
ABSTRACT

Title of Dissertation: RESILIENT AND EFFICIENT CONSENSUS
UNDER UNKNOWN NETWORK CONDITIONS

Erica Blum
Doctor of Philosophy, 2023

Dissertation Directed by: Professor Jonathan Katz
Department of Computer Science

Large-scale distributed services need to provide high throughput and low latency without

sacrificing resilience. In particular, even if some servers crash or malfunction, the system as

a whole should remain consistent. This challenge has been studied extensively in distributed

computing and cryptography in the form of consensus algorithms. A consensus algorithm is

an interactive protocol that allows honest (non-faulty) nodes to agree on a shared output in the

presence of Byzantine (faulty) nodes, who may behave arbitrarily. Consensus algorithms have a

long history in distributed computing, and are now receiving even more attention in the context

of blockchain systems.

Consensus has frequently been studied in the context of two contrasting network models.

In the synchronous network model, any message sent by an honest party will be delivered within

a fixed bound; this bound is known to all parties and may be used as a protocol parameter. In

the asynchronous network model, messages may be delayed for arbitrary lengths of time. For

certain consensus problems and settings, the optimal fault tolerance is higher in the synchronous

model than the asynchronous model (all else being equal). For example, assuming a public

key infrastructure (PKI), the fundamental problem of Byzantine agreement (BA) for n parties

is feasible for t < n/2 faults in the synchronous model, compared to only t < n/3 in the

asynchronous model. On the other hand, synchronous consensus protocols can become stuck or

even lose consistency if delays exceed the fixed bound.

In this dissertation, we consider a novel network-agnostic notion of security. Our central

contribution is a suite of consensus protocols that achieve precisely defined security guarantees

when run in either a synchronous or asynchronous network model, even when the parties are

unaware of the network’s true status. In addition, we provide matching impossibility results

characterizing the best-possible security guarantees for this setting. We conclude by exploring a

natural extension to network-agnostic security, in which protocols must remain secure in a setting

where the underlying network status is not only unknown, but may switch between synchrony and

asynchrony during a single protocol execution.

RESILIENT AND EFFICIENT CONSENSUS
UNDER UNKNOWN NETWORK CONDITIONS

by

Erica Blum

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2023

Advisory Committee:
Professor Jonathan Katz, Chair/Advisor
Professor Dana Dachman-Soled
Professor Dave Levin
Dr. Julian Loss
Professor Ian Miers

Acknowledgments

First, I would like to thank my advisor, Jonathan Katz. Jon sets an exceptional example

in every respect, including technical expertise, teaching ability, and near-instant email response

time. Most of all, I hope that I have inherited some of Jon’s unerring ability to ask exactly the

right questions. In my research, whenever I’ve wandered off and gotten lost in the woods, Jon

has been there to set me back on the right path.

I would also like to thank Julian Loss, who has been an invaluable mentor and constant col-

laborator during my PhD. Julian has devoted countless hours to helping me hammer out proofs—

on whiteboards and Zoom calls, over Slack and email. Dozens of devious bugs were found and

fixed thanks to his technical ability, patience, and attention to detail; any bugs that remain are

entirely my own fault.

Sincere thanks to my committee members Jon, Julian, Dana Dachman-Soled, Dave Levin,

and Ian Miers. I have always been able to count on them to give insightful feedback, suggest new

perspectives, and inspire me to do my best work.

So many faculty and administrators at UMD supported me on this journey. I especially

want to thank Leo Lampropoulos and José Manuel Calderón Trilla, whose doors were always

open when I needed advice; and Michelle Mazurek, whose teaching and continued mentorship

has deeply influenced the way I think about research and writing.

I was fortunate to intern with several incredible researchers, including Karim Eldefrawy,

ii

Dahlia Malkhi, Vipul Goyal, Elaine Shi, Shin’ichiro Matsuo, and Elette Boyle. Each of them

welcomed me into their research group and generously offered their time and expertise.

A big thank you to all of my research collaborators over the years, a list that includes

Alexander Russell, Andreea Alexandru, Chen-Da Liu Zhang, Tal Rabin, Kartik Nayak, Derek

Leung, Ran Cohen, and Vinesh Sridhar in addition to those already mentioned. It is an amazing

privilege to get to spend my time thinking interesting thoughts with such kind and talented people.

Lastly, none of this would have been possible without the help of my wonderful family and

friends. I can’t describe how thankful I am for their unconditional love and support.

iii

Funding Acknowledgements

The material in this dissertation is based on work supported by the National Institute of

Standards and Technology under financial assistance award #70NANB19H126; and by the Na-

tional Science Foundation under grant #1837517.

iv

Table of Contents

Acknowledgements ii

Funding Acknowledgements iv

Table of Contents v

List of Figures vii

Chapter 1: Introduction 1
1.1 Building Resilient Distributed Systems with Asynchronous Fallback 1
1.2 Related Work . 4
1.3 Outline of the Dissertation . 6

Chapter 2: Preliminaries 8
2.1 System Model . 8

2.1.1 Network Models . 9
2.2 Cryptographic Primitives . 11

2.2.1 Threshold Digital Signatures . 11
2.2.2 Threshold Encryption . 12
2.2.3 Error-Correcting Codes . 13
2.2.4 Coin-Flip Mechanism . 13
2.2.5 Committee Election Mechanisms . 14

2.3 Protocol Definitions . 15

Chapter 3: Network-Agnostic Byzantine Agreement 24
3.1 Synchronous BA with Partial Asynchronous Fallback 25
3.2 Asynchronous Byzantine Agreement with Enhanced Validity 28

3.2.1 A Value-Proposal Subprotocol . 29
3.2.2 Asynchronous Graded Consensus with Enhanced Validity 31
3.2.3 Asynchronous Byzantine Agreement with Enhanced Validity 33

3.3 A Network-Agnostic Byzantine Agreement Protocol 37
3.4 Optimal Thresholds for Network-Agnostic Byzantine Agreement 39

Chapter 4: Network-Agnostic State Machine Replication 41
4.1 Asynchronous Common Subset with Enhanced Validity 42

4.1.1 Reliable Broadcast with Higher Validity 43
4.1.2 A Non-Terminating ACS Protocol . 45

v

4.1.3 A Terminating ACS Protocol . 51
4.1.4 Communication Complexity of ACS . 52

4.2 A Block Agreement Subprotocol . 53
4.2.1 A Value-Proposal Subprotocol . 54
4.2.2 A Graded Consensus Subprotocol . 57
4.2.3 Communication Complexity of Block Agreement 61

4.3 A Network-Agnostic Atomic Broadcast Protocol 62
4.3.1 Technical Overview . 63
4.3.2 Technical Details . 63
4.3.3 Efficiency and Choice of Parameters . 68

4.4 From Atomic Broadcast to State Machine Replication 74
4.5 An Impossibility Result for Network-Agnostic SMR 75

Chapter 5: Improving the Security and Efficiency of Network-Agnostic SMR 78
5.1 UPDATE: Network-Agnostic SMR with Optimal Thresholds and O(n3) Commu-

nication Complexity . 78
5.1.1 ACS Using Error-Correcting Codes . 79
5.1.2 UPDATE: Full Protocol . 87
5.1.3 Communication Complexity of UPDATE 93

5.2 UPSTATE: Network-Agnostic SMR with Almost-Optimal Thresholds and O(n2)
Communication Complexity . 94
5.2.1 A Committee-Based ACS Protocol for UPSTATE 94
5.2.2 A Committee-Based BLA Protocol for UPSTATE 97
5.2.3 UPSTATE: Full Protocol . 101
5.2.4 Communication Complexity of UPSTATE 103

Chapter 6: Achieving Security in a Variable Network-Agnostic Model 103
6.1 Related Work . 105
6.2 Technical Details . 106
6.3 Security Analysis . 107
6.4 Discussion . 113

Appendix A: Deferred Probability Bounds 114

Bibliography 120

vi

List of Figures

3.1 A broadcast protocol from the perspective of party Pi with designated sender P ∗. 26
3.2 A Byzantine agreement protocol from the view of party Pi, parameterized by

thresholds ta, ts. 27
3.3 A subprotocol for proposing values, parameterized by thresholds ta, ts. 29
3.4 A protocol for graded consensus from the perspective of party Pi, parameterized

by thresholds ta, ts. 32
3.5 A Byzantine agreement protocol from the view of party Pi, parameterized by ta, ts. 34
3.6 A Byzantine agreement protocol from the perspective of party Pi, parameterized

by thresholds ta, ts. 38

4.1 A reliable broadcast protocol with designated sender P ∗, from the perspective of
party Pi. 43

4.2 An ACS protocol, from the perspective of party Pj with input vj 46
4.3 A terminating ACS protocol, from the perspective of party Pj with input vj 51
4.4 A protocol parameterized by threshold t and designated proposer P ∗, from the

perspective of party Pi. 55
4.5 A graded consensus protocol parameterized by threshold t from the perspective

of party Pi. 58
4.6 A block-agreement protocol with security parameter κ and threshold parameter

t, from the perspective of party Pi. 60
4.7 Atomic broadcast protocol TARDIGRADE, from the perspective of party Pj 64

5.1 Input distribution and reconstruction from the perspective of party Pi∈{1,...,n}. . . 80
5.2 Termination helper protocol from the perspective of party Pi∈{1,...,n}. 81
5.3 An ACS protocol from the perspective of party Pi∈{1,...,n}. 82
5.4 An SMR protocol with adaptive security, parameterized by thresholds ta, ts. . . . 88
5.5 An input selection subprotocol (handling input encoding and primary committee

election) for UPSTATE, from the perspective of party Pi∈{1,...,n}. 95
5.6 An ACS protocol for UPSTATE, parameterized by thresholds ta and ts, from the

perspective of party Pi∈{1,...,n}. 96
5.7 A value-proposal protocol for UPSTATE from the perspective of party Pi∈{1,...,n}

in round r. 98
5.8 A graded consensus protocol for UPSTATE from the perspective of party Pi∈{1,...,n}

in round r. 99
5.9 A BLA protocol for UPSTATE from the perspective of party Pi∈{1,...,n}. 100
5.10 An SMR protocol with static security for party Pi∈{1,...,n}. 102

vii

Ch. 3 © IACR 2019, https://doi.org/10.1007/978-3-030-36030-6_6
Ch. 4 © IACR 2021, https://doi.org/10.1007/978-3-030-92075-3_19
Ch. 5 © IACR 2022, https://doi.org/10.1007/978-3-031-22963-3_23
Ch. 6 © IACR 2022, https://doi.org/10.1007/978-3-031-22963-3_23

Materials in Chapters 3-6 are minor revisions of the versions published by Springer-Verlag.
Copyright for these materials is held by the IACR and used in compliance with the IACR

copyright policy. All other materials © Erica Blum 2023.

https://doi.org/10.1007/978-3-030-36030-6_6
https://doi.org/10.1007/978-3-030-92075-3_19
https://doi.org/10.1007/978-3-031-22963-3_23
https://doi.org/10.1007/978-3-031-22963-3_23

Chapter 1: Introduction

1.1 Building Resilient Distributed Systems with Asynchronous Fallback

In the 1980s, Pease, Shostak, and Lamport proposed the Byzantine generals problem, in

which a set of devices must reach agreement, despite the traitorous plotting of some fraction of

Byzantine (i.e., faulty) devices [1, 2]. They originally conceived of a setting in which a small

number of devices (say, three or four) would be communicating over a local network; for ex-

ample, a handful of sensors onboard an airplane might compare measurements to detect sudden

changes in altitude or temperature. Even in this seemingly simple setting, reaching agreement

is far from trivial – and as time has passed, the complexity of distributed systems has only in-

creased. A typical application might require hundreds of servers to maintain a consistent state

while processing requests from millions of users. Furthermore, many applications are run over

the open Internet, making it difficulty to predict when (or even if) messages will arrive. In the

best case, network connections might suffer from benign service interruptions or outages; in the

worst case, the system could be deliberately targeted by denial-of-service attacks.

These challenges and more have motivated the study of consensus problems. Informally, a

consensus problem is a theoretical problem in which honest (i.e., non-faulty) nodes must agree

on a shared output in the presence of Byzantine (i.e., faulty) nodes, who may behave arbitrarily.

Solutions usually take the form of consensus protocols. A consensus protocol, also called a

1

consensus algorithm, is a set of rules or procedures that describes how an honest party should

interact with its peers in order to arrive at a decision.

This dissertation focuses on two fundamental consensus problems: Byzantine agreement

(BA) and state machine replication (SMR). In the Byzantine agreement problem, each device

receives a local input value, and the honest devices must agree on a shared output value; in the

state machine replication problem, each device receives a stream of unordered inputs and the

honest devices must collectively agree on an ordered sequence of outputs. Informally, one can

view BA as a “single-shot” form of consensus and SMR as its “multi-shot” counterpart.1

BA and SMR have been studied under a variety of network models. Informally, a network

model is a collection of assumptions about the communication channels between parties. In the

synchronous network model, any message sent by an honest party will be delivered within time ∆,

where ∆ is a fixed parameter known to all parties. In the asynchronous network model, messages

may be delayed for arbitrary lengths of time. (Some work considers the partially synchronous

model, in which messages are delivered within some time bound ∆ that is unknown to the parties;

we do not consider this model in our work.)

Assuming a public-key infrastructure (PKI), Byzantine agreement and SMR are known to

be feasible for ts < n/2 adversarial corruptions in a synchronous network, but only for ta < n/3

faults in an asynchronous network. This leads us to ask whether it is possible to design a protocol

that can withstand n/3 or more faults if the network happens to be synchronous, without entirely

sacrificing security if the network happens to be asynchronous. More precisely, fix two thresholds

ta, ts with ta ≤ ts, and assume there is a trusted dealer who can distribute information (key

1State machine replication is a well-established technique in fault-tolerant distributed computing literature; for
an in-depth tutorial, refer to Schneider’s seminal work [3].

2

material, etc) to the parties in advance of the protocol execution. Is it possible to design network-

agnostic protocols for BA and SMR that (1) tolerate ts corruptions if they are run in a synchronous

network and (2) tolerate ta corruptions if they are run in an asynchronous network?

Depending on one’s assumptions about the probabilities of different events, a network-

agnostic protocol could be preferable to either a purely synchronous protocol (which loses se-

curity if the network is asynchronous) or a purely asynchronous one (which loses security if

there are n/3 or more faults). To see why, consider the following concrete example. Fix ta, ts

with ta < n/3 ≤ ts and 2ts + ta < n, and let f(t) be the probability that the number of

faults is strictly greater than t. Suppose f(ta) = 1/10, f(⌊n−1
3
⌋) = 1/20, and f(ts) = 0, and

the probability that the network delay ever exceeds the assumed bound is p∆ = 1/10. Then

a purely synchronous protocol fails to provide security with probability p∆ = 1/10, while a

purely asynchronous protocol fails to provide security with probability f(⌊n−1
3
⌋) = 1/20. But a

network-agnostic protocol (with parameters ta, ts) fails to provide security only with probability

f(ts) + p∆ · f(ta) = 1/100.

This dissertation makes three key contributions. First, we propose a formal definition

of network-agnostic security, and give complementary feasibility and impossibility results for

network-agnostic BA and SMR, showing that network-agnostic security is achievable for cor-

ruption thresholds ta, ts if and only if ts + 2ta < n. This includes a network-agnostic BA

protocol for optimal corruption thresholds (i.e., for any ta, ts such that ts + 2ta < n), and a

simple proof-of-concept network-agnostic SMR protocol. The proof-of-concept SMR protocol,

named TARDIGRADE,2 supports optimal corruption thresholds and is secure against an adaptive

2Tardigrades, also called water bears, are microscopic animals known for their ability to survive in extreme
environments.

3

adversary. When run among n parties, its per-block communication complexity is O(n4).3

Our second contribution is a pair of “next-generation” network-agnostic SMR protocols

with improved communication complexity. The first of these protocols, UPDATE, has the same se-

curity guarantees as TARDIGRADE and improved per-block communication complexity of O(n3).

The second, UPSTATE, further improves the per-block communication complexity to O(n2), at

the cost of slightly weaker security guarantees (namely, its security is static rather than adaptive,

and it supports a slightly restricted range of corruption thresholds).

As a third contribution, we extend our techniques to a challenging “variable” flavor of

network-agnostic security, in which the network may switch arbitrarily between synchrony and

asynchrony during a single protocol execution, and the adversary may hop between devices. We

find that our protocols can be augmented with a “secure reboot” functionality in order to achieve

a form of proactive security.

1.2 Related Work

The most closely related works are those that analyze security of a single protocol in multi-

ple network models, or in a network model other than the one for which it was designed; however,

we will begin with a brief overview of the most relevant work in the “pure” synchronous, partially

synchronous, and asynchronous settings.

In the asynchronous setting, SMR protocols are often extensions of protocols for a re-

lated problem called atomic broadcast (cf. Definition 2.7). Canonical constructions for atomic

broadcast in the asynchronous setting are based on multi-value validated asynchronous Byzan-

3For the purposes of this introduction, the communication complexity is stated as a function of the number of
parties n. In later chapters, we present detailed analyses that account for all protocol parameters.

4

tine agreement or asynchronous common subset [4, 5, 6, 7, 8] and achieve cubic communication

complexity for input sizes linear in n; on the synchronous side, more efficient constructions are

known [9, 10].

Only a few existing protocols in the asynchronous setting tolerate adaptive corruptions:

EPIC [11] and DAG-Rider [12] achieve adaptive security with cubic total communication com-

plexity, and Dumbo2 [8] can be modified to achieve adaptive security by substituting a different

MVBA protocol by the same authors [13]. Neither can be easily adapted to the network-agnostic

setting.

Several prior works have demonstrated the (in)security of synchronous or partially syn-

chronous protocols in an asynchronous network. For example, Miller et al. [6] describe an ad-

versarial scheduler that causes PBFT [14] to lose liveness if the network is asynchronous rather

than partially synchronous. Likewise, Nakamoto consensus (the protocol underlying the Bit-

coin blockchain) was shown to be insecure if the network latency is too high or nodes become

(temporarily) partitioned from the network [15, 16].

The work in this dissertation joins a relatively new line of work considering the security of

a single protocol under different synchrony assumptions. In a 2016 paper, Liu et al. [17] proposed

protocols that tolerate a minority of malicious faults in a synchronous network and a minority of

fail-stop faults in an asynchronous network. Several other works on this topic were published

concurrently with the work in this dissertation, including: Malkhi et al. [18] and Momose and

Ren [19], who consider networks that may be either synchronous or partially synchronous; and

Guo et al. [20] and Abraham et al. [10], who consider temporary disconnections between two

synchronous network components.

A separate body of work [21, 22, 23, 24] has considered consensus protocols with respon-

5

siveness. A responsive protocol terminates (or outputs, in the case of atomic broadcast/SMR)

in time proportional to the actual message-delivery time δ rather than the upper bound on the

network-delivery time ∆. Kursawe [25] gives a protocol for an asynchronous network that ter-

minates more quickly if the network is synchronous (but does not tolerate more faults in that

case). Responsiveness is not the same as network-agnostic security, but responsive protocols and

network-agnostic protocols are related in the sense that they achieve something “extra” under

certain good conditions.

1.3 Outline of the Dissertation

Chapter 2 formally defines the network-agnostic model, and reviews relevant background

and definitions.

Chapter 3 presents a network-agnostic Byzantine agreement protocol for any thresholds

ta, ts such that ts + 2ta < n, and a matching impossibility result when ts + 2ta ≥ n.

Chapter 4 presents a simple “first-generation” network-agnostic SMR protocol, TARDI-

GRADE, and a complementary lower bound.

Chapter 5 presents a pair of “next-generation” network-agnostic state machine replication

protocols, UPDATE and UPSTATE; these protocols improve on TARDIGRADE in terms of commu-

nication complexity.

Finally, in Chapter 6, we introduce a natural extension to the network-agnostic model in

which the underlying network can switch between synchrony and asynchrony, and present alter-

native versions of TARDIGRADE, UPDATE, and UPSTATE that are secure in this new model.

This dissertation includes material from previously published co-authored papers. Chap-

6

ter 3 is based on a paper co-authored with Jonathan Katz and Julian Loss and published in the

proceedings of the Theory of Cryptography Conference, 2019 [26].4 Chapter 4 is based on a paper

co-authored with Jonathan Katz and Julian Loss and published in the proceedings of Advances

in Cryptology—ASIACRYPT, 2021 [27].5 Chapters 5 and 6 are based on a paper co-authored

with Andreea Alexandru, Jonathan Katz, and Julian Loss and published in the proceedings of

Advances in Cryptology—ASIACRYPT, 2022 [28].6

4https://doi.org/10.1007/978-3-030-36030-6_6
5https://doi.org/10.1007/978-3-030-92075-3_19
6https://doi.org/10.1007/978-3-031-22963-3_23

7

https://doi.org/10.1007/978-3-030-36030-6_6
https://doi.org/10.1007/978-3-030-92075-3_19
https://doi.org/10.1007/978-3-031-22963-3_23

Chapter 2: Preliminaries

2.1 System Model

We consider a system of n parties connected by point-to-point authenticated channels. Up

to a fixed fraction of the parties may deviate arbitrarily from a protocol; those parties are called

Byzantine. (We also sometimes refer to Byzantine parties as corrupted or faulty.) Parties who are

not Byzantine are called honest.

Our protocols rely on a number of cryptographic primitives (detailed in Section 2.2); unless

otherwise noted, these primitives are assumed to be initialized by a trusted dealer as part of some

offline setup.

Any parties that are corrupted during an execution are modeled as being controlled by a

single adversary. We will consider adversaries with a wide range of capabilities, as described

below.

We separately consider static, adaptive, and mobile adversaries. A static adversary must

choose which parties to corrupt prior to the start of the protocol, whereas an adaptive adversary

is allowed to adaptively corrupt parties as the protocol progresses (up to a fixed threshold). A

mobile adversary can move between parties over the course of the protocol.

We further distinguish two types of mobile adversary. The first type, which we call an

epoch-wise mobile adversary, can move freely among parties between epochs, as long as the

8

number of distinct parties corrupted in any single epoch does not exceed a fixed threshold. The

second type, which we refer to as an constrained mobile adversary, is limited to moving between

a certain subset of parties. More formally, the constrained mobile adversary is constrained with

respect to thresholds t′ ≤ t, so that at most t distinct parties are ever corrupted over the course of

an execution, and at most t′ ≤ t of those parties are corrupted at any particular moment in time.

2.1.1 Network Models

This work introduces a novel network-agnostic model, where the underlying network be-

haves according to one of the classical network models (synchronous or asynchronous), but the

parties do not know which.

In the classical synchronous network model, there is a bound ∆ known to all parties such

that any message sent by an honest party at time T is guaranteed to be delivered by time T +∆.

The adversary can reorder or delay messages arbitrarily subject to this constraint. In the classical

asynchronous model, there is no upper bound on the message delay, and the adversary can reorder

or delay messages in any way as long as each message is eventually delivered.

In the network-agnostic model, the network may be either synchronous (for fixed ∆) or

asynchronous, but the parties do not know which. Throughout most of this work, we consider

a static network-agnostic model, in which the mode (synchrony or asynchrony) is fixed prior to

each protocol execution. (When we refer to “the network-agnostic model,” we are referring to

this static version.) In Section 6 we introduce a variable form of the network-agnostic model; all

details related to that model can be found there.

A key feature of the network-agnostic model is that the corruption threshold depends on

9

the underlying network model. We denote the corruption threshold in the asynchronous and

synchronous case by ta and ts, respectively. Throughout, we assume ta ≤ ts, because t-security

in the synchronous case implies t-security in the asynchronous case. Furthermore, except where

otherwise noted, we assume ta < n/3 and ts < n/2. This is because most of the protocols we

consider have well-known impossibility results that preclude beyond these thresholds. Lastly, as

we will show in our impossibility results, network-agnostic security is feasible for most of the

protocols we consider only if 2ts + ta < n. Because these conditions frequently appear together,

we define the following shorthand:

Condition ⋆: thresholds ta, ts satisfy ta < n/3, ts < n/2, ta ≤ ts, and 2ts + ta < n.

Bounds on message delays are just one aspect of a network model. Other key features of

our models include the following:

• No after-the-fact removal: In all models we consider, we assume the adversary cannot per-

form after-the-fact removal. That is, once an honest party Pi has sent a message, the mes-

sage must eventually be delivered even if Pi is later corrupted by an adaptive adversary.

• Rushing adversaries: Unless otherwise specified, we assume the adversary is rushing, i.e.,

it can wait to see all messages that were sent to corrupted parties in a given time step before

sending its own messages.

• Local clocks: Each honest party has a local clock, which can be used to measure local time

during a protocol execution.

– When working in the synchronous model (either by itself or within the network-

agnostic model), we assume all honest parties’ clocks are synchronized and all honest

parties begin running a protocol at the same time.

10

– When working in the asynchronous model (either by itself or within the network-

agnostic model), honest parties’ clocks may not be synchronized and may run at

different rates; we assume only that each honest party’s clock progresses at some

positive rate.

• Authenticated channels: In all models we consider, all parties are connected by pairwise

authenticated channels.

2.2 Cryptographic Primitives

For simplicity, we use a single symbol κ to denote a security parameter for all schemes; in

practice, each scheme’s security parameters could be set independently.

2.2.1 Threshold Digital Signatures

In an n-party threshold signature scheme with threshold t, there is a public key pk, a vector

of private keys sk1, . . . , skn, and a vector of public signature verification keys (pk1, . . . , pkn).

Each party Pi receives ski, pk, and (pk1, . . . , pkn), and can use its secret key ski to create a

signature share σi on a message m. A signature share from party Pi on a message m can be

verified using the verification key pki; for this reason, we can also view a signature share as a

signature by Pi on m. (In some of our subprotocols, the ability to combine shares is irrelevant and

so it would suffice to assume a plain digital signature scheme; however, to simplify descriptions,

we assume the same threshold signature scheme is used for all signing operations.) We often

write ⟨m⟩i as a shorthand for the tuple (i,m, σi), where σi is a valid signature share on m with

respect to Pi’s verification key, and implicitly assume that invalid signature shares are discarded.

11

A set of t+ 1 valid signature shares on the same message can be used to compute a signature for

that message, which can be verified using the public key pk; a signature σ (resp. signature share

σi) on a message m is called valid if it verifies successfully with respect to pk (resp. pki).

For our protocols, we require a scheme that achieves standard notions of correctness, se-

curity (unforgeability under chosen-message attack) and robustness (any set of at least t + 1

signature shares can be combined to yield a signature) against a probabilistic polynomial-time

adversary.

To simplify our protocol descriptions, we assume that honest parties implicitly ignore in-

valid signature shares, and furthermore use some form of domain separation to ensure that signa-

ture shares are valid only in the particular protocol execution, iteration, etc. in which they were

generated.

We assume that signature shares and signatures have size O(κ); this is easy to ensure using

a collision-resistant hash function.

2.2.2 Threshold Encryption

In an n-party threshold encryption scheme with threshold t, there is a public encryption

key ek, a vector of private decryption keys dk1, . . . , dkn, and a vector of public verification keys

vk1, . . . , vkn. A party Pi can encrypt a message m using the public encryption key ek to generate a

ciphertext c, and can use its decryption key dki to obtain a decryption share ci of c. A decryption

share ci can be verified with respect to c, ek and vki and is called correct if the verification is

successful. A set of t+1 correct decryption shares can be used to obtain the decryption m of the

ciphertext c.

12

We consider an idealized encryption scheme for simplicity, but it can be instantiated us-

ing any CPA-secure scheme. Additionally, for the purposes of our communication complexity

analyses, we assume that encrypting a message m of length |m| produces a ciphertext of length

|m| + O(κ), and that decryption shares have length O(κ); these properties are easy to ensure

using standard KEM/DEM mechanisms.

2.2.3 Error-Correcting Codes

We adopt from Nayak et al. [29] the description of error correcting codes, in particular,

the Reed-Solomon (RS) code. An (n, b)-RS code encodes b data symbols into codewords of n

symbols, and can decode the codewords to recover the original data.

Given inputs m1, . . . ,mb, the encoding function ENC computes codewords s1, . . . , sn.

Knowledge of any b elements of the codeword uniquely determines the input message (and the

remaining elements of the codeword). The decoding function DEC computes (m1, . . . ,mb), and

is capable of tolerating up to c errors and d erasures in codewords (s1, . . . , sn), if and only if

n− b ≥ 2c+ d.

2.2.4 Coin-Flip Mechanism

We assume a coin-flip mechanism available as an atomic primitive. The mechanism, de-

noted CoinFlipt,κ, is parameterized by a threshold t and an output length κ, and takes an input k

from some domain specified by the protocol. The input k is used for domain separation in case

there are multiple invocations during a single protocol execution. When the parameters t and κ

are clear from context, we sometimes omit them and simply write CoinFlip.

13

We treat this mechanism as ideal functionality with the following behavior: upon receiving

input k from t+ 1 parties, it generates an unbiased value coink ∈ {0, 1}κ and sends (k, coink)

to all parties. (When run in an asynchronous network, messages to and from the functionality

can be arbitrarily delayed.) This functionality has the useful property that if at most t parties

are corrupted, then at least one honest party must provide input to the functionality before the

adversary can learn the output.

Several protocols for realizing such a coin flip1 in an asynchronous network, based on

general assumptions, are known [30, 31, 32, 33]. For our purposes, we need a protocol that

is secure for t < n/3 faults, and that terminates for t′ < n/2 faults. Such protocols can be

constructed using a threshold unique signature scheme [23, 34, 35, 36].

2.2.5 Committee Election Mechanisms

Selecting a small committee from among a large set of participants is a common technique

in consensus protocols; for completeness, we will briefly describe two specific mechanisms that

are used in this work.

For our purposes, a committee election mechanism is a protocol or functionality that deter-

mines a committee, i.e., a subset of the set of all parties. In general, such a mechanism should

ensure that each party is a member of the committee with uniform and independent probability.

The first mechanism uses an unpredictable value (such as the output of a coinflip protocol,

as described in Section 2.2.4) and a collision-resistant hash function to determine a committee

of fixed size. Let κ denote a committee size parameter. Say H is a collision-resistant hash

1Some of these realize a p-weak coin flip, where honest parties agree on the coin only with probability p < 1.
We can also rely on such protocols, at an increase in the expected round complexity by a factor of O(1/p).

14

function that is known to all parties in advance, and let coin denote the unpredictable input. The

unpredictable input coin determines a unique committee, which parties can locally compute as

follows. First, each party computes the hash H(coin, i) for each i ∈ [1..n]. Then, the parties

simply take the first κ parties in increasing order of their corresponding hash values.

The second method, known as cryptographic sortition, uses verifiable random functions

(VRF) to allow each party to individually determine whether they are part of a committee, and

then prove their membership to others [35, 37]. Let κ again denote a committee size parameter,

and fix a VRF with κ-bit outputs. To elect a new committee, each party computes the output of

the VRF on a prescribed input. A party is a member of this particular committee if the output of

the VRF is less than b = κ2κ/n. This mechanism can be idealized as determining a committee by

flipping independent coins for each party. Throughout, we let χs,n denote the distribution for this

idealized mechanism, i.e., the distribution that samples a subset of the n parties so that each party

is included independently with probability s/n. Note that this mechanism produces committees

of expected size κ, as opposed to committees of size exactly κ.

Several useful results about the size and composition of these committees can be derived

from standard concentration bounds; for completeness, these are included in AppendixA.

2.3 Protocol Definitions

In this section, we provide property-based security definitions for various consensus pro-

tocols. Each definition specifies a set of standard properties that are required for security. Some

definitions also include additional, weaker properties that will be relevant for our constructions.

In the following definitions (and throughout this work), we explicitly differentiate between

15

liveness (i.e., generating output) and termination (i.e., exiting the protocol); in particular, we

sometimes consider protocols that are live but not terminating.

We start by defining broadcast. A broadcast protocol allows a designated sender to share

its input with a set of other parties called receivers. If the designated sender is honest, all honest

receivers output the value input by the sender. If the designated sender is corrupted, we require

only that the honest receivers output a consistent value.

Definition 2.1 (Broadcast). Let Π be a protocol executed by parties P1, . . . , Pn, where a sender

P ∗ ∈ {P1, . . . , Pn} begins holding input v∗ ∈ {0, 1} and all parties are guaranteed to terminate.

• Weak validity: Π is t-weakly valid if the following holds whenever at most t of the parties

are corrupted: if P ∗ is honest, then every honest party outputs either v∗ or ⊥.

• Validity: Π is t-valid if the following holds whenever at most t of the parties are corrupted:

if P ∗ is honest, then every honest party outputs v∗.

• Weak consistency: Π is t-weakly consistent if the following holds whenever at most t of

the parties are corrupted: there is a v ∈ {0, 1} such that every honest party outputs either v

or ⊥.

• Consistency: Π is t-consistent if the following holds whenever at most t of the parties are

corrupted: there is a v ∈ {0, 1,⊥} such that every honest party outputs v.

• Liveness: Π is t-live if whenever at most t of the parties are corrupted, every honest party

outputs a value in {0, 1}.

If Π is t-valid, t-consistent, and t-live, then we say Π is t-secure.

16

We reserve the term broadcast to mean a protocol with the security properties just defined,

and use the term multicast to mean sending the same message to all parties. (In other words, we

write “P broadcasts m” when P acts as the sender in an execution of a broadcast protocol with

input m, and write “P multicasts m” when P simply sends m to all parties.)

Reliable broadcast is a slightly weaker form of broadcast. Reliable broadcast does not

guarantee that receivers will output a value if the sender is corrupted; however, in this case it

does guarantee that either all honest parties output the same value, or no honest party outputs a

value.

Definition 2.2 (Reliable broadcast). Let Π be a protocol executed by parties P1, . . . , Pn, where a

designated sender P ∗ ∈ {P1, . . . , Pn} begins holding input v∗ and parties terminate upon gener-

ating output.

• Validity: Π is t-valid if the following holds whenever at most t parties are corrupted: if P ∗

is honest, then every honest party outputs v∗.

• Consistency: Π is t-consistent if the following holds whenever at most t parties are cor-

rupted: either no honest party outputs a value, or all honest parties output the same value v.

If Π is t-valid and t-consistent, then we say it is t-secure.

Protocols for Byzantine agreement allow a set of parties to agree on a consistent output.

Definition 2.3 (Byzantine agreement). Let Π be a protocol executed by parties P1, . . . , Pn, where

each party Pi begins holding input vi ∈ {0, 1}.

• Weak validity: Π is t-weakly valid if the following holds whenever at most t of the parties

are corrupted: if every honest party’s input is equal to the same value v, then every honest

17

party outputs either v or ⊥.

• Validity: Π is t-valid if the following holds whenever at most t of the parties are corrupted:

if every honest party’s input is equal to the same value v, then every honest party outputs v.

• Validity with termination: Π is t-valid with termination if the following holds whenever

at most t of the parties are corrupted: if every honest party’s input is equal to the same

value v, then every honest party outputs v and terminates.

• Weak consistency: Π is t-weakly consistent if the following holds whenever at most t of

the parties are corrupted: there is a v ∈ {0, 1} such that every honest party outputs either v

or ⊥.

• Consistency: Π is t-consistent if the following holds whenever at most t of the parties are

corrupted: there is a v ∈ {0, 1,⊥} such that every honest party outputs v.

• Liveness: Π is t-live if whenever at most t of the parties are corrupted, every honest party

outputs a value in {0, 1}.

• Termination: Π is t-terminating if whenever at most t of the parties are corrupted, every

honest party terminates. Π has guaranteed termination if it is n-terminating.

If Π is t-valid, t-consistent, t-live, and t-terminating, then we say Π is t-secure.

While several of the above properties are not entirely standard, our notion of security

matches the standard one. In particular, t-liveness and t-consistency imply that whenever at

most t parties are corrupted, there is a v ∈ {0, 1} such that every honest party outputs v. Note

that t-validity with termination is weaker than t-validity plus t-termination, as the former does

not require termination in case the inputs of the honest parties do not agree.

18

Next, we define graded consensus [38]. Graded consensus is a form of agreement in which

each party outputs both a value v ∈ {0, 1,⊥} and a grade g ∈ {0, 1, 2}. Protocols for graded

consensus are sometimes used as a stepping stone to broadcast or Byzantine agreement.

Definition 2.4 (Graded consensus). Let Π be a protocol executed by parties P1, . . . , Pn, where

each party Pi begins holding input vi ∈ {0, 1}.

• Graded validity: Π achieves t-graded validity if the following holds whenever at most t

of the parties are corrupted: if every honest party’s input is equal to the same value v, then

all honest parties output (v, 2).

• Graded consistency: Π achieves t-graded consistency if the following hold whenever

at most t of the parties are corrupted: (1) If two honest parties output grades g, g′, then

|g − g′| ≤ 1. (2) If two honest parties output (v, g) and (v′, g′) with g, g′ ≥ 1, then v = v′.

• Liveness: Π is t-live if whenever at most t of the parties are corrupted, every honest party

outputs (v, g) with either v ∈ {0, 1} and g ≥ 1, or v =⊥ and g = 0.

If Π achieves t-graded validity, t-graded consistency, and t-liveness then we say Π is t-secure.

Protocols for asynchronous common subset (ACS) allow parties to agree on a set of values.

We will often want our ACS protocols to satisfy a set quality property, specifically, that any output

must contain at least some minimal number of honest parties’ inputs; however, this property is

not part of the core security definition.

Definition 2.5 (Asynchronous common subset (ACS)). Let Π be a protocol executed by parties

P1, . . . , Pn, where each Pi begins holding input vi ∈ {0, 1}∗, and parties output sets of at most n

values.

19

• Validity: Π is t-valid if the following holds whenever at most t parties are corrupted: if

every honest party’s input is equal to the same value v, then every honest party outputs {v}.

• Consistency: Π is t-consistent if whenever at most t parties are corrupted, all honest parties

output the same set S.

• Liveness: Π is t-live if whenever at most t parties are corrupted, every honest party gener-

ates output.

• Set quality: Π has t-set quality if the following holds whenever at most t parties are

corrupted: if an honest party outputs a set S, then S contains the input of at least one

honest party.

• Validity with termination: Π is t-valid with termination if, whenever at most t parties are

corrupted and every honest party’s input is equal to the same value v, then every honest

party outputs {v} and terminates.

• Termination: Π is t-terminating if whenever at most t parties are corrupted, every honest

party generates output and terminates.

If Π is t-consistent, t-valid, and t-live, we say it is t-secure.

Our next definition is for block agreement. Block agreement is a useful abstraction of a

building block that features prominently in several of our constructions, namely, agreement on

values with a particular structure. Block agreement is related to existing notions of agreement

(especially validated multivalued Byzantine agreement [39] and the synod protocol of Abraham

et al. [40]) but is not identical.

20

Definition 2.6 (Block agreement). Let Π be a protocol executed by parties P1, . . . , Pn, where

parties terminate upon generating output. Define a pre-block to be a vector of length n, such that

the ith entry is either ⊥ or a pair (mi, σi), where mi is an arbitrary value and σi is a signature on

mi by Pi, and define a k-quality pre-block to be a pre-block with at least k non-⊥ entries.

• Validity: Π is t-valid if whenever at most t of the parties are corrupted and every honest

party’s input is an (n − t)-quality pre-block, then every honest party outputs an (n − t)-

quality pre-block.

• Consistency: Π is t-consistent if whenever at most t of the parties are corrupted, every

honest party outputs the same pre-block B.

If Π is t-valid and t-consistent, then we say it is t-secure.

Finally, we define atomic broadcast (ABC) and state machine replication (SMR). At a high

level, the purpose of both atomic broadcast and state machine replication is to allow parties to

maintain agreement on an ever-growing, ordered log of values called transactions. Transactions

are output in the form of batches called blocks. Party Pi’s output is represented as a write-once

array, denoted by blocksi = blocksi[1], blocksi[2], The array’s entries are initialized to a

special character ⊥. During the protocol, parties write to each index of the array in ascending

order.

The two terms are sometimes used interchangeably to refer to any kind of repeated agree-

ment (including blockchains); however, we will follow Momose et al. in making the distinction

that an SMR protocol must achieve a property called external validity (also called public verifi-

ability) [19]. Informally, a consensus protocol is externally valid if it is possible for an external

21

observer to validate the output as authentic; this property will be formalized in the definition of

state machine replication below.

Our protocols proceed in logical intervals or iterations called epochs. Informally, epoch

j is the logical interval in which parties agree on block j. We say that Pi outputs a block in

epoch j (or simply outputs block j) when Pi writes a value to blocksi[j]. For convenience, we let

blocksi[k : ℓ] denote the contiguous subarray blocksi[k], . . . , blocksi[ℓ] and let blocksi[: ℓ] denote

the prefix blocksi[1 : ℓ].

Each party Pi has a local buffer bufi. Transactions are added to parties’ local buffers by

some mechanism external to the protocol (e.g., via a gossip protocol). Importantly, a particular

transaction tx may be provided as input to different parties at arbitrary times, and may be provided

as input to some honest parties but not others. Whenever Pi outputs a block, it clears those

transactions from its buffer.

Definition 2.7 (Atomic broadcast (ABC)). Let Π be a protocol executed by parties P1, . . . , Pn

who receive transactions as input and locally maintain arrays blocks as described above.

• Completeness: Π is t-complete if the following holds whenever at most t parties are cor-

rupted: for all j > 0, every honest party outputs a block in epoch j.

• Consistency: Π is t-consistent if the following holds whenever at most t parties are cor-

rupted: if an honest party outputs a block B in epoch j then all honest parties output B in

epoch j.

• Liveness: Π is t-live if the following holds whenever at most t parties are corrupted: if ev-

ery honest party receives transaction tx as input, then every honest party eventually outputs

a block that contains tx.

22

If Π is t-consistent, t-live, and t-complete, then we say it is t-secure.

The definition of state machine replication is almost identical to the definition of atomic

broadcast; the key difference is the external validity property. Accordingly, we slightly modify

the output syntax, so that parties output both a block B and proof π by writing (B, π) to blocks[e].

Definition 2.8 (State Machine Replication (SMR)). Let Π be a protocol executed by n parties

P1, . . . , Pn, and let Verify be a predetermined Boolean verification function. Let params be some

public parameters (e.g., for a PKI). Each Pi receives transactions as input and locally maintains

an array blocksi as described above.

• Completeness: Π is t-complete if the following holds whenever at most t parties are cor-

rupted: for all j > 0, every honest party outputs a block in epoch j.

• Consistency: Π is t-consistent if the following holds whenever at most t parties are cor-

rupted: if an honest party outputs a block B in epoch j then all honest parties output B in

epoch j.

• Liveness: Π is t-live if the following holds whenever at most t parties are corrupted: if

every honest party is provided a transaction tx as input, then every honest party eventually

outputs a block that contains tx.

• External validity: Π is t-externally consistent if the following holds whenever at most t

parties are corrupted: for all e, an honest party writes (B, π) to blocksi[e] if and only if

Verify(params, blocksi, π, e) = 1.

If Π is t-consistent, t-live, t-complete, and t-externally valid, then we say it is t-secure.

23

Chapter 3: Network-Agnostic Byzantine Agreement

The central result of this chapter is a network-agnostic Byzantine agreement protocol,

HBAta,ts (abbrev. HBA), that is network-agnostically secure for any thresholds ts, ta satisfy-

ing condition ⋆. HBA is constructed from a series of simpler building blocks.1 The first major

building block, SBAta,ts
HBA (abbrev. SBA), is a Byzantine agreement protocol that achieves validity

and consistency if the network is synchronous and at most ts parties are corrupted. Furthermore,

in this case SBA is guaranteed to generate output within time n ·∆. On the other hand, if SBA is

run in an asynchronous network with at most ta corruptions, it only achieves a property we call

weak validity, which states that if every honest party inputs the same value v then each honest

party outputs either v or a special value ⊥. The second major building block, ABAta,ts
HBA (abbrev.

ABA), is a Byzantine agreement protocol that achieves the standard notion of security (with ter-

mination) if the network is asynchronous and at most ta parties are corrupted. However, if ABA is

run in a synchronous network with up to ts corruptions, then it only achieves a weaker property,

which we call validity with termination.

The full protocol HBA proceeds as follows. Each party Pi begins by running SBA on its

initial input vi for time at most n · ∆. At time n · ∆, if Pi has received an output bi (other than

⊥) from SBA, then it will input bi to ABA; if Pi has not not received an output from SBA, it will

1Network-agnostic BA was sometimes called “hybrid BA” in earlier versions of this work, hence the abbreviation
HBA.

24

abandon that subprotocol and input its original input vi to ABA. Then, Pi simply waits for ABA

to output a value v. When it does, Pi outputs v and terminates.

To see intuitively why combining SBA and ABA in this way yields the desired security

properties, consider the two possible scenarios. If the network is synchronous and at most ts

parties are corrupted, then all honest parties receive the same output v from SBA by time n ·∆.

Thus, even though ABA only guarantees validity with termination in this situation, the honest

parties are already in agreement when they begin running ABA, and so this is enough to ensure

the honest parties terminate with a consistent output. Next, suppose the network is asynchronous

and at most ta parties are corrupted. If all honest parties have the same initial input v, then the

weak validity property of SBA ensures that all honest parties input v to ABA, and so validity of

ABA guarantees all honest parties terminate with output v, as desired. Furthermore, even if not all

honest parties had the same input, then security of ABA ensures that all honest parties eventually

terminate with consistent output.

The rest of this chapter is organized as follows: in Section 3.1 and 3.2, we introduce a series

of synchronous and asynchronous building blocks. In Section 3.3, we combine those building

blocks to form the full network-agnostic BA protocol. Finally, in Section 3.4, we prove that

network-agnostic BA is impossible when ts + 2ta ≥ n, thus showing that our protocol achieves

the best possible corruption tolerance.

3.1 Synchronous BA with Partial Asynchronous Fallback

In this section we show a BA protocol that is secure for some threshold ts of corrupted

parties when run in a synchronous network, and achieves weak validity (though liveness and

25

weak consistency may not hold) for a lower threshold ta even when run in an asynchronous

network.

Our protocol relies on a variant of the Dolev-Strong broadcast protocol [41] as a subroutine.

Since we use a slightly non-standard version of that protocol, we describe it in Figure 3.1 for

completeness. In the protocol, we say that a message consisting of a value b and a set of signatures

Σ is an r-correct message (from the point of view of a party Pi) if Σ contains valid signatures

on b from the sender P ∗ and r − 1 other distinct parties (not including Pi itself).

Protocol DSP
∗

HBA

Initialize Si = ∅.

Round 1: If Pi = P ∗: create a signature σ∗ on input bi and send (bi,Σ = {σ∗}) to all parties.

Rounds r = 1, . . . ,n− 1: Upon receiving an r-correct message (b,Σ) in round r, add b to
Si. If r < n− 1, then also compute a signature σi on b, and send (b, Si ∪ {σi}) to all
parties in the following round. (This is done at most once for each (b, r) pair.)

Output determination: At time (n − 1) · ∆, if Si contains one value, then output that value
and terminate. In any other case, output ⊥ and terminate.

Figure 3.1: A broadcast protocol from the perspective of party Pi with designated sender P ∗.

Lemma 3.1. DS is a secure broadcast protocol (as defined in Definition 2.1) that satisfies the

following properties:

1. When run in a synchronous network, it is n-consistent and n-valid.
2. When run in an asynchronous network, it is n-weakly valid.

Proof. The standard analysis of the Dolev-Strong protocol shows that, when run in a synchronous

network with any number of corrupted parties, Si = Sj for any honest parties Pi, Pj . This implies

n-consistency. Since an honest P ∗ sends a 1-correct message to all honest parties, and the attacker

cannot forge signatures of the honest sender, n-validity holds. The second claim follows because

an attacker cannot forge the signature of an honest P ∗.

26

We now define our synchronous BA protocol, SBA, using the broadcast protocol DS as a

subprotocol. The protocol is parameterized by corruption thresholds ta, ts. (Here and in later

protocols, we include ts as a parameter even though the protocol does not explicitly depend on it,

as it will be relevant to the security analysis.)

Protocol SBAta,ts
HBA(bi)

• Run DSPi as the designated sender with input bi, and for each j ̸= i, run DSPj with Pj

as the designated sender.

• For each j ∈ [n], let bij denote the output of DSPj . If there are at least 2ta + 1 values
bij that are in {0, 1}, output the majority of those values and terminate. (If there is a tie,
output a fixed default bit.) Otherwise, output ⊥ and terminate.

Figure 3.2: A Byzantine agreement protocol from the view of party Pi, parameterized by thresh-
olds ta, ts.

Theorem 3.1. For any ta, ts satisfying condition ⋆, SBA is a secure Byzantine agreement pro-

tocol (as defined in Definition 2.3) that satisfies the following properties:

1. When the protocol is run in a synchronous network, it is ts-secure.
2. When the protocol is run in an asynchronous network, it is ta-weakly valid.

Moreover, the protocol has guaranteed termination in both cases, and when run in a syn-

chronous network every honest party terminates in time at most n ·∆.

Proof. The claim about termination is immediate.

When run in a synchronous network with ts corrupted parties, at least n − ts > 2ta of the

executions of DS result in boolean output for all honest parties (by n-validity of DS) and so all

honest parties generate boolean output in SBA; this proves ts-liveness. By n-consistency of DS,

all honest parties agree on the {bj} values they obtain and hence SBA is ts-consistent (in fact, it

is n-consistent). Finally, n-validity of DS implies that when all honest parties begin holding the

27

same input b ∈ {0, 1}, then all honest parties will have b as their majority value. This proves

ts-validity (in fact, the protocol is t-valid for any t < n/2).

For the second claim, assume all honest parties begin holding the same input b, and ta

parties are corrupted. Any honest party Pi who generates boolean output must have at least

2ta + 1 boolean values {bij}, of which at most ta of these can be equal to b̄. Hence, any honest

party who generates boolean output will in fact output b.

3.2 Asynchronous Byzantine Agreement with Enhanced Validity

In this section, we present an asynchronous BA protocol that achieves validity in the pres-

ence of a higher number of corruptions. (Throughout this section, we always assume an asyn-

chronous network model unless otherwise noted.) Formally, we will prove the following theorem:

Theorem 3.2. For any ta, ts satisfying condition ⋆, there is an n-party protocol for Byzantine

agreement that, when run in an asynchronous network, is ta-secure and also achieves ts-validity

with termination.

Our protocol design is inspired by Mostéfaoui et al. [33]. To simplify the presentation and

proofs, we present the protocol in a modular fashion. First, in Section 3.2.1, we construct a sub-

protocol PropHBA that allows a designated ‘proposer’ to propose a value. That protocol becomes

the central building block of a graded consensus protocol GCHBA. Finally, in Section 3.2.3, the

graded consensus subprotocol becomes the foundation of the full Byzantine agreement proto-

col ABAta,ts
HBA .

28

3.2.1 A Value-Proposal Subprotocol

We begin by describing a subprotocol for proposing values Propta,tsHBA (abbrev. PropHBA),

shown in Figure 4.4. The rest of the section is devoted to proving properties of PropHBA in

preparation for later sections.

Protocol Propta,tsHBA(bi)

1. Set S := ∅.

2. Send (prepare, bi) to all parties.

3. Upon receiving (prepare, b) for the same b ∈ {0, 1, λ} from strictly more than ts par-
ties: If (prepare, b) has not been sent, send (prepare, b) to all parties.

4. Upon receiving (prepare, b) for the same b ∈ {0, 1, λ} from at least n− ts parties, add
b to S.

5. Upon adding the first value b ∈ {0, 1, λ} to S, send (propose, b) to all parties.

6. Once at least n − ts messages (propose, b) have been received on values b ∈ S: let
S∗ ⊆ S be the set of values carried by those messages. Output S∗ (but continue
running).

Figure 3.3: A subprotocol for proposing values, parameterized by thresholds ta, ts.

Lemma 3.2. Assume ta < n − 2 · ts parties are corrupted in an execution of PropHBA. If two

honest parties Pi, Pj output {b}, {b′}, respectively, then b = b′.

Proof. Since Pi outputs {b}, it must have received at least n− ts messages (propose, b), of which

at least n − ts − ta of those were sent by honest parties. Similarly, Pj must have received at

least n − ts − ta messages (propose, b′) that were sent by honest parties. If b ̸= b′, then because

2 · (n− ts − ta) is strictly greater than the number of honest parties n− ta, this would mean that

some honest party sent propose messages on two different values, which is impossible.

Lemma 3.3. Assume ta ≤ ts parties are corrupted in an execution of PropHBA. If no honest party

inputs b, then no honest party outputs a set containing b.

29

Proof. If b was not input by any honest party, then at most ta ≤ ts messages (prepare, b) are sent

in step 2. Thus, no honest party ever sends a message (prepare, b), and consequently no honest

party ever sends a message (propose, b). It follows that no honest party ever adds b to its set S,

and so no honest party outputs a set S∗ containing b.

Lemma 3.4. Assume ta parties are corrupted in an execution of PropHBA, where ta < n − 2 · ts

and ta ≤ ts. If an honest party sends a message (propose, b), all honest parties add b to S.

Proof. Suppose some honest party Pi sends (propose, b). Then Pi must have received at least

n − ts messages (prepare, b). At least n − ts − ta > ts of these must have been sent by honest

parties, and so eventually all other honest parties also receive strictly more than ts messages

(prepare, b). We thus see that every honest party will eventually send (prepare, b). Therefore,

every honest party will eventually receive at least n − ta ≥ n − ts messages (prepare, b), and

consequently every honest party will add b to S.

Lemma 3.5. Assume ta parties are corrupted in an execution of PropHBA, where ta < n − 2 · ts

and ta ≤ ts. If all honest parties hold one of two different inputs, then all honest parties output.

Proof. We first argue that every honest party sends a propose message. There are n − ta honest

parties, so at least 1
2
(n − ta) > ts honest parties must have the same input b. Therefore, all

honest parties receive strictly more than ts messages (prepare, b). Consequently, all honest parties

will eventually send (prepare, b). Thus, every honest party receives n − ta ≥ n − ts messages

(prepare, b) and adds b to S. In particular, S is nonempty and so every honest party sends a

propose message.

Each honest party thus receives at least n − ta ≥ n − ts propose messages sent by honest

parties. By Lemma 3.4, for any b proposed by an honest party, all honest parties eventually have

30

b ∈ S. Thus, every honest party eventually receives at least n − ts propose messages for values

in their set S, and therefore all honest parties terminate.

Unfortunately, the full security properties of PropHBA are not guaranteed to hold if the

number of corruptions exceeds ta. However, PropHBA does achieve a notion of validity in the

presence of up to ts < n/2 corrupted parties; this fact will be useful later on.

Lemma 3.6. Assume ts < n/2 parties are corrupted in an execution of PropHBA. If all honest

parties hold the same input b, then all honest parties output S∗ = {b}.

Proof. Suppose ts parties are corrupted, and all honest parties hold the same input b. In step 2, all

n− ts honest parties send (prepare, b), and so all honest parties add b to S. Any prepare messages

on other values in step 2 are sent by the ts < n− ts corrupted parties, and so no honest party ever

adds a value other than b to S. Thus, all n− ts honest parties send their (single) propose message

(propose, b) in step 5. It follows that every honest party outputs S∗ = {b} in step 6.

3.2.2 Asynchronous Graded Consensus with Enhanced Validity

We now present our graded consensus protocol, GCta,ts
HBA (abbrev. GCHBA). In the graded

consensus protocol, parties participate in two consecutive instances of the propose subprotocol

PropHBA before outputting a value v and grade g. Informally, the grade g ∈ {0, 1, 2} repre-

sents a party’s confidence in their output,with 0 indicating low confidence and 2 indicating high

confidence. Complete pseudocode for the protocol appears in Figure 3.4.

For the moment, we will analyze GCHBA assuming that parties continue participating indef-

initely. (Later, when GCHBA is used as a subprotocol, the calling protocol will be responsible for

ensuring that parties “safely” abandon all instances of GCHBA.)

31

Protocol GCta,ts
HBA(bi)

• Set b1 := bi.

• Run PropHBA on input b1, and let S1 denote the output.

• If S1 contains a single value b∗, then set b2 := b∗. Otherwise (if S1 contains more than
one value) set b2 := λ.

• Run PropHBA using input b2, and let S2 denote the output.

• If S2 contains a single value bout ̸= λ, output (bout, 2). Else if S2 = {bout, λ} for some
bout ̸= λ, output (bout, 1). Else if S2 = {λ}, output (⊥, 0).

Figure 3.4: A protocol for graded consensus from the perspective of party Pi, parameterized by
thresholds ta, ts.

The following lemmas prove that GCHBA achieves partial security (specifically, graded va-

lidity) for up to ts corruptions, and full security for up to ta corruptions.

Lemma 3.7. If ts < n/2, then GCHBA achieves ts-graded validity (as defined in Definition 2.4).

Proof. Suppose ts parties are corrupted, and every honest party’s input is equal to the same

value b. By Lemma 3.6, all honest parties have S1 = {b} following the first execution of

PropHBA, and so use b as the input for the second execution of PropHBA. By the same reason-

ing, all honest parties have S2 = {b} after the second execution of PropHBA. Thus, all honest

parties output (b, 2).

Lemma 3.8. Assume ta, ts satisfy condition ⋆. Then GCHBA achieves ta-graded consistency (as

defined in Definition 2.4).

Proof. Suppose ta parties are corrupted. First, we show that the grades output by two honest

parties Pi, Pj differ by at most 1. The only way this can possibly fail is if one of the parties (say,

Pi) outputs a grade of 2. Pi must then have received S2 = {b}, for some b ∈ {0, 1}, as its output

from the second execution of PropHBA. It follows from Lemma 3.2 that another party Pj could

not have received S2 = {λ}. Therefore, it is not possible for Pj to output grade 0.

32

Next, we show that any two honest parties that output nonzero grades must output the

same value. Observe first that there is a bit b such that the inputs of all the honest parties to the

second execution of PropHBA lie in {b, λ}. (Indeed, if all honest parties set b2 := λ this claim is

immediate. On the other hand, if some honest party sets b2 := b ∈ {0, 1} then they must have

S∗ = {b}; but then Lemma 3.2 implies that any other honest party who sets b2 to anything other

than λ will set it equal to b as well.) Lemma 3.3 thus implies that no honest party outputs a set

S∗ after the second execution of PropHBA that contains a value other than b or λ. Thus, any two

honest parties that output a nonzero grade must output the same value b.

Lemma 3.9. Assume ta, ts satisfy condition ⋆. Then GCHBA achieves ta-liveness (as defined in

Definition 2.4).

Proof. All honest parties hold input in {0, 1} in the first execution of PropHBA, so Lemma 3.5

shows that all honest parties generate output in that execution. As in the proof of Lemma 3.8,

there is a bit b such that the inputs of all the honest parties to the second execution of PropHBA

lie in {b, λ}; so, applying Lemma 3.5 again, that execution also produces output for all honest

parties. Moreover, by Lemma 3.3, the set S∗ output by any honest party is a nonempty subset of

{b, λ}, i.e., is either {b}, {b, λ}, or {λ}. Thus, GCHBA is ts-live.

3.2.3 Asynchronous Byzantine Agreement with Enhanced Validity

We now present our asynchronous Byzantine agreement protocol, ABAta,ts
HBA (abbrev. ABA).

Like its constituent building blocks, ABA guarantees full security for up to ta corruptions and

limited security (namely, validity with termination) for up to ts corruptions. For the construction,

we assume an atomic primitive CoinFlip that allows all parties to generate and learn an unbiased

33

value coink ∈ {0, 1} for k = 1, 2, . . .; for an explanation of how this primitive can be realized,

we refer back to Chapter 2. Pseudocode for the protocol appears in Figure 3.5.

To simplify the presentation, we begin by describing ABA as a non-terminating BA proto-

col; we conclude by briefly discussing how to add termination using existing techniques.

Protocol ABAta,ts
HBA(bi)

Set b∗ := bi, committed = false, and k := 1. Then do:

1. Run GCHBA on input b∗, and let (b1, g1) denote the output.

2. coink ← CoinFlip(k).

3. If g1 = 2, set b∗ := b1; else set b∗ := coink.

4. Run GCHBA on input b∗, and let (b2, g2) denote the output.

5. If g2 = 2 and committed = false, set committed := true and send ⟨commit, b2⟩i to
all parties.

6. Set k := k + 1 and repeat from (1).

To terminate:

• Upon receiving valid signature shares σi1 , . . . , σits+1 on (commit, bout) (for the same
bout) from at least ts + 1 distinct parties, form a combined signatures σ, send
(notify, bout, σ) to all parties, output bout, and terminate.

• Upon receiving (notify, bout, σ) such that σ is a valid combined signature on
(commit, bout), forward (notify, bout, σ) to all parties, output bout and terminate.

Figure 3.5: A Byzantine agreement protocol from the view of party Pi, parameterized by ta, ts.

When a party terminates in ABA, they will also stop participating in any PropHBA or GCHBA

executions. Because the security properties of PropHBA and GCHBA hold for an asynchronous

network, honest parties dropping out may cause the executions to lose liveness, but cannot break

security otherwise. We argue below that if any honest party terminates ABA with output b, then

all honest parties terminate; furthermore, by the security properties of the subprotocols, all honest

parties output the same value b.

In the following, we say a message (commit, b, σ) from party Pi is valid if b ∈ {0, 1} and

34

σ is a valid signature from Pi on (commit, b). Furthermore, we say that a set of signatures is a

certificate for b if it contains valid signatures on (commit, b) from at least ts + 1 distinct parties.

Lemma 3.10. If ts < n/2, then protocol ABA satisfies ts-validity with termination (as defined in

Definition 2.3).

Proof. Suppose there are at most ts corrupted parties and all honest parties input b ∈ {0, 1}.

All honest parties use input b in the first execution of GCHBA in the first iteration; ts-graded

validity of GCHBA (cf. Lemma 3.7) implies they all output (b, 2) from that execution. Thus, all

honest parties ignore the result of the coin flip and run a second instance of GCHBA using input b,

again unanimously obtaining (b, 2) as output. Therefore, all honest parties either send a commit

message on b in step 5 of the first iteration of ABA, or have already received (and forwarded)

a certificate Σ containing at least ts signatures on b. Furthermore, honest parties will receive at

most ts < ts+1 commit messages on b′ ̸= b. Therefore, all honest parties eventually receive valid

commit messages on b from n− ts ≥ ts + 1 distinct parties (via either a single notify message or

individual commit messages), output b, and terminate.

Lemma 3.11. Let ta, ts satisfy condition ⋆. Then ABA satisfies ta-liveness and ta-consistency

(as defined in Definition 2.3). Moreover: (1) some honest party sends a commit message within

an expected constant number of iterations, and (2) if some honest party sends a commit message

on a bit b, then all honest parties terminate with output b.

Proof. Assume ta parties are corrupted. Consider an iteration k of the protocol by which no

honest party has yet sent a commit message. Let Agree be the event that all honest parties use

the same input to the second execution of GCHBA in that iteration. If Agree occurs, then ts-graded

validity of GCHBA implies that all honest parties will obtain a grade of 2 in that execution and

35

hence at least one honest party will send a commit message in iteration k. We show that Agree

occurs with probability at least 1/2. We distinguish two cases:

• If some honest party outputs (b, 2) in the first execution of GCHBA in iteration k: by ta-

graded consistency of GCHBA, all honest parties output either (b, 2) or (b, 1) in that execu-

tion of GCHBA. Since coink is not revealed until after the first honest party generates output

for that execution of GCHBA, this means b is chosen independently of coink. If coink = b,

which occurs with probability 1/2, then all honest parties will use the same input in the

second execution of GCHBA in iteration k.

• If no honest party outputs (b, 2) after the first execution of GCHBA: then all honest parties

will use coink as their input in the second execution of GCHBA in iteration k.

Thus, in expected constant rounds some honest party sends a commit message. We next

show that if some honest party Pi sends a commit message on b, then all other honest parties

terminate with output b.

Let k be the first iteration in which some honest party sends a commit message, and let Pi

be the first honest party to have sent a commit message on b in iteration k. Pi must have seen

(b, 2) as the output of the second execution of GCHBA in iteration k. By ta-graded consistency of

GCHBA, every honest party who obtains output from that execution of GCHBA will receive either

(b, 1) or (b, 2). This means that all honest parties who continue running will input b to the next

iteration of GCHBA. By ts-graded validity of GCHBA, honest parties will continue to input b to each

iteration of GCHBA, ignoring the coin, for as long as they continue running. Thus, we see that no

honest party will ever send a commit message on b̄. Hence, there will never exist a set of commit

36

messages on b̄ from at least ts + 1 distinct parties, and so no honest party will ever output b̄.2

We now consider two cases: either some honest party terminates, or (by ta-liveness and

ts-validity of GCHBA) all honest parties reach step 5 of iteration k + 1 and receive output (b, 2).

In the latter case, all honest parties will send a commit message on b. Therefore, eventually all

honest parties will receive at least n− ta ≥ ts + 1 commit messages on b and can terminate with

output b. In the case that some honest party terminates, liveness of GCHBA may be lost. However,

in order for that party to terminate, they must have already received sufficient signatures on b,

and forwarded those signatures as a certificate Σ to all other parties. Therefore, all honest parties

eventually receive Σ and terminate with output b.

Lemma 3.12. For any ta, ts satisfying condition ⋆, there is an n-party protocol for Byzantine

agreement that, when run in an asynchronous network, achieves ts-validity, ta-consistency, and

ta-termination (as defined in Definition 2.3).

Proof. If ts < ta, then we parameterize ABA with ts = ta. Lemma 3.11 and Lemma 3.10

immediately show that ABA is ta-secure (and therefore also ts-valid if ts < ta).

Otherwise, if ts ≥ ta, we can apply Lemma 3.11 directly. The claim thus follows from

Lemmas 3.10 and 3.11.

3.3 A Network-Agnostic Byzantine Agreement Protocol

In this section, we present our full network-agnostic Byzantine agreement protocol, HBA.

The protocol is parameterized by thresholds ta, ts (and the number of parties, n); we will assume

throughout that ta, ts satisfy condition ⋆. The protocol description assumes subprotocols SBA

2It is important to note that GCHBA cannot lose safety if honest parties drop out, only liveness. Because it is an
asynchronous protocol, it necessarily tolerates parties dropping out.

37

and ABA with the following properties:

• SBA is an n-party BA protocol that is ts-secure and terminates by time n ·∆ when run in

a synchronous network, and is ta-weakly valid and eventually terminates when run in an

asynchronous network.

• ABA is an n-party BA protocol that is ta-secure and ts-valid with termination in either a

synchronous or asynchronous network.

We proved that there exist protocols with precisely these properties in Theorems 3.1 and 3.2,

respectively.

Protocol HBAta,ts(bi)

• Run SBA on input bi for time n ·∆.

• At time n · ∆, let b denote the output of SBA (if SBA has not output, let b =⊥). If
b ̸=⊥, set b∗ := b; otherwise set b∗ := bi.

• Run Πts
ABA using input b∗. Once Πts

ABA outputs a value bout, output bout and terminate.

Figure 3.6: A Byzantine agreement protocol from the perspective of party Pi, parameterized by
thresholds ta, ts.

Theorem 3.3. Let n, ta, ts be as above. Then HBA is ts-secure when run in a synchronous

network and ta-secure when run in an asynchronous network (defining t-security as in Defini-

tion 2.3).

Proof. First consider the case when HBA is run in a synchronous network, and at most ts parties

are corrupted. By ts-security of SBA, after running SBA there is a value b ̸=⊥ such that every

honest Pi’s intermediate value b∗ is equal to b. Moreover, if every honest party input the same

value b′, then b∗ = b′. By ts-validity with termination of ABA, all honest parties terminate and

38

agree on their output from HBA, proving ts-consistency, ts-liveness, and ts-termination. More-

over, if every honest party’s original input was equal to the same value b′, then the output of ABA

(and thus of HBA) is equal to b′. This proves ts-validity.

Next consider the case when HBA is run in an asynchronous network, and at most ta par-

ties are corrupted. The protocol inherits ta-consistency, ta-liveness, and ta-termination from

ta-security of ABA, and so it only remains to argue ta-validity. Assume every honest party’s

initial input is equal to the same value b′. Then for each honest party Pi, the output of SBA must

be in {b′,⊥} due to ta-weak validity and termination of SBA. Thus, each honest party sets the

intermediate value b∗ to b′. It follows from ts-validity with termination (note ta ≤ ts) of ABA that

all honest parties output b′ and terminate.

3.4 Optimal Thresholds for Network-Agnostic Byzantine Agreement

We show here that our positive result from the previous section is tight. That is:

Theorem 3.4. For any n, if ta ≥ n/3 or ta+2 · ts ≥ n there is no n-party protocol for Byzantine

agreement that is ts-secure in a synchronous network and ta-secure in an asynchronous network

(defining t-security as in 2.3).

The case of ta ≥ n/3 follows from Toueg’s classical impossibility result for asynchronous

consensus [42], so we can focus on the case where ta < n/3 but ta + 2 · ts ≥ n. Using a similar

line of reasoning to Toueg’s original proof, we show that secure BA is also impossible in this

case. In fact, we prove a stronger claim, namely that a BA protocol cannot be both ta-weakly

consistent in an asynchronous network and ts-valid in a synchronous network; these properties

are a subset of the properties required for secure BA, and so Theorem 3.4 follows immediately.

39

Lemma 3.13. Fix n, ta, ts with ta + 2ts ≥ n. If an n-party Byzantine agreement protocol is ts-

valid in a synchronous network, then it cannot also be ta-weakly consistent in an asynchronous

network (as defined in Definition 2.3).

Proof. Assume ta + 2ts = n and fix a BA protocol Π. Partition the n parties into sets S0, S1, Sa

where |S0| = |S1| = ts and |Sa| = ta, and consider the following experiment:

• Parties in S0 run Π using input 0, and parties in S1 run Π using input 1. All communication

between parties in S0 and parties in S1 is blocked (but all other messages are delivered

within time ∆).

• Create virtual copies of each party in Sa, call them S0
a and S1

a . Parties in S0
a run Π using

input 0, and communicate only with each other and parties in S0. Parties in S1
a run Π using

input 1, and communicate only with each other and parties in S1.

Consider an execution of Π in a synchronous network where parties in S1 are corrupted and

simply abort, and all remaining (honest) parties use input 0. The views of the honest parties in

this execution are distributed identically to the views of S0 ∪ S0
a in the above experiment. In

particular, ts-validity of Π implies that all parties in S0 output 0. Analogously, all parties in S1

output 1.

Next consider an execution of Π in an asynchronous network where parties in Sa are cor-

rupted, and run Π using input 0 when interacting with S0 while running Π using input 1 when

interacting with S1. Moreover, all communication between the (honest) parties in S0 and S1 is

delayed indefinitely. The views of the honest parties in this execution are distributed identically

to the views of S0 ∪ S1 in the above experiment, yet the conclusion of the preceding paragraph

shows that weak consistency is violated.

40

Chapter 4: Network-Agnostic State Machine Replication

We now turn our attention from Byzantine agreement to state machine replication (SMR).

At a high level, the goal of SMR is to allow a group of parties to combine individual unordered

input streams into a single, unified output stream, so that all parties agree on a growing sequence

of outputs.

This chapter presents a network-agnostic SMR protocol, TARDIGRADE. In later chapters,

we will build on the techniques used in TARDIGRADE to construct two additional SMR protocols,

UPDATE and UPSTATE.

Network-agnostic SMR can be approached similarly to network-agnostic BA: we will pair

a synchronous building block with an asynchronous building block, connecting the two halves

in such a way that at least one will succeed and the other, at worst, neither helps or hinders.

However, the various building blocks become significantly more complex as we move from one-

shot agreement on binary values to multi-shot agreement on arbitrary values.1

A central piece of our construction is a novel protocol for the fundamental problem of

asynchronous common subset (ACS). Our ACS protocol achieves non-standard security proper-

ties that turn out to be generally useful for constructing protocols in a network-agnostic setting;

it has already served as a key ingredient in follow-up work [44] on network-agnostic secure com-

1Generic transformations from BA to SMR are known in other settings [43], but we are not aware of any such
transformations that immediately translate to our setting.

41

putation.

Even though we are ultimately interested in protocols for SMR, most of this chapter is

actually devoted to building network-agnostic atomic broadcast (ABC).2 Toward that end, in

Section 4.1 and Section 4.2 we construct network-agnostic subprotocols for asynchronous com-

mon subset (ACS) and block agreement (BLA), respectively. These subprotocols play a central

role in the construction of the network-agnostic atomic broadcast protocol in Section 4.3. Then,

in Section 4.4, we briefly discuss how to extend the atomic broadcast protocol to a full state

machine replication protocol. Finally, in Section 4.5, we prove an impossibility result showing

that the corruption thresholds tolerated by TARDIGRADE are optimal for network-agnostic state

machine replication.

4.1 Asynchronous Common Subset with Enhanced Validity

In this section, we construct an asynchronous common subset (ACS) protocol that achieves

full security for a lower threshold (ta) and achieves validity for a higher threshold (ts). More pre-

cisely, for any ta, ts satisfying condition ⋆, we show a ta-secure ACS protocol that achieves

ta-termination, ts-validity with termination, and ta-set quality (as defined in Definition 2.5).

Throughout this section, we assume an asynchronous network,3 though the protocol naturally

achieves the same guarantees in a synchronous network.

Our protocol is adapted from the ACS protocol of Ben-Or et al. [45] (later adapted by

Miller et al. [6]). We present our construction in three steps: first, we introduce a reliable broad-

2SMR is closely related to atomic broadcast, to the extent that the terms are sometimes used interchangeably in
the literature. In this dissertation, we will use the convention that SMR protocols must achieve an additional external
validity property that is not required for ABC protocols.

3The ‘asynchronous’ in ACS is historical; in principle one can design ACS protocols for any network model.

42

cast protocol with separate security guarantees for each of the dual thresholds ts, ta. The reliable

broadcast protocol then forms the basis of a novel ACS protocol (ACS∗
tdg, described in Figure 4.2)

that is ta-secure and has ta-set quality, but is non-terminating. Finally, we construct a terminat-

ing protocol (ACStdg, described in Figure 4.3) using the non-terminating ACS as a subprotocol.

The terminating protocol inherits security and set quality from the non-terminating protocol, and

additionally achieves ta-termination and ts-validity with termination.

4.1.1 Reliable Broadcast with Higher Validity

This section presents BBta,ts
tdg (abbrev. BBtdg), an asynchronous reliable broadcast protocol

that is ts-valid and ta-consistent with O(n2 |v|) communication complexity. The protocol design,

described in Figure 4.1, is based on Bracha’s asynchronous reliable broadcast protocol [46]; the

key difference is that the corruption thresholds for consistency and validity can be set separately

via the parameters ta and ts.

BBta,ts
tdg

• Set ready = false.

• If Pi = P ∗: multicast input v∗.

• Upon receiving initial value v∗ from P ∗, multicast (echo, v∗).

• Upon receiving (echo, v∗) messages on the same value v∗ from n− ts distinct parties:
if ready = false, set ready = true and multicast (ready, v∗).

• Upon receiving (ready, v∗) messages on the same value v∗ from ts+1 distinct parties:
if ready = false, set readied = true and multicast (ready, v∗).

• Upon receiving (ready, v∗) messages on the same value v∗ from n− ts distinct parties:
output v∗ and terminate.

Figure 4.1: A reliable broadcast protocol with designated sender P ∗, from the perspective of
party Pi.

Lemma 4.1. If ts < n/2 then BBtdg is ts-valid (as defined in Definition 2.2).

43

Proof. Assume there are at most ts corrupted parties, and the sender is honest. All honest parties

receive the same value v∗ from the sender, and consequently send (echo, v∗) to all other parties.

Since there are at least n−ts honest parties, all honest parties receive (echo, v∗) from at least n−ts

different parties, and as a result send (ready, v∗) to all other parties. By the same argument, all

honest parties receive (ready, v∗) from at least n−ts parties, and so can output v∗ (and terminate).

Fix any v ̸= v∗; to complete the proof, we argue that no honest party will output v. Note first

that no honest party will send (echo, v). Thus, any honest party receives (echo, v) from at most ts

other parties. Since ts < n− ts, no honest party will ever send (ready, v). By the same argument,

this shows that any honest party receives (ready, v) from at most ts other parties, and hence will

not output v.

Lemma 4.2. Fix ta ≤ ts with ta + 2 · ts < n. Then BBtdg is ta-consistent (as defined in Defini-

tion 2.2).

Proof. Suppose at most ta parties are corrupted, and that an honest party Pi outputs v. Then Pi

must have received (ready, v) from at least n− ts distinct parties, at least n− ts − ta ≥ ts + 1 of

whom are honest. Thus, all honest parties receive (ready, v) from at least ts + 1 distinct parties,

and so all honest parties send (ready, v) to everyone. It follows that all honest parties receive

(ready, v) from at least n − ta ≥ n − ts parties, and so can output v as well. To complete the

proof, we argue that an honest party cannot output v′ ̸= v. We argued above that every honest

party sends (ready, v) to everyone. Since ta < ts+1, each honest party must have sent (ready, v)

in response to receiving (echo, v) from at least n−ts distinct parties. If some honest party outputs

v′ then, arguing similarly, every honest party must have received (echo, v′) from at least n − ts

distinct parties. But this is a contradiction, since an honest party sends only a single echo message

44

but 2 · (n− ts)− ta > n.

4.1.2 A Non-Terminating ACS Protocol

The non-terminating ACS protocol ACS∗ta,ts
tdg (usually abbreviated ACS∗

tdg) is based on two

building blocks. The first building block is the asynchronous reliable broadcast protocol that was

just constructed, BBtdg; in this section, we will denote it as BB for short. The second building

block is a standard asynchronous Byzantine agreement (ABA) protocol, which we will denote as

BA. This building block can be instantiated using any ABA protocol that is secure for ta < n/3

corruptions and has O(n2) communication complexity, such as the ABA protocol of Mostéfaoui

et al. [33].

Each execution of ACS∗
tdg contains n parallel instances of reliable broadcast (BB1, . . . ,BBn)

and n parallel instance of Byzantine agreement (BA1, . . . ,BAn). Instance BBi is used to broad-

cast Pi’s input vi, while instance BAi is used to agree on whether to include Pi’s input in the final

output. “Accepted” indices (i.e., indices i s.t. BAi output 1) are recorded in a local variable S∗.

At the end of the protocol, if a party observes a majority value v in the set of values {v′i}i∈S∗ , it

outputs the singleton set {v}; otherwise, it outputs {v′i}i∈S∗ , i.e., the set of all values broadcast

by parties in S∗.

Lemma 4.3. Fix ta, ts satisfying condition ⋆, and assume there are at most ts corrupted parties

during some execution of ACS∗
tdg. If an honest party Pi outputs a set Si, then ∃vj ∈ Si such that

vj was input by an honest party Pj .

Proof. We show that Pi’s output Si always includes a value that was output from an execution of

BB where the corresponding sender is honest. The lemma then follows from ts-validity of BB.

45

ACS∗ta,tstdg (vj)

• Set commit := false and S∗ := ∅.

• Broadcast vj by running BB as the sender, and for each i ̸= j run an execution of BB
with Pi as the sender.

• Upon BBi terminating with output v′i: if Pj has not yet begun running BAi then begin
running it with input 1.

• Upon BAi terminating with output 1: add i to S∗.

• Upon setting |S∗| to n − ta: for any BAi that Pj has not yet begun running, begin
running BAi with input 0.

Predicates:
C1(v): At least n− ts executions {BBi}i∈[n] have output v.

C1: There exists v for which C1(v) is true.
C2(v): |S∗| ≥ n − ta, all executions {BAi}i∈[n] have terminated, and a strict majority

of the executions {BBi}i∈S∗ have output v.
C2: There exists v for which C2(v) is true.
C3: |S∗| ≥ n − ta, all executions {BAi}i∈[n] have terminated, and all executions

{BBi}i∈S∗ have terminated.

Output conditions:
(Event 1) If C1(v) = true for some v and commit = false then:

set commit := true and output {v}.
(Event 2) If C1 = false, C2(v) = true for some v, and commit = false then:

set commit := true and output {v}.
(Event 3) If C1 = C2 = false, C3 = true, and commit = false then:

set commit := true and output {v′i}i∈S∗ .

Figure 4.2: An ACS protocol, from the perspective of party Pj with input vj .

Suppose Pi outputs in response to Event 1, so Si is a singleton set {v}. Pi must have

received v as output from at least n − ts broadcasts. Because n − 2ts > ta ≥ 0, at least one of

those corresponds to an honest sender.

Next, suppose Pi outputs in response to Event 2. Again, Si is a singleton set {v}. Pi

must have seen at least ⌊ |S
∗|
2
⌋ + 1 broadcast instances terminate with output v, and furthermore

|S∗| ≥ n− ta. Therefore, Pi has seen at least
⌊
n−ta
2

⌋
+ 1 ≥

⌊
2ts
2

⌋
+ 1 > ts broadcasts terminate

with output v. Since there are at most ts corrupted parties, at least one of those executions must

46

correspond to an honest sender.

Finally, suppose Pi outputs in response to Event 3, so Si = {v′i}i∈S∗ . Since there are at

most ts corrupted parties and |S∗| − ts ≥ n − ta − ts > ts ≥ 0, at least one party in S∗ is

honest.

Lemma 4.4. For any ta, ts satisfying condition ⋆, ACS∗ is ts-valid (as defined in Definition 2.5).

Proof. Assume at most ts parties are corrupted, and all honest parties have the same input v. By

ts-validity of BB, at least n− ts broadcast instances (namely, the instances with an honest sender)

will eventually output v. It follows that all honest parties eventually set C1(v) = true, at which

point they will output {v} if they have not already generated output. It only remains to show that

there is no other set an honest party can output.

If an honest party outputs S in response to Events 1 or 2, then S is a singleton set. Since

all honest parties have input v, Lemma 4.3 implies S = {v}.

To conclude, we show that no honest party outputs in response to Event 3. Assume toward

a contradiction that some honest party P outputs in response to Event 3. Then P must have

seen BBi terminate (say, with output vi) for all i ∈ S∗. Since also |S∗| ≥ n − ta > 2ts, a

majority of those executions {BBi}i∈S∗ correspond to honest senders and so (by ts-validity of

BB) resulted in output v. But then C2(v) would be true for P , and P would not generate output

due to Event 3.

Lemma 4.5. Fix ta, ts satisfying condition ⋆, and assume at most ta parties are corrupted during

an execution of ACS∗. If honest parties P1, P2 output sets S1, S2, respectively, then S1 = S2.

Proof. Say P1 outputs in response to Event i and P2 outputs in response to Event j, and assume

without loss of generality that i ≤ j. We consider the different possibilities.

47

First, assume i = 1, so Event 1 occurs for P1 and S1 = {v1} for some value v1. We have

the following sub-cases:

• If j = 1, then S2 = {v2} for some value v2. P1 and P2 must have each seen some set of

at least n− ts > n/2 executions of {BBi} output v1 and v2, respectively. The intersection

of these sets is non-empty; thus, ta-consistency of BB implies that v1 = v2 and hence

S1 = S2.

• If j = 2, then once again S2 = {v2} for some v2. P2 must have |S∗| ≥ n − ta, and must

have seen at least
⌊
|S∗|
2

⌋
+ 1 ≥

⌊
n−ta
2

⌋
+ 1 executions of {BBi} output v2. Moreover, P1

must have seen at least n− ts executions of {BBi} output v1. Since

n− ts +

⌊
n− ta

2

⌋
+ 1 ≥ n− ts +

⌊
2ts
2

⌋
+ 1 > n, (4.1)

these two sets of executions must have a non-empty intersection. But then ta-consistency

of BB implies that v1 = v2 and hence S1 = S2.

• If j = 3, then P2 must have seen all executions {BBi}i∈S∗ terminate, where |S∗| ≥ n− ta.

We know P1 has seen at least n − ts executions {BBi}i∈[n] output v1, and so (by ta-

consistency of BB) there are at most ts executions {BBi}i∈[n] that P2 has seen terminate

with a value other than v1. The number of executions of {BBi}i∈S∗ that P2 has seen ter-

minate with output v1 (which is at least (n − ta) − ts > ts) is thus strictly greater than

the number of executions {BBi}i∈S∗ that P2 has seen terminate with a value other than v1

(which is at most ts). But then C2(v1) would be true for P2. We conclude that Event 3

cannot occur for P2.

48

Next, assume i = j = 2, so Event 2 occurs for P1 and P2. Then S1 = {v1} and S2 = {v2}

for some v1, v2. Both P1 and P2 must have seen all executions {BAi}i∈[n] terminate. By ta-

consistency of BA, they must therefore agree on S∗. P1 must have seen a majority of the execu-

tions {BBi}i∈S∗ output v1; similarly, P2 must have seen a majority of the executions {BBi}i∈S∗

output v2. Then ta-consistency of BB implies v1 = v2.

Finally, consider the case where P2 outputs in response to Event 3 and P1 outputs in re-

sponse to Event 2 or 3. As above, ta-consistency of BA ensures that P1 and P2 agree on S∗.

Moreover, P2 must have seen all executions {BBi}i∈S∗ terminate, but without any value being

output by a majority of those executions. But then ta-consistency of BB implies that P1 also does

not see any value being output by a majority of those executions, and so Event 2 cannot occur

for P1; thus, Event 3 must have occurred for P1. Therefore, ta-consistency of BB implies that P1

outputs the same set as P2.

Lemma 4.6. For any ta, ts satisfying condition ⋆, ACS∗ is ta-live (as defined in Definition 2.5).

Proof. It follows easily from ta-security of BB and BA that if any honest party generates output

then all honest parties generate output, so consider the case where no honest parties have (yet)

generated output. Let H denote the indices of the honest parties. By ts-validity of BB, all honest

parties eventually see the executions {BBi}i∈H terminate, and so all honest parties input a value to

the executions {BAi}i∈H . By ta-security of BA, all honest parties eventually see those executions

terminate and agree on their outputs. There are now two cases:

• If all executions {BAi}i∈H output 1, then it is immediate that all honest parties have |S∗| ≥

n− ta.

• If BAi outputs 0 for some i ∈ H , then (by ta-validity of BA) some honest party P must

49

have used input 0 when running BAi. But then P must have seen at least n − ta other

executions {BAi} output 1. By ta-consistency of BA, this implies that all honest parties see

at least n− ta executions {BAi} output 1, and hence have |S∗| ≥ n− ta.

Since all honest parties have |S∗| ≥ n−ta, they all execute {BAi}i∈[n]. Once again, ta-termination

of BA implies that all those executions will eventually terminate. Finally, if i ∈ S∗ for some

honest party P then P must have seen BAi terminate with output 1; then ta-validity of BA implies

that some honest party used input 1 when running BAi and hence has seen BBi terminate. It

follows that P will see BBi terminate. As a result, we see that every honest party can (at least)

generate output due to Event 3.

Lemma 4.7. For any ta, ts satisfying condition ⋆, ACS∗ has ta-set quality (as defined in Defini-

tion 2.5).

Proof. If an honest party P outputs S = {v} due to Event 1, then P has seen at least n − ts

executions {BBi} terminate with output v. Of these, at least n − ts − ta > 0 must correspond

to honest senders. By ts-validity of BB, those honest parties must have all had input v, and so

set quality holds. Alternatively, say P outputs a set {v} due to Event 2. Then P must have

|S∗| ≥ n − ta, and at least ⌊ |S
∗|
2
⌋ + 1 ≥ ⌊n−ta

2
⌋ + 1 > ta of the executions {BBi}i∈S∗ output v.

At least one of those executions must correspond to an honest party, and that honest party must

have had input v (by ts-validity of BB); thus, set quality holds. Finally, if P output a set S due

to Event 3, then S contains every value output by {BBi}i∈S∗ with |S∗| ≥ n − ta. Since S∗ must

contain at least one honest party, set quality follows as before.

Theorem 4.1. For any ta, ts satisfying condition ⋆, ACS∗ is ta-secure and ts-valid, and has ta-set

quality (as defined in Definition 2.5).

50

Proof. Lemma 4.4 proves ts-validity. Lemmas 4.5 and 4.6 together prove ta-liveness and ta-

consistency, and Lemma 4.7 proves ta-set quality.

4.1.3 A Terminating ACS Protocol

For our eventual atomic broadcast protocol, we will need an ACS protocol with guaranteed

termination. Fortunately, the non-terminating protocol in Section 4.1.2 can be transformed into a

terminating protocol with only a few modifications.

Our terminating ACS protocol, ACSta,ts
tdg , is described in Figure 4.3. The protocol consists

of two phases. In the first phase, the parties simply run the non-terminating ACS protocol ACS∗
tdg.

In the second phase, parties send commit messages containing the output of the first phase and

a threshold signature. Upon receiving a full signature (or enough signature shares to form a full

signature), parties can safely abandon the non-terminating ACS protocol.

In the rest of this section, we abbreviate ACSta,ts
tdg and ACS∗

tdg as simply ACS and ACS∗,

respectively.

ACSta,tstdg (vj)

• Run ACS∗ using input vj .

• Upon receiving output Sj from ACS∗, multicast ⟨commit, Sj⟩j .

• Upon receiving ts + 1 signature shares on (commit, S), form a signature σ on
(commit, S), multicast (commit, S, σ), output S, and terminate.

• Upon receiving a valid signature σ on (commit, S), multicast (commit, S, σ), output S,
and terminate.

Figure 4.3: A terminating ACS protocol, from the perspective of party Pj with input vj .

Lemma 4.8. ACSta,ts
tdg is ta-terminating (as defined in Definition 2.5).

Proof. If one honest party terminates ACS then all honest parties will eventually receive a valid

51

signature and thus terminate ACS. While no honest party has yet terminated, ta-liveness of

ACS∗ implies that all honest parties will eventually generate output from ACS∗; moreover, ta-

consistency of ACS∗ implies that all those outputs will be equal to the same set S. So the

n − ta ≥ ts + 1 honest parties will send signature shares on S to all parties, which means

that all honest parties will terminate.

Lemma 4.9. Fix ta, ts with ta ≤ ts and ta + 2 · ts < n. Then ACS is ta-secure, ta-terminating,

and ts-valid with termination, and has ta-set quality (as defined in Definition 2.5).

Proof. Lemma 4.8 implies that ACS is ta-live as well as ta-terminating. If an honest party outputs

a set S from ACS, then (as long as at most ts parties are corrupted) at least one honest party

must have output S from ACS∗. Thus, ACS inherits ta-set quality, ta-consistency, and ts-validity

(without termination) from ACS∗ (cf. Theorem 4.1). It is straightforward to extend ts-validity to

ts-validity with termination using an identical argument as in Lemma 4.8.

4.1.4 Communication Complexity of ACS

Let |v| be the size of each party’s input. Recall that each instance of BB has communi-

cation complexity O(n2 |v|), and each instance of BA has cost O(n2). Since the inner protocol

ACS∗ consists of n parallel instances of BB and BA, the cost of the inner protocol is O(n3 |v|).

In the remaining steps, each party sends a set of size at most n plus a signature share (or signa-

ture) to everyone else, contributing an additional O(n2 · (n |v| + κ)) communication. The total

communication for ACS is thus O(n3 |v|+ n2κ).

52

4.2 A Block Agreement Subprotocol

Here, we present a block agreement protocol BLAta,ts
tdg (abbreviated BLA for the remainder

of this section). Block agreement can be viewed as a network-agnostic version of validated

multivalued Byzantine agreement, in which the goal is to agree on a shared output that satisfies

an external validity property.

The inputs and outputs of the block agreement protocol are objects called pre-blocks.

Within TARDIGRADE, pre-blocks act as a midway point between raw inputs and finished blocks.

Formally, recall from Definition 2.6 that a pre-block is a vector of length n, where the ith entry

is either ⊥ or a message along with a valid signature by Pi on that message. The quality of a

pre-block is defined as the number of entries that are not⊥; we say that a pre-block is a k-quality

pre-block if it has quality at least k.

Later, in our atomic broadcast construction, we will use the fact that our BLA protocol

terminates quickly if the network is synchronous. In the case where the network is asynchronous,

we only require that any honest parties who generate output must agree.

The rest of this section is devoted to constructing a concrete protocol for block agreement,

ultimately proving the following theorem:

Theorem 4.2. Fix a maximum input length |v|. There is a block-agreement protocol BLA (as

defined in Definition 2.6) with communication complexity O(n3κ2 + n2κ|v|) that is t-secure for

any t < n/2 when run in a synchronous network and terminates in time 5κ∆.

Our block agreement protocol is modeled after the synod protocol of Abraham et al. [40].

In the rest of this section, we will work our way up to the complete block agreement protocol in

53

several steps, starting with a simple multi-valued value-proposal protocol.

4.2.1 A Value-Proposal Subprotocol

Our first building block (see Figure 4.4) allows a designated party (called the proposer) to

propose a pre-block. (For the purposes of this subprotocol, we can mostly ignore the semantics

of pre-blocks and simply treat the inputs and outputs as abstract values.) During the proposal

protocol, parties send votes to show their support for a proposed pre-block. Each vote carries

a round number r, a pre-block β, and a set of signed messages C. A tuple (r, β, C) is called a

round r-vote (or just an r-vote) for a pre-block β if it satisfies either of the following:

• r = 0 and C = ∅, or

• r > 0 and C is a set of at least t+ 1 signed messages ⟨commit, ri, β⟩i from distinct parties
such that ri ≥ r.

When the exact value of r is unimportant or clear from context, we simply refer to the tuple as a

vote.

At the start of the propose protocol, the proposer (denoted P ∗) waits to receive a set V of

signed votes on valid pre-blocks such that |V | ≥ t + 1. Then, the proposer determines a safe

pre-block to propose from among these votes by finding a vote (r∗, β∗, C∗) in V such that r∗ is

greater than or equal to the round number of all other votes in V (breaking ties by lowest party

index). The proposer then multicasts a proposal message ⟨propose, (r∗, β∗, C∗), V ⟩∗. An honest

party who receives a proposal will consider it valid if all of the following hold:

• the signatures on the propose message and on each vote in V are valid,

• β∗ is a valid pre-block,

• there is an r∗-vote for β∗ in V ,

• V contains at least t+ 1 votes,

54

• r∗ is greater than or equal to the round number of all votes in V .

If any of these conditions are not met, the proposal is not considered valid.

Propttdg(r, β, C)

1. (All parties) At time 0: send votei := ⟨vote, (r, β, C)⟩i to P ∗.

2. (Only proposer) Until time ∆: Set V = ∅. Upon receiving a vote votej from party
Pj on a valid pre-block: if this is the first such message received from Pj during this
round, add votej to V .

3. (Only proposer) At time ∆, if |V | ≥ t, find the vote (r∗, β∗, C∗) in V such that r∗ is
greater than or equal to the round number of all votes in V (breaking ties by lowest
party index), and multicast ⟨propose, (r∗, β∗, C∗), V ⟩∗.

4. (All parties) At time 2∆, if a valid m = ⟨propose, (r∗, β∗, C∗), V ⟩∗ has been received
from P ∗, multicast m. Otherwise, output ⊥.

5. (All parties) At time 3∆: let mj denote the valid proposal forwarded by Pj (if any).
If there exists mj such that mj ̸= m, output ⊥. Otherwise, output the pre-block β∗

carried by the proposal m.

Figure 4.4: A protocol parameterized by threshold t and designated proposer P ∗, from the
perspective of party Pi.

In the rest of this section, to simplify the notation, we omit the superscript t from Propttdg.

We first show that any two honest parties who generate output in this protocol agree on

their output.

Lemma 4.10. If honest parties Pi and Pj output βi, βj ̸=⊥, respectively, in an execution of

Proptdg, then βi = βj .

Proof. If Pi outputs βi ̸=⊥, then Pi must have received a valid proposal message for βi by

time 2∆. That message is forwarded by Pi to Pj , and hence Pj either outputs ⊥ (if the proposals

do not match) or the same value βi.

Next, we show that if each honest party Pi inputs a vote (ri, β, Ci) on the same pre-block

β, and no honest party ever receives a vote (r′, β′, C ′) such that r′ ≥ mini{ri} and β′ ̸= β, then

55

any honest party who outputs a value other than ⊥ outputs β.

Lemma 4.11. If each honest party Pi inputs an ri-vote to Proptdg on the same valid pre-block β

(possibly with different values ri), and if no honest party ever receives a r′-vote on β′ ̸= β with

r′ ≥ mini{ri}, then every honest party outputs either β or ⊥.

Proof. Consider an honest party P who outputs β ̸=⊥. That party must have received a valid

proposal message from P ∗, which in turn must contain a vote (ri, β, Ci) from at least one hon-

est party Pi. Under the assumptions of the lemma, any other vote (r′, β′, C ′) contained in the

proposal message with r′ ≥ ri has β′ = β. It follows that P outputs β.

Finally, we show that when P ∗ is honest then all honest parties do indeed generate output.

Lemma 4.12. If each honest party Pi inputs a vote (ri, βi, Ci) on some valid pre-block βi to

Proptdg, and P ∗ is honest, then there is some (n − t)-quality pre-block β ̸=⊥ such that every

honest party outputs β.

Proof. P ∗ will receive at least t + 1 votes from honest parties, and so sends a valid proposal

message on some (n− t)-quality pre-block β to all honest parties. (It is possible for the set V to

include votes from dishonest parties, but these votes must be on (n−t)-quality pre-blocks.) Since

P ∗ is honest, and the adversary cannot forge signatures on other proposals behalf of P ∗, this is the

only valid proposal message the honest parties will receive. Therefore, all honest parties output

β ̸=⊥.

This concludes our analysis of Proptdg.

56

4.2.2 A Graded Consensus Subprotocol

Next, we present a graded consensus protocol GCt
tdg (abbrev. GCtdg). This protocol builds

on Proptdg to achieve a form of graded consensus on pre-blocks. The protocol’s outputs are tuples

(β, C, g), where β is a pre-block, C is a collection of signatures (defined more formally below),

and g is a value in {0, 1, 2} called the grade.

As in Abraham et al. [40], we assume an atomic leader-election mechanism ElectLeader.

Upon receiving input r from a majority of parties, ElectLeader chooses a uniform leader P ∗ ∈

{1, . . . , n} and sends (r, P ∗) to all parties. (Note that if t < n/2, as is the case here, then at least

one honest party must call ElectLeader with input r before the adversary can learn the identity

of the leader.) A leader-election mechanism tolerating any t < n/2 faults can be realized (in the

synchronous model with a PKI) based on general assumptions [47]; it can also be realized more

efficiently using a threshold unique signature scheme.

Below, we refer to a message ⟨commit, r, β⟩i as a valid commit message from Pi on a pre-

block β if the quality of β is at least (n−t) and the associated signature is valid. Commit messages

are used to construct notify messages (notify, r, β, C). A notify message (notify, r, β, C) is valid

if β is an (n − t)-quality pre-block and C is a set of valid commit messages such that (1) all

commit messages carry the same pre-block β, (2) C contains messages from at least t+1 distinct

parties, and (3) for each ci = ⟨commit, ri, β⟩i ∈ C the round number ri is greater than or equal

to r.

Lemma 4.13. Assume that the input of each honest party Pi to GCtdg is a vote on the same (n−t)-

quality pre-block β. If no honest party ever receives an r′-vote on β′ ̸= β such that r′ is greater

than or equal to the smallest round number carried by an honest parties’ input in step 1 of GCtdg,

57

GCt
tdg(r, β, C)

At time 0: Set C ′ = ∅. Call ElectLeader(r) and let (r, P ∗) denote the output. Run Proptdg
using input (r, β, C).

At time 3∆: Let β∗ denote the output of Proptdg. If β∗ ̸= ⊥, multicast ⟨commit, r, β∗⟩i.
Until time 4∆, upon receiving a valid commit message cj = ⟨commit, rj , βj⟩j from
Pj , if this is the first such message received from Pj , add cj to C ′.

At time 4∆: If there is a subset C ′′ ⊆ C ′ of commit messages on the same pre-block β′ such
that (a) |C ′′| ≥ t + 1, and (b) for each cj = ⟨commit, rj , β

′⟩j ∈ C ′′, rj ≥ r, then
multicast (notify, r, β′, C ′′), output (β′, C ′′, 2), and terminate.

At time 5∆: If a valid notify message (notify, r, β∗, C∗) has been received, output (β∗, C∗, 1)
and terminate (if there is more than one such message, choose arbitrarily). Otherwise,
output (⊥,⊥, 0) and terminate.

Figure 4.5: A graded consensus protocol parameterized by threshold t from the perspective of
party Pi.

then (1) no honest party sends a commit message on β′ ̸= β and (2) any honest party who outputs

a nonzero grade outputs β.

Proof. By Lemma 4.11, every honest party outputs either β or ⊥ in every execution of ΠPropose

in step 1. It follows that no honest party Pi sends a commit message on β′ ̸= β, proving the first

part of the lemma. Since at most t parties are corrupted, this means an honest party will receive

fewer than t + 1 valid commit messages on anything other than β; it follows that if an honest

party outputs grade g = 2 then that party outputs (β, C, 2).

Arguing similarly, no honest party will receive a valid notify message on anything other

than β. Hence each honest party that outputs grade 1 outputs (β, C ′, 1).

Lemma 4.14. If an honest party outputs (β, C, g) such that g ̸= 0 in an execution of GCtdg, then

no honest party sends a commit message on β′ ̸= β.

Proof. Say an honest party outputs (β, C, g) where g is nonzero. That party must have received

a valid notify message on β. Therefore, C must contain signatures from at least t + 1 distinct

parties. It follows that at least one honest party P must have sent a commit message on β. This

58

means that P must have received β as its output from ΠP ∗

Propose. By Lemma 4.10, this means the

pre-block output by any other honest party from ΠP ∗

Propose is either β or ⊥.

Lemma 4.15. If some honest party outputs (β, C, g) with grade g = 2 in an execution of GCtdg,

then each honest party Pi outputs (βi, Ci, gi) such that βi = β and g > 0.

Proof. Say an honest party P outputs (β, C, g) such that g = 2. By Lemma 4.14, this means

no honest party sent a commit message on β′ ̸= β; it is thus impossible for any honest party to

output β′ ̸= β with a nonzero grade. Since P sends a valid notify message on β to all honest

parties before terminating, every honest party will output β with a nonzero grade.

Lemma 4.16. During an execution of GCtdg, the event that every honest party outputs the same

(n− t)-quality pre-block β with a grade of 2 occurs with probability at least 1/2.

Proof. The leader P ∗ is honest with probability at least n−t
n

> 1/2. If the leader is honest,

agreement on an (n− t)-quality pre-block β follows from Lemma 4.15. Therefore, it remains to

show that whenever the leader is honest, every honest party outputs grade 2.

Assume P ∗ is honest. Lemma 4.12 implies that every honest party receives the same pre-

block β ̸=⊥ as output from Proptdg. Thus, every honest party sends a valid commit message on

β by time 3∆. Consequently, each honest party Pj receives n− t commit messages on the same

pre-block β before time 4∆. This causes them to output with grade g = 2.

In Figure 4.6 we describe the complete block-agreement protocol BLAt
tdg (abbrev. BLAtdg).

Note that parties do not terminate upon generating output; instead, parties terminate after partic-

ipating in all κ rounds of the protocol.

Lemma 4.17. If t < n/2, then BLAtdg is t-secure (as defined in Definition 2.6).

59

BLAt
tdg(β)

Set (β′, C ′) = (β, ∅) and set r = 0.
While r < κ:

· At time 5r ·∆: run GCtdg using input (r, β′, C ′).

· At time 5(r + 1) ·∆:

– Let (β∗, C∗, g) denote the output of GCtdg.

– If g > 0, set (β′, C ′) = (β∗, C∗).

– If g = 2, output β′.

– Set r = r + 1.

Figure 4.6: A block-agreement protocol with security parameter κ and threshold parameter t,
from the perspective of party Pi.

Proof. Assume at most t parties are corrupted during an execution of BLA. Termination follows

trivially from the protocol description, as parties terminate after κ fixed-length rounds.

Let r∗ be the first round in which some honest party outputs a pre-block β. We first show

that in every subsequent round, the following hold: (1) every honest party Pi uses as its input

in step 1 an ri-vote on β; and (2) the adversary cannot construct an r′-vote on β′ ̸= β for any

r′ ≥ mini{ri}.

Consider some honest party Pi who outputs a pre-block β in round r∗. Pi must have

received a valid notify message for β during the graded consensus subprotocol for that round.

By Lemma 4.15, this means every honest party received a valid notify message for β in the same

execution of GCtdg, and so claim (1) holds in round r∗ + 1. Moreover, Lemma 4.14 implies that

no honest party sent a commit message on β′ ̸= β in the execution of GCtdg, and so claim (2) also

holds in round r∗+1. Lemma 4.13 implies, inductively, that the two claims will continue to hold

in every subsequent round. Thus, any other honest party Pj who generates output in BLA also

outputs β, regardless of whether it outputs in round r∗ or a later round. This proves t-consistency.

60

Lemma 4.16 shows that in each round of BLA, with probability at least 1/2 there is an

(n − t)-quality pre-block β such that all honest parties output β in that round. Thus, after κ

rounds all honest parties have generated (n− t)-quality output except with negligible probability.

This proves t-validity.

4.2.3 Communication Complexity of Block Agreement

Within the propose subprotocol, parties send and receive votes. Each vote is a tuple

(r, β, C) where r is an integer round number, β is a pre-block, and C is a set of O(n) signa-

tures σi on (commit, ri, β). (Because ri is not necessarily equal to rj for all σi, σj in C, the

signatures cannot be combined into a single threshold signature.) Thus, the total size of each

vote is O(nκ + |m|), where |m| denotes the size of a pre-block. The most expensive step of the

propose subprotocol requires all parties to send a vote to all other parties, resulting in an overall

communication complexity for the propose subprotocol of O(n2(nκ+ |m|)) = O(n3κ+n2|m|).

In the graded consensus subprotocol, the parties participate in one run of the propose sub-

protocol and send a constant number of all-to-all messages of size O(nκ + |m|). Since both

of these steps cost O(n3κ + n2|m|), the overall communication complexity for one instance of

graded consensus is the same as that of the propose protocol.

BLAtdg runs κ rounds of the graded consensus protocol, for a total communication cost of

O(κ · (n3κ+ n2|m|)) = O(n3κ2 + n2κ · |m|).

61

4.3 A Network-Agnostic Atomic Broadcast Protocol

In this section, we use the subprotocols we have built so far to construct TARDIGRADE (ab-

brv. TDG), an atomic broadcast protocol that is ts-secure in a synchronous network and ta-secure

in an asynchronous network for any ta, ts satisfying condition ⋆. The complete pseudocode ap-

pears in Figure 4.7.

The protocol proceeds in a sequence of logical intervals called epochs. In each epoch, the

parties agree on a single set of values called a block. We represent the sequence of blocks output

by each party Pi as a write-once array Blocksi.

During each epoch, the parties begin by running the block agreement protocol BLA. If they

do not receive output from BLA within a fixed time limit, they abandon BLA and use ACS to

agree on a block instead. On the other hand, if a party does receive output from BLA, it uses that

output as its input to ACS.

TARDIGRADE’s network-agnostic properties arise from the complementary properties of

its subprotocols. If the network is synchronous, then BLA ensures that all honest parties input

the same value B to the ACS protocol. This is exactly why ACS needs to have ts-validity with

termination: so that, in this case, all parties agree on the singleton set {B} after running ACS. On

the other hand, if the network is asynchronous and at most ta parties are corrupted, it is possible

that BLA will not succeed, and parties may input different values to ACS. However, in this case

ta-security of ACS ensures that the parties will agree on a set of values B = {B1, B2, . . . }.

Moreover, the output-quality property ensures that at least a constant fraction of the values in B

were contributed by honest parties; this will be important for guaranteeing liveness of the full

atomic broadcast protocol.

62

4.3.1 Technical Overview

Each epoch of TARDIGRADE proceeds in four basic steps. First, there is an information-

gathering step in which each party sends its encrypted input to all other parties, and waits for a

fixed amount of time to receive inputs from others. In the second phase, any party who received

enough inputs during the first phase will use them as input to the synchronous block agreement

protocol BLA. If the network is synchronous and at most ts parties are corrupted, BLA is guar-

anteed to output a set of inputs that contains sufficiently many honest parties’ inputs. BLA is run

for a fixed amount of time, with the timeout chosen to ensure that (with high probability) it will

terminate before the timeout if the network is synchronous. This brings us to the third step, in

which parties run the ACS protocol. If a party received a pre-block as output from BLA before

the timeout, it passes that pre-block as input to ACS; otherwise, it assembles inputs from other

parties into a pre-block and inputs that instead. In the fourth and final step, the parties participate

in threshold decryption to recover the plaintext transactions, and then output a block containing

those transactions.

4.3.2 Technical Details

At the start of each epoch, each party Pi chooses a set Vi of L/n transactions from among

the first L transactions in its local buffer, where L is a parameter corresponding to block size. (For

now, we leave L as a variable; later, in the communication complexity analysis, we will discuss

how L is actually set.)4 Next, Pi encrypts Vi using a (ts, n)-threshold encryption scheme to give

4We assume without loss of generality that parties always have at least L transactions in their buffer, since they
can always pad their buffers with null transactions.

63

TARDIGRADE

For each iteration k = 1, 2, . . . do:

• At time Tk = λ · (k − 1): sample V ← ProposeTxs(L/n,L) and encrypt V using pk
to produce a ciphertext µ. Multicast (input, ⟨µ⟩j).

• Upon receiving a signed input (input, ⟨µ⟩i) from Pi (for iteration k):

– If this is the first input received for iteration k, create a new pre-block βk
j :=

(⊥, . . . ,⊥) and set readyk := false.

– If βk
j [i] = ⊥: set βk

j [i] := ⟨µ⟩j .

– If βk
j is an (n− ts)-quality pre-block and readyk = false, set readyk := true.

• At time Tk +∆: if readyk = true, run BLA using input βk
j .

• At time Tk +∆+ 5κ∆:

– Terminate BLA (if it has not already terminated). If BLA had output an (n− ts)-
quality pre-block β∗, run ACS using input β∗. Else, wait until readyk = true and
then run ACS using input βk

j .

– When ACS terminates, if the output set contains any valid pre-blocks, input
the unique pre-blocks to ConstructBlock to produce a block B. Then set
blocks[k] := B and delete from bufj any transactions that appear in blocks[k].

ProposeTxs(ℓ,M): choose a set V of ℓ values {tx1, . . . , txℓ} uniformly (without replace-
ment) from the first M values in bufj , then output V .

ConstructBlock(B∗): B∗ is assumed to be a set of valid pre-blocks. For each unique ci-
phertext in each pre-block β ∈ B∗, participate in threshold decryption. Wait for all
decryptions to complete, then output the set B of all unique transactions in the ob-
tained plaintexts.

Figure 4.7: Atomic broadcast protocol TARDIGRADE, from the perspective of party Pj .

a ciphertext µi.5 Each party signs its ciphertext and multicasts it, then waits for a fixed period

of time to receive signed ciphertexts from the other parties. Whenever a party receives a signed

ciphertext during this time, it adds that signed ciphertext to its pre-block. Any party who forms an

(n−ts)-quality pre-block in this way within the time limit will input that pre-block to BLA. Next,

the parties run BLA until it terminates or times out. If a party receives an (n − ts)-quality pre-

5As in HoneyBadger [6], transactions are encrypted to limit the adversary’s ability to selectively censor certain
transactions.

64

block as output from BLA before the timeout, it inputs that pre-block to the ACS protocol ACS∗.

Otherwise, it abandons BLA and inputs the (n− ts)-quality pre-block it collected earlier (waiting

for additional signed ciphertexts to arrive if necessary). Eventually, ACS∗ outputs a set of pre-

blocks, at which point a helper function ConstructBlock is used to decrypt the accompanying

ciphertexts and form the final block.

Each party begins epoch k when its local clock reaches time Tk := λ · (k−1), where λ > 0

is a spacing parameter. (The value of λ is irrelevant for the security proofs, but can be tuned to

achieve better performance in practice; see further discussion in Section 4.3.3.) If the network

is synchronous, parties’ clocks are synchronized and so all parties begin each epoch at the same

time. If the network is asynchronous, we do not have this guarantee. In either case, parties do

not necessarily finish agreeing on block k prior to starting epoch k′ > k, and so it is possible for

parties to be participating in several epochs in parallel.

Theorem 4.3 (Completeness and consistency of TDG). Fix ta, ts satisfying condition ⋆. Then

TDG is ta-complete and -consistent when run in an asynchronous network, and ts-complete and

-consistent when run in a synchronous network (as defined in Definition 2.7).

Proof. First, consider the case where at most ts parties are corrupted and the network is syn-

chronous. In the beginning of each epoch k, each honest party multicasts a set of transactions,

and so every honest party can form an (n − ts)-quality pre-block by time Tk +∆. Thus, every

honest party starts running BLA at time Tk +∆ using an (n−ts)-quality pre-block as input. By ts-

security of BLA in a synchronous network (note ts < n/2), with overwhelming probability every

honest party outputs the same (n − ts)-quality pre-block β∗ from BLA by time Tk +∆+ 5κ∆.

Therefore, each honest party inputs β∗ to ACS. By ts-validity with termination of ACS, every

65

honest party obtains the same set of values as output from ACS. So all honest parties eventually

receive n− ts > ts valid decryption shares for each ciphertext in each valid pre-block contained

in the output of ACS, and so they all output the same block.

The case where the network is asynchronous and at most ta parties are corrupted is similar.

In each epoch, each honest party multicasts a set of transactions and so every honest party even-

tually receives input from at least n− ta ≥ n− ts distinct parties and can form an (n− ts)-quality

pre-block. This means that every honest party eventually runs ACS using an (n− ts)-quality pre-

block as input. By ta-security of ACS, all honest parties eventually receive the same output B∗

from ACS. So all honest parties will eventually receive n − ta > ts valid decryption shares for

each ciphertext in each pre-block of B∗, and they all output the same block.

We now turn our attention to liveness. We begin by proving a bound on the number of

honest parties who contribute transactions to a block. Formally, we say that an honest party Pi

contributes transactions to a block in some execution if an honest party calls ConstructBlock on

a set of pre-blocks B∗ that contains a pre-block β such that β[i] ̸= ⊥. Using this, we show that

any transaction that is at the front of most honest parties’ buffers will eventually be output with

overwhelming probability. Liveness follows by arguing that any transaction that is in the buffer

of all honest parties will eventually move to the front of most honest parties’ buffers.

Lemma 4.18. Fix ta, ts satisfying condition ⋆, and assume at most ta parties are corrupted and

the network is asynchronous, or at most ts parties are corrupted and the network is synchronous.

Then in an execution of TDG, for any block B output by an honest party, at least n − (ts + ta)

honest parties contributed transactions to B.

Proof. First, consider the case where at most ta parties are corrupted and the network is asyn-

66

chronous. As in the proof of Theorem 4.3, every honest party executes ACS using an (n −

ts)-quality pre-block as input. Thus, the input of every honest party to ACS contains at least

n − (ts + ta) ciphertexts created by honest parties. By ta-set quality of ACS, the output of ACS

contains some honest party’s input and the lemma follows.

Next, consider the case where at most ts parties are corrupted and the network is syn-

chronous. As shown in the proof of Theorem 4.3, every honest party executes ACS using the

same (n − ts)-quality pre-block β as input. By ts-validity with termination of ACS, all honest

parties output B∗ = {β} from ACS. Because β is (n − ts)-quality, it contains at least (n − 2ts)

honest parties’ ciphertexts; the lemma follows.

Lemma 4.19. Assume the conditions of Lemma 4.18. Consider an epoch k and a transaction tx

such that, at the beginning of epoch k, all but at most ts honest parties have tx among the first L

transactions in their buffers. Then for any r > 0, tx is in blocks[k : k+ r] except with probability

at most (1− 1/n)r+1.

Proof. By Lemma 4.18, at least n− (ts + ta) honest parties contribute transactions to blocks[k].

So even if ts parties are corrupted, at least one of the n − 2ts honest parties who have tx among

the first L transactions in their buffers contributes transactions to blocks[k]. That party fails to

include tx in the set V of transactions it chooses with probability
(
L−1
L/n

)
/
(

L
L/n

)
= 1 − 1

n
, and so

tx is in blocks[k] except with probability at most 1− 1
n

. (Note that this does not take into account

the fact that the adversary may be able to choose which honest parties contribute transactions

to B. However, because the parties encrypt their transactions, the adversary’s choice has no

effect on the calculation.) If tx does not appear in blocks[k], then we can repeat the argument in

all successive epochs k + 1, . . . , k + r until it does.

67

Theorem 4.4 (Liveness). Fix ta ≤ ts with ta+2 ·ts < n. Then TDG is ta-live in an asynchronous

network, and ts-live in a synchronous network (as defined in Definition 2.7).

Proof. Suppose all honest parties have received a transaction tx. If, at any point afterward, tx is

not in some honest party’s buffer then tx must have already been included in a block output by that

party (and that block will eventually be output by all honest parties). If all honest parties have tx

in their buffers, then they each have a finite number of transactions ahead of tx. By completeness,

all honest parties eventually output a block in each epoch. Additionally, by Lemma 4.18, at least

n − (ts + ta) honest parties’ inputs are incorporated into each block, and so in each epoch all

but at most ts honest parties each remove at least L/n transactions from their buffers. It follows

that eventually all but at most ts honest parties will have tx among the first L transactions in their

buffers. Once that occurs, Lemma 4.19 implies that tx is included in the next κ blocks except

with probability negligible in κ.

4.3.3 Efficiency and Choice of Parameters

The communication cost per epoch is dominated by the cost of the ACS and BLA subpro-

tocols. Both ACS and BLA are run on pre-blocks, which have size L · |tx|+O(n ·κ). Thus, each

execution of BLA incurs cost O(n3κ2+n2L|tx|κ), and an execution of ACS incurs cost O(n4κ+

n3L|tx|). The overall communication per block is therefore O(n4κ+n3κ2+n3L|tx|+n2L|tx|κ).

At the beginning of every epoch, each honest party uniformly selects L/n transactions from

among the first L transactions in its buffer. The following lemma shows that the expected number

of distinct transactions they collectively choose is O(L).

Lemma 4.20. Assume the conditions of Lemma 4.18. In any epoch of TDG, the expected number

68

of distinct transactions contributed by honest parties to the block B output by the honest parties

in that epoch is at least L/4.

Proof. The expectation is minimized when all honest parties have the same L transactions as the

first L transactions in their buffers, so we assume this to be the case. As in Lemma 4.19, for some

particular such transaction tx, the probability that some particular honest party fails to include tx

in the set V of transactions it chooses is 1− 1
n

. Since, by Lemma 4.18, at least n−(ts+ta) > n/3

honest parties contribute transactions to B, the probability that none of those parties choose tx

is at most
(
1− 1

n

)n/3 ≤ e−1/3 < 3/4, and so tx is chosen by at least one of those parties with

probability at least 1/4. (Once again, we do not take into account the fact that the adversary may

be able to choose which honest parties contribute transactions, because all transactions remain

encrypted until after the adversary makes their decision.) The lemma follows by linearity of

expectation.

Because each block contains O(L) transactions, the communication cost per transaction is

O((n4κ + n3κ2)/L + n3|tx| + n2|tx|κ). So for L = Θ(nκ), the amortized communication cost

per transaction is O(n3|tx|+ n2|tx|κ).

We remark that although each block contains at least L/4 distinct transactions in expecta-

tion, it is possible that some of those transactions are not new, i.e., they may have already been

included in a previous block. This is possible because an honest party may sample its input in

some epoch before it has finished outputting blocks in all previous epochs. Thus, the communi-

cation cost per transaction computed above may be an underestimate.

While repeated transactions have no effect on consistency,6 they do negatively affect live-

6Our definition of atomic broadcast is only concerned with agreeing on an order over abstract values; the question
of how to handle repeated transactions is left to the application level.

69

ness. In particular, the number of redundant transactions is related to the spacing parameter λ

as well as the actual network conditions and the parties’ local clocks. For example, if λ is too

small, it is possible for honest parties to input similar sets of transactions to many consecutive

blocks, which results in wasted block space; however, setting λ to be too large could introduce

unnecessary delays in the synchronous case. In the rest of this section, we derive a bound on the

rate at which parties clear transactions from their buffers in terms of λ, actual message delays,

and the speed of parties’ local clocks.

In what follows, it is useful to measure time by a “global clock,” even though honest parties’

clocks are not guaranteed to be synchronized with each other or with this global clock. More

formally, imagine an external observer with a clock running at some fixed rate ρ. (The observer’s

clock is not visible to the honest parties and is not assumed to be synchronized with parties’ local

clocks.) Let ρi denote the (possibly variable) rate at which Pi’s local clock runs relative to the

observer’s clock.

Fix some finite interval I = [Start,End] during an execution of the protocol. From the

perspective of the observer, it is possible to identify bounds ρmin(I), ρmax(I) on the skew of

honest parties clocks during interval I , so that for all honest Pi, ρmin ≤ ρi ≤ ρmax. The observer

can also determine an upper bound δ(I) such that any message sent by time T ∈ [Start,End− δ]

is delivered by time T + δ. (Note that in an asynchronous network, δ(I) may be significantly

greater than ∆.) Lastly, we let βmax denote the maximum number of transactions in any honest

party’s buffer during the given interval. We emphasize that ρmin, ρmax, δ, and βmax do not need

to be known by the honest parties, and are used only for the analysis.

For each i and each k, let Starti,k and Endi,k be the time according to the observer’s clock

when Pi begins epoch k and when Pi outputs block k, respectively, and let Ii,k denote the interval

70

[Starti,k,Endi,k]. (By completeness of the protocol, Endi,k is well-defined for all i and k.)

The claims below apply in either setting (ta corruptions in an asynchronous network, or

ts corruptions in a synchronous network); however, in a synchronous network the bounds are

naturally simpler because we have ρmin = ρmax = ρ and δ = ∆.

Lemma 4.21. For any epoch k and party Pi, the number of concurrent epochs that Pi begins

running during the interval Ii,k := [Starti,k,Endi,k] is at most τ := ρmax

λ
·
(5κ∆+∆+A(δ,κ)

ρmin

)
(with

overwhelming probability), where ρmin, ρmax, δ, βmax, and τ are measured by an external ob-

server over the interval Ii,k, and A(δ, κ) is an upper bound such that the local running time of

ACS for Pi during the interval Ii,k is at most A(δ, κ), with overwhelming probability in κ.

Proof. Let ρi be the rate of Pi’s local clock (or an upper bound on the rate, if it is variable). Each

honest party Pi begins a new block every λ clock ticks, as measured by their local clock. Thus,

the number of new blocks started by an honest party Pi during the interval Ii,k is the length of Ii,k

(in global time) divided by λ/ρi.

We would like to find an upper bound on the length of Ii,k for all honest Pi. The most

significant contributors to the length of Ii,k are the running time of BLA and ACS. The local

running time of BLA is at most 5κ∆ + ∆ for any honest party, because Pi will timeout at this

time if BLA has not yet output. Thus, the running time of BLA for Pi according to the observer’s

clock is at most 5κ∆+∆
ρi

. By assumption, ρmin ≤ ρi for all Pi, and so the global running time

of BLA for any honest party is at most 5κ∆+∆
ρmin

. Similarly, the running time of ACS from the

observer’s perspective is bounded above by A(δ,κ)
ρmin

(with overwhelming probability in κ).

We can simply add the bounds for BLA and ACS together to get an upper bound on the

entire length of the interval Ii,k. Plugging this bound into the expression we had originally, we

71

have the following bound on the number of new blocks started by any Pi during the interval Ii,k,

which holds with overwhelming probability in κ:

|Ii,k|
λ/ρi

≤
5κ∆+∆
ρmin

+ A(δ, κ)
λ

ρmax

=
ρmax

λ
·
(
5κ∆+∆+ A(δ, κ)

ρmin

)
(4.2)

This completes the proof.

The following lemma concerns the overall progress of the honest parties.

Lemma 4.22. Let t denote the number of dishonest parties during an execution of TDG, and

let tx be a transaction that has been received by each honest Pi by time Starti,k. Moreover,

let ρmin, ρmax, δ, βmax, and τ be bounds as described above over the interval IHk,k+cx·τ :=

[minPi∈H(Starti,k),maxPj∈H(Endj,k+c)]. Then with overwhelming probability in the security pa-

rameter κ, there are at least n− t honest parties Pi such that Pi removes at least βmax transactions

from their buffer during the interval [Starti,k, Starti,k+cx·τ], where cx := βmax

L/n
· n−t
n−(ts+ta)

.

Proof. By Lemma 4.21, we know that every honest party Pi has output block k by time Starti,k+τ .

Therefore, by time Starti,k+τ , Pi has removed from their buffer any transactions that are included

in blocks[k]. In particular, if Pi’s input was included in block k, then Pi must have removed at

least L/n transactions from the front of their buffer between time Starti,k and Starti,k+τ .

Next, we can extend this argument to apply to sets of honest parties. Recall from Lemma 4.18

that at least n − (ts + ta) honest parties’ inputs are included in each block. Let S∗
k+c·τ denote

the set of honest parties whose inputs are included in block k + c · τ (c = 0, 1, 2, . . .). For

each Pi ∈ S∗
k+c·τ , notice that Pi must have selected L/n transactions from their buffer as in-

put at time Starti,k+c·τ , and those transactions were included in block k + c · τ . Therefore, Pi

72

must have removed at least L/n transactions from their buffer at some point during the interval

[Starti,k+c·τ , Starti,k+(c+1)τ].

Consider a sequence of sets S∗
k , S∗

k+τ , S∗
k+2τ , . . . , defined as above. Suppose the adversary

is able to choose S∗ in each epoch, subject to the constraint that each S∗ must contain at least

n− (ts + ta) honest parties. We would like to find an upper bound on number of epochs needed

to ensure that all but ts of the honest parties have tx among the first L transactions in their buffer.

For convenience, assume that each honest party initially has exactly βmax transactions in its buffer

ahead of tx, and assume without loss of generality that parties P1, . . . , Pn−t are honest. In the

worst case, the adversary chooses the honest parties for each set in the sequence in a round robin

fashion, i.e.:

S∗
k+c·τ = {Pi | 1 + c · (n− (ts + ta)) ≤ i ≤ c+ c · (n− (ts + ta))mod(n− t)}. (4.3)

Let cx := βmax

L/n
· n−t
n−(ts+ta)

, and consider the sequence of sets S∗
k , . . . ,S∗

k+cx·τ determined ac-

cording to the round robin strategy. All together, each honest party is in at least ⌊ (n−(ts+ta))·cx
n−t

⌋ =

⌊βmax

L/n
⌋ distinct sets in the sequence. Therefore, each honest party Pi has removed at least

⌊βmax

L/n
⌋ ·L/n = βmax transactions from their buffer during the interval [Starti,k, Starti,k+cx·τ].

The analysis above represents a rough worst-case analysis of liveness, in terms of clock

(de-)synchronization and protocol parameters. In a deployment scenario, clock synchronization

may be out of the developer’s control; however, these results suggest that poor choices of proto-

col parameters can add unnecessary load to the network without benefitting liveness. Methods

for experimentally determining good choices of parameters for real network conditions are an

interesting direction for future work.

73

4.4 From Atomic Broadcast to State Machine Replication

To transform TARDIGRADE into a full state machine replication protocol, it suffices to

modify it so that parties output a proof along with each block. We will use the folklore generic

transformation from ABC to SMR using digital signatures: at the end of each epoch, parties sim-

ply use their threshold signing key to sign the block and epoch number. Once a party collects

ts + 1 partial signatures on (B, e) at the end of epoch e, it combines them into a single signature

σ and writes (B, σ) to blocksi[e]. (Note that this change does not increase the overall commu-

nication complexity: the cost of sending a block and partial signature all-to-all is asymptotically

lower than the cost of the rest of the protocol.)

Lemma 4.23. If TARDIGRADE is modified to output blocks of form (B, σ) as described above,

then the resulting protocol is an SMR protocol that is ta-secure when run in an asynchronous

network, and ts-secure when run in a synchronous network (as defined in Definition 2.8).

The consistency, liveness, and completeness properties follow straightforwardly from the

security of the atomic broadcast protocol, so it only remains to sketch external validity. Fortu-

nately, this is also straightforward: in each epoch e there can exist at most one block B for which

there is a valid signature, because the original atomic broadcast protocol is consistent (so all hon-

est parties sign the same block) and there are at most ts corrupted parties (so the corrupted parties

cannot create a proof on their own).

For the sake of simplicity, from this point on, we use TARDIGRADE to refer to the SMR

protocol rather than the ABC protocol.

74

4.5 An Impossibility Result for Network-Agnostic SMR

In this section, we show that our protocol achieves the optimal tradeoff between the security

thresholds ta, ts. We will prove the result directly, without invoking the corresponding result for

Byzantine agreement (although the proof techniques are ultimately similar). An alternative would

be to show a reduction from Byzantine agreement to state machine replication in the network-

agnostic setting: given such a reduction, our earlier impossibility result for network-agnostic

BA would immediately imply a matching impossibility result for network-agnostic SMR. This

approach initially appears promising, because there is a folklore result constructing BA from

SMR in a synchronous network; however, the usual reduction assumes that the SMR protocol

has a specific liveness property that is not achieved by network-agnostic (or even asynchronous)

protocols.

To better understand the issue, recall the folklore reduction for synchronous BA and SMR.

Suppose we have a synchronous SMR protocol with the following property: any transaction re-

ceived by all honest parties by time T0 must be output by round T0 + Tconf. (Tconf is sometimes

called the confirmation time; see e.g. [48], Section 6.2.) This property is common among syn-

chronous SMR protocols, and enables us to achieve BA as follows. At time 0, each party sends

a vote consisting of its input and a signature on its input to all other parties. Then, at time ∆,

parties input the votes they received to their buffers and run the SMR protocol. Finally, at time

∆ + Tconf, each party gathers all of the votes that were output by the SMR protocol and outputs

the bit that received the majority of votes. (If there are any parties who signed votes on more than

one bit, count only the first vote that was output by the SMR protocol.)

We can see that the reduction hinges on an upper bound on confirmation time and an upper

75

bound on the time when all inputs have been received, and so it is not obvious how to adapt it

to general network-agnostic protocols without introducing additional properties or assumptions.

Fortunately, we can still prove the result directly. In fact, we will prove a stronger result: there is

no SMR protocol that achieves both ts-liveness in a synchronous network and ta-consistency in

an asynchronous network for any ta, ts, n with ta + 2ts ≥ n.

Theorem 4.5. Fix ta, ts, n with ta + 2ts ≥ n. If an n-party SMR protocol is ts-live in a syn-

chronous network, then it cannot also be ta-consistent in an asynchronous network (as defined in

Definition 2.8).

Proof. Assume ta+2ts = n and fix an SMR protocol Π. Partition the n parties into sets S0, S1, Sa

where |S0| = |S1| = ts and |Sa| = ta. Consider the following experiment:

• Choose uniform m0,m1 ← {0, 1}κ. At global time 0, parties in S0 begin running Π holding

only m0 in their buffer, and parties in S1 begin running Π holding only m1 in their buffer.

• All communication between parties in S0 and parties in S1 is blocked. All other messages

are delivered within time ∆.

• Create virtual copies of each party in Sa, call them S0
a and S1

a . Parties in Sb
a begin running

Π (at global time 0) with their buffers containing only mb, and communicate only with each

other and parties in Sb.

Compare this experiment to a hypothetical execution Esync of Π in a synchronous network,

in which parties in S1 are corrupted and simply abort, and the remaining parties are honest and

initially hold only (uniformly chosen) m0 in their buffer. The views of parties S0 ∪ S0
a in the

experiment are distributed identically to the views of the honest parties in Esync. Thus, ts-liveness

76

of Π implies that in the experiment, all parties in S0 include m0 in some block. Moreover, since

parties in S0 never receive information about m1, they include m1 in any block with negligible

probability. By a symmetric argument, in the experiment, all parties in S1 include m1 in some

block, and include m0 in any block with negligible probability.

Now, consider a hypothetical execution Easync of Π, this time in an asynchronous network.

In this execution, parties in S0 and S1 are honest while parties in Sa are corrupted. The parties

in S0 and S1 initially hold m0,m1 ← {0, 1}κ, respectively. The corrupted parties interact with

parties in S0 as if they are honest and have m0 in their buffer, and interact with parties in S1 as

if they are honest and have m1 in their buffer. Meanwhile, all communication between parties in

S0 and S1 is delayed indefinitely. The views of the honest parties in this execution are distributed

identically to the views of S0 ∪ S1 in the above experiment, yet the conclusion of the preceding

paragraph shows that ta-consistency is violated with overwhelming probability.

77

Chapter 5: Improving the Security and Efficiency of Network-Agnostic SMR

In the previous chapter, we introduced TARDIGRADE, a proof-of-concept network-agnostic

SMR protocol. In this chapter, we will build on that foundation to present two “next generation”

network-agnostic SMR protocols, UPDATE and UPSTATE.

For the most part, UPDATE and UPSTATE follow the basic template used in TARDIGRADE.

In particular, the major building blocks of BLA and ACS will remain the same; the primary differ-

ences lie in the design of those building blocks. Additionally, we will skip the intermediate step

of constructing explicit ABC protocols, and instead construct the final SMR protocols directly.

5.1 UPDATE: Network-Agnostic SMR with Optimal Thresholds and O(n3)

Communication Complexity

This section presents UPDATE, an adaptively secure network-agnostic SMR protocol. Com-

pared to its predecessor, TARDIGRADE, UPDATE achieves the same security guarantees (network-

agnostic security against an adaptive adversary, for optimal thresholds ts, ta) while achieving bet-

ter communication complexity — UPDATE has a total cost of O(κn3) communication per block

and an amortized cost of O(κn2) communication per transaction. This improvement is largely

due to an improved ACS construction based on error-correcting codes. Our earlier construction

for adaptively secure BLA can be used as-is; however, for consistency across protocols, BLAupd

78

is sometimes used as an alias.

In the rest of this section, we introduce the new ACS construction in Section 5.1.1 and then

present the full protocol in Section 5.1.2.

5.1.1 ACS Using Error-Correcting Codes

The protocol proceeds as outlined in Figure 5.3. The high-level design is similar to ACS

protocols discussed previously; the main difference is the more sophisticated mechanism for input

encoding (INDIupd, Figure 5.1), which uses Reed-Solomon codes. There is also a reconstruction

subprotocol (referred to as RECONupd, Figure 5.1) in which parties multicast signed vote mes-

sages for a particular party upon successfully reconstructing that party’s input. Upon receiving

ts+1 votes for the same party Pj , parties multicast a commit message carrying this certificate and

the combined signature.1 At the end of the protocol, protocol Termupd (Figure 5.2) assembles an

output certificate that allows parties to output and terminate (OC 0), ensuring no honest parties

are “left behind.”

The (n, b)-RS code allows a party to split an input in b blocks and encode them into n

codewords. In order to tolerate d erasures, it must be possible to reconstruct the b blocks from

n− d correct codewords. Furthermore, to tolerate c errors among n− d codewords, it must hold

that n− b ≥ 2c+ d.

If we let b be equal to ts, we can tolerate either ts + ta erasures, or tolerate ta errors

along with ts − ta erasures (since n > 2ts + ta). This means we need to wait for n − ts + ta

codewords in total in order to guarantee correct reconstruction in the asynchronous case when ta

1We note that recently, Das et al. [49] proposed an asynchronous reliable broadcast protocol using error correcting
codes (but without digital signatures) that is related to this step.

79

parties are corrupted. Thus, a gain in communication efficiency, obtained from using codewords

to achieve agreement on length κ hashes instead of length ℓ inputs and from not multicasting

the reconstructed output, leads to potentially having to wait for n− ts + ta messages in order to

reconstruct the correct output if the adversary delivered ta bad codewords.

If we let b be equal to ta, we can tolerate either ts errors and no erasures, or 2ts erasures.

This corresponds to the synchronous case when ts parties are corrupted, and honest parties receive

all messages that were sent after at most ∆ time. Therefore, if an honest party only receives n−ts

codewords, they are all correct. However, we will show below that there is no need to tolerate ts

errors in the synchronous case. Briefly, we can use extra information—the hash value—in order

to detect an incorrect reconstruction, and there will be sufficiently many inputs of the honest

parties correctly reconstructed in order to achieve termination. Therefore it suffices to let b = ts

throughout.

INDIupd(x)

1. Encode x using ENC into codewords si,1 . . . , si,n. Compute hi := H(x).

2. For j ∈ [n], compute φi,j := TS.Sign(PK, ski, (si,j , hi)) and send vi,j :=
(si,j , hi, φi,j) to party Pj .

3. Upon receiving a valid vj,i = (sj,i, hj , φj,i), multicast ⟨vj,i⟩i.

4. Output the received set of {⟨vj,k⟩k} for Pj from Pk.

RECONupd({⟨vj,k⟩k})

1. Parse vj,k as (sj,k, hj , φj,k), discarding any messages with invalid signatures (either
from Pj or from Pk). Let K be the set of remaining messages.

2. If there exists a subset K ′ ⊆ K such that |K ′| ≥ n − ts and all contained messages
vj,k have the same value hj , compute x = DEC({sj,k}k∈K′).

3. If H(x) = h, output x. Else, output ⊥.

Figure 5.1: Input distribution and reconstruction from the perspective of party Pi∈{1,...,n}.

80

Across the protocols, we use PK as the public keys output by TS.KeyGen and ski the secret

key associated to Pi. For simplicity, in ACSupd and the corresponding functionalities, we use φi,j

as both the signature of Pi over si,j , and over hi, sent to party Pj . Throughout this section, we

assume a binary BA protocol BAupd (or just BA, for short) with ta-validity, ta-consistency, and

ta-termination in the presence of ta < n/3 adaptive corruptions, and communication complexity

of O(n2).

Termupd(x, h)

1. Multicast ⟨x, h⟩i.

2. Upon receiving at least ts + 1 valid signature shares ⟨x,H(x)⟩i from distinct par-
ties, combine the signature shares into an output certificate c̃ for x and multicast
(output, c̃, x,H(x)). Output x and terminate.

3. Upon receiving a valid output certificate c̃ for x, multicast (output, c̃, x, h). Output x
and terminate.

Figure 5.2: Termination helper protocol from the perspective of party Pi∈{1,...,n}.

Lemma 5.1. Suppose there are at most ta corruptions. Given a certificate

(commit, ⟨h⟩) for a party P , all honest parties can eventually reconstruct the same output in a

run of ACSupd.

Proof. If P is honest, then all honest parties will eventually receive n− ts valid codewords of the

true input (since we assume unforgeable signatures), allowing them to correctly reconstruct x.

Assume P is dishonest. To obtain a valid commit certificate on P ’s hash ⟨h⟩, ts − ta + 1

honest parties need to have seen n − ts valid messages, all with the same h = H(x). Of these

n− ts messages, ta could have been sent by corrupted parties in the multicast round. In the worst

case, in the first round when P sent codewords, it could have sent only n − ts − ta codewords

(but all valid) to distinct honest parties. Eventually, all honest parties receive the n − ts − ta

codewords and can reconstruct the same input x if the code tolerates ts + ta erasures.

81

ACSta,tsupd (x)

1. Run INDIupd(x) and store {⟨vj,k⟩k} for Pj as they are received from Pk.

2. Input {⟨vj,k⟩k} to RECONupd. If RECONupd outputs xj , multicast votei :=
⟨vote, ⟨hj⟩i, φj,i⟩i.

3. Upon receiving ts + 1 valid votes from distinct Pk on j, combine the threshold signa-
tures into a full signature and form a certificate cj := (commit, ⟨hj⟩) and send it to all
parties.

4. Upon receiving a commit certificate cj for the input of a party Pj , forward it to all
parties.

5. Upon receiving a commit certificate for party Pj input 1 to BAj . After outputting 1 in
at least n− ta BA instances, input 0 for the rest.

6. Set S∗ to be the set of indices of the BA instances that output 1.

7. Output according to the following output conditions:

OC 0. If Pi has received a valid certificate (output, c̃, x, h), multicast (output, c̃, x, h). Out-
put x and terminate.

OC 1. Else if Pi (i) has obtained n − ts certificates (commit, ⟨hj⟩) and (ii) reconstructed
inputs xj such that hj = H(xj) of distinct Pj , all have the same value x, then input
(xj , hj) to Termupd.

OC 2. Else if Pi has (i) |S∗| ≥ n − ta, (ii) all n BA instances have terminated, (iii) Pi

has obtained certificate (commit, ⟨hj⟩) for j ∈ S∗, (iv) reconstructed input xj such
that hj = H(xj) and such that a strict majority of {xj}j∈S∗ has value x, then input
(xj , hj) to Termupd.

OC 3. Else if Pi has (i) |S∗| ≥ n − ta, (ii) all n BA instances have terminated, (iii) Pi has
obtained certificates (commit, ⟨hj⟩) and (iv) reconstructed input xj such that hj =
H(xj) for all j ∈ S∗, then output S =

⋃
j∈S∗ xj and terminate.

Figure 5.3: An ACS protocol from the perspective of party Pi∈{1,...,n}.

On the other hand, the adversary might send ta malicious codewords which will prevent

correct reconstruction from n− ts codewords. However, assuming H is a collision-resistant hash

function, except with negligible probability, there do not exist inputs x ̸= x′ reconstructed by

different sets of codewords such that h = H(x) = H(x′). Therefore, if after inputting n − ts

codewords to RECONupd and not obtaining a valid output with respect to h, the honest parties

wait until they receive sufficient codewords in order to be able to correctly reconstruct.

82

As stated above, each input of size ℓ is split into to b = ts blocks: n − ts > ta + ts =

2ta + ts− ta. This means that the code can tolerate either ta + ts erasures, or ts− ta erasures and

ta errors if parties wait for n− ts + ta messages to honest parties.

Lemma 5.2. If there are at most ta-corruptions, there cannot be two valid certificates (commit, ⟨h⟩),

(commit, ⟨h′⟩), associated with P , and h ̸= h′.

Proof. If P is honest, then all honest parties eventually receive n− ts valid messages containing

codewords and the same hash h of the true input, so they can correctly reconstruct x. Therefore,

assuming unforgeable signatures, no valid commit message (commit, ⟨h′⟩) for h′ ̸= h can exist.

Now suppose P is dishonest. Since there is a certificate (commit, ⟨h⟩) constructed from at

least ts + 1 signatures, and ts + 1 > ta, at least one honest party Pj signed h. This implies Pj

reconstructed an input x such that h = H(x) and saw n−ts distinct valid messages v∗,l = (s∗,l, h).

At most ta messages could have originated from malicious parties, so n− ts − ta > ts + 1 were

messages that honest parties relayed honestly. Assume there is a different honest party Pi that

participated in a different commit certificate on h′ for P . Then that party also saw n− ts distinct

valid messages v∗,l′ = (s∗,l′ , h
′), out of which n−ts−ta > ts+1 were messages that honest parties

relayed honestly. These sets of honest parties should not intersect, so 2(n − ts − ta) < n − ta,

but this contradicts our assumption that n > 2ts + ta.

Note that if the network is synchronous and ts = ⌊n/2⌋, ta = 0, different honest parties

could receive commit certificates on different hashes of the same malicious party (honest parties

always multicast the received certificates). In such a case, honest parties detect equivocation

and do not input 1 in the associated BA instance. However, if the network is asynchronous

equivocation is not necessarily detected. Nevertheless, as we see below, validity will still hold.

83

Lemma 5.3. ACSupd satisfies ts-validity with termination (as defined in Definition 2.5).

Proof. Suppose all honest parties have the same input x and up to ts parties are corrupted. At

most ts <
⌊
n−ta
2

⌋
+ 1 < n − ts reconstructed values can be different than x, so there cannot

exist an output certificate on a value x′ ̸= x even if two honest parties accept different commit

certificates for the same corrupted party.

Honest parties will eventually be able to obtain valid commit certificates for the inputs of

at least n− ts honest parties, and therefore (by assumption) eventually obtain at least n− ts valid

certificates for x. At this point, if an honest party has not yet output, it will input {x} to Termupd

(in OC 1). If at least ts + 1 parties call Termupd via OC 1, then eventually, each party will receive

an honest output certificate on {x}, output and terminate. Below we handle the case in which

some honest parties output before the above conditions were satisfied.

Assume party P output before the above could occur. If P called Termupd via OC 2, then

despite ts corruptions that could break security of the ta-secure BA, it saw x′ reconstructed in a

strict majority of valid values associated with n − ta BA terminated instances. Any set of BA

instances constituting a strict majority must contain at least one instance corresponding to honest

party, since
⌊
n−ta
2

⌋
+ 1 > ts + 1, and so {x′} = {x} by assumption. Furthermore, in this case P

would have input (x, h) to Termupd, and so all parties eventually receive an output certificate on

{x}. Since n−ts >
⌊
n−ta
2

⌋
+1, and honest parties’ inputs can always eventually be reconstructed,

each honest party will be eventually able to output due to OC 0, even if it was not able to finish

the reconstruction of the corrupted parties’ inputs.

Finally, if P output S as a result of OC 3, then P did not observe a strict majority of BA

instances in S∗ corresponding to the same value. By assumption, the honest parties have the same

84

input x, so this implies a strict majority of values S∗ correspond to corrupted parties. However,

this contradicts the assumption that only ts parties are corrupted, because ⌊ |S
∗|
2
⌋ ≥ ts. Therefore,

no honest party outputs via OC 3 when all honest parties have the same input.

Lemma 5.4. ACSupd satisfies ta-set quality (as defined in Definition 2.5).

Proof. Suppose an honest party Pi output a set S.

If Pi output S = {x} due to OC 0, then Pi must have obtained a valid output certificate

of at least ts + 1 signatures on x, which requires that at least one honest party (call it Pj) input

(x, h) to ΠTerm(x, h) in OC 1 or OC 2. Consider each case. If Pj input (x, h) due to OC 1, then

it gathered a valid certificate on at least n− ts values equal to x. At least n− ts − ta ≥ ts + 1 of

the parties associated to these values are honest, so RECONupd returns their correct original input

value. Otherwise, if Pj input (x, h) due to OC 2, then it output 1 in at least n − ta BA instances

and it saw a strict majority of the reconstructed corresponding inputs reconstruct to the value x.

Because n ≥ n− ts +
⌊
n−ta
2

⌋
+ 1, x was input by some honest party. Thus, in either case some

honest party input x.

If P output S due to OC 3, then it output 1 in at least n − ta BA instances but without the

majority condition satisfied. At least one of these instances corresponds to an honest party, so S

contains some honest party’s input.

Lemma 5.5. ACSupd is ta-terminating (as defined in Definition 2.5).

Proof. Assume no honest party has output yet. Eventually, all honest parties will obtain at least

n − ta valid commit certificates, since there are at least n − ta honest parties. Moreover, by

Lemma 5.2, even on malicious inputs, honest parties cannot obtain multiple valid certificates.

By the ta-terminating property of BA, all parties terminate all n BA instances eventually. By

85

the ta-consistency of BA, all honest parties will agree on the set S∗ of BA instances that output

1. Finally, by Lemma 5.1, all honest parties reconstruct the same inputs associated to S∗. This

allows some honest party to output and terminate.

It remains to show that once some honest party Pi has terminated, all honest parties eventu-

ally terminate. If Pi output due to OC 0 (implying it received a valid output certificate from OC 1

or OC 2), then eventually all honest parties receive the certificate multicast by Pi and terminate

(if they have not already).

If Pi output due to condition OC 3, then it must have terminated all BA instances, obtained

commit certificates and reconstructed all inputs corresponding to S∗ = {i|BAi output 1} for

some |S∗| ≥ n − ta. Then, ta-termination and consistency of BA ensure that each other honest

party Pj eventually observes parts (i) and (ii) of OC 3 to be true. Furthermore, each honest party

eventually reconstructs each {xj}j∈S∗ and receives the certificates needed to terminate, since Pi

must have sent these certificates to all other parties during ACSupd.

Lemma 5.6. ACSupd satisfies ta-consistency (as defined in Definition 2.5).

Proof. Assume an honest party Pi has output S. By Lemma 5.5, each other honest party even-

tually outputs some set S ′. It remains to show that for each possible combination of output

conditions, S = S ′.

Suppose S = {x} was output via OC 0, i.e., upon receiving a valid output certificate.

There are two subcases.

First, suppose Pj output S ′ = {x′} via OC 0. The existence of an output certificate for

x implies that there exists an honest party P who contributed a share via either OC 1 or OC 2;

86

likewise, some honest party P ′ contributed a share for x′. If both P and P ′ contributed shares via

OC 1, then quorum intersection among the two sets of n− ts certificates implies x = x′. If (say)

P and P ′ contributed shares by OC 1 and OC 2, respectively, then any set of n− ts BA instances

and any set of
⌊
n−ta
2

⌋
+ 1 BA instances must intersect at an honest party, and so x = x′. Finally,

if both P and P ′ contributed shares via OC 2, then they agree on S∗, and once again x = x′.

Second, suppose towards a contradiction that Pj output S = ∪j∈S∗xj for reconstructed

values xj via OC 3. Of those n − ta values, at most ts can have a value x′ ̸= x. But this means

that Pj saw at least n− ta − ts ≥ ts + 1 reconstructed values equal to x, in which case the order

of else-if clauses would have caused Pj to output via OC 2, a contradiction.

Third, say Pi outputs S as a result of OC 3. The case in which Pj output {x′} via OC 0 is

equivalent to the second subcase above. Suppose Pj also output a set S ′ via OC 3. Both Pi and

Pj must have seen all BA instances terminate and agree on the set of BA instances S∗ that output

1. By Lemma 5.1, we have S ′ = S.

5.1.2 UPDATE: Full Protocol

We are now ready to present the complete protocol, UPDATE. As in TARDIGRADE, there

is a spacing parameter (denoted here by µ) that should be heuristically tuned by the network

designers to improve throughput, i.e., not have too much overlap or separation between epochs.

If the network is synchronous, then epochs start at the same time for all parties. If the network is

asynchronous, parties might start the epochs at different times and might not output a block until

they have to start the next epoch.

Theorem 5.1. Under condition ⋆, UPDATE is (1) ts-consistent and ts-complete if the network

87

UPDATE

Step 1. Proposal selection.

1.1 At time Te = µ(e − 1): Set Be
i := (⊥, . . . ,⊥) an empty pre-block of size n, and set

readye = false.

1.2 Let xi be a threshold encryption of a random selection of L/n transactions without
replacement from the first L transactions in the party’s buffer. Multicast xi.

1.3 Upon receiving a validly signed message xj , if Be
i [j] =⊥, set Be

i [j] := xj .

1.4 Upon assembling a (n− ts)-quality pre-block Be
i , set readye = true.

Step 2. Agreement.

2.1 At time Te +∆: If readye = true, pass Be
i as input to BLAe

upd. If BLAe
upd terminates,

let B∗ be the output.

2.2 At time Te + (5R+ 1)∆: Terminate BLAe
upd if not already terminated.

2.3 Pass B∗ or wait until readye = true and pass Be
i as input to ACSeupd.

2.4 Receive S = {B∗
j }j∈S∗ , where S∗ ⊂ {1, . . . , n} from ACSeupd.

Step 3. Output and public verification.

3.1 On input S = {B∗
j }j∈S∗ , for each j ∈ S∗, do:

- Jointly decrypt the values in S = {xj}j∈S∗ .

- Create a block by sorting
⋃

j∈S∗ xj in canonical order.

- Hash and sign block, then multicast ⟨H(block)⟩i.

3.2 On receiving ts + 1 distinct valid signatures ⟨h⟩j s.t. h = H(block), do:

- Assemble π as ⟨h⟩ and proof of correct decryption of S.

- Remove the transactions in block from the buffer and output (block, π).

3.3 Update e← e+ 1.

Figure 5.4: An SMR protocol with adaptive security, parameterized by thresholds ta, ts.

is synchronous and (2) ta-consistent and ta-complete if the network is asynchronous (defining

t-security as in Definition 2.8).

Proof. We start with (1). Say a honest party P output a valid block in epoch e. Then P must

have generated output in ACSupd in epoch e, call it B, and at least ts + 1 decryption shares on

88

B were gathered. By ts-validity with termination of ACSupd, all honest parties will output B if

they started ACSupd with a valid pre-block B, so to prove ts-consistency of UPDATE, it remains

to show that all honest parties input the same B to ACSupd. Since the network is synchronous,

by time Te + ∆, all honest parties have managed to assemble a (n − ts)-quality pre-block Be
i

and input it to BLAupd, which is ts-terminating, ts-valid and ts-consistent, so it terminates by time

Te + (5R+ 1)∆ with the same valid output B. Finally, ts-completeness follows from ts-validity

with termination of ACSupd.

We now address (2). Say a honest party P output a valid block in epoch e. P must have

generated output in ACSupd in epoch e, call it B, and gathered at least ts +1 decryption shares on

B. By ta-consistency of ACSupd, all honest parties should have generated B in epoch e, so this

proves ta-consistency of UPDATE. Every honest party will eventually assemble a valid n − ts-

quality pre-block Be
i , either as an output of BLAupd if it terminates, or by waiting until n − ts

codewords multicast by honest parties are delivered for at least n− ts parties. By ta-consistency

and ta-termination of ACSupd, all honest parties will output the same pre-block B in epoch e, and

therefore there are at least ts +1 ≤ n− ta valid decryption shares (for the same B). This ensures

each honest party successfully recovers a block, proving ta-completeness of UPDATE.

Theorem 5.2. Under condition ⋆, UPDATE is (1) ts-externally valid if the network is syn-

chronous and (2) ta-externally valid if the network is asynchronous (defining t-external validity

as in Definition 2.8).

Proof. By Theorem 5.1, all honest parties will output the same valid block, obtained by decrypt-

ing the output of ACSupd, which means that they have valid certificates of correct decryption.

External validity follows from the fact that the adversary cannot generate invalid certificates be-

89

cause it controls fewer than ts + 1 parties.

In preparation for the proof of liveness, we prove a general result about the number of

honest parties whose inputs are included in each pre-block.

Lemma 5.7. Assume there are at most ty corrupted parties. If there are n− ts− tx honest entries

in a pre-block output in any given epoch, then there exist at least

Mα < 1 + (n− ts − tx)
1− α + n−ty

e(n−tx−ts)

1− αn−ts−tx
n−ty

+ 1
r

,

honest parties who output more than αrn−ts−tx
n−ty

times over r epochs for 0 < α ≤ 1, and at least

M0 ≤ n− tx − ts

honest parties who output more than once over r epochs.

If the network is synchronous, we have tx = 0 and ty = ts. If the network is asynchronous,

we have tx = ty = ta if there are no key exposures, and tx = ty = ts if there are key exposures.

Proof. Assume this does not hold, i.e., for 0 < α ≤ 1 and Mα in the statement, there do not exist

Mα honest parties that output at least αrn−ts−tx
n−ty

times over r epochs. Then, in expectation, there

exist at least n− ty −Mα +1 honest parties that output less than αrn−ts−tx
n−ty

times over r epochs.

Then the number of honest entries output over r epochs will be bounded below and above by:

r(n− ts − tx) ≤ (n− ty −Mα + 1)

(
αr

n− ts − tx
n− ty

− 1

)
+ r(Mα − 1)

Mα ≥ 1 + (n− ts − tx)
1− α + n−ty

e(n−tx−ts)

1− αn−ts−tx
n−ty

+ 1
r

,

(5.1)

90

which contradicts the assumption at the beginning of the proof.

Consider α = 0 and there are only M0 − 1 parties that ever output. This means that there

can be at most r(M0 − 1) outputs. Therefore r(Mα − 1) ≥ r(n− ts − tx), which contradicts the

statement of the lemma.

Lemma 5.7 implies that at least n−tx−ts honest parties output at least once over r epochs.

Moreover, we always have at least one honest party consistently outputting over r epochs, since

α ≤ min

{
1,

1 + (n− ty − 1)/r(n− ts − tx)

1− 1/(n− ty)

}
= 1, (5.2)

as long as n > max{ts + tx, ty}, which always happens in our settings. (A similar argument

follows for the committee-based protocols with t̂s = (1 − ϵ)ts and t̂a = (1 − ϵ)ta corruptions.)

we are ready to prove the liveness property of UPSTATE.

Theorem 5.3. Under condition ⋆, UPDATE is (1) ts-live if the network is synchronous and (2)

ta-live if the network is asynchronous (defining t-liveness as in Definition 2.8).

Proof. Assume all honest parties (at least n− ts in (1) and at least n− ta in (2)) have received a

transaction tx. If by some epoch e, tx is not in an honest party’s buffer anymore it means it was

output in blocks[e′] for e′ < e. Then, by consistency of UPDATE proven in Theorem 5.1, tx will

not be in any honest party’s buffer after epoch e′. Otherwise, suppose tx is still in an honest party

P ’s buffer at epoch e. By completeness of UPDATE proven in Theorem 5.1, each party outputs a

block in every epoch. This block is obtained by decrypting a pre-block of (n− ts)-set quality to

which at least n−ts−ta honest parties contributed L/n transactions, by Lemma 5.8 proved below.

Thus, each honest party that contributes removes in expectation at least L/n transactions from

91

their buffer in each epoch. Assuming parties cannot receive an infinite amount of transactions in

a finite number of epochs, there will be a finite number of transactions in P ’s buffer alongside

tx. By the lower bound in Lemma 5.7, honest parties continue to clear transactions from their

buffers so that eventually tx appears among the first L transactions of their buffers. Once this has

occurred, the probability that tx fails to appear in the output block at the e’th epoch if at least one

of the honest parties that contributes its input to the block has tx among the first L transactions of

its buffer is at most 1−1/n. Thus, a transaction tx is included in blocks[e : e+r] with probability

at least 1− (1− 1/n)r+1, which approaches 1 as r goes to infinity.

Lemma 5.8. Under condition ⋆, at least n− ts− ta honest parties have contributed transactions

in any block output by a honest party in UPDATE.

Proof. All honest parties input valid pre-blocks in BLAupd and ACSupd, meaning that they wait to

receive at least n − ts validly signed encrypted entries. By the ts-security of BLAupd, if BLAupd

outputs, it outputs a (n − ts)-quality pre-block; even if the network is asynchronous, an honest

party would not output an invalid pre-block. Therefore, honest parties’ inputs to ACSupd are also

(n− ts)-quality.

In case the network is asynchronous and there are at most ta corrupted parties, n− ts − ta

entries in the pre-block originate from honest parties. By ta-set quality of ACSupd (Lemma 5.4),

the output of ACSupd contains at least a pre-block of (n− ts)-quality, therefore with (n− ts− ta)

honest entries.

In case the network is synchronous, each honest party has received all messages from all

other honest parties upon reaching Step 2 of UPDATE, so the number of honest entries in their

pre-blocks is at least (n− ts). Moreover, all honest parties complete BLAupd with the same output

92

pre-block B containing (n − ts) honest entries. By the ts-validity with termination of ACSupd

(Lemma 5.3), the output pre-block of ACSupd is also B.

5.1.3 Communication Complexity of UPDATE

First, the parties select a batch of L/n transactions, construct a pre-block of size O(L|tx|),

and input the pre-block to BLA. If BLA outputs, it outputs a pre-block of size O(L|tx|). The

input to ACS is of size O(L|tx|), and if the network is synchronous, the output is of size O(L|tx|).

Conversely, if the network is asynchronous, the output is of size O(nL|tx|). Since the transactions

were randomly selected from honest parties’ buffers, with high probability there will be O(nL)

transactions in the output block after decryption, assuming that throughput is not limited by a

lack of transactions.

Step 1 incurs O(nL|tx| + n2κ) total communication. In Step 2, BLA incurs O(κn3 +

κn2L|tx|) total communication and ACS incurs O(κn3 + n2L|tx|) total communication. Finally,

in step 3, the parties assemble an output block and then multicast the signatures of the hash of the

block to construct a proof, incurring O(κn2) communication.

Summing over all steps, we see that UPDATE incurs a total communication of O(κn3 +

κn2L|tx|). Choosing a proposal sample size L that is O(n) yields an asymptotic total commu-

nication of O(κn3) per block of transactions and an amortized communication complexity of

O(κn2) per transaction.

93

5.2 UPSTATE: Network-Agnostic SMR with Almost-Optimal Thresholds and

O(n2) Communication Complexity

This section presents UPSTATE. UPSTATE achieves better communication complexity than

UPDATE, but there is a tradeoff — UPSTATE is only secure against a static adversary, and supports

almost-optimal corruption thresholds t̂s, t̂a instead of the optimal ts, ta.

UPSTATE and its building blocks take full advantage of the static setting by dividing work

among small (constant-size) committees. In the rest of this section, we present the modified ACS

and BLA subprotocols in Sections 5.2.1 and 5.2.2, and then present the full protocol and proofs

in Section 5.2.3.

5.2.1 A Committee-Based ACS Protocol for UPSTATE

Pseudocode for the ACS protocol appears in Figure 5.6. At the beginning of the protocol,

inputs of size ℓ are passed to the input selection procedure INSEups (Figure 5.5), which determines

the primary committee C. Next, each party multicasts the codewords they received from the

members of the primary committee.

To further reduce communication, one secondary committee is elected for each member of

the primary committee. The secondary committee is responsible for constructing certificates of

correctness for the reconstructed values of the primary committee. The secondary committees

are self-elected according to the second mechanism described in Section 2.2.5.

Like in UPDATE, error correcting codes are used to split inputs into b = t̂s blocks. As

before, we require the error correcting code scheme to tolerate either t̂s erasures or t̂a errors and

94

t̂s − t̂a erasures.

For simplicity, in ACSups, we use φi,j as both the signature of Pi over si,j and over hi, sent

to Pj . Across the protocols, H denotes a collision-resistant hash function and b a bound ensuring

committees of size κ in expectation.

INSEups(xi)

1. Encode xi using ENC into codewords si,1 . . . , si,n.

2. Compute hi := H(xi) and signature σi := TS.Sign(PK, ski, e).

3. Set vi,j := (si,j , hi, σi). For j ∈ {1, . . . , n}, send (vi,j , φi,j) to party Pj , where
φi,j := TS.Sign(PK, ski, vi,j).

4. Upon receiving n − t̂s messages vj,i = (sj,i, hj , σj), select t̂s + 1 signatures σj and
compute coin from them.

5. For each j ∈ {1, . . . , n}, compute h̄j := H(coin, j) and select the first κ values to
populate the primary committee index set C.

6. For each j ∈ C, multicast the codeword sj,i and φj,i received from Pj .

7. For each member j in C, output the received {sj,k, φj,k, hj}, from Pk.

Figure 5.5: An input selection subprotocol (handling input encoding and primary committee
election) for UPSTATE, from the perspective of party Pi∈{1,...,n}.

Lemma 5.9. ACSups is t̂a-consistent, t̂a-terminating, has t̂s-validity with termination and t̂a-set

quality except with negligible probability (defining each property as in Definition 2.5).

Sketch of proof. We discuss the changes arising from the use of committees in the proofs for the

properties of the ACSups protocol. The proof will then follow from the proofs of Lemmas 5.1– 5.6.

The static adversary cannot tamper with the election of the primary committee because it

can corrupt only up to t̂s parties, while the signature aggregation requires t̂s + 1 signatures. The

election of the secondary committees is done independently and in parallel, based on the coin

computed this epoch. An adversary cannot tamper with these elections because of the unforge-

ability of the signature scheme and cannot predict the membership from previous epochs.

95

ACSta,tsups (xi)

1. Run INSEups(xi) and store C and {{sj,k}, hj , {φj,k}}j∈C , as they are received from
Pk.

2. For each j ∈ C, elect a secondary committee C̄j of size O(κ) as follows:

- Self-elect: if VRFski(i, j, e, coin) < b then compute proof ξi for Pi ∈ C̄j .

- If Pi ∈ C̄j , input {⟨vj,k⟩k} to RECONupd. If RECONupd outputs xj , multicast a vote
votei = (vote, ⟨hj⟩i, φj,i, ξi).

3. For j ∈ C, upon receiving tsκ/n+1 valid votes from distinct Pk in C̄j , form a certificate
cj := (commit, ⟨hj⟩) and send it to all parties.

4. Upon receiving a commit certificate cj for the input of party Pj , forward it to all parties.

5. Upon receiving a commit certificate cj on for party Pj , input 1 to BAj . After outputting
1 in at least (1− ta/n)κ BAs, input 0 for the rest.

6. Set S∗ to be the set of indices of the BA instances that delivered 1.

7. Output according to step 7 in ACSupd, where the set in OC 1 has size (1− ts/n)κ and
the sets in OC 2 and OC 3 have size (1− ta/n)κ.

Figure 5.6: An ACS protocol for UPSTATE, parameterized by thresholds ta and ts, from the
perspective of party Pi∈{1,...,n}.

A committee election is unpredictable and modeled as a uniform random sampling of κ

parties (in the primary committee) or O(κ) parties (in the other committees) from the pool of

n parties. In expectation, the fraction of corrupted parties over all parties will be reflected in

the committee. We select parameters κ and ϵ such that with high probability, there are at most

txκ/n corrupted parties in the committees and at most txκ/n secondary committees contain more

than txκ/n corrupted members, where tx = ta in the asynchronous case and tx = ts in the

synchronous case. The failure probabilities are given in Appendix A, using standard arguments

based on Chernoff and Hoeffding bounds.

96

5.2.2 A Committee-Based BLA Protocol for UPSTATE

5.2.2.1 Overview

Next, we will transform our original BLA protocol into a committee-based BLA protocol

BLAta,ts
ups (Figure 5.9). This variant of BLA achieves t̂s-termination, t̂s-validity and t̂s-consistency

(except with negligible probability in the security parameter) in a network that is synchronous

with up to t̂s = (1− ϵ)ts static corruptions. (Throughout this section, unless otherwise noted, all

claims and proofs assume a synchronous network with t̂s static corruptions.)

The new version of the protocol is still based on subprotocols for value-proposal (Fig-

ure 5.7) and graded consensus (Figure 5.8), but each building block must be carefully modified

to achieve the desired result. Because the high level analysis follows similarly to the analysis of

the original BLA protocol, we sketch the main ideas of the proof rather than reproving security

in detail, with a focus on the parts of the protocol that have changed.

As a caveat, in this section only, we use a slightly different notion of validity (Definition 5.1,

below). This is to account for the fact that only committee members contribute to the pre-block.

Definition 5.1. A BLA protocol with committee parameter κ is t-valid if the following holds:

if every honest party inputs an (1 − t/n)κ-quality pre-block, then every honest party outputs an

(1− t/n)κ-quality pre-block.

The key insight driving this variant of BLA is to elect a leader who proposes an input

among the ones sent by the parties, such that honest parties will commit on the same value.

Importantly, the proposal of inputs is performed before the leader election.2 Due to the forward
2To the best of our knowledge, the technique of electing leaders after proposals as a defense against adaptive

adversaries was popularized by Abraham et al. [50].

97

secure signatures, the adversary cannot later corrupt the leader and cause them to equivocate.

The value proposal protocol itself remains largely the same; one difference to note is the

slightly more sophisticated encoding. Within each execution of Propups, parties encode their

inputs and send the codewords and hashes to the other parties, such that honest parties are able to

reconstruct the proposed pre-block of the leader. Since parties might output a different pre-block

than the one they started with in the current round, they must send the hash and the codewords of

their new input during the next round.

Propta,tsups (r,B,C)

1. At time 0: Set C ′ = ∅, V = ∅. Input B to INSEups and multicast vi =
⟨vote, r,H(B), C⟩i.

2. Until time 2∆: Upon receiving a vote vj = ⟨vote, r, hj , C⟩ from a party Pj ∈ C, add
vj to V . Store the committee C and the codewords and signatures {sj,k, φj,k}. Denote
by VC the set of votes in V originating from members of C.

3. At time 2∆: Each party computes zi = VRFski(i, e) and a proof ξi and multicasts
them.

4. At time 3∆: Parties elect the leader P ∗ as the party having the smallest valid value
zi. If Pi = P ∗ and VC ≥ tsκ/n, find the vote v = ⟨vote, r∗, h∗, C∗⟩ in VC
such that (a) P ∗ knows B∗ such that h = H(B∗) and (b) r∗ is greater than all
other round numbers in VC , breaking the ties by lowest party index, and multicast
p∗ = ⟨propose, r∗, h∗, C∗, VC⟩i.

5. At time 4∆: If a valid proposal p has been received from P ∗ (i.e., all signatures verify,
the votes come from members of C, the reconstructed B∗ is such that h∗ = H(B∗)),
multicast p. Otherwise, output ⊥.

6. At time 5∆: Let pj denote a valid proposal forwarded by Pj , if any. If there exists pj
such that pj ̸= p∗, output ⊥. Otherwise, output B∗.

Figure 5.7: A value-proposal protocol for UPSTATE from the perspective of party Pi∈{1,...,n} in
round r.

The modifications to the graded consensus protocol are similarly straightforward; the main

difference is that only the committee members vote.

For now, we assume that honest parties input (1−ts/n)κ-quality pre-blocks of total length κ

98

GCta,ts
ups (r,B,C)

1. At time 0: Set C ′ = ∅. Run Propups using (r,B,C).

2. At time 5∆: Let B∗ denote the output of Propups. If B∗ ̸=⊥, try to self-elect in
committee C̄r and compute proof ξi if VRFski(i, r, e) < b. If Pi ∈ C̄r, multicast
⟨commit, r, B∗, ξi⟩.

3. Until time 6∆: Upon receiving a valid commit message, cj = ⟨commit, rj , Bj , ξj⟩j
from Pj ∈ C̄r, if this is the first such message received from Pj , add cj to C ′.

4. At time 6∆: If there is a subset C ′′ ⊆ C ′ of commit messages on the same hash value
h′ of a block B′ that Pi can reconstruct, such that (a) |C ′′| ≥ κts/n+1 and (b) for each
cj = ⟨commit, rj , B

′, ξj⟩j it holds that rj ≥ r, then multicast ⟨notify, r,H(B′), C ′′⟩,
output (B∗, C∗, 2) and terminate.

5. At time 7∆: If a valid notify message ⟨notify, r, h∗, C∗⟩ and Pi can reconstruct B∗

such that h∗ = H(B∗), output (B∗, C∗, 1) and terminate. (If there is more than one
such notify message, choose one arbitrarily.) Otherwise, output (⊥,⊥, 0) and termi-
nate.

Figure 5.8: A graded consensus protocol for UPSTATE from the perspective of party Pi∈{1,...,n}
in round r.

to the block agreement protocol; later, this will be enforced by the SMR protocol. Parties encode

their pre-blocks into codewords and distribute them, along with the hash, for future reconstruction

and verification. The protocol is run for multiple rounds, and a leader is elected at each round.

The parties commit on a value when they receive sufficient votes on that value, prioritizing votes

with higher round numbers. In each round, a different committee is tasked with assembling a

certificate. In a given round, only votes from the current committee are considered valid.

We now state the central lemma and sketch the main ideas of the security proof below. The

formal proof can be obtained by expanding the proofs of the basic BLAtdg proofs in Section 4.2.

Lemma 5.10. BLAups achieves t̂s-termination and t̂s-consistency (as defined in Definition 2.6)

and t̂s-validity (as defined in Definition 5.1) except with negligible probability in the security

parameter.

Sketch of proof. Parties terminate after participating in all R rounds of the protocol (even if they

99

BLAta,ts
ups (Bi)

1. At time 0: Set B′
i = Bi, r = 0, C ′ = ∅.

2. While r < R do:

- At time 7 · r ·∆: Run GCups(r,B
′
i, C

′).

- At time 7 · (r + 1) ·∆: set (B∗
i , C

∗, g) as the output of GCups.

- If g > 0 set B′
i = B∗

i , C ′ = C∗. Additionally, if g = 2, output B∗
i .

- Set r = r + 1.

Figure 5.9: A BLA protocol for UPSTATE from the perspective of party Pi∈{1,...,n}.

generated output earlier), so t̂s-termination is ensured by design.

We now argue t̂s-validity. Suppose all honest parties start BLAups with input B of quality

tsκ/n. If the leader is honest, all honest parties terminate Propups with a pre-block B∗ of quality

tsκ/n. This is because honest parties agree on the committee and can reconstruct their pre-blocks

after INSEκ
ups since the code tolerates ts erasures (honest parties distinguish invalid signatures and

ignore codewords with invalid signatures). Except with negligible probability, there will be at

most tsκ/n corrupted parties in the primary committee, so VC cannot contain tsκ/n + 1 votes

of corrupted parties. Thus, the proposal will be valid, ensuring all honest parties receive only

valid proposals by time 5∆ and will output B∗. On the other hand, if the leader is dishonest, it

can refuse to send a valid proposal by the required time. However, it cannot force honest parties

to accept an invalid proposal since the adversary cannot tamper with the election of the primary

committee and the corrupted leader cannot forge the signatures of the honest parties that are in

the primary committee. In this case, the honest parties may terminate Propups with output ⊥.

In GCups, with high probability, at least (1− ts/n)κ members of C̄r will be honest and send

B∗ in step 2 of GCups, which will reach all honest parties by the beginning of the next round.

Therefore, in step 5 of GCups, a party receiving a valid notify message will be able to determine to

100

what block B∗ the hash h∗ corresponds and to output B∗. Moreover, fewer than tsκ/n parties in

C̄r are corrupted, so there cannot be sufficient votes in C ′′ if no honest party participates. (Recall

that honest parties do not output invalid B∗ from Propups.) Therefore, if the leader is honest in r∗,

all honest parties output a valid B∗ with grade 2 and thus output in BLAups. Since t̂s/n < 1/2, a

dishonest leader is elected with probability smaller than 1/2, so the probability no honest leader

is elected in R rounds is negligible. This proves t̂s-validity.

To prove t̂s-consistency, suppose r∗ is the first round in which some honest party Pi has

output a pre-block B. Pi must have generated a notify message and output with grade 2 in GCups.

Then no honest party can output with grade 0, and all honest parties must have received that

notify message in the same round. Therefore, all honest parties will use B as input in iterations

greater than r∗ + 1. Moreover, no honest party could have sent a commit message on a different

pre-block B′ ̸= B in the same execution of GCups, and so a corrupted leader cannot construct a

valid vote on β′ in a subsequent round number. Inductively, we can argue that honest parties will

keep inputting B and not voting on other blocks in all subsequent rounds until R, so all honest

parties will output B at the end of BLAups.

5.2.3 UPSTATE: Full Protocol

We now present the full UPSTATE SMR protocol. UPSTATE achieves network-agnostic

security for almost-optimal corruption thresholds against a static adversary. More formally:

Condition ♦. Assume ta ≤ ts, 2ts + ta < n, ta < n/3, ts < n/2 and t̂a := (1 − ϵ)ta,

t̂s := (1− ϵ)ts for ϵ > 0.

Theorem 5.4. Under condition ♦ except with negligible probability, UPSTATE is (1) t̂s-consistent,

101

UPSTATE

Step 1. Proposal selection.

1.1 At time Te = µ(e − 1): Set Be
i := (⊥, . . . ,⊥) an empty pre-block of size κ, and set

readye = false.

1.2 Let xi be a threshold encryption of a random selection of L/κ transactions without
replacement from the first L in the party’s buffer.

1.3 Run INSEups(e, xi) and store C and {sj,i, φj,i, hj}j∈C , as they are received.

1.4 Upon receiving n−t̂s codewords of xj , if (1) hj = H(xj) and Be
i [j

′] =⊥, set Be
i [j

′] :=
xj , where j′ is the lexicographic order of Pj in C.

1.5 Upon assembling a (1− ts/n)κ-quality pre-block Be
i , set readye = true.

Step 2. Agreement.

2.1 At time Te + 2∆: If readye = true, pass Be
i as input to BLAups. If BLAups terminates,

let B∗ be the output.

2.2 At time Te + (7R+ 2)∆: Terminate BLAups if not already terminated.

2.3 Pass B∗ or wait until readye = true and pass Be
i as input to ACSups.

2.4 Receive S = {B∗
j }j∈S∗ , where S∗ ⊂ {1, . . . , n} from ACSups.

Step 3. Output and public verification.

3.1 Run Step 3 from UPDATE.

Figure 5.10: An SMR protocol with static security for party Pi∈{1,...,n}.

t̂s-complete, t̂s-externally valid and t̂s-live if the network is synchronous and (2) t̂a-consistent,

t̂a-complete, t̂a-externally valid and t̂a-live if the network is asynchronous (with all properties

defined as in Definition 2.8).

The proof follows along the same lines as the proofs of Theorems 5.1–5.3, using the prop-

erties of subprotocols ACSups and BLAups.

102

5.2.4 Communication Complexity of UPSTATE

ACSups has communication complexity O(κnℓ + κ2n2) communication and BLAups has

communication complexity O(Rκ2n2+κnℓ), per input of size ℓ. In UPSTATE, BLAups and ACSups

are run on pre-blocks of size O(L|tx|). If the network is synchronous, the output of ACSups is

of size O(L|tx|), while if the network is asynchronous, the output is of size O(κL|tx|). After

decryption, since the transactions were randomly selected from honest parties buffers, with high

probability, there will be O(κL) transactions in the output block.

UPSTATE incurs O(n2L|tx|/(κb)+n2κ) total communication for step 1.3 and O(n2κL|tx|/b+

n2κ2) total communication in step 1.4. In step 2, BLAups incurs O(Rκ2n2 + κnL|tx|) total com-

munication and ACSups incurs O(κnL|tx|+ κ2n2) total communication.

Summing over all steps and using the fact that b = t̂s = O(n), we obtain a total commu-

nication of O(Rκ2n2 + κnL|tx|). Setting the proposal sample size to L = O(Rκn) yields total

communication of O(Rκ2n2) per block and amortized communication complexity of O(κn) per

transaction.

Chapter 6: Achieving Security in a Variable Network-Agnostic Model

Up to this point, we have considered a network-agnostic model that is static, in the sense

that the underlying network is assumed to be either synchronous or asynchronous for the entire

lifetime of the protocol. In this chapter, we introduce a variable network-agnostic model, where

103

the network can arbitrarily transition between synchronous and asynchronous. The adversary

considered in this section is a constrained epoch-mobile adaptive adversary who can corrupt at

most ts unique parties over the duration of the protocol, and can move between those ts parties

from epoch to epoch, with certain restrictions. Namely, the adversary cannot not exceed the

corruption limit (ts corruptions while the network is synchronous and ta while it is asynchronous)

at any moment in time; nor can it exceed that limit in any single epoch. (Although this restriction

might seem arbitrary, it was chosen to circumvent a particular impossibility result of [28]; see

Section 6.4 for further discussion.)

The network-agnostic protocols discussed so far, UPDATE and UPSTATE, as well as TARDI-

GRADE, can be made secure in this new setting under the assumption that devices have a tamper-

proof reboot mechanism. (E.g., each device might have a small region of untamperable memory

with code that reboots the device into a clean state.) Given this mechanism, only two changes are

needed:

1. Parties reboot at the start of each epoch, flushing out the adversary if the party was cor-

rupted.

2. Any time UPDATE, UPSTATE, TARDIGRADE, or their subprotocols would use a plain syn-

chronous or asynchronous BA protocol, we instead use the network-agnostic BA protocol

presented earlier.

We omit pseudocode for the modified protocols, since it would be almost identical to the origi-

nals.

The analysis in the variable network-agnostic model follows in a relatively straightforward

way from the original network-agnostic analysis. In the rest of this section, we give an overview

104

of the most closely related prior and concurrent work, followed by a discussion of the most

relevant technical details, and finally the formal proofs.

6.1 Related Work

In the proactive model [51], the adversary can be mobile across the corrupted parties over

time. Proactive secret sharing (PSS) was introduced by Herzberg et al. [52]. Canetti et al. [53]

and Frankel et al. [54] gave solutions for synchronous DKG against adaptive proactive adversaries

using verifiable secret sharing schemes. Benhamouda et al. [55] introduced a secret-sharing pro-

tocol for passing secrets from one anonymous committee to another, while Groth [56] proposed

a DKG scheme based on publicly verifiable secret sharing that allows refreshing key shares to

a new committee. In the asynchronous case, Cachin et al. [57] presented a proactive refresh

protocol assuming clock ticks that define epochs, based on [58] which recovers state in an SMR

protocol. Schulze et al. [59] proposed a mobile PSS protocol in a partially synchronous network.

Recently, several works [60, 61, 62] have proposed more efficient dynamic/mobile PSS protocols

assuming eventual synchrony, short periods of synchrony at the end of an epoch, or synchronized

epochs. As somewhat of a special case (but relevant to our work), work by Gordon et al. consid-

ered synchronous authenticated broadcast with both corrupted parties and parties who are honest

but whose keys have been exposed [63].

Following the publication of our initial results, a few works have considered secret sharing

and distributed key generation in a network-agnostic model. One concurrent work by Appan et

al. [64] proposed a protocol for network-agnostic perfectly secure multi-party computation; their

protocol uses a novel network-agnostic perfectly secure verifiable secret sharing protocol (but

105

not proactive). Another concurrent work by Bacho et al. [65] proposed a DKG protocol with

optimal resilience in a network-agnostic setting; however, they consider only a static adversary.

Concurrently to our work, Yurek et al. [66] constructed asynchronous dynamic PSS protocols

using different target definitions than ours (thus bypassing our impossibility result).

6.2 Technical Details

As mentioned above, we assume that each device has a tamperproof reboot mechanism that

forcibly evicts the adversary. (By tamperproof, we mean that the adversary cannot prevent the

reboot if it is triggered.) Since a corrupted party may not “know” they have been corrupted, the

reboot mechanism is run at predetermined intervals specified by the protocol. In our protocols,

parties reboot at the start of each epoch.

For simplicity, we assume the reboot is instantaneous; otherwise, the timings of the protocol

steps can be adjusted to compensate. The adversary is allowed to immediately recorrupt a party

after a reboot, as long as corrupting the party does not exceed the allowed threshold determined

by the network state.

We emphasize that rebooting does not remove the previous state of a corrupted party from

the adversary’s view; in particular, the adversary still knows the secret state of a party, including

any secret keys that were held by that party during corruption. Furthermore, the internal state of

a corrupted party that has restarted may have been arbitrarily modified by the adversary. We refer

to a party as actively corrupted when the adversary actively controls that party’s behavior and

passively corrupted or exposed if the party was uncorrupted either by the adversary or by reboot.

Throughout, we also assume authenticated channels that are separate from the public key

106

infrastructure; this assumption is standard in other proactive protocols (e.g., [57, 59]). As the

adversary corrupts the parties and learns their secret keys, it can continue to use those keys

(e.g., to decrypt communication, forge signatures, and create messages that appear to have been

created by the corresponding party) even after it is flushed out by the reboot, violating agreement

and confidentiality of the PKI.

Critically, even though the adversary has access to up to ts keys and key shares, it cannot

create full signatures or certificates on its own because these require at least ts+1 valid contribu-

tions; likewise, it cannot decrypt independently of the honest parties. Moreover, while forming

commit or output certificates, honest parties only sign messages that they have locally verified,

such as a hash value whose corresponding preimage was correctly reconstructed.

6.3 Security Analysis

We now turn our attention to the security analysis. Our goal is to prove the following:

Theorem 6.1. Protocols TARDIGRADE, UPDATE, and UPSTATE with reboots are secure SMR

protocols (as defined in Definition 2.8) under arbitrary network changes against a constrained

epoch-mobile adaptive adversary, for any ta, ts satisfying the appropriate condition.

Because the arguments for each of the three protocols are similar, we will work through

the proof for UPDATE in detail and then sketch the main ideas of the proofs for UPSTATE and

TARDIGRADE.

Lemma 6.1. In an execution of ACSupd, if there are at most ta corruptions and ts − ta exposed

parties, then at least n− ta BA instances will terminate with output 1.

107

Proof. By ta consistency and validity of BA, at least one honest party needs to input 1 in a BA

instance in order for it to output 1. This means honest parties need to be able to construct at least

n− ta certificates. Clearly, certificates corresponding to the n− ts honest and unexposed parties

can be eventually reconstructed. Therefore, we focus on the case of building a certificate for an

exposed party P .

When multicasting messages in step 3 of INDIupd, corrupted parties can send erroneous

codewords on behalf of P . Therefore, in RECONupd, up to ta of the at least n− ta codewords can

have a valid signature but are erroneous (but need to have the same hash h in order to be taken

into consideration). While the code cannot tolerate at the same time ta errors and ts erasures, with

overwhelming probability, the value x output by DEC on erroneous codewords will not satisfy

h = H(x). Therefore, honest parties wait for more correct codewords, which are guaranteed to

eventually arrive, since n− ta parties behave honestly, so honest parties can assemble certificates

for exposed parties as well.

Lemma 6.2. Suppose there are at most ta corruptions and ts − ta exposed parties during an

execution of ACSupd. Given a certificate (commit, ⟨h⟩) for a party P , all honest parties eventually

reconstruct the same output.

Proof. (Lemma 6.2) Since the adversary cannot act on behalf of the exposed parties directly, the

arguments for when P is honest and unexposed, and for when P is dishonest are the same as the

arguments in the proof of Lemma 5.1.

Assume P is exposed. The same argument as for a dishonest P that sends codewords in

the first round of INDIupd applies for an exposed P . Assuming H is a collision-resistant hash

function, there do not exist values x ̸= x′ reconstructed by different sets of codewords such

108

that h = H(x) = H(x′). Therefore, if after inputting n − ts codewords to RECONupd and not

obtaining a valid output with respect to h, the honest parties wait until they receive n − ts + ta

codewords in order to be able to correctly reconstruct.

Lemma 6.3. In an execution of ACSupd, if there are at most ta corruptions, there cannot be two

valid certificates (commit, ⟨h⟩), (commit, ⟨h′⟩) associated with P such that h ̸= h′.

Proof. Since the adversary cannot act directly on behalf of the exposed parties, the arguments for

when P is honest and unexposed and when P is dishonest can be taken directly from the proof

of Lemma 5.2.

Suppose P is exposed. The same argument as for an exposed P ensures that because

n > 2ts + ta, there needs to be one honest party that would sign both certificates, implying

h = h′.

We now have all of the supporting results needed to prove the part of Theorem 6.1 that

pertains to UPSTATE.

Proof. (Theorem 6.1, UPSTATE) When the network is only synchronous or only asynchronous,

or there is a single asynchronous to synchronous transition, the proof follows directly from the

security proof of UPDATE in Section 5.1.2.

Suppose the network has undergone a transition from synchronous to asynchronous. The

adversary actively controls at most ta parties, but may have exposed up to ts parties. This means

that each pre-block created by an actively corrupted party may contain up to ts validly signed

adversarial ciphertexts. However, exposed parties still act honestly, so each pre-block created by

an honest party contains at most ta malicious ciphertexts. Because pre-block entries are received

109

directly from the corresponding party, an honest party’s (n − ts)-quality pre-block will have at

least n− ts − ta honestly created and signed ciphertexts.

In the following, we first examine the security of each building block, and then the security

of the overall protocol.

First, note that the network-agnostic BA protocol (Section 3.3) is signature-free, apart from

a threshold cryptosystem with high threshold of ts + 1 to compute the common coin and ensure

termination. This ensures that even with ts key exposures (but only ta active corruptions), the

protocol remains ta-valid, ta-consistent and ta-terminating against an adaptive adversary.

Next, consider ACSupd. Parties need to be able to reconstruct all values corresponding to the

at least n− ta BA instances that terminated with output 1. The use of codewords makes the anal-

ysis slightly subtler, since the adversary can forge valid but bad codewords and distribute them

in the multicast round of INDIupd as if they originated from the exposed parties. By Lemma 6.1,

at least n − ta BA instances will still terminate, despite exposures. Coupled with Lemmas 6.2

and 6.3, which show there cannot be conflicting certificates and all honest parties are able to

eventually correctly reconstruct the same input, it follows that ACSupd achieves ta-termination,

ta-set quality and ta-consistency. Finally, ts-validity with termination has the same proof as in

Lemma 5.3.

BLAupd uses a leader mechanism that outputs after it has received input from a strict ma-

jority of parties, hence it is still unpredictable in the presence of ts exposed parties. The property

required of BLAupd in the asynchronous case is the following: if an honest party does output in

BLAupd, its output is a (n − ts)-quality pre-block. Honest parties only validate and multicast

(n− ts)-quality blocks, so this property still holds.

We now consider the full SMR protocol. A corrupted party can include signatures from an

110

exposed party in its own (n− ts)-quality pre-block. Therefore, there may be up to ta pre-blocks

input to BLA that have only n − 2ts entries originating from honest parties. If such a block is

output by BLAupd, then the same holds for the the output of ACSupd.

By ta-consistency and ta-validity with termination of ACSupd, all honest parties output the

same set of pre-blocks. As a result, at least n − ta > ts parties contribute valid decryption

shares, and so every honest party is able to reconstruct the same block. Therefore, UPDATE is

ta-consistent and ta-complete.

Next, we argue that ta-liveness holds. If an adversarial pre-block is output by ACSupd, only

n − 2ts honest parties are guaranteed to remove L/n transactions in a given epoch. Thus, the

presence of key exposures increases the number of epochs needed for tx to move to the front of

sufficiently many honest parties’ buffers. Nevertheless, an argument similar to the analysis in

Section 4.3.3 shows that the probability that tx has been output after r epochs goes to 1 as r goes

to infinity.

External validity follows from consistency of ACSupd, since a threshold of ts + 1 is used in

the validity certificates over the block hashes.

Finally, we observe that the adversary cannot break the liveness of the protocol by erasing

threshold key shares of the corrupted parties: any ts + 1 shares can be used to reconstruct, so in

order to prevent reconstruction, the adversary would need to erase at least n− ts− ta shares. But

this would require the adversary to corrupt more than ts parties over the duration of the protocol,

since 2ts + ta < n.

The parts of Theorem 6.1 concerning UPSTATE and TARDIGRADE follow similarly; brief

proof sketches are given below.

111

Sketch of proof. (Theorem 6.1, UPSTATE) Despite knowing t̂s keys, a static adversary cannot

actively corrupt more than taκ/n parties in any of the committees with high probability (see Ap-

pendix A), because it selects the corrupted parties before the epoch starts and committee mem-

bership is unpredictable.

The argument for ta-security of UPSTATE under arbitrary network changes follows by a

similar argument to the one used in the proof for UPDATE.

As an aside, if an adaptive adversary knows t̂s keys, it can corrupt up to tsκ/n parties in the

secondary committees. Nevertheless, since the secondary committees are only used to construct

certificates of t̂s + 1 keys, this does not present an issue.

Sketch of proof. (Theorem 6.1, TARDIGRADE) The ts-valid and ta-consistent reliable broadcast

protocol used in the non-terminating protocol ACS∗
tdg is signature-free, and furthermore, ACS∗

tdg is

signature-free (apart from the BA components). Thus, the proofs for ta-consistency, ts-validity,

ta-liveness, and ta-set quality of ACS∗
tdg from 4.1.2 hold.

The terminating protocol ACStdg uses threshold signatures. Thus, the adversary can forge

the threshold signatures of up to ts parties. However, it cannot create acceptable certificates on

its own. An honest party will sign an output if and only if it has already terminated the inner ACS

with that output. Thus, there can never be a valid certificate for an invalid output. Therefore, the

terminating ACS∗ protocol is ta-consistent, ta-live, ta-terminating, ts-valid with termination and

has ta-set quality.

The arguments for BLAtdg and the full protocol follow similarly to the proof for UPDATE.

112

6.4 Discussion

Above, we considered an adversary that is constrained in two notable ways: it can only cor-

rupt up to ts unique parties over the lifetime of the protocol, and it cannot corrupt more than the

appropriate ts, ta threshold in any epoch or at any point in time. Some form of constraint is nec-

essary, due to an impossibility result for asynchronous proactive secret sharing ([28], Theorem 6),

which shows that it is not possible for an APSS scheme to have both liveness and privacy with-

out either restricting the adversary’s mobility or introducing some form of synchrony assumption,

such as a time signal from an external clock. One could imagine other ways of circumventing this

barrier, including solutions not based on APSS, or solutions that introduce alternative constraints;

we believe this is an interesting direction for future work.

113

Appendix A: Deferred Probability Bounds

We now present deferred results on the composition of committees. The necessary results

follow as a straightforward application of standard bounds (restated below as Lemma A.1 and A.2

for the reader’s convenience).

Lemma A.1 (Chernoff’s inequalities). Let X1, X2, . . . , Xn be independent random binary vari-

ables such that, for 1 ≤ i ≤ n, P[Xi = 1] =: pi. Then, for X :=
∑n

i=1Xi and µ := E[X] =∑n
i=1 pi:

P[X ≥ (1 + δ)µ] ≤ e−
δ2µ
δ+2 , 0 < δ, (A.1)

P[X ≤ (1− δ)µ] ≤ e−
δ2µ
2 , 0 < δ < 1. (A.2)

As a consequence, we have the following: Let X1, . . . , Xn be random binary variables

sampled with probability t/n and Y1, . . . , Yn be random binary variables sampled with probability

1 − t/n. We want to bound the probability that X =
∑κ

i=1 Xi is greater than a value s, and the

probability that Y =
∑κ

i=1 Yi is less than a value s.

P[X ≥ s] ≤ e−
(s−tκ/n)2

s+2−tκ/n , if s > tκ/n, by (A.1). (A.3)

P[Y ≤ s] ≤ e−
κ(1−t/n−s/κ)2

1−t/n , if 0 < s < (1− t/n)κ, by (A.2). (A.4)

114

Lemma A.2 (Hoeffding’s inequality). Let X be a variable sampled from a binomial distribution

with n independent trials and probability of success p. Then:

P[X ≥ k + np] ≤ e−2k2/n. (A.5)

With those generic bounds in hand, we can prove several useful results regarding the com-

position of committees sampled by our two mechanisms, starting with the second (VRF-based)

mechanism. For now we only consider the usual static and adaptive adversaries; results related

to the mobile adversary follow later.

Lemma A.3. Fix s ≤ n and 0 < ϵ < 1/3. If C ← χs,n, then:

1. C contains fewer than (1 + ϵ) · s parties except with probability e−
ϵ2s
2+ϵ .

2. C contains more than (1− ϵ) · s parties except with probability e−
ϵ2s
2 .

3. If there are at most t̂s ≤ (1−2ϵ)·ts corrupted parties, then C contains fewer than (1−ϵ)·s· ts
n

corrupted parties except with probability at most e−ϵ2s/(4−6ϵ).

4. If there are at most ta corrupted parties, then C contains more than (1− ϵ) · s · ts/n honest

parties except with probability at most e−
ϵ2s
3 .

Proof. Let H ⊆ [n] be the indices of the honest parties. Let Xj be the Bernoulli random variable

indicating if Pj ∈ C, so Pr[Xj = 1] = s/n. Define Z1 =
∑

j Xj , Z2 :=
∑

j ̸∈H Xj , and

Z3 :=
∑

j∈H Xj . Then:

1. Since E[Z1] = s, setting δ = ϵ in Lemma A.1 yields

Pr [Z1 ≥ (1 + ϵ) · s] ≤ e−ϵ2s/(2+ϵ). (A.6)

115

2. Using the other half of Lemma A.1, setting δ = ϵ yields

Pr [Z1 ≤ (1− ϵ) · s] ≤ e−ϵ2s/2. (A.7)

3. Since E[Z2] ≤ t̂s ·s/n ≤ (1−2ϵ) · ts ·s/n and ts/n < 1/2, setting δ = ϵ
1−2ϵ

in Lemma A.1

yields

Pr

[
Z2 ≥

(1− ϵ) · ts · s
n

]
≤ −eϵ2s/(4−6ϵ). (A.8)

4. Assuming that there are at most ta corrupted parties, then E[Z3] ≥ (n − ta) · s/n. Thus,

plugging in δ = ϵ, we have

Pr [Z3 ≤ (1− ϵ)(n− ta) · s/n] ≤ e−ϵ2
(n−ta)s

2n . (A.9)

Next, using the fact that ts/n < n/2 and (n− ta)/n > 2n/3, we see that

(1− ϵ)s · ts/n < (1− ϵ)s/2 < (1− ϵ)s · 2/3 < (1− ϵ)s · (n− ta)/n. (A.10)

Thus, Pr [Z3 ≤ (1− ϵ)s · ts/n] ≤ Pr [Z3 ≤ (1− ϵ)(n− ta) · s/n] . Putting these two pieces

together, we have Pr[Z3 ≤ (1− ϵ)s · ts/n] ≤ e−
ϵ2(n−ta)s

2n ≤ e−
ϵ2s
3 (note the last step is only

used to simplify the bound).

Next, we present results regarding the first (hash-based) election mechanism in the presence

of the constrained mobile adversary.

116

Let Ys denote the number of honest parties among the κ randomly elected committee mem-

bers when the number of corrupted parties is (1− ϵ)ts. The probability that there are fewer than

tsκ/n honest parties in the committee is bounded by

Pr[Ys ≤ κts/n] ≤ e−
κ(1−(2−ϵ)ts/n)2

1−(1−ϵ)ts/n . (A.11)

Since ts/n ≤ 1/2, we get Pr[Ys ≤ κ/2] ≤ e−
ϵ2κ
1+ϵ .

The probability that there are fewer than (1 − ts/n)κ honest parties in the committee is

bounded by

Pr[Ys ≤ (1− ts/n)κ] ≤ e−
κ(ϵts/n)2

1−(1−ϵ)ts/n . (A.12)

Since ts/n ≤ 1/2, we get Pr[Ys ≤ κ/2] ≤ e−
ϵ2κ
2+2ϵ .

The probability that there are more than taκ/n actively corrupted parties in the committee

when the threshold of corruptions is (1− ϵ)ta is bounded by

Pr[Xa ≥ κta/n] ≤ e−
(ϵκta/n)2

2−ϵκta/n . (A.13)

Since ta/n ≤ 1/3, we get Pr[Xa ≥ κ/3] ≤ e−
ϵ2κ2

3(6−ϵκ) .

The probability that there are more than tsκ/n exposed parties in the committee when the

threshold of corruptions is (1− ϵ)ts is bounded by

Pr[Xs ≥ κts/n] ≤ e−
(ϵκts/n)2

2+ϵκts/n . (A.14)

Since ts/n ≤ 1/2, we get Pr[Xs ≥ κ/2] ≤ e−
ϵ2κ2

2(4+ϵκ) .

117

The following results concern the second (self-election) mechanism in the presence of the

constrained mobile adversary.

Let Z denote the number of parties selected in the secondary committee C̄. The expected

value of Z is E[Z] = κ. By (A.2), the probability that committee C̄ has strictly fewer than

(1− ϵ)κ+ 1 members is:

Pr[Z ≤ (1− ϵ)κ] ≤ e−ϵ2κ/2. (A.15)

By (A.1), the probability that committee C̄ has more than (1 + ϵ)κ members is:

Pr[Z ≥ (1 + ϵ)κ] ≤ e−ϵ2κ/(2+ϵ). (A.16)

Let Ys denote the number of honest parties among the randomly elected secondary com-

mittee members. In expectation, the number of honest parties selected will be greater than the

initial fraction of honest parties times the committee size: E[Ys] ≥ (1− (1− ϵ)ts/n)κ, so equa-

tion (A.11) holds for the secondary committee as well. Analogously, equation (A.14) holds for

Xa, the number of corrupted parties among the randomly elected secondary committee members

when the initial corruption threshold is ta.

Denote by W the number of committees that have more than κts/n+ 1 corrupted/exposed

members. Note that because the selection of the secondary committees is independent (also of the

corruption selection), W is a binomial variable with probability of success p := P [X ≥ κts/n]

out of κ independent trials. We are interested in bounding the probability of W being more

than taκ/n, which is the cumulative distribution function of a binomial random variable with

118

parameters (p, κ). Using the Hoeffding inequality (A.5), we obtain:

Pr[W ≥ taκ/n] ≤ e−2κ(ta/n−p)2 . (A.17)

For ta/n ≤ 1/3, we get Pr[W ≥ κ/3] ≈ e−2κ(1/3−e−ϵ2κ2/2(4+ϵκ))2 .

119

Bibliography

[1] M. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the presence of
faults. Journal of the ACM, 27(2):228–234, 1980.

[2] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine generals prob-
lem. ACM Trans. Programming Language Systems, 4(3):382–401, 1982.

[3] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Comput. Surv., 22(4):299–319, dec 1990.

[4] Klaus Kursawe and Victor Shoup. Optimistic asynchronous atomic broadcast. In Luı́s
Caires, Giuseppe F. Italiano, Luı́s Monteiro, Catuscia Palamidessi, and Moti Yung, editors,
ICALP 2005: 32nd International Colloquium on Automata, Languages and Programming,
volume 3580 of Lecture Notes in Computer Science, pages 204–215, Lisbon, Portugal,
July 11–15, 2005. Springer, Heidelberg, Germany.

[5] Christian Cachin and Jonathan A Poritz. Secure intrusion-tolerant replication on the inter-
net. In Intl. Conf. on Dependable Systems and Networks, pages 167–176. IEEE, 2002.

[6] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of
BFT protocols. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and Com-
munications Security, pages 31–42, Vienna, Austria, October 24–28, 2016. ACM Press.

[7] Sisi Duan, Michael K. Reiter, and Haibin Zhang. BEAT: Asynchronous BFT made practical.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018: 25th Conference on Computer and Communications Security, pages 2028–2041,
Toronto, ON, Canada, October 15–19, 2018. ACM Press.

[8] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. Dumbo: Faster
asynchronous BFT protocols. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vi-
gna, editors, ACM CCS 2020: 27th Conference on Computer and Communications Security,
pages 803–818, Virtual Event, USA, November 9–13, 2020. ACM Press.

[9] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Synchronous
Byzantine agreement with expected O(1) rounds, expected O(n2) communication, and op-
timal resilience. In Financial Cryptography and Data Security: 23rd International Confer-
ence, FC 2019, Berlin, Heidelberg, 2019. Springer-Verlag.

120

[10] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync HotStuff:
Simple and practical synchronous state machine replication. In 2020 IEEE Symposium on
Security and Privacy, pages 106–118, San Francisco, CA, USA, May 18–21, 2020. IEEE
Computer Society Press.

[11] Chao Liu, Sisi Duan, and Haibin Zhang. EPIC: Efficient Asynchronous BFT with Adaptive
Security. In Intl. Conf. on Dependable Systems and Networks (DSN), pages 437–451. IEEE,
2020.

[12] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you
need is DAG. In Symposium on Principles of Distributed Computing (PODC), pages 165–
175. ACM, 2021.

[13] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. Dumbo-mvba: Optimal multi-
valued validated asynchronous Byzantine agreement, revisited. In Proceedings of the 39th
Symposium on Principles of Distributed Computing, PODC ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

[14] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In Proceedings of
the Third Symposium on Operating Systems Design and Implementation, OSDI ’99, pages
173–186. USENIX Association, 1999.

[15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Elisabeth Oswald and Marc Fischlin, editors, Advances in
Cryptology – EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes in Computer Sci-
ence, pages 281–310, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

[16] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in asyn-
chronous networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology – EUROCRYPT 2017, Part II, volume 10211 of Lecture Notes in Computer
Science, pages 643–673, Paris, France, April 30 – May 4, 2017. Springer, Heidelberg, Ger-
many.

[17] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quema, and Marko Vukolic. XFT:
Practical fault tolerance beyond crashes. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 485–500, Savannah, GA, November 2016.
USENIX Association.

[18] Dahlia Malkhi, Kartik Nayak, and Ling Ren. Flexible Byzantine fault tolerance. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS ’19, page 1041–1053, New York, NY, USA, 2019. Association for Computing
Machinery.

[19] Atsuki Momose and Ling Ren. Multi-threshold byzantine fault tolerance. In Giovanni Vigna
and Elaine Shi, editors, ACM CCS 2021: 28th Conference on Computer and Communica-
tions Security, pages 1686–1699, Virtual Event, Republic of Korea, November 15–19, 2021.
ACM Press.

121

[20] Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of partition toler-
ance. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology
– CRYPTO 2019, Part I, volume 11692 of Lecture Notes in Computer Science, pages 499–
529, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

[21] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless
model. In 31st International Symposium on Distributed Computing (DISC 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[22] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation.
In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2018, Part II, volume 10821 of Lecture Notes in Computer Science, pages 3–33,
Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[23] Julian Loss and Tal Moran. Combining asynchronous and synchronous
Byzantine agreement: The best of both worlds, 2018. Available at
http://eprint.iacr.org/2018/235.

[24] Chen-Da Liu-Zhang, Julian Loss, Ueli Maurer, Tal Moran, and Daniel Tschudi. MPC with
synchronous security and asynchronous responsiveness. In Shiho Moriai and Huaxiong
Wang, editors, Advances in Cryptology – ASIACRYPT 2020, Part III, volume 12493 of
Lecture Notes in Computer Science, pages 92–119, Daejeon, South Korea, December 7–11,
2020. Springer, Heidelberg, Germany.

[25] Klaus Kursawe. Optimistic Byzantine agreement. In Proceedings of the 21st IEEE Sym-
posium on Reliable Distributed Systems, SRDS ’02, page 262. IEEE Computer Society,
2002.

[26] Erica Blum, Jonathan Katz, and Julian Loss. Synchronous consensus with optimal asyn-
chronous fallback guarantees. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019:
17th Theory of Cryptography Conference, Part I, volume 11891 of Lecture Notes in Com-
puter Science, pages 131–150, Nuremberg, Germany, December 1–5, 2019. Springer, Hei-
delberg, Germany.

[27] Erica Blum, Jonathan Katz, and Julian Loss. Tardigrade: An atomic broadcast protocol for
arbitrary network conditions. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances
in Cryptology – ASIACRYPT 2021, Part II, volume 13091 of Lecture Notes in Computer
Science, pages 547–572, Singapore, December 6–10, 2021. Springer, Heidelberg, Germany.

[28] Andreea B. Alexandru, Erica Blum, Jonathan Katz, and Julian Loss. State machine repli-
cation under changing network conditions. In Shweta Agrawal and Dongdai Lin, editors,
Advances in Cryptology - ASIACRYPT 2022, 2022. https://eprint.iacr.org/
2022/698.

[29] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun Xiang. Improved exten-
sion protocols for Byzantine broadcast and agreement. In Intl. Symposium on Distributed
Computing (DISC). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

122

https://eprint.iacr.org/2022/698
https://eprint.iacr.org/2022/698

[30] Ran Canetti and Tal Rabin. Fast asynchronous Byzantine agreement with optimal resilience.
Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing, 1993.

[31] Ittai Abraham, Danny Dolev, and Joseph Y. Halpern. An almost-surely terminating poly-
nomial protocol for asynchronous Byzantine agreement with optimal resilience. In Pro-
ceedings of the Twenty-Seventh ACM Symposium on Principles of Distributed Computing,
PODC ’08, page 405–414, New York, NY, USA, 2008. Association for Computing Machin-
ery.

[32] Arpita Patra, Ashish Choudhary, and Chandrasekharan Pandu Rangan. Simple and efficient
asynchronous Byzantine agreement with optimal resilience. In Proceedings of the 28th
ACM Symposium on Principles of Distributed Computing, PODC ’09, page 92–101, New
York, NY, USA, 2009. Association for Computing Machinery.

[33] Achour Mostefaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous
Byzantine consensus with t < n/3 and o(n2) messages. In Proceedings of the 2014 ACM
Symposium on Principles of Distributed Computing, PODC ’14, page 2–9, New York, NY,
USA, 2014. Association for Computing Machinery.

[34] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantipole:
Practical asynchronous Byzantine agreement using cryptography (extended abstract). In
Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed Com-
puting, PODC ’00, page 123–132, New York, NY, USA, 2000. Association for Computing
Machinery.

[35] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Al-
gorand: Scaling byzantine agreements for cryptocurrencies. In Symposium on Operating
Systems Principles (OSDI), pages 51–68. ACM, 2017.

[36] Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfinity technology overview
series consensus system, rev. 1, 2018. Available at https://dfinity.org/faq.

[37] Ittai Abraham, T. H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren,
and Elaine Shi. Communication complexity of Byzantine agreement, revisited. Distributed
Computing, 36(1):3–28, 2023.

[38] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous
Byzantine agreement. SIAM J. Comput., 26:873–933, 1997.

[39] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and effi-
cient asynchronous broadcast protocols. In Joe Kilian, editor, Advances in Cryptology –
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 524–541, Santa
Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg, Germany.

[40] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling
Ren. Efficient synchronous Byzantine consensus, 2017. Available at
https://eprint.iacr.org/2017/307.

123

[41] Danny Dolev and H. Raymond Strong. Authenticated algorithms for Byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

[42] Sam Toueg. Randomized Byzantine agreements. In Proceedings of the Third Annual ACM
Symposium on Principles of Distributed Computing, PODC ’84, page 163–178, New York,
NY, USA, 1984. Association for Computing Machinery.

[43] Miguel Correia, Nuno Neves, and Paulo Verı́ssimo. From consensus to atomic broad-
cast: Time-free Byzantine-resistant protocols without signatures. The Computer Journal,
49(1):82–96, 2006.

[44] Erica Blum, Chen-Da Liu Zhang, and Julian Loss. Always have a backup plan: Fully
secure synchronous MPC with asynchronous fallback. In Daniele Micciancio and Thomas
Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, Part II, volume 12171 of
Lecture Notes in Computer Science, pages 707–731, Santa Barbara, CA, USA, August 17–
21, 2020. Springer, Heidelberg, Germany.

[45] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations with
optimal resilience (extended abstract). In Jim Anderson and Sam Toueg, editors, 13th ACM
Symposium Annual on Principles of Distributed Computing, pages 183–192, Los Angeles,
CA, USA, August 14–17, 1994. Association for Computing Machinery.

[46] Gabriel Bracha. An asynchronous [(n− 1)/3]-resilient consensus protocol. New York, NY,
USA, 1984. Association for Computing Machinery.

[47] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for Byzantine
agreement. JCSS, 75(2):91–112, 2009.

[48] Elaine Shi. Foundations of distributed consensus and blockchains. Book manuscript, 2020.
Available at https://www.distributedconsensus.net.

[49] Sourav Das, Zhuolun Xiang, and Ling Ren. Balanced quadratic reliable broadcast and
improved asynchronous verifiable information dispersal. Cryptology ePrint Archive, Report
2022/052, 2022. https://eprint.iacr.org/2022/052.

[50] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal vali-
dated asynchronous Byzantine agreement. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, PODC ’19, page 337–346, New York, NY, USA,
2019. Association for Computing Machinery.

[51] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks (extended abstract).
In Luigi Logrippo, editor, 10th ACM Symposium Annual on Principles of Distributed Com-
puting, pages 51–59, Montreal, QC, Canada, August 19–21, 1991. Association for Com-
puting Machinery.

[52] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive secret shar-
ing or: How to cope with perpetual leakage. In Don Coppersmith, editor, Advances in
Cryptology – CRYPTO’95, volume 963 of Lecture Notes in Computer Science, pages 339–
352, Santa Barbara, CA, USA, August 27–31, 1995. Springer, Heidelberg, Germany.

124

https://www.distributedconsensus.net.
https://eprint.iacr.org/2022/052

[53] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Adaptive
security for threshold cryptosystems. In Michael J. Wiener, editor, Advances in Cryptology
– CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages 98–115, Santa
Barbara, CA, USA, August 15–19, 1999. Springer, Heidelberg, Germany.

[54] Yair Frankel, Philip D. MacKenzie, and Moti Yung. Adaptively-secure optimal-resilience
proactive RSA. In Kwok-Yan Lam, Eiji Okamoto, and Chaoping Xing, editors, Advances in
Cryptology – ASIACRYPT’99, volume 1716 of Lecture Notes in Computer Science, pages
180–194, Singapore, November 14–18, 1999. Springer, Heidelberg, Germany.

[55] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo Krawczyk,
Chengyu Lin, Tal Rabin, and Leonid Reyzin. Can a public blockchain keep a secret?
In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020: 18th Theory of Cryptography
Conference, Part I, volume 12550 of Lecture Notes in Computer Science, pages 260–290,
Durham, NC, USA, November 16–19, 2020. Springer, Heidelberg, Germany.

[56] Jens Groth. Non-interactive distributed key generation and key resharing. Cryptology ePrint
Archive, Report 2021/339, 2021. https://eprint.iacr.org/2021/339.

[57] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asynchronous ver-
ifiable secret sharing and proactive cryptosystems. In Vijayalakshmi Atluri, editor, ACM
CCS 2002: 9th Conference on Computer and Communications Security, pages 88–97,
Washington, DC, USA, November 18–22, 2002. ACM Press.

[58] Miguel Castro and Barbara Liskov. Proactive recovery in a Byzantine-Fault-Tolerant sys-
tem. In Symposium on Operating Systems Design and Implementation (OSDI), 2000.
USENIX Association, 2000.

[59] David A. Schultz, Barbara Liskov, and Moses Liskov. Mobile proactive secret sharing.
In Rida A. Bazzi and Boaz Patt-Shamir, editors, 27th ACM Symposium Annual on Princi-
ples of Distributed Computing, page 458, Toronto, Ontario, Canada, August 18–21, 2008.
Association for Computing Machinery.

[60] Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang, Ari
Juels, and Dawn Song. CHURP: Dynamic-committee proactive secret sharing. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019:
26th Conference on Computer and Communications Security, pages 2369–2386, London,
UK, November 11–15, 2019. ACM Press.

[61] Robin Vassantlal, Eduardo Alchieri, Bernardo Ferreira, and Alysson Bessani. Cobra: Dy-
namic proactive secret sharing for confidential BFT services. In IEEE Symposium on Secu-
rity and Privacy (SP), pages 1528–1528. IEEE Computer Society, 2022.

[62] Matthieu Rambaud and Antoine Urban. Asynchronous dynamic proactive secret sharing
under honest majority: Refreshing without a consistent view on shares. Cryptology ePrint
Archive, Report 2022/619, 2022. https://eprint.iacr.org/2022/619.

125

https://eprint.iacr.org/2021/339
https://eprint.iacr.org/2022/619

[63] S Dov Gordon, Jonathan Katz, Ranjit Kumaresan, and Arkady Yerukhimovich. Authenti-
cated broadcast with a partially compromised public-key infrastructure. Information and
Computation, 234:17–25, 2014. Elsevier, 2014.

[64] Ananya Appan, Anirudh Chandramouli, and Ashish Choudhury. Perfectly-secure syn-
chronous MPC with asynchronous fallback guarantees. Cryptology ePrint Archive, Report
2022/109, 2022. https://eprint.iacr.org/2022/109.

[65] Renas Bacho, Daniel Collins, Chen-Da Liu-Zhang, and Julian Loss. Network-agnostic
security comes for free in DKG and MPC. Cryptology ePrint Archive, Report 2022/1369,
2022. https://eprint.iacr.org/2022/1369.

[66] Thomas Yurek, Zhuolun Xiang, Yu Xia, and Andrew Miller. Long live the honey bad-
ger: Robust asynchronous DPSS and its applications. Cryptology ePrint Archive, Report
2022/971, 2022. https://eprint.iacr.org/2022/971.

126

https://eprint.iacr.org/2022/109
https://eprint.iacr.org/2022/1369
https://eprint.iacr.org/2022/971

	Acknowledgements
	Funding Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Building Resilient Distributed Systems with Asynchronous Fallback
	Related Work
	Outline of the Dissertation

	Preliminaries
	System Model
	Network Models

	Cryptographic Primitives
	Threshold Digital Signatures
	Threshold Encryption
	Error-Correcting Codes
	Coin-Flip Mechanism
	Committee Election Mechanisms

	Protocol Definitions

	Network-Agnostic Byzantine Agreement
	Synchronous BA with Partial Asynchronous Fallback
	Asynchronous Byzantine Agreement with Enhanced Validity
	A Value-Proposal Subprotocol
	Asynchronous Graded Consensus with Enhanced Validity
	Asynchronous Byzantine Agreement with Enhanced Validity

	A Network-Agnostic Byzantine Agreement Protocol
	Optimal Thresholds for Network-Agnostic Byzantine Agreement

	Network-Agnostic State Machine Replication
	Asynchronous Common Subset with Enhanced Validity
	Reliable Broadcast with Higher Validity
	A Non-Terminating ACS Protocol
	A Terminating ACS Protocol
	Communication Complexity of ACS

	A Block Agreement Subprotocol
	A Value-Proposal Subprotocol
	A Graded Consensus Subprotocol
	Communication Complexity of Block Agreement

	A Network-Agnostic Atomic Broadcast Protocol
	Technical Overview
	Technical Details
	Efficiency and Choice of Parameters

	From Atomic Broadcast to State Machine Replication
	An Impossibility Result for Network-Agnostic SMR

	Improving the Security and Efficiency of Network-Agnostic SMR
	update: Network-Agnostic SMR with Optimal Thresholds and O(n3) Communication Complexity
	ACS Using Error-Correcting Codes
	update: Full Protocol
	Communication Complexity of update

	upstate: Network-Agnostic SMR with Almost-Optimal Thresholds and O(n2) Communication Complexity
	A Committee-Based ACS Protocol for upstate
	A Committee-Based BLA Protocol for upstate
	upstate: Full Protocol
	Communication Complexity of upstate

	Achieving Security in a Variable Network-Agnostic Model
	Related Work
	Technical Details
	Security Analysis
	Discussion

	Deferred Probability Bounds
	Bibliography

