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With the rapid improvement in perception and planning technology, robots are being in-

creasingly used as smart, adaptive sensors to gather information in applications such as environ-

ment monitoring, infrastructure inspection, and security and surveillance. To fully exploit the

potential offered by robotic sensing, we need efficient and reliable decision-making techniques

to decide when, where, and how to gather information. Such decision-making techniques need to

account for the uncertainty and partial knowledge inherent in the working environment. The goal

of this dissertation is to design algorithms to enable a multi-robot team to collectively and effi-

ciently gather information on spatiotemporal fields without full knowledge of the environment.

Our contributions span the full spectrum of the knowledge of the environmental conditions: from

one extreme where the environmental model is fully known to the other extreme where the envi-

ronmental model is unknown but can be learned from empirical data. We present several efficient

(i.e., polynomial time) and effective (i.e., optimal or bounded approximation guarantees) algo-

rithms for multi-robot information gathering.



In the first part of the dissertation, we study coordination algorithms when the environmen-

tal model is fully or partially known. Specifically, for the case where the environmental model

is fully known, we consider the challenge imposed by the connectivity requirement of the team.

We present an algorithm for connectivity-constrained submodular maximization for information

gathering that requires intermittent communication among the robotic team. For the case where

the environment is partially known, and uncertainty exists, we seek to make the multi-robot team

robust to the possible failures caused by the uncertainty. When the uncertainty is upper-bounded,

we present a constant-factor approximation algorithm for robust multiple path submodular ori-

enteering. When the uncertainty is stochastic, and the distribution is known, we introduce two

risk-sensitive coordination problems for aerial-ground long-term information gathering.

In the second part of the dissertation, we study the case where the environmental model

is initially unknown and needs to be learned from the data. Classically, such a learning process

is independently conducted without considering the downstream task. By contrast, we present

a framework that incorporates the downstream decision-making problem into the learning pro-

cess. Such integration will help reduce the misalignment between the prediction model and the

downstream task. The misalignment refers to a predictor that despite achieving high predictive

accuracy in the learning phase may not necessarily result in good decisions in the downstream

task. The general methodology to achieve such integration is to make the combinatorial optimiza-

tion differentiable, which then can be treated as a differentiable module in the learning process.

In addition to algorithm design, we present empirical results for applications such as active target

tracking, ocean monitoring, and persistent monitoring.
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A.1 Venn diagram, where S1,S2,S∗
1 ,S∗

2 are defined as follows: Per run of proposed
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Chapter 1: Introduction

1.1 Motivation

Research in science and engineering is experiencing a paradigm shift from physics-based

modelling to data-driven learning. The first step in data-driven learning is to collect the data or

gather information. Access to high-quality data can be a major enabler to high-quality learning.

For example, in the computer vision community, the large-scale dataset ImageNet [5] released in

2009 was critical to the success and popularity of deep neural networks. There are other scien-

tific and engineering disciplines where access to data can be a significant enabler for data-driven

learning. In this dissertation, our focus is on developing algorithms for a robotic system that

can autonomously collect data and gather information for scientific and engineering studies that

involve monitoring spatio-temporal process. Typically, data collection in the physical world has

been limited to manual data collection or passive sensors deployed in the field [6–10]. However,

this can be limiting for data-driven learning. Instead, using actively controlled robots, we can col-

lect high-resolution data on-demand and adaptively making data-driven learning more efficient.

Recently, there has been work on using robots for information gathering in various high-impact

applications such as

• Environmental monitoring: autonomous robots are used to measure physical quantities
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such as the temperature, pollution concentration, and water quality. (Fig. 1.1a)

• Agriculture and terrain mapping: autonomous robots are used to detect weeds and pests,

count the number of fruits, and spread chemicals. (Fig. 1.1b)

• Search, rescue, and surveillance: autonomous robots are used to search and/or track targets

in hazardous environment. (Fig. 1.1c)

• Space exploration: autonomous robots are used to collect samples of rocks and soils to

seek preserved signs of biosignatures in on the planet. (Fig. 1.1d)

(a) (b)

(c) (d)

Figure 1.1: Multi-robot information gathering tasks. (a) Autonomous underwater vehicles collect
ocean data (courtesy of Hollinger et al. [1]). (b) Autonomous aerial vehicles detect crops and
weeds. (courtesy of Popović et al. [2]) (c) Aerial and ground robots for disaster relief (courtesy
of Harbers et al. [3] and Endeavor Robotics). (d) A Mars rover and an multi-rotor vehicle for
space exploration(courtesy of NASA).

Due to the advance in mobility and sensing capabilities over the past decades, the cost

effective robotic platforms are widely available for information gathering research (e.g., Boston

Dynamics [11], DJI [12], Clearpath [13], Unitree [14]). It is becoming increasingly popular to

use a team of robots for information gathering tasks. Within a team, the robots may differ in
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their mobility (e.g., aerial, ground, or surface robots), or in sensing capabilities (e.g., LIDAR or

cameras). Compared to a single robot, such a team can extend the range of executable tasks,

enhance task performance, and naturally provide redundancy for the system. To fully exploit

the potential of such multi-robot teams, we need to consider how to coordinate robots to gather

information effectively given the available knowledge about the environment and the capability

constraints in robots.

Multi-robot information gathering problems are challenging to solve mainly for the follow-

ing two reasons. First, we have only limited knowledge about the environment in the planning

phase. For example, in some applications, we have a parametric model of the environment based

on the domain knowledge, but the exact value of the parameters of the model are not known in

advance. The parameters may be set-valued, stochastic, or context-dependent.1 We have to make

decisions with incomplete knowledge. Second, the underlying combinatorial optimization may

be NP-hard and we cannot find the optimal solution in polynomial time. On the one hand, the

lack of knowledge of the environment will increase the size of the solution space. On the other

hand, the constraints imposed by the capabilities of the robots, e.g., communication radius and

battery capacity, will increase the complexity of the problem.

Therefore, the focus of this dissertation is to design algorithms to enable multi-robot teams

to gather spatiotemporal information for diverse environments and tasks. Our research spans the

whole spectrum of the knowledge of the environmental model: from one extreme where the envi-

ronmental model is fully known to another extreme where the environmental model is unknown

but can be learned from empirical data. When we have full or partial knowledge of the environ-

1Context refers to the side information of the environment obtained through either extra sensing modality or
expert annotations.
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mental model, given task requirements, we formulate coordination problems using tools such as

submodular maximization and sequential decision-making to optimize the task performance with

capability constraints of robots and aim at finding efficient (e.g., polynomial in time) and effec-

tive (e.g., optimal or bounded with guarantee) algorithms to solve the identified problems. When

only empirical data is available for the environment, we study novel learning-decision-integrated

algorithms to learn environmental models that lead to good downstream task decisions.

1.2 Overview of the Dissertation

Targets
G

(a)

Attacked

(b)

Rendezvous point

Energy consumption
P

(c)

Figure 1.2: (a) Multi-robot active target tracking with communication constraints. (b) Case study
of monitoring a marine environment with aquatic robots when some of the robots may fail. (c)
When the UAV and UGV are executing tasks, they need to decide when and where to rendezvous
to replenish the battery of the UAV.

We start our research by considering the cases where the environmental model is fully

known, and the robotic teams need to handle the constraints imposed by the connectivity when

they gather information. Then, we consider the cases where the environmental model is par-

tially known and uncertainty exists. When the uncertainty is upper-bounded, we introduce two

novel robust combinatorial optimization-based formulations of information gathering problems

(RMOP offline and RMOP online) and propose a constant-factor approximation algorithm for

RMOP offline. These two cases are all rooted in the submodular maximization framework. For-
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mally, for a set V , a function f : 2V 7→ R is submodular if and only if for any sets A ⊆ V and

A′ ⊆ V , we have f(A) + f(A′) ≥ f(A ∪ A′) + f(A ∩ A′) [15]. Such a submodular objective

is ubiquitous in multi-robot information gathering. For example, the set V may refer to the set of

motion primitives and f(A) refers to the targets covered by the camera of robots.

When the uncertainty is stochastic with a known distribution, we utilize risk-aware se-

quential decision-making paradigms to coordinate a heterogeneous team. Moreover, when the

environmental model is unknown, and only empirical data is available, we study the problem of

how to learn an environmental model and propose a learning-decision-integrated framework. In

addition to algorithm design, we present empirical results for applications such as active target

tracking, ocean monitoring, and persistent monitoring as shown in Fig. 1.2. Details of the main

contributions of this dissertation are given below.

In Chapter 2, we introduce a problem named Communication-aware Submodular Maxi-

mization (CSM) for a class of multi-robot information gathering problems that have submodular

objectives and require intermittent connectivity between robots. Such a formulation is suitable

for scenarios in which we have the full knowledge of the environment. In the proposed formu-

lation, each robot needs to find one trajectory to be executed within the current planning epoch

to maximize the submodular team objective. We also impose the constraint that the robots need

to form a connected communication network at the end of the planning epoch. That is, the end

positions of all the selected trajectories must form a connected network. We allow the robots to

disconnect during the epoch temporarily. However, by ensuring connectivity at the end of the

epoch, the robots will be able to exchange information gathered during the epoch and jointly plan

for the next epoch. We propose a heuristic algorithm consisting of two stages, topology genera-

tion and deviation minimization, to solve CSM. Chapter 2 is based on our work [16] published in
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2021 IEEE International Conference on Robotics and Automation (ICRA) and its journal version,

which is in preparation for Autonomous Robots (AURO).

In Chapter 3, we consider the multi-robot information gathering problem in uncertain en-

vironments where some of the robots may fail during execution, and we have only partial knowl-

edge about the failures: there are at most α failures. Once a robot fails, all the information

collected as well as the robot will be lost. We focus on how to make the robot team robust to

failures when they operate in such environments. We introduce the Robust Multiple-path Ori-

enteering Problem (RMOP) where we seek worst-case guarantees against an adversary that is

capable of attacking at most α robots. We consider two versions of this problem: RMOP offline

and RMOP online. In the offline version, there is no communication or replanning when robots

execute their plans, and our main contribution is a general approximation scheme with a bounded

approximation guarantee that depends on α and the approximation factor for single robot orien-

teering. In particular, we show that the algorithm yields a (i) constant-factor approximation when

the cost function is modular, (ii) log factor approximation when the cost function is submodu-

lar, and (iii) constant-factor approximation when the cost function is submodular but the robots

are allowed to exceed their path budgets by a bounded amount. In the online version, RMOP

is modeled as a two-player sequential game and solved adaptively in a receding horizon fashion

based on Monte Carlo Tree Search (MCTS). Chapter 3 is based on our work published in 2020

Robotics: Science and Systems (RSS) [17] and its journal version published in IEEE Transaction

on Robotics (TRO) [18].

In Chapter 4, we consider the multi-robot long-term information gathering problems in

uncertain environments in which the Unmanned Aerial Vehicle (UAV) may be out of charge

stochastically due to the disturbances in the environment, and we have only partial knowledge
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about the disturbances: the probability distribution. If we consider only the worst-case distur-

bance, it will result in very conservative decisions. If we consider the average of the disturbance,

the empirical failure (UAV is out of charge) rate may be high. Therefore, we need to make a

tradeoff between the task performance and the failure rate. Specifically, the UAVs and Unmanned

Ground Vehicle (UGV) need to finish the task cooperatively, and the UGVs need to recharge the

UAVs as mobile rechargers periodically. Due to the disturbances (e.g., wind) in the environment,

the energy consumption of a UAV is stochastic, and we need to take such disturbances into ac-

count in the planning phase. Generally, we are interested in such problems: given the distribution

of the stochastic disturbances in the environment, how to coordinate UAVs and UGVs to achieve

high task performance and low failure rate (UAVs being out of charge)? We study this type of

problem for a team consisting of one UAV and one UGV in Section 4.2 and introduce a Chance

Constrained Markov Decision Process (CCMDP) based formulation for risk-aware aerial-ground

cooperative routing. We extend the formulation to multiple UAVs and UGVs in Section 4.3 based

on a graph-matching model. Chapter 4 is based on our work published at the 2022 IEEE Confer-

ence on Decision and Control (CDC) [19] and the work published at the 2023 IEEE International

Conference on Robotics and Automation (ICRA) [20].

In Chapter 5, we consider the multi-robot information gathering problem for the case where

the environment model is unknown and context-dependent. Given empirical data, our focus is to

learn context-aware environmental models for decision-making problems. Classically, such a

learning process is independently conducted without considering the downstream problems. In

contrast, we propose a decision-oriented framework that incorporates the downstream decision-

making problem into the learning process. We show that such integration will help reduce the

misalignment between the prediction model and the downstream task. The misalignment refers to
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a predictor that despite achieving high predictive accuracy in the learning phase may not necessar-

ily result in good decisions in the downstream task. The challenge to achieving such integration

is to make the combinatorial optimization differentiable, which can then be treated as a differen-

tiable module in the learning process. To make the combinatorial optimization differentiable, the

general idea is to find continuous relaxations of the discrete problem. We study how to make two

types of decision-making problems for the multi-robot gathering differentiable: monotone sub-

modular maximization (Section 5.2), and non-monotone submodular maximization(Section 5.3).

Chapter 5 is based on our work published at the 2023 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2023) [21] and the work submitted to the 2024 American

Control Conference (ACC) [22].
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Chapter 2: Multi-Robot Information Gathering with Full Knowledge of the en-

vironmental model

2.1 Overview

In this chapter, we consider the multi-robot information gathering problem when the envi-

ronment is fully known. In such cases, the problem can be formulated as one classic combina-

torial optimization problem with some application-specific constraints. Specifically, we consider

the case where the objective to be maximized is a submodular function, and the robot team has

to satisfy the intermittent connectivity constraint, which forces the team to form a connected

network periodically. Such an intermittent connection is beneficial because it allows robots to

exchange collected information and plan for the next epoch.

Many multi-robot cooperative tasks such as exploration and target tracking can be formu-

lated as submodular maximization problems [23–27]. The objectives in such problems (e.g.,

mutual information, area explored, number of targets tracked) have diminishing returns prop-

erty which is shown to be submodular. Intuitively, submodularity formalizes the notion that

adding more robots to a larger multi-robot team cannot yield a larger marginal gain in the ob-

jective than adding the same robot to a smaller team. Despite the submodular maximization

problem being NP-hard, a simple greedy approximation algorithm can achieve nearly optimal
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Targets
G

Figure 2.1: One motivating example of this paper: multi-robot active target tracking with commu-
nication constraints. The team should maximize the number of targets observed at each planning
step and keep connected. Colored squares represent targets. Grey dots and lines represent an
induced communication network.

performance [15, 28].

Communication plays a key role in successfully executing the greedy algorithm for a team

of robots to choose actions. In the centralized case, robots may need to transmit their acquired

information to either a leader of the team or a remote server; in the distributed case, robots may

need to exchange local information with their neighbors to reach some global consensus [29,30].

In either case, a team of robots needs to form a connected communication network to ensure

information flow. However, it is possible that actions that maximize the objective may lead the

network to become disconnected. In fact, we expect that to happen quite often given that many of

these objectives relate to coverage where the robots may want to move away from each other to

reduce overlaps. Therefore, there is a need to introduce a connectivity constraint during decision-

making. However, in the existing literature related to submodular maximization, communication

is usually neglected, which motivates us to think about whether we can jointly consider com-

munication maintenance and submodular maximization in the decision-making process for the

team.

To this end, we introduce a problem named Communication-aware Submodular Maximiza-
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tion (CSM) for a class of multi-robot task planning. In the proposed formulation, each robot

needs to find one trajectory to be executed within the current planning epoch to maximize the

submodular team objective. We also impose the constraint that the robots form a connected com-

munication network at the end of the planning epoch. That is the end positions of each of the

trajectories that must form a connected network. We allow the robots to disconnect during the

epoch temporarily. However, by ensuring connectivity at the end of the epoch, the robots will be

able to exchange information gained during the epoch and jointly plan for the next epoch.

One motivating example is given in Fig. 2.1, in which a team of aerial robots with downward-

facing cameras tracks targets on the ground. The objective is to maximize the number the targets

observed within each epoch. On the one hand, robots need to move away from each other to

reduce the overlap of the sensor footprints. On the other hand, they cannot move too far from

each other while still ensuring a connected network at the end. A good solution for CSM is able

to balance these two conflicting goals. In this paper, we propose a heuristic algorithm consisting

of two stages, topology generation and deviation minimization, to solve CSM. The key idea of

the proposed algorithm is that first, for each robot we discretize the problem by generating a set

of candidate trajectories whose endpoints are within the reachable set of the robot and let robots

choose trajectories greedily without considering communication constraints; then we make them

minimally deviate from the endpoints corresponding to greedy selections to build connectivity.

Specifically, in the topology generation stage, an edge-weighted graph is generated using robots’

greedy selections, whose edge weights are defined over the distance between pairs of robots.

Then a Minimum Spanning Tree (MST) of the edge-weighted graph is extracted as the commu-

nication graph for the next epoch. In the deviation minimization stage, a Quadratic Programming

(QP) is formulated to find new positions within the reachable set that minimally deviate from
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the greedy selections for robots to realize the MST in the workspace. We carry out extensive

simulations to evaluate the performance of the proposed algorithm.

Submodular maximization and its variants have been widely used in multi-robot decision-

making problems including coverage [31–33], target tracking [23, 34–36], exploration [24], and

information gathering [17, 26, 28, 37, 38]. These studies all based on the fact that greedy algo-

rithm and its variants can solve submodular maximization problem its variants efficiently with

provable performance guarantee. However, communication is seldom considered in the existing

works of robotic researchers, and most of them assume that a connected network is always there.

Krause [38] uses the same assumption but associates some cost to edges of the network and

jointly optimizes coverage and network costs. But their work is static in nature, and the decision

is made only once instead of at each planning epoch without partition matroid constraint [37].

By contrast, we consider the scenario where robots are moving, and decisions need to be made at

each planning epoch to maximize objective and guarantee a connected network. Gharesifard [39]

considers the submodular maximization case where one decision-maker represented as one ver-

tex in the graph can access only the decisions of its neighbor and analyzes the influence of graph

topology. [40] considers a similar problem but mainly from the perspective of a system designer.

However, the graph discussed in [39, 40] is more like a relational graph instead of a communi-

cation graph, and authors all assume that the actions or decisions of vertices will not change the

graph properties, i.e., connectivity. Grimsman [25] considers submodular maximization under

topology constraints for multi-robot task allocation problems. If the topology constraints can

be described as matroid constraints, a greedy algorithm can have a constant approximation fac-

tor. However, connectivity constraint is in general not a matroid constraint for robot teams with

the same communication radius, and authors in [25] make extra assumptions on task allocation
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structures to make spanning tree constraint a matroid constraint, which makes it unsuitable for

our problem.

Another line of related work is on connectivity maintenance based on algebraic graph the-

ory [41–44]. In these studies, connectivity maintenance and tasks are usually separately con-

sidered. Even though connectivity can be formally guaranteed when the task is not considered,

complex task behaviors of robots in practice can break the connectivity. Our work is different

from these works in two aspects: first, our formulation is rooted in combinatorial optimization,

i.e., submodular maximization rather than continuous optimization, and aims at solving discrete

decision-making problems. Even though submodular set functions can be extended to continuous

functions [45], the evaluation of the extended function involves exponentially many subsets of

the ground set, which makes it unsuitable for robotic application. Second, we jointly consider

team task and communication connectivity; therefore, task behaviors will not break connectivity.

This work is also closely related to submodular maximization over graphs [46–48]. [48]

considers the problem of finding a rooted arborescence in a directed graph with a budget to

maximize a submodular function while by contrast graph considered in this paper is undirected,

and the budget is not a constraint. In [46], authors consider the problem of finding a connected

subgraph to maximize the covered area, which is a special submodular set function, in the Eu-

clidean plane and give one 2-approximation the algorithm. But their algorithm cannot be used

to maximize general submodular functions that are interesting to multi-robot applications, for

example, mutual information [24, 27] and the number of targets [23] because the performance

of their algorithm relies on some additive properties of covered areas. [47] considers a similar

problem as with [46] for general submodular functions. However, none of the algorithms pro-

posed in [46–48] can deal with partition matroid constraints [24], which is one inherent nature in
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multi-robot application since each robot has its unique set of choices. As a result, corresponding

algorithms are not applicable to multi-robot applications.

2.2 Preliminaries

We first introduce some notations we will use in this section. Given a set A, 2A denotes

the power set of A. Given another set B, the set A \ B denotes the set of elements in A but not

in B. Given a set V , a set function f : 2V 7→ R, and an element v ∈ V , f(v) is a shorthand that

denotes f({v}). We use ∆f (r | A) = f(A ∪ {r})− f(r) to denote the marginal gain of adding

r in A . Whenever f is clear from the context, we will use shorthand ∆(r | A) for ∆f (r | A).

[N ] denotes the set {1, 2, . . . , N}.

Definition 1 (Minimum Spanning Tree). A minimum spanning tree (MST) is a subset of the

edges of a connected, edge-weighted undirected graph that connects all the vertices together,

without any cycles and with the minimum possible total edge weight.

Definition 2 (Minimum Bottleneck Spanning Tree). A minimum bottleneck spanning tree (MBST)

in an undirected graph is a spanning tree with the most expensive edge as cheap as possible.

Suppose we have N ≥ 2 robots in the environment, whose joint states at the start of the

current epoch are denoted as x = {x1, x2, . . . , xN} ∈ RdN , where d is the dimensionality and can

be 2 or 3. Communication graph at the start of the current epoch G = (V,E) is specified using

proximity graph, i.e., a robot corresponds to a vertex i ∈ V and (i, j) ∈ E if ∥xi − xj∥ ≤ rc,

where rc is the communication radius.

Each robot is equipped with a sensor that gathers information based on the sensor footprint.

For example, an aerial robot equipped with a downward-facing camera can sense the targets on
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the ground as shown in Fig. 2.1. In this paper, specifically, our goal is to find a set of trajectories,

one per robot, to ensure that we maximize the submodular team objective within each epoch and

ensure a connected network at the end of each epoch.

Let Ri be the reachable set of robot i of the current epoch, i.e., a set of locations that

robot i can reach at the end of the current epoch from the start position of the current epoch.

In general, there is no closed-form expression for the reachable set. In this paper, we assume

that the reachable set can be approximately represented as obstacle-free convex polyhedrons or

ellipsoid using an iterative optimization method such as the one presented in [49]. Let Ti be the

set of trajectories of robot i each of which is within the reachable set Ri. It should be noted that

there are infinitely many elements in Ti. Let P be the operator that can extract the endpoints of

trajectories.

2.3 Problem Formulation

With the above notations, the problem can be formulated as follows.

Problem 1 (Communication-aware Submodular Maximization). At current planning epoch, robots’

positions induce a connected communication graph Ge, we want to preserve the connectivity in

the next epoch, i.e., induced graph Ge+1 after moving to new positions is connected, meanwhile

maximizing a submodular objective function. Mathematically,

max
si∈Ti,i∈[N ]

f(S)

s.t. Ge+1(P(S)) is connected,

(2.1)

where S = {s1, . . . , sN} and Ti is the set of trajectories for robot i.
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Figure 2.2: One counter example to show that the sequential graph greedy strategy can be ar-
bitrarily bad. If robot 1 is attracted to some local information rich area and firstly chooses an
action to go downwards (dotted blue arrow), it may bias the whole team away from the global
information rich area, which is on the top (other robots are forced to choose the blue arrows for
connectivity).

One way to solve Problem 1 is by first discretizing the reachable set Ri into a set of dis-

crete locations and by using lower-level motion primitives such that each point in the discretized

reachability set is associated with one dynamically feasible trajectory [50].

Even after discretization, Problem 1 is still hard because the graph topology can be quite

diverse and there can be exponentially many candidates. However, it should be noted that with

proper discretization there is always a solution to Problem 1: since communication graph Ge is

connected and all robots have non-empty reachable sets, one apparently feasible solution is that

all robots do the same movement, e.g., the team as a whole shifts to a new position and Ge+1 has

the same graph topology as that of Ge.

One naive way to solve Problem 1 is to use a sequential greedy strategy and consider

connectivity during the construction process as shown in Algorithm 1, in which at each iteration

one robot that can connect to the existing connected graph will make decisions and the connected

graph will then be correspondingly expanded. However, such a strategy can be arbitrarily bad

as shown in Fig. 2.2. In the Sequential Graph Greedy (SGG) strategy, robot 1 may choose the

action to go down first since it has the largest marginal gain w.r.t. empty graph, but his action will

bias the team from more valuable area on the top. Another problem with such a strategy is that if
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robots have different reachable sets, SGG may end up with a disconnected graph. For example,

in Fig. 2.2, if robot 1 has a large reachable set and move downwards to its best, other robots with

a smaller reachable set may not be able to follow its pace to maintain the connectivity.

Algorithm 1: Sequential Graph Greedy
1 function SGG(f, {Ti}Ni=1,P)

Input :
• A monotone submodular function f

• Partitioned ground set {Ti}Ni=1

• Operator P that can extract the end points of trajectories.

Output: A subset Sol of the ground set
2 Sol← ∅, T ← ⋃N

i=1 Ti, G← (V = ∅, E = ∅)
3 while |Sol| < N do
4 find the trajectory set T ′ ⊆ T s.t. each element in T ′ can establish connections to

the existing graph G at its endpoint
5 # find the element with largest marginal gain and its group ID
6 a, i = argmaxs∈T ′ ∆f(s | Sol)
7 T ← T \ Ti, Sol← Sol ∪ {s}
8 G.add node(P(s)), G.add edge(P(s))
9 end

10 return Sol

2.4 Heuristic Algorithm

We propose a two-stage heuristic algorithm to solve Problem 1. The key idea is to first let

robots greedily select trajectories, which of course may break the connectivity, and then make the

robots minimally deviate from greedy selections to establish connectivity.

Topology Generation: In this stage, robots will greedily select trajectories based on marginal

gains without considering the communication constraint. It is equivalent to solving a submodular

maximization problem with partition matroid using a greedy strategy as shown in Algorithm 2.

These greedy selections will virtually drive them to positions xg1, . . . , x
g
N . Then we generate a
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Algorithm 2: Submodular Maximization with Partition Matroid
1 function Greedy(f, {Ti}Ni=1,P)

Input :
• A monotone submodular function f

• Partitioned ground set {Ti}Ki=1

• Operator P that can extract the end points of trajectories

Output: A subset Sol of the ground set
2 Sol← ∅, T ← ⋃N

i=1 Ti
3 while |Sol| < N do
4 # find the element with largest marginal gain and its ID
5 s, i = argmaxs∈T ∆(s | Sol)
6 T ← T \ Ti
7 Sol← Sol ∪ {s}
8 end
9 return Sol

complete graph KN corresponding to these N robots. The edge weight between robots i and j

is defined as C(i, j) = max(1
2
(∥xi − xj∥ − rc), 0). If the distance between two robots is already

within the communication radius, then the cost of that edge will be zero. If the distance is greater

than rc, then at least one of the two robots needs to move at least 1
2
(∥xi − xj∥− rc) to realize the

edge.

After defining the KN , we use MST algorithm [51] to extract a connected graph for the

next epoch. The intuition for using MST to generate graph topology is: first, the costs of edges

are defined over distances to be traveled to realize edges. Therefore, the graph returned by MST

algorithm to some extent reflects the total deviation to achieve connectivity; second, as shown

in [51], MST is also a MBST, which suggests that the graph returned by MST algorithm to some

extent also reflects the minimum distance to be deviated to achieve connectivity.

Deviation Minimization: After generating the graph topology, in this stage we consider

the problem of how to make robots minimally deviate from the greedy selections to establish
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Figure 2.3: One illustrative example of the proposed algorithm. (a) There are N = 6 robots in
the team and each robot has five trajectories: go left, go right, stay, go up, and go down which
corresponds to five dotted line in the work space. Current position of robots are denoted as
black dots and the corresponding communication links are black lines. (b) The team greedily
maximizes the submodular objective function which results in a disconnected graph i.e. robots
2, 3, 4, 6 are connected but robot 1 and 5 are disconnected from other robots. (c) Generate a
complete weighted graph using greedy selections and then extract a MST from weighted graph
K6. Two blue edges are added. (d) Solve the deviation minimization problem to find the final
positions for robots. The shaded circles centered at current positions are reachable sets for robots
and the red graph is the network to be realized at next epoch.

connectivity. The problem is described below.

Problem 2 (Deviation Minimization). Given current positions x1, . . . , xN of robots, positions

xg1, . . . , x
g
N corresponding to greedy selection, reachable setsR1, . . . ,RN , communication radius

rc, and a connected graphGe+1 to be realized, the goal is find new locations x∗1, . . . , x
∗
N such that

• x∗1, . . . , x
∗
N can realize all edges in graph GT , which is returned by MST algorithm;

• The deviations of robots from greedily selected positions xg1, . . . , x
g
N are minimized.

• x∗1, . . . , x
∗
n are within reachable set w.r.t their current positions.

• Robots will not collide in the new positions.
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Mathematically,

min
N∑
i=1

wi ∥x∗i − xgi ∥

s.t.
∥∥x∗i − x∗j∥∥ ≤ rc, (i, j) ∈ GT .edges

x∗i ∈ Ri, i ∈ [N ]∥∥x∗i − x∗j∥∥ > rs, ∀i ̸= j,

(2.2)

where wi ≥ 0 is parameter used to describe robot i’s willingness to deviate from xgi and more

details on choosing wi are given in Sec. 2.5 and rs is the safe radius for each robot.

It should be noted that the safety constraints are not convex but they can be well handled

by available solves like Gurobi 9.0 [52].

One illustrative example is shown in Fig. 2.3 to demonstrate how our proposed algorithm

works. In the formulation given above, the reachable setRi can be an arbitrary set. We also have

not defined wi which can be chosen based on the application. In the following, we will describe

one specific example on active target tracking in which we assume that the reachable set can be

represented as a circle and present three ways to select wi based on the number of targets that a

robot can track during one epoch.

2.5 Case Study: Active Target Tracking

In this section, we present one case study on multi-robot active target tracking with com-

munication constraints, in which each robot has a downward-facing camera and the team aims to

maximize the number of targets that will be observed in each planning epoch. This case study is

presented to demonstrate:
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• Correctness: The proposed algorithm will return a solution that preserves connectivity.

This will be validated by checking the network generated by the team after taking action.

• Performance: The proposed algorithm outperforms SGG strategy and has a competitive

performance compared with a simple greedy strategy, which can be viewed as the empirical

performance upper bound for the team at each planning epoch. We compare our algorithm

with these two algorithms with respect to the number of targets tracked.

Target Model: We assume each target has single integrator motion model,

pj(t+ 1) = pj(t) + vj(t),

where pj(t) and vj(t) denote the position and the velocity of target j = 1, . . . , 50. The robot

obtains noisy measurements of the targets’ positions and use a Kalman filter for estimation. The

noise is set to Gaussian noise with zero mean and 0.5 standard deviation. Each target’s velocity is

initialized to be zero and is updated by using two consecutive measurements and the time interval

of these two measures:

vj(t′) =
p̃j(t′)− p̃j(t)

t′ − t ,

where p̃j(t′) and p̃j(t) are two measures at time step t′ and t with t′ > t.

Robot Model: We assume that all aerial robots fly at fixed heights and the reachable set

of each robot can be described as a circle centered at its current position with a radius 4 meters.

Then the reachable set is discretized w.r.t. both the radius and the angle as shown in Fig. 2.4

to generate trajectory set. Each robot is equipped with a downward-facing camera and is able to

observe ground targets inside the sensor footprints. We conduct 10 rounds of simulation and in
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30

3r

Figure 2.4: One illustrative example to demonstrate the discretization of the reachable set. End-
points are uniformly sampled w.r.t radius (step size r

3
) and angles (step size 30◦)

.

each simulation there are 10 epochs. Communication radius is set to be 10 meters.

Weight Selection: in this paper we test two ways to set parameter wi, which is about robot

i’s willingness to deviate from its endpoints, for Problem 2.

1. wi is set to be the individual gain of each robot, i.e.,

wi = f(si),

where si is the trajectory for robot i selected using greedy algorithm. We will refer this

approach as Weight1 in the fololwing. The intuition here is that if a robot itself alone can

observe many targets, it is less willing to deviate from its selection.

2. wi is set to be marginal gain of robot i’s selected trajectory si ∈ Ti, i.e.,

wi = f(S)− f(S \ si),

where S is a set of trajectories selected using greedy strategy. We will refer this approach
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as Weight2 in the following. The intuition here is that the willingness of a robot to deviate

from the greedy selection is reflected in its contribution to the whole team. The more it

contributes to the team, i.e., large marginal gain, the less willing it is to deviate from its

selection.

3. Another way to set wi is to consider the variation of objective values around the point

xgi . Specifically, given the position xgi of robot i corresponding to its greedy selection,

we uniformly sample a set {xi1, . . . , xiW |
∥∥xij − xgi∥∥ ≤ 1, j = 1, . . . ,W} and define the

weight for robot i as

wi = f(xgi )− min
x∈{xi1,...,xiW }

f(x).

We will refer this approach as Weight3 in the following. The intuition here is that a robot

will check the drop of the number of targets observed if he deviates from its selection. If

the drop is large, then it is less willing to deviate from its selection.

It should be noted that after setting wi to be some non-negative constant, Problem 2 becomes a

standard QP problem and can be solved using commercial solvers such as Gurobi.

2.5.0.1 Simulation Results

All experiments were performed on a Windows 64-bit laptop with 16 GB RAM and an

8-core Intel i5-8250U 1.6GHz CPU using MATLAB with Gurobi 9.0 [52], which can deal with

both convex and non-convex quadratic constraints. We test three algorithms in this section: the

proposed algorithm, the greedy algorithm without considering communication constraints, and

SGG. Here the greedy algorithm corresponds to the greedy selection at the beginning of each
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epoch without considering communication constraints, which can be viewed as an empirical up-

per bound of the team performance at each epoch. We compare with such results to show that the

deviation minimization part of the proposed algorithm will only slightly reduce the performance

of the team from the upper bound. The data on SGG is collected in the following way: we initial-

ize the robots and targets in the same positions as that in the test setup of the proposed algorithm

and run SGG to track targets. We use the results of SGG as a baseline.

(a) (b)

(c) (d)

Figure 2.5: Screenshots of the target tracking process. There are eight robots tracking moving
targets. The bottom right small graph in each figure show the network topology of the team at
the start of that epoch. Sub-figures (a)-(d) show how the topology evolves over time.

As shown in Fig. 2.6, the proposed algorithm can achieve the 90% of the performance

of the pure greedy strategy. Moreover, the proposed algorithm on average can track ten percent

more targets compared to SGG. As for three ways to select weights in deviation minimization

problem, they have similar performances. Readers are referred to multimedia submission for an

animation that shows the connectivity during operation of the team and one screenshot is shown

in Fig. 2.5.

24



Weight 1 Weight 2 Weight 3
0

5

10

15

20

25
A

ve
ra

ge
n

u
m

b
er

of
ta

rg
et

s
tr

ac
ke

d
p

er
ep

o
ch

5 robots and 80 targets

Proposed Upper Bound (Greedy) SGG

(a)
Weight 1 Weight 2 Weight 3

0

10

20

30

40

50

60

A
ve

ra
ge

n
u

m
b

er
of

ta
rg

et
s

tr
ac

ke
d

p
er

ep
o

ch

8 robots and 140 targets

Proposed Upper Bound (Greedy) SGG

(b)
Weight 1 Weight 2 Weight 3

0

20

40

60

80

100

A
ve

ra
ge

n
u

m
b

er
of

ta
rg

et
s

tr
ac

ke
d

p
er

ep
o

ch

12 robots and 200 targets

Proposed Upper Bound (Greedy) SGG

(c)

Figure 2.6: Average number of targets observed over each epoch. (a) There are 5 robots and
80 targets. (b) There are 8 robots and 140 targets. (c) There are 12 robots and 200 targets.
The proposed algorithm, greedy algorithm without considering communication at each epoch,
and SGG are denoted in blue, orange, and greed bars respectively. The black line above bars
represent one standard deviation.

2.6 Conclusion

In this chapter, we propose a problem named Communication-aware Submodular Maxi-

mization (CSM) for a class of multi-robot task planning and propose a heuristic algorithm con-

sisting of two stages, topology generation and deviation minimization, to solve CSM. The per-

formance of the proposed heuristic algorithm is empirically evaluated in Section 2.5.

We plan to further our research by finding bounded-approximation algorithms for the pro-

posed problem. We will explore in two directions. The first direction to consider some special

cases of the CSM problem. For example, if the all robot share the same reachable points for

the next epoch, the problem becomes a assignment problem over a graph. The research question

then is that whether we find some approximation algorithm with performance guarantee for such

a case. The second direction is to try to identify the approximation ratio of the proposed heuristic

algorithm. In the proposed two-heuristic heuristic algorithm, the operations in the second stage

will destroy the property of the greedy algorithm. One question we are interested in is whether

we can quantify the deviation of the second stage causes to the solution of the greedy algorithm.
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If we can achieve this, some approximation ratios for the proposed heuristic algorithm can be

found.
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Chapter 3: Multi-Robot Information Gathering with Partial Knowledge of the

environmental model: Non-Bayesian Case

3.1 Overview

In this chapter, we consider the multi-robot information gathering problem in uncertain en-

vironments where some robots may fail during tasks, and we have only partial knowledge about

the failures: there are at most α failures. Once a robot fails, all the information collected as well

as the robot will be lost. Our goal is to find a coordinate strategy to make the robot team robust to

failures when they operate in such environments. We formulate such problems as robust submod-

ular maximization problems. Specifically, We introduce the Robust Multiple-path Orienteering

Problem (RMOP) where we seek worst-case guarantees against an adversary that is capable of

attacking at most α robots. We consider two versions of this problem: RMOP offline and RMOP

online. In the offline version, there is no communication or replanning when robots execute their

plans, and our main contribution is a general approximation scheme with a bounded approxima-

tion guarantee that depends on α and the approximation factor for single robot orienteering. In

particular, we show that the algorithm yields a (i) constant-factor approximation when the cost

function is modular; (ii) log factor approximation when the cost function is submodular; and (iii)

constant-factor approximation when the cost function is submodular but the robots are allowed
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to exceed their path budgets by a bounded amount. In the online version, RMOP is modeled as a

two-player sequential game and solved adaptively in a receding horizon fashion based on Monte

Carlo Tree Search (MCTS).

The Orienteering Problem (OP) is that of determining a path, whose length is less than a

given budget, from a given starting vertex that maximizes the total reward collected along the

path [53]. The reward depends on the vertices visited along the path. The OP1 naturally models

informative-path planning: a robot is tasked to gather as much information from the environment

as possible within a given time or energy budget. For example, in [26,54,55], ocean monitoring,

Attacked

Figure 3.1: Case study of monitoring a marine environment with aquatic robots. The robots are
tasked with finding informative paths to gather data. The darker the color of the path is, the more
valuable the path since it gathers information from a more important region. We investigate the
question of how the robots should plan their paths if we expect some of the robots to fail due to
adversarial elements or natural causes.

opportunistic surveillance, and 3D reconstruction tasks are formulated as the OP or its variants.

In general, the OP is NP-hard, but there are constant-factor approximation algorithms for many

variants [56]. This includes the Multiple-path Orienteering Problem (MOP) [56] where the goal

is to design paths for N robots such that the sum of the rewards collected by all the robots

is maximized. In this paper, we introduce the robust variant of OP. Specifically, we introduce

1Unless specified otherwise, OP refers to single robot orienteering.
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the Robust Multiple-Path Orienteering Problem (RMOP) motivated by scenarios where robots

operate in adversarial or failure-prone environments.

Figure 3.1 shows a motivating scenario where a team of underwater robots is tasked with

gathering data in an ocean. However, some robots in the team may fail to complete their paths

either due to adversarial attacks [57] or hardware malfunction [58]. If a robot fails, then the data

gathered by it is lost. Our goal is to provide efficient planning and coordination algorithms that

are resilient to such failures.

Building robot teams that are robust to adversarial attacks is emerging as an important

research area [59–62]. Our approach differs from classical fault-tolerant frameworks [63–65]

that focus on making individual robots robust to failures. Instead, we focus on the question of

how the team should coordinate their actions to improve redundancy in their plans such that even

if some robots fail, the overall performance of the team will not drop significantly. As such, our

work is completely different from the work on making individual robots robust.

In this chapter, we focus on the RMOP to make progress toward the aforementioned broader

goal. The RMOP seeks plans for a team of N robots that guard against worst-case failures. Of

course, in the worst case, all N robots may fail. To make it more meaningful, we study the

case where at most a given number α < N robots may fail. What we seek is to understand

how the performance of the team will be affected as a function of α. We consider two types

of RMOP, in both of which we seek to find a path consisting of multiple steps for each robot.

In the offline RMOP in which robots cannot communicate with each other or the base station

during tasks, our main contribution is an algorithmic scheme that uses a single robot OP solution

as a subroutine. Choosing an appropriate subroutine allows us to investigate three variants of

the original problem. In the general version, the reward collected by an individual robot is a
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submodular function of the vertices along the path. Submodularity is the property of diminishing

returns [66]. Many information gathering measures such as mutual information [33] and coverage

area [28] are known to be submodular. We also study special cases where the reward function

is strictly modular (i.e., additive) and where the budget constraint for each robot can be relaxed

by a bounded amount. In the online RMOP, we model the problem as a sequential two-player

game and propose an adaptive strategy based on MCTS, and the problem is solved in a receding

horizon fashion with the history of the observed attack taken into account.

The orienteering problem has been researched extensively by both theoretical computer

science and operations research communities. The review by Vansteenwegen [53] summarizes

various algorithms for OP and its variants. We highlight the results most closely related to our

work. Blum et al. [56] presented a polynomial-time 4–approximation for OP when the objective

function is modular. This result is then extended to yield a 5–approximation for the MOP assum-

ing all robots start at different vertices. If the reward function is submodular, Chekuri and Pal [67]

present a recursive greedy algorithm for a single robot that yields a O(log(OPT )) approximation

algorithm, where OPT is the reward collected by the optimal algorithm. The algorithm runs in

quasi-polynomial time.

Singh et al. [68] showed how to use OP and MOP for active information gathering to

learn a spatial model of the environment represented by Gaussian Processes. Their algorithms

sequentially find paths for each robot using the single-robot algorithms by Blum et al. [56] and

Chekuri and Pal [67] as subroutines. Atanasov et al. [69] recently presented a decentralized

version for multi-robot information gathering along similar lines as [68]. They use a submodular

objective function but solve a finite horizon planning problem as opposed to OP. However, none

of these works account for potential failures of the robots, as we do in RMOP.
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Recently, Jorgensen et al. introduced the Matroids Team Surviving Orienteers Problem

(MTSO) [26] which does account for individual robot failures. They assume that there is some

given probability of failure associated with every edge in the environment. The goal is to max-

imize the expected rewards while ensuring each path satisfies some survival chance constraints.

MTSO is appropriate when the failures of robots are random and follow a known distribution.

The version we study, the RMOP, accounts for worst-case failures which makes it better suited

when operating in adversarial conditions or in stochastic conditions when worst-case guarantees

are sought due to unknown probability distributions.

Our work builds on recent work on robust submodular maximization [23,37,70–73] which

selects sets that are robust to worst-case removal of some subset of items. The challenge in this

framework is to solve the trade-off between too much overlap, thereby not enough coverage (i.e.,

reward) and too little overlap, thereby not enough redundancy. The conceptual idea in these

papers is similar — the final solution consists of two subsets, one that has enough redundancy

to ensure robustness against worst-case removal and the other that has enough coverage to get

good overall performance. Orlin et al. [70] term the former as “copies” whereas it is called

“baits” in [23]. The robust submodular maximization formulation has been applied for multi-

robot, multi-target tracking in centralized [23] and decentralized settings [73] as well as for active

information gathering with multi-robot teams [37].

We seek similar robustness guarantees as in the works mentioned in the previous paragraph.

The key technical advancement we make is that these prior works solve a single-step selection

problem whereas we solve a multi-step planning problem. As a result, the single robot prob-

lem in the prior work can be trivially solved optimally (amounts to selecting the best amongst

a finite set of options), whereas in the RMOP the single robot problem (OP) itself is NP-Hard.
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While both [23] and [37] use their results for planning over a finite horizon, they make key

assumptions that are limiting. Schlotfeldt [37] considers the continuous counterpart of the com-

binatorial problem considered in this paper, and they formulate the problem under the optimal

control framework with one key assumption that the single robot, as well as multi-robot informa-

tion gathering problem (without attacks), can be solved optimally (c.f. Proposition 1). Zhou et

al. [23] repeatedly solve the one-step problem at each time step. Instead, we show how to use an

approximate solution to the OP to yield a bounded approximation solution to the combinatorial

problem RMOP.

3.2 Preliminaries

We use calligraphic fonts to denote sets (e.g. A). Given a set A, 2A denotes the power set

of A and |A| denotes the cardinality of A. Given another set B, the set A \ B denotes the set of

elements in A but not in B. Given a set V , a set function f : 2V 7→ R, and an element x ∈ V ,

f(x) is a shorthand that denotes f({x}). We use fA(B) to denote f(A ∪ B)− f(A).

We now define two useful properties of set functions.

Definition 3 (Normalized Monotonicity). For a set V , a function f : 2V 7→ R is called as nor-

malized, monotonically non-decreasing if and only if for any A ⊆ A′ ⊆ V , f(A) ≤ f(A′) and

f(A) = 0 if and only if A = ∅.

As a short hand, we refer to a normalized, monotonically non-decreasing function as simply

a monotone function.

Definition 4 (Submodularity). For a set V , a function f : 2V 7→ R is submodular if and only if

for any sets A ⊆ V and A′ ⊆ V , we have f(A) + f(A′) ≥ f(A ∪A′) + f(A ∩A′).
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Let G(V , E) be a graph. A path P in G is an ordered sequence of non-repeated vertices.

As a shorthand, we use P to denote both the path (ordered set) as well as the unordered set of

vertices along the path. When we use P as the path (ordered set), P(i) denotes ith vertex in P .

Let T = 2V denote the power set of V . Intuitively, T is the superset of all possible sets of vertices

that a robot may visit along its path. The cost of a path P , denoted by C(P), is the sum of the

edge weights along the path. We assume that the edge weights are metric. We study the rooted

version of the problem where the path for robot i, denoted by Pi, must begin at a specific vertex

vsi .

We consider the case that the reward function, g(P) : T → R+, of a single robot is a

monotone submodular function. We also study the special version where the function is modular

(i.e., the reward of a path is the sum of rewards of the vertices along the path).

Let S be some collection of N paths corresponding to the N robots in the team, S =

{P1,P2, . . . ,PN}. The team reward collected by any subset S ′ ⊆ S is given by,

f(S ′) = g

( ⋃
Pi∈S′

Pi
)
. (3.1)

Note that the reward function of the team f(S ′) is a submodular function irrespective of whether

the single robot reward function g(Pi) is submodular or not. Multiple robots can visit the same

vertex, but only one visit is accounted for when computing the reward of the team. That is, there

can be no double counting of the rewards. We are now ready to define our problem formally.
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3.3 Problem Formulation—Offline RMOP

Problem 3 (Offline RMOP). Given a metric graph G(V , E), N robots with starting positions

{vs1 , vs2 , . . . , vsN}, budget constraint B, a robot reward function g(P) : T → R+, and a team

reward function f as defined in Equation 3.1, the offline Robust Multiple-Path Orienteering Prob-

lem seeks to find a collection of N paths, S = {P1, . . . ,PN} that are robust to the worst-case

failure of α robots:

max
S⊆T

min
A⊆S

f(S \ A)

s.t. |A| ≤ α, 0 < α < N

|S| = N

C(Pj) ≤ B.

(3.2)

where additionally vsj must be the starting vertex when constructing a path Pj for robot j.

The offline RMOP is suited to model the scenarios where we need to plan paths for all the

robots before they are deployed and they cannot communicate with the base station to transmit

collected rewards or with each other to replan during execution. Therefore, once a robot fails

during the task, the reward of the whole path of that robot will be lost, which corresponds to the

set removal of paths, and the team cannot adapt to the failures of robots. One practical example

of the offline RMOP is the naval mine countermeasure mission [74], in which a team of robots is

deployed to detect undersea mine information. In such a case, reliable communication is usually

not available, and the robot may fail due to mines or other adversaries. Mathematically, the offline

RMOP can be interpreted as a two-stage perfect information sequential one-step game, where the

first player (i.e., the team of robots) chooses a set S, and the second player (i.e., the adversary),
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knowing S, chooses a subsetA to remove from S. We seek worst-case guarantees — in practice,

the adversary may not know the paths for each robot. By playing against this stronger adversary,

we guarantee that the performance against a weaker one will be even better. We evaluate this

empirically by considering attack models other than the worst one.

The adversarial model considered in this paper is the same as that in prior work on ro-

bust submodular optimization [23, 71, 72, 75]. However, the offline RMOP is even harder since

even at the single robot level, the optimization problem we need to solve (i.e., OP) is NP-Hard.

Nevertheless, we present a constant-factor approximation algorithm for this problem next.

3.4 Algorithm for Offline RMOP

In this section, we present the general algorithm to solve the offline RMOP (Algorithm 3).

The algorithm uses a generic subroutine for solving OP. In the next section, we show examples

of three subroutines that can be used and show how they affect the performance of the algorithm.

Our algorithm builds on those in [71, 75]. The key idea in these algorithms is to construct

two sets S1 and S2 such that S1 ∪ S2 is a feasible approximation solution to the corresponding

problem and f(s1) ≥ f(s2), ∀s1 ∈ S1, s2 ∈ S2. The main difference in our work lies in how

these sets are computed. The problem in [71] considers only choosing elements from a given

set, with a cardinality constraint. The algorithm in [71] finds S1 by sorting the elements and

finds S2 by greedily adding elements with the largest marginal gain. A more general problem,

with matroid constraints instead of a cardinality constraint, in considered in [75]. To find S1

from a given ground set V , the algorithm loops over all elements in V and adds elements to S1 by

considering the value of a single element (f(y) in [75] line 3) and checking the matroid constraint
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(lines 4-5 in [75]). To find S2, the algorithm in [75] loops over V \ S1 and adds elements to S2

incrementally by considering the marginal gain and matroid constraints (lines 10-12 in [75]). In

contrast, in our problem, the ground set V itself (the set of all paths) is not readily available.

Enumerating this ground set is infeasible. Instead, we can use the set of all vertices in the graph

as the ground set. However, finding one path that maximizes the reward function is an NP-Hard

problem. Thus, the simple selection step that can be solved just by looping over all elements (e.g.,

line 3 [75]) requires solving an NP-Hard problem. We first let all robots to solve OP individually

with a bounded approximation algorithm (lines 2-5). Then, we find a candidate set for S1 by

sorting (lines 8-9). Next, we use a Sequential Greedy Assignment (SGA) paradigm to construct

a candidate set for S2. To guarantee f(s1) ≥ f(s2),∀s1 ∈ S1, s2 ∈ S2, we use the while loop to

improve the candidate sets for S1 and S2.

Before we describe the algorithm, we present additional notation. If S ′ is a set of N ′ ≤ N

paths, then letR(S ′) denote the set of corresponding N ′ robots whose paths are contained in S ′.

We use A∗(S) ≜ argminA f(S \A) to denote the worst-case set of paths that are removed from

a given set of path S. Therefore, S \ A∗(S) denotes the set of paths that are not attacked from S

with |A∗(S)| ≤ α.

The algorithm consists of two main steps: first, it calls a subroutine for solving OPN times

to compute a path for each robot independently. It then chooses α paths (denoted by S1) with

the highest individual rewards without considering overlap with other robots; Second, it uses

sequential greedy assignment to find paths for the rest of the robots (denoted by S2) by querying

the OP subroutine N − α times. The while loop is used to maintain an invariant that the paths in

S1 are always better than the paths in S2.

As described earlier, there is a tradeoff between redundancy and coverage in RMOP. The
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Algorithm 3: Algorithm for Problem 3
Input : Per problem 3 requires following inputs:

• set of robotsR = {1, . . . , N}

• metric graph G

• starting vertices {vs1 , vs2 , . . . , vsN}

• number of maximum potential attacks α and budget B

Output: Set S of paths for each robot
1 S1 ← ∅,S2 ← ∅,M← ∅
2 for i← 1 to N do
3 Pi ← OP (G, vsi , B)
4 M←M∪ {Pi}
5 end
6 flag← True
7 while flag do
8 Sort elements inM such that M̃ = {P ′

1,P ′
2, . . . ,P ′

N} and
f({P ′

1}) ≥ f({P ′
2}) ≥ . . . ≥ f({P ′

N})
9 S1 ← {P ′

1,P ′
2, . . . ,P ′

α}
10 //extract starting positions for the rest of the robots ṽs ← {vsj |∀j ∈ R \ R(S1)}
11 //Sequential greedy assignment S2 ← SGA(G, ṽs, B)
12 //while loop control
13 if f(Pi) ≥ f(Pj), ∀Pi ∈ S1,Pj ∈ S2 then
14 flag ← False
15 else
16 Find all robots j ∈ R(S2) such that
17 ∃i ∈ R(S1), f({Pj ∈ S2}) > f({Pi ∈ S1})
18 Replace the path stored inM corresponding to robot j with the better path

found when constructing S2
19 end
20 end
21 S ← S1 ∪ S2

two sets of paths are constructed so that S1 adds redundancy and S2 adds coverage, together

yields a provably good solution for RMOP. We explain each step in Algorithm 3 next.

Constructing S1 Each of the α paths in S1 are better than those in S2. The paths in S1 may

overlap with each other and also overlap with those in S2. Thus, these paths serve to add redun-
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dancy to the team. Constructing the best α paths with respect to f itself is NP-hard. Therefore,

Algorithm 3firstly solves the orienteering problem for each robot independently and stores inM

the (approximately optimal) paths for individual robots (lines 2–5). Then Algorithm 3sorts the

paths inM based on their collected rewards (line 8) and chooses the α best paths to be S1 (line

9).

Constructing S2 After finding S1, Algorithm 3 needs to find the best paths for the rest of robots

R \ R(S1). Unlike S1, here the algorithm explicitly considers overlap when finding the paths.

Thus, S2 serves to add coverage to the solution.

However, selecting optimal paths for R \ R(S1) is a multiple-path orienteering problem

and is also NP-hard. Therefore, Algorithm 3 approximates the solution by employing the se-

quential greedy algorithm (line 11). For completeness, we present the pseudocode for SGA in

Algorithm 4.

Specifically, for robots in R \ R(S1), Algorithm 4 finds a path using an approximation

algorithm for OP (line 4). Then, Algorithm 4 sets the reward for the vertices visited by that robot

to be zero (lines 6–8). This process repeats until we find a path for all robots. Here we implicitly

assume that there is at least one path for each robot satisfying the budget constraints.

The paths in S1 ∪ S2 form the solution to RMOP. However, we also have an outer while

loop which we explain next.

Invariant Our analysis requires the paths in S1 and S2 to have the following property: f({Pi}) ≥

f({Pj}), ∀Pi ∈ S1,Pj ∈ S2. This condition is trivially met if the single robot problem has to just

choose the best amongst a fixed set of trajectories as in the prior work [23, 71]. However, when
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solving RMOP, we employ a subroutine for solving OP which gives us the paths in S1 and S2.

Since the subroutine uses an approximation algorithm for OP instead of an exact optimal one, we

cannot guarantee that this invariant holds. For example, if the subroutine uses randomness, then

running the same algorithm twice may give different results. In any case, all we can guarantee is

that the paths found by the subroutine will be no more than a constant from the optimal.

We fix this problem by utilizing a while loop (lines 7–20). When the condition of the while

loop holds (lines 13–15), the loop flag is set to be false and the while loop terminates. Otherwise

(lines 16–19), Algorithm 3 will find those robots that violate the above inequality and update their

corresponding paths in the set M. Recall that M is used to store the best path corresponding

to each robot. Then, while loop will restart to construct S1 using the updatedM and S2 for the

remaining robots, again. We show that this loop will eventually terminate.

Corollary 1. The while loop in Algorithm 3 will terminate in a finite number of steps.

Proof. If the flag is not set to false after an iteration of the while loop, then it must mean that at

least one new path found when constructing S2, say for robot j, is better than some path in S1.

Suppose this better path is P ′
j . Note that the setM includes a path for the robot j, say Pj . Since

S1 consists of the best α paths inM and Pj /∈ S1, then it must mean that the path P ′
j is strictly

better than Pj . Thus, after every iteration of the while loop, if the flag is not set, then at least one

path in M has improved. For each robot given a fixed budget, there is a maximum amount of

reward that it can collect. We cannot keep increasing the rewards of paths inM. Therefore, the

while loop must terminate after finite iterations. ■

Remark 1. In practice, the loop in Algorithm 3 typically terminates after just one iteration. Paths

in S1 are found without considering overlap. On the other hand, when solving SGA the robots
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Algorithm 4: Sequential Greedy Assignment
1 Function SGA(G, vs, B):

Input :
• A graph G representing the environment

• Budget B for each robot

• Starting positions vs

Output: a collection A of paths
2 A ← ∅, G′ ← G,N ← length(vs)
3 for j ← 1 to N do
4 Pj ← OP (G′, vsj , B);
5 A ← A∪ {Pj}
6 foreach v ∈ Pj do
7 Set the reward of v ∈ G′ to be zero
8 end
9 end

10 return A
11 end

find their paths by taking into account overlap with the previously found paths. The conditions in

the latter are a subset of the former. Furthermore, none of the three subroutines that we employ for

OP include any randomness. Therefore, it is unlikely that the paths in S2 will be better than that

in S1. As such, it is less likely that the while loop will take more than one iteration. Nevertheless,

we give the full algorithm for completeness.

So far, we have not discussed the subroutine used to solve OP. In Sec. 3.7, we present the

analysis of the algorithm and then present the three subroutines.

3.5 Problem Formulation—Online RMOP

In the offline RMOP, we consider the scenario in which robots cannot communicate with

each other or the base station when they execute tasks. As a result, once a robot fails or is

attacked, we will lose all the rewards collected by that robot, i.e., lose the path and we corre-
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spondingly plan for the worst-case attacks. In the online RMOP, we consider the scenario where

robots can communicate with the base station to send collected rewards during execution and

with teammates to replan in response to the attacks. Attackers’ behaviors are assumed to be the

same: there are α attacks in total, and the attacks can happen at any node on the map. But the

difference is that for the offline case, it doesn’t matter when the robot fails because we will lose

the whole path as long as it fails. For the online case, when the robot fails, it will influence how

much reward robots can collect. For example, if a robot is attacked at the very first node, we can

get only the reward of that particular node; but if the robot is attacked when it almost uses up the

budget, we can collect most reward along its path. Therefore, the attacker’s behaviors are char-

acterized by two types of decision variables: when to attack and which to attack. Without loss of

generality, we assume that it takes one unit of time (not necessarily the same amount of budget)

to traverse one edge of the graph such that robots are able to replan synchronously. Such a graph

can be obtained by carefully designing motion primitives and discretizing the environment or by

adding some virtual nodes on the edges of a graph. With this assumption, the online RMOP can

be formulated as follows.

Definition 5 (Attacker behavior set). An attack behavior set A = {(t1, r1), . . . , (tβ, rβ)} is a set

of tuples, each of which consists of two elements: the first element indicates when to attack and

the second element indicates which robot to attack.

Problem 4 (Online RMOP). Given a metric graph G(V , E), N robots with starting positions

{v10, v20, . . . , vN0 }, budget constraint B, a robot path reward function g(P) : T → R+, the online
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Robust Multiple-Path Orienteering Problem seeks to find a collection of N paths

S =


P1 = {v10, . . . , v1m, . . . , v1end}
...

PN = {vN0 , . . . , vNm , . . . , vNend}


that are robust to the worst-case failure of α robots:

max
S⊆T

min
A={(tj ,rj)}

g(
N⋃
i=1

Pi \
|A|⋃
j=1

Prj [tj + 1 : end])

s.t. |A| ≤ α, 0 < α < N

|S| = N

C(Pj) ≤ B,

(3.3)

where A = {(t1, r1), . . . , (t|A|, r|A|)} is an attacker behavior set; Prj [tj + 1 : end] is the path

segment of robot rj’s path Prj from the node Prj(tj + 1) to the node Prj(end) ; additionally vj0

must be the starting vertex when constructing a path Pj for robot j.

Intuitively, in Problem 4, we want to find paths for robots while α failures in total can

happen at any nodes along the paths. If a robot fails at a particular node P(t), then it cannot

collect reward after that node anymore. We model this problem as a discrete, sequential, two-

player zero-sum game between the attackers and the robots. Since robots can communicate with

each other, we aim to find one adaptive planning strategy that can adapt to the attacks.

Proposition 1. It’s not the optimal strategy for attackers to always launch all attacks at the very

first step.
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Figure 3.2: One example to show that rational attackers will not always launch attacks at the first
step. Four robots start from node a, and each has a budget of 4. There are α = 2 attacks in the
environment. If attackers launch all attacks at the first step, the robots can collect 35 rewards
in total by planning path (a, b, c, d, e) and (a, b, c, f, g) while robots can collect at most 25 if the
attackers choose to wait until they know how robots move after node c.

Proof. One example is given in Fig. 3.2. ■

It should be noted that a rational attacker will not always launch attacks at the first step.

For example, in Fig. 3.2, there are four robots that are initially located in node a, and each of

them has a budget of B = 4. There are α = 2 attackers in the environment. If the attackers

attack two robots at the first step. The surviving two robots can certainly collect 35 rewards in

total by planning path (a, b, c, d, e) and (a, b, c, f, g). By contrast, if the attackers choose to wait

until they know how robots move after node c, the robots can collect at most 25 rewards. Here

is the explanation. After four robots reach node c and all survive, the best strategy for robots is

to send three of them to follow the path (c, d, e) and another robot to follow (c, f, g) considering

that there are still α = 2 attacks. In the worst case where the robot following (c, f, g) and one

robot following (c, d, e) got attacked, robots can collect 25 rewards in total. If robots don’t adopt

the best strategy, they will get less than 25 rewards in the worst case. In the next section, we

demonstrate how to find the optimal solution for this game using two-player MCTS.
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3.6 MCTS for Online RMOP

MCTS is an approach for finding optimal actions by randomly selecting samples from

search space and incrementally building the search tree [4] and is widely applied in robotics

applications, including scouting [76], active parameter estimation [77], environment monitoring

[78], and multi-robot active perception [79]. As shown in Fig. 3.3, there are four basic steps in

each iteration of an MCTS process: selection, expansion, simulation, and backpropagation [80].

In the paper, we model the Problem 4 as a sequential, discrete two-player game and we

adopt the MCTS algorithm to solve the game in an online fashion. At each step, attackers use

their strategies to take one action first, and then robots take one action. Intuitively, it means that

attackers observe the states of robots to decide whether to attack or not, and then robots respond

to that. To choose one action, the robots will incrementally grow the search tree with some

computational budget and then select one action to take from the root of the search tree based on

the average reward of each action. Such a process continues until all robots run all of the budgets.

When our algorithm grows the search tree, the state of each robot is a tuple s = (v, I)

where v ∈ V represents the current position of the robot and I is an indicator on whether the

robot has been attacked (I = 1) or not (I = 0). The joint state of the team is the product of

the individual states of robots and is stored in each node of the search tree. Robots and attackers

alternate turns in growing the tree. When it’s the robots’ turn, they will decide the transition of

the positions while the attackers can decide the value of the indicator state in the attackers’ turn.

Once one indicator state is set to be one, which means a robot is attacked, it will remain one

for the rest of the game, and that robot cannot move anymore, i.e., the only action that the robot

can take in the game is to stay there. Similarly, if a robot has run out of budget, the only action
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available is to stay in the current position. It should be noted that we present Algorithm 5 from

the perspective of robots but attackers can also use similar strategies. In the following, we refer

to two-player MCTS (if there are two alternating turns in the search) as MCTS with adversaries

and one-player MCTS without considering opponents as naive MCTS. Details of the Algorithm

5 are given below.

1. Selection (Line 4 in Algorithm 5; Line 1-11 in Algorithm 6): Starting from the root node,

a selection procedure is recursively applied until some leaf node is reached. In each recur-

sion, a child node is selected based on Upper Confidence Bound for Trees (UCT) Kocsis

and Szepesvári [81]. There are two parts to the UCT value: exploitation and exploration.

The exploitation part corresponds to the average rollout reward obtained and the explo-

ration part is decided by the number of times that the node has been visited (n(v′)) and

the number of times that the current node’s parent has been visited (np). If a node is less

visited, the exploration value will increase which encourages the selection of that node. It

should be noted that if it’s the robots’ turn robots will select the node with the highest UCT

value (Line 6) while the attacker will select the node with the lowest UCT value if it’s the

attacker’s turn (Line 8).

2. Expansion (Line 5 in Algorithm 5; Line 12-19 in Algorithm 6): One (or more) child nodes

are added to the tree based on the available actions. If the node has reached the terminal

level, e.g., running out of budget, the current node will be returned (Lines 13-15). Other-

wise, add all children of the current node to the tree and return the first child node (Lines

15-18).

3. Simulation (Line 6 in Algorithm 5; Line 20-29 in Algorithm 6): A rollout is conducted

45



Selection Expansion Simulation Backpropagation

Default 

PolicyTree 

Policy

Figure 3.3: One iteration of the general MCTS approach [4].

Algorithm 5: Monte Carlo Tree Search
1 Function MCTS(s1, s2, . . . , sN):

Input : Initial states of robots, which include information on attacks.
Output: A search tree

2 Create a tree with root node vt0 with initial states (s1, . . . , sN)
3 while computational budget not used up do

// selection
4 vtsel ← Selection(tree, vt0)

// expansion
5 vtexp ← Expansion(tree, vtsel)

// rollout
6 Reward← Simulation(tree, vtexp)

// backpropagation
7 Backpropagation(tree, Reward, vtexp)
8 end
9 return tree

10 end

from the chosen node using the default policy until some terminal condition is met. The

obtained reward will be returned.

4. Backpropagation (Line 7 in Algorithm 5; Line 30-34 in Algorithm 6): The simulation

result is propagated back to the root and update node information along the propagation

path.
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Algorithm 6: Monte Carlo Tree Search Subroutines
1 Function Selection(tree, v):
2 if level(v) = TERMINAL then
3 return v
4 end
5 if turn(v) = ROBOT then

// np is the number of times that the parent of v has been visited
6

v ← argmax
v′∈children(v)

Q(v′)

n(v′)
+ c

√
2 lnnp
n(v′)

7 else
8

v ← argmin
v′∈children(v)

Q(v′)

n(v′)
− c
√

2 lnnp
n(v′)

9 end
10 return Selection(tree, v)
11 end
12 Function Expansion(tree, v):
13 if level(v) = TERMINAL then
14 return v
15 else
16 Add all child nodes of v to Tree
17 return the first child node
18 end
19 end
20 Function Simulation(tree, v):
21 while level(v) ̸= TERMINAL do
22 if turn(v)=ROBOT then
23 v ← RobotDefaultPolicy(v)
24 else
25 v ← AttackerDefaultPolicy(v)
26 end
27 end
28 return CollectReward
29 end
30 Function Backpropagation(tree, Reward, v):
31 while v ̸= NULL do

// update total reward value tree.v.Q← tree.v.Q+Reward
32 tree.v.n← tree.v.n+ 1

33 end
34 end
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3.7 Performance Analysis

In this section, we quantify the performance of the proposed Algorithm 3. We first present a

new analysis for the Sequential Greedy Assignment (SGA) and then show the performance bound

for our algorithm. The performance is based on the notion of curvature of the set functions.

Definition 6 (Total Curvature). Consider a finite ground set V and a monotone submodular set

function h : 2V 7→ R. The curvature of h is defined as

kh = 1−min
v∈V†

h(V)− h(V \ v)
h(v)

, (3.4)

where V† = {v ∈ V | h(v) > 0}.

The curvature takes values 0 ≤ kh ≤ 1 and measures how far h is from modularity. When

kh = 0, h is modular since for all v ∈ V , we get h(V)−h(V \{v}) = h(v). On the other extreme,

when kh = 1 there exists some element v that makes no unique contribution to the rest of the set,

since we get h(V) = h(V \{v}). We assume that the curvature kg of the reward function and that

kf of the objective function is strictly less than 1. This is reasonable since it implies every vertex

and path in the environment makes some non-zero unique contribution over the rest.

We first analyze the SGA and then use that analysis to prove the performance bound of our

algorithm.

3.7.1 Sequential Greedy Assignment

SGA was first proposed in [68] to solve the MOP. Note that the MOP is the same as RMOP

if we consider α = 0. SGA solves the problem by finding the path for the ith robot in the ith
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iteration, by considering the paths found in the previous i− 1 iterations. As part of our analysis,

we also find a more general approximation bound for SGA, given in Theorem 1, generalizing the

one in [68] using the curvature of the submodular function.

We assume that there is an η ≥ 1 approximation algorithm for submodular OP.

Theorem 1. Algorithm 4 (SGA) gives a kf + η approximation for MOP, where η is the approxi-

mation factor for OP and kf ∈ [0, 1] is the total curvature for the reward function f(·).

The proof of Theorem 1 is given in the appendix. Note that this bound kf + η generalizes

the 1 + η bound in [68]. We now use this result to prove our main result.

3.7.2 Analysis for Algorithm 3

Theorem 2. Algorithm 3 returns a set S such that

f(S \ A∗(S)) ≥
max[1− kf , 1

α+1
, 1
N−α ]

kf + η
f ∗

where η, kf are the same as that defined in Theorem 1; kf is the curvature of objective function

f ; and A∗(S) is the optimal removal set of S; and f ∗ is the optimal solution to RMOP.

The omitted proofs can be found in the appendix. Our proof builds on the ones in [71, 75].

The main difference is that the proof in [71,75] is suitable for picking a subset of elements directly

from a given ground set, while our proof (and algorithm) deals with finding the set of paths, each

of which consists of several elements (vertices). All the proofs relies on the property that for any

s1 ∈ S1 (bait set), s2 ∈ S2 (reward set), the inequality f(s1) ≥ f(s2) is always satisfied. Besides,

we need to consider the fact that the single robot submodular OP, which is NP-hard, can only be
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solved approximately whereas this step is trivial in the earlier work.

Now, we describe the three subroutines that can be employed for solving OP. We start with

the most general case where the reward function g is submodular and the budget for each robot

must be strictly enforced.

Corollary 2. If recursive greedy algorithm [67] is used as a subroutine to solve OP and addi-

tionally each robot has a predefined terminal vertex, then η in Theorem 2 equals to log(OPT ).

Here OPT is the reward collected by the optimal algorithm. The running time of the resulting

algorithm is quasi-polynomial since the running time of recursive greedy is quasi-polynomial.

Next, consider the variant where g is still submodular, but each robot is allowed to exceed

its predefined budget by a bounded amount.

Corollary 3. If General Cost-Benefit (GCB) approximation algorithm [82] is used as a subrou-

tine for OP and we are allowed to relax given budget to ψ(n)Kc

β(1+β(Kc−1)(1−kc))B, then η in Theorem

2 equals to 2(1 − e−1)−1. Here, ψ(n), β,Kc, kc as defined in [82]. The GCB algorithm runs in

polynomial time.

Finally, consider the case where g is modular. Here, we get the strongest guarantee with no

relaxations to RMOP.

Corollary 4. If the reward function g is modular, then using the approximation algorithm for

OP [56] yields an η = 4 in Theorem 2. The running time of the algorithm [56] is polynomial.

3.7.3 Running Time

MCTS is an anytime algorithm and can converge to the optimal solution as computational

time increases. In applications, the running time is decided by the available computational budget.
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Next, we will mainly focus on the running time analysis of the proposed Algorithm 1.

Let tOP be the time needed to solve a single robot OP and tf be the time to evaluate the

submodular function of a robot path. Suppose that the basic operations like sorting and compar-

ison take one unit of time. Line 2-5 involves solving OP for N times, and it takes O(NtOP ).

Inside the while loop, for line 8, the sorting will take O(N lgN), and evaluation of the submod-

ular function will take O(Ntf ). Lines 9 and 10 take constant time. SGA (line 11) will take

O((N − α)tOP ). Line 13-19 involves O((N − α)α) comparisons and takes O(Ntf ) to evaluate

submodular functions. Since sorting and comparing operations is much faster than computing OP

and evaluating submodular functions, the overall running time inside the while loop will be dom-

inated by O(N(tf + tOP )). Suppose that the while loop terminates after nw loops, which can be

upper-bounded as follows. Let ni be the number of feasible paths for robot i and np = maxi ni.

By Corollary 1, the while loop will surely terminate when the reward of each path inM cannot

be increased anymore. The path inM corresponding to robot i can be improved at most ni times.

As a result, the total number of while loops can be upper-bounded by

nw ≤
N∑
i=1

ni ≤ npN.

Therefore, the running time for the whole while loop can be upper-bounded byO(npN2(tOP+

tf )). It should be noted that as mentioned in Remark 1, nw is usually very small in practice.

Combining with the running time for lines 2-5 (O(NtOP )), the running time of the algorithm is

O(npN
2(tOP + tf )).

51



3.8 Case Study for Offline RMOP: Ocean Monitoring

In this section, we validate the performance of Algorithm 3 through numerical simulations.

In particular, (1) we compare the performance of our algorithm with two baseline strategies; (2)

demonstrate the robustness of the proposed algorithm against attacks that are not necessarily the

worst-case ones; and (3) investigate the running time as a function of the size of the input graph

and the number of robots. All experiments were performed on a Windows 64-bit laptop with 16

GB RAM and an 8-core Intel i5-8250U 1.6GHz CPU using Python 3.7.

3.8.1 Simulation Setup
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Figure 3.4: Case study of monitoring macroalgal blooms using N = 6 robots assuming α =
3 failures. Colored dots indicate locations to be monitored along with their importance (i.e.,
rewards). Red crosses indicate worst-case attacks found using brute force. Paths returned by the
proposed algorithm manage to cover one of the three important areas (lower left corner) while
SGA loses all three. The background map is part of the Yellow Sea, where green tides have
prevailed every summer since 2007.

Application case study We use the application of monitoring a marine environment for mapping

oil leaks, macroalgal blooms, or pH values. Specifically, as explained in [83], such tasks usually
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call for the collaboration of multiple sensors including satellites, which can provide coarse prior

information on the concentration of the phenomenon of interest, and mobile robotic sensors,

which can use the prior information for targeted data collection. Using this as motivation, we

consider a scenario where prior information from satellites (for example) can be used to define

an importance map of the environment to be monitored. Fig. 3.4 shows the setup which consists

of 96 vertices placed in the environment. The vertex’s color reflects the vertex’s importance,

which gives the reward associated with visiting that vertex. Here, the single robot function,

g(Pi), is a modular reward. The cost along the edges is the Euclidean distance between the

vertices. Assuming the unit speed of travel, the cost of a path reflects the travel time of the robot.

In all the instances, each robot is given a budget of B = 60 units.

Baseline algorithms Since we introduce RMOP in this paper, there is no other efficient algo-

rithm to compare the performance with directly. One option is to compute the optimal solution

(using, for example, brute-force enumeration) which quickly becomes intractable. Instead, we

choose two approximation algorithms for MOP, the non-adversarial version, as baselines. The

first one uses the sequential greedy assignment for all N robots (we refer to it as SGA) where the

path for robot i is based on the paths computed for robots 1 through i − 1. The second baseline

is the naive greedy algorithm where each robot naively (without considering the travel cost) and

greedily (without considering other robots) maximizes its rewards (we refer to it as NG).

For both SGA and the proposed algorithm, we use the GCB algorithm solving OP due to its

efficiency and ease of implementation. Specifically, we implement GCB using details provided

in [82]. When running GCB, we simply set the relaxed budget itself to be B.
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Attack models Our algorithm is designed to give performance guarantees against worst-case

attacks. However, in practice, we would like for any algorithm to be robust to not just the worst-

case attacks but also other attacks. Therefore, we evaluate two other types of attacks besides

worst-case attacks. The details are provided in the next subsection.

3.8.2 Results

Fig. 3.4 shows a qualitative example comparing our proposed algorithm and SGA with

N = 6 and α = 3. Not surprisingly, the six paths found by SGA do not have any overlap, but

the ones found by our algorithm do. As a result, the worst-case attack takes away all three robots

covering the important regions in SGA, whereas one of the three regions is still covered with our

algorithm. The worst-case attacks were computed using brute force.

Next, we present quantitative results. In all the following figures, the error bar shows the

variance of 20 trials where the starting robot positions are randomly chosen.
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Figure 3.5: Results for Algorithm 3 and the baseline algorithms. (a) Rewards after worst-case
attack with increasing α and N = 10. (b) Rewards after random α attacks and N = 10.

Fig. 3.5a shows the comparison between our algorithm for RMOP with SGA and NG as

α increases with N = 10. The bars show the rewards collected by the robots after attacks. Our
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algorithm returns paths that are slightly worse than SGA when α is small. This is not surprising

since our algorithm will have overlapping paths whereas SGA will not. NG is the other extreme

since each robot plans for itself which can lead to a high degree of overlap. Though our algorithm

has only comparable performance to SGA when α is relatively small, the reward gap is small. As

α increases, our algorithm gradually significantly outperforms SGA. For example, when α = 8

our algorithm yields a reward of 451 whereas SGA only yields 283 on average. As a result, in

general, the overall performance of the Algorithm 1 can be trusted especially for the large α.

Moreover, in practice, since we cannot decide the threshold above which Algorithm 1 signifi-

cantly outperforms SGA, we can run SGA and Algorithm 1 in parallel for offline planning if the

planning budget permits and select the one that returns higher rewards.

Specifically, for a given offline RMOP instance, we first use Algorithm 1 to find a solution

S and compute the paths left after worst-case failures S \ S(A∗). Then, we know that the lower

bound of the reward that we are guaranteed to obtain is f(S \S(A∗)). Similarly, we can use SGA

to compute a solution S ′ and find what is left S ′ \ S ′(A∗) after the worse-case failures. In theory,

f(S ′ \ S ′(A∗)) can be arbitrarily bad compared to f(S \ S(A∗)). In practice, f(S ′ \ S ′(A∗))

may be greater than f(S \ S(A∗)) in some cases. The mixed strategy is that if f(S ′ \ S ′(A∗)) >

f(S \ S(A∗)), we will use S ′ otherwise we will use S. In this way, we can not only preserve the

performance guarantee but also improve the empirical performance.

We conducted an experiment to compare SGA and the mixed SGA+Algorithm 3. The

result is shown in Fig. 3.6. As shown in Fig. 3.6a, the mixed strategy collects more reward on

average as compared to the SGA, across all α when the worst-case attack happens. We observe

the same trend for the random attack case shown in Fig. 3.6b.

Next, we evaluate the performance of our algorithm when the attack model does not match
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Figure 3.6: Results for the mixed strategy and the baseline algorithms. (a) Rewards after worst-
case attack with increasing α and N = 10. (b) Rewards after random α attacks and N = 10.
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Figure 3.7: Rewards after worst-case attacks of increasing sizes, |SA| ≤ α. Here the planner uses
N = 7 and α = 4.

the worst-case one assumed during planning. The goal is to verify the robustness of the algorithm

to other attack models. Fig. 3.5b shows the comparison between our algorithm and the two

baselines as α varies when the attacked robots are randomly chosen. Our algorithm still plans to

assume worst-case attacks. We observe the same trend with random attacks as with the worst-case

ones — as α increases, our algorithm outperforms SGA.

Fig. 3.7 shows results for the case where we construct paths assuming α = 4 robots

will be attacked but in practice only |SA| ≤ α robots suffer from worst-case attacks. SGA

performs better than our algorithm when the number of robots actually attacked |SA| is far from

the designed value of α. As the actual number of robots attacked increases and |SA| approaches
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Figure 3.8: Rewards after: (1) no attacks; (2) α out of N robots under worst-case attack; (3) α
out of N robots under random attack.

α, our algorithm outperforms SGA. This suggests that we need to have an accurate estimate of the

α before applying our algorithm, which is one limitation of this paper. However, in many robotic

applications, it’s possible to estimate α using historical data. Take the information gathering

in the marine environment for example. We can use the number of robots that survived in the

previous executions of the mission to estimate α.

Fig. 3.8 shows the evaluation when there are (1) no attacks; (2) worst-case attacks; and (3)

random attacks for four configurations of N and α. In all three cases, our algorithm still plans

the paths assuming worst-case attacks for the given value of α. When there are no attacks (first

set of bars in each subfigure), SGA outperforms our algorithm as observed in previous charts.

When worst-case attacks do happen (middle set of bars), the average rewards collected by the
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unattacked robots employing our algorithm are better than that of SGA. This is also the case

when the α attacked robots are chosen randomly (third set of bars). This trend holds for various

values of N and α as shown.
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Figure 3.9: Running time of Algorithm 3 and SGA

The running time comparisons between our algorithm and SGA are shown in Fig. 3.9. We

vary the number of robots as well as the size of the graph. Our algorithm takes longer than SGA

which is expected since it uses SGA as a subroutine. Nevertheless, we observe similar trends in

the runtime.

Discussion of Results The results show the proposed algorithm works in practice as intended.

As the number of attacked robots increases (either SA or α), it outperforms SGA. Furthermore,

we observe that the margin between our algorithm and SGA increases as the number of attacked

robots increases. Even when our algorithm finds worse paths than SGA, they are still comparable

to SGA and are significantly better than NG. We also observe that our algorithm is robust to the

actual attack models — even if the attacks are not the worst-case ones, we see similar trends.
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3.9 Case Study for Online RMOP: Cave Exploration

In this section, we validate the performance of Algorithm 5 for the online RMOP. In partic-

ular, we present a case study on information gathering in a tunnel and compare the performance

of the team when robots and attackers adopt different strategies.

3.9.1 Simulation Setup

Application case study We use the application of information gathering in a tunnel in which

we assume that some coarse prior information on the rewards of some locations is known, and

a team of robots is sent to gather detailed information but at most α attackers may attack them

at any locations. We also assume that communication, though maybe degraded, is available. We

use a tunnel map from the Defense Advanced Research Projects Agency (DARPA) Subterranean

Challenge and use an image skeletonization algorithm and corner detection algorithm [84] to

identify several points as locations of interest. Fig. 3.10a shows the setup which consists of 69

vertices placed in the environment. The color and the size of the node reflect the importance

of that vertex which gives the reward associated with visiting that vertex. The corresponding

graph abstraction is shown in Fig. 3.10b in which we assume that it takes one unit of time to

transit between two adjacent nodes. Even though adding some virtual nodes on the long edges

will make this assumption better justified, for simplicity, we ignore these virtual nodes. Here,

the single robot function, g(Pi), is a modular reward. The cost along the edge is the distance

between two adjacent nodes which is defined in the image coordinate as the shortest distance in

the skeleton image (739× 520 pixels). In this case study, there are four robots in the environment

and α = 2 attackers, and each robot has a budget of B = 500 units.
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We also test the performance of our strategy compared to other strategies in the randomly

generated graphs. We generate four 15 × 15 grid graphs, whose edges are of unit length, to

represent the environments. To account for the sparsity of the tunnel environment, half of the

edges are randomly removed in each graph, but the graph remains connected. For each graph, the

reward of each node is generated by sampling a number from one exponential distribution. We

use different rate parameters for different graphs. It should be noted that our algorithm doesn’t

depend on the particular distribution of rewards. We choose the exponential distribution just for

its non-negative support. In all instances, there are four robots in the environment and α = 2

attackers, and each robot has a budget of B = 8 units.

0.0

0.2

0.4

0.6

0.8

1.0

Norm
alized Reward

(a) Tunnel map (b) Tunnel graph

Figure 3.10: A tunnel map for a case study of information gathering. Colored dots with various
sizes indicate locations to be visited along with their importance, i.e., rewards. (a) A tunnel map
with 69 locations of interest. (b) The graph abstraction of the tunnel map. The tunnel map is
from the Defense Advanced Research Projects Agency (DARPA) Subterranean Challenge.

Strategies We consider two strategies for robots including MCTS with adversaries (Algorithm

5, two-player search, we refer it as MA) and naive MCTS (don’t consider failures/attacks, one-

player search, we refer it as M) and two strategies for attackers including MCTS with adversaries

(Similar to Algorithm 5, two-player search, we refer it as MA and RandomMove (randomly
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choose an available action each time, we refer it as R). Problem 4 is simulated as a two-player

game in which at each step attackers first use their strategy to choose one available action, and

then robots choose one action. Such a process continues until all robots run out of budget.

3.9.2 Results

0

12

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 34
35

36

37

38

3940

41

42

43

44

45

46

47

48

49

50

51
52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

vs0

0.0

0.2

0.4

0.6

0.8

1.0

(a) robot 0

0

12

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 34
35

36

37

38

3940

41

42

43

44

45

46

47

48

49

50

51
52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

vs1

0.0

0.2

0.4

0.6

0.8

1.0

(b) robot 1

0

12

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 34
35

36

37

38

3940

41

42

43

44

45

46

47

48

49

50

51
52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

vs2

0.0

0.2

0.4

0.6

0.8

1.0

(c) robot 2

0

12

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 34
35

36

37

38

3940

41

42

43

44

45

46

47

48

49

50

51
52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

vs3

0.0

0.2

0.4

0.6

0.8

1.0

(d) robot 3

Figure 3.11: A case study of information gathering in a tunnel with N = 4 robots assuming
α = 2 failures/attacks. Colored dots indicate locations to be visited along with their importance
(i.e., rewards). The red cross indicates the attacks found when robots and attackers play the
two-player sequential game, and both use MCTS with adversaries. vsi represents the starting
position of the robot i. Attackers launch the first attack when they observe that robots 0 and 3
reach node 34 and robot 2 reach node 25 at the fifth step and launch another attack later when
robot 1 reaches node 25 at the seventh step. (a) robot 0 follows the path 52 → 37 → 2 →
1 → 40 → 34 → 31 → 62 → 12 → 21 → 10 → 44 → 49. (b) robot 1 follows the path
52 → 37 → 2 → 1 → 51 → 1 → 40 → 25 and is attacked after two steps. (c) robot 2 follows
the path 52→ 37→ 2→ 1→ 40→ 25 and is attacked after three steps. (d) robot 3 follows the
path 52→ 37→ 2→ 1→ 40→ 34→ 31→ 62→ 12→ 21→ 10→ 5→ 68.

Fig. 3.10 shows the tunnel map from the DARPA subterranean challenge. Fig. 3.10a

is the original tunnel map with 69 locations of interest and Fig. 3.10b is the corresponding

abstract graph representation of the tunnel map. Fig. 3.11 shows a qualitative example of how

robots and attackers behave in a two-player sequential game when both of them use MCTS with

adversaries. In each step, attackers will first grow the search tree based on what they observed so
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far and choose an action. Then, robots will grow the search tree and choose one action. Such a

process continues until the budgets of robots are used up. As a result, robot 0 follows the path

52 → 37 → 2 → 1 → 40 → 34 → 31 → 62 → 12 → 21 → 10 → 44 → 49; robot 1

follows a path 52 → 37 → 2 → 1 → 51 → 1 → 40 → 25 and is attacked at node 25; robot 2

follows a path 52→ 37→ 2→ 1→ 40→ 25 and is attacked at node 25; robot 3 follows a path

52 → 37 → 2 → 1 → 40 → 34 → 31 → 62 → 12 → 21 → 10 → 5 → 68. As shown in Fig.

3.11, attackers launch the first attack when they observe that robots 0 and 3 reach node 34 and

robot 2 reaches node 25 because if they don’t attack at that moment robot 2 will move downward

to collect more rewards. Attackers launch another attack later when robot 2 reaches node 25 and

may collect more rewards from the nodes below.

Fig. 3.12 shows the results when robots and attackers use different strategies in four graphs.

Robots are randomly initialized in different vertices, and for each initialization, the two-player

game is conducted 20 times. The collected reward of the team is the sum of the rewards of nodes

visited. As shown in Fig. 3.12, when attackers use MCTS with adversaries (first two bars blue and

orange), robots can collect more reward on average if they also use the MCTS with adversaries

(orange) compared to the case where they use a naive MCTS without considering attacks. If

attackers use a random strategy (last two bars green and red), the MCTS with adversaries strategy

(red) is also on average better than a naive MCTS without considering attacks (green). Moreover,

robots can collect more rewards on average if attackers just select an action randomly (green and

red compared to blue and orange).

We empirically evaluate how the number of iterations influences the performance of MCTS.

As shown in Fig. 3.13, as the number of iterations increases, the average reward also improves.

However, the rate of improvement shows diminishing returns. When the number of iterations
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Figure 3.12: Collected rewards for different strategies in four different maps: (1) M-MA: robots
use one-player MCTS (M) and attackers use MCTS with adversaries (MA); (2) MA-MA: both
robots and attackers use MCTS with adversaries; (3) M-R: robots use one-player MCTS (M)
and attackers attacks randomly (R); (4) Ma-R: robots use MCTS with adversaries and attackers
attacks randomly (R).
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Figure 3.13: The effect of increasing the number of iterations in MCTS with N = 4 robots and
α = 2 failures/attacks.

increases from 500 to 10000, the average collected reward increases about 18% (from 229 to

271), suggesting that too many iterations may not be necessary in practice.

3.10 Conclusion

We introduced a new problem, termed the Robust Multiple-Path Orienteering Problem, in

which we seek to construct a set of paths for robots such that even if a subset of robots fails,

the rest of the team still performs well. We consider two types of RMOP. In the offline RMOP

in which robots cannot communicate with each other or the base station during the execution of

tasks, we provided a general approximation framework for the offline RMOP, which builds on
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bounded approximation algorithms for OP and the sequential greedy assignment framework. We

showed three variants of the general algorithm that use three different subroutines for OP and still

yield a bounded approximation for RMOP. In addition to theoretical results, we presented em-

pirical results showing that our algorithm is robust to attacks other than the worst-case ones. We

also compare our performance with baseline algorithms and show that our algorithm yields better

performance as more and more robots are attacked. In the online version, RMOP is modeled as a

two-player sequential game and solved adaptively in a receding horizon fashion based on Monte

Carlo Tree Search (MCTS). Simulation results show that MCTS with adversaries performs better

on average than the MCTS without considering attacks/failures.

64



Chapter 4: Multi-Robot Information Gathering with Partial Knowledge of the

Environmental Model: Bayesian Case

4.1 Overview

In this chapter, we consider using a heterogeneous team of Unmanned Aerial Vehicle

(UAV) and Unmanned Ground Vehicle (UGV) for long-term information gathering tasks, e.g.,

surveillance, and environment monitoring. The UAVs and UGVs need to finish the task cooper-

atively, and the UGVs need to recharge the UAVs as mobile rechargers periodically. Due to the

disturbances (e.g., wind) in the environment, the energy consumption of a UAV is stochastic, and

we need to take such disturbances into account in the planning phase. Generally, we are inter-

ested in such problems: given the distribution of the stochastic disturbances in the environment,

how to coordinate UAVs and UGVs to achieve high task performance and low failure rate (UAVs

being out of charge)? We studied this type of problem for a team consisting of one UAV and one

UGV as well as a team of multiple UAVs and UGVS.

4.2 Risk-aware UAV-UGV Recharging Rendezvous: One UAV and One UGV

Unmanned Aerial Vehicles (UAVs) are increasingly being sought in applications such as

surveillance, environmental monitoring, and agriculture due to their ability to monitor large areas
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in a short period of time. One bottleneck in practice that limits their application is the limited

battery capacity, especially for multi-rotor UAVs. One way to overcome this bottleneck is to use

a team of aerial and ground vehicles for such tasks, in which the UGV can work as a mobile

recharging station and will recharge the UAV during long-range operations. The key to achieving

such cooperation on the decision-making level is to design efficient routing algorithms that can

tell robots which task node to visit next, and when and where the UAV should be recharged.

Moreover, the rate of battery discharge of a UAV is stochastic in the real world. The routing

algorithm should be able to deal with such uncertainties, e.g., trade-off task performance with

failure risks.

In this section, we consider the cooperative routing problem with a team of a single UGV

that can work as a mobile charger and a single energy-constrained UAV, in which the UAV and

UGV need to complete a task by visiting task nodes distributed throughout the task area. The

UGV can only move on the road network, but the UAV can directly fly between any pair of

nodes (assuming it has enough charge). Given the task nodes to visit and the stochastic energy

consumption model of the UAV, we are interested in finding a routing strategy for the UAV and

the UGV such that the expected time to finish the task is minimized and the probability of running

out of charge is less than a user-defined tolerance. Such problems can be formulated within the

stochastic programming (SP) framework [85]. However, since we need to consider not only

routes but also recharge decisions and chance constraints, SP-based formulation would involve

too many variables, rendering the formulation only solvable for very small instances.

To this end, we propose to find the routing strategy in two decoupled phases. In the first

phase, a higher-level planner finds deterministic routes for the UAV and the UGV without con-

sidering stochasticity in energy consumption based on the task requirement. In the second phase,
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Rendezvous point

Energy consumption
P

Figure 4.1: An illustrative example of the rendezvous problem considered in this paper. When
the UAV and UGV are executing tasks, they need to decide when and where to rendezvous to
replenish the battery of the UAV while minimizing the travel time of the UAV and satisfying the
risk constraint induced by stochastic energy consumption. When they need to rendezvous, they
will deviate from their task and meet at a chosen rendezvous location.

a risk-aware planner will refine the routes generated from the previous phase to find when and

where to rendezvous to satisfy the chance constraint while minimizing the time to finish the UAV

task1. Our focus in this paper is mainly on the second phase. We formulate our risk-aware re-

finement as a Markov Decision Process (CMDP), in which the chance constraint is modeled as

the secondary cost in the constraint. To the best of our knowledge, this is the first CMDP-based

formulation for the UAV-UGV routing problems under energy consumption uncertainty. We use

Linear Programming (LP) to find the optimal stationary policy. We validate our formulation and

the solution in an Intelligence Surveillance and Reconnaissance (ISR) mission.

The routing of energy-constrained UAVs with stationary recharging stations or assistive

UGVs has been studied extensively [87–90]. Even with deterministic environmental changes or

stationary conditions, this problem can be reduced to the Traveling Salesman Problem (TSP),

[91, 92] making it an NP-hard problem.

The cooperative UAV and UGV routing problem has been studied from different perspec-

tives and thus received various formulations in the literature. It is most commonly formulated

1We focus on minimizing the time taken for the UAV task instead of the total time which would be the maximum
of the UAV and UGV travel times. If the UGV task takes longer than the UAV, the UGV simply executes the
remaining portion of its route once the UAV’s task is done. Therefore, optimizing the UAV time is appropriate.
Furthermore, In many applications [86], the UGV’s task is to act as a mobile recharging station simply
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as a type of vehicle routing problem. Manyam et al. [93] use a team of one UAV and one UGV

with communication constraints to cooperatively visit targets. Along with an exact solver to

Mixed Integer Linear Programming (MILP) formulation, they also provide heuristic reduction to

the generalized traveling salesman problem (GTSP). Maini et al. [94] present a two-fold strat-

egy: first, they identify feasible rendezvous points and then formulate a MILP to find the optimal

routes for the UAV and UGV. Thayer et al. [95] present a solution to the Stochastic Orienteering

Problem, where the objective is to maximize the sum of rewards associated with each visited

node while constrained by the maximum budget over edges with stochastic cost.

Murray and Chu [96] introduced the flying sidekick TSP (FSTSP) for parcel delivery sys-

tems, which was later adopted in last-mile delivery applications using drones [97, 98]. In litera-

ture, the term multi-echelon scheme is often used for systems where delivery consists of multiple

layers. Specifically, the two-echelon vehicle routing problem (2E-VRP) is concerned with find-

ing minimal-cost routes to deliver packages with trucks/UGVs and drones [88,99]. An important

differentiation from the original vehicle routing problem is the synchronization of UAV and UGV

tasks.

Learning-based approaches have been used to address cooperative UAV and UGV routing

problems. Ermugan et al. [100] also propose a two-phase approach. First, they find a route

for UAVs without taking into account the energy constraints. Then, the planner learns to insert

into the route recharging stations and replans a new TSP route. Reinforcement learning has also

proven to be a possible approach to solving this problem [101].

In our previous work, we studied cooperative planning with a single UGV and an energy-

constrained UAV as well [86, 91, 102]. Our proposed approach in [102] demonstrated how to

maximize the number of sites visited in a single charge in conjunction with the ability to land
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a UAV on top of a UGV to be transported to the next take-off site. We extended this in [86] to

allow the UAV also to be recharged while either being transported or stationary on the UGV. We

extended the latter to the area coverage path planning problem by formulating it as a GTSP [91].

Here, we extend this body of work by introducing the stochasticity of the UAV’s energy con-

sumption and by assuming that the UGV has its own required set of tasks to be carried out. To

the best of our knowledge and based on the presented literature review, none of the works takes

into account the stochastic nature of energy consumption.

4.2.1 Preliminaries

The cooperative routing problem studied in this section involves one UAV and one UGV.

The UAV and the UGV are executing tasks, which are given by some task planners as shown

in Section 4.2.4.1. The UAV needs to visit a sequence of task nodes to finish the task, but its

battery may not be enough to finish the task in a single flight without recharging. Also, the

energy consumption of the UAV is stochastic. The UAV needs to decide when and where it

should rendezvous with the UGV to replenish the battery while minimizing the total travel time

to finish the task. When the UAV decides to rendezvous with the UGV to replenish power, both

the UAV and the UGV will take a detour (as defined in Sec. 4.2.1.4) from their respective tasks

and go back to their tasks after recharging.

At a high level, the problem studied in this paper is stated below.

Problem 5 (Risk-aware UAV-UGV rendezvous). Given a route of nodes for the UAV TA, a route

of nodes for the UGV TG, and the stochastic energy consumption model and battery capacity

of the UAV, find a policy for the UAV to decide when and where to rendezvous with the UGV
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for recharging such that the total travel time is minimized and the probability of running out of

charge during flight is less than a given tolerance.

Next, we will present the setup and assumptions used in this paper. Then we will present

our CCMDP-based formulation and show how to transform a CCMDP into a CMDP.

4.2.1.1 Environment and Task Model

Our problem considers a two-dimensional Euclidean space, which consists of a road net-

work graph G = (Vr, E) and a set of task points Vt for the UAV to visit.

The UGV has to move on the road network and its task is specified as a sequence of road

network nodes. UAV’s task is specified by some task planners using nodes in Vt. More details

on the task planner will be discussed in Section 4.2.4.1. Both UAV and UGV should follow the

task specification to visit the task nodes in order, and they will deviate from the task route to

rendezvous when necessary.

4.2.1.2 Vehicle Motion Model

The UGV will move at a fixed speed vg when it transits between two nodes in the road

network. When the UAV transits between two nodes, it will fly with either the best endurance

speed, vbe, or the best range speed, vbr. The best endurance speed is the speed at which the

energy consumption rate is minimized. At this speed, the propellers of the multirotor operate

more efficiently than in hover, and the UAV is capable of the greatest flight duration. By contrast,

when a UAV flies at the best range speed, it minimizes the derivative of energy consumption rate

with respect to velocity. This flight speed results in a lower flight duration than operation at vbe,
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but will allow a greater range to be traveled per unit of energy. For a no-wind condition, the

velocity of the best range is always better than the velocity of the best endurance.

4.2.1.3 Recharging and Stochastic Energy Consumption Model

We assume that it takes constant time T to finish the recharging process, including the

landing/take-off and battery-swapping times.

In this paper, we only consider the power consumption when a UAV traverses the route,

assuming that the power management system has reserved the power needed for computation,

takeoff, and landing. As described in the transition model, the UAV will fly at a fixed speed when

it transits between two nodes in the environment. However, given that constant speed, the energy

consumption is stochastic considering the disturbances in the environment.

Given the distance l between two task nodes and the flying speed v, the energy consumption

can be computed as

el,v =

∫ l
v

t=0

PΘ(v)dt, (4.1)

where PΘ(v) is the power consumption of the UAV when it flies at a speed v, and Θ is a vector

of parameters for stochastic variables.

4.2.1.4 Rendezvous Model

When the UAV reaches a node in TA and decides to rendezvous with the UGV, the UAV

and UGV will deviate from their task temporarily to finish the rendezvous process. There are two

steps in the rendezvous process. In the first step, the UAV and UGV will meet at a rendezvous

point as shown in Fig. 4.2, and in the second step, they will go to the next task node in Ta and
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Rendezvous point

Figure 4.2: First step in the rendezvous process. The UGV (blue triangle) needs to deviate from
its task node to rendezvous with the UAV at the rendezvous point (pink star). The rendezvous
paths are in dashed lines.

Tg respectively. We want to optimize the time consumed in these two steps to find the optimal

rendezvous points.

Let d : R2 × R2 → R+ be the distance metric between two points in the Euclidean space.

We use dG : Vr × Vr → R+ to denote the shortest path length between two road network nodes.

We use Ta(k) to denote the position of the UAV when it decides to rendezvous at the kth node in

its task route and Ta(k+1) to denote the next position to visit for UAV after the rendezvous. With

a slight abuse of notation, we use Tg(k) to denote the position of the UGV in the road network

when the UAV decides to rendezvous at the kth node in its task route. With the above notations,

the problem of finding the rendezvous point can be stated below.

Problem 6 (Where to rendezvous). Given the positions of UAV (Ta(k)) and UGV (Tg(k)) at the

beginning of the rendezvous process, UAV’s next position to go Ta(k + 1), UAV’s flight speed va,

UGV’s transition speed vg, and the road network G, we want to find a rendezvous point pr ∈ G
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Figure 4.3: State transition graph in CMDP.

such that the time consumed in the rendezvous process is minimized. Mathematically,

min
∆≥0, pr∈G

∆+
d(pr, Ta(k + 1))

va
(4.2)

s.t. ∆ = max(
dG(Tg(k), pr)

vg
,
d(Ta(k), pr)

va
). (4.3)

In the first step of the rendezvous process, if the UAV or UGV reaches the rendezvous first,

it has to wait for the other vehicle. Therefore, the time consumed in the first step is decided

by the vehicle that reaches the rendezvous point later than the other. We encode this fact in the

optimization problem by introducing the variable ∆, which describes the maximum time needed

for both UAV and UGV to reach the rendezvous point. The time consumed in the second step of

the rendezvous process is the time needed for the UAV to fly back to its next task node.

Problem 6 can be solved by iterating over the nodes in the road network as we do in the

case study. However, such a method will increase the time to extract transition information for

the CMDP. A more efficient way to solve Problem 6 is left for our future work.
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4.2.2 Problem Formulation

4.2.2.1 Chance-Constrained Markov Decision Process

One natural choice to model the sequential decision-making problems described in Problem

5 is to use MDP. In this section, we first show how to formulate Problem 5 as a CCMDP and

then show how to transform a CCMDP into a CMDP in the following section.

The rigorous definition of an MDP can be found in [103]. Here we define the MDP from

the perspective of the application. The MDP corresponding to Problem 5 is defined as a tuple

M = (S,A, T, C, s0), where

• S = Ta × Sg × Tg × B ∪ {sob, sl} is the state space of the problem, where Ta here is used as

an un-ordered set, which describes all possible positions of UAV in a task route; Sg is the set

of positions of UGV and this information is needed when we compute the rendezvous points;

Tg here is used as an un-ordered set, which describes the task nodes UGV will visit. Tg is

included in the state space to inform the MDP about the next node the UGV needs to visit after

a rendezvous. Without this information, the system will be non-Markovian; B is a discretized

variable for describing the state of the charge of the UAV; sob is one failure state representing

the out-of-charge state and the UAV will transit to this state whenever it cannot finish its task

route; sl is added as an absorbing state and UAV will transit to this state when it either finishes

UAV’s route or runs into a failure state. One illustrative example of state transitions is given in

Fig. 4.3.

• A is the action space of the UAV. If the UAV has not finished its route and is not in a failure

state, there are four actions for the UAV to choose from: 1. vbe: move to the next node in
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Ta with the best endurance velocity. 2. vbr: move to the next node in Ta with the best range

velocity. 3. vbe be: rendezvous with the best endurance velocity. 4. vbr br: rendezvous with the

best range velocity. When a UAV is in a failure state or has finished its route, there is only one

action that makes the system transit to the terminal state sl.

• Ta(s, s′, a) = P (s′ | s, a) is the transition function, which depends on the stochastic energy

consumption model. When UAV chooses to move forward to its next task node, its battery

state at the destination node is a random variable that depends on the current battery state and

Equation (1). Since we have discretized the battery charging levels at each node, the probability

of reaching the destination node with a given battery charge can be calculated using Equation

(4.1). When it cannot reach the next task node, i.e., with non-zero probability, it will run out

of charge, it transits to the failure state sob. When a UAV chooses to rendezvous, a rendezvous

point is first computed by solving the Problem 6. Then the distribution of the battery remaining

when it reaches the rendezvous point can be computed based on Equation (4.1). The non-

positive portion of the distribution corresponds to the failure probability. After recharging, the

UAV will transit to its next task node starting with a full battery. When the UAV transits to the

failure state or it finishes the task route, it will transit to the terminal state sl with probability 1

as shown in Fig. 4.3. In the terminal state sl, the system will loop over this state.

• C(s, s′, a) is the cost function for the UAV. We define it as the time needed to transit between

two states. If the UAV chooses to move to the next node, the cost will be time consumed during

that transition. If a UAV chooses to rendezvous, the cost will be the sum of the time consumed

in two steps of the rendezvous process. When the state transits to the failure state or to the

terminal state, it takes zero cost.
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• s0 is the initial state of the system.

Definition 7 (Risk). Let π be a policy, the risk of the policy given initial state s0 is defined as

ρπ(s0) = P(∃ t st = sob | s0). (4.4)

We seek the optimal policy π∗ that satisfies

π∗ =argmin
π

E

[ ∞∑
i=0

C(si, π(si))

]
(4.5)

s.t. ρπ(s0) ≤ δ, (4.6)

where δ is the user-specified risk tolerance.

4.2.2.2 Constrained Markov Decision Process

We can transform a CCMDP into a CMDP by introducing a new cost function C : S×S×

A→ {0, 1} [104]. As shown in Fig. 4.3, when the system transits from a non-failure state to the

failure state sob, it will incur a cost of one and other transitions will incur zero cost. The new cost

function C is defined as

C(s, a, s′) =


1 if s ̸= sob and s′ = sob

0 else.

(4.7)

As shown in [104] [Proposition 4.1], the risk can be defined using the new cost function C
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as

ρπ(s0) = E

[ ∞∑
i=0

C(Si, π(Si)) | s0
]
. (4.8)

As a result, the CCMDP problem can be formulated as

π∗ =argmin
π

E

[ ∞∑
i=0

C(si, π(si))

]
(4.9)

s.t. E

[ ∞∑
i=0

C(Si, π(Si)) | s0
]
≤ δ. (4.10)

4.2.3 Solutions to CMDP

A CMDP can be solved using Linear Programming (LP) [105,106]. The decision variables

y in LP are the occupancy measure for each state-action pair and are defined as

y(s, a) =
∑
t

Pr(St = s, At = a). (4.11)

The LP is formulated as:

min
y(s,a),∀s,a

∑
(s,a)∈S×A

y(s, a)C(s, a) (4.12)

s.t.
∑
s,a

y(s, a)C(s, a) ≤ δ (4.13)

∑
a′

y(s′, a′) = I(s′, s0) +
∑
s,a

y(s, a)Pr(s′ | s, a)

∀s′ ∈ S \ {sl}
(4.14)

y(s, a) ≥ 0 ∀s, a, (4.15)
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where I(s′, s0) is a Dirac delta function that returns 1 when s′ = s0 and 0 otherwise. This LP

corresponds to the dual linear program for MDPs [105] with one extra cost constraint (4.13),

which enforces that the cost of entering the failure state be lower than the predefined risk toler-

ance. Constraint (4.14) is a flow conservation constraint to define valid occupancy measures and

is defined by the initial state and the transition probability (see [105], ch. 8 for details). The last

constraint (4.15) is added to guarantee that y(s, a) is non-negative.

If LP admits a solution, we can construct the policy from the occupancy measures by

normalizing them:

π∗(s, a) =
y(s, a)∑
a′ y(s, a

′)
∀(s, a) ∈ S × A, (4.16)

where π∗(s, a) is the probability of taking action a in the state s in the optimal stationary ran-

domized policy. If Eq. (4.16) has a zero denominator, which suggests that state s is not reachable

from s0, the policy for (s, a) can be defined arbitrarily.

4.2.4 Simulation

In this section, we first present a qualitative example to show what the input and output

look like for our problem. Next, we study how system parameters (different risk tolerances) in-

fluence the rendezvous behaviors between the UAV and the UGV. Then, we present quantitative

results for the ISR application that motivates our research. Specifically, we will use Monte Carlo

(MC) simulations to evaluate 1. the satisfaction of the risk constraint for the policy constructed

from LP; 2. the effectiveness of the policy in minimizing the expected task duration; 3. the risk

tolerance-task duration Pareto curves. Moreover, the running time of LP for CMDP is empiri-

cally evaluated. All experiments are conducted using Python 3.8 on a PC with the i9-8950HK
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processor. LP is solved using Gurobi 9.5.0.

4.2.4.1 Task Route Planner

The task routes Ta and Tg used in Problem 5 can be either generated jointly by some existing

task planners [86, 93] or can be generated by separately by different task planners. In our case

study, the task for the UGV is to persistently monitor nodes A, B, and C (blue squares in Fig.

4.5). The task nodes for the UAV are red dots in Fig. 4.5 and the task route (from node 0 to 18

and back to 0) is generated by a planner for Traveling Salesman Problem (TSP).

4.2.4.2 System Models

Table 4.1: Coefficients for stochastic energy consumption model

b0 b1 b2 b3 b4 b5

Value -88.77 3.53 -0.42 0.043 107.5 -2.74

The UAV task and UGV tasks are from our ongoing project on intelligence, surveillance,

and reconnaissance (ISR) as shown in Fig. 4.5a. In this project, we are interested in the case

where δ = 0.1. UAV has about 240 KJ energy; its best range speed and best endurance speed are

14 m/s and 9.8 m/s, respectively. UGV moves at 4.5 m/s. The rendezvous process will take 300

seconds.

We consider two sources of stochasticity in the energy consumption model of UAVs:

weight and wind velocity contribution to longitudinal steady airspeed. The deterministic energy

consumption model of the UAV is a polynomial fit constructed from analytical aircraft modeling
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data, given as

P (v∞) = b0 + b1v∞ + b2v
2
∞ + b3v

3
∞ + b4w + b5v∞w, (4.17)

where b0 to b5 are coefficients, and their experimental values are listed in Table 4.1. Figure 4.4

shows the agreement between the polynomial regression fit model and the analytical data that it

was derived from.

Weight is randomly selected following a normal distribution with a mean of 2.3 kg and a

standard deviation of 0.05 kg, w ∼ N (µw, σ
2
w). Vehicle airspeed, v∞, is the sum of the vehicle

ground speed, v, and the component of the wind velocity that is parallel to the vehicle ground

speed, ignoring sideslip angle and lateral wind components.

v∞ = |v̄g + cos(−ψ)ξa,b| (4.18)

The longitudinal wind speed contribution is derived from two random parameters: wind speed

and direction. Wind speed is modeled using the Weibull probability distribution model of wind

speed distribution, ξa,b, with a characteristic velocity a = 1.5 m/s and a shape parameter b = 3.

This is representative of a fairly mild steady wind near ground level. Wind direction ψ is the

heading direction of the wind and is uniformly randomly selected on a range of [0, 360) degrees.

4.2.4.3 Simulation Results

An illustrative example of the input and the output of the problem considered is shown in

Fig. 4.5. The input of the problem is shown in Fig. 4.5a, which consists of UAV task nodes

(red dots), UGV task nodes (blue square), and road network (black nodes). Fig. 4.5b shows one
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Figure 4.4: Comparison of analytical data used to derive the polynomial regression fit model of
UAV power requirement at three weights and across 11 airspeeds.
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Figure 4.5: A qualitative example illustrates how UAV and UGV rendezvous with each other
under the policy π obtained by solving the CMDP. The risk tolerance is set to be δ = 0.1 in this
case study. (a) The input of the risk-aware rendezvous problem. (b) One sample route of UAV
when it executes the policy π.

sample route of UAV when the system executes the policy computed by LP. UAV’s route starts

from node 0. When the UAV reaches node 4, it will choose to rendezvous with UGV using the

best range speed in a rendezvous point, which is denoted as a star, and then go to its next task

node 5. Similarly, the UAV will rendezvous with the UGV when it reaches nodes 7, 8, 11, 14,

and 15.

Next, we show how different risk tolerances influence rendezvous behaviors under our

CMDP formulation. In these experiments, we set the risk tolerance δ to be 0.01, 0.2, and 0.5.
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(a) Low risk tolerance (δ = 0.01)
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(b) Medium risk tolerance (δ = 0.2)
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(c) High risk tolerance (δ = 0.5)
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(d) UGV route corresponding to
Fig. 4.6a
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(f) UGV route corresponding to Fig.
4.6c

UAV data δ = 0.01 δ = 0.2 δ = 0.5

Empirical failure rate 0.00975 0.201 0.497
Average route travel time 11330 s 10418 s 10404 s
route travel time overhead 160.2% 139.2 % 138.9%
Average # of rendezvous 8.5 6.4 6.3

(g) Quantitative results.

Figure 4.6: How different risk thresholds influence the rendezvous behaviors. UAV route time
with the best range speed is 4354 s, and the route distance is 61.0 km. (a) UAVs are very risk-
averse to failures with a risk threshold equal to 0.01. (b) UAV is less risk-averse to failures with
a risk threshold equal to 0.2. (c) UAV is neutral to the failures with a risk threshold equal to 0.5.
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Figure 4.7: Results comparisons for the CMDP and greedy policies with δ = 0.1. The dashed
black line represents the task duration if the UAV moves with the best range speed without con-
sidering battery limitation.

Results shown in Fig. 4.6 include sample routes for the UAV and the UGV and statistical data

of the policies. Fig. 4.6a, 4.6b, and 4.6c are sample routes for the UAV when it executes the

policy. Fig. 4.6d, 4.6e, and 4.6f are corresponding routes of the UGV. The rendezvous point

is denoted as a star. The SOC is annotated in red text close to the task node where the UAV

decides to rendezvous. Some statistical data are summarized in table 4.6g. Generally, we observe

that when the risk tolerance is set to be small, the UAV tends to rendezvous more often, and the

average route travel time is higher. Here the average route travel time is computed by considering

only trials where the UAV finishes its task route. By contrast, as the risk tolerance is relaxed to a

larger value, the average route travel time will decrease, which comes at the cost of a high failure

probability.

We also conducted several quantitative experiments to validate our formulation. The first

experiment is to use MC simulation to check whether the failure probability is upper bound by

the set risk tolerance of 0.1. We use FR to denote the empirical failure rate. As can be seen in

Table 4.2, as MC increases, the empirical failure rate is close to and below the theoretical PF 0.1.

In the following experiments, we will use NMC = 2000 for simulation.

83



Table 4.2: Empirical evaluation of failure probability δ = 0.1.

NMC (# of MC trials) 500 1000 3000 5000

Failure rate 0.108 0.105 0.099 0.097

0.02 0.04 0.06 0.08 0.10 0.12 0.14
Risk tolerance δ
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Figure 4.8: Risk tolerance vs task duration Pareto Curve.

To validate that the policy constructed from LP can minimize the expected travel distance.

We compare our policy with a greedy baseline. The greedy policy is set as always flies with the

best range speed and chooses to rendezvous when state-of-charge drops below a set value. What

we observe in experiments is that when the route of a UAV is long, for example, there are more

than 15 nodes, the probability of finishing the route is close to zero for the greedy baseline no

matter what threshold we set. For a more informative comparison, we use only nodes 0 to 11

for the task route in the following experiments. We consider four-set values 40%, 50%, 60%,

and 70%, and the corresponding policies are denoted as Greedy-40, Greedy-50, Greedy-60, and

Greedy-70. As shown in Fig.4.7, our policy can guarantee success probability above the set value

of 0.9 and the expected travel time of UAV is shorter compared to the baseline. Though the

baseline can achieve a higher success probability in some cases as shown in Fig.4.7, its expected

task duration is still longer than our policy.

The empirical Pareto curve for risk tolerance and the task duration is shown in Fig. 4.8.

The green curve is the mean value, and the shaded area is formed using one standard deviation
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from the mean. When the risk level is set to be a higher value, the UAV will tend to make more

risky decisions, leading to a lower travel time at the cost of a higher failure probability.

The running time for the proposed routing problem consists of three parts. The first part is

devoted to extracting transition information for LP. The second part is about constructing an LP

model with Gurobi, and the last part is about solving the LP. In our case study, there are about

54000 states, and it takes about 6 min to extract transition information, 9 minutes to create an LP

model, and about 1 second to solve the LP.

4.3 Risk-aware UAV-UGV Recharging Rendezvous: Multiple UAVs and UGVs

The formulation presented in Sec. 4.2 is not scalable to the number of robots and the

planning horizon. In this section, we will present a more scalable formulation based on graph

matching for a team of multiple UAVs and UGVs.

4.3.1 Problem Formulation

4.3.1.1 Problem Statement

Consider a team of Na UAVs and Ng UGVs persistently monitoring a set of locations in

an environment. The UAVs and UGVs move on the graphs Ga = (Ua, Ea) and Gg = (Ug, Eg)

with their deterministic speeds va and vg respectively. The vertex sets Ua and Ug represent the

locations to be monitored by the aerial and ground vehicles respectively. The edge set Ea may be

complete since the UAVs can move between any of the tasks, whereas the edge set Eg represents

the road network on which the ground vehicles can move. We assume that the ordering of the task

nodes for the UAVs and the UGVs is given, i.e., we have pre-defined persistent monitoring tours
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for the UAVs and UGVs. These tours can be generated by planners that either do not consider

recharging [107–109] or assume deterministic discharge [94, 110]. The tours for ith UAV and

kth UGV are denoted by T ai and T gk respectively. Similar to our recent work for the single robot

case [19], we show how to refine these tours in a risk-aware fashion.

A UAV i can take a detour from its monitoring tour T ai at any point along the tour to

rendezvous with a UGV k and land on it, for recharging. The UGV keeps moving along its

tour T gk . We only model the case where only UAVs take detours, and not UGVs since UAVs

are typically much faster and not restricted to the road network. The UAV can also wait at a

rendezvous location for the UGV if it reaches there before the UGV. The number of UAVs that

can simultaneously charge on a given UGV is d. Once recharged, the UAV leaves the UGV and

goes to the next task node along its monitoring tour.

We assume that the UGVs do not run out of charge since typically they have much larger

battery capacity than UAVs or can be easily refueled. We consider a stochastic energy discharge

model for the UAVs that is given. We assume that the probability of a UAV running out of charge

within the next t time units given the current charge level can be calculated, as shown in [19].

The stochastic battery discharge is monotonic in the time traveled by the UAV.

Since we consider a persistent monitoring mission, we solve RRRP in a receding-horizon

manner. Given time horizon T , we seek a policy for the UAVs to recharge at most once in the

horizon. Moreover, as the battery discharge rate of UAVs is stochastic, there may be a non-zero

probability of some UAVs running out of charge. Hence, we also need to have a notion of risk

aversion for the UAVs. On the other hand, to avoid frequent recharging, we also need to reduce

the detour time spent by the UAVs for recharging.

At a high level, we consider the following problem: Given a time horizon T , a risk-
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tolerance probability ρ ∈ (0, 1), task routes for the Na UAVs and Ng UGVs along with their

current locations and state of charge, find a recharging schedule for each UAV such that:

1. each UAV recharges at most once during T ,

2. no UGV can charge more than d UAVs at a time,

3. the probability that no UAV runs out of charge during T is at least ρ, and

4. the total detour time of the UAVs is minimized.

Next, we will show how to model this problem formally.

4.3.1.2 Graph Matching Based Formulation

Given the tour T gk for UGV k, we discretize it by introducing vertices every f units of

time starting from the UGV’s current position where f is the maximum time the UGV needs to

travel for the UAV to recharge in the worst-case. These vertices representing possible rendezvous

locations are denoted by V (T gk ) and are shown as green nodes in Figure 4.9. Similarly, the set

V (T ai ) represents the set of locations from which UAV i can leave its monitoring tour T ai for a

recharging detour (Figure 4.9). The set V (T ai ) contains the current position of UAV i and its task

nodes that can be visited within the next T time by UAV i. We do not need to discretize UAV

tours further as it can be shown [20, Lemma 6] that there exists an optimal solution where the

UAVs will leave their tours for recharging from either their current position or a task node.

We define the problem formally on a bipartite graph G = (Va ∪ Vg, E) as follows.

UAV vertices: The vertex set Va consists of Na disjoint node sets, i.e., Va = ∪Na
i=1Vi where Vi =

V (T ai )∪ a∅i . The vertex a∅i represents the scenario where the UAV i chooses not to rendezvous in

87



1

1a 2

1a

3

1a
4

1a

1

1g

2

1g 4

1g

6

1g

UAV1

UGV1

3

1g

5

1g

3

1g is allocated to
1

1a

Figure 4.9: Recharging detour example. The UAV 1 leaves its route at the node a11 to rendezvous
with UGV 1 at the node g31 . The recharging occurs when they reach the node g41 and the UAV
moves to its next task node a21. Note that if d = 1, no other UAV can recharge on this UGV
between g31 and g41 .

the current horizon.

UGV vertices: The vertex set Vg consists of {g∅1, . . . , g∅i , . . . , g∅Na
} and d copies of the set∪Ng

k=1V (T gk ).

The vertex g∅i for UAV i represents the scenario where UAV i chooses not to rendezvous for the

current horizon. The d copies of each vertex in V (T gk ) are to represent up to d different UAVs

recharging at a time on a UGV.2

Edges: The edge set E denotes the set of all feasible recharging detour options. If the UAV i,

starting from a node j ∈ V (T ai ), is able to rendezvous with the UGV k at l ∈ V (T gk ), an edge

exist between the corresponding two nodes in Va and Vg. The vertex a∅i is connected to g∅i for all

i ∈ [Na].

Edge cost: For an edge (i, j) ∈ E where i ∈ Va and j ∈ Vg, the edge cost cij represents the

time needed to complete the recharging detour along the edge (i, j). The time needed for the

recharging detour consists of three parts: the time to reach the rendezvous node, the waiting and

recharging times at the rendezvous node, and the time to go to the next node on the tour. The

edge cost along edge (a∅i , g
∅
i ) is zero.

2We use d copies of each vertex in V (T g
k ) to keep the analysis of the algorithm simple. The problem can be

defined without having d copies for each v ∈ V (T g
k ) by changing Constraint (4.22) in Problem 7 to

∑
i xij ≤ d.
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Figure 4.10: An example to show how to construct a bipartite graph for one planning horizon
from the UAV and UGV route segments.

Edge success probability: For an edge (i, j) ∈ E where i ∈ Va and j ∈ Vg, the edge success

probability pij is defined as the overall probability to finish the task route for the current horizon

given that the recharging detour along edge (i, j) is taken. It is the product of the two success

probabilities: the probability of successfully completing the recharging detour, and the probabil-

ity of finishing the rest of the route after recharging. The probability along edge (a∅i , g
∅
i ) is the

probability of reaching the end of the current horizon without recharging.

The finite horizon recharge rendezvous problem can now be defined as the following com-

binatorial optimization problem.

Problem 7 (Risk-aware Recharging Rendezvous Problem (RRRP)). Given a bipartite graphG =

(Va ∪ Vg, E) where Va = ∪Na
i=1Vi, with edge costs cij and probabilities pij for edge (i, j) ∈ E,
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solve:

min
∑
i,j

cijxij (4.19)

s.t.
∑
i,j

log
1

pij
xij ≤ log

1

ρ
(4.20)

∑
i∈Vr

∑
j

xij = 1, ∀r ∈ [Na] (4.21)

∑
i

xij ≤ 1, ∀j ∈ Vg (4.22)

xij ∈ {0, 1} (4.23)

The variable xij indicates whether edge (i, j) is in the solution or not. The objective is

to minimize the total time incurred by the recharging detours of all UAVs. Constraint (4.20)

enforces that the probability of no UAV running out of charge during the current horizon is at

least ρ. We can write this as a linear constraint since the stochastic discharging processes of

the UAVs are independent. For ease of notation, we will use the following inequality instead of

Constraint (4.20). ∑
i,j

aijxij ≤ B (4.24)

where B = log 1/ρ and aij = log 1/pij . Constraint (4.22) enforces that each UGV can recharge

at most d UAVs at a time (by making sure that at most one UAV recharges at one of the d

copies of a UGV vertex). Constraint (4.21) enforces that each UAV should be recharged at most

once. Given a solution xl, let Ml represent the corresponding solution on graph G. Let us define

c(M) = c(x) =
∑
cijxij , a(M) = a(x) =

∑
aijxij for ease of notation.
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4.3.2 Simulation

In this section, we first present a qualitative example of the persistent monitoring mission.

Next, we study how the value of risk tolerance influences the recharging behaviors and task

performances of the UAVs. Then, we compare the performance of our scheduling strategy with

a baseline (greedy strategy). Moreover, we empirically evaluate the performance of the proposed

heuristic algorithm. All experiments are conducted on a PC with the i9-8950HK processor unless

specified otherwise. The baseline solver is Gurobi 9.5.0.

4.3.2.1 Experimental Setup

We consider a team consisting of two UAVs and two UGVs. The task routes Ta and Tg used

in the problem can be either generated jointly by some task planners similar to those in [86, 93]

or can be generated separately by different task planners. The UAV and UGV move at va = 9.8

m/s and vg = 4.5 m/s respectively based on the field test data collected and used in our previous

work [19]. The recharging process (swapping battery) takes 100s. The UAV and UGV need to

monitor the task nodes on the route persistently. We apply our recharging strategy in a receding

horizon fashion: every two minutes, the UAVs-UGVs team solves the RRRP problem to decide

the UAVs’ recharging schedule for the next T = 2500 seconds. For each UAV, the current

position will be the first node when we construct the bipartite graph. If some UAV is on a detour,

we do not replan until the UAV has finished its detour.

We consider two sources of stochasticity in the energy consumption model of UAVs:

weight and wind velocity contribution to longitudinal steady airspeed. The energy consumption

model of the UAV is the same as that in [19].
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Figure 4.11: A qualitative example to illustrate how UAV and UGV rendezvous with each other
solving the RRRP. The risk tolerance is set to be ρ = 0.1 in this case study. Subscriptions s and
t denote the start and the terminal of the recharging process. (a) The input of the RRRP problem
includes the UAV and UGV tasks and the road network. (b) One sample tour of UAV 1 when it
persistently monitors the route. (c) One sample history of SOC for UAV 1.
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Figure 4.12: Quantitative results. (a) Comparisons of the RRRP scheduling and the greedy strate-
gies with ρ = 0.1.

4.3.2.2 Simulation Results

Qualitative Example The input of the problem consists of UAV task nodes and nodes of the road

network (Figure 4.11a). Figure 4.11b shows one tour route of one UAV when the system executes

the proposed strategy in a receding horizon fashion. The UAV monitors the task route persistently.

When the UAV reaches node a, it doesn’t move forward to its next task node (connected through

a dashed red line). Instead, the new schedule is to rendezvous with UGV at as and takes off from

the UGV at at, and then go to its next task node. Similarly, the UAV will rendezvous with the
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Table 4.3: Statistical results for UAVs

UAV data ρ = 0.01 ρ = 0.1 ρ = 0.3

Mean time before failure (s) 39660 27600 24360

Avg. travel time overhead 19.7 % 18.5 % 17.8 %

Avg. # of task nodes visited 158 110 105

Avg. # of rendezvous per T 1.4 1.3 1.3

UGV when it is close to nodes b, c, d and e. Subscriptions s and t denote the start and the terminal

of the recharging. A sample of the history of the state of charge (SOC) is shown in Figure 4.11c.

We can observe in Figure 4.11c that the UAV’s recharging strategy is more than a simple rule,

such as for example getting recharged when the SOC is below 50 % and may get recharged at

various values of SOC.

Effect of Risk Tolerance We study how various risk tolerances influence the strategy (see Table

4.3). We set the risk tolerance ρ to be 0.01, 0.1, and 0.3 and use four metrics to quantify the

performance of the strategy:

(1) Mean time before the first failure: The time before the first UAV runs out of charge and needs

human intervention. (2) Travel time overhead:

actual travel time− task time

task time
,

where task time is the travel time of the route without any recharging. A lower overhead is

desired since it accounts for the delay in visiting task nodes. (3) Average number of task nodes

visited: by the UAV before its first failure. Similar to (1), a higher number reflects a better

strategy. (4) Average number of rendezvous per planning horizon T . If this number is too large,
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it suggests that the UAV takes too many recharging detours, which should be avoided.

In general, we observe that when the risk tolerance is set to be smaller, the mean time

before the first failure will be longer. Similarly, the travel time overhead and the average number

of rendezvous per planning horizon will be greater, which implies the UAV spends more portion

of flight time in the recharging detours.

4.4 Conclusion

We consider the cooperative routing problems in which the UAVs and UGVs need to finish

the task cooperatively and the UGVs need to recharge the UAVs as mobile rechargers periodically.

We study this type of problem for a team consisting of one UAV and one UGV as well as a team

of multiple UAVs and UGVS. For the one UAV and one UGV case, we formulate the problem as

a CMDP and use LP to find the optimal policy for the CMDP. For a team of multiple UAVs and

UGVS, we give one graph-matching-based formulation.

For the proposed work in Section 4.2, we mainly plan to improve the computational time

to enable online replanning. The computational time consists of two parts: the time to extract

transition probability and the time to solve LP. To accelerate the process of obtaining the transi-

tion probability, we will combine the supervised learning and the high-fidelity simulation to find

the mapping from the environmental disturbances (e.g., wind field) to the transition probability

matrix. To accelerate the computation for the optimal policy, we will resort to feature-based

representation methods to reduce the size of the decision variables.

For the proposed work in Section 4.3, the existing commercial solver is efficient for only

small problem instances. Our main focus for the next step is to find some approximation algo-
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rithms that work faster than the existing solver in the large problem instance.
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Chapter 5: Multi-Robot Information Gathering with Decision-oriented Learn-

ing of the Environmental Model

5.1 Overview

In Chapters 2, 3, and 4, we consider the decision-making problems in which the envi-

ronmental model is given. In this chapter, our focus is on learning an environmental model

for decision-making problems. We are interested in the case where the environmental model

is encoded as parameters that affect the optimization objective. We want to learn the mapping

from the environmental observation to the parameters. For example, in the Traveling Salesman

Problem (TSP), the environmental model is the travel cost for all edges which depends on the

environmental factors such as rain, terrain conditions, etc. which are available as environmental

observations. We need to learn a mapping from the observations to the parameters (i.e., edge

costs), to solve the TSP instance. Classically, such a learning process is independently conducted

without considering the downstream problem. In contrast, we propose to incorporate the down-

stream decision-making problem into the learning process. Such integration will help reduce the

misalignment between the prediction model and the downstream task. The misalignment refers

to a predictor that despite achieving high predictive accuracy in the learning phase may not nec-

essarily result in good decisions in the downstream task. Instead, by making the combinatorial
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optimization differentiable, we can reduce such misalignment and learn a predictor that results

in good downstream decisions. By making the combinatorial optimization differentiable, we can

treat it as a differentiable module in the learning process.

In this chapter, we present a Decision-Oriented Learning framework that integrates two

types of submodular maximization into the learning process: where the objective is a param-

eterized (1) monotone non-negative submodular function and (2) possibly non-monotone and

possibly non-positive submodular function. In both cases, the input to the learning module is the

observation of the environment, and the output is the parameters for the objectives. To achieve

such integration, we design two differentiable algorithms to make the corresponding submodular

maximization differentiable. We experimentally demonstrate the advantages of such a decision-

oriented learning framework by considering variants of the Vehicle Routing Problem (VRP).

5.2 Learning a Context-aware Objective for Information Gathering: Monotone

Non-negative Submodular Objective Case

Many multi-robot decision-making problems can be formulated as combinatorial optimiza-

tion problems, among which the objectives in some problems (e.g., mutual information [33], area

explored, number of targets tracked [23], detection probability [111] etc.) have diminishing re-

turns property, i.e., submodularity. Intuitively, submodularity formalizes the notion that adding

more robots to a larger multi-robot team cannot yield a smaller marginal gain in the objective of

adding the same robot to a smaller team.

If the submodular objective is known and fixed, the multi-robot decision-making problem

boils down to a submodular maximization problem, which is NP-hard but can be solved with
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Figure 5.1: Decision-Oriented Learning framework. The training loss is defined after the down-
stream task.
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Figure 5.2: An illustrative example for vehicle routing problems.

an (1 − 1
e
)-approximation by the greedy algorithm [15]. However, in practice, there are several

parameters that affect the objective function that may not be known exactly.

Consider the following illustrative example of a vehicle routing problem shown in Fig-

ure 5.2. Here, a team of Unmanned Ground Vehicles (UGVs) are tasked with servicing a set of

requests that appear throughout the environment. We have a set of candidate routes of which we

must select one for each UGV. The objective is to maximize the number of requests serviced. If

a request location lies on more than one UGV path (the paths may overlap as the UGVs move on

a road network), it only counts once in the objective function. Thus, the objective function is a

coverage function, which is a special case of the submodular function.

If we know the location of the requests, then we can solve this problem greedily to obtain

a (1− 1
e
)–approximation. The greedy algorithm requires the capability to compute the objective

function f(S). However, there are many scenarios where we may not know where the requests
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show up and as such not know f(S). For example, the requests could correspond to Unmanned

Aerial Vehicles (UAVs) that are carrying out persistent monitoring missions that land when out

of charge so as to be recharged by mobile recharging stations [19,20,91,112–114]. Here, even if

we know the routes followed by each UAV, we may not know their exact landing locations since

the energy consumption is stochastic [19, 20] and communication between UAVs and UGVs is

not available (e.g., due to stealth). In such cases, we may be able to predict f(S) using all the

available information. We call the latter as context z, which can include the routes of the UAVs,

the environmental conditions including the wind conditions, etc.

The traditional pipeline here would be to use the context information and predict f(S) and

then solve the downstream UGV route selection problem, argmaxS f̂(S), using this predicted

f̂(S). However, as the following example shows a good predictor of f(S) does not necessarily

align with making good decisions on the downstream task. On the other hand, a predictor that

does not necessarily yield the best predictions of f(S) may still yield the best decisions for

the downstream argmaxS f̂(S) problem. Particularly, a good prediction of the parameters may

be sufficient but unnecessary in making good route decisions. Further, the loss function used in

learning to predict the parameters may be misaligned with the downstream task (i.e., finding good

routes). An alternative is to solve this problem end-to-end, where we directly map the context

input to the routes using, for example, deep neural networks. The objective in such an approach is

not misaligned since the loss function for training the network will depend directly on the routes

selected. However, such an approach faces two limitations. Training end-to-end a combinatorial

optimization problem may require a lot of data [115]. Further, the black-box nature of neural

networks will make the route selection hard to explain or interpret.

We present an illustrative example of such misalignment in Fig. 5.3. Let f1, f2 be two
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Figure 5.3: An illustrative example to show the misalignment between the prediction model that
achieves high predictive accuracy and the one that results in good decisions.

coverage functions (coverage function is submodular by definition) defined over set {s1, s2, s3}.

Given a subset S ⊆ {s1, s2, s3}, fi(S), i = 1, 2 will return the area covered by the selection. The

submodular objective that we are interested in is defined as fβ(S) = βf1(S)+(1−β)f2(S), β ∈

[0, 1], which is also submodular by definition. Suppose that we want to maximize fβ with a

partition matroid: |S ∩ {s1}| ≤ 1, |S ∩ {s2, s3}| ≤ 1. Then the optimal solution is either {s1, s2}

or {s1, s3}. In Fig. 5.3c, we show how the optimal decision changes w.r.t. β. When β ≥ 0.358,

the optimal decision is {s1, s3} since fβ({s1, s3}) ≥ fβ({s1, s2}) (the blue line is above the red

line). By contrast, when β < 0.358, the optimal decision is {s1, s2}. Next, let us look at the

learning problem for fβ . We want to find a mapping from the observation z to β. In Fig. 5.3d,

we show the training data sampled from the ground truth and the optimal decision boundary

z∗ = 0.8988, which is obtained by finding the intersection between the ground truth curve and
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β = 0.358. If we use Mean Square Error (MSE) as the objective for learning without considering

the downstream task, we will get two lines as shown in Fig. 5.3e. The decision boundary (dashed

vertical red line, z∗ = 1.34, passing the intersection of the learned red line and β = 0.358) is on

the right of the optimal boundary, thus not optimal. By contrast, if we consider the downstream

optimization, we will get two lines as shown in Fig. 5.3f and the decision boundary (dashed

vertical blue line, z∗ = 1.02, passing the intersection of the learned blue line and β = 0.358)

is closer to the optimal boundary, thus reducing the regions of suboptimal decisions. Such an

observation motivates us to incorporate the decision process (submodular maximization) into the

learning process.

To this end, we propose a Decision-Oriented-Learning (DOL) framework for learning

context-aware parameterized submodular objectives. We focus on submodular functions that

can be parameterized, i.e., f(S,w), where the parameters are to be learned from the context. As

described earlier and pointed out in [116–118], the best estimator of w does not necessarily yield

the best decisions for the downstream task. Instead, in the proposed framework, the decision-

making problem (submodular maximization) is treated as a differentiable layer that takes as input

the output from the prediction module as shown in Fig. 5.1. The prediction module takes as input

a context observation z and predicts w, i.e., the parameterized submodular function. By using a

differentiable submodular optimization layer, we can train the prediction module using the loss

from the downstream task, thereby yielding aligned predictions.

Most existing multi-robot decision-making work consider the case where the optimization

objective is well-defined and known. Wilde et al. [119] consider the case where the optimiza-

tion objective is hard to quantitatively specify and may be subjective and proposed an interactive

learning framework to learn the objectives. Our work shares a similar stance with [119] but dif-
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fers in two aspects. First, we consider the fact that the task objective may change in different

contexts, for example in different weather conditions, and aim at learning a context-aware objec-

tive. Second, our learning framework integrates the downstream decision-making process into

the learning process.

Another line of research related to this work is decision-oriented learning. The key idea

is to embed the decision-making problem as a differentiable layer in the learning pipelines. The

main advantage is that it allows end-to-end training and reduces the engineering efforts to design

some intermediate learning objectives. Such an idea was initially explored for continuous opti-

mization problems [120, 121] and has gained popularity in control and robotics [122–125]. The

idea was later extended to the combinatorial problems [117, 118, 126, 127]. Our work is inspired

by [117, 126] and our framework integrates the decision-making process for mobile charging

station routing, which is modeled as submodular maximization, into the learning process.

This work is also closely related to differentiable submodular maximization. Submodular

maximization and its variants have been widely used in multi-robot decision-making problems

including coverage, target tracking, exploration, and information gathering. These studies are all

based on the fact that the greedy algorithm and its variants can solve submodular maximization

problems its variants efficiently with a provable performance guarantee. Since the submodular

objective and greedy algorithm are tightly coupled, it is better to take into account the influence of

the greedy algorithm when we consider learning submodular functions [128]. To this end, several

differentiable versions of the greedy algorithms have been proposed [128, 129]. The core idea

behind these algorithms is stochastic smoothing, i.e., perturb the algorithm by introducing some

probability distribution in the intermediate steps. Our framework is built on these differentiable

greedy algorithms but is targeted specifically for context-dependent routing problems.
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5.2.1 Problem Formulation

We are interested in parameterized submodular objective function f(S,w), where w is

the parameter vector. Readers are referred to [119] for a formal definition. In practice, such

an objective is usually unknown and context-dependent, i.e., the parameters w ∈ W depend on

the environment features. Our goal is to learn a function gθ : Z → W that maps the context

observation z ∈ Z to the objective parameters w. Traditionally, finding the mapping gθ and

optimizing the downstream objective f(S,w) are considered separately: given the training data

D = {(z1,w1), (z2,w2), . . . , (z|D|,w|D|)}, first find the mapping gθ by optimizing over θ in a

supervised fashion, and then use the parameter w = gθ(z) to optimize f(S,w).

By contrast, the proposed paradigm that integrates downstream optimization is given below.

Problem 8. Given the training data D = {(z1,w1), (z2,w2), . . . , (z|D|,w|D|)}, learn a function

gθ parameterized by θ such that the learning cost L = 1
|D|
∑|D|

i=1 ℓi(wi, ŵi) is minimized, where

ℓi(wi, ŵi) is defined through Eq. (5.1) to Eq. (5.3):

ŵi := gθ(zi) (5.1)

Ŝ := S∗(ŵi) by solving (5.5) with w = ŵi (5.2)

ℓi(ŵi,wi) := f(S∗(wi),wi)− f(Ŝ,wi), (5.3)

where S∗(wi) denotes the solution of (5.5) returned by some approximation algorithms with

w = wi; f(S∗(wi),wi) denotes the decision quality when we use the ground truth parameter

wi for decisions; f(Ŝ,wi) denotes the decision quality when we use the predicted parameter ŵi

for decisions, i.e., use ŵi to obtain the decision Ŝ, but the decision is evaluated w.r.t. the true
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parameter wi.

The intuition for Eq. (5.3) is that we want to minimize the gap between the decision quality

of the true parameters and that of the predicted parameters. One challenge is when we use

the chain rule to compute the gradient of the loss function, we need to differentiate through

the optimization problem (the first term on the r.h.s. of Eq. (5.4)) as shown in the illustrative

computational graph in Fig. 5.1.

∂ℓi
∂θ

=
∂ℓi
∂ŵi

· ∂ŵi

∂θ
(5.4)

In the following sections, we will show how to approximately compute the first term on the r.h.s.

of Eq. (5.4).

5.2.2 Case Study: Ground Vehicle Routing Problem

Suppose that there is a set of candidate routes, T , each of which starts and terminates at the

same depot. Our goal is to select a subset from T for UGVs to traverse and recharge the UAV

along the way such that the total number of UAVs that UGVs will recharge is maximized.

environmental model: As shown in Fig. 5.2, the working environment is described by

an area E ⊆ R2. There are na UAVs that are executing persistent monitoring. The energy

consumption of UAVs will be affected by the wind. The wind field is represented as a tuple

(ωs, ωo), where ωs and ωo denote the description vectors for the speed and the orientation of the

wind, respectively. There are ng UGVs in E , denoted by the set {1, . . . , ng}.

UAV Behavior: There are three components defining the behavior of each UAV. The first

one is the task route, which is defined as a sequence of ordered locations projected on the ground,
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and the UAV will persistently monitor these locations. The UAV will fly at a fixed speed va

between two task locations, and the wind will affect its energy consumption. The second com-

ponent is the recharging strategy dealing with the depletion of the battery. The third component

is the energy consumption model. We use the same model as that in [130].

Context Observation: Each observation z consists of two components: the task routes of

all UAVs; and the wind field (ωs, ωo) of the working area.

If such submodular objective f is known, the problem boils down to a submodular maxi-

mization problem with a matroid constraint: let T be set of all candidate routes, the problem is

to select a subset from T to maximize the objective, i.e.,

max
S⊆T , |S|≤ng

f(S,w), (5.5)

where w denotes the parameters in the objective function.

Parameterization of the Objective Function: In general, such applications have no closed-

form expression of the objective function. In this paper, we consider the case where the objective

function f is the linear combination of a set of basis functions. Such parameterization techniques

are commonly used in the literature on learning submodular functions [111, 119, 131]. Similar

to [119], we assume without loss of generality that each basis function is characterized by a sub-

set Wi ⊆ V . That is, for any Wi, let ψi(S) be a count of how many vertices of the tours S lie in

Wi, then fi is a functional of ψi(S).

The overall objective function is:

f(S,w) =
n∑
i=1

|Γ|∑
j=1

wi,jfi,j(S), (5.6)
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where w = [wi,j] denotes the matrix of unknown parameters of the function; basis functions

are defined as fi,j(S) =
∑ψi(S)

α=1 γ
(α−1)
j ; and γj ∈ (0, 1] comes from a known set Γ. As shown

in [119], the objective function f(S,w) proposed in Eq. (5.6) is a normalized, monotone, and

submodular set function.

5.2.3 Learning Algorithm

In this section, we present the main learning algorithm that solves the submodular maxi-

mization in a differentiable manner.

5.2.3.1 Smoothed Greedy Algorithm

Algorithm 7: Smoothed Greedy
Input : f(S,w) and independent set I
Output: Set S of tours for each robot

1 S ← ∅
2 for k ← 1 to N do

// find all addable elements in the current round
3 Uk = {u1, . . . , unk

} ← {T /∈ S | S ∪ {T} ∈ I}
// marginal gain for all addable elements

4 mk(w)← (fS(u1,w), . . . , fS(unk
,w))

// compute a probability distribution
5 pk(w)← argmaxp∈∆nk{⟨mk(w), p⟩ − Ωk(p)}
6 sk ← sample u ∈ Uk with probability pk(u,w)
7 S ← S ∪ {sk}
8 end
9 return S

The Smoothed Greedy (SG) algorithm is given in Algorithm 7, which was first proposed

in [129]. For a given w ∈ W , In each iteration step, we compute marginal gain fS(u,w) for each
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candidate element u ∈ Uk (line 3); we define nk := |Uk|. Let

mk(w) = (mk(u1,w),mk(u2,w), . . . ,mk(unk
,w)) ∈ Rnk

denote the marginal gain vector. The probability vector, pk(w) = (pk(u1,w), . . . , pk(unk
,w)),

is computed as:

pk(w) = argmax
p∈∆nk

{⟨mk(w), p⟩ − Ωk(p)}, (5.7)

where ∆nk := {p ∈ Rnk | p ≥ 0nk
, ⟨p,1nk

⟩ = 1} is the (nk − 1)-dimensional probability

simplex; Ωk : Rnk → R is a strictly convex function and is a regularization function.

Next, we will show the theoretical results for Algorithm 7. Detailed explanations and

proofs can be found in [129]. Let δ ≥ 0 be a constant that satisfies δ ≥ Ωk(p) − Ωk(q) for all

k = 1, . . . , |S| and p, q ∈ ∆nk . We will use δ to quantify the performance of SG.

As shown in Theorem 1 in [129], in expectation, the output of SG satisfies that E [f(S,w)] ≥

(1 − 1
e
)f(OPT,w) − δng, where OPT denotes the optimal solution. This result suggests that

the SG algorithm in expectation almost preserves the performance of the deterministic greedy

algorithm, whose approximation factor is (1 − 1
e
), with one extra term δng, which is the price

for differentiability. It should be noted that by using SG, the output is stochastic and we focus

on the expected result of the output. The regularization functions Ωk are chosen to guarantee the

expected outputs of SG differentiable. Examples for Ωk will be discussed in the Sec. 5.2.4.

107



5.2.3.2 Gradient Estimation

Let OI be the set of all possible solutions returned by SG. Let p(S,w) ∈ [0, 1] be the

probability for S ∈ OI . Specifically, for a returned sequence S = {s1, . . . , s|S|} ∈ OI , the

associated probability can be computed as p(S,w) =
∏|S|

k=1 pk(sk,w), where pk(sk,w) is the

element of pk(w) defined Eq. (5.7) corresponding to sk ∈ Uk.

Next, we will show how to construct a gradient estimator based on the output distribution.

Let Q(S) be any scalar- or vector-valued function. We want to compute ∇wES∼p(w) [Q(S)] =∑
S∈OI

Q(S)∇wp(S,w). Since the size of the independent set will increase exponentially w.r.t.

the size of the ground set, it is computationally expensive to compute this gradient exactly. In-

stead, we will use the following unbiased estimator for the gradient in training.

As shown in Proposition 1 in [129], let Sj = (s1, . . . , s|Sj |) ∼ p(w)(j = 1, . . . , N) be

outputs of SG. Then,

1

N

N∑
j=1

Q(Sj)⊗∇w ln p(Sj,w) (5.8)

is an unbiased estimator of∇wES∼p(w) [Q(S)], where ⊗ denotes the outer product.

5.2.4 Simulation

environmental model: There are na UAVs and ng UGVs. The global wind ω is represented as

[a, b, ωo], where a and b are the shape and scale parameters of Weibull distribution, respectively,

and ωo is the wind direction.

UAV and UGV Behavior: In this case study, we consider the case that the task route is defined

as a sequence of ordered locations uniformly sampled from a circle whose center is [Cx, Cy] and

108



radius is r. Using this geometric information, each route can be represented as a vector Cx, Cy, r.

As for the recharging strategy, we use a simple strategy in the simulation: whenever the state of

charge drops below 30%, fly to the nearest recharging location and wait for the UGVs. We use

the same energy model as that in [130]. We generate UGV routes by first randomly selecting a

set of nodes and then solving a TSP to get a route.

Context Input z and mapping gθ(z): As shown in Fig. 5.1, each z consists of two com-

ponents: the task routes of all UAVs and the wind field vector [a, b, ωo] of the working area.

Since the route of the UAV can be parameterized by a circle (Cx, Cy, r), z can be represented as

[C1
x, C

1
y , r

1, C2
x, C

2
y , r

2, . . . , Cna
x , Cna

y , rna , a, b, ωo]. gθ(z) is instantiated using neural networks

with one hidden layer (of size 64) with ReLu activation function.

Regularization and Basis Function We choose the entropy function for experiments. Specif-

ically, when Ωk(p) = ϵ
∑nk

i=1 p(ui) ln p(ui), where p(ui) is the i−th entry of p ∈ [0, 1]nk and

ϵ > 0 is an arbitrary constant, δ can be set to ϵ lnnk. For the road graph G = (V,E), we use

graph partition algorithms to generate nine sets of nodes, i.e., {W1, . . . ,W9}. For each partition

Wi ⊂ V , we define three basis functions for decay parameters γ ∈ {0.001, 0.5, 1}.

Raw Data: Based on the UAV UGV behavior models, we build a simulator for the routing

problems. Given simulation parameters (e.g., UAV routes, and wind conditions), it will simulate

UAVs’ execution of persistent tasks. If we provide several selected routes to the simulator, it

will return the number of UAVs recharged if UGV follows these routes. Based on this simulator,

for each context observation z, we test multiple possible route selections and obtain a set of the

actual number of UAVs that UGV recharged. We will use this raw data to obtain the training data.

To train the proposed decision-oriented framework, we need the i-th data point to be in

the form (zi,wi), where zi denotes the context input and wi is the corresponding parameter
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Figure 5.4: Per epoch loss curve of DOL.

Table 5.1: Test results for learned models.

Avg # of UAV recharged DOL two-stage random

na = 6, ng = 3 5.3± 0.5 4.6± 0.4 2.1± 1.4

na = 10, ng = 3 9.2± 0.7 8.5± 0.6 4.5± 1.3

na = 15, ng = 4 14.1± 0.8 13.2± 0.7 7.5± 1.6

vector of the objective function. However, wi is not directly available and we need to do some

pre-processing of the raw data. Specifically, for each z, we have a set of values for different

selections, i.e.,F = {f(S1), . . . , f(S|F|)}. We find the corresponding w by solving the following

regularized least square optimization problem [131], i.e., minw≥0

∑|F|
i=1 ∥f(Si,w)− f(Si)∥22 +

ξ ∥w∥22 , where ξ is a user-specified regularization parameter.

Fig. 5.4 shows the learning curves over epochs. In each epoch, we compute the gradient by

sampling a batch size of 40 in each iteration. We can see that as the training epoch increases, the

loss will gradually decrease to a steady value. It should be noticed that the loss here represents

the solution quality gap between the solution obtained using ground truth parameters and the

solution obtained using predicted parameters as defined in Problem 8. Therefore, such a decrease

suggests that the decision quality is improving.

After training, we test the performance of the learned models using the simulator. We

generate a set of context observations {zi}test and compute the corresponding predicted weights
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{ŵi}test. Then, we use {ŵi}test to select routes and feed the route to the simulator to obtain

the actual number of UAVs recharged. The result is shown in Table 5.1. We compare three

approaches: DOL (our), two-stage (classic supervise learning with MSE loss), and random (select

routes randomly without any learning ). As shown in Table 5.1, our approach on average can

result in better route selection and recharge more UAVs.

5.3 Learning a Context-aware Objective for Information Gathering: (Non)-

monotone and Possibly Non-positive Submodular Objective Case

In Section 5.2, we consider the problem of finding the mapping from context observations

to the parameters of a monotone non-negative submodular objective by integrating the down-

stream decision-making problem. In this section, we study the case for a possibly non-monotone

and possibly non-positive submodular objective.

We consider a specific VRP scenario where a team of UAVs along with a team of Un-

manned Ground Vehicles (UGVs) are persistently monitoring an environment (Fig. 5.5). The

UAVs occasionally land on the UGVs for recharging. However, due to the uncertainty inherent

in the environment, failures and malfunctions are inevitable. For example, as shown in Fig. 5.5,

the tracking camera of a UAV may stop working, and it may not reliably land on the UGV for

recharging. Likewise, due to the stochastic wind field, the UAV may end up out of charge before

reaching the UGV. In such cases, the human operator may have to intervene to recover the UAV

(either by directly going to the UAV’s location or by teleoperating the UGV to get to the UAV).

Each intervention is costly as it requires the human operator’s attention and causes an interruption

to the monitoring task. We need to account for the cost of intervention in the route selection.
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Figure 5.5: The motivating case study of Intervention-aware UGVs routing.
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Figure 5.6: The proposed framework that incorporates the non-monotone submodular maximiza-
tion into the learning process.

The intervention cost depends on the UAV and UGV routes as well as the environmental

factors (e.g., wind conditions). We call all these factors together as context. We are interested in

finding such a mapping from context observation to the intervention cost.

We consider the optimization objective to be a combination of the monitoring performance

and the intervention cost. The monitoring performance is a monotone, submodular function for

which a greedy algorithm yields a constant-factor approximation [15]. In Section 5.2, we pre-

sented a DOL framework for differentiable submodular maximization of monotone functions.

However, by including the intervention cost in the objective, we cannot guarantee that the objec-

tive is monotone or even non-negative anymore. To accommodate such non-monotone optimiza-

tion, we present a Differentiable Cost-Scaled Greedy (D-CSG) algorithm. The differentiability
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of the non-monotone submodular maximization is achieved by using the multi-linear extension

of the set function along with a novel differentiable algorithm, which expands and approximates

the existing non-differentiable algorithm [132] as a differentiable computational graph.

Such research is also closely related to differentiable submodular maximization. Since the

submodular objective and greedy algorithm are tightly coupled, it is necessary to consider the in-

fluence of the greedy algorithm when we consider learning submodular functions [128]. For the

non-monotone submodular objective considered in this section, the simple greedy algorithm [15]

does not have a performance guarantee, and we need to use a variant called the CSG algorithm

to maximize the objective. As a result, the differentiable versions of the simple greedy algo-

rithm [128, 129] cannot be directly used in our learning framework, and we need to develop our

differentiable version of the CSG algorithm. Besides, our D-CSG algorithm is technically dif-

ferent from the existing differentiable greedy algorithm. The approach in [128, 129] is based on

adding stochastic disturbances to the algorithm and using a gradient estimator. Our algorithm is

based on the relaxation of the non-differentiable operation to a differentiable operation and the

relaxation of the set function to a continuous counterpart.

5.3.1 Problem Formulation

Let f : {0, 1}V → R≥0 and c : {0, 1}V → R≥0 be a normalized monotone submodular

function and a non-negative linear function, respectively. We are interested in a special type of

submodular function g : {0, 1}V → R, which is defined as

g(x,w) = f(x)− λc(x,w), (5.9)
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where w is cost vector for the set V; x ∈ {0, 1}V ; λ is a user-specified parameter for their cost

tolerance level; and c(x,w) = wTx.

It should be noted that g is still a submodular function, but it can take both positive and

negative values and may not be monotone [132, 133]. Such a function is suitable to model the

scenario where we need to balance the task performance (f(x)) with the cost needed to achieve

the performance (c(x,w)).

The decision-making is to solve the following problem:

max
x∈{0,1}V

g(x,w) (5.10)

s.t. 1Tx ≤ K, (5.11)

where K is the number of elements that can be selected.

Our goal is to learn a function hθ : Z → RN
+ that maps the context observation z ∈ Z

to the objective parameters w ∈ RN
+ . Traditionally, finding the mapping hθ and optimiz-

ing the downstream objective g(S,w) are considered separately: given the training data D =

{(z1,w1), (z2,w2), . . . , (z|D|,w|D|)}, find the mapping hθ by optimizing over θ in a supervised

fashion. After optimization, use the parameter w = hθ(z) for decision-making using (solve Eq.

(5.10)) when we get an observation z.

However, in robotic applications, the available training data is usually limited. Such a

pipeline may result in a hθ that either overfits the data or cannot generalize well when deployed,

i.e., leads to low-quality decisions in the downstream task. At a high level, the question that we

will explore in this paper is:

Can we improve the decision quality in the downstream tasks if we explicitly incorporate the
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downstream optimization into the process of learning hθ?

Our answer is that optimizing the following decision-oriented loss can improve the decision

quality compared to the baseline approach.

Decision-Oriented Loss: for a given training data (zi,wi), the decision-oriented loss ℓDOL(wi, ŵi)

is defined through Eq. (5.12) to Eq. (5.14):

ŵi := hθ(zi) (5.12)

x̂ := x∗(ŵi) solving (5.10) with w = ŵi (5.13)

ℓDOL(ŵi,wi) := g(x∗(wi),wi)− g(x̂,wi), (5.14)

where x∗(wi) denotes the solution of (5.10) returned by some approximation algorithms with

w = wi; g(x∗(wi),wi) denotes the decision quality when we use the ground truth parameter

wi for decisions; g(x̂,wi) denotes the decision quality when we use the predicted parameter ŵi

for decisions, i.e., use ŵi to obtain the decision x̂, but the decision is evaluated w.r.t. the true

parameter wi.

The intuition for Eq. (5.14) is that we want to minimize the gap between the decision

quality of the true parameters and that of the predicted parameters. One challenge is when we

use the chain rule to compute the gradient of the loss function we need to differentiate through

the optimization problem (the first term on the r.h.s. of Eq. (5.4)) as shown in the illustrative

computational graph in Fig. 5.6.

∂ℓDOL
∂θ

=
∂ℓDOL
∂ŵi

· ∂ŵi

∂θ
(5.15)
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Next, we will show how to approximately compute the first term on the r.h.s. of Eq. (5.15).

5.3.2 Case Study: Intervention-Aware UGV Routing

As described earlier, we consider the case of UAVs and UGVs persistently monitoring the

environment with occasional interventions to recover the nonoperational UAVs. We focus on

selecting the routes for ng = K UGVs and assume that the UAV routes are fixed. Specifically,

we consider that we are given a set of candidate routes, T , and we need to select a subset from

T for the UGVs. Here, T corresponds to the ground set V . For any subset S ∈ T , f(S) gives

the weighted coverage achieved by the UGVs executing the routes in S. Similarly, c(S,w) gives

the expected cost of intervention for the selected routes S where w are the unknown cost vectors.

The objective then is:

max
S∈T

g(S,w) (5.16)

s.t. |S| ≤ K. (5.17)

We observe that this is the same problem as described earlier in Eq. 5.10.

The cost c(S,w), i.e., how often and how much time we expect the human operators to

be involved are closely related to how fast the UAVs consume energy and how close the UAVs

and UGVs will be to each other when a recharging rendezvous is needed. From the UGVs’

remote supervisor’s perspective, some routes can cover many import task locations, but the UGV

may be interrupted frequently to assist the UAVs. Since we plan the routes before knowing

if/when/where the interventions will need to occur, our combined objective g(S) aims to achieve

a balanced performance between task coverage by the UGVs and expected human intervention
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costs.

We can compute the intervention cost if we know the value of cost vector w. If w is known,

we can solve problem (5.10) using the existing algorithm [132]. However, in practice, we do not

know the intervention cost in advance when we make decisions. Instead, we have some indirect

information. We call the latter as context z, which can include the geometric information of the

routes of the UAVs and UGVs, the environmental conditions (e.g., wind conditions), etc. Hence,

we solve two problems (simultaneously): predicting w from z and using the predicted w to find

routes S by solving Eq. 5.10.

5.3.3 Learning Algorithm

In this section, we present the differentiable algorithm for solving our problem building on

the cost-scaled greedy algorithm.

5.3.3.1 Cost-Scaled Greedy (CSG) Algorithm

Algorithm 8: Cost-Scaled Greedy (CSG) Algorithm
Input : Ground set V , scaled objective g̃(S,w) = f(S)− 2c(S,w), cardinality K
Output: A set S ⊆ V

1 S ← ∅
2 for i=1 to K do
3 ei ← argmaxe∈V g̃(e | S)
4 if g̃(ei | S) ≤ 0 then
5 break
6 end
7 S ← S ∪ {ei}
8 end
9 return S

The classic greedy algorithm cannot provide a performance guarantee for the objective in
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Figure 5.7: Computational graph of the proposed differentiable algorithm. (a) The structure of
the algorithm. (b) The internal structure of the differentiable cost-scaled greedy operation.

Eq. (5.9). Instead, a modified version of the greedy algorithm, CSG, was proposed in [132]

and was shown to achieve an approximation satisfying that f(Q) − c(Q,w) ≥ 1
2
f(OPT ) −

c(OPT,w), where Q is the solution returned by Algorithm 8 and OPT refers to the optimal

solution. It should be noted that the output of such an algorithm is not differentiable w.r.t. the

parameter w.

5.3.3.2 Multilinear Extension of Submodular Function

A prerequisite for D-CSG to work is that we need to have a continuous and differentiable

relaxation of the objective in Eq. (5.10). The linear part, c(x,w), can be directly relaxed to a

continuous version. As for the submodular part, f(x), We use the multilinear extension to relax
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the submodular part.

For a submodular function f : {0, 1}N → R≥0, its multilinear extension F : [0, 1]N → R≥0

is defined as

F (x) =
∑
S⊆T

f(S)
∏
i∈S

xi
∏
i/∈S

(1− xi), (5.18)

which is a unique multilinear function agreeing with f in the vertices of the hypercude [0, 1]N .

Let q denote a random vector in {0, 1}N , where each coordinate is independently rouned

to 1 with probability xi or 0 otherwise. It can be shown that the derivative ∂F
∂xi

is

∂F

∂xi
= Eq∼x [f([q]i=1)]− Eq∼x [f([q]i=0)] , (5.19)

where [q]i=1 and [q]i=0 are equal to the vector q with the i-th coordinate set to be 1 and 0,

respectively.

5.3.3.3 Differentiable-Cost-Scaled Greedy (D-CSG) Algorithm

Based on the CSG algorithm, we developed one differentiable version of CSG. The key

idea is to expand the computation steps as one computational graph, as shown in Fig. 5.7a.

Suppose we must select up to K elements from a ground set whose size is N . We abstract the

CSG algorithm as a K step computational graph as shown in Fig. 5.7a. The selection vector

is initially an all-zero vector, i.e., s0 = 0, s0 ∈ RN . In each step, the greedy operation will try

to set one element in the selection vector from 0 to 1 approximately. The details of the greedy

operation are given in Fig. 5.7b. For an input vector si, we must first identify the elements that are

not selected yet by doing 1− si. Then, we separate 1− si into N vectors, each of which has one
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element from 1− si and the rest is zero. Each vector represents selecting an element from what

is left in the ground set. If an element si(j) ≈ 1 (j is already selected), 1−si(j) is approximately

zero, and the sum of this vector with si implies adding no new element to si. By contrast, if an

element si(j) ≈ 0 (j is not selected yet), 1 − si(j) is approximately one, and the sum of this

vector with si implies adding one new element to si. Then, we feed the selection result to the

continuous relaxation of the cost-scaled objective function, g̃c, to compute the marginal gain. To

account for the branch control in Algorithm 8 (line 4-6), we add one dummy element with zero

marginal gain when we concatenate all the marginal values. Then, this concatenated vector will

be fed into one argmax operator to select the one with the largest marginal gain (similar to line 3

in Algorithm 8). If all the marginal gains are less than zero, then the output of the argmax will

choose the dummy element. As a result, the first N elements of the output of the argmax will

all approximately to be zero, and the last element corresponding to the dummy selection will be

one. Therefore, if we add the result of the first N elements to si to get a new N -dimensional

vector, si+1, the si+1 will be the same as si, which is in effect equivalent to skipping selection

in this step. Such skipping step will also happen in the following steps since all marginal gains

will be less than zero. It is equivalent to the branch control statement in Algorithm 8 (lines 4-6).

It should be noted that the argmax operator itself is not differentiable and cannot be used during

training. Instead, we use Gumbel-softmax [134], which uses a temperature parameter τ to scale

how it is close to the argmax operator. A larger τ will make the approximate smoother, but the

approximation error will also be larger. In experiments, this parameter is set empirically.

Remark 2. The greedy operation has two non-matrix operations: evaluation of g̃c (2N times) and

softmax. The latter is much faster than the former. As a result, the time for evaluation of g̃c will
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dominate the forward pass the greedy operation.

5.3.4 Simulation

We evaluate the performance of the proposed framework for intervention cost prediction

using synthetic data. We will first compare the performances of different algorithms to solve the

randomly generated instances of Problem (5.10) to show the necessity and correctness of the D-

CSG algorithm. Then, we will present one qualitative example of why the proposed framework

is better than the classic one based on MSE loss. Next, we will present some quantitative results

to show that the proposed framework leads to better decisions.

5.3.4.1 Simulation Setup

There are na UAVs and ng UGVs. The global wind ω is represented as [a, b, ωo], where a

and b are the shape and scale parameters of Weibull distribution [135], respectively, and ωo is the

wind direction.

UAV and UGV Behavior: We consider the case that each task route of UAVs and UGVs is a

circle, whose center is [Cx, Cy] and radius is r. This geometric information can represent each

route as a vector [Cx, Cy, r]. Our framework is also applied to more general types of task routes

as long as we have a compact representation. We use circular routes for simplicity. Both vehicles

need to monitor their assigned task routes persistently. Our main focus is on the UGV’s side.

As shown in Fig. 3.1, several targets of different values are scattered in the environment. The

team of UGVs needs to cover some of them persistently. The team can get that value of the

target if a target is covered by one UGV when the UGV traverses along the task route (when
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two or more UGVs cover a target, we can only get the value once). The team of UGVs will

try to get a higher value in sum. At a high level, the team is trying to maximize a generalized

coverage function [136], which is submodular. As for the UAVs, when the UAV is about to be

out of charge, i.e., the state of charge drops below 30%, it will fly toward the closest UGV. We

use the same energy model as that in [130] with a stochastic wind model. If it can successfully

rendezvous with the UGV, it will be recharged. If it has to land before it can rendezvous with the

UGV. In such a case, a human operator must take over until all vehicles return to their tasks.

Raw Data: Based on the UAV UGV behavior models, we build a simulator for the routing

problems as in our previous work [19, 21, 137]. Given simulation parameters (e.g., UAV and

UGV routes and wind conditions, λ), it will simulate vehicles’ execution of persistent tasks.

Based on this simulator, we randomly generate a set of context observations, and for each context

zi, there are a set of candidate task routes, Ti, for UGVs. The size of Ti is fixed to beN . Then, we

will get the data by making a team of ng UGVs execute different combinations of routes: collect

simulation data and compute a corresponding wi (average intervention time in minutes per hour)

for z for all routes in Ti. Such a process is repeated many times to generate the training data. In

the test phase, we generate a set of context observations and test the performance of the algorithm

by directly running the simulator.

We test the performance of the proposed differentiable algorithm in synthetic instances of

the problem in (5.10). We compare with two baselines: one is the Naive Greedy [15] and CSG.

Objective Value For each instance, we set the objective value returned by CSG as the denom-

inator and scale the outputs of D-CSG and NG. As shown in Fig. 5.8, our D-CSG achieves

comparable performance compared to CSG, which suggests that the differentiability does not

sacrifice much optimization performance. By contrast, the performance of the NG is, on aver-
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Figure 5.8: Simulation results for the network (D-CSG).

age, worse than that of D-CSG, which justifies our motivation to develop a novel differentiable

algorithm rather than using the differentiable version of NG.

Running Time The price of differentiability is mainly reflected in the running time. In experi-

ments, we observe that the D-CSG is usually 20-30 times slower than CSG. This is mainly be-

cause the evaluation of the continuous relaxation of the submodular objective is time-consuming,

which can be viewed as a polynomial with exponentially many terms w.r.t. the size of the route

set. The running time can be improved by using an estimator for function evaluation and gradient

computation [138]. We leave this for future work.

Table 5.2: Submodular Function for Qualitative Example

s1 s2 s3 s1, s2 s1, s3 s2, s3 s1, s2, s3

f(·) 16 17 25 21 37 38 41

A Qualitative Example Let us consider a normalized submodular function f ,i.e., f(∅) = 0,

defined over a ground set S = {s1, s2, s3}. Each element in S can be viewed as a task route for

UGVs. The values of f for choosing different elements are shown in Table 5.2. Verifying the

submodularity of f is easy using the definition. Each S element is associated with a context-

dependent cost. Suppose that the cost of s3 is constantly to be one, and the ground truth costs
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Table 5.3: Test Results of Objective Values

Training Parameters DOL two-stage random

na = 10, ng = 3, N = 10 203± 30 167± 26 81± 53

na = 15, ng = 5, N = 12 325± 27 291± 27 102± 69

na = 20, ng = 7, N = 15 471± 34 419± 23 227± 51
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Figure 5.9: A case study with three candidate routes and two UGVs. (a) Application scenario.
(b) Ground truth data and the optimal decision boundary. (c) Learned linear models using MSE
loss. (d) Learned linear models using the DOL framework.

for s1 and s2 are shown in Fig.5.9a. We are interested in solving a problem as defined in Eq.

(5.10) with K = 2. When we make decisions, we can only see the context, and we need to infer

the route costs. The optimal decision is either {s1, s3} or {s2, s3}. If we know the ground truth

context-to-cost function as shown in Fig.5.9a, the optimal decision boundary is z = 4.45 at which

the cost choosing s2 is greater than that of s1 by 1. Namely, if the context observation z is less

than 4.45, we should choose s2 and s3. When z exceeds 4.45, we should choose s1 and s3. Next,

let us look at the result if learning is involved. We want to find a mapping from the observation

z to costs. Suppose we obtain the training data by sampling from the ground truth as shown in

Fig.5.9a. MSE as the objective for learning without considering the downstream task, we will

get two lines as shown in Fig. 5.9b. The decision boundary (dashed vertical red line, z∗ = 3.64,

at which w2 − w1 = 1 ) is on the left of the optimal boundary, thus not optimal. By contrast,
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Figure 5.10: Per epoch loss curve of DOL.

if we consider the downstream optimization, we will get two lines as shown in Fig. 5.9 and the

decision boundary (dashed vertical blue line, z∗ = 3.96, at which w2 − w1 = 1 ) is closer to the

optimal boundary, thus reducing the regions of suboptimal decisions.

We use a three-layer neural network to approximate the mapping gθ. The number of pa-

rameters in the neural network will vary according to the number of UAVs (na) and the number

of routes (N ). In training, we use MSE loss first for a few epochs to as a warm start. Then, we

will use DOL loss defined in Eq. (5.3). Fig. 5.10 shows one typical learning curve using the

DOL loss over epochs. The loss will decrease first and reach a steady value, which suggests that

the decision quality gap between the reference solution and the one obtained using predictions

from gθ is decreasing.

After training, we test the performance of the learned models using the simulator. We

generate a set of context observations {zi}test and compute the corresponding predicted weights

{ŵi}test. Then, we use {ŵi}test to select routes and feed the route to the simulator to obtain the

actual intervention time and the coverage value. Then, we will use these two values to compute

the objective value as defined in (5.9). The result of the objective value is shown in Table 5.3.

We compare three approaches: DOL (our), two-stage (classic supervise learning with MSE loss),
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and random (select routes randomly without any learning ). As shown in Table 5.3, our approach,

on average, can result in a more balanced route selection (trade-off between task coverage and

intervention time) and get a higher objective value for the route selections.

5.4 Conclusion

We propose two decision-oriented learning frameworks that explicitly incorporate down-

stream tasks into the learning process. The key to achieving such integration is to make the combi-

natorial optimization differentiable. For the case where the objective in the task optimization is a

parameterized monotone non-negative submodular function, we design a stochastic perturbation-

based approach to make the task optimization differentiable. For the case where the objective in

the task optimization is a parameterized (non)-monotone and possibly non-positive submodular

function, we show how to make task optimization a differentiable layer by using the proposed

D-CSG algorithm and the multilinear extension of the objective function. Both frameworks are

validated in VRP-related case studies.
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Chapter 6: Conclusion and Future Work

6.1 Summary of Contributions

This dissertation addressed the problem of how to coordinate multi-robot teams to gather

information effectively given the available knowledge about the environment and the capability

constraints in robots. Our research spans the whole spectrum of the knowledge of the environ-

ment model: from one extreme where the environment model is fully known to another extreme

where the environment model is unknown but can be learned from empirical data, and considers

diverse constraints in the robotic platform, including communication radius, battery capacity, and

possible platform failures (i.e., robots are out of service). Our contributions can be summarized

as follows.

• When the environment model is fully known, we proposed a problem named Communication-

aware Submodular Maximization (CSM) for a class of multi-robot information gathering

problems that have submodular objectives and require intermittent connectivity between

robots and proposed an efficient two-stage algorithm to solve the CSM problem.

• When the multi-robot team has to perform information gathering tasks in an uncertain

environment where some of them may fail and we only have one pessimistic estimation

about the failures: at most α failures, we proposed a novel formulation named Robust
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Multiple-path Orienteering Problem (RMOP) and proposed one efficient algorithm with

worst-case guarantees to solve RMOP.

• When the multi-robot team has to perform information gathering tasks in an uncertain

environment where we know the distribution of the uncertainty, we design two risk-aware

routing algorithms for the coordination of a heterogenous team of UAVs and UGVs.

• When the environment model is unknown and context-dependent, and we need to learn an

environment model from the empirical data, we proposed novel decision-oriented-learning

frameworks that explicitly incorporate the downstream decision-making into the learning

process and technically show how to make submodular maximization and its variants dif-

ferentiable.

6.2 Future Directions

Although we have explored several aspects of multi-robot coordination and learning algo-

rithms for information gathering tasks, we have only touched the tip of the iceberg, and there

are still many aspects that are worth more research efforts. Specifically, this dissertation can be

extended and augmented in the following aspects.

6.2.1 Decentralized and Anytime Decision-making Algorithms

In this dissertation, the coordination algorithms are designed to be executed in a centralized

fashion. Such algorithms are suitable for scenarios where we need to make decisions once at a

central server and then let the robots follow the decisions. However, in the field, we may need

to make decisions many times for a given task, and it is more desirable for robots to be able to
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make decisions in a decentralized fashion. Although there is already some research going in this

direction, the scalability of the algorithm, performance guarantee, and robustness to unreliable

communication are still largely unsolved. Similarly, when we deploy the robots in the field,

the computational power of the robot is limited. It is desirable to design anytime algorithms

for robots such that robots can have a good enough solution when they do not have enough

time to solve the decision-making problem (near)-optimally. Machine learning-based techniques

may be used in parallel to boost the performance of the anytime algorithm in two ways: first,

the machine learning model may help the algorithm to guess a good enough warm start for the

algorithm; second, the machine learning model may help to configure the parameters of the

anytime algorithm based on the online observations of the environments.

6.2.2 Human-robot Teaming

A growing trend in the robotics community nowadays is to consider the human factor in

robot autonomy. This dissertation can also be extended in this direction. If humans work as

remote supervisors of a large robotic team (i.e., whenever the robots encounter some unsolvable

deadlock or failure, human supervisors need to take over), for a given long-term information gath-

ering task, what is the minimum number of human supervisors to guarantee the relatively smooth

operation of the robotic team considering that malfunction or failures of robots are inevitable? If

human also needs to be part of the team for a cooperative task, how do we design task allocation

and communication mechanism such that we can fully exploit human advantages (e.g., capture

and analyze semantic information) without overburdening them? Besides, if human feedback has

to be incorporated into the online decision-making loop, how do we evaluate the human exper-
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tise level based on the history record and how do we incorporate the human feedback into the

decision-making framework based on our evaluation? Besides, human expertise for information

gathering tasks may gradually increase, but the willingness for repeated tasks may decrease, how

do we account for these factors in the decision-making pipelines? The studies to answer these

research questions will be a good complement to this dissertation.

6.2.3 Decision-oriented Learning for a Broader Class of Combinatorial Opti-

mization

In the decision-oriented learning chapter, we consider the problem of learning a map-

ping from context observation to the parameters only in the objective function. Besides, for

the decision-making problem, we only consider the matroid constraints (e.g., cardinality con-

straint). What if we also need to predict the parameters in the constraint (e.g., budget constraint)

and the constraint is not a matroid (e.g., routing constraint)? In such a case, we need to design

new, differentiable algorithms to incorporate decision-making problems into the learning process.

Moreover, the objective may not be exactly submodular but approximately submodular. How to

design differentiable algorithms for such problems is an important and interesting future research

direction. Besides, the learning algorithm in Chapter 5 is suitable for the case where the data is

already collected and we just need to learn the model offline. What if the data streams in and

we need to learn the model online and simultaneously make decisions? Such a problem can be

further complicated if the streaming data is incomplete (part of the data is missing) and noisy.

All these questions need further research efforts after this dissertation.
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Appendix A: Proofs for RMOP

A.1 Proof of Theorem 1

Let V be a finite ground set and f : 2V → R+ a normalized nondecreasing submodular

set function. In our setup, the ground set V represents the collection of all feasible paths for

all robots1 and f represents the sensing function. Given a set Ω ⊆ V and an ordered set S =

{s1, s2, . . . , st}, we define S0 = ∅ and Si = {s1, s2, . . . , si} for 1 ≤ i ≤ t, and

k0 = 1− min
i:si∈S†

fSi−1∪Ω(si)

fSi−1
(si)

, (A.1)

where S† = {si ∈ S \ Ω | fSi−1
(si) > 0} and i : si ∈ S† denotes i ∈ {j | sj ∈ S†}.

Recall that the definition of the total curvature is

kf = 1− min
si∈V†

fV\{si}({si})
f({si})

,

where V† = {si ∈ V | f({si}) > 0}.

Lemma 1.

k0 ≤ kf . (A.2)
1Note that we do not actually require this full set as input for the algorithm.
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Proof.

k0 = max
i:si∈S†

fSi−1
(si)− fSi−1∪Ω(si)

fSi−1
(si)

(A.3)

= max
i:si∈S†

1− fSi−1∪Ω(si)

fSi−1
(si)

(A.4)

≤ max
i:si∈S†

1− fG\{si}(si)

f(si)
(A.5)

≤ max
i:si∈G†

1− fG\{si}(si)

f(si)
= kf . (A.6)

Eq. A.5 follows Eq. A.4 due to the monotonicity of the submodular function. Eq. A.6 follows

Eq. A.5 since S† ⊆ G†. ■

Lemma 2.

f(Ω ∪ S) = f(Ω) +
∑

i:si∈S\Ω
fΩ∪Si−1

(si). (A.7)

Proof. By definition, f(Ω∪S) can be computed by first computing f(Ω) and then summing over

the marginal gain of each element si ∈ S \ Ω. Suppose we sum these marginal gain using the

same order as those elements show in S, then fΩ∪Si−1
(si) represents the marginal gain of si. ■

Lemma 3.

f(Ω) ≤ k0
∑

i:si∈S\Ω
fSi−1

(si) +
∑

i:si∈Ω∩S
fSi−1

(si)

+
∑

i:ωi∈Ω\S
fS(ω).

(A.8)
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Proof. By definition and submodularity,

f(Ω ∪ S) = f(S) + fS(Ω \ S) (A.9)

≤ f(S) +
∑
ω∈Ω\S

fS(ω). (A.10)

By Lemma 2 and the definition of k0,

f(Ω ∪ S) = f(Ω) +
∑

i:si∈S\Ω
fΩ∪Si−1

(si) (A.11)

≥ f(Ω) + (1− k0)
∑

i:si∈S\Ω
fSi−1

(si). (A.12)

Combining Eq. (A.10) and Eq. (A.12), we have

f(Ω) ≤ k0
∑

i:si∈S\Ω
fSi−1

(si) +f(S)−
∑

i:si∈S\Ω
fSi−1

(si)

+
∑
ω∈Ω\S

fS(ω)

(A.13)

= k0
∑

i:si∈S\Ω
fSi−1

(si) +
∑

i:si∈S∩Ω
fSi−1

(si) +
∑
ω∈Ω\S

fS(ω). (A.14)

■

Let η ≥ 1 be the approximate factor for SOP and O = {O∗
1,O∗

2, . . . ,O∗
i , . . . ,O∗

N} be the

optimal solution to MOP. The SGA solution up to the stage i is denoted asAi = {P1,P2, . . . ,Pi}

and we use A = {P1,P2, . . . ,Pi, . . . ,PN} to denote the solution returned by SGA. It should be

noted that A is an ordered set and O is an unordered set.

Let σS(si) denote the index of the element si in the ordered set S. For example, σA(Pi) = i.
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In the following proof, we will treat O as an ordered set (different orders of O will not change

f(O)) and order the elements in O in such a way:

if O∗
i ∈ A ∩O, σO(O∗

i ) = σA(O∗
i ), (A.15)

i.e., if an element is in the intersection of two ordered set, it has the same index in these two sets.

One direct result with such ordered set is that

{i | oi ∈ O ∩A} = {i | ai ∈ A ∩O}, (A.16)

and

{i | oi ∈ O \ A} = {1, 2, . . . , N} − {i | oi ∈ O ∩A}

= {1, 2, . . . , N} − {i | ai ∈ A ∩O}

= {i | ai ∈ A \ O}.

(A.17)

Next we will start our proof of Theorem 1.

Proof. By Lemma 3,

f(O) ≤ k0
∑

i:ai∈A\O
fAi−1

(ai) +
∑

i:ai∈O∩A
fAi−1

(ai)

+
∑

i:oi∈O\A
fA(oi).

(A.18)

Considering the first term on the right hand side, by monotonicity, we have

k0
∑

i:ai∈A\O
fAi−1

(ai) ≤ k0
∑
i:ai∈A

fAi−1
(ai) = k0f(A).
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For the second and third term,

∑
i:ai∈O∩A

fAi−1
(ai) +

∑
oi∈O\A

fA(oi) (A.19)

≤
∑

i:ai∈O∩A
fAi−1

(ai) +
∑

oi∈O\A
fAi−1

(oi) (A.20)

≤
∑

i:ai∈O∩A
fAi−1

(ai) +
∑

i:oi∈O\A
fAi−1

(P∗local
i ) (A.21)

≤
∑

i:ai∈O∩A
fAi−1

(ai) +
∑

i:ai∈A\O
ηfAi−1

(ai) (A.22)

=
∑

i:ai∈O∩A
ηfAi−1

(ai) +
∑

ai∈A\O
ηfAi−1

(ai) (A.23)

= ηf(A), (A.24)

where i : oi ∈ O \ A (i : ai ∈ A \ O) denotes i ∈ {i | oi ∈ O \ A} (i ∈ {i | ai ∈ A \ O}).

Eq. (A.20) follows from Eq. (A.19) due to the submodularity. Eq. (A.21) follows from Eq.

(A.20) due to the definition of P∗local
i :

P∗local
i = max

P
fAi−1

(P).

Eq. (A.22) follows from Eq. (A.21) based on Eq. (A.17) and the property of the approxi-

mation algorithm. Eq. (A.23) transits to Eq. (A.24) by definition.

Combining the inequalities for all terms on the right hand side, we have

f(O) ≤ k0f(A) + ηf(A) (A.25)

≤ (kf + η)f(A). (A.26)

135



■

A.2 Proof of Theorem 2

Proof. Our proof relies on the following three inequalities:

f(S \ A∗(S)) ≥ (1− kf )f(S2) (A.27)

f(S \ A∗(S)) ≥ 1

α + 1
f(S2) (A.28)

f(S \ A∗(S)) ≥ 1

N − αf(S2) (A.29)

The proof for inequality (A.27) is similar to the proof (Eq. 16-20) in [71] when combined with

the invariant maintained by the while loop in Algorithm 3. Likewise, the proof for inequality

(A.28) resembles that given in [71] (from Eq. 21 to Eq. 25) and inequality (A.29) can be proved

in the same fashion as that in [75] (Eq. 57 to Eq. 58).

From Theorem 1 we have,

f(S2) ≥
1

kf + η
f(Q∗) (A.30)

where Q∗ is the optimal solution to the multi-path orienteering problem for robots R \ R(S1).

Similar to Lemma 9 in [75], we have another inequality:

f(Q∗) ≥ f ∗ = f(S∗ \ A∗(S∗)), (A.31)

136



where f ∗ is the optimal solution to RMOP. For completeness, we give the proof in the supple-

mentary document. Combining inequalities (A.27) – (A.31), we get the statement for Theorem

2. ■

A.3 Proof of Inequality in Equation (A.27)

We will prove the following,

f(S \ A∗(S)) ≥ (1− kf )f(S2) (A.32)

where S = S1 ∪ S2 is the solution returned by our algorithm; A∗(S) is the optimal removal of

S; kf is the curvature of function f . Next, we prove inequality A.32 and we will use Lemma

1 from [71] without proof. Proof here is essentially the same as that in [71] but with different

notations for better understanding.

Lemma 4. Consider a finite ground set V and a monotone set function f : 2V → R such that f

is a non-negative and f(∅) = 0. For any set A ⊆ V ,

f(A) ≥ (1− kf )
∑
a∈A

f(a) (A.33)
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Figure A.1: Venn diagram, where S1,S2,S∗
1 ,S∗

2 are defined as follows: Per run of proposed
algorithm for RMOP, S1 and S2 are intermediate results such that S = S1 ∪S2, and S1 ∩S2 = ∅.
Let S∗

A(S) be the optimal removal from S. Then S∗
1 ,S∗

2 are defined such that S∗
1 = A∗(S) ∩ S1

and S∗
2 = A∗(S) ∩ S2. By definition, S∗

1 ∩ S∗
2 = ∅ and S∗

A(S) = S∗
1 ∪ S∗

2 .

Let S+
1 = S1 \ S∗

1 and S+
2 = S2 \ S∗

2

f(S \ A∗(S)) = f(S+
1 ∪ S+

2 ) (A.34)

≥ (1− kf )
∑

s∈S+
1 ∪S+

2

f(s) (A.35)

≥ (1− kf )(
∑

s∈S2\S+
2

f(s) +
∑
s∈S+

2

f(s)) (A.36)

≥ (1− kf )(f(S2 \ S+
2 ) + f(S+

2 )) (A.37)

≥ (1− kf )((S2 \ S+
2 ) ∪ S+

2 ) (A.38)

= (1− kf )f(S2) (A.39)

where (A.34) holds by definition; (A.34) to (A.35) holds due to Lemma 4; (A.36) follows from

(A.35) since all paths s ∈ S+
1 and all paths s′ ∈ S2 \ S+

2 , the inequality f(s) ≥ f(s′) holds, i.e.

paths in S1 have more rewards compared to that in S2 (note that by definitions of sets S+
1 and S+

2

it is |S+
1 | = |S∗

2 | = |S2 \ S+
2 |, i.e. the number of non-removed paths in S1 is equal to the number

of removed paths in S2); from (A.36) to (A.37), it is due to submodularity; and (A.39) follows

from (A.38) by definition.
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A.4 Proof of Inequality in Equation (A.28)

We will prove the following,

f(S \ A∗(S)) ≥ 1

α + 1
f(S2) (A.40)

We will use Lemma 2 from [71] without proof. Proof here is essentially the same as that in [71]

but with notations consistent with our paper for better understanding.

Lemma 5. Consider any finite ground set V , a monotone submodular function f : 2V → R such

that f is a non-negative and f(∅) = 0. Consider two non-empty sets Y ,P ⊆ V such that for all

elements y ∈ Y and all elements p ∈ P it is f(y) ≥ f(p). Then,

fY(P) ≤ |P|f(Y) (A.41)

First we introduce one notation:

ξ =
fS\A∗(S)(S∗

2 )

f(S2)
(A.42)

To prove (A.40), we still need to discuss two cases: S∗
2 = ∅ and S∗

2 ̸= ∅. When S∗
2 = ∅, we have

f(S \ A∗(S)) = f(S2), and (A.40) holds. Next, we consider the case where S∗
2 ̸= ∅ holds. The

proof starts with one observation that

f(S \ A∗(S)) ≥ max{f(S \ A∗(S)), f(S+
1 )}, (A.43)
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and then prove the following three inequalities:

f(S \ A∗(S)) ≥ (1− ξ)f(S2) (A.44)

f(S+
1 ) ≥ ξ

1

α
f(S2) (A.45)

max{(1− ξ, ξ 1
α
)} ≥ 1

α + 1
(A.46)

Next, if substitute (A.44), (A.45), and (A.46) to (A.43), then (A.40) is proved.

1) Proof of inequalities 0 ≤ ξ ≤ 1: Since f is non-negative and therefore by definition

ξ ≥ 0. For numerator of ξ, by submodularity, fS\A∗(S)(S∗
2 ) ≤ f(S∗

2 ) and notice that S∗
2 is a

subset of S2. Therefore,

ξ =
fS\A∗(S)(S∗

2 )

f(S2)

≤ f(S∗
2 )

f(S2)
≤ 1

2) proof of inequality A.44: The proof can be done in two steps. Firstly, it can be verified

using fA(B) = f(A ∪ B)− f(A) that

f(S \ A∗(S)) = f(S2)− fS\A∗(S)(S∗
2 )

+ fS2(S1)− fS\S∗
1
(S∗

1 ) (A.47)

It should be noted that fS2(S1) − fS\S∗
1
(S∗

1 ) ≥ 0 for two following observations: i) fS2(S1) ≥

fS2(S∗
1 ) since f is monotone and S∗

1 ⊆ S1; ii) fS2(S∗
1 ) ≥ fS\S∗

1
(S∗

1 ) since f is submodular and
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S2 ⊆ S \ S∗
1 (see also Fig. A.1). Then we have

f(S \ A∗(S)) ≥ f(S2)− fS\A∗(S)(S∗
2 )

= f(S2)− ξf(S2)

Inequality A.44 proved.

3) Proof of inequality A.45: Since it is S∗
2 ̸= ∅ which suggests that S+

1 ̸= ∅ and for all paths

a ∈ S+
1 and all elements b ∈ S∗

2 it is f(a) ≥ f(b), from Lemma 5, we have

fS+
1
(S∗

2 ) ≤ |S∗
2 |f(S+

1 )

≤ αf(S+
1 )

Since |S∗
2 | ≤ α. Overall,

f(S+
1 ) ≥

1

α
fS+

1
(S∗

2 )

≥ 1

α
fS+

1 ∪S+
1
(S∗

2 )

=
1

α
fS\A∗(S)(S∗

2 )

= ξ
1

α
f(S2)

(A.48)

where inequalities flow from top to down for submodularity, the definition of S+
1 ∪ S+

1 , and the

definition of ξ.

4) Proof of inequality A.46: Let b = 1
α

. We complete the proof first for the case where

(1− ξ) ≥ ξb, and then for the case where (1− ξ) < ξb: when (1− ξ) ≥ ξb, max{(1− ξ), ξb} =

1− ξ and ξ ≤ 1
1+b

; due to the latter, 1− ξ ≥ b
1+b

= 1
α+1

, which suggests inequality A.46 holds;

Finally, when 1− ξ < ξb, max{(1− ξ), ξb} = ξb and ξ > 1
1+b

; due to the latter, ξb > b
1+b

= 1
1+α

,
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which also suggests inequality A.46 holds. Thus the inequality A.40 is proved.

A.5 Proof of Inequality in Equation (A.29)

We will prove the following,

f(S \ A∗(S)) ≥ 1

N − αf(S2) (A.49)

where S = S1 ∪S2 is the solution returned by our algorithm; A∗(S) is the optimal removal of S;

α = max |A| is the maximum number of removal from set S and N is the number of robots.

The following two cases are enough to explain why (A.49) holds.

• when S∗
2 = ∅, i.e. all paths in S1 are removed and correspondingly no paths are removed

in S2. Then f(S \ A∗(S)) = f(S2), and (A.49) holds.

• when S∗
2 ̸= ∅, that is there is at least one path left in S1 and choose one s from any of them,

then

f(S \ A∗(S)) ≥ f(s) (A.50)

since f is non-decreasing. Moreover,

f(S2) ≤
∑
v∈S2

f(v) ≤ (N − α)f(s) (A.51)

where the first inequality holds due to submodularity and the second holds because the

proposed algorithm will construct S1 and S2 such that f(v′) ≥ f(v),∀v′ ∈ S1, v ∈ S2.

Combine two cases, inequality (A.49) is proved.
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A.6 Proof of Inequalities in Equation (A.31)

We will prove the following

f(Q∗) ≥ f ∗, (A.52)

where Q∗ is the optimal MOP solution to robots i ∈ R \R(S1), i.e. the optimal paths for robots

corresponding to S2; f ∗ is the optimal solution to RMOP.

We first prove the inequality A.52. Let Πi be the set of all feasible paths for robot i, which

is hard to compute but is assumed here somehow known for analysis purposes. Then the ground

set is defined as

Π =
N⋃
i=1

Πi

By definition, (Π, I) is a partition matroid if

I = {I ⊆ Π | |I ∩ Πi| ≤ 1,∀i = 1, 2, . . . , N} (A.53)

where independent set I represents all possible results of finding paths to N robots.

Similarly, we have another partition matroid (Π, I ′) with

I ′ = {I ⊆ Π | |I ∩ Πi| ≤ a, a = 1,∀i ∈ R(S1);

a = 0,∀i ∈ R \ R(S1)}
(A.54)

where independent set I ′ represents all possible results of finding paths to robots in R(S1) and

I ′ ⊆ I.

In inequality (A.52), L.H.S, for any set S1 ⊆ Π returned by algorithms with |S1| =
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|R(S1)| = α such that S1 ∈ I and S1 ∈ I ′. By definition of Q∗

f(Q∗) = max
S2⊆Π,S2∪S1∈I

f(S2) (A.55)

= max
S2⊆Π\S1,S2∪S1∈I

f(S2) (A.56)

≥ min
S̃1⊆Π,S̃1∈I′

max
S2⊆Π\S̃1,S2∪S̃1∈I

f(S2) (A.57)

= min
S̃1⊆Π,S̃1⊆∈I′

max
S̃⊆Π,S̃∈I,S̃1⊆S̃

f(S̃ \ S̃1) (A.58)

= min
S̃1⊆Π,S̃1⊆∈I′

max
S̃⊆Π,S̃∈I

f(S̃ \ S̃1) (A.59)

≜ h (A.60)

(A.55) is the definition of Q∗; (A.55) to (A.56) holds since we have a partition matroid with

independent set defined as (A.53) and the intersection of S1 and S2 will be empty; In (A.56), S1

is a specific subset of Π and in the independent set I ′. If we think S1 as an instantiation of a

certain ‘set variable’ S̃1, we can find a minimal value (R.H.S of (A.57)) through optimizing over

S̃1 and (A.56) should be greater than minimal value, i.e. (A.56) to (A.57) holds; next we use the

trick of changing of variables: let S̃ = S̃1 ∪S2 and S2 = S̃ \ S̃1 due to the fact that S̃1 and S2 are

disjoint. As a result, (A.57) to (A.58) holds; notice that in (A.58) the minimization operation over

S̃1 can guarantee that the solution satisfies S̃1 ⊆ S̃ and we can remove the redundant constraint

S̃1 ⊆ S̃ in maximization, i.e. (A.58) to (A.59) holds; and we define (A.59) as h.

In the following, we basically show that min-max function is no less than max-min func-

tion. Notice that for any S ⊆ Π such that S ∈ I, and any set S̃1 ⊆ Π such that S̃1 ∈ I ′, it
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holds

max
S̃⊆Π,S̃∈I

f(S̃ \ S̃1) ≥ f(S \ S̃1) (A.61)

which implies:

h ≥ min
S̃1⊆Π,S̃1∈I′

f(S \ S̃1)

= min
S̃1⊆S,S̃1∈I′

f(S \ S̃1)

(A.62)

Notice that (A.62) holds for all S ∈ I. As a result,

h ≥ max
S̃⊆Π,S̃∈I

min
S̃1⊆S̃,S̃1∈I′

f(S̃ \ S̃1) (A.63)

Next we consider the minimization operation of (A.63). For any S̃ ∈ I,

min
S̃1⊆S̃,S̃1∈I′

f(S̃ \ S̃1) ≥ min
S̃1⊆S̃,|S̃1|≤α

f(S̃ \ S̃1) (A.64)

Reasons for (A.64) to hold: the L.H.S of (A.64) only allows remove S̃1 ∈ I ′ and |S̃1| can go up

to |R(S1)| = α (refer to definition of I ′); by contrast, R.H.S of (A.64) is less constrained and can

also remove up to α elements from S̃. Thus, the R.H.S can get the result no greater than L.H.S.
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As a result,

h ≥ max
S̃⊆Π,S̃∈I

min
S̃1⊆S̃,S̃1∈I′

f(S̃ \ S̃1) (A.65)

≥ max
S̃⊆Π,S̃∈I

min
S̃1⊆S̃,|S̃1|≤α

f(S̃ \ S̃1) (A.66)

= f(S∗ \ A∗(S∗)) (A.67)

= f ∗ (A.68)

In sum,

f(Q∗) ≥ h ≥ f ∗.
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