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The study of provable defenses against adversarial attacks in machine learning has

mostly been limited to classification tasks and static one-step adversaries. Robustness

certificates are designed with a fixed adversarial budget for each input instance and with

the assumption that inputs are sampled independently. The goal of this work is to expand

the set of provable robustness techniques to cover more general real-world settings such

as adaptive multi-step adversaries (e.g., reinforcement learning), distribution shifts (e.g.,

color shifts in images) and models with structured outputs (e.g., images, sets, and segmentation

masks). Each setting presents unique challenges which require special proof techniques

designed specifically to tackle them. For instance, an adversarial attack on a reinforcement

learning agent at a given time step can affect its performance in future time steps. Thus,

certified robustness methods developed for the static setting cannot provide guarantees in

a dynamic environment that evolves over time. Similarly, tasks like image segmentation

and text generation cannot be modeled as a classification problem as their outputs cannot

be treated as discrete class labels in a meaningful way.



First, we present a robustness certificate for bounded Wasserstein shifts of the

input distribution. We show that a simple procedure that randomizes the input of the

model within a transformation space is provably robust to distributional shifts under

that transformation. Our framework allows the datum-specific perturbation size to vary

across different points in the input distribution and is general enough to include fixed-

sized perturbations as well. Our certificates produce guaranteed lower bounds on the

performance of the model for any (natural or adversarial) shift of the input distribution

within a Wasserstein ball around the original distribution. We apply our technique to

(i) certify robustness against natural (non-adversarial) transformations of images such as

color shifts, hue shifts and changes in brightness and saturation, (ii) certify robustness

against adversarial shifts of the input distribution, and (iii) show provable lower bounds

(hardness results) on the performance of models trained on so-called ”unlearnable” datasets

that have been poisoned to interfere with model training.

Next, we present certifiable robustness in the setting of reinforcement learning

where the adversary is allowed to track the states, actions and observations generated

in previous time-steps and adapt its attack. We prove robustness guarantees for an agent

following a Gaussian-smoothed policy. The goal here is to certify that the expected total

reward obtained by the robust policy remains above a certain threshold under a norm-

bounded adaptive adversary. Our main theoretical contribution is to prove an adaptive

version of the Neyman-Pearson Lemma – a key lemma for smoothing-based certificates

– where the adversarial perturbation at a particular time-step is allowed to be a stochastic

function of previous observations, states and actions. Our approach differs from existing

techniques as it can generate certificates for an entire episode instead of certifying predictions



at individual time-steps.

We then develop a randomized smoothing-based algorithm to produce certifiably

robust models for problems with structured outputs. Many machine learning problems

like image segmentation, object detection, image/audio-to-text systems, etc., fall under

this category. Our procedure works by evaluating the base model on a collection of noisy

versions of the input point and aggregating the predictions by computing the center of

the smallest ball that covers at least half of the output points. It can produce robustness

certificates under a wide range of similarity (or distance) metrics in the output space such

as perceptual distance, intersection over union and cosine distance. These certificates

guarantee that the change in the output as measured by the distance metric remains

bounded for an adversarial perturbation of the input.

We also study some limitations of randomized smoothing when used to defend

against ℓp-norm bounded adversaries for p > 2, especially for p = ∞. We show that this

technique suffers from the curse of dimensionality when the smoothing distribution is

independent and identical in each input dimension. The size of the certificates decreases

with an increase in the dimensionality of the input space. Thus, for high-dimensional

inputs such as images, randomized smoothing does not yield meaningful certificates

against an ℓ∞-norm bounded adversary.

We also design a method to certify confidence scores for neural network predictions

under adversarial perturbations of the input. Conventional classification networks with a

softmax layer output a confidence score that can be interpreted as the degree of certainty

the network has about the class label. In applications like credit scoring and disease

diagnosis systems where reliability is key, it is important to know how sure a model is



about its predictions so that a human expert can take over if the model’s confidence is low.

Our procedure uses the distribution of the confidence scores under randomized smoothing

to generate stronger certificates than a naive approach that ignores the distributional

information.

Finally, we present a certifiable defense for streaming models. In many deep learning

applications such as online content recommendation and stock market analysis, models

use historical data to make predictions. Robustness certificates based on the assumption

of independent input samples are not directly applicable in such scenarios. We study

provable robustness of machine learning models in the context of data streams, where

inputs are presented as a sequence of potentially correlated items. We derive robustness

certificates for models that use a fixed-size sliding window over the input stream. Our

guarantees hold for the average model performance across the entire stream and are

independent of stream size, making them suitable for large data streams.
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Chapter 1: Introduction

1.1 Adversarial Attacks

Machine learning (ML) models, especially deep neural networks (DNN), are prone

to attacks where an adversary adds a tiny perturbation to the input and completely alters

the prediction of the model [1, 2, 3, 4]. Such attacks can significantly degrade the

performance of a model, like an image classifier, and make it output any class label

of the attacker’s choice. Apart from static tasks like classification, adversarial attacks

also exist for dynamic tasks like reinforcement learning where the adversary is capable

of adapting its strategy based on the observations to become more effective [5, 6, 7,

8]. Such attacks also exist for models with more complex outputs than class labels,

such as image captioning [9], speech-to-text systems [10], image reconstruction [11,

12, 13, 14], generative models [15], super-resolution [16, 17], etc. Such widespread

presence of adversarial attacks is concerning as it poses serious risks in the use of deep

neural networks for safety-critical applications, such as autonomous vehicles and medical

diagnosis, where robustness and reliability are of utmost importance.
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1.2 Provable Robustness

Over time, several heuristic approaches have been proposed to detect and defend

against adversarial attacks [18, 19, 20, 21, 22, 23]. Unfortunately, such defenses have

been broken by stronger attacks [4, 24, 25, 26]. A defense that achieves good empirical

performance against a particular attack might remain vulnerable to newer and stronger

attacks, making it difficult to determine the true robustness of a model. This necessitates

the study of provable adversarial robustness which seeks to design ML models with

mathematically verifiable guarantees on their performance against adversarial attacks.

Provable defenses are of special importance in the study of adversarial robustness as their

robustness guarantees continue to hold regardless of improvements in attack strategies.

Several provable defenses have been proposed in the literature, with the notable ones

being based on convex-relaxation [27, 28, 29, 30, 31], interval-bound propagation [32, 33,

34, 35], and randomized smoothing [36, 37, 38, 39]. Out of these techniques, randomized

smoothing has been shown to scale up to high-dimensional inputs like ImageNet images

[40].

The existing literature on provable robustness focuses mostly on static machine-

learning tasks like classification. However, practical machine-learning applications frequently

diverge from the canonical classification setting. Machine learning models are often

expected to operate in dynamic and adaptive environments, like in robotics and self-

driving. They may produce structured outputs such as images, segmentation masks,

and language, which are difficult to model as discrete class labels in a meaningful way.

Furthermore, models also encounter distribution shifts when deployed in the real world
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which can significantly deteriorate their performance [41, 42, 43, 44, 45, 46]. Our objective

is to design provable robustness techniques for real-world machine-learning scenarios

such as those mentioned above. Each setting presents unique challenges which require us

to develop innovative proof techniques for addressing them. For instance, the robustness

certificates designed for the static setting of classification cannot be used against a dynamic

and adaptive adversary in reinforcement learning.

1.3 Randomized Smoothing

Among the notable provable defenses, randomized smoothing scales up to high-

dimensional inputs like images. Given an input image, this procedure evaluates a classifier

on several noisy versions of the image. The class label that gets predicted with the highest

probability is returned as the output of the robust model [36, 37, 38, 39]. Cohen et al. [36]

proved tight certificates for the robust model under the ℓ2 adversarial threat model when

smoothed using the Gaussian distribution.

If the most-likely class gets predicted with probability p under Gaussian perturbations

of variance σ2, then the output of the robust model is guaranteed to remain unchanged

within an ℓ2 ball of the following radius around the input image:

ϵ = σΦ−1(p),

where Φ is the cumulative distribution function of the standard normal distribution. Since

the probability p cannot be computed exactly for most conventional neural network-based

classifiers, a high-confidence (say 99.9%) lower-bound p is obtained using a large number

of samples of the smoothing distribution.

3



1.4 Outline

The following chapters study provable robustness in various different settings. Chapter 2

presents robustness certificates against input distribution shifts. The goal is to certify the

accuracy of a model under bounded Wasserstein shifts of the input distribution. The

contents of this chapter have been published in [47].

Chapter 3 studies provable robustness in reinforcement learning. The goal here is

to certify the total reward obtained by an agent under an adversarial attack. This work has

been published in [48].

Chapter 4 presents robustness certificates for models with structured outputs like

images and segmentation masks. The goal is to guarantee that the changes in the output

are small, as measured by a distance or similarity metric in the output space, for small

perturbations in the input of bounded ℓ2 length. This work has been published in [49].

Chapter 5 studies the limitations of randomized smoothing-based approaches for

certifying the ℓ∞-treat model. The best possible ℓ∞ certificates decrease rapidly with the

dimensionality of the problem. The contents of this chapter have been published in [50].

Chapter 6 presents certified guarantees on the confidence of a neural network in its

predictions. It uses the cumulative distribution function of the confidence scores under the

smoothing distribution to obtain better certificates. This work has been published in [51].

Chapter 7 studies provable robustness in the context of data streams. The goal is to

certify the average performance of a model on a sequence of potentially correlated input

items. The robustness certificate is independent of the stream size and is applicable to

potentially infinite streams. This work has been published in [52].
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Chapter 2: Robustness to Distribution Shifts

2.1 Introduction

Machine learning models often suffer significant performance loss under minor

shifts in the data distribution that do not affect a human’s ability to perform the same

task– e.g., input noise [53, 54], image scaling, shifting and translation [41], spatial [42]

and geometric transformations [43, 44], blurring [45, 46], acoustic corruptions [55] and

adversarial perturbations [1, 2, 3, 24, 56]. Overcoming such robustness challenges is a

major hurdle for deploying these models in safety-critical applications where reliability is

paramount. Several techniques have been developed to improve the empirical robustness

of a model to data shifts, e.g., diversifying datasets [57], training with natural corruptions

[58], data augmentations [59], contrastive learning [60, 61, 62] and adversarial training

[2, 3, 63, 64, 65]. Empirical robustness techniques are designed to protect a model against

a particular type of shift or adversary (e.g., by introducing similar shifts during training)

and may not be effective against new ones. For instance, adversarial defenses have been

shown to break down under newer attacks [4, 24, 25, 26, 66].

Certifiable robustness methods, on the other hand, seek to produce provable guarantees

on the robustness of a model which hold for any perturbation within a certain neighborhood

of the input instance regardless of the strategy used to generate this perturbation. A

5



robustness certificate produces a verifiable lower bound on the size of the perturbation

required to fool a model. Apart from being a guarantee on the robust performance, these

certificates may also serve as a metric to compare the robustness of different models that is

independent of the mechanism producing the input perturbations. However, the study of

provable robustness has mostly focused on perturbations with a fixed size budget (e.g., an

ℓp-ball of same size) for all input points [27, 28, 29, 31, 32, 33, 36, 37, 38, 39, 67, 68, 69].

Among provable robustness methods, randomized smoothing based procedures have been

able to successfully scale up to high-dimensional problems [36, 37, 38, 39] and adapted

effectively to other domains such as reinforcement learning [70, 71] and models with

structured outputs [49] as in segmentation tasks and generative modeling. However, these

techniques cannot be extended to certify under distribution shifts as the perturbation size

for each instance in the input distribution need not have a fixed bound. For example,

stochastic changes in the input images of a vision model caused by lighting and weather

conditions may vary across time and location. Even adversarial attacks may choose to

adjust the perturbation size depending on the input instance.

A standard way of describing a distribution shift is to constrain the Wasserstein

distance between the original distribution D and the shifted distribution D̃ to be bounded

by a certain amount ϵ, i.e., W d
1 (D, D̃) ≤ ϵ, for an appropriate distance function d.

The Wasserstein distance is the minimum expectation of the distance function d over all

possible joint distributions with marginals D and D̃. Wasserstein distance is a standard

similarity measure for probability distributions and has been extensively used to study

distribution shifts [72, 73, 74, 75]. Certifiable robustness against Wasserstein shifts is an

interesting problem to study in its own right and a useful tool to have in the arsenal of

6



provable robustness techniques in machine learning.

In this work, we design robustness certificates for distribution shifts bounded by a

Wasserstein distance of ϵ. We show that by simply randomizing the input in a transformation

space, it is possible to bound the difference between the accuracy of the robust model

under the original distribution D and the shifted distribution D̃ as a function of their

Wasserstein distance ϵ under that transformation. Given a base model µ, we define a

robust model µ̄ which replaces the input of µ with a randomized version sampled from

a “smoothing” distribution around the original input. Let h̄ be a function denoting the

performance of the robust model µ̄ on an input-output pair (x, y) (see Section 2.3 for a

formal definition). Then, our main theoretical result in Theorem 1 shows that

∣∣∣E(x1,y1)∼D[h̄(x1, y1)]− E(x2,y2)∼D̃[h̄(x2, y2)]
∣∣∣ ≤ ψ(ϵ),

where ψ is a concave function that bounds the total variation between the smoothing

distributions at two input points as a function of the distance between them (condition (2.3)

in Section 2.3). Such an upper bound always exists for any smoothing distribution as the

total variation remains between zero and one as the distance between the two distributions

increases. We discuss how to find the appropriate ψ for different smoothing distributions

in Appendix G.

We apply our result to certify model performance for families of parameterized

distribution shifts which include shifts in the RBG color balance of an image, the hue/saturation

balance, the brightness/contrast, and more. Our method does not make any assumptions

on the model and applies to both natural and adversarial shifts of the distribution. It does

7



Figure 2.1: Certified accuracies obtained for different natural transformations of CIFAR-
10 images such as color shifts, hue shifts and changes in brightness and saturation. The
Wasserstein distance of each distribution shift from the original distribution is defined
with respect to the corresponding distance function.

Figure 2.2: Comparison between the empirical performance (dashed lines) of two base
models (trained on CIFAR-10 images with and without noise in transformation space) and
the certified accuracy (solid line) of a robust model (noise-trained model smoothed using
input randomization) under distribution shifts. The certified accuracy often outperforms
the undefended model and remains reasonably close (almost overlaps for hue shift) to the
model trained under noise for small shifts in the distribution.

not increase the computational requirements of the base model as it only samples one

randomized input per robust prediction, making it scalable to high-dimensional problems

that require conventional deep neural network architectures. The sample complexity for

generating the Wasserstein certificates over the entire distribution is roughly the same as

obtaining adversarial certificates for a single input instance using existing randomized

smoothing based techniques [36, 39].

Robustness under distribution shifts is a fundamental problem in several areas of

machine learning and our certificates could be applicable to a multitude of learning tasks.

We demonstrate the usefulness of our main theoretical result (Theorem 1) in the following

8



domains:

(i) Certifying model accuracy under natural shifts (Section 2.5): We consider

three image transformations: color shift, hue shift and changes in brightness and saturation

(SV shift). Figure (2.1) visualizes CIFAR-10 [76] images under each of these transformations

and reports the corresponding certified accuracies obtained by our method. Figure (2.2)

plots the accuracy of two base models (trained on CIFAR-10 images with and without

noise in the transformation space) under a shifted distribution and compares it with the

certified accuracy of a robust model (noise-trained model smoothed using input randomization).

These results demonstrate that our certificates are significant and non-vacuous (see appendix I

for more details). In figures (2.5) and (2.8), we plot the certified accuracies for different

values of training and smoothing noise – first for the CIFAR-10 dataset and then confirm

our results on the SVHN dataset [77].

(ii) Certifying population level robustness against adversarial attacks (Section 2.6):

The distribution of instances generated by an adversarial attack can also be viewed as a

shift in the input distribution within a Wasserstein bound. Unlike existing certification

techniques which assume a fixed perturbation budget across all inputs [36, 37, 38, 39],

our guarantees work for a more general threat model where the adversary is allowed to

choose the perturbation size for each input instance as long as it respects the constraint

on the average perturbation size over the entire data distribution. Also, our procedure

only requires one sample from the smoothing distribution per input instance which makes

computing population level certificates significantly more efficient than existing techniques.

The certified accuracy we obtain significantly outperforms the base model under attack

(figure 2.11).

9



(iii) Hardness results for generating “unlearnable” datasets (Section 2.7): Huang

et al. [78] proposed a method to make regular datasets unusable for modern deep learning

models by poisoning them with adversarial perturbations to interfere with the training of

the model. The intended purpose is to increase privacy for sensitive data such as personal

images uploaded to social media sites. The dataset is poisoned in such a way that a

model that minimizes the loss on this data distribution will have low accuracy on clean

test samples. We show that our framework can obtain verifiable lower bounds on the

performance of a model trained on such unlearnable datasets. Our certificates guarantee

that the performance of the robust model (using input randomization) will remain above

a certain threshold on the test distribution even when the base model is trained on the

poisoned dataset with a smoothing noise of suitable magnitude. This demonstrates a

fundamental limitation in producing unlearnable datasets.

2.2 Related Work

Several methods for introducing corruptions during training have been shown to

improve the empirical robustness of machine learning models [2, 3, 58, 59]. Training with

input transformations, such as blurring, cropping and rotations, can improve test accuracy

against these corruptions. However, these methods do not produce any guarantees on the

performance of the model with respect to the amount of shift added to the distribution.

Our method applies random input transformations during inference to make the model

provably robust against any distribution shift within a certain Wasserstein distance. It is

independent of the model architecture and training procedure, and can be coupled with

10



robust training techniques, such as noise or adversarial training, to improve the certified

performance.

Randomized smoothing based approaches that aggregate model predictions over a

large number of noised samples of the input [36, 37, 38, 39] and that use input randomization

[79] have been studied in the context of certified adversarial robustness. Provable robustness

for parameterized transformations on images also exist [80]. These techniques produce

instance-wise fixed-budget certificates and do not generate robustness guarantees over

the entire data distribution or allow varying perturbation sizes for different instances. Our

work also differs from instance-wise adversarial attacks and defenses [81, 82] that use the

Wasserstein distance (instead of conventional ℓp distances) to measure difference between

an image and its perturbed version. In contrast, our certificates consider the Wasserstein

distance between data distributions from which images themselves are sampled.

Robustness bounds on the population loss against Wasserstein shifts under the ℓ2-

distance [83, 84] have been derived assuming Lipschitz-continuity of the base model.

These bounds depend on the Lipschitz constant for the underlying model, which can

grow rapidly for deep neural networks. We produce guarantees on the accuracy of an

arbitrary model without requiring any restrictive assumptions or a global Lipschitz bound.

Additionally, our approach can certify robustness against non-ℓp changes, such as visible

color shifts, for which the ℓ2-norm of the perturbation in the image space will be very

large. Another line of work proves generalization bounds with for divergence-based

measures of distribution shift [85, 86, 87, 88] like KL-divergence, total variation distance

and Hellinger distance. Divergence measures between two distributions become arbitrarily

large (e.g. KL-divergence becomes infinity) or attain their maximal value (e.g. total

11



variation and Hellinger distances become equal to one) when their supports do not coincide.

This drawback makes them unsuitable for measuring out-of-distribution data shifts which

by definition have non-overlapping support. Wasserstein distance, on the other hand,

captures the spatial separation of two distributions and produces a more meaningful measure

of the distance even when their supports are disjoint.

2.3 Preliminaries and Notations

Let D be the data distribution representing a machine learning task over an input

space X and an output space Y . We define a distribution shift as a covariate shift that

only changes the distribution of the input element in samples (x, y) ∈ X × Y drawn

from D and leaves the output element unchanged, i.e., (x, y) changes to (x̃, y) under the

shift. Given a distance function dX : X × X → R≥0 over the input space, we define the

following distance function between two tuples τ1 = (x1, y1) and τ2 = (x2, y2) to capture

the above shift:

d(τ1, τ2) =


dX (x1, x2) if y1 = y2

∞ otherwise.

(2.1)

Let D̃ denote a shift in the original data distribution D such that the Wasserstein distance

under d between D and D̃ is bounded by ϵ (i.e., W d
1 (D, D̃) ≤ ϵ). Define the set of all

joint probability distributions with marginals µD and µD̃ as follows:

Γ(D, D̃) =

{
γ s.t.

∫
X×Y

γ(τ1, τ2)dτ2 = µD(τ1) and
∫
X×Y

γ(τ1, τ2)dτ1 = µD̃(τ2)

}
.
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The Wasserstein bound implies that there exists an element γ∗ ∈ Γ(D, D̃) such that

E(τ1,τ2)∼γ∗ [d(τ1, τ2)] ≤ ϵ. (2.2)

Let S : X → ∆(X ) be a function mapping each element x ∈ X to a smoothing

distribution S(x), where ∆(X ) is the set of all probability distributions over X . For

example, smoothing with an isometric Gaussian noise distribution with variance σ2 can be

denoted as S(x) = N (x, σ2I). Let the total variation between the smoothing distributions

at two points x1 and x2 be bounded by a concave increasing function ψ of the distance

between them, i.e.,

TV(S(x1),S(x2)) ≤ ψ(dX (x1, x2)). (2.3)

For example, when the distance function d is the ℓ2-norm of the difference of x1 and

x2, and the smoothing distribution is an isometric Gaussian N (0, σ2I) with variance σ2,

ψ(·) = erf(·/2
√
2σ) is a valid upper bound on the above total variation that is concave in

the positive domain (see Appendix G for more examples).

Consider a function h : X × Y → [0, 1] that represents the performance (e.g.,

accuracy) of a model µ over all possible input-output pairs. For example, in the case of

a classifier µ : X → Y that maps inputs from space X to a class label in Y , h(x, y) :=

1{µ(x) = y} could indicate whether the prediction of µ on x matches the desired output

label y or not. Another example could be that of segmentation/detection tasks, where y

represents a region on an input image x. Then, h(x, y) := IoU(µ(x), y)1 could represent

the overlap between the predicted regions µ(x) and the ground truth y. The overall

1IoU stands for Intersection over Union.
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accuracy of the model µ under D is then given by E(x,y)∈D[h(x, y)]. Now, define a robust

model µ̄(x) = µ(x′) where x′ ∼ S(x) which simply applies the base model µ on a

randomized version of the input x sampled from a smoothing distribution S(x). Our goal

is to bound the difference in the expected performance of the robust model between the

original distribution D and the shifted distribution D̃. Let h̄ be the performance function

for the robust model µ̄ defined as

h̄(x, y) = Ex′∼S(x)[h(x
′, y)]. (2.4)

Then, the accuracy of the robust model µ̄ under D is given by E(x,y)∈D[h̄(x, y)]. Our result

in Theorem 1 bounds the difference between the expectation of h̄ under D and D̃ with

ψ(ϵ).

2.3.1 Parameterized Transformations

We apply our distributional certificates to produce guarantees on the accuracy of an

image classifier under natural transformations such as color shifts, hue shifts and changes

in brightness and saturation. We model each transformation as a function T : X×P → X

over the image space X and a parameter space P . It takes an image x ∈ X and a parameter

vector θ ∈ P as inputs and outputs a transformed image x′ = T (x, θ) ∈ X . An example

of such a transformation could be a color shift in an RGB image produced by scaling

the intensities in the red, green and blue channels x = ({xRij}, {xGij}, {xBij}) defined as

CS(x, θ) = (2θR{xRij}, 2θG{xGij}, 2θB{xBij})/MAX for a tuple θ = (θR, θG, θB), where

MAX is the maximum of all the RGB values after scaling. Additive perturbations in
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the input space can also be captured as parameterized transformations, e.g., VT(x, θ) =

x + θ. We assume that the transformation returns x if the parameters are all zero, i.e.,

T (x, 0) = x and that the composition of two transformations with parameters θ1 and θ2

is a transformation with parameters θ1 + θ2 (additive composability), i.e.,

T (T (x, θ1), θ2) = T (x, θ1 + θ2). (2.5)

Given a norm ∥ · ∥ in the parameter space P , we define a distance function in the

input space X as follows:

dT (x1, x2) =


min{∥θ∥ | T (x1, θ) = x2} if ∃θ s.t. T (x1, θ) = x2

∞ otherwise.

(2.6)

Now, define a smoothing distribution S(x) = T (x,Q(0)) for some distribution Q

in the parameter space of T such that ∀θ ∈ P,Q(θ) = θ+Q(0) is the distribution of θ+δ

where δ ∼ Q(0), and TV(Q(0),Q(θ)) ≤ ψ(∥θ∥) for a concave function ψ. For example,

Q(·) = N (·, σ2I) satisfies these properties for ψ(·) = erf(·/2
√
2σ). Then, the following

lemma holds (proof in Appendix B):

Lemma 1. For two points x1, x2 ∈ X such that dT (x1, x2) is finite,

TV(S(x1),S(x2)) ≤ ψ(dT (x1, x2)).
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2.4 Certified Distributional Robustness

In this section, we state our main theoretical result which shows that the difference

in the expectation of the performance function h̄ of the robust model (equation (2.4))

under the original distribution D and any shifted distribution D̃ within a Wasserstein

distance of ϵ from D is bounded by ψ(ϵ), where ψ is the concave upper bound on the

total variation between the smoothing distributions at two points x1 and x2 as defined in

condition (2.3).

Theorem 1. Given a function h : X×Y → [0, 1], define its smoothed version as h̄(x, y) =

Ex′∼S(x)[h(x
′, y)]. Then,

∀ D̃ s.t. W d
1 (D, D̃) ≤ ϵ,

∣∣∣E(x1,y1)∼D[h̄(x1, y1)]− E(x2,y2)∼D̃[h̄(x2, y2)]
∣∣∣ ≤ ψ(ϵ).

We defer the proof to Appendix A. Note that this certificate does not require us to

compute the Wasserstein distance between D and D̃. Given a value for ϵ, it holds for all

distributions D̃ such thatW d
1 (D, D̃) ≤ ϵ. Our certified guarantees hold for the entire input

distribution (potentially continuous) and not just for a finite set of samples. The intuition

behind the above bound is that if the overlap between the smoothing distributions between

two individual points does not decrease rapidly with the distance between them, then the

overlap between D and D̃ augmented with the smoothing distribution is high when the

Wasserstein distance between them is small. The key observation here is that the total

variation of the individual smoothing distributions can be upper bounded by a convex

function ψ and this upper bound can then be generalised over the entire distribution using
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Jensen’s inequality. The above guarantee implies that for any distribution D̃ that is within

a Wasserstein distance of ϵ from the original distribution D, the accuracy of the model

under D̃ can be bounded as E(x2,y2)∼D̃[h̄(x2, y2)] ≥ E(x1,y1)∼D[h̄(x1, y1)]− ψ(ϵ).

2.4.1 Computing the Certificate and Empirical Evaluations

Given a target Wasserstein bound ϵ and an appropriate function ψ, we simply need

to calculate the expected performance of the robust model over the original distribution D,

i.e., E(x1,y1)∼D[h̄(x1, y1)]. Since we only have sample access to the original distribution

D, we estimate the expected performance on D, i.e. E(x1,y1)∼D[h̄(x1, y1)], using a finite

number of samples. In our experiments, we compute a high-confidence lower bound of

this quantity using the Clopper-Pearson method [89] that holds with 1 − α probability,

for some α > 0 (usually 0.001). Note that although we calculate the bound with a finite

number of samples from the distribution D, this lower bound holds for the expectation

over the entire distribution and not just for the samples. See Appendix C for pseudocodes

of the prediction and certification steps.

To compare our certified guarantees against the empirical performance of an undefended

model under distribution shifts, we design shifted distributions using natural and adversarial

transformations on the original distribution. We ensure that the constructed distribution

shift is within the desired Wasserstein distance using two methods:

1. By construction: We analytically guarantee beforehand that the applied transformation

does not exceed the Wasserstein bound. For example, in Figure 2.2, we report the

empirical performance of the base models under distribution shifts constructed by
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adding a noise vector from a fixed distribution like a Gaussian distribution of a

certain variance in the transformation space (see Appendix I).

2. By estimation: We compute a high-confidence bound on the average perturbation

added to a finite number of samples to bound the Wasserstein distance. For example,

in Section 2.6, when reporting the undefended baseline performance, we measure

E[∥Adv(x)−x∥2] on the test set, and use Hoeffding’s inequality to derive from this

a 99% confidence upper bound on the true, population expectation Ex∼D[∥Adv(x)−

x∥2]. By Equation 2.7, this is a (high-probability) upper bound on the Wasserstein

distance of the distribution shift.

In the following sections, we apply our main theoretical result to obtain certified

robustness guarantees against several different distribution shifts – natural shifts, unlearnable

distributions and adversarial shifts. We experiment on two image classification datasets,

namely CIFAR-10 [76] and SVHN [77], and observe that the our certificates can obtain

meaningful performance guarantees and exhibit similar trends for both datasets.

2.5 Certified Accuracy against Natural Transformations

We certify the accuracy of a ResNet-110 model and a ResNet-20 model trained on

CIFAR-10 and SVHN images respectively under three types of transformations: color

shifts, hue shifts and variation in brightness and saturation (SV shift). We train our

models with varying levels of noise in the transformation space and evaluate their certified

performance using smoothing distributions of different standard deviations. For color

and SV shifts, we show how the certified accuracy varies as a function of the Wasserstein
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Figure 2.3: Color Shift – CIFAR-10

Figure 2.4: Color Shift – SVHN

Figure 2.5: Certified accuracy under color shifts for (a) CIFAR-10 and (b) SVHN. Each
plot corresponds to a particular training noise and each curve corresponds to a particular
smoothing noise.

distance as we change the training and smoothing noise. For hue shift, we use a smoothing

distribution (with fixed noise level) that is invariant to rotations in hue space because of

which the certified accuracy remains constant with respect to the corresponding Wasserstein

distance. We train the ResNet-110 models for 90 epochs which takes a few hours on a

single NVIDIA GeForce RTX 2080 Ti GPU and the ResNet-20 models for 40 epochs

which takes around twenty minute on the same GPU. Once the models have been trained,

computing the distribution level Wasserstein certificates using 105 samples with 99.9%

confidence takes only about 25 seconds for each model.

2.5.1 Color Shifts

Denote an RGB image x as an H × W array of pixels where the red, green and

blue components of the pixel in the ith row and jth column are given by the tuple xij =

(r, g, b)ij . Let rmax, gmax and bmax be the maximum values of the red, green and blue
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Figure 2.6: Brightness and Saturation Shift – CIFAR-10

Figure 2.7: Brightness and Saturation Shift – SVHN

Figure 2.8: Certified accuracy under brightness and saturation changes for (a) CIFAR-10
and (b) SVHN images. Each plot corresponds to a particular training noise and each curve
corresponds to a particular smoothing noise.

channels, respectively. Assume that the RGB values are in the interval [0, 1] normalized

such that the maximum over all intensity values is one, i.e., max(rmax, gmax, bmax) = 1.

Define a color shift of the image x for a parameter vector θ ∈ R3 as

CS(x, θ) =

{
(2θRr, 2θGg, 2θBb)ij

max(2θRrmax, 2θGgmax, 2θBbmax)

}H×W

which scales the intensities of each channel by the corresponding component of θ raised

to the power of two and then normalizes the scaled image so that the maximum intensity

is one. For example, θ = (1,−1, 0) would first double all the red intensities, halve

the green intensities and leave the blue intensities unchanged, and then, normalize the

image so that the maximum intensity value over all the channels is equal to one. The

above transformation can be shown to satisfy the additive composability property in

condition (2.5). See Appendix H for a proof.

Given an image x, we define a smoothing distribution around x in the parameter
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space as CS(x, δ) where δ ∼ N (0, σ2I3×3). Define the distance function dCS as described

in (2.6) using the ℓ2-norm in the parameter space. For a distribution D̃ within a Wasserstein

distance of ϵ from the original distribution D, the performance of the smoothed model

on D̃ can be bounded as E(x2,y2)∼D̃[h̄(x2, y2)] ≥ E(x1,y1)∼D[h̄(x1, y1)] − erf(ϵ/2
√
2σ).

Figure 2.5 plots the certified accuracy under color shift with respect to the Wasserstein

bound ϵ for different values of training and smoothing noise. In Appendix K, we consider

a smoothing distribution that randomly picks one color channel achieving a constant

certified accuracy of 87.1% with respect to ϵ.

2.5.2 Brightness and Saturation Changes

Define the following transformation in the HSV space of an image that shifts the

mean of the saturation (S) and brightness (V) values for each pixel by a certain amount:

SV(x, θ) =

{(
h,
s+ (2θS − 1)smean

MAX
,
v + (2θV − 1)vmean

MAX

)
ij

}H×W

where smean, smax, vmean and vmax are the means and maximums of the saturation and

brightness values respectively before the shift is applied and MAX = max(smax + (2θS −

1)smean, vmax + (2θV − 1)vmean) is the maximum of the brightness and saturation values

after the shift. Similar to color shift , the SV transformation can also be shown to

satisfy additive composability (Appendix H). Figure 2.8 plots the certified accuracy under

saturation and brightness changes with respect to ϵ for different values of training and

smoothing noise. The smoothing distribution is uniform in the range [0, a]2 in the parameter

space, the distance function is the ℓ1-norm and ψ(ϵ) = min(ϵ/a, 1).
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2.6 Population-Level Certificates against Adversarial Attacks

In this section, we consider the ℓ2-distance in the image space to measure the

Wasserstein distance instead of a parameterized transformation (see Appendix D for a

detailed version). We use a pixel-space Gaussian smoothing distribution S(x) = N (x, σ2I)

to obtain robustness guarantees under this metric. To motivate this, consider an adversarial

attacker Adv : X → X , which takes an image x and computes perturbation Adv(x) to

try and fool a model into misclassifying the input. If (x, y) ∼ D, define D̃ to be the

distribution of the tuples (Adv(x), y). Defining d in 2.1 using dX = ℓ2, it is easy to show

that:

W d
1 (D, D̃) ≤ Ex∼D[∥Adv(x)− x∥2] (2.7)

Figure 2.9: Distributional

certificates against adversarial

attacks on CIFAR-10.

Results on CIFAR-10 are presented in Figure 2.9

and results on SVHN are available in Appendix D.

For CIFAR-10, we use ResNet-110 models trained

under noise from Cohen et al. [36]. The solid lines

represent certified accuracies for different smoothing

noises and the black dashed line represents the empirical

performance of an undefended model under attack. For

the undefended baseline, we give the performance of an

undefended model against a strategic attacker, which first finds a minimal ℓ2 attack for

each sample via [24]. If this attack is too large in magnitude (ℓ2 > a threshold γ), it

instead chooses not to attack the sample. This “saves” the attack budget (i.e., the average
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attack magnitude and therefore the Wasserstein shift) for easier samples. The size of the

Wasserstein shift can be adjusted by varying γ.

2.7 Hardness Results on Unlearnability

In this section, we show that the pixel-space ℓ2-Wasserstein distributional robustness

certificate shown above can also be applied to establish a hardness result in creating

provably “unlearnable” datasets [78]. These datasets contain “poisoned” samples which

make any classifier trained on the released data achieve a high training and validation

accuracy, but a low test accuracy on non-poisoned samples from the original data distribution.

This technique has legitimate applications, such as protecting privacy by preventing one’s

personal data from being learned, but may also have malicious uses (e.g., a malicious

actor could sell a useless classifier that nevertheless has good performance on a provided

validation set.) We can view the “clean” data distribution as D, and the distribution of

the poisoned samples (i.e., the unlearnable distribution) as D̃. If the magnitude of the

perturbations is limited, Theorem 1 implies that the accuracy on D and D̃ must be similar,

implying that our algorithm is provably resistant to unlearnablility attacks, effectively

establishing provable hardness results to create unlearnable datasets.

In order to apply our guarantees, we make a few modifications to the attack proposed

in Huang et al. [78]. First, we bound each poisoning perturbation on the released dataset

to within an ϵ-radius ℓ2 ball, rather than an ℓ∞ ball. From Equation 2.7, this ensures that

W d
1 (D, D̃) ≤ ϵ. Second, we consider an “offline” version of the attack. In the original

attack [78], perturbations for the entire dataset are optimized simultaneously with a proxy

classifier model in an iterative manner. This makes the perturbations applied to each
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sample non-I.I.D., (they may depend on each other through proxy-model parameters)

which makes deriving generalizable guarantees for it difficult.

Figure 2.10: Distributional certificates

for unlearnable datasets on CIFAR-

10. The smoothing noise used is 0.4.

Results for other values are reported in

the appendix.

However, this simultaneous proxy-model

training and poisoning may not always represent

a realistic threat model. In particular, an actor

releasing “unlearnable” data at scale may not be

able to constantly update the proxy model being

used. For example, consider an “unlearnability”

module in a camera, which would make photos

unusable as training data. Because the camera

itself has access to only a small number of

photographs, such a module would likely rely

on a fixed, pre-trained proxy classifier model to

create the poisoning perturbations. To model

this, we consider a threat model where the proxy classifier is first optimized using an

unreleased dataset: the released “unlearnable” samples are then perturbed independently

using this fixed proxy model. We see in Figure 2.10 that our modified attack is still

highly effective at making data unlearnable, as shown by the high validation and low test

accuracy of the undefended baseline.
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2.8 Conclusion

We show that it is possible to certify the distributional robustness of a general deep

neural network without increasing its computational requirements. We obtain robustness

guarantees with respect to the Wasserstein distance of the distribution shift which is a

more suitable metric for out-of-distribution shifts than divergence measures such as KL-

divergence and total variation. We only consider predefined distance functions in this

work which may not be suitable for capturing more sophisticated distribution shifts such

as perceptual changes. A future direction of research could be to adapt our certificates for

learnable transformations for domain generalization and adaptation.
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2.9 Appendices

A Proof of Theorem 1

Statement: Given a function h : X×Y → [0, 1], define its smoothed version as h̄(x, y) =

Ex′∼S(x)[h(x
′, y)]. Then,

∣∣∣E(x1,y1)∼D[h̄(x1, y1)]− E(x2,y2)∼D̃[h̄(x2, y2)]
∣∣∣ ≤ ψ(ϵ).

Proof. Let τ1 = (x1, y1) and τ2 = (x2, y2) denote the input-output tuples sampled from

D and D̃ respectively. Then, for the joint distribution γ∗ ∈ Γ(D, D̃) in (2.2), we have

Eτ1∼D[h̄(τ1)] = E(τ1,τ2)∼γ∗ [h̄(τ1)] and Eτ2∼D̃[h̄(τ2)] = E(τ1,τ2)∼γ∗ [h̄(τ2)].

This is because when (τ1, τ2) is sampled from the joint distribution γ∗, τ1 and τ2 individually

have distributions D and D̃ respectively. Also, since the expected distance between

τ1 = (x1, y1) and τ2 = (x2, y2) is finite, the output elements of the sampled tuples must

be the same, i.e. y1 = y2 = y (say). See lemma 2 below. Then,

∣∣E(x1,y1)∼D[h̄(x1, y1)]− E(x2,y2)∼D̃[h̄(x2, y2)]
∣∣

=
∣∣Eτ1∼D[h̄(τ1)]− Eτ2∼D̃[h̄(τ2)]

∣∣
=
∣∣E(τ1,τ2)∼γ∗ [h̄(τ1)− h̄(τ2)]

∣∣
≤ E(τ1,τ2)∼γ∗ [|h̄(τ1)− h̄(τ2)|].
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Now, from definition (2.4) and for i = 1 and 2,

h̄(τi) = h̄(xi, y) = Ex′
i∼S(xi)[h(x

′
i, y)] = Ex′

i∼S(xi)[g(x
′
i)]

can be expressed as the expected value of a function g : X → [0, 1] under distribution

S(xi). Without loss of generality, assume Ex′
1∼S(x1)[g(x

′
1)] ≥ Ex′

2∼S(x2)[g(x
′
2)]. Then,

∣∣Ex′
1∼S(x1)[g(x

′
1)]− Ex′

2∼S(x2)[g(x
′
2)]
∣∣

=

∫
X
g(x)µ1(x)dx−

∫
X
g(x)µ2(x)dx

(µ1 and µ2 are the PDFs of S(x1) and S(x1))

=

∫
X
g(x)(µ1(x)− µ2(x))dx

=

∫
µ1>µ2

g(x)(µ1(x)− µ2(x))dx−
∫
µ2>µ1

g(x)(µ2(x)− µ1(x))dx

≤
∫
µ1>µ2

max
x′∈X

g(x′)(µ1(x)− µ2(x))dx−
∫
µ2>µ1

min
x′∈X

g(x′)(µ2(x)− µ1(x))dx

≤
∫
µ1>µ2

(µ1(x)− µ2(x))dz

(since maxx′∈X g(x
′) ≤ 1 and minx′∈X g(x

′) ≥ 0)

=
1

2

∫
X
|µ1(x)− µ2(x)|dx = TV(S(x1),S(x2)).

(since
∫
µ1>µ2

(µ1(x)− µ2(x))dx =
∫
µ2>µ1

(µ2(x)− µ1(x))dx = 1
2

∫
X |µ1(x)− µ2(x)|dx)

Thus, from (2.1) and (2.3), we have |h̄(τ1)− h̄(τ2)| ≤ ψ(dX (x1, x2)) = ψ(d(τ1, τ2)), and
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therefore,

∣∣E(x1,y1)∼D[h̄(x1, y1)]− E(x2,y2)∼D̃[h̄(x2, y2)]
∣∣

≤ E(τ1,τ2)∼γ∗ [ψ(d(τ1, τ2))]

≤ ψ
(
E(τ1,τ2)∼γ∗ [d(τ1, τ2)]

)
. (ψ is concave, Jensen’s inequality)

Hence, from (2.2) and since ψ is non-decreasing, we have

∣∣∣E(x1,y1)∼D[h̄(x1, y1)]− E(x2,y2)∼D̃[h̄(x2, y2)]
∣∣∣ ≤ ψ(ϵ).

Lemma 2. Let Ω = {(τ1, τ2) s.t. y1 ̸= y2 where τ1 = (x1, y1) and τ2 = (x2, y2)}. Then

P(τ1,τ2)∼γ∗ [(τ1, τ2) ∈ Ω] = 0.

Proof. Assume, for the sake of contradiction, that

P(τ1,τ2)∼γ∗ [(τ1, τ2) ∈ Ω] ≥ p

for some p > 0. From condition (2.2), we have

E(τ1,τ2)∼γ∗ [d(τ1, τ2)] ≤ ϵ.
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By the law of total expectation

Eγ∗ [d(τ1, τ2)] =Eγ∗ [d(τ1, τ2) | (τ1, τ2) ∈ Ω] Pγ∗ [(τ1, τ2) ∈ Ω]

+Eγ∗ [d(τ1, τ2) | (τ1, τ2) /∈ Ω] Pγ∗ [(τ1, τ2) /∈ Ω].

We replace (τ1, τ2) ∼ γ∗ with just γ∗ in the subscripts for brevity. Since both summands

are non-negative,

Eγ∗ [d(τ1, τ2) | (τ1, τ2) ∈ Ω] Pγ∗ [(τ1, τ2) ∈ Ω] ≤ ϵ.

Consider a real number l > ϵ/p. Then, for any (τ1, τ2) ∈ Ω, from definition (2.1) and

because y1 ̸= y2, d(τ1, τ2) ≥ l. Therefore, Eγ∗ [d(τ1, τ2) | (τ1, τ2) ∈ Ω] ≥ l and

l Pγ∗ [(τ1, τ2) ∈ Ω] ≤ Eγ∗ [d(τ1, τ2) | (τ1, τ2) ∈ Ω] Pγ∗ [(τ1, τ2) ∈ Ω]

l Pγ∗ [(τ1, τ2) ∈ Ω] ≤ ϵ

Pγ∗ [(τ1, τ2) ∈ Ω] ≤ ϵ/l < p,

which contradicts our initial assumption.

B Proof of Lemma 1

Statement: For two points x1, x2 ∈ X such that dT (x1, x2) is finite,

TV(S(x1),S(x2)) ≤ ψ(dT (x1, x2)).
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Proof. Consider the θ for which dT (x1, x2) = ∥θ∥. Then, T (x1, θ) = x2.

TV(S(x),S(x2)) = TV(T (x,Q(0)), T (z,Q(0)))

= TV(T (x,Q(0)), T (T (x, θ),Q(0)))

= TV(T (x,Q(0)), T (x, θ +Q(0)))

(additive composability, equation (2.5))

= TV(T (x,Q(0)), T (x,Q(θ))). (definition of Q)

Let A be the event in the space M that maximizes the difference in the probabilities

assigned to A by T (x,Q(0)) and T (x,Q(θ)). Let u : P → [0, 1] be a function that

returns the probability (over the randomness of T ) of any parameter η ∈ P being mapped

to a point in A, i.e., u(η) = P{T (x, η) ∈ A}. For a deterministic transformation T , u

is a 0/1 function. Then, the probabilities assigned by T (x,Q(0)) and T (x,Q(θ)) to A is

equal to Eη∼Q(0)[u(η)] and Eη∼Q(θ)[u(η)]. Therefore,

TV(S(x),S(x2)) = |Eη∼Q(0)[u(η)]− Eη∼Q(θ)[u(η)]|

≤ TV(Q(0),Q(θ))

≤ ψ(∥θ∥) = ψ(dT (x1, x2)). (definition of Q and dT )

30



Algorithm 1: Prediction
Input: Model µ, input instance x.
Output: Robust prediction y.
Randomize input: x′ ∼ S(x).
Evaluate model: y = µ(x′).
Return y.

Algorithm 2: Certification
Input: Accuracy function h, data
distribution D, Wasserstein bound ϵ,
integer n and α > 0.
Output: Certified accuracy for bound ϵ.
sum = 0.
for i in 1 . . . n do

Sample (x, y) ∼ D.
Sample x′ ∼ S(x).
Compute h(x′, y).
sum = sum + h(x′, y)

end for
Compute 1− α confidence lower-bound
h of E(x,y)∼D[h̄(x, y)] using sum and n.
Return h− ψ(ϵ).

C Pseudocode for Prediction and Certification

Algorithm 1 and Algorithm 2 describe the prediction and certification steps of our

method.

D Population-Level Certificates against Adversarial Attacks

In this section, we consider the ℓ2-distance in the image space to measure the

Wasserstein distance instead of a parameterized transformation. We use a pixel-space

Gaussian smoothing distribution S(x) = N (x, σ2I) to obtain robustness guarantees

under this metric. To motivate this, consider an adversarial attacker Adv : X → X ,

which takes an image x and computes perturbation Adv(x) to try and fool a model into

misclassifying the input. If (x, y) ∼ D, define D̃ to be the distribution of the tuples
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(Adv(x), y). Defining d in 2.1 using dX = ℓ2, it is easy to show that:

W d
1 (D, D̃) ≤ Ex∼D[∥Adv(x)− x∥2] (2.8)

So, if the average magnitude of perturbations induced by Adv is less than ϵ (i.e., [∥Adv(x)−

x∥2] < ϵ), then W d
1 (D, D̃) < ϵ which means that we can apply Theorem 1: the gap in

the expected accuracy between x ∼ D and Adv(x) ∼ D̃ will be at most ψ(ϵ). Note

that, under this threat model, Adv can be strategic in its use of the average perturbation

“budget”: if a certain point x would require a very large perturbation to be misclassified,

or is already misclassified, then Adv(x) can save the budget by simply returning x and

use it to attack a greater number of more vulnerable samples.

Note that our method differs from sample-wise certificates against ℓ2 adversarial

attacks which use randomized smoothing, such as Cohen et al. [36]. Specifically, we

use only one smoothing perturbation (and therefore only one forward pass) per sample.

Our guarantees are on the overall accuracy of the classifier, not on the stability of any

particular prediction. Finally, as discussed, our threat model is different, because we

allow the adversary to strategically choose which samples to attack, with the certificate

dependent on the Wasserstein magnitude of the distributional attack.

Results on CIFAR-10 and SVHN are presented in Figure 2.11. For CIFAR-10, we

use ResNet-110 models trained under noise from Cohen et al. [36]. For SVHN, we train

our own models using the same training schedule as used for CIFAR-10 by [36], but we

use ResNet-20 in place of ResNet-110. The solid lines represent certified accuracies for

different smoothing noises and the black dashed line represents the empirical performance
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of an undefended model under attack. For the undefended baseline (on an undefended

classifier g), we first apply a Carlini and Wagner ℓ2 attack to each sample x [24], generating

adversarial examples x′. Define this attack as the functionCW (·), such that x′ = CW (x, y; g),

where y is the ground-truth label. (If the attack fails, CW (x, y; g) = x). We then define a

strategic adversary Advγ that returns CW (x, y; g) if ∥CW (x, y; g)− x∥2 < γ, otherwise

it returns x.

By not attacking samples which would require the largest ℓ2 perturbations to cause

misclassification, this attack efficiently balances maximizing misclassification rate with

minimizing the Wasserstein distance between D and D̃. The threshold parameter γ

controls the tradeoff between misclassifcation rate and the Wasserstein perturbation magnitude.

Note that our attacker here is strategic in a way that takes more advantage of the distributional

threat model than simply finding the minimal perturbation for each sample: by choosing

to not attack at all on robust samples, it can successfully attack a larger number of

more vulnerable samples. The ‘Undefended’ baseline in Figure 2.11 plots the accuracy

on attacked test samples under adversary Advγ , for a sweep of values of γ, against an

upper bound on the Wasserstein distance, given by Ex∼D[∥Advγ(x) − x∥2]. (In order to

estimate Ex∼D[∥Advγ(x) − x∥2], we compute the average perturbation size over the test

set and use Hoeffding inequality to upper-bound the population expectation with 99%

confidence.) We can observe a large gap between this undefended model performance

under attack, and the certified robustness of our model, showing that our certificate is

highly nonvacuous. In Appendix E, we include results to show the empirical robustness of

the smoothed classifiers under an “adaptive” attack, based on the attack on sample-wise ℓ2

smoothing proposed by Salman et al. [39]. We also test an alternate form strategic attacker
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on the baseline model that does not requires us to estimate the average perturbation size

empirically (Appendix F).

E Empirical Attacks on ℓ2-distributional robustness.

In this section, we describe an empirical attack on ℓ2-distributional smoothing. Our

attack is based on the attack from Salman et al. [39], and we use the code for PGD attack

against smoothed classifiers from that work as a base, but there are a few considerations

we must make.

First, while the goal of the attacker in Salman et al. [39] is to change the output

of a classifier that uses the expected logits, the goal in our case is to instead reduce the

average classification accuracy of each noise instance. Concretely, Salman et al. [39] uses

an attacker loss function for each sample x, y of the following form:

max
ϵ

LCross Ent.

(
E

δ∼N (0,σ2I)
[f̃θ(x+ ϵ+ δ)], y

)
(2.9)

Where we use f̃ to represent the SoftMax-ed logit function. However, because in our

case, the classifier under attack is not Eδ∼N (0,σ2I)[f̃θ(x+ ϵ+ δ)], but rather f̃θ(x+ ϵ+ δ)

itself, we instead considered the loss function:

max
ϵ

E
δ∼N (0,σ2I)

[
LCross Ent.

(
f̃θ(x+ ϵ+ δ), y

)]
(2.10)

Empirically, we find the choice of loss function to make very little difference: see Figures

2.14 and 2.15.
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We also must consider how to correctly make the attacker “strategic”: that is, how

to allocate attack magnitude so as to attack most effectively while minimizing Wasserstein

distance. This is more difficult than in the undefended case, because it is no longer

true that for each sample x, we can identify the magnitude ∥CW (x, y; g) − x∥2 such

that an attack of this magnitude is guaranteed to be successful, while a smaller attack is

unsuccessful and hence is not attempted. Rather, for a given attack magnitude, there is

instead a probability of success, over the distribution of δ.

In order to deal with this, we perform PGD at a range of attack magnitudes, specifically

E = {i/8|i ∈ {1, ..., 16}}. Let PGDe(x, y; g) be the result of the attack at magnitude

e ∈ E. We then define the adaptive attacker as:

Advγ(x) := PGDe∗(x, y; g) (2.11)

Where:

e∗ := max e ∈ E such that

Eδ

[
L0/1

(
f̃θ(PGDe(x, y; g) + δ), y

)]
− Eδ

[
L0/1

(
f̃θ(x+ δ), y

)]
e

> γ

(2.12)

In other words, we use the largest attack such that the increase in misclassification rate

per unit attack magnitude is above the threshold γ. If this is not the case for any e ∈ E,

we elect not to attack, and set Advγ(x) := x. As was described in the main text for the

baseline case, we sweep over a range of threshold values γ when reporting results. When

evaluating the expectations in Equation 2.12, we use a sample of 100 noise instances.

However, once e∗ is identified, we then use a different sample of 100 noise instances per

35



training sample x when reporting the final accuracy: this is to de-correlate the attack

generation of Advγ(x) with the evaluation of the attack. (However, noise instances

are kept constant over the sweep of γ). When reporting results (the upper bounds of

the Wasserstein distances), we use e∗ as an upper bound on ∥PGDe∗(x, y; g) − x∥2,

rather than using ∥PGDe∗(x, y; g) − x∥2 directly. Also, we upper bound the population

expectation of e∗ (and therefore of ∥PGDe∗(x, y; g)−x∥2) for each γ with 99% confidence

using the empirical expectation on the test set using a Hoeffding bound, using the fact that

0 ≤ e∗ ≤ min(2, 1/γ).

Attack hyperparameters are taken from Salman et al. [39]: We use 20 attack steps,

a step size of e/10, and use 128 noise instances when computing gradients. We evaluate

using 10% of each dataset.

F Experiment Details for Section 2.6

As mentioned, for the certified models, we use the released pre-trained ResNet110

models from Cohen et al. [36] for CIFAR-10 and train ResNet20 models in a similar

manner for SVHN, using the same level of Gaussian Noise for training and testing. For

empirical results, we use the implementation of the ℓ2 Carlini and Wagner [24] attack

provided by the IBM ART package [90] with default parameters (except for batch size

which we set at 256 to increase processing speed.)

We also tested an alternative attack, which is still strategic but does not require

that we measure the Wasserstein distance empirically. In this attack, we define Adv′
γ ,

that if ∥CW (x, y; g) − x∥2 ≤ γ always returns CW (x, y; g), and if ∥CW (x, y; g) −
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x∥2 > γ, instead returns x with probability 1− γ
∥CW (x,y;g)−x∥2 . Note that in this case, the

perturbation ∥Adv′
γ(x, y; g)−x∥2 is guaranteed to be less than or equal to γ in expectation

for all x, so γ can be used as an upper bound on the Wasserstein distance. Results are

shown in Figure 2.18.

G Function ψ for Different Distributions

For an isometric Gaussian distribution N (0, σ2I),

TV(N (0, σ2I),N (θ, σ2I)) = erf(∥θ∥2/2
√
2σ).

Proof. Due to the isometric symmetry of the Gaussian distribution and the ℓ2-norm, we

may assume, without loss of generality, that N (θ, σ2I) is obtained by shifting N (0, σ2I)

only along the first dimension. Therefore, the total variation of the two distributions is

equal to the difference in the probability of a normal random variable with variance σ2

being less than ∥θ∥2/2 and −∥θ∥2/2, i.e., Φ(∥θ∥2/2σ) − Φ(−∥θ∥2/2σ) where Φ is the

standard normal CDF.

TV(N (0, σ2I),N (θ, σ2I)) = Φ(∥θ∥2/2σ)− Φ(−∥θ∥2/2σ)

= 2Φ(∥θ∥2/2σ)− 1

= 2

(
1 + erf(∥θ∥2/2

√
2σ)

2

)
− 1

= erf(∥θ∥2/2
√
2σ).
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For a uniform distribution U(θ, b) between θi and θi+b in each dimension for b ≥ 0

(as used for the SV shift transformations), TV(U(0, b),U(θ, b)) ≤ ∥θ∥1/b. When ∥θ∥1 is

constrained, the volume of the overlap between U(0, b) and U(θ, b) is minimized when

the shift is only along one dimension.

H Additive Composability of Natural Transformations

In this section, we prove that the natural transformation CS,HS and SV defined in

the paper all satisfy the additive composability property in condition (2.5).

Lemma 3. The transformation CS satisfies the additive composability property, i.e., ∀x ∈

M, θ1, θ2 ∈ R3,

CS(CS(x, θ1), θ2) = CS(x, θ1 + θ2).

Proof. Let x = {(r, g, b)ij}H×W , x′ = {(r′, g′, b′)ij}H×W = CS(x, θ1) and x′′ = {(r′′, g′′, b′′)ij}H×W =

CS(x′, θ2). We need to show that x′′ = CS(x, θ1 + θ2). Let rmax, gmax and bmax be the

maximum values of the red, green and blue channels respectively of x and r′max, g
′
max and

b′max be the same for x′. From the definition of CS in Section 2.5.1, we have:

r′ij =
2θ

R
1 rij

MAX
, g′ij =

2θ
G
1 gij

MAX
, b′ij =

2θ
B
1 bij

MAX

and r′′ij =
2θ

R
2 r′ij

MAX′ , g′′ij =
2θ

G
2 g′ij

MAX′ , b′′ij =
2θ

B
2 b′ij

MAX′

where MAX = max(2θ
R
1 rmax, 2

θG1 gmax, 2
θB1 bmax) and MAX′ = max(2θ

R
2 r′max, 2

θG2 g′max, 2
θB2 b′max).
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From the definition of r′max, we have:

r′max = max r′ij = max
2θ

R
1 rij

MAX
=

2θ
R
1 max rij
MAX

=
2θ

R
1 rmax

MAX
.

Similarly,

g′max =
2θ

G
1 gmax

MAX
and b′max =

2θ
B
1 bmax

MAX
.

Therefore,

MAX′ =
max(2θ

R
1 +θR2 rmax, 2

θG1 +θG2 gmax, 2
θB1 +θB2 bmax)

MAX
.

Substituting r′ij and MAX’ in the expression for r′′ij , we get:

r′′ij =
2θ

R
2 2θ

R
1 rij

MAX′MAX
=

2θ
R
1 +θR2 rij

max(2θ
R
1 +θR2 rmax, 2θ

G
1 +θG2 gmax, 2θ

B
1 +θB2 bmax)

.

Similarly,

g′′ij =
2θ

G
1 +θG2 gij

max(2θ
R
1 +θR2 rmax, 2θ

G
1 +θG2 gmax, 2θ

B
1 +θB2 bmax)

and

b′′ij =
2θ

B
1 +θB2 bij

max(2θ
R
1 +θR2 rmax, 2θ

G
1 +θG2 gmax, 2θ

B
1 +θB2 bmax)

.

Hence, x′′ = CS(x, θ1 + θ2).

Lemma 4. The transformation SV satisfies the additive composability property, i.e., ∀x ∈

M, θ1, θ2 ∈ R2
≥0,

SV(SV(x, θ1), θ2) = SV(x, θ1 + θ2).

Proof. Let x = {(h, s, v)ij}H×W , x′ = {(h, s′, v′)ij}H×W = SV(x, θ1) and x′′ = {(h, s′′, v′′)ij}H×W =
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SV(x′, θ2) in HSV format. We need to show that x′′ = SV(x, θ1+θ2). Let smean, smax, vmean

and vmax be the means and maximums of the saturation and brightness values of x and

s′mean, s
′
max, v

′
mean and v′max be the same for x′. From the definition of SV in Section 2.5.2,

we have:

s′ij =
sij + (2θ

S
1 − 1)smean

MAX
, v′ij =

vij + (2θ
V
1 − 1)vmean

MAX

and s′′ij =
s′ij + (2θ

S
2 − 1)s′mean

MAX′ , v′′ij =
v′ij + (2θ

V
2 − 1)v′mean

MAX′

where MAX = max(smax+(2θ
S
1 −1)smean, vmax+(2θ

V
1 −1)vmean) and MAX′ = max(s′max+

(2θ
S
2 − 1)s′mean, v

′
max + (2θ

V
2 − 1)v′mean). From the definitions of s′mean and s′max, we have:

s′mean = mean s′ij = mean
sij + (2θ

S
1 − 1)smean

MAX
=

mean sij + (2θ
S
1 − 1)smean

MAX
=

2θ
S
1 smean

MAX

s′max = max s′ij = max
sij + (2θ

S
1 − 1)smean

MAX
=

max sij + (2θ
S
1 − 1)smean

MAX
=
smax + (2θ

S
1 − 1)smean

MAX
.

Similarly,

v′mean =
2θ

V
1 vmean

MAX
and v′max =

vmax + (2θ
V
1 − 1)vmean

MAX
.

Therefore,

MAX′ = max(s′max + (2θ
S
2 − 1)s′mean, v

′
max + (2θ

V
2 − 1)v′mean)

= max(
smax + (2θ

S
1 − 1)smean + (2θ

S
2 − 1)2θ

S
1 smean

MAX
, v′max + (2θ

V
2 − 1)v′mean)

= max(
smax + (2θ

S
1 +θS2 − 1)smean

MAX
, v′max + (2θ

V
2 − 1)v′mean)

= max(smax + (2θ
S
1 +θS2 − 1)smean, vmax + (2θ

V
1 − 1)vmean + (2θ

V
2 − 1)2θ

V
1 vmean)/MAX
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= max(smax + (2θ
S
1 +θS2 − 1)smean, vmax + (2θ

V
1 +θV2 − 1)vmean)/MAX.

Substituting s′ij, s
′
mean and MAX′ in the expression for s′′ij , we get:

s′′ij =
sij + (2θ

S
1 − 1)smean + (2θ

S
2 − 1)2θ

S
1 smean

MAX′MAX

=
sij + (2θ

S
1 +θS2 − 1)smean

max(smax + (2θ
S
1 +θS2 − 1)smean, vmax + (2θ

V
1 +θV2 − 1)vmean)

.

Similarly,

v′′ij =
vij + (2θ

V
1 +θV2 − 1)vmean

max(smax + (2θ
S
1 +θS2 − 1)smean, vmax + (2θ

V
1 +θV2 − 1)vmean)

.

Hence, x′′ = SV(x, θ1 + θ2).

I Details for Plots in Figure 2.2

The distribution shifts used to evaluate the empirical performance of the base models

in Figure 2.2 have been generated by first sampling an image x from the original distribution

D and then randomly transforming it images from the original distribution by adding

a noise in the corresponding transformation space. The Wasserstein bound of these

shifts can be calculated by computing the expected perturbation size of the smoothing

distribution. For example, the expected ℓ2-norm of a 3-dimensional Gaussian vector is

given by 2
√
2σ/

√
π and expected ℓ1-norm a 2-dimensional vector sampled uniformly

from [0, b]2 is b.

The training and smoothing noise levels used for color shift, hue shift and SV shift
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are (0.8, 10.0), (180◦, 180◦) and (8.0, 12.0) respectively.

J Hue Shift

Any RGB image can be alternatively represented in the HSV image format by

mapping the (r, g, b) tuple for each pixel to a point (h, s, v) in a cylindrical coordinate

system where the values h, s and v represent the hue, saturation and brightness (value)

of the pixel. The mapping from the RGB coordinate to the HSV coordinate takes the

[0, 1]3 color cube and transforms it into a cylinder of unit radius and height. The hue

values are represented as angles in [0, 2π) and the saturation and brightness values are

in [0, 1]. Define a hue shift of an H ×W sized image x by an angle θ ∈ [−π, π] in the

HSV space that rotates each hue value by an angle θ and wraps it around to the [0, 2π)

range. In appendix J, we show that the certified accuracy under hue shifts does not depend

on the Wasserstein distance of the shifted distribution and report the certified accuracies

obtained by various base models trained under different noise levels.

Define a hue shift of an H ×W sized image x by an angle θ ∈ [−π, π] in the HSV

space as:

HS(x, θ) =
{
(w(h+ θ), s, v)ij

}H×W

where w(x) = x− 2π
⌊ x
2π

⌋

which rotates each hue value by an angle θ and wraps it around to the [0, 2π) range. It is

easy to show that this transformation satisfies additive composability in condition (2.5).

The Wasserstein distance is defined using the corresponding distance function dHS by
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taking the absolute value of the hue shift |θ|.

Lemma 5. The transformation HS satisfies the additive composability property, i.e., ∀x ∈

M, θ1, θ2 ∈ [−π, π],

HS(HS(x, θ1), θ2) = HS(x, θ1 + θ2).

Proof. Let h be the hue value of the (i, j)th pixel of the image x. Since the transformation

only affects the hue values, we ignore the other coordinates. The hue value after the

transformation HS(HS(x, θ1), θ2) is given by

w(w(h+ θ1) + θ2) = w

(
h+ θ1 − 2π

⌊
h+ θ1
2π

⌋
+ θ2

)

Define a smoothing distribution that applies a random hue rotation δ sampled uniformly

from the range [−π, π]. Since HS wraps the hue values around in the interval, the

distributions of h + δ and (h + θ) + δ for two hue values shifted by an angle θ are both

uniform in [0, 2π]. Thus, the smoothing distribution for two hue shifted images is the same

which implies that ψ(d(x1, x2)) = 0 whenever d(x1, x2) is finite. Hence, from Theorem 1,

we have E(x2,y2)∼D̃[h̄(x2, y2)] ≥ E(x1,y1)∼D[h̄(x1, y1)] for hue shifts. Since, the certified

accuracy remains constant with respect to the Wasserstein distance of the shift, we just

plot the certified accuracies obtained by various base models trained under different noise

levels in Figure 2.19. We plot the certified accuracies obtained by various models trained

using random hue rotations picked uniformly from the range [−β, β] for different values

of the maximum angle β in the range. The certified accuracy roughly increases with the
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training noise achieving a maximum of 87.9% for a max angle β = 180◦ for the training

noise level.

K Random Channel Selection

Consider a smoothing distribution that randomly picks one of the RGB channels

with equal probability, scales it so that the maximum pixel value in that channel is one

and sets all the other channels to zero. This smoothing distribution is invariant to the

color shift transformation CS and thus, satisfies ψ(dT (x1, x2)) = 0 whenever dT (x1, x2)

is finite. Therefore, from Theorem 1, we have Ez∼D̃[h̄(z)] ≥ Ex∼D[h̄(x)] under this

smoothing distribution for all Wasserstein bounds ϵ with respect to dCS. Figure 2.20

plots the certified accuracies, using random channel selection for smoothing, achieved by

models trained using Gaussian distributions of varying noise levels in the transformation

space. The certified accuracy roughly increases with the training noise achieving a maximum

of 87.1% for a training noise of 0.8.

L Experimental details for Section 2.7

Our experimental setting is adapted from the “sample-wise perturbation” CIFAR-

10 experiments in Huang et al. [78]: hyperparameters are the same as in that work

unless otherwise stated. For background, Huang et al. [78] creates an unlearnable dataset

by performing the following “bi-level” minimization, to simultaneously train a proxy

classifier model and create unlearnable examples:

min
θ

min
(ϵ1,...,ϵn)

1

n

n∑
i=1

L(fθ(xi + ϵi), yi) (2.13)
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In other words, in contrast with standard training, both the samples and the proxy classifier

are optimized to decrease the loss. New classifiers trained on the resulting samples fail

to generalize to unperturbed samples. In the experiments, as in Huang et al. [78], the

inner minimization over perturbations is performed for 20 steps over the entire dataset,

for every one batch update step of the outer minimization. Training stops when training

accuracy reaches a threshold value of 99%.

We now detail differences in experimental setup from Huang et al. [78]:

M Adaptation to ℓ2 attack setting

After each optimization step, we project ϵi’s into an ℓ2 ball (of radius given by the

Wasserstein bound ϵ) rather than an ℓ∞ ball. We also use an ℓ2 PGD step:

ϵ′i = ϵi + τ
∇ϵiL(·)

∥∇ϵiL(·)∥2
(2.14)

Step size τ was set as 0.1 times the total ℓ2 ϵ bound.

N Adaptation to offline setting

As discussed in the test, we modify the algorithm such that the simultaneous training

of the proxy model and generation of perturbations does not introduce statistical dependencies

between perturbed training samples. This is especially important because, if the victim

later makes a train-validation split, this would introduce statistical dependencies between

training and validation samples, making it hard to generalize certificates to a test set.

To avoid this, we construct four data splits:
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• Test set (10000 samples): The original CIFAR-10 test set. Never perturbed, only

used in final model evaluation.

• Proxy training set (20000 samples): Used for the optimization of the proxy classifier

model parameters θ in Equation 2.13 and discarded afterward.

• Training set (20000 samples): Perturbed using one round of the the standard 20

steps of the inner optimization of Equation 2.13, while keeping θ fixed.

• Validation set (10000 samples): Perturbed using the same method as the “Training

set.”

The victim model is trained on the “Training Set” and evaluated on the “Validation set”

and “Test set”. We also tested on the clean (unperturbed) version of the validation set.

O Adaptive attack setting

When testing our smoothing algorithm, we tested two types of attacks:

• Non-adaptive attack: the proxy model is trained and perturbations are generated

using undefended models without smoothing: only the victim policy applies smoothing

noise during training and evaluation.

• Adaptive attack: In the minimization of Equation 2.13, the loss term L(fθ(xi +

ϵi), yi) is replaced by the expectation:

E
δ∼N (0,σ2I)

L(fθ(xi + ϵi + δ), yi) (2.15)
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In other words, this models the expectation of a smoothed model, like the victim

classifier. This smoothed optimization is used in both the proxy model training, as

well as the generation of the training and validation sets. Following Salman et al.

[39], which proposed a similar adaptive attack for sample-wise smoothed classifiers

we approximate the expectation using a small number of random perturbations,

which are held fixed for the 20 steps of the inner optimization. In our experiments,

we use 8 samples for approximation. Because, at large smoothing noises, this

makes the attack much less effective, we cut off training after 20 steps of the outer

maximization, rather than relying on the accuracy to reach 99%. (the maximum

number of steps required to converge we observed for the non-adaptive attack was

15).

P Results

Complete experimental results are presented in Figure 2.21. All results are means

of 5 independent runs, and error bars represent standard errors of the means.
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Figure 2.11: CIFAR-10.

Figure 2.12: SVHN

Figure 2.13: Distributional certificates against adversarial attacks on (a) CIFAR-10 and
(b) SVHN. The solid lines represent certified accuracy of the robust models and the
dashed lines represent the adversarial accuracy of undefended models.
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a) b) 

Figure 2.14: Adversarial attack on distributionally-smoothed classifiers, for CIFAR-10.
For smoothed classifiers, we use the PGD attack described in is section; see Section 2.6
for details on the baseline. The dashed lines represent the empirical performance of the
smoothed model for different noise levels. In plot (a), we use the loss function in Equation
2.9, while in (b) we use Equation 2.10.

a) b) 

Figure 2.15: Adversarial attack on distributionally-smoothed classifiers, for SVHN. For
smoothed classifiers, we use the PGD attack described in is section; see Section 2.6 for
details on the baseline. The dashed lines represent the empirical performance of the
smoothed model for different noise levels. In plot (a), we use the loss function in Equation
2.9, while in (b) we use Equation 2.10.
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Figure 2.16: CIFAR-10

Figure 2.17: SVHN

Figure 2.18: Certified robustness to ℓ2 Wasserstein distributional attacks. The undefended
baseline baseline is here attacked using the alternative attack formulation Adv′ described
in Section F.
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Figure 2.19: Certified accuracy under hue shift for different levels of training noise. Since,
the certified accuracy remains constant with respect to the Wasserstein distance (ϵ) of the
shifted distribution, we plot the certified accuracy of models trained with different noise
levels β.

Figure 2.20: Certified robustness against color shift using random channel selection as
the smoothing distribution. Since, the certified accuracy remains constant with respect to
the Wasserstein distance (ϵ) of the shifted distribution, we plot the certified accuracy of
models trained with various levels of Gaussian noise in the transformation space.
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Figure 2.21: Complete Experimental results for unlearnability experiments.52



Chapter 3: Policy Smoothing

3.1 Introduction

Deep neural networks (DNNs) have been widely employed for reinforcement learning

(RL) problems as they enable the learning of policies directly from raw sensory inputs,

like images, with minimal intervention from humans. From achieving super-human level

performance in video-games [91, 92, 93], Chess [94] and Go [95] to carrying out complex

real-world tasks, such as controlling a robot [96] and driving a vehicle [97], deep-learning

based algorithms have not only established the state of the art, but also become more

effortless to train. However, DNNs have been shown to be susceptible to tiny malicious

perturbations of the input designed to completely alter their predictions [1, 2, 3]. In the

RL setting, an attacker may either directly corrupt the observations of an RL agent [6,

7, 8] or act adversarially in the environment [5] to significantly degrade the performance

of the victim agent. Most of the adversarial defense literature has focused mainly on

classification tasks [18, 19, 20, 21, 22, 23, 98]. In this paper, we study a defense procedure

for RL problems that is provably robust against norm-bounded adversarial perturbations

of the observations of the victim agent.

Problem setup. A reinforcement learning task is commonly described as a game

between an agent and an environment characterized by the Markov Decision Process
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(MDP) M = (S,A, T,R, γ), where S is a set of states, A is a set of actions, T is the

transition probability function, R is the one-step reward function and γ ∈ [0, 1] is the

discount factor. However, as described in Section 3.3, our analysis applies to an even

more general setting than MDPs. At each time-step t, the agent makes an observation

ot = o(st) ∈ Rd which is a probabilistic function of the current state of the environment,

picks an action at ∈ A and receives an immediate reward Rt = R(st, at). We define

an adversary as an entity that can corrupt the agent’s observations of the environment

by augmenting them with a perturbation ϵt at each time-step t which can depend on the

states, actions, observations, etc., generated so far. We use ϵ = (ϵ1, ϵ2, . . .) to denote the

entire sequence of adversarial perturbations. The goal of the adversary is to minimize

the total reward obtained by the agent policy π while keeping the overall ℓ2-norm of the

perturbation within a budget B. Formally, the adversary seeks to optimize the following

objective:

min
ϵ

Eπ

[
∞∑
t=0

γtRt

]
, where Rt = R(st, at), at ∼ π(·|o(st) + ϵt)

s.t. ∥(ϵ1, ϵ2, . . .)∥2 =

√√√√ ∞∑
t=0

∥ϵt∥22 ≤ B.

Note that the size of the perturbation ϵt in each time-step t need not be the same and the

adversary may choose to distribute the budget B over different time-steps in a way that

allows it to produce a stronger attack. Also, our formulation accounts for cases when

the agent may only partially observe the state of the environment, making M a Partially

Observable Markov Decision Process (POMDP).
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Objective. Our goal in provably robust RL is to design a policy π such that the

total reward in the presence of a norm-bounded adversary is guaranteed to remain above

a certain threshold, i.e.,

min
ϵ

Eπ

[
∞∑
t=0

γtRt

]
≥ R, s.t. ∥ϵ∥2 ≤ B. (3.1)

In other words, no norm-bounded adversary can lower the expected total reward of

the policy π below a certain threshold. In our discussion, we restrict out focus to finite-

step games that end after t time-steps. This is a reasonable approximation for infinite

games with γ < 1, as for a sufficiently large t, γt becomes negligibly small. For games

where γ = 1, Rt must become sufficiently small after a finite number of steps to keep the

total reward finite.

Step-wise vs. episodic certificates. Previous works on robust RL have sought to

certify the behaviour of the policy function at each time-step of an episode, e.g., the output

of a Deep Q-Network [99] and the action taken for a given state [100]. Ensuring that the

behaviour of the policy remains unchanged in each step can also certify that the final

total reward remains the same under attack. However, if the per-step guarantee fails at

even one of the intermediate steps, the certificate on the total reward becomes vacuous or

impractical to compute (as noted in Appendix E of [100]). Our approach gets around this

issue by directly certifying the final total reward for the entire episode without requiring

the policy to be provably robust at each intermediate step. Also, the threat-model we

consider is more general as we allow the adversary to choose the size of the perturbation
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(a) (b)

(c)

(d)

Static (Classification) Setting Interactive (RL) Setting

Figure 3.1: The standard [36] smoothing-based robustness certificate relies on the
clean and the adversarial distributions being isometric Gaussians (panel a). However,
adding noise to sequential observations in an RL setting (panels b-d) does not result
in an isometric Gaussian distribution over the space of observations. In all figures, the
distributions associated with clean and adversarially-perturbed values are shown in blue
and red, respectively.
for each time-step. Thus, our method can defend against more sophisticated attacks that

focus more on states that are crucial for the victim agent’s performance.

Technical contributions. In this paper, we study a defense procedure based on

“randomized smoothing” [36, 37, 38, 39] since at least in “static” settings, its robustness

guarantee scales up to high-dimensional problems and does not need to make stringent

assumptions about the model. We ask: can we utilize the benefits of randomized smoothing

to make a general high-dimensional RL policy provably robust against adversarial attacks?

The answer to this question turns out to be non-trivial as the adaptive nature of the

adversary in the RL setting makes it difficult to apply certificates from the static setting.

For example, the ℓ2-certificate by [36] critically relies on the clean and adversarial distributions

being isometric Gaussians (Figure 3.1-a). However, in the RL setting, the adversarial

perturbation in one step might depend on states, actions, observations, etc., of the previous

steps, which could in turn depend on the random Gaussian noise samples added to the

observations in these steps. Thus, the resulting adversarial distribution need not be isometric

as in the static setting (Figure 3.1-(b-d)). For more details on this example, see Appendix B.
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Our main theoretical contribution is to prove an adaptive version of the Neyman-

Pearson lemma [101] to produce robustness guarantees for RL. We emphasize that this

is not a straightforward extension (refer to Appendix D, E and F for the entire proof).

To prove this fundamental result, we first eliminate the effect of randomization in the

adversary (Lemma 6) by converting a general adversary to one where the perturbation

at each time-step is a deterministic function of the previous states, actions, observations,

etc., and showing that the modified adversary is as strong as the general one. Then, we

prove the adaptive Neyman-Pearson lemma where we show that, in the worst-case, the

deterministic adversary can be converted to one that uses up the entire budget B in the

first coordinate of the perturbation in the first time-step (Lemma 8). Finally, we derive the

robustness guarantee under an isometric Gaussian smoothing distribution (Theorem 2).

In section A, we establish the tightness of our certificates by constructing the worst-case

environment-policy pair which attains our derived bounds. More formally, out of all

the environment-policy pairs that achieve a certain total reward with probability p, we

show a worst-case environment-policy pair and a corresponding adversary such that the

probability of achieving the same reward under the presence of the adversary is minimum.

A discussion on the Neyman-Pearson lemma in the context of randomized smoothing is

available in Appendix C.

Building on these theoretical results, we propose Policy Smoothing, a simple model-

agnostic randomized-smoothing based technique that can provide certified robustness

without increasing the computational complexity of the agent’s policy. Our main contribution

is to show that by augmenting the policy’s input by a random smoothing noise, we

can achieve provable robustness guarantees on the total reward under a norm-bounded

57



adversarial attack (Section 3.4.2). Policy Smoothing does not need to make assumptions

about the agent’s policy function and is also oblivious to the workings of RL environment.

Thus, this method can be applied to any RL setting without having to make restrictive

assumptions on the environment or the agent. In section 3.3, we model the entire adversarial

RL process under Policy Smoothing as a sequence of interactions between a system A,

which encapsulates the RL environment and the agent, and a system B, which captures

the addition of the adversarial perturbation and the smoothing noise to the observations.

Our theoretical results do not require these systems to be Markovian and can thus have

potential applications in real-time decision-making processes that do not necessarily satisfy

the Markov property.

Empirical Results. We use four standard Reinforcement Learning benchmark

tasks to evaluate the effectiveness of our defense and the significance of our theoretical

results: the Atari games ‘Pong’ and ‘Freeway’ [91] and the classical ‘Cartpole’ and

‘Mountain Car’ control environments [102, 103] – see Figure 3.3. We find that our method

provides highly nontrivial certificates. In particular, on at least two of the tasks, ‘Pong’

and ‘cartpole’, the provable lower bounds on the average performances of the defended

agents, against any adversary, exceed the observed average performances of undefended

agents under a practical attack.

3.2 Prior Work

Adversarial RL. Adversarial attacks on RL systems have been extensively studied

in recent years. DNN-based policies have been attacked by either directly corrupting
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their inputs [6, 7, 8] or by making adversarial changes in the environment [5]. Empirical

defenses based on adversarial training, whereby the dynamics of the RL system is augmented

with adversarial noise, have produced good results in practice [104, 105]. [106] propose

training policies together with a learned adversary in an online alternating fashion to

achieve robustness to perturbations of the agent’s observations.

Robust RL. Prior work by [99] has proposed a ‘certified’ defense against adversarial

attacks to observations in deep reinforcement learning, particularly for Deep Q-Network

agents. However, that work essentially only guarantees the stability of the network approximated

Q-value at each time-step of an episode. By contrast, our method provides a bound on the

expected true reward of the agent under any norm-bounded adversarial attack.

Zhang et al. [100] certify that the action in each time-step remains unchanged under

an adversarial perturbation of fixed budget for every time-step. This can guarantee that the

final total reward obtained by the robust policy remains the same under attack. However,

this approach would not be able to yield any robustness certificate if even one of the

intermediate actions changed under attack. Our approach gets around this difficulty by

directly certifying the total reward, letting some of the intermediate actions of the robust

policy to potentially change under attack. For instance, consider an RL agent playing

Atari Pong. The actions taken by the agent when the ball is close to and approaching

the paddle are significantly more important than the ones when the ball is far away or

retreating from the paddle. By allowing some of the intermediate actions to potentially

change, our approach can certify for larger adversarial budgets and provide a more fine-

grained control over the desired total-reward threshold. Moreover, we study a more

general threat model where the adversary may allocate different attack budgets for each
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time-step focusing more on the steps that are crucial for the agent’s performance, e.g.,

attacking a Pong agent when the ball is close to the paddle.

Provable Robustness in Static Settings: Notable provable robustness methods in

static settings are based on interval-bound propagation [32, 33, 34, 35], curvature bounds

[27, 28, 29, 30, 31, 107], randomized smoothing [36, 37, 38, 39, 67], etc. Certified

robustness has also been extended to problems with structured outputs such as images and

sets [108]. Focusing on Gaussian smoothing, Cohen et al. [36] showed that if a classifier

outputs a class with some probability under an isometric Gaussian noise around an input

point, then it will output that class with high probability at any perturbation of the input

within a particular ℓ2 distance. Kumar et al. [51] showed how to certify the expectation

of softmax scores of a neural network under Gaussian smoothing by using distributional

information about the scores.

3.3 Preliminaries and Notations

We model the finite-step adversarial RL framework as a t-round communication

between two systems A and B (Figure 3.2). System A represents the RL game. It

contains the environment M and the agent, and when run independently, simulates the

interactions between the two for some given policy π. At each time-step i, it generates a

token τi from some set T , which is a tuple of the current state si and its observation oi,

the action ai−1 in the previous step (and potentially some other objects that we ignore in

this discussion), i.e., τi = (si, ai−1, oi, . . .) ∈ S × A × Rd × . . . = T . For the first step,

replace the action in τ1 with some dummy element ∗ from the action space A. System B
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Figure 3.2: Adversarial robustness framework.

comprises of the adversary and the smoothing distribution which generate an adversarial

perturbation ϵi and a smoothing noise vector δi, respectively, at each time-step i, the sum

of which is denoted by an offset ηi = ϵi + δi ∈ Rd.

When both systems are run together in an interactive fashion, in each round i,

system A generates τi as a probabilistic function of τ1, η1, τ2, η2, . . . , τi−1, ηi−1, i.e., τi :

(T × Rd)i−1 → ∆(T ). τ1 is sampled from a fixed distribution. It passes τi to B, which

generates ϵi as a probabilistic function of {τj, ηj}i−1
j=1 and τi, i.e., ϵi : (T ×Rd)i−1 ×T →

∆(Rd) and adds a noise vector δi sampled independently from the smoothing distribution

to obtain ηi. It then passes ηi to A for the next round. After running for t steps,

a deterministic or random 0/1-function h is computed over all the tokens and offsets

generated. We are interested in bounding the probability with which h outputs 1 as a

function of the adversarial budget B. In the RL setting, h could be a function indicating

whether the total reward is above a certain threshold or not.
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3.4 Provably Robust RL

3.4.1 Adaptive Neyman-Pearson Lemma

LetX be the random variable representing the tuple z = (τ1, η1, τ2, η2, . . . , τt, ηt) ∈

(T × Rd)t when there is no adversary, i.e., ϵi = 0 and ηi = δi is sampled directly

form the smoothing distribution P . Let Y be the random variable representing the same

tuple in the presence of a general adversary ϵ satisfying ∥ϵ∥2 ≤ B. Thus, if h(X) = 1

with some probability p, we are interested in deriving a lower-bound on the probability

of h(Y ) = 1 as a function of p and B. Let us now define a deterministic adversary

ϵdt for which the adversarial perturbation at each step is a deterministic function of the

tokens and offsets of the previous steps and the token generated in the current step. i.e.,

ϵdti : (T × Rd)i−1 × T → Rd. Let Y dt be its corresponding random variable. Then, we

have the following lemma that converts a probabilistic adversary into a deterministic one.

Lemma 6 (Reduction to Deterministic Adversaries). For any general adversary ϵ and

an Γ ⊆ (T × Rd)t, there exists a deterministic adversary ϵdt such that,

P[Y dt ∈ Γ] ≤ P[Y ∈ Γ],

where Y dt is the random variable for the distribution defined by the adversary ϵdt.

This lemma says that for any adversary (deterministic or random) and a subset Γ of

the space of z, there exists a deterministic adversary which assigns a lower probability to

Γ than the general adversary. In the RL setting, this means that the probability with which
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a smoothed policy achieves a certain reward value under a general adversary is lower-

bounded by the probability of the same under a deterministic adversary. The intuition

behind this lemma is that out of all the possible values that the internal randomness of

the adversary may assume, there exists a sequence of values that assigns the minimum

probability to Γ (over the randomness of the environment, policy, smoothing noise, etc.).

We defer the proof to the appendix.

Next, we formulate an adaptive version of the Neyman-Pearson lemma for the case

when the smoothing distribution P is an isometric Gaussian N (0, σ2I). If we applied

the classical Neyman-Pearson lemma on the distributions of X and Y dt, it will give us a

characterization of the worst-case 0/1 function among the class of functions that achieve

a certain probability p of being 1 under the distribution of X that has the minimum

probability of being 1 under Y dt. Let µX and µY dt be the probability density function

of X and Y dt, respectively.

Lemma 7 (Neyman-Pearson Lemma, 1933). If ΓY dt = {z ∈ (T × Rd)t | µY dt(z) ≤

qµX(z)} for some q ≥ 0 and P[h(X) = 1] ≥ P[X ∈ ΓY dt ], then P[h(Y dt) = 1] ≥

P[Y dt ∈ ΓY dt ].

For an arbitrary element h in the class of functions Hp = {h | P[h(X) = 1] ≥ p},

construct the set ΓY dt for an appropriate value of q for which P[X ∈ ΓY dt ] = p. Now,

consider a function h′ which is 1 if its input comes from ΓY dt and 0 otherwise. Then, the

above lemma says that the function h′ has the minimum probability of being 1 under Y dt,

i.e.,

h′ = argmin
h∈Hp

P[h(Y dt) = 1].
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This gives us the worst-case function that achieves the minimum probability under an

adversarial distribution. However, in the adaptive setting, ΓY dt could be a very complicated

set and obtaining an expression for P[Y dt ∈ ΓY dt ] might be difficult. To simplify our

analysis, we construct a structured deterministic adversary ϵst which exhausts its entire

budget in the first coordinate of the first perturbation vector, i.e., ϵst1 = (B, 0, . . . , 0) and

ϵsti = (0, 0, . . . , 0) for i > 1. Let Y st be the corresponding random variable and µY st its

density function. We formulate the following adaptive version of the Neyman-Pearson

lemma:

Lemma 8 (Adaptive Neyman-Pearson Lemma). If ΓY st = {z ∈ (T ×Rd)t | µY st(z) ≤

qµX(z)} for some q ≥ 0 and P[h(X) = 1] ≥ P[X ∈ ΓY st ], then P[h(Y dt) = 1] ≥

P[Y st ∈ ΓY st ].

The key difference from the classical version is that the worst-case set we construct

in this lemma is for the structured adversary and the final inequality relates the probability

of h outputting 1 under the adaptive adversary to the probability that the structured

adversary assigns to the worst-case set. It says that for the appropriate value of q for

which P[X ∈ ΓY st ] = p, any function h ∈ Hp outputs 1 with at least the probability

that Y st assigns to ΓY st . It shows that over all possible functions in Hp and over all

possible adversaries ϵ, the indicator function 1z∈ΓY st and the structured adversary capture

the worst-case scenario where probability of h being 1 under the adversarial distribution

is the minimum. Since both Y st and X are just isometric Gaussian distribution with the

same variance σ2 centered at different points on the first coordinate of η1, the set ΓY st is

the set of all tuples z for which {η1}1 is below a certain threshold.1 We use lemmas 6
1We use {ηi}j to denote the jth coordinate of the vector ηi.
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and 8 to derive the final bound on the probability of h(Y ) = 1 in the following theorem,

the proof of which is deferred to the appendix.

Theorem 2 (Robustness Guarantee). For an isometric Gaussian smoothing noise with

variance σ2, if P[h(X) = 1] ≥ p, then:

P[h(Y ) = 1] ≥ Φ(Φ−1(p)−B/σ),

where Φ is the standard normal CDF.

The above analysis can be adapted to obtain an upper-bound on P[h(Y ) = 1] of

Φ(Φ−1(p) +B/σ).

3.4.2 Policy Smoothing

Building on these results, we develop policy smoothing, a simple model-agnostic

randomized-smoothing based technique that can provide certified robustness without increasing

the computational complexity of the agent’s policy. Given a policy π, we define a smoothed

policy π̄ as:

π̄ ( · | o(st)) = π ( · | o(st) + δt) , where δt ∼ N (0, σ2I).

Our goal is to certify the expected sum of the rewards collected over multiple time-steps

under policy π̄. We modify the technique developed by Kumar et al. [51] to certify the

expected class scores of a neural network by using the empirical cumulative distribution

function (CDF) of the scores under the smoothing distribution to work for the RL setting.
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This approach utilizes the fact that the expected value of a random variable X representing

a class score under a Gaussian N (0, σ2I) smoothing noise can be expressed using its CDF

F (.) as below:

E[X ] =

∫ ∞

0

(1− F (x))dx−
∫ 0

−∞
F (x)dx. (3.2)

Given m samples {xi}mi=1 of the random variable X , let us define its empirical CDF

at a point x, Fm(x) = |{xi | xi ≤ x}|/m, as the fraction of samples that are less than or

equal to x. Using Fm(x), the Dvoretzky–Kiefer–Wolfowitz inequality can produce high-

confidence bounds on the true CDF of X . It says that with probability 1−α, for α ∈ (0, 1],

the true CDF F (x) is in the range [F (x), F (x)], where F (x) = Fm(x)−
√
ln(2/α)/2m

and F (x) = Fm(x) +
√

ln(2/α)/2m. For an adversarial perturbation of ℓ2-size B, the

result of [36] bounds the CDF within [Φ(Φ−1(F (x)) − B/σ),Φ(Φ−1(F (x)) + B/σ)],

which in turn bounds E[X ] using equation (3.2).

In the RL setting, we can model the total reward as a random variable and obtain

its empirical CDF by playing the game using policy π̄. As above, we can bound the

CDF F (x) of the total reward in a range [F (x), F (x)] using the empirical CDF. Applying

Theorem 2, we can bound the CDF within [Φ(Φ−1(F (x))−B/σ),Φ(Φ−1(F (x))+B/σ)]

for an ℓ2 adversary of sizeB. The function h in Theorem 2 could represent the CDF F (x)

by indicating whether the total reward computed for an input z ∈ (T × Rd)t is below

a value x. Finally, equation (3.2) puts bounds on the expected total reward under an

adversarial attack.
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(b) Pong(a) Cartpole (c) Freeway (d) Mountain Car

Figure 3.3: Environments used in evaluations rendered by OpenAI Gym [109].

3.5 Experiments

3.5.1 Environments and Setup

We tested on four standard environments: the classical cortrol problems ‘Cartpole’

and ‘Mountain Car’ and the Atari games ‘Pong’ and ‘Freeway.’ We consider three tasks

which use a discrete action space (‘Cartpole’ and the two Atari games) as well as one task

that uses a continuous action space (‘Mountain Car’). For the discrete action space tasks,

we use a standard Deep Q-Network (DQN) [91] model, while for ‘Mountain Car’, we use

Deep Deterministic Policy Gradient (DDPG) [110].

As is common in DQN and DDPG, our agents choose actions based on multiple

frames of observations. In order to apply a realistic threat model, we assume that the

adversary acts on each frame only once when it is first observed. The adversarial distortion

is then maintained when the same frame is used in future time-steps. In other words, we

consider the observation at time step ot (discussed in Section 3.3) to be only the new

observation at time t: this means that the adversarial/noise perturbation ηt, as a fixed

vector, continues to be used to select the next action for several subsequent time-steps.

This is a realistic model because we are assuming that the adversary can affect the agent’s

observation of states, not necessarily the agent’s memory of previous observations. As
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in other works on smoothing-based defenses (e.g., [36]), we add noise during training as

well as at test time. We use DQN and DDPG implementations from the popular stable-

baselines3 package [111]: hyperparameters are provided in the appendix. In experiments,

we report and certify for the total non-discounted (γ = 1) reward.

In ‘Cartpole’, the observation vector consists of four kinematic features. We use a

simple MLP model for the Q-network, and tested two variations: one in which the agent

uses five frames of observation, and one in which the agent uses only a single frame

(shown in the appendix).

In order to show the effectiveness of our technique on tasks involving high-dimensional

state observations, we chose two tasks (‘Pong’ and ‘Freeway’) from the Atari environment,

where state observations are image frames, observed as 84 × 84 pixel greyscale images.

For ‘Pong’, we test on a “one-round” variant of the original environment. In our variant,

the game ends after one player, either the agent or the opponent, scores a goal: the reward

is then either zero or one. Note that this is not a one-timestep episode: it takes typically

on the order of 100 timesteps for this to occur. Results for a full Pong game are presented

in the appendix: as explained there, we find that the certificates unfortunately do not scale

with the length of the game. For the ‘Freeway’ game, we play on ‘Hard’ mode and end

the game after 250 timesteps.

In order to test on an environment with a continuous action space, we chose the

‘Mountain Car’ environment. Note that previous certification results for reinforcement

learning, which certify actions at individual states rather than certifying the overall reward

[100] cannot be applied to continuous action state problems. In this environment, the

observation vector consists of two kinematic features (position and velocity), and the
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Figure 3.4: Certified performance for various environments. The certified lower-bound
on the mean reward is based on a 95% lower confidence interval estimate of the mean
reward of the smoothed model, using 10,000 episodes.
action is one continuous scalar (acceleration). As in ‘Cartpole’, we use five observation

frames and a simple MLP policy. We use a slight variant of the original environment: we

do not penalize for fuel cost so the reward is a boolean representing whether or not the

car reaches the destination in the time allotted (999 steps).

3.5.2 Results

Certified lower bounds on the expected total reward, as a function of the total

perturbation budget, are presented in Figure 3.4. For tasks with zero-one total reward

(‘Pong’ and ‘Mountain Car’), the function to be smoothed represents the total reward:

h(·) = R where R is equal to 1 if the agent wins the round, and 0 otherwise. To compute

certificates on games with continuous scores (‘Cartpole’ and ‘Freeway’), we use CDF

smoothing [51]: see appendix for technical details.

In order to evaluate the robustness of both undefended and policy-smoothed agents,
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we developed an attack tailored to the threat model defined in 3.1, where the adversary

makes a perturbation to state observations which is bounded over the entire episode. For

DQN agents, as in [99], we perturb the observation o such that the perturbation-induced

action a′ := argmaxaQ(o + ϵt, a) minimizes the (network-approximated) Q-value of

the true observation Q(o, a′). However, in order to conserve adversarial budget, we only

attack if the gap between attacked q-value Q(o, a′) and the clean q-value maxaQ(o, a) is

sufficiently large, exceeding a preset threshold λQ. In practice, this allows the attacker

to concentrate the attack budget only on the time-steps which are critical to the agent’s

performance. When attacking DDPG, where both a Q-value network and a policy network

π are trained and the action is taken according to π, we instead minimize Q(o, π(o +

ϵt))+λ∥ϵt∥2 where the hyperparameter λ plays an analogous role in focusing perturbation

budget on “important” steps, as judged by the effect on the approximated Q-value. Empirical

results are presented in Figure 3.5. We see that the attacks are effective on the undefended

agents (red, dashed lines). In fact, from comparing Figures 3.4 and 3.5, we see that, for

the Pong and Cartpole environments, the undefended performance under attack is worse

than the certified lower bound on the performance of the policy-smoothed agents under

any possible attack: our certificates are the clearly non-vacuous for these environments.

Further details on the attack optimizations are provided in the appendix.

We also present an attempted empirical attack on the smoothed agent, adapting

techniques for attacking smoothed classifiers from [39] (solid blue lines). We observed

that our model was highly robust to this attack – significantly more robust than guaranteed

by our certificate. However, it is not clear whether this is due to looseness in the certificate

or to weakness of the attack: the significant practical challenges to attacking smoothed
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Figure 3.5: Empirical robustness of defended and undefended agents. Full details of
attacks are presented in appendix.

agents are also discussed in the appendix.

3.6 Conclusion

In this work, we extend randomized smoothing to design a procedure that can make

any reinforcement learning agent provably robust against adversarial attacks without significantly

increasing the complexity of the agent’s policy. We show how to adapt existing theory on

randomized smoothing from static tasks such as classification, to the dynamic setting of

RL. By proving an adaptive version of the celebrated Neyman-Pearson Lemma, we show

that by adding Gaussian smoothing noise to the input of the policy, one can certifiably

defend it against norm-bounded adversarial perturbations of its input. The policy smoothing

technique and its theory covers a wide range of adversaries, policies and environments.

Our analysis is tight, meaning that the certificates we achieve are best possible unless

restrictive assumptions about the RL game are made. In our experiments, we show that

our method provides meaningful guarantees on the robustness of the defended policies
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and the total reward they achieve even in the worst case is higher than an undefended

policy. In the future, the introduction of randomized smoothing to RL could inspire

the design of provable robustness techniques for control problems in dynamic real-world

environments and multi-agent RL settings.
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3.7 Appendices

A Tightness of the Certificate

Here, we present a worst-case environment-policy pair that achieves the bound in

Theorem 2, showing that our robustness certificate is in fact tight. For a given environment

M = (S,A, T,R, γ) and a policy π, let p be a lower-bound on the probability that the

total reward obtained by policy π under Gaussian smoothing (no adversary) with variance

σ2 is above a certain threshold ν, i.e.,

P

[
t∑

i=1

γi−1Ri ≥ ν

]
≥ p.

Let Hp be the class of all such environment-policy pairs that cross this reward threshold

with probability at least p. We construct an environment-policy pair (M ′, π′) that achieves

the reward threshold ν with probability Φ(Φ−1(p)−B/σ) under the structured adversary

ϵst. Note that, this does not mean that ϵst is the strongest possible adversary for a general

environment-policy pair. It only shows that the performance of policy π′ in environment

M ′ under the adversary ϵst is a lower-bound on the performance of a general environment-

policy pair under a general adversary. Consider a one-step game with environment M ′ =

(S,A, T ′, R′, γ) with a deterministic observation function o of the state-space and a policy

π′ such that π′ returns an action a1 ∈ A if the first coordinate of o(s1)+ η1 is at most ω =

{o(s1)}1 + σΦ−1(p) and another action a2 ∈ A otherwise. Here {o(s1)}1 represents the

first coordinate of o(s1). The environment offers a reward ν if the action in the first step is
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a1 and 0 when it is a2. The game terminates immediately. The probability of the reward

being above ν is equal to the probability of the action being a1. When η1 is sampled from

the Gaussian distribution, this probability is equal to Φ((ω−{o(s1)}1)/σ) = p. Therefore,

(M ′, π′) ∈ Hp. Under the presence of the structured adversary ϵst defined in Section 3.4.1,

this probability after smoothing becomes Φ((ω−{o(s1)}1−B)/σ) = Φ(Φ−1(p)−B/σ),

which is same as the bound in Theorem 2.

B Static Vs. Adaptive Setting

In this section, we illustrate the difference between the adversarial distributions in

the static setting and the adaptive setting. Naively, one might assume that smoothing-

based robustness guarantees can be applied directly to reinforcement learning, by adding

noise to observations. For example, it seems plausible to use Cohen et al.’s ℓ2 certificate

[36], which relies on the overlap in the distributions of isometric Gaussians with different

means, by simply adding Gaussian noise to each observation (Figure 3.1-a). However, as

we demonstrate with a toy example in Figure 3.1-(b-d), the Cohen et al. certificate cannot

be applied directly to the RL setting, because adding noise to sequential observations

does not result in an isometric Gaussian distribution over the space of observations. This

is because the adversarial offset to later observations may be conditioned on the noise

added to previous observations. In 3.1-(b-d), we consider a two-step episode, and for

simplicity, we consider a case where the ground-truth observations at each step are fixed.

At step 1, the noised distributions of the clean observation o1 and the adversarially-

perturbed observation o′1 are both Gaussians and overlap substantially, similar to in the
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standard classification setting (panel b). However, we see in panel (c) that the adversarial

perturbation ϵ2 added to o2 can depend on the smoothed value of o′1. This is because

the agent may leak information about the observation that it receives after smoothing

(o1 + η1) to the adversary, for example through its choice of actions. After smoothing is

performed on o2, the adaptive nature of the adversary causes the distribution of smoothed

observations to no longer be an isometric Gaussian in the adversarial case (panel d). The

standard certification results therefore cannot be applied.

C Neyman–Pearson lemma [1993] in Smoothing

In the context of randomized smoothing, the Neyman–Pearson lemma produces the

worst-case decision boundary of a classifier based on the estimated probability of the

top class under the smoothing distribution. It says that this boundary is a region where

the ratio of the probability density functions of the smoothing distributions at the clean

input and the perturbed input is a constant. When the two distributions are isometric

Gaussians, as is the case in static settings like image classification, this boundary takes

the form of a hyper-plane (see Appendix A of [36]). However, in the dynamic setting

of RL, the smoothing distribution after adding the adversarial perturbation may not be

isometric even if the smoothing noise at each time-step was sampled from an isometric

Gaussian distribution (see figure 1, section ‘Technical contributions’ and Appendix A).

So, we formulate and prove an adaptive version of the Neyman-Pearson lemma to obtain

provable robustness in RL through randomized smoothing.
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D Proof of Lemma 6

Statement: For any general adversary ϵ and an Γ ⊆ (T ×Rd)t, there exists a deterministic

adversary ϵdt such that,

P[Y dt ∈ Γ] ≤ P[Y ∈ Γ],

where Y dt is the random variable for the distribution defined by the adversary ϵdt.

Proof. Consider a time-step j such that ∀i < j, ϵi is a deterministic function of τ1, η1, τ2,

η2, . . . , τi−1, ηi−1, τi. Let H = {z | z1 = τ1, z2 = η1, z3 = τ2, z4 = η2, . . . , z2j−1 = aj}

be the set of points whose first 2j − 1 coordinates are fixed to an arbitrary set of values

τ1, η1, τ2, η2, . . . , τj . In the space defined by H, ϵ1, . . . , ϵj−1 are fixed vectors in Rd and

ϵj is sampled from a fixed distribution over the vectors with ℓ2-norm at most Bj
r . Let

Y γ
H be the random variable representing the distribution over points in H defined by the

adversary for which ϵj = γ, such that ∥γ∥2 ≤ Bj
r . Define an adversary ϵ′, such that,

ϵ′i = ϵi,∀i ̸= j. Set ϵ′j to the vector γ that minimizes the probability that Y γ
H assigns to

Γ ∩H, i.e.,

ϵ′j = argmin
∥γ∥2≤Bj

r

P[Y γ
H ∈ Γ ∩H]

The adversary ϵ′ behaves as ϵ up to step j − 1. At step j, it sets ϵ′j to the γ that minimizes

the probability it assigns to Γ ∩ H, based on the values τ1, η1, τ2, η2, . . . , τj . After that,

it mimics ϵ till the last time-step t. Therefore, for a given tuple (z1, z2, . . . , z2j−1) =

(τ1, η1, τ2, η2, . . . , τj),

P[Y ϵ′j
H ∈ Γ ∩H] ≤ P[Y ∈ Γ ∩H]
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Since both adversaries are same up to step j − 1, their respective distributions over

z1, z2, . . . , z2j−1 remains same as well. Therefore, integrating both sides of the above

inequality over the space of all tuples (z1, z2, . . . , z2j−1), we have:

∫
P[Y ϵ′j

H ∈ Γ ∩H]pY (z1, z2, . . . , z2j−1)dz1dz2 . . . dz2j−1

≤
∫

P[Y ∈ Γ ∩H]pY (z1, z2, . . . , z2j−1)dz1dz2 . . . dz2j−1

=⇒ P[Y ′ ∈ Γ] ≤ P[Y ∈ Γ],

where Y ′ is the random variable corresponding to ϵ′. Thus, we have constructed an

adversary where the first j adversarial perturbations are a deterministic function of the

τis and ηis of the previous rounds. Applying the above step sufficiently many times we

can construct a deterministic adversary ϵdt represented by the random variable Y dt such

that

P[Y dt ∈ Γ] ≤ P[Y ∈ Γ].

E Proof of Lemma 8

Lemma 8 states that the structured adversary characterises the worst-case scenario.

Before proving this lemma, let us first show that any deterministic adversary can be

converted to one that uses up the entire budget of B without increasing the probability it

assigns to h being one in the worst-case. For each step i, let us define a used budget Bi
u =

∥(ϵ1, ϵ2, . . . , ϵi−1)∥2 as the norm of the perturbations of the previous steps and a remaining
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budget Bi
r =

√
B2 − (Bi

u)
2 as an upper-bound on the norm of the perturbations of the

remaining steps. Note that, B1
u = 0 and B1

r = B.

Consider a version ϵ̃dt of the deterministic adversary that uses up the entire available

budgetB by scaling up ϵdtt such that its norm is equal toBt
r, i.e., setting it to ϵdtt B

t
r/∥ϵdtt ∥2.

Let Ỹ dt be the random variable representing ϵ̃dt.

Lemma. If ΓỸ dt = {z ∈ (T × Rd)t | µỸ dt(z) ≤ qµX(z)} for some q ≥ 0 and P[h(X) =

1] ≥ P[X ∈ ΓỸ dt ], then P[h(Y dt) = 1] ≥ P[Ỹ dt ∈ ΓỸ dt ].

Proof. Consider ΓY dt = {z ∈ (T × Rd)t | µY dt(z) ≤ q′µX(z)} for some q′ ≥ 0, such

that, P[X ∈ ΓY dt ] = p for some lower-bound p on P[h(X) = 1]. Then, by the Neyman-

Pearson Lemma we have that,

P[h(Y dt) = 1] ≥ P[Y dt ∈ ΓY dt ].

Now consider a space H in (T × Rd)t where all but the last element of the tuple z are

fixed, i.e., H = {z | z1 = τ1, z2 = η1, z3 = τ2, z4 = η2, . . . , z2t−1 = τt} Since, ϵdt

is a deterministic adversary where each ϵdti is a deterministic function of the previous

τis and ηis, each ϵdti is also fixed in H. Therefore, in H, both µX and µY dt are two

isometric Gaussians in the space of the ηis and the set H ∩ ΓY dt is a hyperplane. The

probability assigned by Y dt to H ∩ ΓY dt is proportional to the distance of the center of

the corresponding Gaussian. In the construction of ϵ̃dt, this distance can only increase,

therefore,

P[Y dt ∈ ΓY dt ] ≥ P[Ỹ dt ∈ ΓY dt ]
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Now, consider a function hΓ
Y dt

(z) which outputs one if z ∈ ΓY dt and zero otherwise.

Construct the set ΓỸ dt = {z ∈ (T ×Rd)t | µỸ dt(z) ≤ qµX(z)} for some q ≥ 0 such that,

P[X ∈ ΓỸ dt ] = p = P[hΓ
Y dt

(X) = 1].

Then, by the Neyman-Pearson Lemma, we have,

P[hΓ
Y dt

(Ỹ dt) = 1] ≥ P[Ỹ dt ∈ ΓỸ dt ]

or, P[Ỹ dt ∈ ΓY dt ] ≥ P[Ỹ dt ∈ ΓỸ dt ] (from definition of hΓ
Y dt

)

or, P[Y dt ∈ ΓY dt ] ≥ P[Ỹ dt ∈ ΓỸ dt ]

or, P[h(Y dt) = 1] ≥ P[Ỹ dt ∈ ΓỸ dt ], (from the above two inequalities)

proving the statement of the lemma.

Now, we prove lemma 8 below:

Statement: If ΓY st = {z ∈ (T × Rd)t | µY st(z) ≤ qµX(z)} for some q ≥ 0 and

P[h(X) = 1] ≥ P[X ∈ ΓY st ], then P[h(Y dt) = 1] ≥ P[Y st ∈ ΓY st ].

Proof. Construct the set ΓỸ dt as defined in the above lemma for a q ≥ 0 such that P[X ∈

ΓỸ dt ] = p, for some lower-bound p on P[h(X) = 1]. Then,

P[h(Y dt) = 1] ≥ P[Ỹ dt ∈ ΓỸ dt ]

Now consider the structured adversary ϵst in which ϵst1 = (B, 0, . . . , 0) and ϵsti = (0, 0, . . . , 0)

for i > 1. Define the set ΓY st = {z ∈ (T × Rd)t | µY st(z) ≤ qµX(z)} for the same q as
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above. Then, we can show that:

1. P[Ỹ dt ∈ ΓỸ dt ] = P[Y st ∈ ΓY st ], and

2. P[X ∈ ΓỸ dt ] = P[X ∈ ΓY st ]

which, in turn, prove the statement of the lemma.

Let N and Nϵi represent Gaussian distributions centered at origin and ϵi respectively.

Then, we can write µX and µY as below:

µX(z) =
t∏

i=1

µTi
(τi | τ1, η1, τ2, η2, . . . , τi−1, ηi−1)µN (ηi)

µỸ dt(z) =
t∏

i=1

µTi
(τi | τ1, η1, τ2, η2, . . . , τi−1, ηi−1)µN

ϵ̃dt
i

(ηi)

where µTi
is the conditional probability distribution of token τi given the previous tokens

and offsets. Therefore,

µỸ dt(z)

µX(z)
=

t∏
i=1

µN
ϵ̃dt
i

(ηi)

µN (ηi)
=

t∏
i=1

e
ηTi ηi−(ηi−ϵ̃dti )T (ηi−ϵ̃dti )

2σ2

µỸ dt(z)

µX(z)
≤ q ⇐⇒

t∑
i=1

2ηTi ϵ̃
dt
i − (ϵ̃dti )

T ϵ̃dti ≤ 2σ2 ln q

Consider a round j ≤ t such that ϵ̃dti = 0,∀i > j + 1 and ϵ̃dtj+1 = (Bj+1
r , 0, . . . , 0).

We can always find such a j as we always have ϵ̃dtt+1 = (Bt+1
r , 0, . . . , 0), since Bt+1

r = 0.

Note that, Bj+1
r =

√
B2 −

(
Bj+1

u

)2
and in turn ϵ̃dtj+1 are functions of τ1, η1, τ2, η2, . . . , τj

and not τj+1. Let H = {z | z1 = τ1, z2 = η1, z3 = τ2, z4 = η2, . . . , z2j−1 = τj} be

the set of points whose first 2j − 1 coordinates are fixed to an arbitrary set of values

τ1, η1, τ2, η2, . . . , τj . For points in H, all ϵ̃dti for i ≤ j + 1 are fixed and for i > j + 1
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are set to zero. Let Ỹ dt
H denote the random variable representing the distribution of points

in H defined by the adversary ϵ̃dt (corresponding random variable Ỹ dt). In the space of

ηj, ηj+1, . . . , ηt, this is an isometric Gaussian centered at (ϵ̃dtj , ϵ̃
dt
j+1, 0, . . . , 0). Therefore,

Γ ∩H is given by

j+1∑
i=1

2ηTi ϵ̃
dt
i − (ϵ̃dti )

T ϵ̃dti ≤ 2σ2 ln t

or, ηTj ϵ̃
dt
j + ηTj+1ϵ̃

dt
j+1 ≤ β, (3.3)

for some constant β dependent on η1, ϵ̃dt1 , . . . , ηj−1, ϵ̃
dt
j−1, σ and t. The probability assigned

by the Gaussian random variable YH to the half-space defined by (3.3) is proportional to

the distance of the center of the Gaussian from the hyper-plane in (3.3), which is equal to:

∥ϵ̃dtj ∥2 + ∥ϵ̃dtj+1∥2 − β√
∥ϵ̃dtj ∥2 + ∥ϵ̃dtj+1∥2

=
(Bj

r)
2 − β

Bj
r

,

where the equality follows from:

∥ϵ̃dtj ∥2 + ∥ϵ̃dtj+1∥2 = ∥ϵ̃dtj ∥2 + (Bj+1
r )2

= ∥ϵ̃dtj ∥2 +B2 − (Bj+1
u )2 (from definition of Bi

r)

= ∥ϵ̃dtj ∥2 +B2 − (∥ϵ̃dt1 ∥2 + ∥ϵ̃dt2 ∥2 + . . .+ ∥ϵ̃dtj ∥2)

= B2 − (∥ϵ̃dt1 ∥2 + ∥ϵ̃dt2 ∥2 + . . .+ ∥ϵ̃dtj−1∥2)

= B2 − (Bj
u)

2 = (Bj
r)

2.

Now, consider an adversary ϵ̃dt′ such that ϵ̃dt′i = ϵ̃dti ,∀i ≤ j− 1, ϵ̃dt′j = (Bj
r , 0, . . . , 0), and
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ϵ̃dti = 0,∀i > j. Let Ỹ dt′ be the corresponding random variable. Define ΓỸ dt′ similar to

ΓỸ dt . Then, ΓỸ dt′ ∩H is given by

ηTj (B
j
r , 0, . . . , 0) ≤ β, (3.4)

which is obtained by replacing ϵ̃dtj with (Bj
r , 0, . . . , 0) and ϵ̃dtj+1 with (0, 0, . . . , 0) in inequality (3.3)

about the origin. Define Ỹ dt′
H similar to Ỹ dt

H , and just like Ỹ dt
H , the distribution of Ỹ dt′

H is

also an isometric Gaussian, but is centered at ((Bj
r , 0, . . . , 0), (0, 0, . . . , 0)). The probability

assigned by this Gaussian distribution to ΓỸ dt′ ∩ H is proportional to the distance of its

center to the hyper-plane defining the region in (3.4), which is equal to ((Bj
r)

2 − β)/Bj
r .

Therefore,

P[Ỹ dt
H ∈ ΓỸ dt ∩H] = P[Ỹ dt′

H ∈ ΓỸ dt′ ∩H].

The key intuition behind this step is that, for isometric Gaussian smoothing distribution,

the worst-case probability assigned by the adversarial distribution only depends on the

magnitude of the perturbation and not its direction. Figure 3.6 illustrates this property for

a two-dimensional input space.

Since both adversaries are same up to step j − 1, their respective distributions over

z1, z2, . . . , z2j−1 remains same as well, i.e., pỸ dt(z1, z2, . . . , z2j−1) = pỸ dt′ (z1, z2, . . . , z2j−1).

Integrating over the space of all tuples (z1, z2, . . . , z2j−1), we have:

∫
P[Ỹ dt

H ∈ ΓỸ dt ∩H]pỸ dt(z1, z2, . . . , z2j−1)dz1dz2 . . . dz2j−1

=

∫
P[Ỹ dt′

H ∈ ΓỸ dt′ ∩H]pỸ dt′ (z1, z2, . . . , z2j−1)dz1dz2 . . . dz2j−1
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Figure 3.6: General adversarial perturbation vs. perturbation aligned along the first
dimension. Blue and red regions denote where the worst-case function is one and zero
respectively.

=⇒ P[Ỹ dt
H ∈ ΓỸ dt ] = P[Ỹ dt′

H ∈ ΓỸ dt′ ],

Since the distribution defined byX (with no adversary) over the space of ηis is a Gaussian

centered at origin whose distance to both ΓỸ dt ∩ H and ΓỸ dt′ ∩ H is the same (equal to

−β/Bj
r), it assigns the same probability to both (3.3) and (3.4). Therefore,

P[X ∈ ΓỸ dt ] = P[X ∈ ΓỸ dt′ ].

Thus, we have constructed an adversary with one less non-zero ϵi. Applying, this step

sufficiently many times we can obtain the adversary ϵst such that,

P[Ỹ dt ∈ ΓỸ dt ] = P[Y st ∈ ΓY st ] and P[X ∈ ΓỸ dt ] = P[X ∈ ΓY st ]

which completes the proof.
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F Proof of Theorem 2

Statement: For an isometric Gaussian smoothing noise with variance σ2, if P[h(X) =

1] ≥ p, then:

P[h(Y ) = 1] ≥ Φ(Φ−1(p)−B/σ).

Proof. Define ΓY = {z ∈ (T × Rd)t | µY (z) ≤ qµX(z)} for an appropriate q such

that P[X ∈ ΓY ] = p. Then, by the Neyman-Pearson lemma, we have P[h(Y ) = 1] ≥

P[Y ∈ ΓY ]. Applying lemma 1, we know that there exists a deterministic adversary ϵdt

represented by random variable Y dt, such that,

P[h(Y ) = 1] ≥ P[Y ∈ ΓY ] ≥ P[Y dt ∈ ΓY ]. (3.5)

Now define a function hΓY
(z) = 1{z∈ΓY } and a set ΓY dt = {z ∈ (T × Rd)t | µY dt(z) ≤

q′µX(z)} for an appropriate q′ > 0, such that, P[X ∈ ΓY dt ] = P[hΓY
(X) = 1] = p.

Applying the Neyman-Pearson lemma again, we have:

P[hΓY
(Y dt) = 1] ≥ P[Y dt ∈ ΓY dt ]

or, P[Y dt ∈ ΓY ] ≥ P[Y dt ∈ ΓY dt ] (from definition of hΓY
)

or, P[h(Y ) = 1] ≥ P[Y dt ∈ ΓY dt ] (from inequality (3.5))

Define hΓ
Y dt

(z) = 1{z∈Γ
Y dt}. For the structured adversary ϵst represented by Y st, define

ΓY st = {z ∈ (T × Rd)t | µY st(z) ≤ q′′µX(z)} for an appropriate q′′ > 0, such that,
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P[X ∈ ΓY st ] = P[hΓ
Y dt

(X) = 1] = p. Applying lemma 3, we have:

P[hΓ
Y dt

(Y dt) = 1] ≥ P[Y st ∈ ΓY st ]

P[Y dt ∈ ΓY dt ] ≥ P[Y st ∈ ΓY st ] (from definition of hΓ
Y dt

)

P[h(Y ) = 1] ≥ P[Y st ∈ ΓY st ] (since P[h(Y ) = 1] ≥ P[Y dt ∈ ΓY dt ])

ΓY st is defined as the set of points z which satisfy:

µY st(z)

µX(z)
≤ q′′ or,

µN
ϵ̃st1

(η1)

µN (η1)
≤ q′′

ηT1 (B, 0, . . . , 0) ≤ β or, {η1}1 ≤ β/B

for some constant β. This is the set of all tuples z where the first coordinate of η1 is below

a certain threshold γ. Since P[X ∈ ΓY st ] = p,

Φ(γ/σ) = p =⇒ γ = σΦ−1(p).

Therefore,

P[Y st ∈ ΓY st ] = Φ

(
γ −B

σ

)
= Φ(Φ−1(p)−B/σ).

G Additional Cartpole Results

We performed two additional experiment on Cartpole: we tested at larger noise

levels, (σ = 0.6 and 0.8) and we tested a variant of the agent architecture. Specifically, in
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Figure 3.7: Additional Cartpole results. Attacks on smoothed agents at all σ for the
multiframe agents are presented in Appendix J

addition to the agent shown in the main text, which uses five frames of observation, we

also tested an agent which uses only a single frame. Unlike the Atari environment, the

task is in fact solvable (in the non-adversarial case) using only one frame: the observation

vector represents the complete system state. We computed certificates for the policy-

smoothed version of this model, and tested attacks on the undefended version. (We did not

test attacks on the smoothed single-frame variant). As we see in Figure 3.7, we achieve

non-vacuous certificates in both settings (i.e, at large perturbation sizes, the smoothed

agent is guaranteed to be more robust than the empirical robustness of a non-smoothed

agent). However, observe that the undefended agent in the multi-frame setting is much

more vulnerable to adversarial attack. This is likely because the increased number of

total features (20 vs. four) introduces more complexity of the Q-network, making it more

vulnerable against adversarial attack.

H Full Pong Game

In Figure 3.8, we explore a failure case of our technique: we fail to produce non-

vacuous certificates for a full Pong game, where the game ends after either player scores
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Figure 3.8: Results for the Full Pong game, compared to the single-round game.

21 goals. In particular, while, for the one-round Pong game, the smoothed agent is

provably more robust than the empirical performance of the undefended agent, this is

clearly not the case for the full game. To understand why our certificate is vacuous

here, note that in the the “worst-case” environment that our certificate assumes, any

perturbation will (maximally) affect all future rewards. However, in the multi-round Pong

game, each round of the game is only loosely coupled to the previous rounds (the ball

momentum – but not position – as well as the paddle positions are retained). Therefore,

any perturbation can only have a very limited effect on the total reward. Another way

to think about this is to recall that in smoothing-based certificates, the noise added to

each feature is proportional to the total perturbation budget of the adversary. In this sort

of serial game, the perturbation budget required to attack the average reward scales with

the (square root of the) number of rounds, but the noise tolerance of the agent does not

similarly scale.
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I Training and Clean Test Results

In Figure 3.9, we present the clean (non-attacked) test performance for the experiments

presented in the main text, as a function of the smoothing noise σ.

In Figure 3.10, we present the clean training (i.e., validation round) performance as

a function of the training time step and the smoothing noise σ. Note that early stopping

was applied: the model from the best validation round was kept, and only replaced if a

strictly better validation performance was recorded later.

• For Cartpole: logs were not kept after the first time an evaluation round had a perfect

average score of 200 (this is because the “best model” was saved for this evaluation,

and it would be impossible to beat this score, so training was not continued).

However, for other tasks (i.e. mountain car) logs continued after a perfect evaluation

round.

• For Freeway: as mentioned in Appendix Section L, we trained 5 times at each noise

level, and kept the best of all 5 models. All 5 training curves are shown here for

each noise level.

J Complete Attack Results

In Figures 3.11 and 3.12, we report the empirical robustness under attack for all

tested values of λQ: in the main text, we show only the result for the λQ that represents the

strongest attack. Figure 3.12 also shows the attacks on smoothed agents for all smoothing

noises. All attack results are means over 1000 episodes (except for Mountain Car results,
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Figure 3.9: Clean test performance as a function of smoothing noise σ.

Figure 3.10: Clean training performance as a function of smoothing noise σ and training
step.
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Figure 3.11: Empirical robustness of undefended agents on for all tested values of λQ (or
λ). The results in the main text are the pointwise minima over λ of these curves.

where 250 episodes were used) and error bars represent the standard error of the mean.

K Empirical Attack Details

Our empirical attack on (undefended) RL observations for DQN is described in

Algorithm 3. To summarize, the core of the attack is a standard targeted L2 PGD attack

on the Q-value function. However, because we wish to “save” our total perturbation
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Figure 3.12: Empirical robustness of smoothed agents on for all tested values of σ and
λQ (or λ). We also plot the associated certificate curves.

budget B for use in later steps, some modifications are made. First, we only target actions

a for which the clean-observation Q-value is sufficiently below (by a gap given by the

parameter λQ) the Q-value of the ‘best’ action, which would be taken in the absence of

adversarial attack. Among these possible Targets, we ultimately choose whichever action

will maximally decrease the Q-value, and which the agent can be successfully be induced

to choose within the adversarial budget B. If no such action exists, then the original

observation will be returned, and the entire budget will be saved. In order to preserve

budget, the PGD optimization is stopped as soon as the “decision boundary” is crossed.

We use a constant step size η. In order to deal with the variable budget B, we

optimize of a number of iterations which is a constant multiple ν of B
η

.

For most environments, there is some context used by the Q-value function (i.e,
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the previous frames) which is carried over from previous steps, but is not directly being

attacked in this round. We need both the clean version of the context, C, in order to

evaluate the “ground-truth” values of the Q-value function under various actions; as well

as the “dirty” version of the context, C ′, based on the adversarial observations which have

already been fed to the agent, in order to run the attack optimization.

Our attack for DDPG is described in Algorithm 4. Here, we use the policy π to

determine what action a the agent will take when it observes a corrupted observation

o′ (with corrupted context C ′), and use the Q-value function supplied by the DDPG

algorithm to determine the “value” of that action on the ground-truth observation o.

Because our goal is to minimize this value, this amounts to minimizingQ(C; o, π(C ′; o′)).

In order to ensure that a large amount of L2 “budget” is only used when the Q value can

be substantially minimized, we include a regularization term λ∥o− o′∥22.

Attacks on smoothed agents are described in Appendix M.

Note that on image data (i.e., Pong), we do not consider integrality constraints on

the observations; however, we do incorporate box constraints on the pixel values. We also

incorporate box constraints on the kinematic quantities when attacking Mountain Car,

but not when attacking Cartpole: the distinction is that the constraints in Mountain Car

represent artificial constraints on the kinematics [i.e., the velocity of the car is arbitrarily

clipped], while the constraints in Cartpole arise naturally from the problem setup.
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L Environment details and Hyperparameters

For Atari games, we use the “NoFrameskip-v0” variations of these environments

with the standard “AtariPreprocessing” wrapper from the OpenAI Gym [109] package:

this provides This environment also injects non-determinism into the originally-deterministic

Atari games, by adding randomized “stickiness” to the agent’s choice of actions – without

this, the state-observation robustness problem could be trivially solved by memorizing a

winning sequence of actions, and ignoring all observations at test-time.

Due to instability in training, for the freeway environment, we trained each model

five times, and selected the base model based on the performance of validation runs. See

training hyperparameters, Tables 3.1 and 3.2. For attack hyperparameters, see Table 3.3

and 3.4.

M Attacks on Smoothed Agents

In order to attack smoothed agents, we adapted Algorithms 3 and 4 using techniques

suggested by [39] for attacking smoothed classifiers. In particular, whenever the Q-

value function is evaluated or differentiated, we instead evaluate/differentiate the mean

output under m = 128 smoothing perturbations. Following [39], we use the same noise

perturbation vectors at each step during the attack. In the multi-frame case, for the “dirty”

context C ′, we include the actually-realized smoothing perturbations used by the agents

for previous steps. However, when determining the “clean” Q-values Q(C; o, a), for the

“clean” context C, we use the unperturbed previous state observations: we then take the

average over m smoothing perturbations of both C and o to determine the clean Q-values.

93



1-Round Full Multiframe Single-frame
Pong Pong Cartpole Cartpole Freeway

Training discount factor γ 0.99 0.99 0.99 0.99 0.99
Total timesteps 10000000 10000000 500000 500000 10000000

Validation interval (steps) 100000 100000 2000 2000 100000
Validation episodes 100 10 10 10 100

Learning Rate 0.0001 0.0001 0.0001 0.00005 0.0001
DQN Buffer Size 10000 10000 100000 100000 10000

DQN steps collected 100000 100000 1000 1000 100000
before learning

Fraction of steps 0.1 0.1 0.16 0.16 0.1
for exploration (linearly

decreasing exp. rate)
Initial exploration rate 1 1 1 1 1
Final exploration rate 0.01 0.01 0 0 0.01

DQN target update 1000 1000 10 10 1000
interval (steps)

Batch size 32 32 1024 1024 32
Training interval (steps) 4 4 256 256 4
Gradient descent steps 1 1 128 128 1

Frames Used 4 4 5 1 4
Training Repeats 1 1 1 1 5

Architecture CNN* CNN* MLP MLP CNN*
20× 4×
256× 256×
256× 256×
2 2

Table 3.1: Training Hyperparameters for DQN models. *CNN refers to the 3-layer
convolutional network defined by the CNNPolicy class in stable-baselines3 [111], based
on the CNN architecture used for Atari games by [112]. Note that hyperparameters for
Atari games are based on hyperparameters from the stable-baselines3 Zoo package [113],
for a slightly different (more deterministic) variant of the Pong environment.
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Mountain Car
Training discount factor γ 0.99

Total timesteps 300000
Validation interval (steps) 2000

Validation episodes 10
Learning Rate 0.0001

DDPG Buffer Size 1000000
DDPG steps collected 100

before learning
Batch size 100

Update coefficient τ 0.005
Train frequency 1 per episode
Gradient steps = episode length

Training action noise Ornstein Uhlenbeck (σ = 0.5)
Architecture MLP 2 × 400 × 300 × 1

Table 3.2: Training Hyperparameters for DDPG models. Hyperparameters are based
on hyperparameters from the stable-baselines3 Zoo package [113], for the unmodified
Mountain Car environment.

1-Round Full Multiframe Single-frame
Pong Pong Cartpole Cartpole Freeway

Attack step size η 0.01 0.01 0.01 0.01 0.01
Attack step multiplier ν 2 2 2 2 2

Q-value thresholds λQ searched .1, .3, .5 .1, .3, .5, 4,6,8,10 0, .05, 0, .06, .12
.9, 1.3, 1.7 .1, 1

Table 3.3: Attack Hyperparameters for DQN models.

Mountain Car
Attack step size η 0.01

Attack steps τ 100
Regularization values λ searched .001, .0001, .00001

Table 3.4: Attack Hyperparameters for DDPG models.
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Algorithm 3: Empirical Attack on DQN Agents
Input: Q-value function Q, clean prior observation context C, adversarial prior

observation context C ′, observation o, budget B, Q-value threshold λQ,
step size η, step multiplier ν

Output: Attacked observation oworst, remaining budget B′.
Qclean := maxa∈AQ(C; o, a)
Targets := {a ∈ A|Q(C; o, a) ≤ Qclean − λQ}
Qworst := Qclean

oworst := o
for a ∈ Targets do

o′ := o
inner:
for i in 1, ..., ⌊νB

η
⌋ do

if argmaxa′ Q(C
′; o′, a′) = a then

if Q(C; o, a) < Qworst then
oworst := o′

Qworst := Q(C; o, a)
end
break inner

end
D := ∇o′ log([SoftMax(Q(C ′; o′, ·)]a)
o′ := o′ + ηD

∥D∥2
if ∥o′ − o∥2 > B then

o′ := o+ B
∥o′−o∥2 (o

′ − o)

end
end

end
return oworst,

√
B2 − ∥oworst − o∥22
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Algorithm 4: Empirical Attack on DDPG Agents
Input: Q-value function Q, policy π, clean prior observation context C,

adversarial prior observation context C ′, observation o, budget B, weight
parameter λ, step size η, step count τ

Output: Attacked observation oworst, remaining budget B′.
o′ := o
for i in 1, ..., τ do

D := ∇o′ [Q(C; o, π(C
′; o′)) + λ∥o′ − o∥22]

if ∥D∥2
∥o′∥2 ≤ 0.001 then

break
end
o′ := o′ + ηD

∥D∥2
if ∥o′ − o∥2 > B then

o′ := o+ B
∥o′−o∥2 (o

′ − o)

end
end
return o′,

√
B2 − ∥o′ − o∥22

This gives an unbiased estimate for the Q-values of an undisturbed smoothed agent in this

state.

When attacking DDPG, in evaluatingQ(C; o, π(C ′; o′), we average over smoothing

perturbations for both o and o′, in addition to C: this is because both π and Q are trained

on noisy samples. Note that we use independently-sampled noise perturbations on o′ and

o.

Our attack does not appear to be successful, compared with the lower bound given

by our certificate (Figures 3.12). One contributing factor may be that attacking a smoothed

agent is more difficult that attacking a smoothed classifier, for the following reason: a

smoothed classifier evaluates the expected output at test time, while a smoothed agent

does not. Thus, while the average Q-value for the targeted action might be greater than

the average Q-value for the clean action, the actual realization will depend on the specific

realization of the random smoothing vector that the agent actually uses.
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N Runtimes and Computational Environment

Each experiment is run on an NVIDIA 2080 Ti GPU. Typical training times are

shown in Table 3.5. Typical clean evaluation times are shown in Table 3.6. Typical attack

times are shown in Table 3.7.

Experiment Time (hours)
Pong (1-round) 11.1

Pong (Full) 12.0
Cartpole (Multi-frame) 0.27
Cartpole (Single-frame) 0.32

Freeway 14.2
Mountain Car 0.63

Table 3.5: Training times

Experiment Time (seconds): Time (seconds):
Experiment smallest noise σ largest noise σ

Pong (1-round) 0.46 0.38
Pong (Full) 3.82 4.65

Cartpole (Multi-frame) 0.20 0.13
Cartpole (Single-frame) 0.18 0.12

Freeway 1.36 1.35
Mountain Car 0.67 0.91

Table 3.6: Evaluation times. Note that the times reported here are per episode: in order to
statistically bound the mean rewards, we performed 10,000 such episode evaluations for
each environment.

Experiment Time (seconds): Time (seconds):
Experiment smallest budget B largest budget B

Pong (1-round) 1.01 0.68
Pong (Full) 8.84 10.2

Cartpole (Multi-frame) 0.35 0.32
Cartpole (Single-frame) 0.79 0.56

Freeway 2.67 2.80
Mountain Car 44.0 19.6

Table 3.7: Attack times. Note that the times reported here are per episode: in the paper,
we report the mean of 1000 such episodes.
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O CDF Smoothing Details

Due to the very general form of our certification result (h(·), as a 0/1 function,

can represent any outcome, and we can bound the lower-bound the probability of this

outcome), there are a variety of ways we can use the basic result to compute a certificate

for an entire episode entire game. In the main text, we introduce CDF smoothing [51] as

one such option. In CDF smoothing for any threshold value x, we can define hx(·) as an

indicator function for the event that the total episode reward is greater than x. Then, by

the definition of the CDF function, the expectation of hx(·) is equal to 1 − F (x), where

F (·) is the CDF function of the reward. Then our lower-bound on the expectation of hx(·)

under adversarial attack is in fact an upper-bound on F (x): combining this with Equation

2 in the main text,

E[X ] =

∫ ∞

0

(1− F (x))dx−
∫ 0

−∞
F (x)dx,

provides a lower bound on the total expectation of the reward under adversarial perturbation.

However, in order to perform this integral from empirical samples, we must bound

F (x) at all points: this requires first upper-bounding the non-adversarial CDF function

at all x, before applying our certificate result. Following [51], we accomplish this using

the Dvoretzky–Kiefer–Wolfowitz inequality (for the Full Pong environment.)

In the case of the Cartpole environment, we explore a different strategy: note that

the reward at each timestep is itself a 0/1 function, so we can define ht(·) as simply the

reward at timestep t. We can then apply our certificate result at each timestep independently,
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Figure 3.13: Comparison of certified bounds on the total reward in Cartpole, using (a)
point estimation, and (b) the DKW inequality to generate empirical bounds.

and take a sum. Note that this requires estimating the average reward at each step independently:

we use the Clopper-Pearson method (following [36]), and in order to certify in total to the

desired 95% confidence bound, we certify each estimate to (100 - 5/T)% confidence,

where T is the total number of timesteps per episode (= 200).

However, note that, in the particular case of the cartpole environment, ht(·) = 1 if

and only if we have “survived” to time-step t: in other words, ht(·) is simply an indicator

function for the total reward being ≥ t. Therefore in this case, this independent estimation

method is equivalent to CDF smoothing, just using Clopper-Pearson point-estimates of

the CDF function rather than the Dvoretzky–Kiefer–Wolfowitz inequality. In practice,

we find that this produced slightly better certificates for this task. (Figure 3.13)

P Environment Licenses

OpenAI Gym [109] is Copyright 2016 by OpenAI and provided under the MIT

License. The stable-baselines3 package[111] is Copyright 2019 by Antonin Raffin and

also provided under the MIT License.
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Chapter 4: Center Smoothing

4.1 Introduction

The study of adversarial robustness in machine learning (ML) has gained a lot of

attention ever since deep neural networks (DNNs) have been demonstrated to be vulnerable

to adversarial attacks. These attacks are generated by making tiny perturbations of the

input that can completely alter a model’s predictions [1, 2, 3, 4]. They can significantly

degrade the performance of a model, like an image classifier, and make it output almost

any class of the attacker’s choice. However, these attacks are not limited just to classification

problems. They have also been shown to exist for DNNs with structured outputs like text,

images, probability distributions, sets, etc. For instance, automatic speech recognition

systems can be attacked with 100% success rate to output any phrase of the attackers

choice [10]. Similar attacks can cause neural image captioning systems to produce specific

target captions with high success-rate [9]. Quality of image segmentation models have

been shown to degrade severely under adversarial attacks [114, 115, 116]. Facial recognition

systems can be deceived to evade detection, impersonate authorized individuals and even

render them completely ineffective [117, 118, 119]. Image reconstruction models have

been targeted to introduce unwanted artefacts or miss important details, such as tumors in

MRI scans, through adversarial inputs [11, 12, 13, 14]. Super-resolution systems can

101



be made to generate distorted images that can in turn deteriorate the performance of

subsequent tasks that rely on the high-resolution outputs [16, 17]. Deep neural network

based policies in reinforcement learning problems also have been shown to succumb

to imperceptible perturbations in the state observations [5, 6, 7, 8]. Such widespread

presence of adversarial attacks is concerning as it threatens the use of deep neural networks

in critical systems, such as facial recognition, self-driving vehicles, medical diagnosis,

etc., where safety, security and reliability are of utmost importance.

Adversarial defenses have mostly focused on classification tasks [18, 19, 20, 21,

22, 23, 98]. Certified defenses based on convex-relaxation [27, 28, 29, 30, 31], interval-

bound propagation [32, 33, 34, 35] and randomized smoothing [36, 37, 38, 39] that

guarantee that the predicted class will remain the same in a certified region around the

input point have also been studied. Compared to empirical robustness methods that are

often shown to be broken by stronger attacks [24, 25, 26], procedures with provable

robustness guarantees are of special importance to the study of robustness in ML as their

guarantees hold regardless of improvements in attack strategies. Among these approaches,

certified defenses based on randomized smoothing have been show to scale up to high-

dimensional inputs, such as images, and does not need to make assumptions about the

underlying model. The robustness certificates produced by these defenses are probabilistic,

meaning that they hold with high probability and not absolute certainty.

Unlike classification problems, where certificates guarantee that the predicted class

remains unchanged under bounded-size perturbations, it is not immediately obvious what

the goal of robustness should be for problems with structured outputs like images, text,

sets, etc. While accuracy is the standard quality measure for classification, more complex
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tasks may require other quality metrics like total variation for images, intersection over

union for object localization, earth-mover distance for distributions, etc. In general, neural

networks can be cast as functions of the type f : Rk → (M,d) which map a k dimensional

real-valued space into a metric spaceM with distance function d :M×M → R≥0. In this

work, we design a randomized smoothing based technique to obtain provable robustness

for functions of this type with minimal assumptions on the distance metric d. We generate

a robust version f̄ such that the change in its output, as measured by d, is small for a small

change in its input. More formally, given an input x and an ℓ2-perturbation size ϵ1, we

produce a value ϵ2 with the guarantee that, with high probability,

∀x′ s.t. ∥x− x′∥2 ≤ ϵ1, d(f̄(x), f̄(x
′)) ≤ ϵ2.

Figure 4.1: Center smoothing.

Our contributions: We develop center

smoothing, a procedure to make functions like

f provably robust against adversarial attacks.

For a given input x, center smoothing samples

a collection of points in the neighborhood of

x using a Gaussian smoothing distribution,

computes the function f on each of these

points and returns the center of the smallest

ball enclosing at least half the points in the

output space (see figure 4.1). Computing the minimum enclosing ball in the output

space is equivalent to solving the 1-center problem with outliers (hence the name of our
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procedure), which is an NP-complete problem for a general metric [120]. We approximate

it by computing the point that has the smallest median distance to all the other points in the

sample. We show that the output of the smoothed function is robust to input perturbations

of bounded ℓ2-size. We restrict the input perturbations to be inside an ℓ2-ball as the main

focus of this work is on the output space of f . However, our method does not critically

rely on the ℓ2 threat model or Gaussian smoothing noise, and can be adapted to other

perturbations types and smoothing distributions. Although we define the output space

as a metric, our proofs only require the symmetry property and triangle inequality to

hold. Thus, center smoothing can also be applied to pseudometric distances that need

not satisfy the identity of indiscernibles. Many distances defined for images, such as

total variation, cosine distance, perceptual distances, etc., fall under this category. Center

smoothing steps outside the world of ℓp metrics, and certifies robustness in metrics like

IoU/Jaccard distance for object localization, and total-variation, which is a good measure

of perceptual similarity for images. In our experiments, we show that this method can

produce meaningful certificates for a wide variety of output metrics without significantly

compromising the quality of the base model.

Related Work: Randomized smoothing has been extensively used for provable

adversarial robustness in the classification setting to defend against different ℓp [36, 37,

39, 69, 121, 122, 123, 124] and non-ℓp [68, 82] threat models. Beyond classification,

it has also been used for certifying the median output of regression models [125] and

the expected softmax scores of neural networks [51]. Smoothing a bounded vector-

valued function by taking the mean of the output vectors has been shown to have a

bounded Lipschitz constant when both input and output spaces are ℓ2-metrics [126].
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Center smoothing does not require the base function to be bounded because the minimum

enclosing ball is resistant to outliers. Moving an outlier point away from this ball does

not affect the output of the smoothed function. On the other hand, smoothing techniques

that compute the mean of the output samples are more susceptible to outliers as changing

any of the samples can alter the mean. Recently, a provable defense for segmentation

tasks was developed by certifying each individual pixel of the output using randomized

smoothing [127]. Due to the accumulating uncertainty over individual certifications, it

is difficult to produce guarantees for large images, often leading to certified outputs with

ambiguous pixels. Center smoothing bypasses this challenge by directly certifying the

similarity between a clean segmentation output and an adversarial one under a metric

such as intersection over union.

4.2 Preliminaries and Notations

Given a function f : Rk → (M,d) and a distribution D over the input space Rk, let

f(D) denote the probability distribution of the output of f in M when the input is drawn

from D. For a point x ∈ Rk, let x + P denote the probability distribution of the points

x+ δ where δ is a smoothing noise drawn from a distribution P over Rk and let X be the

random variable for x + P . For elements in M , define B(z, r) = {z′ | d(z, z′) ≤ r} as

a ball of radius r centered at z. Define a smoothed version of f under P as the center of

the ball with the smallest radius in M that encloses at least half of the probability mass of

f(x+ P), i.e.,

f̄P(x) = argmin
z

r s.t. P[f(X) ∈ B(z, r)] ≥ 1

2
.
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If there are multiple balls with the smallest radius satisfying the above condition, return

one of the centers arbitrarily. Let r∗P(x) be the value of the minimum radius. Hereafter,

we ignore the subscripts and superscripts in the above definitions whenever they are

obvious from context. In this work, we sample the noise vector δ from an i.i.d Gaussian

distribution of variance σ2 in each dimension, i.e., δ ∼ N (0, σ2I).

4.2.1 Gaussian Smoothing

Cohen et al. in 2019 showed that a classifier h : Rk → Y smoothed with a Gaussian

noise N (0, σ2I) as,

h̄(x) = argmax
c∈Y

P [h(x+ δ) = c] ,

where Y is a set of classes, is certifiably robust to small perturbations in the input. Their

certificate relied on the fact that, if the probability of sampling from the top class at x

under the smoothing distribution is p, then for an ℓ2 perturbation of size at most ϵ, the

probability of the top class is guaranteed to be at least

pϵ = Φ(Φ−1(p)− ϵ/σ), (4.1)

where Φ is the CDF of the standard normal distribution N (0, 1). This bound applies to

any {0, 1}-function over the input space Rk, i.e., if P[h(x) = 1] = p, then for any ϵ-size

perturbation x′,P[h(x′) = 1] ≥ pϵ.

We use this bound to generate robustness certificates for center smoothing. We

identify a ball B(f̄(x), R) of radius R enclosing a very high probability mass of the
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output distribution. One can define a function that outputs one if f maps a point to inside

B(f̄(x), R) and zero otherwise. The bound in (4.1) gives us a region in the input space

such that for any point inside it, at least half of the mass of the output distribution is

enclosed in B(f̄(x), R). We show in section 4.3 that the output of the smoothed function

for a perturbed input is guaranteed to be within a constant factor of R from the output of

the original input.

4.3 Center Smoothing

As defined in section 4.2, the output of f̄ is the center of the smallest ball in the

output space that encloses at least half the probability mass of the f(x + P). Thus, in

order to significantly change the output, an adversary has to find a perturbation such that

a majority of the neighboring points map far away from f̄(x). However, for a function

that is roughly accurate on most points around x, a small perturbation in the input cannot

change the output of the smoothed function by much, thereby making it robust.

For an ℓ2 perturbation size of ϵ1 of an input point x, let R be the radius of a ball

around f̄(x) that encloses more than half the probability mass of f(x′ + P) for all x′

satisfying ∥x− x′∥2 ≤ ϵ1, i.e.,

∀x′ s.t. ∥x− x′∥2 ≤ ϵ1, P[f(X ′) ∈ B(f̄(x), R)] > 1

2
, (4.2)

where X ′ ∼ x′ + P . Basically, R is the radius of a ball around f̄(x) that contains at least

half the probability mass of f(x′ +P) for any ϵ1-size perturbation x′ of x. Then, we have

the following robustness guarantee on f̄ :
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Theorem 3. For all x′ such that ∥x− x′∥2 ≤ ϵ1,

d(f̄(x), f̄(x′)) ≤ 2R.

Proof. Consider the balls B(f̄(x′), r∗(x′)) and B(f̄(x), R) (see figure 4.2). From the

definition of r∗(x′) and R, we know that the sum of the probability masses of f(x′ + P)

enclosed by the two balls must be strictly greater than one. Thus, they must have an

element y in common. Since d satisfies the triangle inequality, we have:

d(f̄(x), f̄(x′)) ≤ d(f̄(x), y) + d(y, f̄(x′))

≤ R + r∗(x′).

Since, the ball B(f̄(x), R) encloses more than half of the probability mass of f(x + P),

the minimum ball with at least half the probability mass cannot have a radius greater than

R, i.e., r∗(x′) ≤ R. Therefore, d(f̄(x), f̄(x′)) ≤ 2R.

Figure 4.2: Robustness guarantee.

The above result, in theory, gives us

a smoothed version of f with a provable

guarantee of robustness. However, in practice,

it may not be feasible to obtain f̄ just from

samples of f(x + P). Instead, we will

use some procedure that approximates the

smoothed output with high probability. For

some ∆ ∈ [0, 1/2], let r̂(x,∆) be the radius of
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the smallest ball that encloses at least 1/2 + ∆

probability mass of f(x+ P), i.e.,

r̂(x,∆) = min
z′

r s.t. P[f(X) ∈ B(z′, r)] ≥ 1

2
+ ∆.

Now define a probabilistic approximation f̂(x) of the smoothed function f̄ to be a point

z ∈M , which with probability at least 1− α1 (for α1 ∈ [0, 1]), encloses at least 1/2−∆

probability mass of f(x + P) within a ball of radius r̂(x,∆). Formally, f̂(x) is a point

z ∈M , such that, with at least 1− α1 probability,

P [f(X) ∈ B(z, r̂(x,∆))] ≥ 1

2
−∆.

Defining R̂ to be the radius of a ball centered at f̂(x) that satisfies:

∀x′ s.t. ∥x− x′∥2 ≤ ϵ1, P[f(X ′) ∈ B(f̂(x), R̂)] > 1

2
+ ∆, (4.3)

we can write a probabilistic version of theorem 3,

Theorem 4. With probability at least 1− α1,

∀x′ s.t. ∥x− x′∥2 ≤ ϵ1, d(f̂(x), f̂(x
′)) ≤ 2R̂,

The proof of this theorem is in the appendix, and logically parallels the proof of

theorem 3.
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4.3.1 Computing f̂

For an input x and a given value of ∆, sample n points independently from a

Gaussian distribution x + N (0, σ2I) around the point x and compute the function f on

each of these points. Let Z = {z1, z2, . . . , zn} be the set of n samples of f(x+N (0, σ2I))

produced in the output space. Compute the minimum enclosing ball B(z, r) that contains

at least half of the points in Z. The following lemma bounds the radius r of this ball by

the radius of the smallest ball enclosing at least 1/2 + ∆1 probability mass of the output

distribution (proof in appendix).

Lemma 9. With probability at least 1− e−2n∆2
1 ,

r ≤ r̂(x,∆1).

Now, sample a fresh batch of n random points. Let p∆1 = ρ − ∆1, where ρ is the

fraction of points that fall inside B(z, r). Then, by Hoeffding’s inequality, with probability

at least 1− e−2n∆2
1 ,

P [f(X) ∈ B(z, r)] ≥ p∆1 .

Let ∆2 = 1/2 − p∆1 . If max(∆1,∆2) ≤ ∆, the point z satisfies the conditions in the

definition of f̂ , with at least 1 − 2e−2n∆2
1 probability. If max(∆1,∆2) > ∆, discard the

computed center z and abstain. In our experiments, we select ∆1, n and α1 appropriately

so that the above process succeeds easily.

Computing the minimum enclosing ball B(z, r) exactly can be computationally

challenging, as for certain metrics, it is known to be NP-complete [120]. Instead, we
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Algorithm 5: Smooth
Input: x ∈ Rk, σ,∆, α1.
Output: z ∈M .
Set
Z = {zi}ni=1 s.t. zi ∼ f(x+N (0, σ2I)).

Set ∆1 =
√

ln (2/α1) /2n.
Compute z = β-MEB(Z, 1/2).
Re-sample Z.
Compute p∆1 .
Set ∆2 = 1/2− p∆1 .
If ∆ < max(∆1,∆2), discard z and
abstain.

Algorithm 6: Certify
Input: x ∈ Rk, ϵ1, σ,∆, α1, α2.
Output: ϵ2 ∈ R.
Compute f̂(x) using algorithm 5.
Set
Z = {zi}mi=1 s.t. zi ∼ f(x+N (0, σ2I)).

Compute
R̃ = {d(f̂(x), f(zi)) | zi ∈ Z}.
Set p = Φ(Φ−1(1/2 + ∆) + ϵ1/σ).
Set q = p+

√
ln(1/α2)/2m.

Set R̂ = qth-quantile of R̃.
Set ϵ2 = (1 + β)R̂.

approximate it by computing a ball β-MEB(Z, 1/2) that contains at least half the points

inZ, but has a radius that is within a β factor of the optimal radius r. We modify theorem 3

to account for this approximation (see appendix for proof).

Theorem 5. With probability at least 1− α1,

∀x′ s.t. ∥x− x′∥2 ≤ ϵ1, d(f̂(x), f̂(x
′)) ≤ (1 + β)R̂

where α1 = 2e−2n∆2
1 .

We use a simple approximation that works for all metrics and achieves an approximation

factor of two, producing a certified radius of 3R̂. It computes a point from the set Z,

instead of a general point in M , that has the minimum median distance from all the

points in the set (including itself). This can be achieved using O(n2) pair-wise distance

computations. To see how the factor 2-approximation is achieved, consider the optimal

ball with radius r. By triangle inequality of d, each pair of points is at most 2r distance

from each other. Thus, a ball with radius 2r, centered at any one of these points will
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cover every other point in the optimal ball. Better approximations can be obtained for

specific norms, e.g., there exists a (1+ ϵ)-approximation algorithm for the ℓ2 norm [128].

For graph distances or when the support of the output distribution is a small discrete set

of points, the optimal radius can be computed exactly using the above algorithm. The

smoothing procedure is outlined in algorithm 5.

4.3.2 Certifying f̂

Given an input x, compute f̂(x) as described above. Now, we need to compute a

radius R̂ that satisfies condition 4.3. As per bound 4.1, in order to maintain a probability

mass of at least 1/2+∆ for any ϵ1-size perturbation of x, the ball B(f̂(x), R̂) must enclose

at least

p = Φ

(
Φ−1

(
1

2
+ ∆

)
+
ϵ1
σ

)
(4.4)

probability mass of f(x + P). Again, just as in the case of estimating f̄ , we may only

compute R̂ from a finite number of samples m of the distribution f(x + P). For each

sample zi ∼ x + P , we compute the distance d(f̂(x), f(zi)) and set R̂ to be the qth-

quantile R̃q of these distances for a q that is slightly greater than p (see equation 4.5

below). The qth-quantile R̃q is a value larger than at least q fraction of the samples. We

set q as,

q = p+

√
ln (1/α2)

2m
, (4.5)
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for some small α2 ∈ [0, 1]. This guarantees that, with high probability, the ball B(f̂(x), R̃q)

encloses at least p fraction of the probability mass of f(x + P). We prove the following

lemma by bounding the cumulative distribution function of the distances of f(zi)s from

f̂(x) using the Dvoretzky–Kiefer–Wolfowitz inequality.

Lemma 10. With probability 1− α2,

P
[
f(X) ∈ B(f̂(x), R̃q)

]
> p.

Combining with theorem 5, we have the final certificate:

∀x′ s.t. ∥x− x′∥2 ≤ ϵ1, d(f̂(x), f̂(x
′)) ≤ (1 + β)R̂,

with probability at least 1 − α, for α = α1 + α2. In our experiments, we set α1 =

α2 = 0.005 to achieve an overall success probability of 1 − α = 0.99, and calculate the

required ∆1,∆2 and q values accordingly. We set ∆ to be as small as possible without

violating max(∆1,∆2) ≤ ∆ too often. We use a β = 2-approximation for computing the

minimum enclosing ball in the smoothing step. Algorithm 6 provides the pseudocode for

the certification procedure.

4.4 Relaxing Metric Requirements

Although we defined our procedure for metric outputs, our analysis does not critically

use all the properties of a metric. For instance, we do not require d(z1, z2) to be strictly

greater than zero for z1 ̸= z2. An example of such a distance measure is the total
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variation distance that returns zero for two vectors that differ by a constant amount on each

coordinate. Our proofs do implicitly use the symmetry property, but asymmetric distances

can be converted to symmetric ones by taking the sum or the max of the distances in either

directions. Perhaps the most important property of metrics that we use is the triangle

inequality as it is critical for the robustness guarantee of the smoothed function. However,

even this constraint may be partially relaxed. It is sufficient for the distance function d to

satisfy the triangle inequality approximately, i.e., d(a, c) ≤ γ(d(a, b) + d(b, c)), for some

constant γ. The theorems and lemmas can be adjusted to account for this approximation,

e.g., the bound in theorem 3 will become 2γR. A commonly used distance measure

for comparing images and documents is the cosine distance defined as the inner-product

of two vectors after normalization. This distance can be show to be proportional to the

squared Euclidean distance between the normalized vectors which satisfies the relaxed

version of triangle inequality for γ = 2.

These relaxations extend the scope of center smoothing to many commonly used

distance measures that need not necessarily satisfy all the metric properties. For instance,

perceptual distance metrics measure the distance between two images in some feature

space rather than image space. Such distances align well with human judgements when

the features are extracted from a deep neural network [129] and are considered more

natural measures for image similarity. For two images I1 and I2, let ϕ(I1) and ϕ(I2) be

their feature representations. Then, for a distance function d in the feature space that

satisfies the relaxed triangle inequality, we can define a distance function dϕ(I1, I2) =

d(ϕ(I1), ϕ(I2)) in the image space, which also satisfies the relaxed triangle inequality.
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For any image I3,

dϕ(I1, I2) = d(ϕ(I1), ϕ(I2))

≤ γ (d(ϕ(I1), ϕ(I3)) + d(ϕ(I3), ϕ(I2)))

= γ (dϕ(I1, I3) + dϕ(I3, I2)) .

4.5 Experiments

We apply center smoothing to certify a wide range of output metrics: Jaccard

distance based on intersection over union (IoU) of sets, total variation distances for images,

and perceptual distance. We certify the bounding box generated by a face detector – a key

component of most facial recognition systems – by guaranteeing the minimum overlap

(measured using IoU) it must have with the output under an adversarial perturbation of the

input. For instance, if ϵ1 = 0.2, the Jaccard distance (1-IoU) is guaranteed to be bounded

by 0.2, which implies that the bounding box of a perturbed image must have at least 80%

overlap with that of the clean image. We use a pre-trained face detection model for this

experiment. We certify the perceptual distance of the output of a generative model (trained

on ImageNet) that produces 128 × 128 RGB images using a high-dimensional version

of the smoothing procedure Smooth-HD described in the appendix. For total variation

distance, we use simple, easy-to-train convolutional neural network based dimensionality

reduction (autoencoder) and image reconstruction models. Our goal is to demonstrate

the effectiveness of our method for a wide range of applications and so, we place less

emphasis on the performance of the underlying models being smoothed. In each case, we
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show that our method is capable of generating certified guarantees without significantly

degrading the performance of the underlying model. We provide additional experiments

for other metrics and parameter settings in the appendix.

As is common in the randomized smoothing literature, we train our base models

(except for the pre-trained ones) on noisy data with different noise levels σtrain = 0.1, 0.2, . . . , 0.5

to make them more robust to input perturbations. We keep the smoothing noise σ of the

robust model same as the training noise σtrain of the base model. We use n = 104

samples to estimate the smoothed function and m = 106 samples to generate certificates,

unless stated otherwise. We set ∆ = 0.05, α1 = 0.005 and α2 = 0.005 as discussed in

previous sections. We grow the smoothing noise σ linearly with the input perturbation

ϵ1. Specifically, we maintain ϵ1 = hσ for different values of h = 2, 1 and 1.5 in our

experiments. We plot the median certified output radius ϵ2 and the median smoothing

error, defined as the distance between the outputs of the base model and the smoothed

model d(f(x), f̂(x)), of fifty random test examples for different values of ϵ1. In all

our experiments, we observe that both these quantities increase as the input radius ϵ1

increases, but the smoothing error remains significantly below the certified output radius.

Also, increasing the value of h improves the quality of the certificates (lower ϵ2). This

could be due to the fact that for a higher h, the smoothing noise σ is lower (keeping ϵ1

constant), which means that the radius of the minimum enclosing ball in the output space

is smaller leading to a tighter certificate. However, setting h too high can cause the value

of q in equation 4.5 to exceed one (q depends on p, which in turn depends on h in eq. 4.4),

leading the certification procedure (algorithm 6) to fail. We ran all our experiments on

a single NVIDIA GeForce RTX 2080 Ti GPU in an internal cluster. Each of the fifty
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Figure 4.3: Certifying Jaccard Distance (1 - IoU).

Figure 4.4: Smoothed Output.

Figure 4.5: Face Detection on CelebA using MTCNN detector: Part (a) plots the certified
output radius ϵ2 and the smoothing error for h = 1 and 2. Part (b) compares the smoothed
output (blue box) to the output of the base model (green box, mostly hidden behind the
blue box) showing a significant overlap.

examples we certify took somewhere between 1-3 minutes depending on the underlying

model.

4.5.1 Jaccard distance

It is known that facial recognition systems can be deceived to evade detection,

impersonate authorized individuals and even render completely ineffective [117, 118,

119]. Most facial recognition systems first detect a region that contains a persons face,
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e.g. a bounding box, and then uses facial features to identify the individual in the image.

To evade detection, an attacker may seek to degrade the quality of the bounding boxes

produced by the detector and can even cause it to detect no box at all. Bounding boxes

are often interpreted as sets and the their quality is measured as the amount of overlap

with the desired output. When no box is output, we say the overlap is zero. The overlap

between two sets is defined as the ratio of the size of the intersection between them to the

size of their union (IoU). Thus, to certify the robustness of the output of a face detector,

it makes sense to bound the worst-case IoU of the output of an adversarial input to that of

a clean input. The corresponding distance function, known as Jaccard distance, is defined

as 1− IoU which defines a metric over the universe of sets.

IoU(A,B) =
|A ∩B|
|A ∪B|

, dJ(A,B) = 1− IoU(A,B) = 1− |A ∩B|
|A ∪B|

.

In this experiment, we certify the output of a pre-trained face detection model

MTCNN [130] on the CelebA face dataset [131]. We set n = 5000 and m = 10000,

and use default values for other parameters discussed above. Figure 4.3 plots the certified

output radius ϵ2 and the smoothing error for h = ϵ1/σ = 1 and 2 for ϵ1 = 0.1, 0.2, . . . , 0.5.

Certifying the Jaccard distance allows us to certify IoU as well, e.g., for h = 2, ϵ2 is

consistently below 0.2 which means that even the worst bounding box under adversarial

perturbation of the input has an overlap of at least 80% with the box for the clean input.

The low smoothing error shows that the performance of the base model does not drop

significantly as the actual output of the smoothed model has a large overlap with that of

the base model. Figure 4.4 compares the outputs of the smoothed model (blue box) and
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the base model (green box). For most of the images, the blue box overlaps with the green

one almost perfectly.

4.5.2 Perceptual Distance

Deep generative models like GANs and VAEs have been shown to be vulnerable to

adversarial attacks [15]. One attack model is to produce an adversarial example that is

close to the original input in the latent space, measured using ℓ2-norm. The goal is to make

the model generate a different looking image using a latent representation that is close to

that of the original image. We apply center smoothing to a generative adversarial network

BigGAN pre-trained on ImageNet images [132]. We use the version of the GAN that

generates 128× 128 resolution ImageNet images from a set of 128 latent variables. Since

we are interested in producing similar looking images for similar latent representations,

a good output metric would be the perceptual distance between two images measured by

LPIPS metric [129]. This distance function takes in two images, passes them through a

deep neural network, such as VGG, and computes a weighted sum of the square of the

differences of the activations (after some normalization) produced by the two images. The

process can be thought of as generating two feature vectors ϕ1 and ϕ2 for the two input

images I1 and I2 respectively, then computing a weighted sum of the element-wise square

of the differences between the two feature vectors, i.e.,

d(I1, I2) =
∑
i

wi(ϕ1i − ϕ2i)
2
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The square of differences metric can be shown to follow the relaxed triangle inequality for

γ = 2. Therefore, the the final bound on the certified output radius will be γ(1 + 2γ)R̂ =

10R̂. Figure 4.6 plots the median smoothing error and certified output radius ϵ2 for fifty

randomly picked latent vectors for ϵ1 = 0.01, 0.02, . . . , 0.05 and h = 1, 1.5. For these

experiments, we set n = 2000,m = 104 and ∆ = 0.8. We use the modified smoothing

procedure Smooth-HD (see appendix) for high-dimensional outputs with a small batch

size of 150 to accommodate the samples in memory. It takes about three minutes to

smooth and certify each input on a single NVIDIA GeForce RTX 2080 Ti GPU in an

internal cluster. Due to the higher factor of ten in the certified output radius in this case

compared to our other experiments where the factor is three, the certified output radius

increases faster with the input radius ϵ1, but the smoothing error remains low showing

that, in practice, the method does not significantly degrade the performance of the base

model. Figure 4.7 shows that, visually, the smoothed output is not very different from

the output of the base model. The input radii we certify for are lower in this case than

our other experiments due to the low dimensionality (only 128 dimensions) of the input

(latent) space as compared to the input (image) spaces in our other experiments.

4.5.3 Total Variation Distance

The total variation norm of a vector x is defined as the sum of the magnitude of

the difference between pairs of coordinates defined by a neighborhood set N . For a

1-dimensional array x with k elements, one can define the neighborhood as the set of
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Figure 4.6: Certifying perceptual distance.

Figure 4.7: Model Output vs Smoothed Output.

Figure 4.8: Generative model for ImageNet: Part (a) plots the certified output radius ϵ2
and the smoothing error for h = 1 and 1.5. Part (b) compares the output of the base model
to that of the smoothed model.

consecutive elements.

TV (x) =
∑

(i,j)∈N

|xi − xj|, TV1D(x) =
k−1∑
i=1

|xi − xi+1|.

Similarly, for a grayscale image represented by a h × w 2-dimensional array x, the

neighborhood can be defined as the next element (pixel) in the row/column. In case of an

RGB image, the difference between the neighboring pixels is a vector, whose magnitude
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can be computed using an ℓp-norm. For, our experiments we use the ℓ1-norm.

TVRGB(x) =
h−1∑
i=1

w−1∑
j=1

∥xi,j − xi+1,j∥1 + ∥xi,j − xi,j+1∥1

The total variation distance between two images I1 and I2 can be defined as the total

variation norm of the difference I1 − I2, i.e., TV D(I1, I2) = TV (I1 − I2). The above

distance defines a pseudometric over the space of images as it satisfies the symmetry

property and the triangle inequality, but may violate the identity of indiscernibles as an

image obtained by adding the same value to all the pixel intensities has a distance of zero

from the original image. However, as noted in section 4.4, our certificates hold even for

this setting.

We certify total variation distance for the problems of dimensionality reduction

and image reconstruction on MNIST [133] and CIFAR-10 [134]. The base-model for

dimensionality reduction is an autoencoder that uses convolutional layers in its encoder

module to map an image down to a small number of latent variables. The decoder applies

a set of de-convolutional operations to reconstruct the same image. We insert batch-norm

layers in between these operations to improve performance. For image reconstruction,

the goal is to recover an image from small number of measurements of the original

image. We apply a transformation defined by Gaussian matrix A on each image to

obtain the measurements. The base model tries to reconstruct the original image from

the measurements. The attacker, in this case, is assumed to add a perturbation in the

measurement space instead of the image space (as in dimensionality reduction). The

model first reverts the measurement vector to a vector in the image space by simply
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applying the pseudo-inverse of A and then passes it through a similar autoencoder model

as for dimensionality reduction. We present results for ϵ1 = 0.2, 0.4, . . . , 1.0 and h =

2, 1.5 and use 256 latent dimensions and measurements for these experiments in figure 4.13.

To put these plots in perspective, the maximum TVD between two CIFAR-10 images

could be 6× 31× 31 = 5766 and between MNIST images could be 2× 27× 27 = 1458

(pixel values between 0 and 1).

4.6 Conclusion

Provable adversarial robustness can be extended beyond classification tasks to problems

with structured outputs. We design a smoothing-based procedure that can make a model

of this kind provably robust against norm bounded adversarial perturbations of the input.

In our experiments, we demonstrate that this method can generate meaningful certificates

under a wide variety of distance metrics in the output space without significantly compromising

the quality of the base model. We also note that the metric requirements on the distance

measure can be partially relaxed in exchange for weaker certificates.

We focus on ℓ2-norm bounded adversaries and the Gaussian smoothing distribution.

An important direction for future investigation could be whether this method can be

generalised beyond ℓp-adversaries to more natural threat models, e.g., adversaries bounded

by total variation distance, perceptual distance, cosine distance, etc. Center smoothing

does not critically rely on the shape of the smoothing distribution or the threat model.

Thus, improvements in these directions could potentially be coupled with our method to

further broaden the scope of provable robustness in machine learning.
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Figure 4.9: Dimensionality Reduction on MNIST

Figure 4.10: Dimensionality Reduction on CIFAR-10

Figure 4.11: Image Reconstruction on MNIST

Figure 4.12: Image Reconstruction on CIFAR-10

Figure 4.13: Certifying Total Variation Distance
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4.7 Appendices

A Proof of Theorem 4

Let z′ = f̂(x′). Then, by definition of f̂ ,

P [f(X ′) ∈ B(z′, r̂(x′,∆))] ≥ 1

2
−∆, (4.6)

where X ′ ∼ x′ + P and

r̂(x′,∆) = min
z′′

r s.t. P[f(X ′) ∈ B(z′′, r)] ≥ 1

2
+ ∆.

And, by definition of R̂,

P[f(X ′) ∈ B(f̂(x), R̂)] > 1

2
+ ∆. (4.7)

Therefore, from (4.6) and (4.7), B(z′, r̂(x′,∆)) and B(f̂(x), R̂) must have a non-empty

intersection. Let, y be a point in that intersection. Then,

d(f̂(x), f̂(x′)) ≤ d(f̂(x), y) + d(y, z′)

≤ r̂(x′,∆) + R̂.

Since, by definition, r̂(x′,∆) is the radius of the smallest ball with 1/2 + ∆ probability

mass of f(x′ +P) over all possible centers in Rk and R̂ is the radius of the smallest such
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ball centered at f̂(x), we must have r̂(x′,∆) ≤ R̂. Therefore,

d(f̂(x), f̂(x′)) ≤ 2R̂.

B Proof of Lemma 9

Consider the smallest ball B(z′, r̂(x,∆1)) that encloses at least 1/2+∆1 probability

mass of f(x+P). By Hoeffding’s inequality, with at least 1− e−2n∆2
1 probability, at least

half the points in Z must be in this ball. Since, r is the radius of the minimum enclosing

ball that contains at least half of the points in Z, we have r ≤ r̂(x,∆1).

C Proof of Theorem 5

β-MEB(Z, 1/2) computes a β-approximation of the minimum enclosing ball that

contains at least half of the points of Z. Therefore, by lemma 9, with probability at least

1− e−2n∆2
1 ,

β-MEB(Z, 1/2) ≤ βr̂(x,∆1) ≤ βr̂(x,∆),

since ∆ ≥ ∆1. Thus, the procedure to compute f̂ , if succeeds, will output a point z ∈ Rk

which, with probability at least 1− 2e−2n∆2
1 , will satisfy,

P [f(X) ∈ B(z, βr̂(x,∆))] ≥ 1

2
−∆.
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Now, using the definition of R̂ and following the same reasoning as theorem 4, we can

say that,

d(f̂(x), f̂(x′)) ≤ βr̂(x′,∆) + R̂

≤ (1 + β)R̂.

D Proof of Lemma 10

Given z = f̂(x), define a random variable Q = d(z, f(X)), where is X ∼ x + P .

For m i.i.d. samples of X , the values of Q are independently and identically distributed.

Let F (r) denote the true cumulative distribution function of Q and define the empirical

cdf Fm(r) to be the fraction of the m samples of Q that are less than or equal to r, i.e.,

Fm(r) =
1

m

m∑
i=1

1{Qi≤r}

Using the Dvoretzky–Kiefer–Wolfowitz inequality, we have,

P
[
sup
r∈R

(Fm(r)− F (r)) > ϵ

]
≤ e−2mϵ2

for ϵ ≥
√

1
2m

ln 2. Setting, e−2mϵ2 = α2 for some α2 ≤ 1/2, we have,

sup
r∈R

(Fm(r)− F (r)) <

√
ln (1/α2)

2m
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with probability at least 1− α2. Set r = R̃q, the qth quantile of of the m samples. Then,

F (R̃q) > Fm(R̃q)−
√

ln (1/α2)

2m

or, P
[
Q ≤ R̃q

]
> q −

√
ln (1/α2)

2m
= p.

With probability 1− α2,

P
[
f(X) ∈ B(f̂(x), R̃q)

]
> p.

E High-dimensional Outputs

For functions with high-dimensional outputs, like high-resolution images, it might

be difficult to compute the minimum enclosing ball (MEB) for a large number of points.

The smoothing procedure needs us to store all the n ∼ 103− 104 sampled points until the

MEB computation is complete, requiring O(nk′) space, where k′ is the dimensionality of

the output space. It does not allow us to sample the n points in batches as is possible for

the certification step. Also, computing the MEB by considering the pair-wise distances

between all the sampled points is time-consuming and requires O(n2) pair-wise distance

computations. To bring down the space and time requirements, we design another version

(Smooth-HD, algorithm 7) of the smoothing procedure where we compute the MEB by

first sampling a small number n0 ∼ 30 of candidate centers and then returning one of these

candidate centers that has the smallest median distance to a separate sample of n (≫ n0)

points. We sample the n points in batches and compute the distance d(ci, zj) for each pair

of candidate center ci and point zj in a batch. The rest of the procedure remains the same
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Algorithm 7: Smooth-HD
Input: x ∈ Rk, σ,∆, α1.
Output: z ∈M .
Set C = {ci}n0

i=1 s.t. ci ∼ f(x+N (0, σ2I)).
Set ∆1 =

√
ln (2/α1) /2n.

Sample Z = {zj}nj=1 s.t. zj ∼ f(x+N (0, σ2I)) in batches.
For each batch, compute pair-wise distances d(ci, zj) for ci ∈ C and zj in the batch.
Compute the center c ∈ C with the minimum median distance to the points in Z.
Re-sample Z in batches.
Compute p∆1 .
Set ∆2 = 1/2− p∆1 .
If ∆ < max(∆1,∆2), discard c and abstain.

as algorithm 5. It only requires us to store batch-size number of output points and the n0

candidate centers at any given time, significantly reducing the space complexity. Also,

this procedure only requires O(n0n) pair-wise distance computations. The key idea here

is that, with very high probability (> 1 − 10−9), at least one of the n0 candidate centers

will lie in the smallest ball that encloses at least 1/2 + ∆1 probability mass of f(x+ P).

Also, with high probability, at least half of the n samples will lie in this ball too. Thus,

the median distance of this candidate center to the n samples is at most 2γr̂(x,∆1), after

accounting for the factor of γ in the relaxed version of the triangle inequality as discussed

in section 4.4. Ignoring the probability that none of the n0 points lie inside the ball, we

can derive the following version of theorem 5:

Theorem 6. With probability at least 1− α1,

∀x′ s.t. ∥x− x′∥2 ≤ ϵ1, d(f̂(x), f̂(x
′)) ≤ γ(1 + 2γ)R̂

where α1 = 2e−2n∆2
1 .
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F Baseline for ℓ2-Metric

In this section, we compare the certificates from center smoothing against a bound

derived in [126] for functions like f smoothed by taking the expectation of f under a

Gaussian noise. This bound only applies when the output metric is ℓ2. For a vector-valued

function f , the change in the function defined as Eδ[f(x+δ)] where δ ∼ N (0, σ2I), under

an ℓ2-perturbation of the input of size ϵ1, can be bounded by (max ∥f∥2+min ∥f∥2) erfϵ1/2
√
2σ.

We apply our center smoothing procedure on the autoencoder and image reconstruction

models used in section 4.5.3 with ℓ2 as the output metric and compare its certificates to the

above bound. Since the minimum ℓ2-norm of the output of these models can be zero and

we keep h = ϵ1/σ = 2 for these experiments, the change in the output of Eδ[f(x+δ)] can

be bounded by max ∥f∥2 erf1/
√
2 ≤ 0.68

√
d, where d is the number of dimensions of the

output space. For 28×28 gray-scale MNIST images and 32×32 RGB CIFAR-10 images,

the corresponding bounds are 19.04 and 37.69 respectively. Figure 4.18 shows that the

certificates obtained for center smoothing remain below the baseline for all the values of

ϵ1 used. Thus, by observing the neighborhood of an input point, center smoothing can

yield better certificates for individual points in the input space than the baseline bound

which is a global guarantee.
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G Angular Distance

A common measure for similarity of two vectors A and B is the cosine similarity

between them, defined as below:

cos(A,B) =
A ·B

∥A∥2∥B∥2
=

∑
iAiBi√∑

j A
2
j

√∑
k B

2
k

.

In order to convert it into a distance, we can compute the angle between the two vectors

by taking the cosine inverse of the above similarity measure, which is known as angular

distance:

AD(A,B) = cos−1(cos(A,B))/π.

Angular distance always remains between 0 and 1, and similar to the total variation

distance, angular distance also defines a pseudometric on the output space. We repeat

the same experiments with the same models and hyper-parameter settings as for total

variation distance (figure 4.23). The results are similar in trend in all the experiments

conducted, showing that center smoothing can be reliably applied to a vast range of output

metrics to obtain similar robustness guarantees.

H Effect of Training with Noise

A common practice in the randomized smoothing literature is to train the base

model with noise added to the training examples [36]. This helps the model to learn

to ignore the smoothing noise and leads to better robustness certificates for classification

tasks. For the total variation certificates in section 4.5.3, we train the autoencoders and
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the reconstruction models using a Gaussian noise with the same variance as the one used

for prediction and certification. In this section, we perform an ablation experiment to

study the effect of the training noise in the certified output radius of the base model

(figure 4.28). We observe that both the smoothing error and the certified output radius

deteriorate in the absence of training noise. However, models trained without noise also

produce non-trivial certificates. This shows that both center smoothing and training with

noise contribute towards the robustness and performance of the smoothed models.
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Figure 4.14: Dimensionality Reduction on MNIST

Figure 4.15: Dimensionality Reduction on CIFAR-10

Figure 4.16: Image Reconstruction on MNIST

Figure 4.17: Image Reconstruction on CIFAR-10

Figure 4.18: Comparison with baseline (h = 2).

133



Figure 4.19: Dimensionality Reduction on MNIST

Figure 4.20: Dimensionality Reduction on CIFAR-10

Figure 4.21: Image Reconstruction on MNIST

Figure 4.22: Image Reconstruction on CIFAR-10

Figure 4.23: Certifying Angular Distance
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Figure 4.24: Dimensionality Reduction on MNIST

Figure 4.25: Dimensionality Reduction on CIFAR-10

Figure 4.26: Image Reconstruction on MNIST

Figure 4.27: Image Reconstruction on CIFAR-10

Figure 4.28: Impact of training noise on the performance of the robust model and its
certificates.
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Chapter 5: Limitations of Randomized Smoothing

5.1 Introduction

Deep neural networks, especially in image classification tasks, have been shown to

be vulnerable to adversarial perturbations of the input that are unnoticeable to a human

observer but can alter the prediction of the model [1]. These examples are generated by

optimizing a loss function for a trained network over the input features within a small

neighborhood of an example input. Gradient based methods such as FGSM [3] and

projected gradient descent [2] have been shown to be very effective for this purpose. In the

last couple of years, several heuristic methods have been proposed to detect and/or defend

against attacks from specific types of adversaries [18, 19, 20, 21, 22, 23]. Such defenses,

however, have been shown to break down against more powerful attacks [4, 24, 25, 26].

For certain types of problems, adversarial examples might even be unavoidable [135].

This necessitates developing classifiers with robustness guarantees. Several convex

relaxation-based techniques have been proposed to design certifiably robust classifiers

[27, 28, 29, 30, 136] whose predictions are guaranteed to remain constant within a certified

neighborhood around the input point, thereby eliminating the presence of any adversarial

example in that region. However, the ever-increasing complexity of deep neural networks

has made it difficult to scale these methods meaningfully to high-dimensional datasets
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like ImageNet.

To deal with the scalability issue in certifiable robustness, a line of work has been

introduced based on randomized robustness [36, 37, 38, 39, 68, 121, 124, 137, 138, 139]

wherein an arbitrary base classifier is made more robust by averaging its prediction over

random perturbations of the input point within its neighborhood. Cohen et al. (2019)

proved the first tight robustness guarantee for Gaussian smoothing for an ℓ2-norm bounded

adversary.

In this work, however, we show that extending the smoothing technique to defend

against higher-norm attacks, especially in the high-dimensional regime, can be challenging.

In particular, for a general class of i.i.d. smoothing distributions, we show that, for p > 2,

the largest ℓp-radius that can be certified (denoted by r∗p ) decreases with the number of

dimensions d as O(1/d
1
2
− 1

p ). Note that the special case of p = 2 does not suffer from

such dependency on d. This makes smoothing-based robustness bounds weak against ℓp

adversarial attacks for large p, especially, for ℓ∞ because as p→ ∞ the dependence on d

becomes O(1/
√
d). Moreover, we show that the dependence of the robustness certificate

on d using a general i.i.d. smoothing distribution is similar to that of the standard Gaussian

smoothing, even for p > 2. This implies that Gaussian smoothing essentially provides the

best possible robustness certificate result in terms of the dependence on d even for p > 2.

To be more precise, suppose we smooth a classifier by randomly sampling points

surrounding an image x, and observing the labels assigned to these points. Let p1(x) and

p2(x) be the probabilities of the first and second most probable labels under the smoothing

distribution. We prove the following bounds on the robustness certificate:
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1. When points are sampled by adding i.i.d. noise to each dimension in x with σ2

variance and continuous support, we prove the certified ℓp radius bound

r∗p ≤
σ

2
√
2d

1
2
− 1

p

(
1√

1− p1(x)
+

1√
p2(x)

)
,

whenever p1(x) ≥ 1/2. See Theorem 7.

2. When smoothing with a generalized Gaussian distribution with variance σ2 (which

includes Laplacian, Gaussian, and uniform distributions), we prove that

r∗p ≤
2σ

d
1
2
− 1

p

(√
log

1

1− p1(x)
+

√
log

1

p2(x)

)
,

when e−d/4 < p2(x) ≤ p1(x) < 1 − e−d/4. When d is large, these bounds do not

impact the range of values that p1(x) and p2(x) can take in a significant way. See

Theorem 8.

3. We also study smoothing techniques where the distribution is uniform over a region

around the input point. When smoothed over an ℓ∞ ball of radius b, i.e. uniform

i.i.d between −b and b in each dimension, we show that

r∗p <
2b

d1−
1
p

= 2
√
3σ/d1−

1
p ,

where σ2 = b2/3 is the variance in each dimension. See Theorem 9. Note that this

bound is independent of p1(x) and p2(x).

4. For smoothing uniformly over an ℓ1 ball of the same radius b, we achieve an even
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stronger bound:

r∗p <
2b

d

See Theorem 10 for details. Along with being independent of p1(x) and p2(x), it

is also independent of p. Thus, it holds for any p-norm bounded adversary. Note

that, unlike the other smoothing distributions we have considered, the uniform ℓ1

smoothing is not i.i.d. in every dimension.

These bounds hold for any p > 0, but are too weak to offer meaningful insights when

p < 2 in the first two cases and for p < 1 in the third one. Moreover, it is straightforward

to show that, for p ≥ 2, the following ℓp-radius can be certified using Cohen et al.’s (2019)

Gaussian smoothing:

rp =
σ

2d
1
2
− 1

p

(
Φ−1 (p1(x))− Φ−1 (p2(x))

)
, (5.1)

which has the same dependence on d as the upper bound obtained using i.i.d. smoothing.

This radius is asymptotically only a constant factor away from the upper bound for

the generalized Gaussian distribution, showing that this family of distributions fails to

outperform standard Gaussian smoothing in high dimensions. To the best of our knowledge,

these bounds form the first results on the limitations of randomized smoothing in the

high dimensional regime that cover an extensive range of natural and commonly used

smoothing distributions.1 We provide empirical evidence to support our claims on the

CIFAR-10 dataset.
1We have later come to know about a concurrent work which also illustrates the difficulty of extending

randomized smoothing to defend against ℓ∞ -attacks for high-dimensional data [140].
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5.2 Preliminaries and Notation

Let h be a classifier that maps inputs from Rd to classes in C. Let P be a (smoothing)

probability distribution in Rd. We define a smoothed classifier h̄ as below:

h̄(x) ≜ argmax
c∈C

P
∆∼P

(h(x+∆) = c).

We refer to the process of smoothing using distribution P as P-smoothing. Let pc(x) be

the output probability of the base classifier for the class c. That is,

pc(x) := P
∆∼P

(h(x+∆) = c).

Without loss of generality, we assume that p1(x) and p2(x) are the probabilities of the

first and second most likely classes, respectively.

For p > 0, we say a smoothing distribution P achieves a certified ℓp-norm radius

of rp if, for a base classifier h and an input x,

h̄(x+ δ) = h̄(x), ∀δ ∈ Rd, ∥δ∥p ≤ rp.

For instance, as derived in [36], the Gaussian smoothing distribution N (0, σ2I) achieves

a certified 2-norm radius of σ
2
(Φ−1(p1(x))−Φ−1(p2(x))) where Φ−1 is the inverse of the

standard Gaussian CDF.

For p1, p2 ∈ (0, 1), such that, p1 ≥ p2, let r∗p denote the largest rp that can be

certified using P-smoothing for all classifiers satisfying p1(x) = p1 and p2(x) = p2. If
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we can show a classifier h in this class and two points x, x′ ∈ Rd, such that, h̄(x) ̸= h̄(x′),

then r∗p ≤ ∥x′ − x∥p. We use this fact to show upper bounds on the largest p-norm radius

that can be certified using a given class of distributions.

5.3 General i.i.d. Smoothing

We set the P to be a smoothing distribution I where each coordinate of ∆ is

sampled independently and identically from a symmetric distribution with zero mean,

σ2 variance with a continuous support. We prove the following theorem:

Theorem 7. For distribution I and for p1, p2 ∈ (0, 1), such that, p1 ≥ 1/2 and p1+ p2 ≤

1, the largest ℓp-radius r∗p that can be certified for all classifiers satisfying p1(x) = p1 and

p2(x) = p2 under I-smoothing at input point x is bounded as:

r∗p ≤
σ

2
√
2d

1
2
− 1

p

(
1√

1− p1(x)
+

1√
p2(x)

)
. (5.2)

Proof. Let Zi be the random variable modelling the ith coordinate of ∆. Define a random

variable S =
∑d

i=1 Zi. It is straightforward to show that this random variable is distributed

symmetrically with zero mean, dσ2 variance and a continuous support. The key intuition

behind this proof is that the random variable S, which is the sum of d identical and

independent random variables, will tend towards a Gaussian distribution for large values

of d, making the distribution I suffer from some of the same limitations as the Gaussian

distribution.

To simplify our analysis, we move our frame of reference so that x is at the origin.
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Figure 5.1: As the distribution of S moves from the origin to s1+s2
2

the probability for
class one decreases and that of class two increases. They become equal at s1+s2

2
beyond

which class two becomes more likely.

Therefore, r∗p ≤ ∥x′∥p. Consider a classifier g that maps points in {w ∈ Rd |
∑d

i=1wi ≤

s1} to class one and those in {w ∈ Rd |
∑d

i=1wi ≥ s2} to class two. We pick s1, s2 ∈ R+

such that, P(S ≤ s1) = p1(x) (this requires p1(x) ≥ 1/2) and P(S ≥ s2) = p2(x).

Let x′ be the point with every coordinate equal to ϵ and so,
∑d

i=1 x
′
i = ϵd. Since S is

symmetric and has a continuous support, ḡ(x′) = ḡ(x) only if
∑d

i=1 x
′
i ≤ s1+s2

2
, which

implies ϵ ≤ s1+s2
2d

. Therefore,

r∗p ≤ ∥x′∥p = ϵd1/p ≤ s1 + s2

2d1−
1
p

. (5.3)

Figure 5.1 illustrates how the probabilities of the top two classes change as we move from

x to x′.

Applying Chebyshev’s inequality on S, we have:

P (S ≥ s) =
P (|S| ≥ s)

2
≤ dσ2

2s2
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The value of s for which dσ2

2s2
= p2(x) must be an upper-bound on s2.

s2 ≤
√
dσ√

2p2(x)

Similarly, since P(S ≥ s1) = 1− p1(x),

s1 ≤
√
dσ√

2(1− p1(x))

Substituting the above bounds for s1 and s2 in (5.3), proves Theorem (7):

r∗p ≤
σ

2
√
2d

1
2
− 1

p

(
1√

1− p1(x)
+

1√
p2(x)

)
.

5.4 Generalized Gaussian Smoothing

We now restrict ourselves to the class of generalized Gaussian distributions that

subsumes some commonly used and natural smoothing distributions such as Gaussian,

Laplacian and uniform distributions. Using a similar approach as in the previous section,

we obtain tighter upper bounds on r∗p by restricting the smoothing distribution to generalized

Gaussian. In this class of distributions, each coordinate is sampled independently from

the following distribution:

p(z) =
1

C
e−(|z|/b)q
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where z ∈ R, b > 0 is the scale parameter, q > 0 is the shape parameter and C is the

normalizing constant

C =

∫ ∞

−∞
e−(|z|/b)qdz (5.4)

= 2

∫ ∞

0

e−zq/bqdz =
2bΓ(1/q)

q
,

where Γ(.) is the gamma function. The mean of this distribution is at zero and the variance

σ2 can be calculated as

σ2 =
1

C

∫ ∞

−∞
z2e−(|z|/b)qdz

=
2

C

∫ ∞

0

z2e−zq/bqdz =
2b3Γ(3/q)

Cq
.

Substituting C from (5.4) leads to

σ2 =
b2Γ(3/q)

Γ(1/q)
.

Note that the class of generalised Gaussian distributions is a subset of the class of i.i.d.

smoothing distributions considered in the previous section. The joint probability distribution

over all the d dimensions can be expressed as:

p(z1, z2, . . . , zd) =
1

Cd
e−

∑d
i=1(|zi|/b)

q

,
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which for q = 1, 2 represents Laplace and Gaussian distributions, respectively. As q →

∞, this distribution approximates the uniform distribution over [−b, b]d. For a finite q,

the level sets of the above p.d.f. define sets with constant ℓq-norm. Let G be a generalised

Gaussian distribution with q ≥ 1. The following theorem holds:

Theorem 8. For distribution G and for e−d/4 < p2 ≤ p1 < 1 − e−d/4 and p1 + p2 ≤ 1,

the largest ℓp-radius r∗p that can be certified for all classifiers satisfying p1(x) = p1 and

p2(x) = p2 under G-smoothing at input point x, is bounded as:

r∗p ≤
2σ

d
1
2
− 1

p

(√
log(1/(1− p1(x))) +

√
log(1/p2(x))

)
(5.5)

We provide a brief proof sketch for this theorem here. As before, define random

variables Zi and S, and assume x to be at the origin. Since the above distribution satisfies

all the assumptions made in the previous section, we can directly conclude that the bound

in (5.3) holds:

r∗p ≤
s1 + s2

2d1−
1
p

From here, we strengthen our analysis by replacing Chebyshev’s inequality with Chernoff

bound.

P (S ≥ s) ≤ E[etS]

ets

for any t > 0. Since S is a sum of independent random variables Z1, Z2, . . . , Zd sampled

from identical distributions,

P (S ≥ s) ≤ e−ts

d∏
i=1

E[etZi ] ≤ e−tsE[etZ ]d
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where Z is sampled from p(z).

Lemma 11. For some constant c < 1.85,

E[etZ ] ≤
∞∑

m=0

(c2t2σ2)m

Proof is presented in the appendix.

Setting t = 1
τσ

√
d

for some τ > 0 satisfying c2

τ2d
< 1, we have:

P (S ≥ s) ≤ e−s/τσ
√
d

(
∞∑

m=0

(c2/τ 2d)m

)d

=
e−s/τσ

√
d

(1− c2

τ2d
)d

≤ e−s/τσ
√
de4/τ

2

for τ 2d ≥ 16. The value of s for which this expression is equal to p2(x) gives us the

following upper-bound on s2:

s2 ≤ σ
√
d(τ log(1/p2(x)) + 4/τ)

which for τ = 2/
√

log(1/p2(x)) gives:

s2 ≤ 4σ
√
d log(1/p2(x))

and similarly, repeating the above analysis and setting τ = 2/
√

log(1/(1− p1(x))), we

get:

s1 ≤ 4σ
√
d log(1/(1− p1(x)))
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Both the above values for τ satisfy τ 2d ≥ 16 due to the restrictions on p1 and p2.

Substituting the above bounds for s1 and s2 in inequality (5.3), proves Theorem (8):

r∗p ≤
2σ

d
1
2
− 1

p

(√
log(1/(1− p1(x))) +

√
log(1/p2(x))

)

When p1(x) is close to one and p2(x) is close to zero, this bound is within a

constant factor of the Gaussian certificate in equation (5.1) because Φ−1(p) can be lower

bounded by α
√

log(1/(1− p)) + β for some constants α and β. Figure (5.2) compares

the behaviour of the two upper bounds, the one from i.i.d. smoothing uI and the one from

generalized Gaussian smoothing uG , with respect to the Gaussian certificate rp obtained

in equation (5.1). Assuming the binary classification case, for which p2(x) = 1− p1(x),

we plot the ratios

uI
rp

=
1

ϕ−1(p1(x))
√

2(1− p1(x))
,

uG
rp

=
4
√
log 1

1−p1(x)

ϕ−1(p1(x))

which only depend on p1(x) and show that the generalized Gaussian bound is much tighter

than the i.i.d. bound when p1(x) is close to one.

5.5 Uniform Smoothing

In this section, we analyse smoothing distributions that are uniform within a finite

region around the input point x. We show stronger upper bounds for r∗p when smoothed
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Figure 5.2: Comparison of the upper bounds from i.i.d. smoothing (5.2) and generalized
Gaussian smoothing (5.5) w.r.t. the lower bound obtained from Gaussian smoothing (5.1).
The x-axis represents 1

1−p1(x)
for 1

2
≤ p1(x) ≤ 1 and the y-axis represents the ratio of

each upper bound to the Gaussian lower bound. At around p1(x) ≈ 0.99, the generalized
Gaussian bound becomes tighter than the i.i.d. bound and gets within a constant factor of
the Gaussian lower bound as p1(x) gets larger.

uniformly over ℓ1 and ℓ∞-norm balls. We first consider the ℓ∞ smoothing distribution

which is a limiting case for the generalized Gaussian distribution for q = ∞. We set P to

be U([−b,+b]d) which denotes a uniform distribution over the points in [−b,+b]d.

Theorem 9. For distribution U([−b,+b]d), the largest ℓp-radius r∗p that can be certified

for all classifiers, is bounded as

r∗p <
2b

d1−
1
p

= 2
√
3σ/d1−

1
p .

where σ2 = b2/3 is the variance in each dimension.

Proof. Assume x is at origin and let x′ be a point with every coordinate equal to ϵ. Let

V1 and V2 denote the sets [−b,+b]d and [−b+ ϵ, b+ ϵ]d. Consider a classifier g that maps
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every point in V1−V2 to class one and every point in V2−V1 to class two. See figure 5.3.

Let ρ denote the probability with which the smoothing distribution for ḡ(x) samples from

V1 − V2, which is equal to the probability with which the smoothing distribution for ḡ(x′)

samples from V2 − V1, or

ρ =
(2b)d − (2b− ϵ)d

(2b)d

=

(
1−

(
1− ϵ

2b

)d)
.

For ḡ to classify x′ into class one, we must have:

p1(x
′) > p2(x

′)

p1(x)− ρ > p2(x) + ρ

ρ <
p1(x)− p2(x)

2(
1−

(
1− ϵ

2b

)d)
<

1

2
p1(x)− p2(x) ≤ 1

ϵ < 2b
(
1− 2−1/d

)
< 2b/d

(
1− 2−1/d

)
< 1/d

Since ∥x′∥p = ϵd1/p, the optimal radius,

r∗p < 2b/d1−
1
p = 2

√
3σ/d1−

1
p

where σ2 is the variance of U(−b, b).

This shows that for p > 1, σ (or b) needs to grow with the number of dimensions d to

certify for a meaningfully large p-norm radius. For instance, p = 2 and ∞, require σ to be
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Figure 5.3: 2-D illustration of the ℓ∞ smoothing case. The ℓ∞ ball is shifted by ϵ along
x1 and x2. The points in the blue region (V1 − V2) are mapped to class one and the points
in the red region (V2 − V1) to class two.

Θ(
√
d) and Θ(d) respectively. However, since inputs can be assumed to come from [0, 1]d

(possibly after some scaling and shifting of images), smoothing over distributions with

such large variance may significantly lower the performance of the smoothed classifier.

We now consider the uniform ℓ1 smoothing distribution (denoted by L1(b)) where

points are sampled uniformly from an ℓ1-norm ball of radius b. Note that the noise in each

dimension is no longer independent.

Theorem 10. For distribution L1(b), the largest ℓp-radius r∗p that can be certified for all

classifiers, is bounded as

r∗p <
2b

d
.

The following is a proof sketch of the above theorem. Let x be at the origin and

x′ be the point (ϵ, 0, 0, . . . , 0), that is, ϵ in the first coordinate and zero everywhere else.

Similar to before, let V1 and V2 be the sets defined by the ℓ1 balls centered at x and x′

respectively.
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Figure 5.4: 2-D illustration of the ℓ1 smoothing case. The ℓ1 ball is shifted by ϵ along x1.
The points in the blue region (V1 − V2) are mapped to class one and the points in the red
region (V2 − V1) to class two.

Lemma 12. The set V1 ∩ V2 is a subset of an ℓ1 ball of radius b− ϵ
2
.

The proof is presented in the appendix.

As before, let g be a classifier that maps every point in V1 − V2 to class one and

every point in V2 − V1 to class two (figure 5.4). Let ρ denote the probability with which

the smoothing distribution for ḡ(x) samples from V1−V2, which is equal to the probability

with which the smoothing distribution for ḡ(x′) samples from V2 − V1, or

ρ ≥
2d

d!
bd − 2d

d!
(b− ϵ

2
)d

2d

d!
bd

=

(
1−

(
1− ϵ

2b

)d)
.

We us the formula 2dRd/d! as the volume of a d-dimensional ℓ1 ball of radius R. The rest

of the analysis is same as that for the ℓ∞ case and since ∥x′∥p = ϵ, we have,

r∗p <
2b

d
,

which proves Theorem 10.
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Figure 5.5: p1(x) for CIFAR-10 images with median certified robustness for each
classifier using Generalized Gaussian smoothing for different q. For a fixed standard
deviation σ, the shape of the distribution, controlled by q, has almost no effect on the
likelihood that the base classifier returns the correct class.

Figure 5.6: Upper bounds for certifying with Generalized Gaussian noise (σ = .12) on
unaltered (32 × 32) CIFAR-10 images, with q = p, compared with certificates using
Gaussian noise directly. At this noise level, p1(x) is high enough for the Generalized
Gaussian bound to be tighter than the i.i.d. distribution bound. Panel (a) shows
the certificates and the bounds directly, while (b) shows the ratio between the tighter
Generalized Gaussian bound and the certificate.

5.6 Experiments

In order to understand how our results apply to smoothing in practice, we tested the

smoothed classification algorithm proposed by [36], using Generalized Gaussian noise in

each dimension, rather than Gaussian noise. We specifically tested on CIFAR-10 (32×32

pixels), as well as scaled-down versions of this dataset (16 × 16 and 8 × 8 pixels), in

order to study how our bounds behave as the dimension of the input changes. Although
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Figure 5.7: Repeating Figure 5.6 for σ = .25. At this level of noise, p1(x) is low enough
so that the i.i.d. distribution bound is tighter than the Generalized Gaussian bound (in
contrast to the setup of Figure 5.6).

we do not have explicit certificates for these Generalized Gaussian distributions, we are

able to compare the upper bounds derived in this work for any possible certificates to the

actual certificates for Gaussian smoothing on the same images. Note that we re-trained

the classifier on noisy images for each noise distribution and standard deviation σ.

Note also that our main results apply specifically to smoothing based certificates

which are functions of only p1(x) and p2(x) (in theory, larger certificates could be derived

if more information is available to the certification algorithm). In reporting the upper

bounds on possible empirical certificates, we provide the same inputs to the upper bound

as we would provide to the certificate: namely, an empirical lower bound p1(x) on p1(x),

estimated from samples, and an empirical upper bound p2(x) on p2(x). We are not making

claims about the “optimal possible” empirical estimation procedures required to derive the

largest possible certificates. We instead regard these bounds, p1(x) and p2(x), as inputs to

the empirical certificate: we are only claiming that, given estimates p1(x) and p2(x), no

certificate will exceed the computed bound. In practice, we use the estimation procedure

proposed by [36], which first selects a candidate top class label using a small number of

samples, then uses a large number of samples (100, 000 in our experiments) to compute
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Figure 5.8: Certified Radius at different
resolutions of CIFAR-10 using Gaussian
noise (σ = .12). The increase in accuracy
of the base classifier on higher-resolution
images overcomes the inverse scaling with
d in Eq. 5.1, achieving higher certified radii.
Solid lines represent actual certificates and
dashed lines represent how the certificates
would scale if p1(x) remained constant as
resolution increased.

Figure 5.9: Certified Radius using Gaussian
noise (σ = .25), for datasets of different
image resolutions. We see that for p > 2, the
certificates (solid lines) decrease with higher
dimensionality almost as quickly as one
would expect from the explicit dependence
on d in Equation 5.1 (dashed lines).

p1(x) based on a binomial distribution. p2(x) is then taken as 1 − p1(x). Then, for the

sake of our experiments, the only empirical input to our bound is the estimate of p1(x).

One interesting result is that the distribution of noise added in each dimension seems

to be largely irrelevant to determining p1(x) (Figure 5.5). It is the variance of the noise

added, not the specific choice of noise distribution, that determines p1(x). This paints an

even bleaker picture for the possibility of smoothing for high p-norm robustness than our

theoretical results alone can: Theorems 7 and 8 still depend on p1(x) and p2(x) for the

particular noise distribution used. This leaves open the possibility that certain choices of

noise distributions could yield values of p1(x) large enough to counteract the scaling with

p. However, empirically, we find that this is not the case: for a fixed σ, p1(x) does not

depend on the shape of the smoothing distribution.

For example, one might attempt to use smoothing with q = p in order to certify
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for the ℓp norm, so that the level sets of the smoothing distribution correspond to ℓp balls

around x. This is the technique used for ℓ1 certification by [37], and for ℓ2 certification by

[36]. However, we find (Figures 5.6, 5.7) that, as anticipated by Figure 5.2, for p > 2, this

can only achieve at best a constant factor improvement in certified robustness compared to

simply using Gaussian smoothing with the certificate from [36] and applying equivalence

of norms (Equation 5.1). Note that, as shown in Figure 5.5, it was only for the lowest level

of noise tested (σ = .12) and the highest resolution images tested (32 × 32) that p1(x)

was sufficiently close to 1 for the Generalized Gaussian bound to be tighter than the i.i.d.

distribution bound (Figure 5.6). For all other configurations (Figure 5.7, other plots are

given in supplementary materials) the i.i.d. bound is tighter.

In the case of Gaussian smoothing, [36] makes an argument that, as image resolution

increases, the base classifier will become more tolerant to noise, because information will

be redundantly encoded in the additional pixels. This should allow us to increase the

magnitude of the smoothing variance σ2 proportionally to d. It is because by average-

pooling back down a large image to a low-resolution one, the variance in each pixel of

the smaller image will decrease proportionally with d. Then, if it is possible to classify

noisy images at the lower resolution with a certain accuracy p1(x), it should be possible

to classify images at the higher resolution with higher levels of noise. This increase in the

amount of noise that can be added to high resolution images (to obtain roughly the same

accuracy to that of low resolution ones) will cancel out the decrease in the robustness

radius due to the curse of dimensionality explained in this paper. It is because based on

Equation 5.1, if σ is allowed to scale with
√
d with p1(x) and p2(x) unchanged, then the

certified radius should even remain constant with d in the ℓ∞ case.
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For image datasets that are identical except for a scaling factor, we observe a related

phenomenon: for a fixed noise variance, p1(x) tends to increase with the resolution of

the image (i.e., the dimensionality of the input), and therefore the certified radii tend to

increase with d in the p = 2 case. In Figure 5.8, we show that, for p > 2, this increase

is enough to counteract the inverse scaling with d in Equation 5.1, at least in the case of

low-resolution CIFAR-10 images. In other words, we still get larger certificates for larger-

resolution images, simply because our base classifier becomes more accurate on noisy

images as resolution increases. We emphasize that this is using the standard Gaussian

noise: we have demonstrated that other i.i.d distributions will not give significantly better

certificates.

The above setup, however, is an artificial scenario. In the real world, higher-

resolution datasets are typically used for classification tasks which could not be accomplished

with high accuracy at a lower resolution. As shown in Figure 5.9, if we compare, for a

fixed σ, a real-world low dimensional classification task (CIFAR-10, d = 3072) to a high

dimensional classification task (ImageNet, d = 150528), we see that the certified radius

(and therefore p1(x)), does not substantially increase with higher resolution. Therefore,

for higher p-norms, the certified radius decreases with dimension with a scaling nearly as

extreme as the explicit d(1/2−1/p) factor in Equation 5.1. Therefore, in practice, the curse

of dimensionality can be observed as explained in this paper and it cannot be overcome

using a novel choice of i.i.d. smoothing distribution.
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5.7 Conclusion

In this work, we demonstrated some limitations of common smoothing distributions

for ℓp-norm bounded adversaries when p > 2. We partially answer the question, raised

in [36], whether smoothing techniques similar to Gaussian smoothing can be employed

to achieve certifiable robustness guarantees for a general ℓp-norm bounded adversary.

Most i.i.d. smoothing distributions fail to yield good robustness guarantees in the high-

dimensional regime against ℓp-norm bounded attacks when p > 2. Their performance

is no better than that of Gaussian smoothing up to a constant factor. While a constant

factor improvement in performance could be critical in certain applications, the focus

of this work is on the effect of dimensionality on certified robustness. We note that, in

our analysis, we focus on i.i.d. and symmetric smoothing distributions. Our analysis

highlights the importance of developing input-dependent smoothing techniques rather

than the current smoothing methods based on i.i.d. distributions.
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5.8 Appendices

A Proof for lemma 11

Proof. Applying the series expansion of etZ , we get,

E[etZ ] =
∞∑
n=0

tnE[Zn]

n!

E[Zn] =
1

C

∫ ∞

−∞
zne−(|z|/b)qdz

=
1

C

∫ ∞

0

(1 + (−1)n)zne−zq/bqdz

=


0, n is odd

2
C

∫∞
0
zne−zq/bqdz, n is even

When n is even:

E[Zn] =
2

C

∫ ∞

0

zne−zq/bqdz

=
2bn+1Γ

(
n+1
q

)
Cq

Substituting C,

E[Zn] =
bnΓ

(
n+1
q

)
Γ(1/q)

≤ bnΓ(n+ 1) for q ≥ 1

E[Zn] ≤ bnn!
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Therefore, keeping only the terms with even n in the expansion of E[etZ ], we get:

E[etZ ] ≤
∞∑

m=0

(t2b2)m

=
∞∑

m=0

(
t2σ2Γ(1/q)

Γ(3/q)

)m

using σ2 = b2Γ(3/p)
Γ(1/p)

≤
∞∑

m=0

(c2t2σ2)m

for some positive constant c < 1.85, because,

Γ(1/q)

Γ(3/q)
=

3qΓ(1 + 1/q)

qΓ(1 + 3/q)
(using Γ(z + 1) = zΓ(z))

=
3Γ(1 + 1/q)

Γ(1 + 3/q)

< 1.852 (for q ≥ 1, Γ(1 + 1/q) ≤ 1 and Γ(1 + 3/q) > 0.88)

B Proof for lemma 12

Proof. The points in V1 satisfy the following 2d constraints:

x1 + x2 + · · ·+ xd ≤ b

−x1 + x2 + · · ·+ xd ≤ b

x1 − x2 + · · ·+ xd ≤ b

−x1 − x2 + · · ·+ xd ≤ b

...
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−x1 − x2 − · · · − xd ≤ b

Similarly, points in V2 satisfy,

(x1 − ϵ) + x2 + · · ·+ xd ≤ b

−(x1 − ϵ) + x2 + · · ·+ xd ≤ b

(x1 − ϵ)− x2 + · · ·+ xd ≤ b

−(x1 − ϵ)− x2 + · · ·+ xd ≤ b

...

−(x1 − ϵ)− x2 − · · · − xd ≤ b

Then, the points in V1 ∩ V2 must satisfy the following set of constraints constructed by

picking constraints that have a + sign for x1 in the first set of constraints and a − sign for

x1 in the second set.

x1 + x2 + · · ·+ xd ≤ b

−(x1 − ϵ) + x2 + · · ·+ xd ≤ b

x1 − x2 + · · ·+ xd ≤ b

−(x1 − ϵ)− x2 + · · ·+ xd ≤ b

...
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−(x1 − ϵ)− x2 − · · · − xd ≤ b

They may be rewritten as,

(x1 − ϵ/2) + x2 + · · ·+ xd ≤ b− ϵ/2

−(x1 − ϵ/2) + x2 + · · ·+ xd ≤ b− ϵ/2

(x1 − ϵ/2)− x2 + · · ·+ xd ≤ b− ϵ/2

−(x1 − ϵ/2)− x2 + · · ·+ xd ≤ b− ϵ/2

...

−(x1 − ϵ/2)− x2 − · · · − xd ≤ b− ϵ/2

which define an ℓ1 ball of radius b− ϵ/2 centered at (ϵ/2, 0, . . . , 0), that is, ϵ/2 in the first

coordinate and zero everywhere else.

C Additional Plots of Certificate Upper Bounds

See Figure 5.10.

D Experimental Details

Our experiments are adapted from the released code for ℓ2 smoothing from [36].

In particular, for each Generalized Gaussian distribution with varying parameter q and
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.10: Upper bounds for certifying with Generalized Gaussian noise on CIFAR-10
images, with q = p, compared with certificates using Gaussian noise directly.Left panels
show the certificates and the bounds directly, while right panels show the ratios between
the i.i.d. distribution bounds (tighter in each case) and the certificates. Panels (a,b) use
unaltered CIFAR-10 images with σ = 0.5 noise. Panels (c,d) and (e,f) use CIFAR-10
images at 16 × 16 scale with σ = 0.12 and σ = 0.25 respectively. Panels (g,h) use
CIFAR-10 images at 8× 8 scale with σ = 0.12.
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standard deviation σ, we trained a ResNet-110 classifier on CIFAR-10 for 90 epochs,

with the training under the same noise distribution as used for certification. All training

and certification parameters are identical to those used in [36] unless otherwise specified.

In particular, all certificates are reported to 99.9% confidence, and we tested using a 500-

image subset of the CIFAR-10 test set. For lower-resolution versions of CIFAR-10, we

again trained separate models for each resolution used, with the resolution at training time

matching the resolution at test time. We first reduced the image resolutions before adding

noise, then, once the noise was added, scaled the images back to the original 32 × 32

resolution (by repeating pixel values) before classifying with ResNet-110: this ensured

that the number of parameters did not vary between classifiers.

We trained with σ = 0.12, 0.25, 0.50, 1.00 for resolutions 32 × 32, 16 × 16 and

8× 8. At higher levels of noise for each scale (σ = 0.25 for 8× 8, σ = 0.5 for 8× 8 and

16 × 16, σ = 1.00 on all scales) the resulting classifiers could not correctly certify the

median image (p1(x) < .5), so we do not report any certificates.

Values for ImageNet for the median certificate under Gaussian noise are adapted

from the released certificate data from [36].
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Chapter 6: Certifying Neural Network Confidence

6.1 Introduction

Deep neural networks have been shown to be vulnerable to adversarial attacks, in

which a nearly imperceptible perturbation is added to an input image to completely alter

the network’s prediction [1, 2, 3, 4]. Several empirical defenses have been proposed over

the years to produce classifiers that are robust to such perturbations [18, 19, 20, 21, 22,

23, 98]. However, without robustness guarantees, it is often the case that these defenses

are broken by stronger attacks [24, 25, 26, 141]. Certified defenses, such as those based

on convex-relaxation [27, 28, 29, 30, 31] and interval-bound propagation [32, 33, 34, 35],

address this issue by producing robustness guarantees within a neighborhood of an input

point. However, due to the complexity of present-day neural networks, these methods

have seen limited use in high-dimensional datasets such as ImageNet.

Randomized smoothing has recently emerged as the state-of-the-art technique for

certifying adversarial robustness with the scalability to handle datasets as large as ImageNet

[36, 37, 38, 39]. This defense uses a base classifier, e.g. a deep neural network, to make

predictions. Given an input image, a smoothing method queries the top class label at

a large number of points in a Gaussian distribution surrounding the image, and returns

the label with the majority vote. If the input image is perturbed slightly, the new voting
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population overlaps greatly with the smoothing distribution around the original image,

and so the vote outcome can change only a small amount.

Conventional smoothing throws away a lot of information about class labels, and

has limited capabilities that make its outputs difficult to use for decision making. Conventional

classification networks with a softmax layer output a confidence score that can be interpreted

as the degree of certainty the network has about the class label [142]. This is a crucial

piece of information in real world decision-making applications such as self-driving cars [143]

and disease-diagnosis networks [144], where safety is paramount.

In contrast, standard Gaussian smoothing methods take binary votes at each randomly

sampled point – i.e., each point votes either for or against the most likely class, without

conveying any information about how confident the network is in the class label. This may

lead to scenarios where a point has a large certified radius but the underlying classifier has

a low confidence score. For example, imagine a 2-way classifier for which a large portion,

say 95%, of the sampled points predict the same class. In this case, the certified radius

will be very large (indicating that this image is not an ℓ2-bounded adversarial example).

However, it could be that each point predicts the top class with very low confidence. In

this case, one should have very low confidence in the class label, despite the strength of

the adversarial certificate. A Gaussian smoothing classifier counts a 51% confidence vote

exactly the same way as a 99% confidence vote, and this important information is erased.

In this work, we restore confidence information in certified classifiers by proposing

a method that produces class labels with a certified confidence score. Instead of taking a

vote at each Gaussian sample around the input point, we average the confidence scores

from the underlying base classifier for each class. The prediction of our smoothed classifier
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is given by the argmax of the expected scores of all the classes. Using the probability

distribution of the confidence scores under the Gaussian, we produce a lower bound on

how much the expected confidence score of the predicted class can be manipulated by

a bounded perturbation to the input image. To do this, we adapt the Neyman-Pearson

lemma, the fundamental theorem that characterizes the worst-case behaviour of the classifier

under regular (binary) voting, to leverage the distributional information about the confidence

scores. The lower bound we obtain is monotonically decreasing with the ℓ2-norm of

the perturbation and can be expressed as a linear combination of the Gaussian CDF at

different points. This allows us to design an efficient binary search based algorithm to

compute the radius within which the expected score is guaranteed to be above a given

threshold. Our method endows smoothed classifiers with the new and important capability

of producing confidence scores.

We study two notions of measuring confidence: the average prediction score of a

class, and the margin by which the average prediction score of one class exceeds that of

another. The average prediction score is the expected value of the activations in the final

softmax-layer of a neural network under the smoothing distribution. A class is guaranteed

to be the predicted class if its average prediction score is greater than one half (since

softmax values add up to one) or it maintains a positive margin over all the other classes.

For both these measures, along with the bounds described in the previous paragraph, we

also derive naive lower bounds on the expected score at a perturbed input point that do not

use the distribution of the scores. We perform experiments on CIFAR-10 and ImageNet

datasets which show that using information about the distribution of the scores allows us

to achieve better certified guarantees than the naive method.
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Related work: Randomized smoothing as a technique to design certifiably robust

machine learning models has been studied amply in recent years. It has been used

to produce certified robustness against additive threat models, such as, ℓ1 [37, 121],

ℓ2 [36, 122, 123] and ℓ0-norm [69, 124] bounded adversaries, as well as non-additive

threat models, such as, Wasserstein Adversarial attacks [82]. A derandomized version has

been shown to provide robustness guarantees for patch attacks [68]. Smoothed classifiers

that use the average confidence scores have been studied in [39] to achieve better certified

robustness through adversarial training. A recent work uses the median score to generated

certified robustness for regression models [125]. Differential privacy based defense method

studied in [37] is capable of providing a guarantee on the test accuracy of a robust

model under adversarial attack. Various limitations of randomized smoothing, like its

inapplicability to high-dimensional problems for ℓ∞-robustness, have been studied in [50,

140, 145].

6.2 Background and Notation

Gaussian smoothing, introduced by Cohen et al. in 2019, relies on a “base classifier,”

which is a mapping f : Rd → Y where Rd is the input space and Y is a set of k classes.

It defines a smoothed classifier f̄ as

f̄(x) = argmax
c∈Y

P(f(x+ δ) = c)

where δ ∼ N (0, σ2I) is sampled from an isometric Gaussian distribution with variance

σ2. It returns the class that is most likely to be sampled by the Gaussian distribution
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centered at point x. Let p1 and p2 be the probabilities of sampling the top two most likely

classes. Then, f̄ is guaranteed to be constant within an ℓ2-ball of radius

R =
σ

2

(
Φ−1(p1)− Φ−1(p2)

)

where Φ−1 is the inverse CDF of the standard Gaussian distribution [36]. For a practical

certification algorithm, a lower bound p1 on p1 and an upper bound p2 = 1 − p1 on p2,

with probability 1−α for a given α ∈ (0, 1), are obtained and the certified radius is given

by R = σΦ−1(p1). This analysis is tight for ℓ2 perturbations; the bound is achieved by a

worst-case classifier in which all the points in the top-class are restricted to a half-space

separated by a hyperplane orthogonal to the direction of the perturbation.

In our discussion, we diverge from the standard notation described above, and

assume that the base classifier f maps points in Rd to a k-tuple of confidence scores.

Thus, f : Rd → (a, b)k for some a, b ∈ R and a < b1. We define the smoothed version of

the classifier as

f̄(x) = E
δ∼N (0,σ2I)

[f(x+ δ)],

which is the expectation of the class scores under the Gaussian distribution centered

at x. The final prediction is made by taking an argmax of the expected scores. This

definition has been studied by Salman et al. in [39] to develop an attack against smoothed

classifiers which when used in an adversarial training setting helps boost the performance

of conventional smoothing. The goal of this work is to identify a radius around an image

x within which the expected confidence score of the predicted class i, i.e. f̄i(x) =

1(a, b) denotes the open interval between a and b.
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E[fi(x+ δ)], remains above a given threshold c ∈ (a, b)2.

We measure confidence using two different notions. The first measure is the average

prediction score of a class as output by the final softmax layer. We denote the prediction

score function with h : Rd → (0, 1)k and define the average for class i as h̄i(x) =

E[hi(x + δ)]. The second one is the margin mi(x) = hi(x) − maxj ̸=i hj(x) by which

class i beats every other class in the softmax prediction score. In section 6.4, we show

that the expected margin m̄i(x) = E[mi(x + δ)] for the predicted class is a lower-bound

on the gap in average prediction scores of the top two class labels. Thus, m̄i(x) > 0

implies that i is the predicted class.

6.3 Certifying Confidence Scores

Standard Gaussian smoothing for establishing certified class labels essentially works

by averaging binary (0/1) votes from every image in a Gaussian cloud around the input

image, x. It then establishes the worst-case class boundary given the recorded vote, and

produces a certificate. The same machinery can be applied to produce a naive certificate

for confidence score; rather than averaging binary votes, we simply average scores. We

then produce the worst-case class distribution, in which each class lives in a separate

half-space, and generate a certificate for this worst case.

However, the naive certificate described above throws away a lot of information.

When continuous-values scores are recorded, we obtain not only the average score, but

also the distribution of scores around the input point. By using this distributional information,

we can potentially create a much stronger certificate.
2fi(x) denotes the ith component of f(x)
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To see why, consider the extreme case of a “flat” classifier function for which every

sample in the Gaussian cloud around x returns the same top-class prediction score of 0.55.

In this case, the average score is 0.55 as well. For a function where the distribution of

score votes is concentrated at 0.55 (or any other value great than 1/2), the average score will

always remain at 0.55 for any perturbation to x, thus yielding an infinite certified radius.

However, when using the naive approach that throws away the distribution, the worst-case

class boundary with average vote 0.55 is one with confidence score 1.0 everywhere in a

half-space occupying 0.55 probability, and 0.0 in a half-space with 0.45 probability. This

worst-case, which uses only the average vote, produces a very small certified radius, in

contrast to the infinite radius we could obtain from observing the distribution of votes.

Below, we first provide a simple bound that produces a certificate by averaging

scores around the input image, and directly applying the framework from [36]. Then,

we describe a more refined method that uses distributional information to obtain stronger

bounds.

6.3.1 A baseline method using Gaussian means

In this section, we describe a method that uses only the average confidence over

the Gaussian distribution surrounding x, and not the distribution of values, to bound how

much the expected score can change when x is perturbed with an ℓ2 radius ofR units. This

is a straightforward extension of Cohen et al.’s [36] work to our framework. It shows that

regardless the behaviour of the base classifier f , its smoothed version f̄ changes slowly

which is similar to the observation of bounded Lipschitz-ness made by Salman et al.
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in [39] (Lemma 2). The worst-case classifier in this case assumes value a in one half

space and b in other, with a linear boundary between the two as illustrated in figure 6.1.

The following theorem formally states the bounds, the proof of which is deferred to the

appendix3.

Theorem 11. Let ei(x) and ei(x) be a lower-bound and an upper-bound respectively on

the expected score f̄i(x) for class i and, let pi(x) =
ei(x)−a

b−a
and pi(x) = ei(x)−a

b−a
. Then,

for a perturbation x′ of the input x, such that, ∥x′ − x∥2 ≤ R,

f̄i(x
′) ≥ bΦσ(Φ

−1
σ (pi(x))−R) + a(1− Φσ(Φ

−1
σ (pi(x))−R)) (6.1)

and

f̄i(x
′) ≤ bΦσ(Φ

−1
σ (pi(x)) +R) + a(1− Φσ(Φ

−1
σ (pi(x)) +R))

where Φσ is the CDF of the univariate Gaussian distribution with σ2 variance, i.e.,

N (0, σ2).

6.3.2 Proposed certificate

The bounds in section 6.3.1 are a simple application of the Neyman-Pearson lemma

to our framework. But this method discards a lot of information about how the class

scores are distributed in the Gaussian around the input point. Rather than consolidating

the confidence scores from the samples into an expectation, we propose a method that uses

the cumulative distribution function of the confidence scores to obtain improved bounds

3A separate proof, using Lemma 2 from Salman et al. in [39], for this theorem for σ = 1 is also included
in the appendix.
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on the expected class scores.

Given an input x, we draw m samples from the Gaussian distribution around x.

We use the prediction of the base classifier f on these points to generate bounds on the

distribution function of the scores for the predicted class. These bounds, in turn, allow us

to bound the amount by which the expected score of the class will decrease under an ℓ2

perturbation. Finally, we apply binary search to compute the radius for which this lower

bound on the expected score remains above c.

Consider the sampling of scores around an image x using a Gaussian distribution.

Let the probability with which the score of class i is above s be

pi,s(x) = P
δ∼N (0,σ2I)

(fi(x+ δ) ≥ s).

For point x and class i, consider the random variable Z = −fi(x + δ) where δ ∼

N (0, σ2I). Let F (s) = P(Z ≤ s) be the cumulative distribution function of Z and

Fm(s) = 1
m

∑m
j=1 1{Zj ≤ s} be its empirical estimate. For a given α ∈ (0, 1), the

Dvoretzky–Kiefer–Wolfowitz inequality [146] says that, with probability 1 − α, the true

CDF is bounded by the empirical CDF as follows:

Fm(s)− ϵ ≤ F (s) ≤ Fm(s) + ϵ,∀s,

where ϵ =
√

ln 2/α
2m

. Thus, pi,s(x) is also bounded within ±ϵ of its empirical estimate∑m
j=1 1{fi(x+ δj) ≥ s}.

The following theorem bounds the expected class score under an ℓ2 perturbation
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using bounds on the cumulative distribution of the scores.

Theorem 12. Let, for class i, a < s1 ≤ s2 ≤ · · · ≤ sn < b be n real numbers and let

pi,sj(x) and pi,sj(x) be upper and lower bounds on pi,sj(x) respectively derived using the

Dvoretzky–Kiefer–Wolfowitz inequality, with probability 1 − α, for a given α ∈ (0, 1).

Then, for a perturbation x′ of the input x, such that, ∥x′ − x∥2 ≤ R,

f̄i(x
′) ≥ a+(s1−a)Φσ(Φ

−1
σ (pi,s1(x))−R)+

n∑
j=2

(sj−sj−1)Φσ(Φ
−1
σ (pi,sj(x))−R) (6.2)

and

f̄i(x
′) ≤ s1 + (b− sn)Φσ(Φ

−1
σ (pi,sn(x)) +R) +

n−1∑
j=1

(sj+1 − sj)Φσ(Φ
−1
σ (pi,sj(x)) +R)

where Φσ is the CDF of the univariate Gaussian distribution with σ2 variance, i.e.,

N (0, σ2).

The above bounds are tight for ℓ2 perturbations. The worst-case classifier for the

lower bound is one in which the class score decreases from b to a in steps, taking values

sn, sn−1, . . . , s1 at each level. Figure 6.2 illustrates this case for three intermediate levels.

A similar worst-case scenario can be constructed for the upper bound as well where the

class score increases from a to b along the direction of the perturbation. Even though

our theoretical results allow us to derive both upper and lower bounds for the expected

scores, we restrict ourselves to the lower bound in our experimental results. We provide

a proof sketch for this theorem in section 6.3.3. Our experimental results show that the

CDF-based approach beats the naive bounds in practice by a significant margin, showing
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that having more information about the classifier at the input point can help achieve better

guarantees.

Computing the certified radius Both the bounds in theorem 12 monotonic in

R. So, in order to find a certified radius, up to a precision τ , such that the lower (upper)

bound is above (below) a certain threshold we can apply binary search which will require

at most O(log(1/τ)) evaluations of the bound.

6.3.3 Proof of Theorem 12

We present a brief proof for theorem 12. We use a slightly modified version of the

Neyman-Pearson lemma (stated in [36]) which we prove in the appendix.

Lemma 13 (Neyman & Pearson, 1933). Let X and Y be random variables in Rd with

densities µX and µY . Let h : Rd → (a, b) be a function. Then:

1. If S =
{
z ∈ Rd | µY (z)

µX(z)
≤ t
}

for some t > 0 and P(h(X) ≥ s) ≥ P(X ∈ S), then

P(h(Y ) ≥ s) ≥ P(Y ∈ S).

2. If S =
{
z ∈ Rd | µY (z)

µX(z)
≥ t
}

for some t > 0 and P(h(X) ≥ s) ≤ P(X ∈ S), then

P(h(Y ) ≥ s) ≤ P(Y ∈ S).

Set X to be the smoothing distribution at an input point x and Y to be that at x+ ϵ

for some perturbation vector ϵ. For a class i, define sets Si,j = {z ∈ Rd | µY (z)/µX(z) ≤

ti,j} for some ti,j > 0, such that, P(X ∈ Si,j) = pi,sj(x). Similarly, define sets Si,j =

{z ∈ Rd | µY (z)/µX(z) ≥ t′i,j} for some t′i,j > 0, such that, P(X ∈ Si,j) = pi,sj(x).

Since, P(fi(X) ≥ sj) ≥ P(X ∈ Si,j), using lemma 13 we can say that P(fi(Y ) ≥ si) ≥
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P(Y ∈ Si,j). Therefore,

E[fi(Y )] ≥ snP(fi(Y ) ≥ sn) + sn−1(P(fi(Y ) ≥ sn−1)− P(fi(Y ) ≥ sn))

+ · · ·+ s1(P(fi(Y ) ≥ s1)− P(fi(Y ) ≥ s2)) + a(1− P(fi(Y ) ≥ s1))

= a+ (s1 − a)P(fi(Y ) ≥ s1) +
n∑

j=2

(sj − sj−1)P(fi(Y ) ≥ sj)

≥ a+ (s1 − a)P(Y ∈ Si,1) +
n∑

j=2

(sj − sj−1)P(Y ∈ Si,j).

Similarly, P(fi(X) ≥ sj) ≤ P(X ∈ Si,j) implies P(fi(Y ) ≥ sj) ≤ P(Y ∈ Si,j) as per

lemma 13. Therefore,

E[fi(Y )] ≤ bP(fi(Y ) ≥ sn) + sn(P(fi(Y ) ≥ sn−1)− P(fi(Y ) ≥ sn))

+ · · ·+ s1(1− P(fi(Y ) ≥ s1))

= (b− sn)P(fi(Y ) ≥ sn) +
n−1∑
j=1

(sj+1 − sj)P(fi(Y ) ≥ sj) + s1

≤ s1 + (b− sn)P(Y ∈ Si,n) +
n−1∑
j=1

(sj+1 − sj)P(Y ∈ Si,j).

Since, we are smoothing using an isometric Gaussian distribution with σ2 variance,

µX = N (x, σ2I) and µY = N (x+ ϵ, σ2I). Then, for some t and β

µY (z)

µY (z)
≤ t ⇐⇒ ϵT z ≤ β

µY (z)

µY (z)
≥ t ⇐⇒ ϵT z ≥ β.

Thus, each of the sets Si,j and Si,j is a half space defined by a hyper-plane orthogonal to
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the direction of the perturbation. This simplifies our analysis to one dimension, namely,

the one along the perturbation. For each of the sets Si,j and Si,j , we can find a point on the

real number line Φ−1
σ (pi,sj(x)) and Φ−1

σ (pi,sj(x)) respectively such that the probability of

a Gaussian sample to fall in that set is equal to the Gaussian CDF at that point. Therefore,

f̄i(x+ ϵ) ≥ a+ (s1 − a)Φσ(Φ
−1
σ (pi,s1(x))−R) +

n∑
j=2

(sj − sj−1)Φσ(Φ
−1
σ (pi,sj(x))−R)

and

f̄i(x+ ϵ) ≤ s1 + (b− sn)Φσ(Φ
−1
σ (pi,sn(x)) +R) +

n−1∑
j=1

(sj+1 − sj)Φσ(Φ
−1
σ (pi,sj(x)) +R)

which completes the proof of theorem 12. We would like to note here that although we

use the Gaussian distribution for smoothing, the modified Neyman-Pearson lemma does

not make any assumptions on the shape of the distributions which allows for this proof to

be adapted for other smoothing distributions as well.

6.4 Confidence measures

We study two notions of confidence: average prediction score of a class and the

margin of average prediction score between two classes. Usually, neural networks make

their predictions by outputting a prediction score for each class and then taking the argmax

of the scores. Let h : Rd → (0, 1)k be a classifier mapping input points to prediction

scores between 0 and 1 for each class. We assume that the scores are generated by a

softmax-like layer, i.e., 0 < hi(x) < 1,∀i ∈ {1, . . . , k} and
∑

i hi(x) = 1. For δ ∼
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N (0, σ2I), we define average prediction score for a class i as

h̄i(x) = E[hi(x+ δ)].

The final prediction for the smoothed classifier is made by taking an argmax over the

average prediction scores of all the classes, i.e., argmaxi h̄i(x). Thus, if for a class j,

h̄j(x) ≥ 0.5, then j = argmaxi h̄i(x).

Now, we define margin m at point x for a class i as

mi(x) = hi(x)−max
j ̸=i

hj(x).

Thus, if i is the class with the highest prediction score, mi(x) is the lead it has over the

second highest class (figure 6.4). And, for any other class mi(x) is the negative of the

difference of the scores of that class with the highest class. We define average margin at

point x under smoothing distribution P as

m̄i(x) = E[mi(x+ δ)].

Figure 6.4: Margin

For a pair of classes i and j, we have,

h̄i(x)− h̄j(x) = E[hi(x+ δ)]− E[hj(x+ δ)]

= E[hi(x+ δ)− hj(x+ δ)]

≥ E[hi(x+ δ)−max
j ̸=i

hj(x+ δ)]
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= E[mi(x+ δ)] = m̄i(x)

h̄i(x) ≥ h̄j(x) + m̄i(x).

Thus, if m̄i(x) > 0, then class i must have the highest average prediction score making it

the predicted class under this notion of confidence measure.

6.5 Experiments

We conduct several experiments to motivate the use of certified confidence, and to

validate the effectiveness of our proposed CDF-based certificate.

6.5.1 Does certified radius correlate with confidence score?

A classifier can fail because of an adversarial attack, or because of epistemic uncertainty

– a class label may be uncertain or wrong because of lack of useful features, or because

the model was not trained on sufficient representative data. The use of certified confidence

is motivated by the observation that the original Gaussian averaging, which certifies the

security of class labels, does not convey whether the user should be confident in the label

because it neglects epistemic uncertainty. We demonstrate this with a simple experiment.

In figure 6.5, we show plots of softmax prediction score vs. certified radius obtained

using smoothed ResNet-110 and ResNet-50 classifiers trained by Cohen et al. in [36] for

CIFAR-10 and ImageNet respectively. The noise level σ used for this experiment was

0.25. For both models, the certified radii correlate very little with the prediction scores

for the input images. The CIFAR-10 plot has points with high scores but small radii.
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While, for ImageNet, we see a lot of points with low scores but high radii. This motivates

the need for certifying confidence; high radius does not imply high confidence of the

underlying classifier. This lack of correlation is visualized in figure 6.6.

Figure 6.5: Prediction

Score vs. Certified Radius.

In the plots, CIFAR-10 images tend to have a higher

prediction score than ImageNet images which is potentially

due to the fact that the ImageNet dataset has a lot more

classes than the CIFAR-10 dataset, driving the softmax

scores down. There is a hard limit (∼ 0.95 for ImageNet)

on the largest radius that can be generated by Cohen et al.’s

certifying algorithm which causes a lot of the ImageNet

points to accumulate at this radius value. This limit comes

from the fact that even if all the samples around an input

image vote for the same class, the lower-bound on the top-

class probability is strictly less than one, which keeps the

certified radius within a finite value.

6.5.2 Evaluating the strength of bounds

We use the ResNet-110 and ResNet-50 models trained by Cohen et al. in [36]

on CIFAR-10 and ImageNet datasets respectively to generate confidence certificates.

These models have been pre-trained with varying Gaussian noise level σ in the training

data. We use the same σ for certifying confidences as well. We use the same number

of samples m = 100, 000 and value of α = 0.001 as in [36]. We set s1, s2. . . . , sn
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in theorem 12 such that the number of confidence score values falling in each of the

intervals (a, s1), (s1, s2), . . . , (sn, b) is the same. We sort the scores from the m samples

in increasing order and set si to be the element at position 1 + (i − 1)m/n in the order.

We chose this method of splitting the range (a, b), instead of at regular steps, to keep

the intervals well-balanced. We present results for both notions of confidence measure:

average prediction score and margin. Figure 6.11 plots certified accuracy, using the naive

bound and the CDF-based method, for different threshold values for the top-class average

prediction score and the margin at various radii for σ = 0.25. The same experiments for

σ = 0.50 have been included in the appendix.

Each line is for a given threshold for the confidence score. The solid lines represent

certificates derived using the CDF bound and the dashed lines are for ones using the naive

bound. For the baseline certificate (6.1), we use Hoeffding’s inequality to get a lower-

bound on the expected top-class confidence score ei(x), that holds with probability 1−α,

for a given α ∈ (0, 1).

ei(x) =
1

m

m∑
j=1

fi(x+ δj)− (b− a)

√
ln(1/α)

2m

This bound is a reasonable choice because pi(x) differs from the empirical estimate by

the same amount
√
ln(1/α)/2m as pi,s(x) in the proposed CDF-based certificate. In the

appendix, we also show that the baseline certificate, even with the best-possible lower-

bound for ei(x), cannot beat our method for most cases.

We see a significant improvement in certified accuracy (e.g. at radius = 0.25) when

certification is done using the CDF method instead of the naive bound. The confidence
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measure based on the margin between average prediction scores yields slightly better

certified accuracy when thresholded at zero than the other measure.

6.6 Conclusion

While standard certificates can guarantee that a decision is secure, they contain

little information about how confident the user should be in the assigned label. We

present a method that certifies the confidence scores, rather than the labels, of images.

By leveraging information about the distribution of confidence scores around an input

image, we produce certificates that beat a naive bound based on a direct application

of the Neyman-Pearson lemma. The results in this work show that certificates can be

strengthened by incorporating more information into the worst-case bound than just the

average vote. We hope this line of research leads to methods for strengthening smoothing

certificates based on other information sources, such as properties of the base classifier or

the spatial distribution of votes.
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Figure 6.1: Naive classifier

Figure 6.2: CDF-based classifier

Figure 6.3: Worst case classifier behaviour using (a) naive approach and (b) CDF-based
method. As the center of the distribution moves from x to x′, the probability mass of
the higher values of the score function (indicated in red) decreases and that of the lower
values (indicated in blue) increases, bringing down the value of the expected score.
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Radius< 0.2, Confidence Score> 0.7 Radius> 0.5, Confidence
Score< 0.4

ImageNet:


radius < 0.4 & conf > 0.6                                                 radius > 0.9 & conf < 0.1


CIFAR-10:


radius < 0.2 & conf > 0.7                                              radius > 0.5 & conf < 0.4


CIFAR-10

Radius< 0.4, Confidence Score> 0.6 Radius> 0.9, Confidence
Score< 0.1

ImageNet:


radius < 0.4 & conf > 0.6                                                 radius > 0.9 & conf < 0.1


CIFAR-10:


radius < 0.2 & conf > 0.7                                              radius > 0.5 & conf < 0.4


ImageNet

Figure 6.6: Certified radius does not correlate well with human visual confidence or
network confidence score. Low radius images on the left have high confidence scores,
while the high radius images on the right all have low confidence scores. There is not a
pronounced visual difference between low- and high-radius images.
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Figure 6.7: Average Prediction Score (CIFAR-10)

Figure 6.8: Margin (CIFAR-10)

Figure 6.9: Average Prediction Score (ImageNet)

Figure 6.10: Margin (ImageNet)

Figure 6.11: Certified accuracy vs. radius (CIFAR-10 & ImageNet) at different cutoffs
for average confidence score with σ = 0.25. Solid and dashed lines represent certificates
computed with and without CDF bound respectively.
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6.7 Appendices

A Proof of Theorem 11

We first prove a slightly modified version of the Neyman-Pearson lemma.

Lemma 14 (Neyman & Pearson, 1933). Let X and Y be random variables in Rd with

densities µX and µY . Let h : Rd → (a, b) be a function. Then:

1. If S =
{
z ∈ Rd | µY (z)

µX(z)
≤ t
}

for some t > 0 and E[h(X)] ≥ (b−a)P(X ∈ S)+a,

then E[h(Y )] ≥ (b− a)P(Y ∈ S) + a.

2. If S =
{
z ∈ Rd | µY (z)

µX(z)
≥ t
}

for some t > 0 and E[h(X)] ≤ (b−a)P(X ∈ S)+a,

then E[h(Y )] ≤ (b− a)P(Y ∈ S) + a.

Proof. Let Sc be the complement set of S.

E[h(Y )]− (b− a)P(Y ∈ S)− a = E[h(Y )]− bP(Y ∈ S)− a(1− P(Y ∈ S))

= E[h(Y )]− bP(Y ∈ S)− aP(Y /∈ S)

=

∫
Rd

h(z)µY (z)dz − b

∫
S

µY (z)dz − a

∫
Sc

µY (z)dz

=

[∫
Sc

h(z)µY (z)dz +

∫
S

h(z)µY (z)dz

]
− b

∫
S

µY (z)dz − a

∫
Sc

µY (z)dz

=

∫
Sc

(h(z)− a)µY (z)dz −
∫
S

(b− h(z))µY (z)dz

≥ t

[∫
Sc

(h(z)− a)µX(z)dz −
∫
S

(b− h(z))µX(z)dz

]
(since a < h(z) < b)

185



= t

[∫
Rd

h(z)µX(z)dz − b

∫
S

µX(z)dz − a

∫
Sc

µX(z)dz

]
= t [E[h(X)]− bP(X ∈ S)− aP(X /∈ S)]

= t [E[h(X)]− bP(X ∈ S)− a(1− P(X ∈ S))]

= t [E[h(X)]− (b− a)P(X ∈ S)− a] ≥ 0

The second statement can be proven similarly by switching ≥ and ≤.

In the first statement of the lemma, set h to fi, µX to N (x, σ2I) and µY to N (x′, σ2I),

and find a t, such that, P(X ∈ S) = pi(x). Now, since µX and µY are isometric Gaussians

with the same variance,

µY (z)

µX(z)
≤ t ⇐⇒ (x′ − x)T z ≤ β

for some β ∈ R. Therefore, the set S is a half-space defined by a hyper-plane orthogonal

to the perturbation x′ − x. So, if ∥x′ − x∥2 ≤ R, then P(Y ∈ S) ≥ Φσ(Φ
−1
σ (pi(x))−R).

f̄i(x
′) = E[fi(Y )]

≥ (b− a)P(Y ∈ S) + a (from the above lemma)

≥ (b− a)Φσ(Φ
−1
σ (pi(x))−R) + a

= bΦσ(Φ
−1
σ (pi(x))−R) + a(1− Φσ(Φ

−1
σ (pi(x))−R))

The upper bound on f̄i(x′) can be derived similarly by applying the second statement of

the above lemma.
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A.1 Alternate proof

Theorem 11 can also be proved for σ = 1 using Lemma 2 from Salman et al. in [39].

This lemma states that for any function g : Rd → (0, 1), Φ−1(ḡ) is 1-Lipschitz, where

Φ−1 is the inverse CDF of the standard Gaussian distribution. Set g(.) to be fi(.)−a
b−a

for an

arbitrary class i. Then, ḡ(x) = f̄i(x)−a
b−a

is upper and lower bounded by pi(x) and pi(x)

respectively. Due to the Lipschitz condition, we have,

Φ−1(ḡ(x))− Φ−1(ḡ(x′)) ≤ ∥x− x′∥2 ≤ R

Φ−1(ḡ(x′)) ≥ Φ−1(ḡ(x′))−R ≥ Φ−1(pi(x))−R

ḡ(x′) ≥ Φ(Φ−1(pi(x))−R)

Substituting ḡ(x) = f̄i(x)−a
b−a

and rearranging terms appropriately gives us the first bound

in theorem 11. The second bound can be derived similarly.

B Proof of Lemma 13

Let Sc be the complement set of S.

P(h(Y ) ≥ s)− P(Y ∈ S) =

∫
Rd

1{h(z) ≥ s}µY (z)dz −
∫
S

µY (z)dz

=

[∫
Sc

1{h(z) ≥ s}µY (z)dz +

∫
S

1{h(z) ≥ s}µY (z)dz

]
−
∫
S

µY (z)dz

=

∫
Sc

1{h(z) ≥ s}µY (z)dz −
∫
S

(1− 1{h(z) ≥ s})µY (z)dz
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≥ t

[∫
Sc

1{h(z) ≥ s}µX(z)dz −
∫
S

(1− 1{h(z) ≥ s})µX(z)dz

]
(since 0 ≤ 1{h(z) ≥ s} ≤ 1)

= t

[∫
Rd

1{h(z) ≥ s}µX(z)dz −
∫
S

µX(z)dz

]
= t [P(h(X) ≥ s)− P(X ∈ S)] ≥ 0

The second statement of the lemma can be proven similarly by switching ≥ and ≤.

C Additional Experiments

In section 6.5.2, we compared the two methods, using Hoeffding’s inequality and

Dvoretzky–Kiefer–Wolfowitz inequality to derive the required lower bounds, for the certificates.

We repeat the same experiments in figure 6.16 for σ = 0.50. Then, in figure 6.21, we

show that the CDF-based method (using the DKW inequality) outperforms the baseline

approach regardless of how tight a lower-bound for ei(x) is used in the baseline certificate (6.1).

We replace ei(x) with the empirical estimate of the expectation êi(x) =
∑m

j=1 fi(x +

δj)/m, which is an upper bound on ei(x). And since bound (6.1) is an increasing function

of ei(x), any valid lower bound ei(x) on the expectation cannot yield a certified accuracy

better than that obtained using êi(x). We compare our certificate with the best-possible

baseline certificate for some of Cohen et al. [36]’s ResNet-110 models trained on the

CIFAR-10 dataset using the same value of α as in section 6.5.2. The baseline mostly

stays below the CDF-based method for both types of confidence measures under the noise

levels considered.
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Figure 6.12: Average Prediction Score (CIFAR-10)

Figure 6.13: Margin (CIFAR-10)

Figure 6.14: Average Prediction Score (ImageNet)

Figure 6.15: Margin (ImageNet)

Figure 6.16: Certified accuracy vs. radius (CIFAR-10 & ImageNet) at different cutoffs
for average confidence score with σ = 0.50. Solid and dashed lines represent certificates
computed with and without CDF bound respectively.
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Figure 6.17: Average Prediction Score at σ = 0.25

Figure 6.18: Margin at σ = 0.25

Figure 6.19: Average Prediction Score at σ = 0.50

Figure 6.20: Margin at σ = 0.50

Figure 6.21: Certified accuracy vs. radius (CIFAR-10 only) at different cutoffs for average
confidence score. Solid lines represent certificates computed with the CDF bound and
dashed lines represent the best-possible baseline certificate.
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Chapter 7: Streaming Models with a Sliding Window

7.1 Introduction

Deep neural network (DNN) models are increasingly being adopted for real-time

decision-making tasks. They are often required to make predictions on an evolving stream

of inputs in applications like algorithmic trading [147, 148, 149, 150, 151], human action

recognition [152, 153, 154] and speech detection [155, 156, 157]. However, DNNs are

known to malfunction under tiny perturbations of the input, such as an imperceptible

noise added to an image, designed to fool them into making incorrect predictions [1, 2, 3,

24, 56]. This vulnerability is not limited just to static models like classifiers and has been

demonstrated for streaming models as well [158, 159, 160, 161]. Such input corruptions,

commonly known as adversarial attacks, make DNNs especially risky for safety-critical

applications such as health monitoring [162, 163, 164, 165] and autonomous driving [97,

166, 167].

Over the years, a long line of research has been dedicated to mitigating this weakness

of DNNs. These methods seek to improve the robustness of a model by introducing input

corruptions during training [18, 19, 20, 21, 22, 23, 98, 168]. However, such empirical

defenses have been shown to break down under newer and stronger attacks [24, 25,

26, 141]. This motivated the study of provable robustness in machine learning (ML)
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which seeks to obtain verifiable guarantees on the adversarial performance of a DNN.

Several certified robustness techniques have been developed over the years, most notable

of which are based on convex relaxation [27, 28, 29, 30, 31], interval-bound propagation

[32, 33, 34, 35] and randomized smoothing [36, 37, 38, 39, 67]. However, most of

this work focuses on static tasks with independently generated inputs and the adversarial

streaming setting still remains open. What makes the streaming setting more challenging

is that the adversary can choose the attack budget based on previous inputs. For instance,

it could wait for a critical decision-making point, such as a trading algorithm making

a buy/sell recommendation or an autonomous vehicle approaching a stop sign, before

generating an adversarial perturbation.

In this work, we derive provable robustness guarantees for the streaming setting,

where inputs are presented as a sequence of potentially correlated items. We design

certificates that produce guarantees on the average model performance over long, potentially

infinite, data streams. Our threat model is defined as a man-in-the-middle adversary

present between the DNN and the data stream. It can perturb the input items before

they are observed by the DNN. The adversary is constrained by a limit on the average

size of the perturbation added to the inputs. We show that a DNN that randomizes

the inputs before making predictions is guaranteed to achieve a certain performance

level for any adversary within this threat model. Unlike existing randomized smoothing-

based approaches that aggregate predictions over several noised samples (∼ 106) of the

input, our procedure only requires one sample of the randomized input, keeping the

computational complexity of the DNN unchanged. Our certificates are independent of

the stream length, making them suitable for large streams.
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Technical Challenges: Provable robustness procedures developed for static tasks

like classification assume that the inputs are sampled independently from the data distribution.

Robustness certificates are derived for individual input instances assuming that the DNN

is evaluated on each instance separately. The adversarial perturbation added to one input

does not affect the DNN’s output for another. However, in the streaming ML setting,

the prediction at a given time-step is dependent on past input items in the data stream.

A worst-case adversary can exploit this dependence to adapt and strengthen its attack. A

robustness certificate derived under the assumption of independence of input samples may

not hold for such correlated inputs. Thus, there is a need to design provable robustness

techniques tailored specifically for the streaming ML setting.

Out of the existing certified robustness techniques, randomized smoothing has become

prominent due to its model-agnostic nature, scalability for high-dimensional problems

[37], and flexibility to adapt to different machine learning paradigms like reinforcement

learning and structured outputs [49, 70, 71]. This makes randomized smoothing a suitable

candidate for provable robustness in streaming ML. However, conventional randomized

smoothing approaches require several evaluations (∼ 106) of the prediction model on

different noise vectors in order to produce a robust output. This significantly increases the

computational requirements of the model making them infeasible for real-world streaming

applications which require decisions to be made in a short time frame such as high-

frequency trading and autonomous driving. Our goal is to obtain robustness guarantees

for a simple technique that only adds a single noise vector to the DNN’s input.

Existing works on provable robustness in reinforcement learning [70, 71] indicate

that if the prediction at a given time-step is a function of the entire stream till that step,
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the robustness guarantees worsen with the length of the stream and become vacuous for

large stream sizes. The tightness analysis of these certificates suggests that it is difficult

to achieve robustness guarantees that are independent of the stream size. However, many

practical streaming models use only a bounded number of past input items in order to

make predictions at a given time step. Recent work has also shown that near-optimal

performance can be achieved by only observing a small number of past inputs for several

real-world sequential decision-making problems [169]. This raises the natural question:

Can we obtain better certificates if the DNN only used a fixed number of

inputs from the stream?

Our Contributions: We design a robustness certificate for streaming models that

use a fixed-sized sliding window over the data stream to make predictions (see Figure 7.1).

In our setting, the DNN only uses the part of the data stream inside the window at any

given time step. We certify the average performance Z of the model over a stream of size

t:

Z =

∑t
i=1 fi
t

,

where each fi measures the performance of the DNN at time-step i as a value in the range

[0, 1].

The adversary is allowed to perturb the input items inside the window at every time

step separately. The strength of the adversary is limited by a bound ϵ on the average size

of the perturbation added: ∑t
i=1

∑w
k=1 d(xi, x

k
i )

wt
≤ ϵ,
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Figure 7.1: Adversarial Streaming Threat Model.

where xi and xki are the input item

at time-step i and its kth adversarial

perturbation respectively, w is the

window size and d is a distance

function to measure the size of the

adversarial perturbations, e.g., d(xi, xki ) = ∥xi − xki ∥2. Our adversarial threat model

is general enough to subsume the scenario where the attacker only perturbs each stream

element only once as a special case where all xki s are set to some x′i.

Our main theoretical result shows that the difference between the clean performance

Z̃ of a robust streaming model and its performance Z̃ϵ in the presence of an adversarial

attack is bounded as follows:

|Z̃ − Z̃ϵ| ≤ wψ(ϵ), (7.1)

where ψ(.) is a concave function that bounds the total variation between the smoothing

distributions at two input points as a function of the distance between them (condition (7.4)

in Section 7.3). Such an upper bound always exists for any smoothing distribution. For

example, when the distance between the points is measured using the ℓ2-norm and the

smoothing distribution is a Gaussian N (0, σ2I) with variance σ2, then the concave upper

bound is given by ψ(·) = erf(·/2
√
2σ). Our robustness certificate is independent of the

length of the stream and depends only on the window size w and average perturbation

size ϵ. This suggests that streaming ML models with smaller window sizes are provably

more robust to adversarial attacks.

We perform experiments on two real-world applications – human activity recognition
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and speech keyword detection. We use the UCI HAR datset [170] for human activity

recognition and the Speech commands dataset [171] for speech keyword detection. We

train convolutional networks that take sliding windows as inputs and provide robustness

guarantees for their performance. In our experiments, we consider two different scenarios

for the adversary. In the first case, the adversary can perturb an input only once. In the

more general second scenario, the adversary can perturb each sliding window separately,

making it a powerful attacker. We develop strong adversaries for both of these scenarios

and show their effectiveness in our experiments. We then show that our certificates

provide meaningful robustness guarantees in the presence of such strong adversaries.

Consistent with our theory, our experiments also demonstrate that a smaller window size

w gives a stronger certificate.

7.2 Related Work

The adversarial streaming setup has been studied extensively in recent years. Mladenovic

et al. [159] designed an attack for transient data streams that do not allow the adversary

to re-attack past input items. In their setting, the adversary only has partial knowledge

of the target DNN and the perturbations applied in previous time steps are irrevocable.

Their objective is to produce an adversarial attack with minimal access to the data stream

and the target model. Our goal, on the other hand, is to design a provably robust method

that can defend against as general and strong an adversary as possible. We assume that

the adversary has full knowledge of the parameters of the target DNN and can change

the adversarial perturbations added in previous time steps. Our threat model includes
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transient data streams as a special case and applies even to adversaries that only have

partial access to the DNN.

Streaming adversarial attacks have also been studied for sampling algorithms such

as Bernoulli sampling and reservoir sampling [161]. Here, the goal of the adversary is to

create a stream that is unrepresentative of the actual data distribution. Other works have

studied the adversarial streaming setup for specific data analysis problems like frequency

moment estimation [160], submodular maximization [172], coreset construction and row

sampling [158]. In this work, we focus on a robustness certificate for general DNN

models in the streaming setting under the conventional notion of adversarial attacks in

machine learning literature. We use a sliding-window computational model which has

been extensively studied over several years for many streaming applications [173, 174,

175]. Recently Efroni et al. [169] also showed that a short-term memory is sufficient for

several real-world reinforcement learning tasks.

A closely related setting is that of adversarial reinforcement learning. Adversarial

attacks have been designed that either directly corrupt the observations of the agent [6, 7,

8] or introduce adversarial behavior in a competing agent [5]. Robust training methods,

such as adding adversarial noise [104, 105] and training with a learned adversary in an

online alternating fashion [106], have been proposed to in improve the robustness of RL

agents. Several certified defenses have also been developed over the years. For instance,

Zhang et al. [100] developed a method that can certify the actions of an RL agent at each

time step under a fixed adversarial perturbation budget. It can certify the total reward

obtained at the end of an episode if each of the intermediate actions is certifiably robust.

Our streaming formulation allows the adversary to choose the budget at each time step
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as long as the average perturbation size remains below ϵ over time. Our framework also

does not require each prediction to be robust in order to certify the average performance

of the DNN. More recent works in certified RL can produce robustness guarantees on the

total reward without requiring every intermediate action to be robust or the adversarial

budget to be fixed [70, 71]. However, these certificates degrade for longer streams and the

tightness analysis of these certificates indicates that this dependence on stream size may

not be improved. Our goal is to keep the robustness guarantees independent of stream

size so that they are suitable even for large streams.

The literature on provable robustness has primarily focused on static prediction

problems like image classification. One of the most prominent techniques in this line of

research is randomized smoothing. For a given input image, this technique aggregates the

output of a DNN on several noisy versions of the image to produce a robust class label

[36, 37]. This is the first approach that scaled up to high-dimensional image datasets like

ImageNet for ℓ2-norm bounded adversaries.. It does not make any assumptions on the

underlying neural network such as Lipschitz continuity or a specific architecture, making

it suitable for conventional DNNs that are several layers deep. However, randomized

smoothing also suffers some fundamental limitations for higher norms such as the ℓ∞-

norm [50]. Due to its flexible nature, randomized smoothing has also been adapted for

tasks beyond classification, such as segmentation and deep generative modeling, with

multi-dimensional and structured outputs like images, segmentation masks, and language

[49]. For such outputs, robustness certificates are designed in terms of a distance metric

in the output space such as LPIPS distance, intersection-over-union and total variation

distance. However, provable robustness in the static setting assumes a fixed budget on
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the size of the adversarial perturbation for each input instance and does not allow the

adversary to choose a different budget for each instance. In our streaming threat model,

we allow the adversary the flexibility of allocating the adversarial budget to different

time steps in an effective way, attacking more critical input items with a higher budget

and conserving its budget at other time steps. Recent work on provable robustness against

Wasserstein shifts of the data distribution allows the adversary to choose the attack budget

for each instance differently [176]. However, unlike our streaming setting, the input

instances are drawn independently from the data distribution and the adversarial perturbation

applied to one instance does not impact the performance of the DNN on another.

7.3 Preliminaries and Notation

Streaming ML Setting: We define a data stream of size t as a sequence of input

items x1, x2, . . . , xi, . . . , xt generated one-by-one from an input space X over discrete

time steps. At each time step i, a DNN model µ makes a prediction that may depend on

no more than w of the previous inputs. We refer to the contiguous block of past input

items as a window Wi ∈ Xmin(i,w) of size w defined as follows:

Wi =


(x1, x2, . . . , xi) for i ≤ w

(xi−w+1, xi−w+2, . . . , xi) otherwise.

The performance of the model µ at time step i is given by a function fi : Xmin(i,w) →

[0, 1] that passes the window Wi through the model µ, compares the prediction with the

ground truth and outputs a value in the range [0, 1]. For instance, in speech recognition,
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the window Wi would represent the audio from the past few seconds which gets fed to

the model µ. The function fi = 1{µ(Wi) = yi} could indicate whether the prediction

of µ matches the ground truth yi. Similarly, in autonomous driving, we can define a

performance function fi = IoU(µ(Wi), yi) that measures the average intersection-over-

union of the segmentation mask of the surrounding environment. We define the overall

performance Z of the model µ as an average over the t time-steps:

Z =

∑t
i=1 fi
t

.

Threat Model: An adversary A is present between the DNN and the data stream

which can perturb the inputs with the objective of minimizing the average performance Z

of the DNN (see Figure 7.1). Let x′i be the perturbed input at step i. We define a constraint

on the amount by which the adversary can perturb the inputs as a bound on the average

distance between the original input items xi and their perturbed versions x′i:

∑t
i=1 d(xi, x

′
i)

t
≤ ϵ, (7.2)

where d is a function that measures the distance between a pair of input items from X ,

e.g., d(xi, x′i) = ∥xi − x′i∥2. The adversary seeks to minimize the overall performance Z

of the model without violating the above constraint, i.e.,

min
A∈Aϵ

t∑
i=1

fi(A(xi), A(xi−1), . . . , A(xi−w+1))/t,

where Aϵ is the set of all adversaries satisfying constraint (7.2). We also study another
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threat model where the adversary is allowed to attack an input item xi in every window

that it appears in. We denote the k-th attack of xi as xki and redefine the above constraint

as follows: ∑t
i=1

∑w
k=1 d(xi, x

k
i )

wt
≤ ϵ (7.3)

This threat model is more general than the one defined by constraint (7.2) because it

subsumes this constraint as a special case when all xki are equal to x′i. Thus, any robustness

guarantee that holds for this stronger threat model must also hold for the previous one.

Robustness Procedure: Our goal is to design a procedure that has provable robustness

guarantees against the above threat models. We define a robust prediction model µ̃: Given

an input xi ∈ X , we sample a point x̃i from a probability distribution S(xi) around xi

(e.g., N (xi, σ
2I)) and evaluate the model µ on x̃i. Define the performance of µ̃ at time-

step i to be the expected value of fi under the randomized inputs, i.e.,

f̃i = Ex̃i∼S(xi)[fi(x̃i, x̃i−1, . . . , x̃i−w+1)]

and the overall performance as Z̃ =
∑t

i=1 f̃i/t.

Letψ(·) be a concave function bounding the total variation between the distributions

S(xi) and S(x′i) as a function of the distance between them, i.e.,

TV(S(xi),S(x′i)) ≤ ψ(d(xi, x
′
i)). (7.4)
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Figure 7.2: Constructing a concave upper bound

ψ(·) for any smoothing distribution S.

Such a bound always exists

regardless of the shape of the smoothing

distribution because as the distance

between the points xi and x′i goes

from 0 to ∞, the total variation goes

from 0 to 1. A trivial concave bound

could be obtained by simply taking

the convex hull of the region under the total variation curve (see Figure 7.2). However, to

find a closed-form expression for ψ, we need to analyze different smoothing distributions

and distance functions separately. If the smoothing distribution is a Gaussian N (0, σ2I)

with variance σ2 and the distance is measured using the ℓ2-norm, as in all of our

experiments, then ψ(∥xi − x′i∥2) = erf(∥xi − x′i∥2/2
√
2σ), where erf is the Gauss error

function. For a uniform smoothing distribution within an interval of size b in each

dimension of xi and the ℓ1-distance metric, ψ(∥xi−x′i∥1) = ∥xi−x′i∥1/b. See Appendix G

for proof.

7.4 Robustness Certificate

In this section, we prove robustness guarantees for the simpler threat model defined

by constraint (7.2) where each input item is allowed to be attacked only once. In the

following lemma, we bound the change in the performance function f̃i at each time-step

i using the function ψ and the size of the adversarial perturbation added at each step. For

the proof, we first decompose the change in the value of this function into components
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for each input item. Since each of these components can be expressed as the difference

of the expected value of a function in the range [0, 1] under two probability distributions,

they can be bounded by the total variation of these distributions. A complete proof of the

following lemma is available in Appendix A.

Lemma 15. The change in each f̃i under an adversary in Aϵ is bounded as

|f̃i(xi, xi−1, . . . , xi−s+1)− f̃i(x
′
i, x

′
i−1, . . . , x

′
i−s+1)| ≤

i−s+1∑
j=i

ψ(d(xj, x
′
j)),

where s = min(i, w).

Now we use the above lemma to prove the main robustness guarantee. We first

decompose the change in the average performance into the average of the differences at

each time step. Then we apply lemma 15 to bound each difference with the function

ψ of the per-step perturbation size. We then utilize the convex nature of ψ to convert

this average over the performance differences to an average of perturbation sizes, which

completes the proof.

Theorem 13. Let Z̃ϵ to be the minimum Z̃ for an adversary in Aϵ. Then,

|Z̃ − Z̃ϵ| ≤ wψ(ϵ).

Proof. Let Z̃ ′ be the overall performance of M̃ under an adversary. Then,

|Z̃ − Z̃ ′| =

∣∣∣∣∣
∑t

i=1 f̃i(xi, xi−1, . . . , xi−s+1)

t
−
∑t

i=1 f̃i(x
′
i, x

′
i−1, . . . , x

′
i−s+1)

t

∣∣∣∣∣
(where s = min(i, w))
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≤ 1

t

t∑
i=1

∣∣∣f̃i(xi, xi−1, . . . , xi−s+1)− f̃i(x
′
i, x

′
i−1, . . . , x

′
i−s+1)

∣∣∣
≤

t∑
i=1

i−s+1∑
j=i

ψ(d(xj, x
′
j))/t (from lemma 15)

≤ w

t∑
i=1

ψ(d(xi, x
′
i))/t (since each term appears at most w times)

≤ wψ

(
t∑

i=1

d(xi, x
′
i)/t

)
(ψ is concave and Jensen’s inequality)

Therefore, for the worst-case adversary in Aϵ, we have

|Z̃ − Z̃ϵ| ≤ wψ(ϵ)

from constraint (7.2) on the average distance between the original and perturbed inputs.

Although the above certificate is designed for the sliding-window computational

model for streaming applications, it may also be applied to static tasks like classification

with a fixed adversarial budget for all inputs by setting w = 1. In Appendix E, we

compare our bound with that obtained by Cohen et al. [36] for an ℓ2-norm bounded

adversary and a Gaussian smoothing distribution. While the above bound is not tight, our

analysis shows that the gap with static ℓ2-certificate is small for meaningful robustness

guarantees.
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7.5 Attacking Each Window

Now, we consider the case where the adversary is allowed to attack each window

seen by the target DNN separately. The threat model in this section is defined using

constraint (7.3). It is able to re-attack an input item xi in each new window. Similar to the

definition of a window in Section 7.3, define an adversarially corrupted window W ′
i as:

W ′
i =


(xi1, x

i−1
2 , . . . , x1i ) for i ≤ w

(xwi−w+1, x
w−1
i−w+2, . . . , x

1
i ) otherwise,

where xki is the kth perturbed instance of xi.

Similar to the certificate derived in Section 7.4, we first bound the change in the per-

step performance function and then use that result to prove the final robustness guarantee.

We formulate the following lemma similar to Lemma 15 but accounting for the fact that

each input item can be perturbed multiple times.

Lemma 16. The change in each f̃i under an adversary in Aϵ is bounded as

|f̃i(Wi)− f̃i(W
′
i )| ≤

i∑
j=i−s+1

ψ(d(xj, x
i+1−j
j )),

where s = min(i, w).

The proof is available in Appendix B.

We prove the same certified robustness bound as in Section 7.4 but the ϵ here is

defined according to constraint (7.3).
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Theorem 14. Let Z̃ϵ to be the minimum Z̃ for an adversary in Aϵ. Then,

|Z̃ − Z̃ϵ| ≤ wψ(ϵ).

The proof is available in Appendix C.

7.6 Experiments

We test our certificates for two streaming tasks – speech keyword detection and

human activity recognition. We use a subset of the Speech commands dataset [171] for

our speech keyword detection task. This subset contains ten keyword classes, corresponding

to utterances of numbers from zero to nine recorded at a sample rate of 16 kHz. This

dataset also contains noise clips such as audio of running tap water and exercise bike. We

add these noise clips to the speech audio to simulate real-world scenarios and stitch them

together to generate longer audio clips. We use the UCI HAR dataset [170] for human

activity recognition. This contains a 6-D triaxial accelerometer and gyroscope readings

measured with human subjects. The objective in HAR is to recognize various human

activities based on sensor readings. The UCI HAR dataset contains signals recorded at

50 Hz that correspond to six human activities such as standing, sitting, laying, walking,

walking up, and walking down.

We use the M5 network described in [177] with an SGD optimizer and an initial

learning rate of 0.1, which we anneal using a cosine scheduler. For the speech detection

task, we train a M5 network with 128 channels for 30 epochs with a batch size of 128. For

the human activity recognition task, we use a M5 network with 32 channels for 30 epochs
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(a) Speech keyword detection (b) Human activity recognition

Figure 7.3: Certificates (solid lines) against online adversarial attacks for varying
smoothing noises. Here the adversary is allowed to perturb each input only once. The
dashed lines represent the performance of an undefended model under an adversarial
attack.
with a batch size of 256. We apply isotropic Gaussian noise for smoothing and use the

ℓ2-norm to define the average distance measure d. For the speech keyword detection task,

we use smoothing noises with standard deviations of 0.1, 0.2, 0.4, 0.6, and 0.8. For the

human activity recognition task, we use smoothing noises with standard deviations of 4, 6,

8, and 10. See Appendix F for more details on the experiments. We compute certificates

for both scenarios, where the input is attacked only once and where each window can be

attacked with the ability to re-attack inputs. These experiments show that our certificates

provide meaningful guarantees against adversarial perturbations.

7.6.1 Attacking each input only once

We evaluate the robustness of undefended models using a custom-made attack that

is constrained by the ℓ2-norm budget, as described in equation 7.2. To adhere to this

constraint at each time-step j, the attacker must only perturb the input xj , since the

previous inputs (xj−w+1, ..., xj−1) have already been perturbed. This creates a significant
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(a) Speech keyword detection (b) Human activity recognition

Figure 7.4: Best certificates across varying smoothing noises for different window sizes.
Streaming models with smaller window sizes are more robust to adversarial perturbations.

(a) Speech keyword detection (b) Human activity recognition

Figure 7.5: Certificates against online adversarial attacks for varying smoothing noises.
Here we attack each window, allowing input items to be attacked multiple times The
average size of perturbation is computed as per equation 7.3.
challenge in creating a strong adversary. We design an adversary that only perturbs the

last input xj at every time-step j using projected gradient descent to minimize fj . In our

experiments, we set fj = 1 if the model outputs the correct class and fj = 0 when the

model misclassifies. We linearly search using grid search parameter α for the smallest

distance d(xj, x′j) such that the input (x′j−w+1, ..., x
′
j) leads to a misclassification at time-

step j. We perturb xj if (x′j−w+1, ..., x
′
j) leads to misclassification and the average distance

budget at time-step j is less than ϵ. Else, we do not perturb xj . In this manner, our attack
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Algorithm 8: Our streaming attack

Input: time-step j, clean inputs xj, xj−1, ..., xj−w+1, perturbed inputs x′j−1, ...,
x′j−w+1, attack budget ϵ, search parameter α ∈ N.
dj−1 =

∑j−1
i=1 d(xi, x

′
i)

budgetj = jϵ− dj−1

for i = 0 to α do
ϵ′ = i

α
· budgetj

x = argminx fj(x, ..., x
′
j−w+1) s.t. d(x, xj) ≤ ϵ′

if fj(x′j, ..., x′j−w+1) = 0 then
x′j = x
break

else
x′j = xj

end if
end for

perturbs the streaming input in a greedy fashion. See Algorithm 8 for details.

We conduct our streaming attack on the keyword recognition task with a window

size of w = 2, where each input xj is a 4000-dimensional vector in the range [0,1]. We

also perform the attack on the human activity recognition task with w = 2, where each

input xj is a 250x6-dimensional matrix. We use search parameter α = 15. We plot

the results of our certificates for various smoothing noises (see Figure 7.3). Note that

the attack budget ϵ is calculated as per the definition in equation 7.2. In Figure 7.4, we

also plot our best certificates across various smoothing noises for different window sizes

w. This plot supports our theory that streaming models with smaller window sizes are

more robust to adversarial perturbations. Figures 7.7 and 7.8 in Appendix G show that

the empirical performance of smooth models after the online adversarial attack is lower

bound by our certificates.
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7.6.2 Attacking each window

Now, we perform experiments for the attack setting described in Section 7.5. Note

that here we need to calculate the attack budget ϵ based on equation 7.3. In this setting,

we can re-attack an input for every window, making it a stronger attack. To attack the

undefended models, we search for window perturbations that lead to misclassification

using a minimum distance budget. Similar to our previous attack in Section 7.6.1, we

only perturb a window at time-step j if the average window distance at time-step j is less

than ϵ. Also, we do not perturb a window if the window can not be perturbed to reduce the

performance fj . In Figure 7.5, we plot our certificates for this attack setting along with

the accuracy of the undefended model for different attack budgets. These experiments

show that our certificates produce meaningful performance guarantees against adversarial

perturbations even if an attacker has the ability to re-attack the inputs. Figure 7.9 in

Appendix G shows that the empirical performance of smooth models after the online

adversarial attack is lower bound by our certificates.

7.7 Conclusion

In this work, we design provable robustness guarantees for streaming ML models

with a sliding window. Our certificates provide a lower bound on the average performance

of a streaming DNN model in the presence of an adversary. The adversarial budget in our

threat model is defined in terms of the average size of the perturbations added to the input

items across the entire stream. This allows the adversary to allocate a different budget

to each input item and leads to a more general threat model than the static setting. Our
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certificates are independent of the stream length and can handle long, potentially infinite,

streams. They are also applicable for adversaries that are allowed to re-attack past inputs

leading to strong robustness guarantees covering a wide range of attack strategies.

To the best of our knowledge, this is the first attempt at designing adversarial

robustness certificates for the streaming setting. We note that our robustness guarantees

are not proven to be tight and could be improved upon by future work. We hope our work

inspires further investigations into provable robustness for streaming ML models.
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7.8 Appendices

A Proof of Lemma 15

Statement: The change in each f̃i under an adversary in Aϵ is bounded as

|f̃i(xi, xi−1, . . . , xi−s+1)− f̃i(x
′
i, x

′
i−1, . . . , x

′
i−s+1)| ≤

i−s+1∑
j=i

ψ(d(xj, x
′
j)),

where s = min(i, w).

Proof. The left-hand side of the above inequality can be re-written as:

|f̃i(xi, xi−1, . . . , xi−s+1)− f̃i(x
′
i, x

′
i−1, . . . , x

′
i−s+1)|

= |f̃i(xi, xi−1, . . . , xi−s+1)− f̃i(x
′
i, xi−1, . . . , xi−s+1)

+ f̃i(x
′
i, xi−1, . . . , xi−s+1)− f̃i(x

′
i, x

′
i−1, . . . , x

′
i−s+1)|

=

∣∣∣∣∣
i−s+1∑
j=i

f̃i(x
′
i, . . . xj, . . . , xi−s+1)− f̃i(x

′
i, . . . , x

′
j, . . . , xi−s+1)

∣∣∣∣∣
≤

i−s+1∑
j=i

∣∣∣f̃i(x′i, . . . xj, . . . , xi−s+1)− f̃i(x
′
i, . . . , x

′
j, . . . , xi−s+1)

∣∣∣
The two terms in each summand differ only in the jth input. Thus, the jth term in the

above summation can be written as the difference of the expected value of some [0, 1]-

function qj under the distributions S(xj) and S(x′j), i.e., |Eχ̃∼S(xj)[qj(χ̃)]−Eχ̃∼S(x′
j)
[qj(χ̃)]|,

which can be upper bounded by the total variation between S(xj) and S(x′j). Here, qj is

given by:

qj(χ) = E[fi(x̃′i, . . . , x̃′j−1, χ, x̃j+1 . . . , x̃i−s+1)],
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where χ ∈ X is the jth input item, the inputs before χ are drawn from the corresponding

adversarially shifted smoothing distributions and the inputs after χ are drawn from the

original distributions, i.e., x̃′i ∼ S(x′i), . . . , x̃′j−1 ∼ S(x′j−1) and x̃j+1 ∼ S(xj+1), . . . , x̃i−s+1 ∼

S(xi−s+1).

Without loss of generality, assume Eχ̃∼S(xj)[qj(χ̃)] ≥ Eχ̃∼S(x′
j)
[qj(χ̃)]. Then,

∣∣Eχ̃∼S(xj)[qj(χ̃)]− Eχ̃∼S(x′
j)
[qj(χ̃)]

∣∣
=

∫
X
qj(x)µ1(x)dx−

∫
X
qj(x)µ2(x)dx (µ1 and µ2 are the PDFs of S(xj) and S(x′j))

=

∫
X
qj(x)(µ1(x)− µ2(x))dx

=

∫
µ1>µ2

qj(x)(µ1(x)− µ2(x))dx−
∫
µ2>µ1

qj(x)(µ2(x)− µ1(x))dx

≤
∫
µ1>µ2

max
x′∈X

qj(x
′)(µ1(x)− µ2(x))dx−

∫
µ2>µ1

min
x′∈X

qj(x
′)(µ2(x)− µ1(x))dx

≤
∫
µ1>µ2

(µ1(x)− µ2(x))dz (since maxx′∈X qj(x
′) ≤ 1 and minx′∈X qj(x

′) ≥ 0)

=
1

2

∫
X
|µ1(x)− µ2(x)|dx = TV(S(x1),S(x2)).

The equality in the last line follows from the fact that
∫
µ1>µ2

(µ1(x) − µ2(x))dx =∫
µ2>µ1

(µ2(x)− µ1(x))dx = 1
2

∫
X |µ1(x)− µ2(x)|dx.

Therefore, from condition (7.4), we have:

|f̃i(x′i, . . . xj, . . . , xi−w+1)− f̃i(x
′
i, . . . , x

′
j, . . . , xi−w+1)| ≤ TV(S(xj),S(x′j)) ≤ ψ(d(xj, x

′
j)).

This proves the statement of the lemma.
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B Proof of Lemma 16

Statement: The change in each f̃j under an adversary in Aϵ is bounded as

|f̃j(Wj)− f̃j(W
′
j)| ≤

j∑
i=j−w+1

ψ(d(xi, x
j+1−i
i )).

Proof. The left-hand side of the above inequality can be re-written as:

|f̃j(Wj)− f̃j(W
′
j)| = |f̃j(xj−w+1, . . . , xj)− f̃j(x

w
j−w+1, . . . , x

1
j)|

= |f̃j(xj−w+1, . . . , xj−1, xj)− f̃j(xj−w+1, . . . , xj−1, x
1
j)

+ f̃j(xj−w+1, . . . , xj−1, x
1
j)− f̃j(x

w
j−w+1, . . . , x

2
j−1, x

1
j)|

=

∣∣∣∣∣
w∑

k=1

f̃j(xj−w+1, . . . xj−k+1, x
k−1
j−k+2, . . . , x

1
j)

− f̃j(xj−w+1, . . . x
k
j−k+1, x

k−1
j−k+2, . . . , x

1
j)

∣∣∣∣∣
≤

w∑
k=1

∣∣∣∣∣f̃j(xj−w+1, . . . xj−k+1, x
k−1
j−k+2, . . . , x

1
j)

− f̃j(xj−w+1, . . . x
k
j−k+1, x

k−1
j−k+2, . . . , x

1
j)

∣∣∣∣∣
The two terms in each summand differ only in the (j − k + 1)-th input. Thus, it can

be written as the difference of the expected value of some [0, 1]-function q under the

distributions S(xj−k+1) and S(xkj−k+1), i.e., |Ex̃j−k+1∼S(xj−k+1)[q(x̃j−k+1)]−Ex̃k
j−k+1∼S(xk

j−k+1)
[q(x̃kj−k+1)]|

which can be upper bounded by the total variation between S(xj−k+1) and S(xkj−k+1).
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Therefore, from condition (7.4), we have:

|f̃j(xj−w+1, . . . ,xj−k+1, x
k−1
j−k+2, . . . , x

1
j)− f̃j(xj−w+1, . . . x

k
j−k+1, x

k−1
j−k+2, . . . , x

1
j)|

≤ TV(S(xj−k+1),S(xkj−k+1)) ≤ ψ(d(xj−k+1, x
k
j−k+1)).

This proves the statement of the lemma.

C Proof of Theorem 14

Statement: Let Z̃ϵ to be the minimum Z̃ for an adversary in Aϵ. Then,

|Z̃ − Z̃ϵ| ≤ wψ(ϵ).

Proof. Let Z̃ ′ be the overall performance of M̃ under an adversary. Then,

|Z̃ − Z̃ ′| =

∣∣∣∣∣
∑t

j=1 f̃j(Wj)

t
−
∑t

j=1 f̃j(W
′
j)

t

∣∣∣∣∣
≤
∑t

j=1 |f̃j(Wj))− f̃j(W
′
j)|

t

≤
t∑

j=1

w∑
k=1

ψ(d(xj−k+1, x
k
j−k+1))/t (from lemma 16)

≤
t∑

j=1

w∑
k=1

ψ(d(xj, x
k
j ))/t

= w
t∑

j=1

w∑
k=1

ψ(d(xj, x
k
j ))/wt

≤ wψ

(
t∑

j=1

w∑
k=1

d(xj, x
k
j ))/wt

)
(ψ is concave and Jensen’s inequality)
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Therefore, for the worst-case adversary in Aϵ, we have

|Z̃ − Z̃ϵ| ≤ wψ(ϵ)

from constraint (7.2) on the average distance between the original and perturbed inputs.

D Function ψ for Different Smoothing Distributions

For an isometric Gaussian distribution,

TV(N (xi, σ
2I),N (x′i, σ

2I)) = erf(∥xi − x′i∥2/2
√
2σ).

Proof. Due to the isometric symmetry of the Gaussian distribution and the ℓ2-norm, the

total variation between the two distributions is the same as when they are separated by the

same ℓ2-distance but only in the first coordinate. It is equivalent to shifting a univariate

normal distribution by the same amount. Therefore, the total variation between the two

distributions is equal to the difference in the probability of a normal random variable with

variance σ2 being less than ∥xi − x′i∥2/2 and −∥xi − x′i∥2/2, i.e., Φ(∥xi − x′i∥2/2σ) −

Φ(−∥xi − x′i∥2/2σ) where Φ is the standard normal CDF.

TV(N (xi, σ
2I),N (x′i, σ

2I)) = Φ(∥xi − x′i∥2/2σ)− Φ(−∥xi − x′i∥2/2σ)

= 2Φ(∥xi − x′i∥2/2σ)− 1

= 2

(
1 + erf(∥xi − x′i∥2/2

√
2σ)

2

)
− 1

216



= erf(∥xi − x′i∥2/2
√
2σ).

For a uniform smoothing distribution U(xi, b) between xij − b/2 and xij + b/2 in

each dimension j of xi for some b ≥ 0, TV(U(xi, b),U(x′i, b)) ≤ ∥xi − x′i∥1/b. When

∥xi − x′i∥1 is constrained, the overlap between U(xi, b) and U(x′i, b) is minimized when

the shift is only along one dimension.

E Comparison with Existing Certificates for Static Tasks

Figure 7.6: Comparison between our

bound and [36]’s certificate for an ℓ2

adversary and a Gaussian smoothing

distribution. The solid blue curve

corresponds to our bound and the dashed

curves represent bound (7.5) for different

values of p. We keep σ = 1 as it only has

a scaling effect along the x-axis.

In this section, we compare our

bound when applied to the static setting of

classification, i.e., window size w = 1 in

bound (7.1), to that obtained by Cohen et al.

[36] for an ℓ2 adversary and a Gaussian

smoothing distribution. As discussed in

Appendix D, the ψ function for this case

takes the form of the Gauss error function erf.

Thus our bound on the drop in the smoothed

model’s performance against an ℓ2 adversary

is given by:

|Z̃ − Z̃ϵ| ≤ erf(ϵ/2
√
2σ).
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Cohen et al. [36]’s certificate bounds the worst-case adversarial performance as a function

of the clean performance. If the probability of predicting the correct class is p on the

original input, the probability of that in the presence of an adversary is bounded by

Φ(Φ−1(p)− ϵ/σ). Therefore, the performance drop ∆p is bounded by:

∆p ≤ p− Φ
(
Φ−1(p)− ϵ

σ

)
. (7.5)

Figure 7.6 compares the two bounds for different values of p. We keep σ = 1 as

it only has a scaling effect along the x-axis. The bound from the ℓ2 certificate by Cohen

et al. [36] is tighter than ours, mainly because it takes the clean performance p of the

smoothed model into account. However, the gap between the two bounds is small in the

range where ϵ goes from 0 to 2, by which point the certified performance drops by more

than 60%. Thus for most meaningful robustness guarantees, our certificates are almost at

par with the best-known ℓ2 certificates. The key advantage of our certificates over those

for the static setting is that they are applicable for an adaptive adversary that can allocate

different attack budgets for different input items in the stream.

F Experimental details

We use a single NVIDIA RTX A4000 GPU with four AMD EPYC 7302P Processors.

For our main experiments with UCI HAR and Speech Commands datasets, we use window

size w = 2 with inputs belonging to R250×6 and R4000. The UCI HAR dataset consists

of long streaming inputs with sample-level annotations. For a window Wj , the label is

the majority class that is present in that window. The signals in the HAR dataset are
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standardized to have mean 0 and variance 1. For the speech keyword detection task, we

use a subset of the Speech commands dataset that consists of long noise clips and one-

second-long speech keyword clips. The labels for each audio clip are available. We utilize

all the long noise clips and clips belonging to the classes belonging speech utterances of

numbers from zero to nine to make longer clips for our streaming case. We add noise

clips to the keyword audios to make them more similar to real-world scenarios. Each clip

is stitched together [178] with arbitrarily long noise between each keyword clip. To make

transitions between the audio smooth, we use exponential decays to overlap keyworrd

audio clips for stitching, with noise in the background. Hence, for the speech keyword

detection, we have 11 classes for labels – zero to nine and a noise class. A window is

labeled to be the majority class in that window.

For training, we use M5 networks with 32 channels for HAR. We train for 30 epochs

with a bath-size of 256 using SGD with an initial learning rate of 0.1, momentum of 0.9,

and weight decay of 0.0001. We use a cosine annealing learning rate scheduler. For

training the robust models, we use different smoothing noises with standard deviations

4, 6, 8, and 10. For training on the keyword detection data, we use M5 networks with

128 channels for HAR. We train for 30 epochs with a bath-size of 128 using SGD with

an initial learning rate of 0.1, momentum of 0.9, and weight decay of 0.0001. We use a

cosine annealing learning rate scheduler. For training the robust models, we use different

smoothing noises with standard deviations 0.1, 0.2, 0.4, 0.6, and 0.8. For attacking the

trained models, we use PGD ℓ2 attacks for both the datasets. PGD is run for 100 steps

with a step size of 2ϵ′/100 where ϵ′ is the ℓ2 attack budget.
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G Attacking the Smooth Models

In this section, we empirically validate our certificates by showing that the performance

of the smoothed models in the presence of an adversary is lower-bounded by our certificates.

For the first set of experiments (Figures 7.7 and 7.8), we consider an adversary that is

allowed to attack an input item only once, as in Section 7.6.1. We show our results on

the Human Activity Recognition dataset in Figure 7.7 and the keyword detection task

in Figure 7.8 for a window size of w = 2. In Figure 7.9, we show our results on the

HAR dataset where the adversary can attack each window separately as per equation 7.3.

As seen in the plots, the empirical performance of the smooth models after the online

adversarial attacks is always better than the performance guaranteed by our certificates.

By comparing Figures 7.7 and 7.9, we observe that allowing the adversary to attack each

window separately makes it significantly stronger and brings the adversarial performance

of the smoothed model closer to the certified performance.
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(a) Attacking model with smoothing noise σ = 4 (b) Attacking model with smoothing noise σ = 6

(c) Attacking model with smoothing noise σ = 8 (d) Attacking model with smoothing noise σ = 10

Figure 7.7: Certificates against online adversarial attacks for varying smoothing noises
for the human activity recognition task. We attack smooth models trained with different
smoothing noises in these plots. Here we can perturb each input only once. The average
size of perturbation is computed as per equation 7.2.
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(a) Attacking model with smoothing noise σ = 0.2 (b) Attacking model with smoothing noise σ = 0.4

(c) Attacking model with smoothing noise σ = 0.6 (d) Attacking model with smoothing noise σ = 0.8

Figure 7.8: Certificates against online adversarial attacks for varying smoothing noises
for the speech keyword detection task. We attack smooth models trained with different
smoothing noises in these plots. Here we can perturb each input only once. The average
size of perturbation is computed as per equation 7.2.
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(a) Attacking model with smoothing noise σ = 4 (b) Attacking model with smoothing noise σ = 6

(c) Attacking model with smoothing noise σ = 8 (d) Attacking model with smoothing noise σ = 10

Figure 7.9: Certificates against online adversarial attacks for varying smoothing noises
for the human activity recognition task. We attack smooth models trained with different
smoothing noises in these plots. Here we can attack each window separately. The average
size of perturbation is computed as per equation 7.3.
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Chapter 8: Conclusion

8.1 Contributions

We study several approaches for extending provable robustness to real-world scenarios.

The literature on provable robustness in machine learning mainly focuses on static tasks

such as image classification. Certificates are designed with a fixed adversarial budget for

each input instance and with the assumption that inputs are sampled independently. In

this work, we develop certifiable methods that can defend against dynamic and adaptive

adversaries as in reinforcement learning and streaming tasks. We also design robustness

certificates for tasks with complex outputs such as images, language, segmentation masks,

etc., and for distribution shifts caused by natural perturbations like changes in the color

balance of an image. We also study the limitations of extending randomized smoothing-

based approaches for the ℓ∞-threat model for high-dimensional inputs.

Our first contribution is a robustness certificate for the accuracy of a model under

bounded Wasserstein shifts of the data distribution. We show that a simple procedure that

randomizes the input of the model within a transformation space is provably robust to

distributional shifts under the transformation. Our framework allows the datum-specific

perturbation size to vary across different points in the input distribution and is general

enough to include fixed-sized perturbations as well. Our certificates produce guaranteed
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lower bounds on the performance of the model for any (natural or adversarial) shift of the

input distribution within a Wasserstein ball around the original distribution.

In our second work, we present robustness guarantees in the reinforcement learning

(RL) setting. We present an efficient procedure, designed specifically to defend against

an adaptive RL adversary, that can directly certify the total reward without requiring the

policy to be robust at each time-step. Our main theoretical contribution is to prove an

adaptive version of the Neyman-Pearson Lemma – a key lemma for randomized smoothing-

based certificates – where the adversarial perturbation at a particular time can be a stochastic

function of current and previous observations and states as well as previous actions.

Our robustness certificates guarantee that the final total reward remains above a certain

threshold, even though the actions at intermediate time-steps may change under the attack.

Next, we design a procedure for certifying models with complex outputs such

as images, text, and segmentation masks. For an adversarial perturbation of bounded

ℓ2 size, our Center Smoothing algorithm can certify the change in the output under

commonly used distance metrics like perceptual distance, intersection-over-union (IoU),

cosine distance, etc. Given a general neural network model, our method can make it

provably robust by evaluating it on several noisy versions of the input and aggregating

the predictions by computing the center of the ball that encloses at least half of the output

points. The robustness certificate guarantees that the change in the output as measured by

the distance metric remains bounded for an adversarial perturbation of the input.

We also study a fundamental limitation of randomized smoothing-based methods

for certifying against the ℓ∞-threat model. We show that for high-dimensional inputs like

images, randomized smoothing suffers from a curse of dimensionality for a vast class of
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smoothing distribution. The best possible ℓ∞-radius obtained by randomized smoothing

decreases rapidly with the number of dimensions in the input. In particular, for a general

class of i.i.d. smoothing distributions, we show that, for p > 2, the largest ℓp-radius

that can be certified decreases with the number of dimensions d as O(1/d
1
2
− 1

p ). In an

asymptotic sense, this dependence on dimensionality is no better than certifying using an

isometric Gaussian smoothing distribution, essentially putting a matching lower bound

on the robustness radius.

We also propose a method to certify the confidence of a neural network in its

predictions. Most conventional neural networks output a score in the range of 0 to 1

(typically at the final softmax layer) which can be interpreted as the confidence that

a model has in its prediction. This information can be crucial for several real world

decision-making applications such as self-driving cars and disease-diagnosis networks,

where safety is paramount. Our approach uses the distribution of the scores under several

noisy versions of the input to certify the confidence of the model. We adapt the Neyman-

Pearson lemma (a key theorem in randomized smoothing) for functions with bounded

real-valued outputs in order to certify the expected value of the confidence over the

smoothing distribution.

Another setting where we study certified robustness is that of streaming applications,

such as online content recommendation and stock market analysis, where models use

historical data to make predictions. In this setting, inputs are presented as a sequence

of potentially correlated items, and an adversarial perturbation added to one input item

could affect the predictions on subsequent input items. The adversarial threat model we

consider allows the attacker to allocate different perturbation budgets to different inputs
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in a dynamic fashion to optimize its attack. We derive robustness certificates for models

that use a fixed-size sliding window over the input stream. Our guarantees hold for the

average model performance across the entire stream and are independent of stream size,

making them suitable for large and potentially infinite data streams.

8.2 Future Work

There are several ways in which our methods can be improved upon. For instance,

the distance functions used in our distributional robustness certificates, such as ℓ2-norm

and parameterized transformations, are predefined non-learnable functions that may not

be suitable for modeling sophisticated data shifts. A future direction of research could

be to refine our distributional certificates for more complex domains such as weather

patterns, user preferences, facial expressions, etc. Similarly, in our robustness certificates

for reinforcement learning, the performance guarantee degrades with the length of the

episodes. Our tightness result shows that this dependence could not be improved via

Gaussian smoothing. Designing provable methods that have a better dependence on the

length of the episodes could be an interesting direction for future research.

Our work shows fundamental limitations in designing certificates for the ℓ∞ threat

model using i.i.d. smoothing distributions. It would be an interesting direction of research

to investigate smoothing distributions outside the class of i.i.d. distributions that could

provide meaningful ℓ∞ certificates. Another interesting direction could be to study certifiable

robustness under non-ℓp threat models, such as edit distance, cosine similarity, and perceptual

distance, that are capable of capturing changes in the semantic content of the input.
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pages 7549–7561, 2018.

234

http://arxiv.org/abs/1701.01924
https://openreview.net/forum?id=HJFVrpCaGE
https://openreview.net/forum?id=mwdfai8NBrJ
https://openreview.net/forum?id=mwdfai8NBrJ
http://proceedings.mlr.press/v119/kumar20b.html
http://proceedings.mlr.press/v119/kumar20b.html
http://arxiv.org/abs/1604.04004
http://arxiv.org/abs/1604.04004


[55] David J. B. Pearce and Hans-Günter Hirsch. The aurora experimental framework
for the performance evaluation of speech recognition systems under noisy
conditions. In INTERSPEECH, 2000.

[56] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine
learning at test time. In Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, and
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