
UMIACS-TR-94-122 November, 1994CS-TR-3371Experiences with Constraint-based Array DependenceAnalysisWilliam Pugh David Wonnacottpugh@cs.umd.edu davew@cs.umd.eduInstitute for Advanced Computer StudiesDept. of Computer Science Dept. of Computer ScienceUniv. of Maryland, College Park, MD 20742Array data dependence analysis provides important informationfor optimization of scienti�c programs. Array dependence testingcan be viewed as constraint analysis, although traditionally general-purpose constraint manipulation algorithms have been thought tobe too slow for dependence analysis. We have explored the use ofexact constraint analysis, based on Fourier's method, for array datadependence analysis. We have found these techniques can be usedwithout a great impact on total compile time. Furthermore, the useof general-purpose algorithms has allowed us to address problems be-yond traditional dependence analysis. In this paper, we summarizesome of the constraint manipulation techniques we use for depen-dence analysis, and discuss some of the reasons for our performanceresults.This work is supported by an NSF PYI grant CCR-9157384 andby a Packard Fellowship.

Experiences with Constraint-based ArrayDependence AnalysisWilliam Pugh David Wonnacottpugh@cs.umd.edu davew@cs.umd.eduDepartment of Computer Science,University of Maryland, College Park, MD 20742Abstract. Array data dependence analysis provides important informa-tion for optimization of scienti�c programs. Array dependence testing canbe viewed as constraint analysis, although traditionally general-purposeconstraint manipulation algorithms have been thought to be too slow fordependence analysis. We have explored the use of exact constraint anal-ysis, based on Fourier's method, for array data dependence analysis. Wehave found these techniques can be used without a great impact on totalcompile time. Furthermore, the use of general-purpose algorithms hasallowed us to address problems beyond traditional dependence analysis.In this paper, we summarize some of the constraint manipulation tech-niques we use for dependence analysis, and discuss some of the reasonsfor our performance results.1 IntroductionWhen two memory accesses refer to the same address, and at least one of thoseaccesses is a write, we say there is a data dependence between the accesses.In this case, we must be careful not to reorder the execution of the accessesduring optimization, if we are to preserve the semantics of the program beingoptimized. We therefore need accurate array data dependence information todetermine the legality of many optimizations for programs that use arrays. Arraydependence testing can be viewed as constraint analysis. For example, in Figure1, determining whether or not any array element is both written by A[i, j+1]and read by A[100, j], is equivalent to testing for the existence of solutions tothe constraints shown on the right of the �gure.for i = 1 to nfor j = i to nA[i, j+1] = A[n, j] 1 � iw � jw � n (write iteration in bounds)1 � ir � jr � n (read iteration in bounds)iw = n (�rst subscripts equal)jw + 1 = jr (second subscripts equal)Fig. 1. Dependence testing and associated constraints

Since integer programming is an NP-complete problem, ([GJ79]), productioncompilers employ techniques that are guaranteed to be fast but give conservativeanswers: they might report a possible solution when no solution exists. We haveexplored the use of exact constraint analysis methods for array data dependenceanalysis. We have gone beyond simply checking for satis�ability of conjunctionsof constraints to being able to manipulate arbitrary Presburger formulas. Thishas allowed us to address problems beyond traditional dependence analysis.In our previous papers [Pug92, PW93], we have presented timing results forour system on a variety of benchmark programs, and argued that our techniquesare not prohibitively slow. In fact, using exact techniques to obtain standardkinds of dependence information requires about 1% � 10% of the total timerequired by simple workstation compilers that do no array data dependenceanalysis of any kind.Our techniques are based on an extension of Fourier variable elimination tointegers. Many other researchers in the constraints �eld [Duf74, LL92, Imb93,JMSY93] have stated that direct application of Fourier's technique may be im-practical because of the number of redundant constraints generated. We havenot experienced any signi�cant problems with Fourier elimination generating re-dundant constraints, even though we have not implemented methods suggested[Duf74, Imb93, JMSY93] to control this problem. We believe that our exten-sion of Fourier elimination to integers is much more e�cient that described by[Wil76].In this paper, we summarize some of the constraint manipulation techniqueswe use for dependence analysis, and discuss some of the reasons for our perfor-mance results.2 The Omega TestThe Omega test [Pug92] was originally developed to check if a set of linear con-straints has an integer solution, and was initially used in array data dependencetesting. Since then, its capabilities and uses have grown substantially. In thissection, we describe the various capabilities of the Omega test.The Omega test is based on an extension of Fourier variable elimination[DE73] to integer programming. Other researchers have suggested the use ofFourier variable elimination for dependence analysis [WT92, MHL91b] but onlyas a last resort after exact and fast, but incomplete, methods have failed to givedecisive answers. We proved [Pug92] that in cases where the fast but incompletemethods of Lam et al. [MHL91b] apply, the Omega test is guaranteed to havelow-order polynomial time complexity.2.1 Eliminating an Existentially Quanti�ed VariableThe basic operation of the Omega test is the elimination of an existentiallyquanti�ed variable, also referred to as shadow-casting or projection. For exam-ple, given a set of constraints P over x, y and z that de�ne, for example, a

dodecahedron, the Omega test can compute the constraints on x and y thatde�ne the shadow of the dodecahedron. Mathematically, these constraints areequivalent to 9z s:t: P . But the Omega test is able to remove the existentiallyquanti�ed variables, and report the answer just in terms of the free variables (xand y).Over rational variables, projection of a convex region always gives a convexresult. Unfortunately, the same does not apply for integer variables. For example,9y s:t: 1 � y � 4 ^ x = 2y has x = 2, x = 4, x = 6 and x = 8 as solutions.Sometimes, the result is even more complicated. For example, the solutions forx in: 9i; j s:t: 1 � i � 8 ^ 1 � j � 5 ^ x = 6i+ 9j � 7are all numbers between 8 and 86 (inclusive) that have remainder 2 when dividedby 3, except for 11 and 83.In general, the Omega test produces an answer in disjunctive normal form:the union of a �nite list of clauses. A clause may need to describe a non-convexregion. There are two methods for describing these regions:Stride format The Omega test can produce clauses that consist of a�ne con-straints over the free variables and stride constraints. A stride constraint cjeis interpreted as \c evenly divides e". In this form, the above solution couldbe represented as:x = 8 _ (14 � x � 80 ^ 3j(x+ 1)) _ x = 86Projected format Alternatively, the Omega test can produce clauses that con-sist of a set of linear constraints over a set of auxiliary variables and an a�ne1-1 mapping from those variables to the free variables. Using this format,the above solution could be represented asx = 8 _ (9� s:t: 5 � � � 27^ x = 3�� 1) _ x = 86These two representations are equivalent and there are simple and e�cientmethods for converting between them.Our Extension of Fourier Elimination to Integers If � � bz and az � �(where a and b are positive integers), then a� � abz � b�. If z is a real variable,9z s:t: a� � abz � b� if and only if a� � b�. Fourier variable eliminationeliminates a variable z by combining together all pairs of upper and lower boundson z and adding the resulting constraints to those constraints that do not involvez. This produces a set of constraints that has a solution if and only if there existsa real value of z that satis�es the original set of constraints.In [Pug92] and Figure 2 we show how to compute the \dark shadow" of a setof constraints: a set of constraints that, if it has solutions, implies the existenceof an integer z such that the original set of constraints is satis�ed. Of course,not all solutions are contained in the dark shadow.

For example, consider the constraints:9y s:t: 0 � 3y � x � 7 ^ 1 � x� 2y � 5Using Fourier variable elimination, we �nd that 3 � x � 27 if we allow y to takeon non-integer values. The dark shadow of these constraints is 5 � x � 25. Infact, this equation has solutions for x = 3; 5 � x � 27 and x = 29.In [Pug92] and Figure 2 we give a method for generating an additional sets ofconstraints that would contain any solutions not contained in the dark shadow.These \splinters" still contain references to the eliminated variable, but alsocontain an equality constraint (i.e., are at). This equality constraint allows usto eliminate the desired variable exactly. For the example given previously, thesplinters are: 9y s:t: x = 3y ^ 0 � 3y � x � 7 ^ 1 � x� 2y � 59y s:t: x+ 1 = 3y ^ 0 � 3y � x � 7 ^ 1 � x� 2y � 59y s:t: x� 5 = 2y ^ y s:t: 0 � 3y � x � 7 ^ 1 � x� 2y � 5Simplifying these produces clauses in projected form:9y s:t: x = 3y ^ 1 � y � 59y s:t: x = 3y � 1 ^ 2 � y � 69y s:t: x = 2y + 5 ^ 5 � y � 12Eliminate z from C, the conjunction of a set of inequalitiesR = FalseC 0 = all constraints from C that do not involve zC 00 = Cfor each lower bound on z: � � bzfor each upper bound on z: az � �C 0 = C 0 ^ a� + (a � 1)(b� 1) � b�% Misses a� � abz � b� < a� + (a� 1)(b� 1)% Misses � � bz < � + (a�1)(b�1)alet amax = max coe�cient of z in upper bound on zfor i = 0 to ((amax � 1)(b� 1)� 1)=amax doR = R _C ^ � + i = bz% C 0 is the dark shadow% R contains the splinters% C 0 _ (9 integer z s:t: R) � 9 integer z s:t: CFig. 2. Extension of Fourier variable elimination to integers

2.2 Verifying the Existence of SolutionsThe Omega test also provides direct support for checking if integer solutionsexist to a set of linear constraints. It does this by treating all the variables asexistentially quanti�ed and eliminating variables until it produces a problemcontaining a single variable; such problems are easy to check for integer solu-tions. The Omega test incorporates several extensions over a naive applicationof variable elimination.2.3 Removing Redundant ConstraintsIn the normal operation of the Omega test, we eliminate any constraint thatis made redundant by any other single constraint (e.g., x + y � 10 is maderedundant by x+ y � 5). Upon request, we can use more aggressive techniquesto eliminate redundant constraints. We use fast but incomplete tests that can aga constraint as de�nitely redundant or de�nitely not redundant, and a backupcomplete test. This capability is used when verifying implications and simplifyingformulas involving negation.We also use these techniques to de�ne a \gist" operator: informally, we say(gist P given Q) is what is \interesting" about P , given that we already knowQ. More formally, we guarantee that ((gist P given Q) ^Q) � P ^Q and try tomake the set of constraints produced by the gist operator as simple as possible.2.4 Simplifying Formulas Involving NegationThere are two problems involved in simplifying formulas containing negatedconjuncts, such as�10 � i+ j; i� j � 10 ^ :(2 � i; j � 8 ^ 2ji+ j)Naively converting such formulas to disjunctive normal form generally leads toan explosive growth in the size of the formula. In the worst-case, this cannot beprevented. But we [PW93] have described methods that are e�ective in dealingwith these problems for the cases we encounter. One key idea to to recognizethat we can transform A ^ :B to A ^ :(gist B given A). Given several negatedclauses, we simplify them all this way before choose one to negate and distribute.Secondly, previous techniques for negating non-convex constraints, basedon quasi-linear constraints [AI91], were discovered to be incomplete in certainpathological cases [PW93]. We [PW93] describe a method that is exact andcomplete for all cases.2.5 Simplifying Arbitrary Presburger FormulasUtilizing the capabilities described above, we can simplify and/or verify arbitraryPresburger formulas. In general, this may be prohibitively expensive. There is aknown lower bound of 22o(n) on the worst case nondeterministic time complexity,

and a known upper bound of 222O(n) on the deterministic time complexity, ofPresburger formula veri�cation. However, we have found that we are able toe�ciently analyze many Presburger formulas that arise in practice.For example, our current implementation requires 12 milliseconds on a SunSparc IPX to simplify 1 � i � 2n ^ 1 � i00 � 2n ^ i = i00^ :(9i0; j0 s:t: 1 � i0 � 2n ^ 1 � j0 � n� 1 ^ i � i0 ^ i0 = i00 ^ 2j0 = i00)^ :(9i0; j0 s:t: 1 � i0 � 2n ^ 1 � j0 � n� 1 ^ i � i0 ^ i0 = i00 ^ 2j0 + 1 = i00)to (1 = i = i00 � n) _ (1 � i = i00 = 2n) _ (1 � i = i00 � 2 ^ n = 1)Related WorkOther researchers have proposed extensions to Fourier variable elimination as adecision method for array data dependence analysis [MHL91a, WT92, IJT91].Lam et al. [MHL91a] extend Fourier variable elimination to integers by comput-ing a sample solution, using branch and bound techniques if needed. MichaelWolfe and Chau-Wen Tseng [WT92] discuss how to recognize when Fourier vari-able elimination may produce a conservative result, but do not give a methodto verify the existence of integer solutions. These methods are decision tests andcannot return symbolic answers.Corinne Ancourt and Fran�cois Irigoin [AI91] describe the use of Fourier vari-able elimination for quanti�ed variable elimination. They use this to generateloop bounds that scan convex polyhedra. They extend Fourier variable elimina-tion to integers by introducing oor and ceiling operators. Although this makestheir elimination exact, it may not be possible to eliminate additional variablesfrom a set of constraints involving oor and ceiling operators. This limits theirability to check for the existence of integer solutions and remove redundant con-straints.Cooper [Coo72] describes a complete algorithm for verifying and/or simplify-ing Presburger formulas. His method for quanti�ed variable elimination alwaysintroduces disjunctions, even if the result is convex. We have not yet performed ahead-to-head comparison of the Omega test with Cooper's algorithm. However,we believe that the Omega test will prove better for quanti�ed variable elimina-tion when the result is convex and better for veri�cation of a formula alreadyin disjunctive normal form. Cooper's algorithm does not require formulas to betransformed into disjunctive normal form and may be better for formulas thatwould be expensive to put into disjunctive normal form (although our methodsfor handling negation address this as well).The SUP-INF method [Ble75, Sho77] is a semi-decision procedure. It some-times detects solutions when only real solutions exist and it cannot be used forsymbolic quanti�ed variable elimination.H.P. Williams [Wil76] describes an extension of Fourier elimination to inte-gers. His scheme leads to a much more explosive growth than our scheme. If the

only constraints involving an eliminated variable x are L � lx and ux � U , hisscheme produces lcm(l; u) clauses, while ours produces1 + � (l � 1)(u� 1)max(l; u) �clauses. If there are p lower bounds Li � lix and q upper bounds ujx � Uj ,Williams' method produces a formula that, when converted into disjunctive nor-mal form, contains Y1�i�p^1�j�q lcm(li; uj)clauses, while the number of clauses produced by our scheme is1 + min0@ X1�i�p� (li � 1)(max(uj)� 1)max(uj) � ; X1�j�q� (max(li)� 1)(uj � 1)max(li) �1AFor example, if the li's are f1; 1; 1; 2; 3;5g and the uj's are f1; 1; 3; 7g, Will-iams' method produces 23156852670000clauses, while ours produces 12. It is almost certainly possible to improve Will-iams' method while using the same approach as Williams, but we know of nodescription of such an improvement.Jean-Louis Lassez [LHM89, LL92, HLL92] gives an alternative to Fouriervariable elimination for elimination of existentially quanti�ed variables. How-ever, his methods work over real variables, are optimized for dense constraints(constraints with few zero coe�cients) and are ine�cient when the �nal problemcontains more than a few variables since they build a convex hull in the spaceof variables remaining after all quanti�ed variables have been eliminated.3 Constraint Based Dependence AnalysisArray dependence testing can be viewed as constraint analysis. Simply testingfor the existence of a dependence (as in Figure 1) is equivalent to testing forsolutions to a set of constraints.We can also use constraint manipulation to obtain information about thepossible di�erences in the values of the corresponding index variables at thetimes of the two accesses (this information can be used to test for the legality ofsome program transformations). To do so, we introduce variables correspondingto these di�erences, and existentially quantify and eliminate all other variables.Alternatively, we can choose to eliminate everything but the symbolic constants,and thus determine the conditions under which the dependence exists ([PW92]).Figure 3 shows a relatively complicated example of constraint-based depen-dence analysis, from one of the NASA NAS benchmarks. Note that our tech-niques for eliminating equalities let us reduce both the number of variables andthe number of constraints before resorting to Fourier elimination.

Program to be analyzed:for j = 0 to 20 dofor i = max(-j,-10) to 0 dofor k = max(-j,-10)-i to -1 dofor l = 0 to 5 doa(l,i,j) = ...a(l,k,i+j)...Constraints before equality substitution:9jw; iw; kw; lw ; jr; ir; kr; lr s:t:�i = ir � iw ^�j = jr � jw�k = kr � kw ^�l = lr � lwlw = lr ^ iw = kr ^ jw = jr + ir0 � jw � 20�10;�jw � iw � 0�jw � iw;�10 � iw � kw � �10 � lw � 50 � jr � 20�10;�jr � ir � 0�jr � ir;�10 � ir � kr � �10 � lr � 5
Constraints after equality substitution:9jr ; lw s:t:0 � lw � 50 � jr � 203�j + 2�i +�k � jr�j � jr � 20 +�j2�j +�i � jr2�j + 2�i +�k � 101 � �j +�i+�k1 � �j +�i � 100 � �j � 102�j +�i � 10�l := 0Constraints after eliminating lw and jr:2�j +�i � 100 � �j � 103�j + 2�i +�k � 202�j + 2�i +�k � 101 � �j +�i+�k1 � �j +�i � 10�l := 0Fig. 3. Constraint-based dependence analysisIf we extend our constraint manipulation system to handle negated conjunc-tions of linear constraints, we can include constraints that rule out the depen-dences that are \killed" by other writes to the array, producing array data owinformation ([PW93]). The analysis tells us the source of the value read at anyparticular point; standard array data dependence tests just tell us who had pre-viously written to the memory location read at any particular point. We havealso found that our use of constraints to represent dependences is useful for otherforms of program analysis and transformation ([Pug91, PW94, KP93]).4 ExperiencesOne of the main drawbacks of Fourier's method of variable elimination is the hugenumber of constraints that can be generated by repeated elimination, many ofwhich could be redundant. Other researchers have found that Fourier's techniquemay be prohibitively expensive [HLL92, Imb93] for some sets of constraints, andhave proposed either alternative methods for projection [HLL92] or methods toavoid generating so many redundant constraints [Imb93].

We have found Fourier's method to be e�cient, and do not experience sub-stantial increases in the number of constraints. Our empirical studies have shownthat Fourier's method can be used in dependence analysis without a signi�cantimpact on total compile time [Pug92, PW93]. The average time required formemory-based analysis (as in Figure 1) was well under 1 millisecond per pair ofreferences, and the average time for array data ow analysis a few milliseconds.These time trials were measured on a set of benchmarks that includes someof the NASA NAS kernels and some code from the Perfect Club Benchmarks([B+89]).We believe this speed is the result of several attributes of the sets of con-straints we produce for dependence analysis. First, loop bounds and array sub-scripts are often either constant or a function of a single variable. If all loopbounds and array subscripts have this form, all of our constraints will involve onlyone or two variables. Variable elimination is much less expensive within this re-stricted domain (known as LI(2)), even if we use the general algorithm.The num-ber of constraints generated is bounded by a sub-exponential (though more thanpolynomial) function, rather than the 2n=2 of the general case [Cha93, Nel78].Second, our constraints contain many unit coe�cients. When the non-zerocoe�cients in a sparse set of constraints are all �1, projection ends up pro-ducing many parallel constraints, which can then be eliminated by our simpletest for redundant constraints. Variable elimination in a LI(2) problem withunit coe�cients preserves unit coe�cients (after dividing through by the gcd ofthe coe�cients). Under such situations, there cannot be more than O(n2) non-parallel constraints over n variables, and our method needs no more then O(n3)time to eliminate as many variables as desired [Pug92].Finally, our constraint sets contain numerous equality constraints. Since weuse these constraints to eliminate variables without resorting to projection, theyhelp to keep down the size of the constraint sets that we must manipulate withFourier's technique.4.1 Empirical Studies of Dependence Analysis ConstraintsWe instrumented our system to analyze the types of constraints we deal withduring dependence analysis. For each application of the Omega test, we analyzedthe constraints that remained (a) after our initial removal of equality constraintsand (b) after we had either eliminated all but two variables or run out of quan-ti�ed variables to eliminate. In doing this analysis, we computed real shadows,as opposed to integer shadows (because the integer shadow may not be a simpleconjunct). However, we still performed a number of other operations to rule outnon-integer solutions (such as normalizing 2x+ 4y � 3 to x+ 2y � 2).When analyzing a set of constraints, we counted the number of variables,and counted (separately) the number of constraints that involved 1, 2 or 3+variables. We then eliminated all redundant constraints, and recounted.We performed these tests over our dataow benchmark set [PW93], whichincludes some of the NASA NAS kernels and some code from the Perfect Club

of constraints involvingAverages when # vars kind 1 var 2 vars 3+ vars totalinitial 5.6 as given 2.9 3.3 1.4 7.6nonredundant 2.0 2.1 0.9 5.0�nal 2.4 as generated 1.8 0.5 0.1 2.4nonredundant 1.2 0.3 0.07 1.6a worst-case # of constraints involving(but noncontrived) when # vars kind 1 var 2 vars 3+ vars totalexample initial 5 as given 6 5 4 15encountered nonredundant 4 2 3 9in benchmarks �nal 3 as generated 2 3 3 8nonredundant 1 2 2 5Fig. 4. Characteristics of constraint sets used in dependence analysisBenchmarks ([B+89]). In total, we considered 1144 sets of constraints, and ob-tained the results shown in Figure 4.Note that our methods always check for parallel constraints and eliminatethe redundant one immediately (e.g., given x+y � 5 and x+y � 10, the secondis eliminated). This can be done in constant time per constraint (through theuse of a hash table).Quite surprisingly, in none of the 1144 cases did the number of constraintsincrease as variables were eliminated (even though we did no elimination ofnon-parallel redundant constraints).4.2 Empirical Studies of Random ConstraintsTo better understand the reasons for our good fortune in avoiding an explosionof constraints, we also studied the behavior of Fourier elimination on sets ofrandom constraints. Figure 5 shows the results of these studies.In each experiment, we �xed the number of constraints and variables, addedone random non-zero to each constraint. When then projected the constraintsonto the �rst two variables, and recorded the maximum number of constraintsencountered during the elimination. We then added an additional nonzero coef-�cient to the original set of constraints, and repeated the projection. We con-tinued doing this until the problem had no non-zeros left. Each line representsthe median of 5-21 experiments. The key gives the elimination method used. Allexperiments shown here had 15 constraints on 5 variables, like the worst-caseexample from Figure 4.The top graph compares the e�ectiveness of Fourier's method and the tech-niques described by Imbert on sets of constraints in which the non-zero coe�-cients had random integer values between -10 and +10. Our implementation ofImbert's method [Imb93] of redundant constraint detection uses Theorem 10 of

10

100

1000

10000

2 4 6 8 10 12 14

M
ax

. N
o.

 o
f C

on
st

ra
in

ts
 D

ur
in

g
E

lim
in

at
io

n

Avg. No. of Initial Constraints Involving Each Variable

Random CoefficientsFourier
Imbert

10

100

1000

10000

2 4 6 8 10 12 14

M
ax

. N
o.

 o
f C

on
st

ra
in

ts
 D

ur
in

g
E

lim
in

at
io

n

Avg. No. of Initial Constraints Involving Each Variable

Unit CoefficientsFourier
Imbert

Parallel

Fig. 5. Variable Elimination: 15 Constraints on 5 Variables

[Imb93] to determine that some constraints are redundant. However, we do notuse the more expensive comparison or matrical tests.Imbert's method is clearly important for problems of this size when the initialnumber of constraints per variable is above 7. When the initial density is below5, even Fourier's original technique does not result in an increase in the numberof constraints. However, our \worst-case" problem had an average of just under6 initial constraints per variable, and we saw no increase in the number of con-straints. Clearly the sparsity and size of the constraint sets were not su�cientto explain our results.We therefore re-ran the tests on sets of constraints in which all the non-zerocoe�cients were �1, and included our techniques for detecting parallel redundantconstraints. The results of this second set of tests are shown in the bottom graphof Figure 5. Note that the both our techniques and Imbert's do not produce anincrease in the number of constraints when the initial number of constraints pervariable is below 7. We therefore attribute our observations in Section 4.1 to acombination of constraint set size and sparsity and the high frequency of unitcoe�cients.5 ConclusionsOther researchers [HLL92, Imb93] have been quite leary of applying Fouriervariable elimination to sets of dense constraints. Our experience has lead us tobelieve that Fourier's method is quite e�cient when applied to sparse constraints.Furthermore, we believe that sparse constraints arise in many applications.We have extended our work beyond Fourier variable elimination: �rst to han-dling variable elimination for integer variables, and then to simplifying arbitraryPresburger formulas. We hope these extensions may be of interest to a broadercommunity.6 AvailabilityTechnical reports about the Omega test and an implementation of the Omegatest are available via anonymous ftp from ftp.cs.umd.edu:pub/omega or theworld wide web http://www.cs.umd.edu/projects/omega.References[AI91] Corinne Ancourt and Fran�cois Irigoin. Scanning polyhedra with DO loops.In Proc. of the 3rd ACM SIGPLAN Symposium on Principles and Practiceof Parallel Programming, pages 39{50, April 1991.[B+89] M. Berry et al. The PERFECT Club benchmarks: E�ective performanceevaluation of supercomputers. International Journal of Supercomputing Ap-plications, 3(3):5{40, March 1989.

[Ble75] W. W. Bledsoe. A new method for proving certain presburger formulas. InAdvance Papers, 4th Int. Joint Conference on Artif. Intell., Tibilisi, Georgia,U.S.S.R, 1975.[Cha93] Vijay Chandru. Variable elimination in linear constraints. The ComputerJournal, 36(5):463{472, 1993.[Coo72] D. C. Cooper. Theorem proving in arithmetic with multiplication. InB. Meltzer and D. Michie, editors, Machine Intelligence 7, pages 91{99.American Elsevier, New York, 1972.[DE73] G.B. Dantzig and B.C. Eaves. Fourier-Motzkin elimination and its dual.Journal of Combinatorial Theory (A), 14:288{297, 1973.[Duf74] R. J. Du�n. On fourier's analysis of linear inequality systems. MathematicalProgramming Study, pages 71{95, 1974.[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: AGuide to the Theory of NP-Completeness. W.H. Freemand and Company,1979.[HLL92] Tien Huynh, Catherine Lassez, and Jean-Louis Lassez. Practical issues onthe projection of polyhedral sets. Annals of mathematics and arti�cial in-telligence, November 1992.[IJT91] Fran�cois Irigoin, Pierre Jouvelot, and R�emi Triolet. Semantical interproce-dural parallelization: An overview of the pips project. In Proc. of the 1991International Conference on Supercomputing, pages 244{253, June 1991.[Imb93] Jean-Louis Imbert. Fourier's elimination: Which to choose? In PCPP 93,1993.[JMSY93] J. Ja�ar, M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Projecting CLP(R)constraints. New Generation Computing, 11(3/4):449{469, 1993.[KP93] Wayne Kelly and William Pugh. A framework for unifying reordering trans-formations. Technical Report CS-TR-3193, Dept. of Computer Science, Uni-versity of Maryland, College Park, April 1993.[LHM89] Jean-Louis Lassez, Tien Huynh, and Ken McAloon. Simpli�cation and elim-ination of redundant linear arithmetic constraints. In Proceedings of theNorth American Conference on Logic Programming, pages 37{51, 1989.[LL92] Catherine Lassez and Jean-Louis Lassez. Quanti�er elimination for con-junctions of linear constraints via a convex hull algorithm. In Bruce Don-ald, Deepak Kapur, and Joseph Mundy, editors, Symbolic and NumericalComputation for Arti�cial Intelligence. Academic Press, 1992.[MHL91a] D. E. Maydan, J. L. Hennessy, and M. S. Lam. E�ectiveness of data depen-dence analysis. In Proceedings of the NSF-NCRD Workshop on AdvancedCompilation Techniques for Novel Architectures, 1991.[MHL91b] D. E. Maydan, J. L. Hennessy, and M. S. Lam. E�cient and exact datadependence analysis. In ACM SIGPLAN'91 Conference on ProgrammingLanguage Design and Implementation, pages 1{14, June 1991.[Nel78] C. G. Nelson. An o(nlogn) algorithm for the two-variable-per-constraint lin-ear programming satis�ablility problem. Technical Report AIM-319, Stan-ford University, Department of Computer Science, 1978.[Pug91] William Pugh. Uniform techniques for loop optimization. In 1991 Inter-national Conference on Supercomputing, pages 341{352, Cologne, Germany,June 1991.[Pug92] William Pugh. The Omega test: a fast and practical integer programmingalgorithm for dependence analysis. Communications of the ACM, 8:102{114,August 1992.

[PW92] William Pugh and David Wonnacott. Going beyond integer programmingwith the Omega test to eliminate false data dependences. Technical ReportCS-TR-3191, Dept. of Computer Science, University of Maryland, CollegePark, December 1992. An earlier version of this paper appeared at theSIGPLAN PLDI'92 conference.[PW93] William Pugh and David Wonnacott. An exact method for analysis of value-based array data dependences. In Lecture Notes in Computer Science 768:Sixth Annual Workshop on Programming Languages and Compilers for Par-allel Computing, Portland, OR, August 1993. Springer-Verlag.[PW94] William Pugh and David Wonnacott. Static analysis of upper and lowerbounds on dependences and parallelism. ACM Transactions on Program-ming Languages and Systems, 14(3):1248{1278, July 1994.[Sho77] Robert E. Shostak. On the sup-inf method for proving presburger formulas.Journal of the ACM, 24(4):529{543, October 1977.[Wil76] H.P. Williams. Fourier-Motzkin elimination extension to integer program-ming problems. Journal of Combinatorial Theory (A), 21:118{123, 1976.[WT92] M. J. Wolfe and C. Tseng. The Power test for data dependence. IEEETransactions on Parallel and Distributed Systems, 3(5):591{601, September1992.

This article was processed using the LaTEX macro package with LLNCS style

