily. The nucleic acid aggregation facilitated by NC may promote attraction between 

nucleic acids strands such that complementary sequences can find each other within the 

aggregate (121, 168-171). This could further be facilitated by the high local 

concentrations of NC and RT in the complexes. Aggregates may thereby promote the 

synthesis of long DNA products by concentrating the nucleic acids, RT and NC into a 

smaller area perhaps mimicking the role of the capsid environment within the cytoplasm 

of the host cell.

An increase in synthesis of long DNA products was observed by addition of excess 

template either before or after aggregate formation. This could be because primers in the 

reaction bound inefficiently to templates in the aggregates. Hence more products are 

formed when excess template is added as more primers are bound and extended. If the 

primers were non-extendable or could not access RT in the aggregate then adding more 
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templates would not lead to extension. Since more primers are extended in reactions 

without NC this suggests that NC somehow destabilizes primer-template interactions, a 

finding that is consistent with NC’s helix destabilizing activity (129, 149, 163). 

Synthesis of long DNA products in vitro did not seem to require NC’s helix 

destabilizing activity as a mutant NC with very low activity (Figure 3-4, 2.2 NC) was as 

effective as wild type in the assays. This suggests that the aggregation/condensation 

activity of NC may be all that is required for synthesis of long DNA products in vitro. 

This activity is likely responsible for the large aggregates observed in reactions with NC. 

Although we do not have definitive evidence showing that long products can only be 

synthesized in aggregates, that conclusion would be consistent with the results. 

Aggregated complexes isolated just two minutes into the reactions were capable of long 

DNA synthesis and long products were only associated with material in the reactions that 

pelleted with slow speed centrifugation (Figure 3-2). 
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Chapter 4  Role of dimerization region of HIV and processivity of RT

                   in the synthesis of long reverse transcription products from

                   genomic RNA segments of HIV in vitro

4.1 Introduction

HIV, like all retroviruses contain two copies of genomic RNA, which are non-

covalently linked in an apparent parallel orientation close to their 5’ends by a structure 

called the Dimer Linkage Structure (DLS) or the Dimer Initiation Sequence (DIS). The 

dimerization initiation site (DIS) of HIV RNA is a hairpin structure that contains in the 

loop a 6-nucleotide self-complementary sequence flanked by two 5’ and one 3’ purines

(see Chapter 1, Figure 1-2). The self-complementary sequence, as well as the flanking 

purines are critical for dimerization of HIV RNA, which is mediated by formation of a 

“kissing-loop” complex between the DIS of each monomer (239). The nucleotides of the 

sequence that constitute the kissing loop of one monomer recognize the complementary 

nucleotides constituting the kissing loop of the other monomer. This loop-loop interaction 

initiates the dimerization process and is therefore called the DIS (240). Upon recognition 

of another DIS, the base pairs of the monomer split and the equilibrium shifts towards the 

formation of dimers thereby reducing the activation energy of the monomer-dimer 

conformational switch (241). The interaction and base pairing between the two loops may 

induce subsequent annealing between the two stems and other downstream sequences 

(see Figure 1-2) (241). Dimerization is known to play an important role in preferential 

packaging (or encapsidation) of two genomic RNAs within the capsid (242) and is 

essential for stabilization of the genome. The dimerization of the two RNAs holds them 
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in close proximity (243), which could potentially allow rapid strand transfers between the 

two RNAs. Hence dimerization may play an important role in recombination (86, 244). It 

has also been shown that DIS is important in mediating the complete synthesis of viral 

cDNA in infected cells (245). In this section, RNA templates lacking the DIS were used 

in reverse transcription assays. These assays showed that this region was not important in 

the synthesis of long cDNA products from genomic RNA of HIV in an in vitro system. 

HIV Reverse Transcriptase (RT) is a moderately processive enzyme (see Chapter 

1). Processivity of a polymerase is defined as the average number of nucleotides the 

enzyme adds to the growing chain in a single binding event with the primer-template. For 

HIV-RT, a processivity of approximately 100 nucleotides has been estimated in vitro 

(214, 218). Therefore, several rebinding events would be required to complete synthesis 

of the approximately 10 kb provirus DNA. In vitro, RT generally falls of the template at 

discrete locations that are referred to as pause sites. These are usually particular 

sequences that the enzyme has difficulty traversing (184, 246) or more commonly, 

secondary structures on the genome (247) that impede the enzyme's progress. HIV NC 

has been shown to have a modest effect on processivity (166, 204) by helping to melt out 

secondary structures. NC is also known to enhance processivity of reverse transcription 

by promoting RT-catalyzed strand transfer reactions through modulation of RNase H 

activity (159, 248, 249). Studies by Tanchou et al (236) have shown that reverse 

transcription within nucleoprotein complexes generated in vitro appeared to be more 

processive than with viral RNA alone. Therefore it is possible that enhanced RT 

processivity within the aggregates described in Chapter 3 could play a role in the 
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generation of long products. In this section, reverse transcription assays showed that 

enhanced processivity does not play a role in  synthesis of long DNA products in vitro. 
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4.2 Materials 

Plasmid pBKBH10S was obtained through the AIDS Research and Reference 

Reagent Program, Division of AIDS, NIAID, NIH, from Dr. John Rossi. This plasmid 

contains an 8.9 kb SstI fragment (nt 222-9154 of the RNA genome) from HIV-1 BH10 

inserted into the SstI site. The fragment has all HIV-1 gene coding regions but does not 

contain the HIV-1 LTR (210). PCR primers and primers used to prime templates in 

reverse transcription assays were obtained from Integrated DNA Technologies, Inc. The 

HIV-RT clone was a generous gift from Dr. Samuel H. Wilson (National Institute of 

Environmental Health Sciences, Research Triangle Park, NC). HIV-RT was purified 

according to the protocol described (211). The protein was purified to homogeneity and 

the purity of the protein was evaluated using Coomassie Blue staining of 10 % SDS-

PAGE gels (212). The subunits p51 and p66 of RT were in a 1:1 ratio. Aliquots of HIV 

RT were stored frozen at -80°C and fresh aliquots were used for each experiment. The 

HIV NC clone was a generous gift from Dr. Charles McHenry (University of Colorado). 

NC was purified to apparent homogeneity (as judged from Coomassie Blue staining of 

17.5% SDS-PAGE gels (212)) according to the protocol described (123). Quantification 

was by absorbance at 280 nm using a molar extinction coefficient of 8350 cm-1 M-1 (123). 

Aliquots of NC were stored frozen at -80 °C, and fresh aliquots were used for each 

experiment. Taq polymerase was from Eppendorf. T7 RNA polymerase, SP6 RNA 

polymerase, DNase I-RNase-free and RNase-DNase-free were from Roche Diagnostics. 

RNase inhibitor was from Promega. T4 polynucleotide kinase and Restriction enzyme 

HincII was obtained from New England Biolabs. Proteinase K was obtained from 

Eastman Kodak Co. Radiolabeled compounds were obtained from Amersham. Sephadex 
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G-25 spin columns were from Amika Corp. RNA cleanup kit was from Qiagen. All other 

chemicals were from Sigma or Fisher Scientific.
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4.3 Methods

PCR Amplification of DNA substrates for RNAs without dimerization signal-Two 

PCR primers, 5’-GATTTAGGTGACACTATAGGAATTAGATCGATGGGAAAA-3’ 

and 5’-CTGAAGCTCTCTTCTGGTGG-3’ were designed to yield RNA templates 

without dimer initiation site (bases 18 to 135 of the HIV genome insert in pBKBH10S 

(239-356 of genomic RNA)) and amplified DNA from position 145 to 1538 (genome 

bases 366-1759) on the HIV insert. An SP6 promoter sequence (in bold) was included on 

one primer in one of the primers to allow transcription of the DNA by SP6 RNA 

polymerase.  PCR reactions were performed with Taq polymerase according to the

enzyme manufacturer’s protocol using the provided buffer. One hundred pmol of each 

primer was used. Reactions included 30 cycles of denaturation, annealing and extension 

at temperatures of 94°C for 1 min, 50°C for 1 min and 72°C for 2 min, respectively 

followed by one cycle of extension at 72°C for 5 min. The PCR products were run on a 

1% agarose gel, extracted by dialysis and purified as described (212), and used to prepare 

RNA as described below.

Preparation of RNA substrates- RNAs of approximately 1.9 were made by first 

digesting pBKBH10S with restriction enzyme HincII. The digests were then extracted 

with phenol:chloroform:isoamyl alcohol (25:24:1) and precipitated with ethanol. Run-off 

transcription (performed according to the enzyme manufacturer’s protocol) was then 

conducted using 5 µg of the digest plasmid and T7 RNA polymerase enzyme to generate 

1.9 RNAs. Run-off transcription was also performed using ~5 µg of purified PCR DNAs 

described above and SP6 RNA polymerase to generate RNAs without the dimerization 
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signal (approximately 1.4 kb). The transcription reactions were treated with 2 µl of 10 

units/µl of DNase I-RNase-free enzyme for 15 min to digest away the template DNA. 

The RNA was purified using the Qiagen RNA cleanup kit.  The amount of recovered 

RNA was determined spectrophotometrically from optical density. The integrity of the 

RNA was checked on a 1% agarose gel as described before. 

RNA-DNA Hybridization- DNA primers that bound specifically to the RNA 

templates: 5’-CTGAAGCTCTCTTCTGGTGG-3’ to the 1.9 kb and 1.4 kb (dimer minus) 

templates were 32P-labeled at the 5’-end with T4 polynucleotide kinase according to the 

manufacturer’s protocol. The RNA templates were hybridized to the complementary 

labeled primer by mixing primer: transcript at a ~ 1:1 ratio in 50 mM Tris-HCl (pH 8.0), 

1mM dithiothreitol and 80 mM KCl. The mixture was heated to 70°C for 5 min and then 

slowly cooled to room temperature.

Reverse transcription reactions using dimer minus RNA with or without NC-

RNA template (dimer minus)-DNA primer hybrids (4 nM final concentration of RNA) 

were pre-incubated for 5 min along with additional template RNA (12 nM) in the 

presence of increasing concentrations of NC (0.5, 1, 2, 4, 6 and 8 µM) or absence of NC 

(0 µM) in 21 µl of buffer (see below) at 37°C. The reactions were initiated by addition of 

4 µl of HIV-RT (80 nM final in reactions). The following reagents at the indicated final 

concentrations were also included in the reaction mixtures: 50 mM Tris-HCl (pH 8.0), 1 

mM dithiothreitol, 80 mM KCl, 6 mM MgCl2, 100 µM dNTPs, 5 mM AMP (pH 7.0), 25 

µM ZnCl2 and 0.2 units/µl RNase inhibitor. Reactions were allowed to incubate for 75 
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min. In some reactions the amounts of excess template, RT, or NC were varied as 

indicated. The reactions were stopped by adding 2 µl of a solution containing 250 mM 

EDTA (pH 8.0) and 5 ng of RNase-DNase-free enzyme and allowed to digest for 20 min 

at 37°C. Nine µl of proteinase K at 2 mg/ml in 1.25 % SDS, 15 mM EDTA (pH 8.0) and 

10 mM Tris (pH 8.0) was then added to the above mixture, which was placed at 65°C for 

1 hour. Finally 7 µl of 6X alkaline dye (300 mM NaOH, 6 mM EDTA, 15% glycerol, 

0.15% bromophenol blue) was added to the mixture and the samples were resolved on 

1% alkaline agarose gel containing 50 mM NaOH and 1 mM EDTA (pH=8). Extended 

DNA products were observed using a Bio-Rad Molecular Imager FX.

Experiments testing processivity of HIV-RT- RNA template (1.9 kb)-DNA primer 

hybrids (4 nM final concentration of RNA) were preincubated for 5 min at 37°C with 3-

fold excess (12 nM final concentration) RNA template and 4 µM final concentration of 

NC in 17 µl of buffer containing 50 mM Tris-HCl (pH 8.0), 1 mM dithiothreitol, 80 mM 

KCl, 5 mM AMP (pH 7.0), 25 µM ZnCl2 and 0.2 units/µl RNase inhibitor.  Four µl of 

HIV-RT (80 nM final concentration in reactions) was then added and further incubated 

for 3 min at 37°C. Reactions were initiated by adding 4 µl of a supplement containing 

MgCl2 and dNTPs in the above buffer such that the final concentrations were 6 mM and 

100 µM, respectively. In the reactions with “trap”, 5 µg of poly(rA)-oligo(dT)20 (8:1, 

w/w) was included in the supplement to sequester RT molecules that dissociated from the 

substrate. In control reactions to test the effectiveness of the trap (see Results), the trap 

mix was added before adding the enzyme, incubated for 3 min at 37°C and then the 

reactions were initiated by adding enzyme. Reactions were allowed to incubate at 37°C 
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for 1 hour. The reactions were stopped and treated with proteinase K as described above. 

The samples were extracted with phenol:chloroform:isoamyl alcohol (25:24:1) and 

precipitated with ethanol. Due to the inhibition by NC of primer extension (described 

above), ten reactions with NC in the presence of trap were combined.The samples were 

resuspended in 5 µl of water and 5 µl of 2X formamide dye (90% formamide, 10 mM 

EDTA (pH 8.0), 0.1% xylene cyanol, 0.1% bromphenol blue) was added and the samples 

were resolved on a 5% denaturing polyacrylamide gel containing 7 M urea. Several 1:2 

dilutions of the reactions without NC in presence of trap are shown to make it easier to 

compare them to the reactions with NC and trap.

Gel electrophoresis- One percent alkaline agarose gels containing 50 mM NaOH 

and 1 mM EDTA (pH=8), 1 % native agarose gels in Tris-Borate-EDTA buffer and 

denaturing 5% polyacrylamide gels (19:1) (acrylamide:bisacrylamide), containing 7 M 

urea were prepared and subjected to electrophoresis as described (212). 
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4.4 Results 

The region of the HIV genome required for dimer formation is not needed for the 

synthesis of long DNA products in vitro- This experiment was done to determine if the 

dimer initiation signal (dimer initiation signal/dimer linkage structure) is essential for the 

formation of long DNA products in vitro. The dimer initiation signal is required for dimer 

formation between the two RNA molecules that make up the HIV genome and hold the 

RNAs in close proximity (243). This could potentially allow rapid strand transfers 

between the RNAs which could lead to long products. Both the 1.9 and 4 kb RNAs used 

in Chapter 2 contained the dimerization region. Therefore, RNA templates that lacked the 

dimerization region were made (described in Methods) and the reverse transcription 

assay was carried out. A reaction with the 1.9 kb RNA with a deleted dimerization region 

(now 1.4 kb) in the presence of increasing amount of NC is shown in Figure 4-1. Long 

DNA products were synthesized from these RNA templates as efficiently as from those 

that had the dimerization region (compare Figure 2-2 and 4-1) indicating that the 

dimerization region does not have a role in the synthesis of long DNA products in vitro. 

Processivity of RT has no role in the synthesis of long DNA products in vitro- NC 

has been shown to have a modest effect on the processivity of RT (166, 204). This is 

generally attributed to melting by NC of some secondary structures in the template. An 

increase in processivity could also have contributed in producing long products. The 

following experiment was performed to test this. The 1.9 kb RNA template was used and 

the reverse transcription assay was carried out in the absence or presence of poly(rA)-

oligo(dT) trap. The trap sequesters enzyme molecules that dissociate from the substrate 
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thereby limiting synthesis to a single binding event between the enzyme and the substrate 

(250). To test the effectiveness of the trap, it was added to the reaction before the 

enzyme. After enzyme addition incubation was continued for 1 hour.  No significant 

DNA synthesis products were evident in this reaction (Fig. 4-2, lanes marked as ‘C’) 

indicating that the trap sequestered RT over the entire reaction. Assays performed in the 

absence of NC with trap showed products up to about 800 nucleotides in length. Several 

dilutions of these reactions (lanes shown as –NC, + trap) are shown to make it easier to 

compare them to the reactions with NC (lane +NC, + trap). Due to the inhibition by NC 

of primer extension (described in Chapter 2), several reactions were combined for the 

sample shown in lane +NC, +trap (see Methods). No notable increase in the average 

length of products was evident in the reactions with NC. This indicates that there was no 

significant increase in processivity in the presence of NC and this was not a factor in 

production of the long DNA synthesis products. 
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Figure 4-1: Reverse transcription assay with increasing NC concentrations using 

RNA without dimerization signal as template.

Shown is an autoradiogram of an assay with 1.4 kb RNA (genomic RNA segment 
without dimerization signal) using increasing NC concentrations (left to right, 0, 0.5, 1, 2, 
4, 6 and 8 µM) performed under conditions as indicated under “Methods”. The position 
of full length DNA products is indicated (“1394”). C denotes the lane with reaction 
carried out without RT. ML denotes lane with molecular marker (in nucleotides). 

-1394 nt
702-

224-

1371-

-Primer

ML C [NC]
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Figure 4-2: Reverse transcription assay to determine role of processivity of RT in the 

synthesis of long DNA products in vitro.  

Shown is an autoradiogram of a trap assay using the 1.9 kb RNA segment of HIV as 
template. Control reactions (“C”) were performed in the presence (+) or absence (-) of 4 
µM NC to test the effectiveness of the trap (see Methods). Reactions without trap were 
also performed with or without NC as indicated. In reactions with poly(rA)-oligo(dT) trap, 
RT was preincubated with the primer-template in the presence or absence of NC, then 
initiated by the addition of divalent cation and dNTPs along with trap. The trap sequesters 
RT molecules that dissociate from the primer-template limiting extension to a single 
binding event. The trap reactions without NC were serially diluted 1:2 from right to left 
with the far right lane corresponding to a single reaction and the far left 1/16th of a 
reaction. The trap reaction with NC is 10 reactions combined after extraction and 
precipitation, then loaded in a single lane. The samples are run on a 5% polyacrylamide 
gel. ML denotes lane with molecular marker (in nucleotides). 
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4.5 Discussion

The experiment testing the role of dimerization of the RNAs in synthesis of long 

DNAs shows that dimer formation, which holds the two RNA genomes close together, is 

not required for the formation of long DNA products. Removal of the dimerization region 

did not affect synthesis of long products (Figure 4-1).  This could be because the 

aggregates formed in the presence of NC (discussed in Chapter 3) may hold the nucleic 

acids in close proximity to each other thereby creating a concentrated environment 

required for reverse transcription even without dimerization of the RNAs. Note that no 

experiments were performed to determine if dimers formed even with the RNAs that 

contained the dimerization signal. Dimer formation is generally analyzed using nucleic 

acid segments smaller than those used in these experiments and dimerization is difficult 

to test with long RNAs.. Dimer formation has been shown to enhance strand transfer in in 

vitro reactions with relatively small nucleic acid substrates (251, 252). The results here

show that dimerization is not required to get long products.

From processivity experiments (Figure 4-2), it was clear that enhanced processivity 

of RT is not required or does not have any role in the synthesis of long DNA products.

Hence, for synthesis to proceed to the end of these RNA templates, the RT must rebind 

several times after dissociation. The high local concentration of contents in the aggregate 

(discussed in Chapter 3) may also explain why higher processivity of RT is not required 

or does not have any role in the synthesis of long DNA products. It is important to note 

that the assays were conducted with poly(rA)-oligo(dT) trap and it is not clear how this 

may have affected synthesis of long DNAs in aggregates.  It is possible that some factor 
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required for long DNA production was altered by the trap and therefore enhanced 

processivity cannot be completely ruled out. 
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Chapter 5  Role of strand transfer in the synthesis of long reverse 

                   transcription products from genomic RNA segments of 

                  HIV in vitro

5.1 Introduction

Strand transfer, also referred to as template switching or strand jumping is a 

process by which the nascent DNA that is elongated on one RNA template transfers to a 

different template or to a different region on the same template. When this transfer is to a 

different template, the process results in recombination. Retroviruses package two copies 

of genomic RNA in the virion. These two RNAs may not necessarily be 100% identical. 

If the two RNAs are not 100% identical, then strand transfers between the two RNAs 

result in the production of proviral DNA that encodes genomic RNAs that are chimeras 

of the original parent genomes. Internal strand transfers within the HIV genome have 

been shown to occur at a high frequency particularly during minus strand DNA synthesis 

(54, 80, 84, 253, 254). These transfers are distinct from the essential end transfers of –

sssDNA and +sssDNA (see Introduction) in that they can occur from any point within the 

genome. The internal transfer events are proposed to occur by the “forced copy-choice” 

mechanism (83). The forced copy-choice model proposes that some viral genomic RNAs 

may be damaged or broken and thereby unable to serve as complete, intact templates to 

produce a completed copy of minus strand DNA. When DNA synthesis reaches the end 

of such a broken DNA, the growing DNA is “forced” to transfer to a homologous region 

on the second RNA template to complete minus strand synthesis. Therefore internal 
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strand transfers increase the probability of successful DNA synthesis in case of broken or 

damaged RNA templates by serving as a salvage pathway (83).

Recombination can also occur from intact RNA templates indicating that they are 

not forced. Hence a slightly modified version of this model termed “copy-choice” is used 

to describe all recombination events occurring during minus strand DNA synthesis. For 

example, DNA synthesis along the viral genome can be impeded by certain sequences 

and/or structures that cause synthesis to stall. Such positions are referred to as pause sites 

and may serve the role of break points on intact RNA templates. At a pause site, the 

RNase H activity of RT takes precedence over the polymerization activity (255) and 

extensively degrades the RNA template. This degradation destabilizes the donor RNA 

template-growing DNA hybrid and also clears regions on the DNA that can now bind to 

the acceptor template. The nascent DNA may dissociate from the donor RNA such that 

the 3’ end region of the primer is free of both the donor and acceptor templates and then 

transfer to and bind to the acceptor template or the latter may invade and displace the 

donor RNA (Figure 1-5). In either case, the nascent DNA associates with the acceptor 

RNA where synthesis continues. NC may serve to reduce pausing by melting out 

impeding secondary structures thereby facilitating continued synthesis of the nascent 

DNA on the donor template (256). However, in the presence of acceptor template, NC 

resolves pause sites with an accompanied increase in strand transfer (257) by enhancing 

RNase H activity of RT and by promoting strand exchange and annealing of the nascent 

DNA from donor RNA template to acceptor RNA template. Pausing is not the only 

driving force for strand transfer events. Low structure can promote recombination on 
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templates by a mechanism where the acceptor can rapidly associate with the nascent 

DNA (258). In this mechanism, which has been demonstrated with genome segments 

from the env region, there are no strong pause sites to stall the polymerase and promote 

strand transfer. However, the low degree of secondary structure of the acceptor template 

makes it easier for it to rapidly bind to the nascent DNA on the donor. This is probably 

due to the acceptor not having to be “unwound” before hybridization. Consistent with 

this, this type of transfer is only modestly stimulated by NC as where transfers in regions 

with high secondary structure are strongly stimulated (259). Association with the nascent 

DNA in this case probably occurs several nucleotides 5’ of the 3’ DNA terminus in a 

region that has been cleared by RNase H activity. After hybridizing the acceptor rapidly 

“zippers” up the DNA catching up with the 3’ terminus and displacing the donor. 

Regions with a high degree of homology also allow rapid strand transfers by promoting 

binding of acceptor RNA to the DNA more easily. Reports have shown that runs of the 

same nucleotide can serve to promote recombination in the vicinity of the run (224, 260). 

Strand transfer may also occur by another type of pause-independent mechanism that 

involves specific structural moieties on the acceptor (193, 261). Nevertheless, strand 

transfers promote completion of DNA synthesis in case of obstacles encountered during 

reverse transcription and in the process, serve as a means of generating genetic diversity 

in the viral population. Jetzt et al have shown using single-cycle system that HIV-1 

undergoes approximately two to three strand transfer events in a single replication cycle 

(81) while more recent reports now shown even greater rates: about nine times in T-

lymphocytes and thirty times in macrophages in single-cycle replication systems (88). 
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In this section, experiments conducted showed that strand transfer occurs during 

the synthesis of long reverse transcription products in vitro and is the molecular 

mechanism involved in synthesis of long DNAs in vitro. Another possible mechanism for 

producing the longs products in the aggregates, increased processivity of RT, was ruled 

out previously (see Chapter 4). 
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5.2 Materials

Plasmid pBKBH10S was obtained through the AIDS Research and Reference 

Reagent Program, Division of AIDS, NIAID, NIH, from Dr. John Rossi. This plasmid 

contains an 8.9 kb SstI fragment (nt 222-9154 of the RNA genome) from HIV-1 BH10 

inserted into the SstI site. The fragment has all HIV-1 gene coding regions but does not 

contain the HIV-1 LTR (210). PCR primers and primers used to prime templates in 

reverse transcription assays were obtained from Integrated DNA Technologies, Inc. The 

HIV-RT clone was a generous gift from Dr. Samuel H. Wilson (National Institute of 

Environmental Health Sciences, Research Triangle Park, NC). HIV-RT was purified 

according to the protocol described (211). The protein was purified to homogeneity and 

the purity of the protein was evaluated using Coomassie Blue staining of 10 % SDS-

PAGE gels (212). The subunits p51 and p66 of RT were in a 1:1 ratio. Aliquots of HIV 

RT were stored frozen at -80°C and fresh aliquots were used for each experiment. The 

HIV NC clone was a generous gift from Dr. Charles McHenry (University of Colorado). 

NC was purified to apparent homogeneity (as judged from Coomassie Blue staining of 

17.5% SDS-PAGE gels (212)) according to the protocol described (123). Quantification 

was by absorbance at 280 nm using a molar extinction coefficient of 8350 cm-1 M-1 (123). 

Aliquots of NC were stored frozen at -80 °C, and fresh aliquots were used for each 

experiment. RNaseH minus (E478>Q) RT was a gift from Dr. Stuart Le Grice, HIV Drug 

Resistance Program, National Cancer Institute, Frederick, MD. Taq polymerase was from 

Eppendorf. T7 RNA polymerase, SP6 RNA polymerase, DNase I-RNase-free and 

RNase-DNase-free were from Roche Diagnostics.  RNase inhibitor was from Promega. 

T4 polynucleotide kinase and Restriction enzyme HincII was obtained from New 
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England Biolabs. Proteinase K was obtained from Eastman Kodak Co. Radiolabeled 

compounds were obtained from Amersham. Sephadex G-25 spin columns were from 

Amika Corp. RNA cleanup and Mini-prep kits were from Qiagen. GeneTailor site-

directed mutagenesis kit, Topo TA cloning kit and high fidelity Platinum Taq DNA 

polymerase were obtained from Invitrogen. All other chemicals were from Sigma or 

Fisher Scientific.
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5.3 Methods 

Site-directed mutagenesis of acceptor RNA templates-The mutant primers listed in 

Table 5-1 were used to introduce approximately equally spaced mutations into the region 

from position 1 to 1518 (genome bases 222-1739) of the HIV insert in pBKBH10S 

plasmid. The mutations correspond to positions- 250, 500, 750, 1000 and 1250 from the 

5’ end of the HIV insert.  The primers carrying each mutation were extended during 

temperature cycling by high fidelity Platimum Taq DNA polymerase obtained from 

Invitrogen (as per manufacturer’s protocol). After temperature cycling, the product with 

the desired mutation was transformed into MAX Efficiency® DH5 ™-T1R One Shot® 

chemically competent cells. Mini preps were obtained using Qiagen mini-prep kits. 

Sequencing was done using primer 5’- GTTCTAGGTGATATGGCCTGATG-3’ to check 

for mutation incorporation at positions 250 and 500, primer 5’-

GACCAACAAGGTTTCTGTCATC-3’ to check for mutation incorporation at positions 

750 and 1000 and primer 5’- TCTGGCTGTGTGCCCTTCTTTG-3’ to check for 

mutation incorporation at position 1250.

PCR Amplification of DNA substrates for donor RNA (RNA without dimerization 

signal and for acceptor RNA)- Two PCR primers, 5’-

GATTTAGGTGACACTATAGGAATTAGATCGATGGGAAAA-3’ and 5’-

CTGAAGCTCTCTTCTGGTGG-3’ were designed to yield donor RNA templates 

without the dimer initiation site (bases 18 to 135 of the HIV genome insert in pBKBH10S 

(239-356 of genomic RNA)) and amplified DNA from position 145 to 1538 (genome 

bases 366-1759) on the HIV insert. Also, two PCR primers, 5’-
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GATTTAGGTGACACTATAGAGCTCTCTCGACGCAGGACT-3’ and 5’-

GGCTGTTGGCTCTGGTCTGC-3’ were designed to yield RNA templates to be used as 

acceptor RNA and amplified DNA from position 1 to 1518 (genome bases 222-1739). 

The acceptor RNA lacks the primer binding site present on the above donor. An SP6 

promoter sequence (in bold) was included on one primer in each primer pair to allow 

transcription of the DNA by SP6 RNA polymerase. PCR reactions were performed with 

Taq polymerase according to the enzyme manufacturer’s protocol using the provided 

buffer. One hundred pmol of each primer was used. Reactions included 30 cycles of 

denaturation, annealing and extension at temperatures of 94°C for 1 min, 50°C for 1 min 

and 72°C for 2 min, respectively followed by one cycle of extension at 72°C for 5 min. 

The PCR products were run on a 1% agarose gel, extracted by dialysis and purified as 

described (212), and used to prepare RNA as described below.

Preparation of DNA substrates by asymmetrical PCR- Two PCR primers, 5’-

GATTTAGGTGACACTATAGAGCTCTCTCGACGCAGGACT-3’ and 5’-

CTGAAGCTCTCTTCTGGTGG-3’ were used at 100 pmol and 1 pmol respectively, in 

PCR reactions performed with Taq polymerase according to the enzyme manufacturer’s 

protocol using the provided buffer. Reactions included 50 cycles of denaturation, 

annealing and extension at temperatures of 94°C for 1 min, 50°C for 1 min and 72°C for 

2 min, respectively followed by one cycle of extension at 72°C for 5 min. The PCR 

product which is single-stranded plus-strand DNA was run on a 1% agarose gel, extracted 

by dialysis and purified as described (212). The amount of recovered DNA was 

determined spectrophotometrically from optical density.
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Preparation of RNA substrates- RNAs of approximately 1.9 kb were made by 

first digesting pBKBH10S with restriction enzyme HincII. The digests were then 

extracted with phenol:chloroform:isoamyl alcohol (25:24:1) and precipitated with 

ethanol. Run-off transcription (performed according to the enzyme manufacturer’s 

protocol) was then conducted using 5 µg of the digested plasmid and T7 RNA 

polymerase enzyme to generate 1.9 kb RNA. Run-off transcription was also performed 

using ~5 µg of purified PCR DNAs described above and SP6 RNA polymerase to 

generate RNAs without the dimerization signal (approximately 1.4 kb) and the acceptor 

RNA (approximately 1.5 kb). The transcription reactions were treated with 2 µl of 10 

units/µl of DNase I-RNase-free enzyme for 15 min to digest away the template DNA. 

The RNA was purified using the Qiagen RNA cleanup kit. The amount of recovered 

RNA was determined spectrophotometrically from optical density.  The integrity of the 

RNA was checked on a 1% agarose gel as described before. 

RNA-DNA and DNA-DNA Hybridization- DNA primers that bound specifically to 

the RNA and DNA templates: 5’-CTGAAGCTCTCTTCTGGTGG-3’ to the 1.9 kb and 

1.4 kb (dimer minus) RNA templates as well as the 1.5 kb DNA template and 5’-

GGCTGTTGGCTCTGGTCTGC-3’ to the 1.5 kb acceptor template were 32P-labeled at 

the 5’-end with T4 polynucleotide kinase according to the manufacturer’s protocol. The 

RNA and DNA templates was hybridized to the complementary labeled primer by mixing 

primer:transcript at a ~ 1:1 ratio in 50 mM Tris-HCl (pH 8.0), 1 mM dithiothreitol and 80 

mM KCl. The mixture was heated to 70°C for 5 min and then slowly cooled to room 

temperature[J1].
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Reverse transcription reactions with increasing template and with RNase H minus 

RT- RNA template-DNA primer hybrids (4 nM final concentration of RNA) were pre-

incubated for 5 min along with additional template RNA (12 nM) in the experiment with 

RNase H minus RT and with increasing amounts (4, 8, 12 and 32 nM) of donor RNA (1.9 

kb) in the presence or absence of NC (4 µM), as indicated, in 21 µl of buffer (see below) 

at 37°C. The reactions were initiated by addition of 4 µl of HIV-RT (80 nM final in 

reactions) or with 4 µl of RNase H minus RT (80 nM final in reactions). The following 

reagents at the indicated final concentrations were also included in the reaction mixtures: 

50 mM Tris-HCl (pH 8.0), 1 mM dithiothreitol, 80 mM KCl, 6 mM MgCl2, 100 µM 

dNTPs, 5 mM AMP (pH 7.0), 25 µM ZnCl2 and 0.2 units/µl RNase inhibitor. Reactions 

were allowed to incubate for 75 min. The reactions were stopped by adding 2[J2] µl of a 

solution containing 250 mM EDTA (pH 8.0) and 5 ng of RNase-DNase-free enzyme and 

allowed to digest for 20 min at 37°C. Nine µl of proteinase K at 2 mg/ml in 1.25 % SDS, 

15 mM EDTA (pH 8.0) and 10 mM Tris (pH 8.0) was then added to the above mixture, 

which was placed at 65°C for 1 hour. Finally 7 µl of 6X alkaline dye (300 mM NaOH, 6 

mM EDTA, 15% glycerol, 0.15% bromophenol blue) was added to the mixture and the 

samples were resolved on 1% alkaline agarose gel containing 50 mM NaOH and 1 mM 

EDTA (pH=8). The gels were fixed and dried as described (212). Extended DNA 

products were observed using a Bio-Rad Molecular Imager FX.

Reverse transcription reactions with DNA templates- DNA template-DNA primer 

hybrids (4 nM final concentration of RNA) were pre-incubated for 5 min along with 

additional template DNA (12 nM) in the presence of increasing concentrations of NC 
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(0.5, 1, 2, 4, 6 and 8 µM) or absence of NC in 21 µl of buffer (see below) at 37°C. The 

reactions were initiated by addition of 4 µl of HIV-RT (80 nM final in reactions). The 

following reagents at the indicated final concentrations were also included in the reaction 

mixtures: 50 mM Tris-HCl (pH 8.0), 1 mM dithiothreitol, 80 mM KCl, 6 mM MgCl2, 

100 µM dNTPs, 5 mM AMP (pH 7.0), 25 µM ZnCl2 and 0.2 units/µl RNase inhibitor. 

Reactions were allowed to incubate for 75 min and treated as described above for reverse 

transcription reactions with RNA template.

Strand transfer time course reaction- RNA template without the dimer signal, 

(shorter donor) hybridized to DNA primer as described above (4 nM final concentration 

of RNA in reaction) was pre-incubated for 5 min along with acceptor RNA (12 nM) in 

the presence of NC (4 µM) in 21 µl of buffer (as in reverse transcription experiment) at 

37°C. The reactions were initiated by addition of 4 µl of HIV-RT (80 nM final in 

reactions). The entire reactions were stopped as described above at time points- 2, 5, 10, 

15, 30, 45, 60 and 75 mins and samples were resolved on 1% alkaline agarose gel 

containing 50 mM NaOH and 1 mM EDTA (pH=8) as described above.  

Experiments to determine the rate of strand transfer during synthesis of long DNA 

products in vitro- The 1.9 kb RNA template (donor) was hybridized to DNA primer as 

described above (4 nM final concentration of RNA in reaction) and pre-incubated for 5 

min along with acceptor RNA (4 nM in one reaction and 16 nM in another reaction) in 

the presence of NC (4 µM) in 21 µl of buffer (as in reverse transcription experiment) at 

37°C. Control reactions (donor and acceptor) were also set up. In the donor control 
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reaction, the 1.9 kb RNA template (donor) was hybridized to DNA primer as described 

above (4 nM final concentration of RNA in reaction) and pre-incubated for 5 min along 

with excess of same donor RNA (12 nM). In the acceptor control reaction, the 1.5 kb 

acceptor RNA template (having the five mutations) was hybridized to DNA primer as 

described above (4 nM final concentration of RNA in reaction) was pre-incubated for 5 

min along with excess of same acceptor RNA (12 nM) in the presence of NC (4 µM) in 

21 µl of buffer (as in reverse transcription experiment) at 37°C. Assay conditions were as 

described above except that 50 µl reactions were performed. The reactions were initiated 

by addition of 8 µl of HIV-RT (80 nM final in reactions) and stopped as described above 

after 75 mins. Reactions were processed, and then electrophoresed on 5 % 

polyacrylamide denaturing gels. Full length DNA products were located by 

autoradiography, excised, and eluted overnight in a TE buffer (10 mM Tris-HCL, pH 8.0, 

1 mM EDTA, pH 8.0). The eluate was separated from the gel by centrifugation and 

subsequent filtration through a 0.45-micron disposable syringe filter. The DNAs were 

recovered by precipitation in ethanol with 300 mM sodium acetate. The recovered DNA 

was amplified by PCR. Approximately equal amounts (0.2 fmoles each) (as judged by 

counts per minute (cpm)) of the samples detected using a scintillation counter) of full-

length DNA from donor control and acceptor control reactions were mixed and amplified 

by PCR. The PCR control reaction was set up to check if recombination occurs during 

PCR amplification of the long DNA products. Primers, 5’-

GATTTAGGTGACACTATAGAGCTCTCTCGACGCAGGACT-3’ and 5’-

CTGAAGCTCTCTTCTGGTGG-3’ were used to PCR amplify the test samples and 

primers, 5’- GATTTAGGTGACACTATAGAGCTCTCTCGACGCAGGACT-3’ and 5’-
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GGCTGTTGGCTCTGGTCTGC-3’were used to amplify the PCR control reaction. PCR 

reactions were performed with Taq polymerase according to the enzyme manufacturer’s 

protocol using the provided buffer. Thirty-two pmol of each primer was used. Reactions 

included 25 cycles of denaturation, annealing and extension at temperatures of 94°C for 1 

min, 50°C for 1 min and 72°C for 3 min, respectively followed by one cycle of extension 

at 72°C for 5 min. The PCR products were run on a 1% agarose gel, extracted by dialysis 

and purified as described (212). The purified PCR products were ligated into Topo vector 

(Invitrogen), which was used to transform Top10_ E. coli competent cells (as per 

manufacturer’s protocol). Only white colonies were picked. Minipreps were prepared 

using a Qiagen miniprep kit, and each clone was sequenced using three primers- M13 

reverse primer, T7 promoter primer and 5’-GACCAACAAGGTTTCTGTCATC-3’.

Gel electrophoresis- One percent alkaline agarose gels containing 50 mM NaOH 

and 1 mM EDTA (pH=8), 1 % native agarose gels in Tris-Borate-EDTA buffer and 

denaturing 5% polyacrylamide gels (19:1) (acrylamide:bisacrylamide), containing 7 M 

urea were prepared and subjected to electrophoresis as described (212).
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5.4 Results

Reverse transcription using RNase H minus RT enzyme (E478>Q) does not 

produce full-length DNA products- Strand transfer is known to require RNase H activity 

(262-265). Therefore, if the long DNAs observed in NC reactions were produced by 

strand transfer then production should be sensitive to RNase H. To test this reactions 

were performed with an RNase H minus form of HIV-RT (E478>Q) that had wild type 

polymerase activity (95, 262-265) (Figure 5-1). In the absence of NC this enzyme yielded 

products that were on average longer than wild type although the total synthesis was the 

same as wild-type. A very small proportion of fully extended products were also 

observed with the mutant. In contrast to wild type RT, in the presence of NC E478>Q did 

not produce any long fully extended DNAs. Only a small amount of short extension 

products were observed. The sensitivity to RNase H activity is consistent with a strand 

transfer mechanism being required for long product production (see Discussion). 

Full-length DNA is not synthesized when DNA is used as template- Copy-choice 

type strand transfer does not occur efficiently on DNA templates (225). Therefore a 

strand transfer mechanism that produces long DNAs with RT and NC should not function 

efficiently on a DNA template. To test this, a reverse transcription assay was performed 

using DNA as template. Increasing concentrations of NC (0, 0.5, 1, 2, 4, 6 and 8 µM) and 

80 nM RT were included in the reactions which were stopped after 75 min (Figure 5-2). 

Many of the products produced on the DNA were nearly full length even in the absence 

of NC, although full length (1538 nucleotides) products were not observed. The average 

length of extension products in the absence of NC was clearly greater than was observed 
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with RNA (see Fig. 5-2 for example). The greater efficiency was probably due to the 

DNA not being susceptible to RNase H activity. This activity can cause the nascent DNA 

and RNA template to dissociate at times, making extension more difficult on RNA. The 

major effect of NC on the reactions was to inhibit extension as the level of extended 

products clearly decreased with increasing NC. This was also observed with RNA (see 

Chapter 2) along with a dramatic increase in the proportion of full-length products. No 

increase in longer products was observed with the DNA template. The average length of 

extended products actually showed some decrease in the presence of NC. Overall the 

results show that the mechanism responsible for producing long products with the RNA 

template does not function on DNA. This again supports a strand transfer model. 

Synthesis of long DNA products involves strand transfer-The synthesis of long 

DNA products required RNase H activity of RT and could not be mimicked using a DNA 

template suggesting that strand transfer is required for long product formation. In order to 

determine this, a strand transfer time course assay was done that simulates strand transfer 

events occurring during minus strand synthesis. Donor RNA (dimer minus RNA, 1394 

bases long), the template on which DNA synthesis initiated and 3-fold excess acceptor 

RNA (1518 bases long and containing 5 mutations, see Methods), the template to which 

DNAs initiating on the donor can potentially transfer, were mixed in reactions. DNA 

synthesis was initiated from a 5’end-labeled DNA primer that is designed to bind only to 

the 3’end of the donor RNA (see Figure 5-3, A). Strand
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Figure 5-1: Reverse transcription assay using RNase H minus RT enzyme 

(E478>Q).

Shown is an autoradiogram of an assay in the presence and absence of NC using RNase 
H minus RT that has wild type polymerase activity with 1.9 kb template as substrate. 
Lane C is the control reaction in the absence of RT. Lanes with – indicate reactions 
without NC and those with + indicate reactions with NC (4 µM). Wt and E478>Q denote 
reactions with wild type RT and RNaseH minus RT respectively. ML denotes lane with 
molecular marker (in nucleotides). 

ML C  - +  - +   NC

-1538 nt

702-

224-

1371-

-Primer

Wt     E478>Q    RT
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Figure 5-2: Reverse transcription assay with DNA as template.

Shown is an autoradiogram of an assay using 1.5 kb DNA as template in the presence of 
increasing concentrations of NC (0, 0.5, 1, 2, 4, 6 and 8 µM) and 80 nM RT. C denotes 
the lane with reaction carried out without RT. ML denotes lane with molecular marker (in 
nucleotides). 
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transfer can occur at any point after primer extension occurs on the donor since the donor 

and acceptor are homologous over this region except for the five mutations described 

above. The acceptor contains 144 additional bases at the 5’ end such that products 

transferring to and subsequently extended on the acceptor will be 1538 nucleotides as 

compared to 1394 for extension on the donor. Shown in Figure 5-3, B, is an 

autoradiogram of a strand transfer time course assay in the presence of 4 µM NC. A 

reaction in which excess donor template rather than acceptor was added is also shown to 

mark the position of products made on the donor (far right lane). Transfer products, 

migrating slightly higher than full length donor-directed products, were observed in the 

reactions by 45 min and increased up till 60 minutes.  In reactions with acceptor, no 

products consistent with full-length donor-directed products were observed at any time 

point.  This suggests that transfer to the acceptor occurs before the end of the donor is 

reached (internal strand transfer). A time course reaction in which the excess acceptor 

was replaced by excess donor showed essentially the same time frame for appearance of 

full-length products as shown in Figure 5-4. The results indicate that the long DNAs are 

produced by strand transfer. The fact that no fully extended donor-directed DNAs were 

observed indicates that transfers occur before the end of the donor template is reached 

(see Chapter 6 also). 

Determination of the rate of strand transfer- In order to determine that rate of 

strand transfer during the synthesis of long DNA products an acceptor template with 

several mutations was made. The acceptor in this case was the same as the donor except 

it lacked the 20 base primer binding site and contained 5 equally spaced nucleotide 
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changes at 250 nucleotides intervals. Donor RNA was prehybridized to primer at a 1:1 

ratio with the primer. Four-fold excess acceptor RNA (16 nM acceptor, 4 nM donor) was 

added in reactions with 4 µM NC and 80 nM RT. Long DNA products were isolated and 

amplified by PCR, cloned and sequenced as described in Methods. Transfer between each 

of the mutations could be easily monitored because the products would contain the bases 

from the donor until transfer to the acceptor took place, at which point a base change to 

one of the 5 different bases would occur in the sequence. Therefore, there were five 250 

base regions within the donor where transfers could be detected (see Figure 5-5). The 

actual cross-over could have occurred anywhere in the 250 base region, therefore, an 

assumption was made that each jump occurs on average at the 125th base in between two 

adjacent mutations. The position of the first transfer from any given donor was calculated 

by adding 250 for each interval before the interval where cross-over occurred then adding 

an additional 125 for the cross-over interval. For example, if cross-over occurred between 

the 2nd and 3rd mutation, the recombination position for the DNA would be 250 + 250 + 

125 or 625. The average distance before the first transfer was calculated by summing the 

numbers from each clone and dividing by the total number of sequence clones. Those 

clones that had DNAs which jumped to the acceptor before the first mutation were 

assigned the score of 125. There were six such clones. One clone had DNA that jumped 

before the fifth mutation and was assigned the score of 1125. One clone had DNA that 

jumped before the 2nd mutation and was assigned the score of 375. From these, the 

frequency of strand transfer was calculated as ((6 X 125) + 1125 + 375) / 8 = 281. If this 

number is used to calculate the overall rate of transfer then an estimate of about 1 jump 

per 300 bases is reasonable. This may not be completely accurate as the other donors 
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RNAs in the reactions may also serve as acceptors and donor to donor jumps cannot be 

detected. The fact that six of the eight clones that were sequenced had jumped back to 

donor after going to the acceptor clearly indicates that donors can serve as “acceptor” in 

the reactions. Jumps to the donor should be limited because of the 4 fold excess of 

acceptor in the reactions; however, the effective concentration of the acceptor and donor 

may be slightly different than the actual concentration ratio of 4:1. Overall, if some of the 

first jumps were to other donors these would not have been observed and the actual 

transfer rate may be slightly greater than one per 300.
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A

      B

Figure 5-3: Time course strand transfer assay shows that strand transfer is involved 

in the synthesis of long DNA products.  

(A) A schematic diagram of the strand transfer assay is shown. The RNA (solid lines) 
without the dimer signal was used as the donor and was hybridized to a 20 nucleotide 5’ 
P-32 labeled DNA (dashed lines) primer. A longer RNA without the binding site for the 
donor primer was used as acceptor. Full extension on the donor produced a 1394 
nucleotide DNA while transfer and subsequent extension on the acceptor produced a 
1538 nucleotides product. The region of homology (“homologous transfer zone”) 
between the donor and acceptor is boxed. (B) An autoradiogram of a strand transfer 
experiment. The reactions were carried out in presence of 4 µM NC for time points 2, 5, 
10, 15, 30, 45, 60 and 75 mins as shown from left to right. In the last lane (*), the reaction 
was carried out by adding excess donor RNA to the reaction instead of acceptor RNA and 
this reaction was carried out for 75 min. The positions of full length DNA products from 
the donor (1394) or transfer products (1538) are indicated. ML denotes lane with 
molecular marker (in nucleotides). 

3’ 5’ Donor

3’ 5’ Acceptor

Primer Homologous transfer zone

1394 nt DNA

1538 nt DNA
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Figure 5-4: An autoradiogram of a time course reaction in which excess acceptor 

was replaced by excess donor.

The reactions were carried out in presence of 4 µM NC for time points 2, 5, 10, 15, 30, 
45, 60 and 75 mins as shown from left to right. In the last lane (*), the reaction was 
carried out by adding excess acceptor RNA to the reaction instead of donor RNA and this 
reaction was carried out for 75 min. The positions of DNA products from the donor 
(1394) or acceptor (1538) are indicated. ML denotes lane with molecular marker (in 
nucleotides). 
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                Table 5-1: Primers for synthesis of mutations in acceptor

Basea position on
HIV genomeb

Sequence of primers in the 5’ and 3’ orientationsc

 250             471 5’-gagctagaacgattcgcagtttatcctggcctgttag-3’
5’-aactgcgaatcgttctagctccctgcttgcccatac-3’

 500             721 5’-gacacagcagtcaggtcagcctaaattaccctatag-3’
3’-ggctgacctgactgctgtgtcctgtgtcagc-3’

 750             971 5’-gaggaagctgcagaatgggaaagagtacatccagtg-3’
5’-tcccattctgcagcttcctcattgatggtctc-3’

 1000          1221 5’-aagaaccttttagagactatctagaccggttctataaaac-3’
5’-atagtctctaaaaggttcttttggtccttgtc- 3’

 1250      1471 5’-cagctaccataatgatgcagacaggcaattttaggaac-3’
5’-tctgcatcattatggtagctgtatttgttacttg-3’

aThe base number refers to the sequence number of the provirus in pBKBH10S
  plasmid.
bThis number refers to the position of the nucleotide on the HIV genome.
cPrimer pairs that are complementary to opposite strands of pBKBH10S plasmid. One
 of the primers in each primer pair has the desired mutation indicated by underlined
 bolded letters.
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No of clones
sequenced

                                   Base position of mutation
  1250 (5th)      1000 (4th)      750 (3rd)      500 (2nd)      250 (1st)               

      1 A                     A                  A                 A                 A

      2 A                     D                  D                 D                 D

      3 A                     D                  D                 A                 D

      4 A                     A                  A                 A                 D

      5     D                     D                  D                 D                 A

      6     D                     A                  A                 A               D

      7 A                     A                  A                 A                 D

      8 A                     A                  A                 A                 A 

Table 5-2: 
This table is a grid which shows the nucleotide copied from donor or acceptor at the 5 
mutated base positions for eight clones that were sequenced. D indicates that the base at 
that position was copied from the donor and A indicates that the base at that position was 
copied from the acceptor. Cross-over to the acceptor occurs before the position marked in 
red.
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5.5 Discussion

The formation of high molecular weight aggregates (discussed in Chapter 3) 

allows the RNA molecules to be in close proximity to each other thereby allowing strand 

transfers to occur more easily. This could further be facilitated by the high local 

concentrations of NC and RT in the complexes. Tanchou et al (236) have shown that 

strand transfer occurs within HIV-1 nucleoprotein complexes in vitro. Experiments using 

RNase H minus mutant HIV-RT (E478>Q) that lacks RNase H activity but retains full 

polymerase activity showed that synthesis of long DNA products is dependent on RNase 

H activity (Figure 5-1). It is well known that the RNase H activity of RT is required for 

strand transfer (95, 262-264). This suggests that full-length DNA products result from 

strand transfer, especially since no increase in processivity was observed in the reactions 

(Chapter 4, Figure 4-2). Furthermore, time course experiments using donor and acceptor 

RNAs showed that the long DNA products resulted from internal strand transfer events 

(Figure 5-3). All the products synthesized transferred to the acceptor since there were no 

donor directed products in the reaction. This demonstrates that synthesis of full-length 

DNA products involves the mechanism of internal strand transfer.

Although in the absence of NC products with DNA templates were on average 

longer than those with RNA, no full-length DNA products were formed at any 

concentration of NC when DNA was used as template. This is typically what is seen in 

the cell. Ninety-nine % of the time, the plus strand DNA is not completed and these 

incomplete and discontinuous plus strands may or may not get integrated into the host 

chromosome (266). The incomplete strands that get integrated are later on completed by 
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host polymerases and ligase. Other retroviruses like AMV are know to synthesize plus 

strands discontinuously with the completed strand being formed by ligation of several 

smaller products in the nucleus. Unlike the plus strand DNA, the minus strand must be 

completed continuously for successful replication to occur, because without a complete 

minus strand the plus strand cannot be made. It is therefore not surprising that 

retroviruses would have evolved a transfer mechanism to ensure production of intact 

minus strands. 

The rate of strand transfer observed in this system was approximately one jump 

for every 281 nucleotides. As was noted in the Results, the rate could be somewhat lower 

but an estimate of 1 per 250-300 nucleotides is reasonable. One thing that could have 

influenced the rate is a recombination “hotspot” in the first interval. If the nucleotide 

sequence or structure in the first 250 base interval was more conducive to transfer than 

other intervals this could have led to more transfers in the first zone. In hindsight, having 

more that 5 mutations in the acceptor would have made it easier to make a more accurate 

calculation. Since more than half of the clones crossed to the acceptor before the first 

mutation, it was clear that transfer was very frequent but this only indicated that it was at 

least one transfer per 250 bases. More mutations, especially in the first interval could 

have further defined the rate. The danger of adding more mutations is that this would 

affect homology and therefore could influence the recombination rate. As will be seen in 

Chapter 6, homology is a very important driving force for recombination and even clones 

that differ by a small amount can show highly different transfer rates. 
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With respect to the recombination rates estimated in cell infections (see 

Introduction to this chapter), the rates in the in vitro system were comparable to rates 

calculated in macrophages (about 30 recombination over the approximately 9,000 base 

genome or one per 300 bases) but considerably higher than those in T cells (about 1 in 

1,000). Rates in vitro may be greater because each aggregate probably contains several 

hundred or more templates (bases on the aggregates centrifuging in microfuge in less 

than 1 minute) where viruses only have two genome copies. 
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Chapter 6  Characterization of ‘hotspots’ for strand transfer in the C3

env region during Human Immunodeficiency Virus-Type 1 

                   (HIV-1) intersubtype recombination

6.1 Introduction

Human Immunodeficiency Virus type-1 (HIV-1) is known to have very high 

evolutionary potential in the human host. This is due to its high mutation rate (3 x 105 

mutations/site/generation) (267) and recombination during replication (268), extensive 

replication (108 to 109 virions per day) (269, 270) and large numbers of infected cells 

(271). Most of these mutations are detrimental to the virus and are eliminated by negative 

selection (272). The rate at which mutants accumulate in a population is determined by 

the error rate of replication as well as by the fitness of the mutants that appear. Any 

mutation that increases the fitness of the virus will tend to increase in the population 

whereas the frequency of mutations that decrease the fitness of the virus will remain low. 

Selective forces that increase survival of particular mutants include the host humoral and 

cellular immune responses, adaptation of the virus in a new host having a different 

genetic background from the earlier one, adaptation of the virus to a particular tissue or 

cell type that it may have invaded as well as any antiretroviral therapy administered to 

treat the host. HIV isolates that emerge in the human host as a consequence of selective 

pressure and genetic variability often show increased replicative and cytopathic 

capabilities. HIV-1 populations therefore exist within their hosts as ‘quasispecies’ (79,

271). This increase in genetic diversity enables the virus to escape the humoral (273, 274)
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and cytotoxic T-lymphocytes (CTL) (275-277) immune responses of the host as well as 

develop resistance to available antiretroviral therapy (278). 

Genetic changes are observed throughout the genome, however variation in env 

accounts for much of the differences among the isolates (279). In the env region, 

nucleotide substitutions accumulate at an average rate of about 2.5% a[J3] year and amino 

acid substitutions occur at an average rate of about 1% per year in an individual. Specific 

hyper variable regions exist within the env gene, interspersed among more conserved 

regions (280, 281). Within these hyper variable regions, a remarkably high percentage 

(>95%) of the nucleotide substitutions found in isolates result in change of an amino 

acid[J4]. Hyper variable regions are not likely sites of frequent errors but are rather likely 

to be regions where a genetic change can be tolerated or where mutations confer selective

advantage to the virus (282). These are most likely antigenic variants selected by host 

immune response and/or variants selected for cell tropism. One of the major goals of HIV 

research is to determine the selective forces that drive genetic variation in each of the 

variable regions of env gene.

Recombination between variants of HIV also contributes to genetic changes 

within human hosts. Recombination occurs between HIV progeny derived from cells 

infected with two different viruses and carrying a genome from each (called heterodiploid 

viruses). This implies that recombination is likely to be limited by the frequency of 

doubly infected cells. Viral genomes containing recombinant sequences of HIVs 

belonging to different subtypes within the HIV major group (A-K) have been isolated 
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from patients, indicating a high frequency of co-infection of individuals with different 

viruses (at approximately the same time) and sufficient co-infection of cells within an 

infected individual to allow recombination to occur during replication (283). 

Interestingly, although co-infection of the same cell by two different viruses would be 

predicted to be low, specific mechanisms favoring co-infection have recently been 

uncovered (284, 285). This may help explain the high level of intersubtype recombinants 

found worldwide. In Thailand for example, the predominant HIV form is an A/E 

recombinant (CRF01_A/E) while A/D recombinants are highly prevalent in Uganda (286, 

287). The rise of intersubtype recombinants further complicates efforts to produce 

vaccines against HIV and diminishes the possibility of producing one vaccine with high 

efficacy against all strains of HIV. 

In East Africa and particularly in Uganda, subtypes A and D of Group M of HIV-

1 are found to co-circulate with a high prevalence (50% subtype A, 40% subtype D) (287,

288). Co-circulation of sub-types of HIV among individuals often gives rise to unique 

recombinant forms (URFs) eg. A/D recombinants found in Uganda. Continuous human to 

human transmission of recombinant forms having well defined chimeric genomes gives 

rise to circulating recombinant forms (CRFs). A/D URFs are predominant in Uganda as 

opposed to the more stable CRFs (287, 288). 

In an effort to better understand how these recombinants arise, a collaboration 

between our group and those of Drs. Eric Arts (Case Western Reserve University) and 

Matteo Negroni (Institut Pasteur) has been established. Dr. Arts has access to patient 
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isolated from Uganda while Dr. Negroni is an expert on retrovirus recombination and has

developed an assay to test the level and position of recombination in a single cycle of 

infection (289, 290). This assay essentially tests for “hotspots” within the genome where 

recombination occurs with higher frequency. The single cycle nature of the assay 

eliminates selection so that recombinants leading to viable or non-viable virus can be 

examined. Dr. Arts has developed assays that can examine recombinants during several 

rounds of replication in cells such that the fate of various recombinants can be determined 

in the context of selection for infectivity in cells. Using these approaches intersubtype 

recombination between several HIV A and D subtype patient isolates from Uganda was 

studied. Intersubtype recombination frequencies within the env gene increased with an 

increase in sequence identity between the isolates and hotspots were observed only in the 

conserved regions (denoted C1-C5) of the env gene where sequence homology was 

higher (Baird et al. 2006 submitted). An interesting finding was a particular A subtype 

(denoted A115) that showed a hotspot in C3. This subtype was the only clone to show a 

C3 hotspot. Our lab has expertise in uncovering mechanisms of recombination. This 

section describes preliminary experiments done in our lab to determine why A115 but not 

other clones show a hotspot for recombination within the C3 region. 
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6.2 Materials

Sub-clones A120, A115 and D89 containing HIV-1 envelope gene fragments 

from subtypes A120, A115 and D89 (HXB2 nt 6420-7520) respectively, were a gift from 

Dr. Eric Arts (Case Western Reserve University, Cleveland, Ohio). PCR primers and 

primers used to prime templates in reverse transcription assays were obtained from 

Integrated DNA Technologies, Inc. The HIV-RT clone was a generous gift from Dr. 

Samuel H. Wilson (National Institute of Environmental Health Sciences, Research 

Triangle Park, NC). HIV-RT was purified according to the protocol described (211). The 

protein was purified to homogeneity and the purity of the protein was evaluated using 

Coomassie Blue staining of 10 % SDS-PAGE gels (212). The subunits p51 and p66 of 

RT were in a 1:1 ratio. Aliquots of HIV RT were stored frozen at -80°C and fresh 

aliquots were used for each experiment. The HIV NC clone was a generous gift from Dr. 

Charles McHenry (University of Colorado). NC was purified to apparent homogeneity 

(as judged from Coomassie Blue staining of 17.5% SDS-PAGE gels (212)) according to 

the protocol described (123). Quantification was by absorbance at 280 nm using a molar 

extinction coefficient of 8350 cm-1 M-1 (123). Aliquots of NC were stored frozen at -80 

°C, and fresh aliquots were used for each experiment. Taq polymerase was from 

Eppendorf. SP6 RNA polymerase, DNase I-RNase-free and RNase-DNase-free were 

from Roche Diagnostics. RNase inhibitor was from Promega. T4 polynucleotide kinase 

was obtained from New England Biolabs. Proteinase K was obtained from Eastman 

Kodak Co. Radiolabeled compounds were obtained from Amersham. Sephadex G-25 

spin columns were from Amika Corp. RNA cleanup and mini-prep kits were from 

Qiagen. All other chemicals were from Sigma or Fisher Scientific.
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6.3 Methods

PCR Amplification of HIV-1 envelope gene fragments- Primer pairs (5' 

GATTTAGGTGACACTATAGATATAATGAGGTAGTCAAACAATTA-3' and 5'-

TTTATTCTGCATTTGAGAGT-3' for A115 Donor 5’-

GATTTAGGTGACACTATAGATATAAGGAGGTAGCCAAACAATTA-3’ and 5’-

TTTATTCTGCATTGGAGAGT-3’ for A120 Donor, 5'-

GATTTAGGTGACACTATAGTATATAGAATGGAATAAAACTATAC-3' and 5'-

ACCGTTTGTGTTTGTACTCT-3' for D89 Acceptor and 5’-

GATTTAGGTGACACTATAGTATATAGAATGGAATATAGCTTTGT-3’ and 5’-

TAGATTGGCATTTGACATAG-3’ for A115 Acceptor were used in PCR reactions to 

amplify nts 7255-7474 (relative to HXB-2 provirus numbering) for 115-A and 120-A, 

and 7235-7454 for 89-D. The bolded regions of the primers are SP6 promoter sequences 

while italicized regions are non-HIV sequences. PCR reactions were performed with Taq

polymerase according to the enzyme manufacturer’s protocol using the provided buffer. 

One hundred pmol of each primer was used. Reactions included 30 cycles of 

denaturation, annealing and extension at temperatures of 94°C, 50°C and 72°C 

respectively for 1 min, followed by one cycle of extension at 72°C for 5 min. The PCR 

products were run on an 8% native polyacrylamide gels and purified as described (212).

Preparation of RNA substrates- Run-off transcription (performed according to the 

enzyme manufacturer’s protocol) was conducted using approximately 5 µg of each of the 

amplified DNAs and SP6 RNA polymerase enzyme to generate RNAs of 225 nts. The 

transcription reactions were treated with 2 µl of 10 units/µl of DNase I-RNase-free 
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enzyme for 15 min to digest away the template DNA. The RNA was purified using the 

Qiagen RNA cleanup kit. The amount of recovered RNA was determined 

spectrophotometrically from optical density.  

RNA-DNA Hybridization- A DNA primer that binds specifically to the donor 

RNA transcript (5'-TTTATTCTGCATTTGAGAGT-3’ or 5’-

TTTATTCTGCATTGGAGAGT-3’ for A-115 and A-120, respectively) was 32P-labeled 

at the 5’ end with T4 polynucleotide kinase according to the manufacturer’s protocol 

(New England Biolabs). The donor RNA was hybridized to a complementary labeled 

primer by mixing primer:transcript at approximately 3:1 ratio in 50 mM Tris-HCl (pH 

8.0), 1 mM DTT, 80 mM KCl.  The mixture was heated to 65°C for 5 min and then 

slowly cooled to room temperature. 

Time course strand transfer assay- Donor RNA-primer DNA hybrids (2 nM final 

concentration of RNA) were preincubated for 3 min in the presence or absence of 10 nM 

acceptor RNA template and NC (as indicated) in 42 µl of buffer (see below) at 37°C. One 

molecule of NC per two nucleotides was used in the reactions[J5] (18 and 4 µM for 

reactions with or without acceptor, respectively). The reactions were initiated by the 

addition of 8 µl of HIV-RT (80 nM final in reactions) to a mixture of 50 mM Tris-HCl 

(pH 8.0), 1 mM dithiothreitol, 80 mM KCl, 6 mM MgCl2, 100 µM dNTPs, 5 mM AMP 

(pH 7.0), 25 µM ZnCl2 and 0.4 units/µl RNase inhibitor. Reactions were allowed to 

incubate for 0, 30s, 1, 2, 4, 8, 16, 32, and 64 min at 37°C prior to quenching a 6 µl aliquot 

of each reaction with 4 µl 25 mM EDTA (pH 8.0) and 2.5 ng of RNase-DNase free 
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enzyme for 20 min at 37°C. Two µl of proteinase K at 2 mg/ml in 1.25% SDS, 15 mM 

EDTA (pH 8.0) and 10 mM Tris (pH 8.0) was then added to the above mixture, which 

was placed at 65°C for 1 hour. Finally, 12 µl of 2X formamide dye (90% formamide, 10 

mM EDTA (pH 8.0), 0.1% xylene cyanol, 0.1% bromophenol blue) was added to the 

mixture and the samples were resolved on an 8% denaturing polyacrylamide gel 

containing 7 M urea. Extended DNA products were quantified by phosphorimager 

analysis using a Bio-Rad FX phosphoimager. 

Gel electrophoresis- One percent native agarose gels in Tris-Borate-EDTA buffer 

and denaturing 8% polyacrylamide gels (19:1) (acrylamide:bisacrylamide), containing 7 

M urea were prepared and subjected to electrophoresis as described (212).
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6.4 Results 

A single cycle cellular recombination assay was used to determine the rate and 

map the positions of recombination cross-overs between different virus subtypes (Baird 

et al., 2006, submitted). In this system cells are infected with HIV virus clones that are 

heterozygous and contain genome segments from two different subtypes. The genome 

segments are designed such that one serves as a donor and the other acceptor. Sequence 

analysis of proviruses made during replication allows cross-over points to be mapped. 

Since the genome segments are from different subtypes natural sequence variation can be 

used to map the approximate position of cross-overs. Recombination frequencies as 

measured in the C1-C4 regions of the HIV env gene were found to be approximately 1.5 

to 2-fold higher when A115 was used as donor than when other subtype A and D 

genomes segments were used. Analysis of the recombination frequencies and cross-over 

positions in the C1-C4 env region revealed that all intra subtype and inter subtype env

recombinants had preferential recombination breakpoints (hotspots) in the C1 region 

(Figure. 6-1A). A hotspot near the V2/C2 junction of env was unique to experiments in 

which D126 was used as the donor. Also, hotspots for recombination were found in the 

C3 region only in intra and inter subtype env recombinants derived from experiments 

with A115 as the donor. 

To further investigate that A115 specific env C3 recombination site, the template 

switching frequency and the RT pausing pattern in the C3 to V4 regions were analyzed 

using a reconstituted in vitro reverse transcription assay. A schematic representation of 

the assay is shown in Figure 6-1B. Primers annealing to the A115 or A120 donor RNA 



133

templates were radio labeled and hybridized to the respective templates and reverse 

transcription assay was carried out by adding RT. Template switching to the D89 

template during reverse transcription (schematic, Figure 6-1B) was monitored in the 

presence or absence of HIV-1 NC during a time course assay. A strand transfer time 

course assay was carried out using A115 as donor and acceptor templates. The addition 

of non-retroviral nucleotides at the 5’ end of the donor template prevents transfer from 

the end of the donor thereby limiting transfer to the boxed region shown in Figure 6-1B. 

Analysis of the time course assays shown in Figures 6-2 (A115 donor) and 6-3 (A120 

donor) showed that there was more RT pausing on the A115 template as compared to the 

A120 template during minus strand DNA synthesis, particularly in the C3 region of the 

RNA template. This pausing was observed irrespective of the presence of acceptor 

indicating that it originated from DNA synthesis on the donor template. Most of the 

paused products were chased away at higher time points during the time course reaction. 

A small percentage of the DNAs transferred to the D89 acceptor template for continued 

elongation (245 nt product). The frequency of strand transfer events was plotted (Figure 

6-5). When A115 RNA was used as donor and acceptor (100% sequence identity in 

transfer region) in strand transfer assays, the strand transfer efficiency was about 40% 

without NC and 60% with NC at 64 min (Figure 6-4; 6-5B). However, transfer efficiency 

was less than 14% with NC with the A115 donor/D89 acceptor pair. This shows that 

increase recombination during reverse transcription is seen with increased sequence 

identity. The sequence identities for the A120/D89 pair and A115/D89 were nearly the 

same at 69% and 66% respectively. However, the transfer efficiency from A115 donor 

template to D89 acceptor templates was at least 2-fold greater than that observed from 
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A120 donor template to D89 acceptor template. NC proportionally increased transfer 

with both template pairs. Therefore, increased strand transfer was observed with A115 

donor over A120 donor with or without NC throughout the time course. The results are 

consistent with the single cycle assays where only A115 donors showed a hotspot in the 

C3 region. Using primers specific for the strand transfer products, the recombinants from 

the A115/D89 assays were amplified by PCR and 35 (19 without NC and 16 with NC) 

clones were sequenced. Figure 6-6, A shows regions of strand transfer from A115 donor 

to D89 acceptor and Figure 6-6, B shows the number of crossovers within these regions. 

In the presence of NC, there was a focusing of the transfer points with most occurring in 

regions denoted VIII-X (11/16). Recombination in this assay matched the C3-V4 

recombination regions observed in the single-cycle assay involving the A115/D89 donor 

acceptor pair. In this case 4 of the 7 total recombinants recovered from the C3 region 

mapped to positions VIII-X (Baird et al. 2006, submitted).
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A[J6]

B

Figure 6-1:

A. In A, is shown the C1-C4 regions of the HIV env gene where the recombination 
frequencies[J7] were measured in single cycle assays and in multiple round virus 
replication systems Recombination hotspots were detected in the C1, C2 and C3-V4 
regions of the env gene using single cycle and multiple round replication system when the 
above combinations of subtypes (numbers refer to different HIV subtypes) were used as 
donor and acceptor. 120/89 means that 120 was used as donor RNA and 89 was used as 
acceptor template The C3 to V4 region was analyzed in this in vitro reverse transcription 
assay. B. Schematic diagram of in vitro template switching assay.  The RNA donor 
template from A115 or A120 was primed with a 20 nt 5’ P-32 end-labeled DNA. 
Extension of the primer by RT to the end of the donor produced a 225 nt product (D) 
while transfer and subsequent extension to the end of the acceptor RNA (derived from 
D89) produced a 245 nt product (T). The boxed region is the “homologous” transfer zone 
(corresponds to bases 7255-7454 of clones based on HIV HXB2 proviral numbering 
where cross-overs occur. 
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Figure 6-2: Autoradiogram of template-switching assay from A115 to D89.  

Shown is an autoradiogram of a template-switching assay from A115 to D89. Positions of 
primer, transfer (T), and donor-directed (F) products are indicated. The three most 
prominent pause sites (“P”) are also labeled. Assays were performed in the presence or 
absence of NC and D89 acceptor as indicated. Times for each set from left to right were: 
0.5, 1, 2, 4, 8, 16, 32, and 64 min. A size marker with lengths in nucleotides is shown on 
the left.
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Figure 6-3: Autoradiogram of template-switching assay from A120 to D89.  

Shown is an autoradiogram of a template-switching assay from A120 to D89. Positions of 
primer, transfer (T), and donor-directed (F) products are indicated. Assays were 
performed in the presence or absence of NC and D89 acceptor as indicated. Times for 
each set from left to right were: 0.5, 1, 2, 4, 8, 16, 32, and 64 min. 
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Figure 6-4: Autoradiogram of template-switching assay from A115 to A115.  

Shown is an autoradiogram of a template-switching assay from A115 to A115. Positions 
of primer, transfer (T), and donor-directed (F) products are indicated. The three most 
prominent pause sites (“P”) are also labeled. Assays were performed in the presence or 
absence of NC and A115 acceptor as indicated. Times for each set from left to right were: 
0.5, 1, 2, 4, 8, 16, 32, and 64 min. 
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[J8]

      A

  B

Figure 6-5: Plots of transfer efficiency vs. time

The plot above shows the transfer efficiency vs. time from experiments A115 or 
A120 to D89 acceptor experiments.  Efficiency is defined as: (transfer/(transfer + donor-
directed)) x 100 or (T/(T + D)) x 100. Shown below is the plot of transfer efficiency vs. 
time for experiment with A115 as donor and acceptor. 



140

A

B

Figure 6-6: (A) Transfer map showing regions of strand transfer from A115 donor to 
D89 acceptor. The regions are denoted with roman numerals (I-XIV), underlined, and 
alternately shown in black and gray italics. Residues of A115 (and A120) donor differing 
from D89 are indicated. Cross-overs were not recovered from regions that are not 
underlined. Numbering is based on the HIV HXB2 provirus. Nucleotides 7255-7373 are 
part of C3 while 7374-7454 are part of the V4 region of env. Areas of prominent RT 
pausing are indicated by “P” and correspond to those shown in Fig. 6-2 for the A115 
donor, D89 acceptor experiment. (B) Table showing the number of recovered transfer 
products that showed a cross-over within the regions denoted in A for the A115 to D89 
experiment. Transfer products were recovered from denaturing polyacylamide gels (see 
Fig. 6-2) and amplified by PCR. Products were recovered on native acrylamide gels and 
inserted into pBSM13+ plasmid that was used to transform E. coli.  Plasmid DNA 
recovered from individual colonies was sequenced to determine the cross-over point. A 
total of 19 and 16 clones from reactions – and + NC, respectively, were sequenced. 

I        IIII III        IVIV V             VIVI VII
D89 7255-AACAGGUAGCUAAAAAAUUAAGGUAGCUAAAAAAUUAGGAGCUCUUUUUAACAAUUUAACAAGACAACAAUAAUUUUUCAACCCCAUCCUCGGGGG-7321
A115      UG      UC   C     AACA AACC        A          AC   A UAGC     A   
A120      GG       C   C     A    A AA   G G  C AG        C   G U A    G A 

VIIIVIII IX        XX XI      XIIXII XIII            XIVXIV
7322-AGGGGAAGGGGACCUAGAAAUUACAACACAACAACACACAGCUUUAAUUGUGGAGGUUUAAUUGUGGAGGGGAAUUUUUCUACUGCAAUACAUCAACAUCA-7388

U        A        U  U              A           U U  C                
U        A        U UG              A  G        U U  C

7389-AGACUGUUUAAUAGGACGUGGACGUCAAAUAGUACAAUGGUAAAUGAGAGUACAAACACAAACGGU-7454
G C           C       AC UU C   C  GUG AACG CACU UGU   UG C  UCUA

C           C  A   GAUAAUGCC  CUUGCA  GGUCAA UGAC  G GU  G    C

P1P2

P3
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II

III
IV
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VI
VII

VIII
IX
X

XI
XII

XIII
XIV

1/19 -
1/19 -
1/19 -
4/19 -
1/19 1/16
1/19 -
1/19 1/16
3/19 4/16
4/19 3/16

- 4/16
- 1/16

1/19 -
- 1/16

1/19 1/16
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Figure 6-7: Predicted structure of RNAs from clones A115, A120, and D89 over 
bases 7255-7454 (relative to HIV HXB2 provirus). Fold parameters were from the 
RNAstructure program and drawing from XRNA. Only the structure with the lowest 
predicted ∆G is shown. Using default program settings, for A115, A120, and D89, the 
∆G values  were  -34.0, -36.5, -32.8 kcal/mol, resp. The circled base marks the 5’ end and 
corresponds to nt 7255 of the provirus. Red nts denote regions which showed the highest 
amount of cross-overs in the A115 donor, D89 acceptor experiment performed in vitro 
(Figure. 6-6B, regions VIII-X). Regions corresponding to the most prominent pause sites 
(see Figure. 6-2) are denoted P1, P2, and P3. The 56 nt hotspot region identified in cell 
culture assays corresponds to bases 66-121. 
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6.5 Discussion

Increased recombination frequencies were observed when A115 RNA was used as 

donor compared to any other donor RNA in the single cycle assays. This appeared to be 

related to a unique C3 env ‘hotspot’ for recombination specific to A115. In order to 

dissect the mechanism(s) of increased strand transfer from the A115 C3 region, a 

reconstituted in vitro reverse transcription system was employed. More RT pausing was 

observed with the A115 template as compared to A120 template (Figure 6-2, 6-3) and 

transfer efficiency was 1.5 to 2-fold higher with the A115 donor template compared to 

the A120 template. This did not result from overall greater homology between A115 and 

D89 vs. A120 and D89 as in both cases homology was essentially the same at between 

66-69%. Preliminary data suggests that specific RNA secondary structures in the C3 

region of A115 RNA may be responsible for the preferential strand transfer in this region 

and hence the observed increase in recombination frequency. Shown in Figure 6-7 are the 

folded structures for D89, A115 and A120 in the C3 ‘hotspot’ region. The red colored 

bases denote regions X-XIII in Figure. 6-6, B where transfer was greatest. All three 

RNAs form a similar structure in this region with a single stranded region that is followed 

by a small hairpin. Of note is the pause site (P3, see Figure. 6-2) in the stem region of 

A115. No pause was detected in A120 in this region. Our hypothesis is that RT pausing at 

P3 gives the D89 acceptor template time to bind to the single stranded region that 

preceeds the pause site. The acceptor can then displace the donor leading to 

recombination. The single stranded nature of this region probably makes it easier for the 

acceptor to rapidly bind (see Chapter 5). There is also relatively high homology between 

A115, A120 and D89 in the red base zone (92% identity in a 26 nucleotide stretch) and 
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this would make it easier for the acceptor and DNA to hybridize. The lack of a pause on 

A120 may be responsible for the lower level of recombination.  Experiments to test this 

mechanism by making mutations that alter the level of homology in the red base region 

and mutations that affect the level of pausing at P3 are planned. 
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Chapter 7  General Discussion

The process of reverse transcription is one of the well-understood steps in the life 

cycle of retroviruses (218). Much of what is known about the process today was learned 

by identifying replication intermediates synthesized in endogenous reactions or in 

reconstituted in vitro reactions and also by analysis of viral DNA isolated from infected 

cells (61-64, 195). However, there are several details of the process that are not clear. In 

actively growing cells, under normal circumstances, reverse transcription proceeds in an 

uninterrupted fashion through the steps discussed in Chapter I and DNA synthesis is 

essentially completed in the cytoplasm. The process of reverse transcription is generally 

completed within 8 to 12 hours (218). HIV virion cores are disrupted shortly after virus-

cell fusion and reverse transcription proceeds to completion in a large nucleoprotein 

complex. Disassembly of the core is essential to allow reverse transcription to progress as 

the Lv-1 restriction phenotype (targets p2 domain of p24), which prevents uncoating of 

the viral core inhibits reverse transcription (291, 292). The ribonucleoprotein complex 

within which reverse transcription takes place provides a particularly favorable 

environment for reverse transcription and appears to resemble, at least superficially the 

virion core (293). Biochemical, confocal and EM studies show that this complex contains 

the diploid RNA genome and proteins such as RT, NC, IN, MA (294, 295) and probably 

Vpr (65). NC enhances viral DNA synthesis by its chaperone activity. The role of other 

proteins of the complex in reverse transcription remains unclear. Other proteins of HIV-1 

that are not known to be part of the ribonucleoprotein complex have been implicated at 

least indirectly, to have a role in reverse transcription. It has been reported that Nef-
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deficient viruses produce reduced amounts of viral DNA (296) and that Tat and Vif have 

a role in reverse transcription (207, 297, 298).

Host factors may have a role in reverse transcription in vivo and several host 

proteins are known to associate with and be packaged in HIV virions (299). One 

particular host protein, cyclophilin A, which binds to HIV-1 capsid protein (300) is 

required for proper entry or uncoating (301, 302). Cyclosporin drugs, which bind to 

cyclophilins and disrupt the cyclophilin interaction with CA block some early events 

before viral DNA synthesis begins (303). Other host factors may also play a role. It is 

possible that some components of the virion are joined by or interact with, these host 

factors from either the cell that produced the virus or the infected cell. A thorough 

characterization of the viral nucleoprotein complex is extremely difficult because of the 

relatively low abundance of these complexes compared to various host-cell nucleoprotein 

assemblies and also by the low ratio of particle to infectivity in retroviruses. Infected 

cells contain a relatively large proportion of products from defective virions as most HIV 

virions, like those of many other viruses, are defective. It is not known whether 

replication is aborted because of loss of such essential components from the complex or 

for other reasons. This is because it is not possible to separate replication-competent viral 

nucleoprotein complexes from replication-defective ones. 

Complete viral DNA can be synthesized in purified virions in “endogenous 

reactions” (ERT), although inefficiently (195-198). In these reactions, the purified virions 

are permeabilized with mild detergent and incubated with deoxyribonucleotides. Small 
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amounts of full-length viral DNA can be synthesized in these reactions, although the 

reaction is inefficient, it demonstrates that all the components except dNTPs required for 

reverse transcription reaction are present in the virion (195-198). This also indicates that 

the absence of dNTPs may be the primary reason why reverse transcription is not 

initiated in virions. Synthesis of complete reverse transcripts in endogenous reactions is 

very sensitive to the concentration of detergents present in these reactions (196, 197). 

With very little detergent, overall reverse transcription is poor whereas with too much 

detergent, early reverse transcription intermediates are formed but strand transfer is 

inefficient and plus-strand DNA synthesis does not occur. This sensitivity to detergent 

suggests that an intact core is required for efficient reverse transcription. However, it is 

not known whether the core serves to confine the components of reverse transcription at 

high concentrations or whether the structure of the core is important in promoting reverse 

transcription. It is also not known whether such detergent treated cores mimic the 

intracellular cores that carry out reverse transcription. Reverse transcription can also be 

carried out in extracellular virions without application of detergents. These are referred to 

as “natural endogenous reactions” (NERT) (199-201). In NERT reactions, the 

amphipathic domains at the C-terminal end of gp41 make the envelope naturally 

permeable to dNTPs (201). There are significant differences in reverse transcription 

efficiency in these endogenous reaction systems and in vivo. In ERT and NERT 

reactions, even under conditions most conducive to reverse transcription, only a few 

percent of DNA is full-length double-stranded (198) whereas in vivo most of the viral 

DNA seen is full-length. A detailed understanding of how the process of reverse 

transcription is carried out so efficiently in the host cell and of the various factors and 
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conditions involved in the process might lead to the development of more effective anti-

HIV therapies and also would be an integral part of our understanding of the ways in 

which genetic information is passed on to future generations in these viruses. 

The main area of study in this thesis is to generate conditions in vitro that allow 

efficient synthesis of long reverse transcription products from genomic RNA of human 

immunodeficiency virus and to analyze the mechanism(s) that leads to the synthesis of 

these long products. Reverse transcription can be carried out in reconstituted in vitro

reactions. However, the process is inefficient with most products being about a few 

hundred to a few thousand bases in length even when RNA templates of several thousand 

bases are used (184). A previous report has shown that at conditions of saturation of NC 

binding sites, i.e., one NC molecule for approximately seven nucleotides in vitro, full-

length DNA was synthesized when an RNA template of 874 bases was used (209). In this 

study, conditions were optimized that produced DNA products up to 4 kb from genomic 

RNA of HIV at relatively high efficiency. These products were synthesized in high 

molecular weight aggregates formed in presence of NC. Internal strand transfer was 

found to be the molecular mechanism involved in the synthesis of long DNA products. 

Figure 7-1 represents the proposed model for the synthesis of long reverse transcription 

products in vitro.

There was a decrease in primer extension in the presence of NC at saturating 

concentrations with almost all products synthesized being full-length. There are several 

possible explanations for this decrease in synthesis. NC is a chaperone protein with weak 
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Proposed Model for Synthesis of long DNA products in vitro
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NC recruits RT
into aggregates
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takes place in the
aggregates

C

Figure 7-1: Proposed model for synthesis of long DNA products in vitro
A represents the first step in the synthesis of long DNA products in vitro which is 
making primer-template hybrids. Not all primers and templates form hybrids. Some 
of the primers and templates remain unhybridized in these reactions. Nucleocapsid 
protein (NC) is then added to the reaction.

B When NC is added to the reactions, NC coats the primer-template hybrids. All the 
nucleic acids in the reaction are not completely coated with NC although the 
amount of NC added to these reactions is sufficient to coat all nucleic acids. This is 
due to the limitations in protein and nucleic acid solubility in vitro. Those primer-
template hybrids that are completely coated with NC enter into high molecular 
weight aggregates. Formation of these aggregates creates the concentrated and 
condensed environment conducive to the synthesis of long reverse transcription 
products. Reverse transcriptase enzyme (RT) is then added to these reactions. 

C When RT is added to these reactions, NC recruits RT into these high molecular 
weight aggregates. Reverse transcription then takes place in these aggregates and 
involves the process of internal strand transfer which leads to the formation of long 
DNA products in the aggregates. The high molecular weight aggregates formed 
promote synthesis of long reverse transcription products by concentrating the 
nucleic acids, NC and RT into a smaller space thereby mimicking the role of the 
capsid environment within the host cell which is crucial for efficient reverse 
transcription in the cell.
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helix destabilizing activity and therefore NC may destabilize primer template hybrids 

thereby having an effect on total DNA synthesis. Consistent with this hypothesis, in 

experiments using a longer primer (50 nucleotides in length) instead of a shorter primer 

(20 nucleotides in length) an improvement in the level of synthesis was observed (data 

not shown). Also, in experiments with template in large excess over primer showed 

greater levels of extension (Chapter 2). This suggests that inhibition in the presence of 

NC can in part be overcome by increasing primer binding strength or the number of 

primer binding sites. Although NC is present at saturating concentrations enough for 1 

NC molecule per 7 nucleotides, in practice, not all nucleic acids present in the reaction 

pool may be completely coated with NC and complete coating, as is the case in virion 

RNA, may be required for synthesis of full-length DNA. In the virion, NC and RT are 

condensed within the virus core and present at mM concentrations (304). Limitations in 

protein and nucleic acid solubility make it essentially impossible to reproduce these 

concentrations in the test tube. A method to ensure complete coating of all RNA in the 

reaction would eliminate this limitation, if it were one, in the synthesis of long DNA 

products in vitro. Analysis of the mechanism for synthesis of long reverse transcription 

products reveal the formation of high molecular weight aggregates in the presence of NC, 

early in reverse transcription, which play an important role in long DNA synthesis. These 

aggregates may promote long DNA synthesis by concentrating the components of reverse 

transcription thereby perhaps mimicking the role of reverse transcription complexes in 

the host cell. The fact that the aggregate can efficiently produce long DNA products 

suggests that the condensing effect of the virion environment may be a key for efficient 

reverse transcription and cellular factors may not be required. A decrease in synthesis in 
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the presence of NC could also be due to the inability or failure of all the RNA templates 

or primers to get trapped in these aggregates. If this were the case, then this could explain 

the decrease in synthesis with NC especially since these aggregates seem to mimic virion 

core environments that are absolutely required for efficient reverse transcription in vivo

(191). Experiments are currently being conducted to determine what proportion of the 

template, primer, and RT is captured in the aggregate complex during normal in vitro

reactions. Preliminary results suggest that most of the RT and much of the primer are not 

in the aggregate while nearly all the template is. This separation of primer and template 

could explain the low level of primer extension with NC. 

Repeated attempts to synthesize reverse transcription products longer than 4 kb 

failed and primer extension was severely inhibitied in reactions with the 4 kb template 

(Chapter 2). Limitations to synthesis of very long DNAs in vitro could be due to inability 

to synthesize sufficient long RNA templates by in vitro run-off transcription methods 

(219) or that the synthesis conditions used in vitro are not conducive to synthesis of 

genome length DNAs. It is possible that some viral or cellular component that is essential 

for synthesis of genome length DNAs was not included in these in vitro reactions or that 

a combination of these factors was responsible[J9]. 

An in vitro system generated here for the synthesis of 1.6 kb could be designed to 

mimic all the steps of retroviral reverse transcription by using an RNA template of 1.6 kb 

that contains all sequence elements important for reverse transcription. These include the 

direct repeat regions, termed R that lie at the 5’ and 3’ ends of the RNA immediately 
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adjacent to the 5’ cap and 3’ poly (A) tail, sequences unique to each end of the viral RNA 

termed U5 and U3, the primer binding site (PBS) and the polypurine tract (PPT) that are 

required either to position or to become the RNA primers for minus- and plus-strand 

DNA synthesis. A tRNALys3 primer can be used to initiate reverse transcription. A system 

like this would more closely mimic retroviral reverse transcription in the cell. 

An in vitro system that mimics intracellular retroviral replication would enhance our 

understanding of the replication process and could also potentially be used to screen 

reverse transcription inhibitors particularly inhibitors of NC, RT and recombination. It 

may also be possible to use these types of systems to improve the synthesis of cDNA 

from RNA. This would depend on the source of the RNA. For example it probably would 

not be particularly useful for producing cDNAs from pooled cellular mRNA. Because 

such a pool would have several different mRNAs with unique sequences, a mechanism 

dependent on homologous strand transfer would be unlikely to improve synthesis, 

especially for those mRNA not present at high concentrations. However, for those cases 

where a single RNA species is being used (for example the RNA genome from a 

particular virus), a strand transfer mechanism could allow efficient synthesis of longer 

RNA segments. This could abrogate the need for cloning long genomes by combining 

smaller segments.  

A major obstacle facing the development of successful vaccines or drugs against 

HIV is genetic recombination and high mutation rates of the virus. Currently, the HIV 

strains are classified into three groups; M, N and O of which group M causes over 99% of 
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the world’s AIDS cases. Genetic recombination and mutations have resulted in the 

emergence of diverse HIV subtypes or classes (305) among Group M which is currently 

further classified into 10 subtypes or clades:A-K. In patients which chronic infections, the 

virus causing the initial infection can undergo in vivo evolution to produce genetically 

distinct variants resulting in a quasispecies population (306, 307). This has important 

consequences in the pathogenesis and treatment of HIV-1 infection. Reports show that 

recombination takes place between A and D subtypes (308) and also between A and C 

subtypes (309) in individuals co-infected with these subtypes. It has been shown that 

eight of the ten subtypes of group M have recombined to produce genetic variants. It is 

difficult to study intersubtype recombination in in vivo experiments or animal models. In 

vitro and ex vivo (infections of tissue culture cells) methods are alternatives that can help 

identify ‘hotspots’ for recombination. For example, gp120, the most likely vaccine target 

among HIV proteins, is made of 5 variable (V) regions and 4 constant (C) regions, V1-

V5 and C1-C4. ‘Hotspots’ for recombination have been identified in the C2 region by in 

vitro (261) and ex vivo (260) methods. Analysis of HIV isolates shows that subgroups A 

combine with C and D in the C2 region of gp120 (283) consistent with in vitro and ex 

vivo data. This results in genetic reallocation of the variable regions, which helps the 

virus escape neutralizing host antibodies (310). This also poses problems for eliciting 

broad range immune responses necessary for a successful vaccine. The second area of 

study in this thesis involves characterization of a recombination hotspot in the C3 region 

between A to D subtype recombinants isolated from Ugandan patients by analyzing 

strand transfer events using in vitro reconstituted HIV-1 reverse transcription assays. The 

exact mechanism for increased strand transfer in a particular A subtype, A115 specific C3 
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‘hotspot’ region needs to be determined. Analysis of the mechanism of recombination 

between intersubtypes of HIV-1 at the recombination ‘hotspots’ may provide useful 

information while designing HIV vaccine constructs. 
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