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Chapter 1

Introduction

1.1 Background

The concept of frames was first introduced by Duffin and Schaeffer [33] in the

context of nonharmonic Fourier series. They defined a sequence {en(t) = eiγnt} of

exponentials to be a frame for L2(−Ω,Ω) if there are global positive constants A

and B such that

∀f ∈ L2(−Ω,Ω), A‖f‖2
L2 ≤

∑

n∈Z

|
∫ Ω

−Ω

f(t)e−iγntdt|2 ≤ B‖f‖2
L2 .

Moreover, if {en} is a frame, then every f has a representation of the form

f =
∑

n∈Z

cn(f)eiγnt

for some sequence {cn(f)} ∈ ℓ2(Z) of coefficients.

Since Duffin and Schaeffer, frames have been studied extensively. A general

theory of frames for Hilbert spaces has been developed. According to this general

theory, frames are overcomplete systems that have many properties enjoyed by bases,

such as the linear reconstruction property. Furthermore, frames have additional

properties that bases do not possess. For instance, there is a wide variety of choices

of coefficients in a frame expansion due to overcompleteness, whereas the coefficients

in a basis expansion are uniquely determined.

Overcompleteness is a distinguishing property of frames that has an important
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role in many modern applications. A standard example is sampling theory for

bandlimited signals, where oversampling is used for stable reconstruction of signals.

Another example is digital signal processing, where redundancy is used to reduce

additive noise and overcome the effect of package loss.

A frame expansion of a signal x perfectly represents x. The frame coefficients

in a frame expansion generally come from a continuous range of numbers. However,

many modern applications require digital data, so any frame representation of x

must be in quantized form in a digital environment.

Pulse Code Modulation (PCM) and Sigma-Delta quantization are two industry-

standards for quantization in digital signal processing. PCM is a memoryless, fine

quantization method, which simply rounds off each frame coefficient to the near-

est element in a pre-specified alphabet of numbers. Sigma-Delta quantization is a

coarse quantization method, which is associated with redundant dictionaries, such

as frames. While PCM relies on fine quantization to minimize quantization error,

Sigma-Delta shapes the quantization noise in a way that a major component of

the noise stays in a space, which can later be eliminated during reconstruction.

For instance, in the setting of bandlimited signals, Sigma-Delta quantization error

usually has small in band frequency components and larger out-of-band frequency

components [41, 12]. This phenomenon is known as the noise shaping property of

Sigma-Delta quantization [41]. Daubechies and DeVore gave a more detailed math-

ematical analysis of Sigma-Delta quantization for bandlimited signals in [28]. They

showed that, given a signal x with stable rth order Sigma-Delta estimate x̃, the

2



quantization noise x− x̃ satisfies the estimate,

∀t ∈ R, |x(t) − x̃(t)| ≤ Kλ−r,

whereK is a constant depending on the reconstruction filter (and, thus, also depends

on the bandwidth) and λ is the oversampling rate.

Unlike the samples of a bandlimited function, in many applications data does

not always naturally come from an infinite dimensional structure. Finite frames are

designated to analyze finite dimensional, but potentially large amounts of data.

Finite frames are also potentially useful for data coming from an infinite di-

mensional structure. One has to be careful with truncation errors for an infinite

frame expansion. Depending on the convergence property of an infinite frame ex-

pansion, the size of the truncation error might be substantially large. There is no

truncation error problem for finite frame expansions.

Finite frames are also useful in other applications, for example, in wireless com-

munications for codebook design for code division multiple access (CDMA) systems

[74, 72].

Finite frames have been studied extensively, and many properties of finite

frames are very well understood, e.g. [5, 78, 16, 69]. Benedetto, Powell, and Yilmaz

gave a mathematical analysis of Sigma-Delta quantization for finite frames in [10, 9].

Cvetković [22], Goyal, Vetterli, and Thao [40] showed that PCM quantization error

can be improved using consistent estimates. There are many other contributions,

e.g., [75, 8]. However, there are still many open problems in finite frame quantization

theory.
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1.2 Organization of the Thesis and New Results

Section 1.3 contains a basic overview of frames for Hilbert spaces.

In Chapter 2, we make a signal-wise comparison of PCM and first order Sigma-

Delta quantization for finite frames. Section 2.1 contains a brief overview of the

problem, and states established comparison results for the worst case quantization

error, as well as for the mean-squared quantization error. Section 2.2 and Section 2.3

present the new results in this chapter.

In Chapter 3, we propose two new quantization techniques for finite frames.

Section 3.1 contains a general description and properties of a perfect quantizer. In

Section 3.2, we discuss Sigma-Delta quantization in the context of sparse matrices

and periodic solutions of discrete dynamical systems. In Section 3.3, we propose a

new adaptive bit-rate quantization method, and in Section 3.4, we propose another

new 1-bit quantization method.

Chapter 4 is devoted to finite equiangular tight frames. Section 4.1 contains

known results about equiangular tight frames, and their relations to other prob-

lems. Section 4.2 presents the new results of this chapter. Section 4.2.1 shows that

equiangular tight frames are the minimizers of a class of scalar-valued functions.

Section 4.2.2 gives a characterization of equiangular tight frames with maximum

possible redundancy.
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1.3 Frames

Definition 1. Let H be a separable Hilbert space. A set F = {ej}j∈J ⊆ H is a

frame for H if

∃A,B > 0 such that ∀x ∈ H, A‖x‖2 ≤
∑

j∈J

|〈x, ej〉|2 ≤ B‖x‖2.

A frame F is a tight frame if we can choose A = B. If, in addition, each ej is

unit-norm, then F is a unit-norm tight frame.

Example 1. Let PWΩ(R) be the set of square integrable functions with compactly

supported Fourier transforms, which are supported in the interval [−Ω,Ω]. Let

T > 0 such that 2TΩ ≤ 1, and let s ∈ L2(R) with the Fourier transform ŝ, which

satisfies

ŝ(γ) = 1 if |γ| ≤ Ω,

ŝ(γ) = 0 if |γ| ≥ 1/(2T ),

0 ≤ ŝ(γ) ≤ 1 if Ω < |γ| < 1/(2T ).

In particular, we can choose

s(t) =
sin 2πΩt

πt
.

Let sn(.) = s(. − nT ). Then, {sn}n∈Z is a tight frame for PWΩ(R) with the frame

constant A = T−1. In fact, by the Classical Sampling Theorem, we have

∀x ∈ PWΩ(R), x(t) = T
∑

n∈Z

x(nT )s(t− nT ), (1.1)

and also 〈x, sn〉 = x(nT ). In particular,

∀x ∈ PWΩ(R), ‖x‖2
L2(R) = T

∑

n∈Z

|〈x, sn〉|2 = T
∑

n∈Z

|x(nT )|2.
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There are four operators associated with every frame. These are given in

Definition 2

Definition 2. Let H be a separable Hilbert space, and let F = {ej}j∈J be a frame

for H.

(i) The linear function L : H → ℓ2(J) defined by Lx = {〈x, ej〉}j∈J is the Bessel

map or the analysis operator for F .

(ii) The Hilbert space adjoint of L, L∗ is the synthesis operator, and it satisfies

the property

∀c = (cj)j∈J ∈ ℓ2(J), L∗c =
∑

j∈J

cjej. (1.2)

(iii) S = L∗L : H → H is the frame operator, and it satisfies

∀x ∈ H, Sx =
∑

j∈J

〈x, ej〉ej. (1.3)

(iv) G = LL∗ : ℓ2(J) → ℓ2(J) is the Grammian operator.

Theorem 1. L∗ can, in fact, be defined by (1.2).

Proof. By definition of the Hilbert space adjoints,

∀x ∈ H, ∀c = (cj)j∈J ∈ ℓ2(J), 〈Lx, c〉 = 〈x, L∗c〉.

Then,

〈x, L∗c〉 = 〈Lx, c〉

=
∑

j∈J

〈x, ej〉cj

= 〈x,
∑

j∈J

cjej〉.

Since this is true for every x ∈ H, the result follows.
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Theorem 2. S is positive definite, and it satisfies AI ≤ S ≤ BI, where I is the

identity operator on H.

Proof. By definition of S,

∀x ∈ H, 〈Sx, x〉 =
∑

j∈J

|〈x, ej〉|2,

so A‖x‖2 ≤ 〈Sx, x〉 ≤ B‖x‖2. Hence, the result follows.

Definition 3. Let ẽj = S−1ej. Then, F̃ = {ẽj}j∈J is called the canonical dual frame

of F . In this case, the Bessel map of the canonical dual frame is denoted by L̃.

Theorem 3. Let F = {ej}j∈J be a frame for H, and let F̃ = {ẽj}j∈J be the its

canonical dual. Then, F̃ = {ẽj}j∈J is a frame with frame constants B−1 and A−1,

and for every x ∈ H, the following reconstruction formulas hold

x =
∑

j∈J

〈x, ẽj〉ej,

x =
∑

j∈J

〈x, ej〉ẽj.

In particular, L∗L̃ = I and L̃∗L = I, where I is the identity operator on H. Further-

more, the frame operator of the canonical dual frame is S−1, it is positive definite,

and it satisfies B−1I ≤ S−1 ≤ A−1I.

Proof. Since S is positive definite, by the spectral theorem [67], there is an orthonor-

mal set {vk} of eigenvectors of S, which is a basis for H, and

∀x ∈ H, Sx =
∑

k

λk〈x, vk〉vk,

where λk is the eigenvalue of S corresponding to vk. Since A‖x‖2 ≤ 〈Sx, x〉 ≤ B‖x‖2,

any eigenvalue of S satisfies A ≤ λk ≤ B. In fact,

A = A‖vk‖2 ≤ 〈Svk, vk〉 = λk ≤ B‖vk‖2 = B.

7



S−1 clearly satisfies S−1vk = λ−1
k vk, and since {vk} is an orthonormal basis for H,

we have

∀x ∈ H, S−1x =
∑

k

λ−1
k 〈x, vk〉vk.

Therefore

B−1 ≤ inf
k
λ−1

k ≤ 〈S−1x, x〉 ≤ sup
k
λ−1

k ≤ A−1.

Therefore, S−1 is positive definite, and it satisfies B−1I ≤ S−1 ≤ A−1I.

Next, since S−1 is positive definite, so self adjoint, we have

S̃x =
∑

j∈J

〈x, ẽj〉ẽj =
∑

j∈J

〈x, S−1ej〉S−1ej =
∑

j∈J

S−1〈S−1x, ej〉ej = S−1SS−1x = S−1x,

so S−1 is the frame operator of the dual frame F̃ .

Finally, for every x ∈ H,

∑

j∈J

〈x, ẽj〉ej =
∑

j∈J

〈S−1x, ej〉ej = SS−1x = x,

∑

j∈J

〈x, ej〉ẽj =
∑

j∈J

S−1〈x, ej〉ej = S−1Sx = x.

Also,

L∗L̃x = L∗(〈x, ẽj〉)j∈J =
∑

j∈J

〈x, ẽj〉ej,

L̃∗Lx = L̃∗(〈x, en〉)j∈J =
∑

j∈J

〈x, ej〉ẽj.

Hence, L∗L̃ = I and L̃∗L = I, by the reconstruction formulas.

Definition 4. A frame F = {ej}N
j=1 for F

d with finite number of elements is called

a finite frame. If F is unit-norm and tight, then it is called a finite unit-norm tight

frame (FUNTF).

8



Theorem 4. a. Any spanning set {ej}N
j=1 in F

d is a frame for F
d.

b. If F = {ej}N
j=1 is a FUNTF for F

d with frame constant A, then A = N/d.

Proof. a. Let {ej}N
j=1 be a spanning set for F

d. Since {x ∈ F
d : ‖x‖ = 1}

is compact and there is an x0,‖x0‖ = 1 at which the continuous function

∑N
j=1 |〈x, ej〉|2 attains its minimum value. Let A =

∑N
j=1 |〈x0, ej〉|2.

A = 0 ⇒ ∀j = 1, . . . , N, 〈x0, ej〉 ⇒ x0 /∈ span{ej}N
j=1.

Therefore, A > 0. Moreover,

∀x ∈ F
d, A ≤

N∑

j=1

|〈 x

‖x‖ , ej〉|2 ⇒ A‖x‖2 ≤
N∑

j=1

|〈x, ej〉|2.

On the other hand,

∀x ∈ F
d,

N∑

j=1

|〈x, ej〉|2 ≤ ‖x‖2

N∑

j=1

‖ej‖2.

We can choose B =
∑N

j=1 ‖ej‖2.

b. If F is a finite frame, L, S and G can be represented as matrices. In particular,

since F is a FUNTF, S = AI, and G = (〈ei, ej〉). Using the property of traces,

Ad = trace(S) = trace(G) =
N∑

j=1

‖ej‖2 = N.

9



Chapter 2

Pointwise Comparison of PCM and First Order Sigma-Delta for

Finite Frames

2.1 Background

Let x ∈ F
d (F = R or C) represent a data vector, and let F = {en}N

n=1 be a

frame for F
d with dual frame F̃ = {ẽn}N

n=1. In applications, it is sometimes more

useful or more convenient to work with the sequence {〈x, en〉} of frame coefficients

rather than the data vector x itself. Frame coefficients represent x perfectly, since

we can reconstruct x from these coefficients by the reconstruction formula

x =
N∑

n=1

〈x, en〉ẽn.

Generally, {〈x, en〉} consists of arbitrary real or complex numbers. However,

many digital signal processing applications require digital data. In such digital

applications, a finite set of numbers A is pre-specified, and all of the components of

a datum in a digital system is represented with a number in this alphabet A. The

larger the size of the alphabet, the more bits are needed to decode the elements in

this alphabet.

The frame quantization problem is the problem of finding qn in this alphabet

A such that the quantity
N∑

n=1

qnẽn

10



is equal or close to x in some prescribed way. PCM and Sigma-Delta quantization

are two industry standards for quantization.

A quantization method is called fine quantization if the method uses a high

resolution alphabet, i.e., any two elements in the alphabet are very close to each

other. Consequently, the size of the alphabet associated with this method is large.

A quantization method is coarse quantization if the size of the alphabet is small.

16-bit PCM is an example of a fine quantization method, whereas 1-bit Sigma-Delta

is a coarse quantization method.

Fine quantization methods rely on the high resolution of the alphabet. As

a result, these methods are less robust to noise compared to coarse quantization.

By robust, we mean the following: if we have a sequence of numbers q with entries

coming from a high resolution alphabet, then even a small perturbation of the entries

of q irreversibly changes q. On the other hand, an error caused by a noise of up to a

certain magnitude, let us say 1, can be corrected if the entries of q are coming from

{−1, 1}.

Coarse quantization methods can result in small quantization error when used

with highly redundant expressions. Recently, Benedetto, Powell, and Yilmaz [10]

showed that Sigma-Delta outperforms PCM in the worst-case error, and in the mean-

squared error for signals x ∈ R
d normalized so that ‖x‖ ≤ 1. Building on these

results, we make a signal-wise comparison of PCM and Sigma-Delta quantization in

this chapter.

We assume that F = C. Any frame for R
d is automatically a frame for C

d,

and the quantization schemes that we consider in this chapter, when restricted to

11



R
d, coincide with the quantization schemes for real sequences. Therefore, all of the

results in this chapter for C automatically hold for R.

2.1.1 Overview of PCM and Sigma-Delta

Definition 5. For K > 0 and an integer b ≥ 2, let δ = 21−b. The midrise quantiza-

tion alphabet is

AK
δ = {(m+

1

2
)δ + inδ : m = −K, . . . ,K − 1, n = −K, . . . ,K},

and the associated scalar uniform quantizer with step size δ is given by

Q(u+ iv) = δ

(
1

2
+
⌊u
δ

⌋
+ i
⌊v
δ

⌋)
.

Here, b ≥ 2 represents the number of bits. We define the alphabet and the quantizer

for the 1-bit case as follows.

A = {±1 ± i}, Q(u+ iv) = sign(u) + isign(v).

Notationally, we set

sign(u) =





1, if u ≥ 0,

−1, if u < 0.

PCM rounds off each frame coefficient to the nearest element in the alphabet,

i.e.,

qn = Q(〈x, en〉), (2.1)

whereas first order Sigma-Delta scheme defines (qn) by means of the iterative scheme

un = un−1 + 〈x, en〉 − qn (2.2)

qn = Q(〈x, en〉 + un−1).

12



with the initial condition u0.

In either quantization scheme, the quantized estimate x̃ of x is given by

x̃ =
N∑

n=1

qnẽn,

where {ẽn}N
n=1 is the dual frame.

Benedetto, Powell and Yilmaz [10] established a uniform upper bound for the

first order Sigma-Delta quantization error. Theorem 5 and a proof can be found in

[10].

Theorem 5. Let F = {en}N
n=1 be a FUNTF for R

d, let p be a permutation of

{1, . . . , N}, let |u0| ≤ δ/2, and let x ∈ R
d satisfy ‖x‖ ≤ 1. Let x̃ denote the first

order Sigma-Delta estimate for x. Then,

‖x− x̃‖ ≤ dδ

2N
(σ(F, p) + 1) ,

where

σ(F, p) =
N−1∑

n=1

‖ep(n) − ep(n+1)‖.

Theorem 6 generalizes Theorem 5 to the complex case. A proof of Theorem 6

is in [8].

Theorem 6. Let F = {en}N
n=1 be a FUNTF for C

d, let p be a permutation of

{1, . . . , N}, let |u0| ≤ δ/2, and let x ∈ C
d satisfy ‖x‖ ≤ 1. Let x̃ denote the first

order Sigma-Delta estimate for x. Then,

‖x− x̃‖ ≤
√

2
dδ

2N
(σ(F, p) + 1) .

13



Both for the real and the complex case, the state variable u is bounded by δ/2

in absolute value if u0 is bounded by δ/2 [10, 8]. Then, by the definition (2.2) of

the first order Sigma-Delta scheme, one can show that

∀n = 1, . . . , N,

∣∣∣∣∣

n∑

k=1

〈x, en〉 −
n∑

k=1

qk

∣∣∣∣∣ ≤
√

2
δ

2
, (2.3)

i.e., first order Sigma-Delta minimizes the running sums.

Building on the result of Theorem 5, Wang [75] gave an upper bound for the

frame variation σ({en}N
n=1, p) that increases slower than O(N) as N → ∞. Using

this upper bound, one can prove the Theorem 7. A proof of Theorem 7 can be found

in [8].

Theorem 7. Let F = {en}N
n=1 be a unit norm frame for F

d, d ≥ 3. There exists a

permutation p of {1, . . . , N} such that

i. if F = R, then σ(F, p) ≤ 4
√
d+ 3 N1− 1

d − 4
√
d+ 3,

ii. if F = C, then σ(F, p) ≤ 4
√

2d+ 3 N1− 1

2d − 4
√

2d+ 3.

Moreover, if x ∈ C
d, ‖x‖ ≤ 1, then the first order Sigma-Delta quantization

(2.2) error ‖x− x̃‖ satisfies

‖x− x̃‖ ≤
√

2δd
(
(1 − 2

√
2d+ 3)N−1 + 2

√
2d+ 3N− 1

2d

)
(2.4)

≤ MN− 1

2d ,

where M =
√

2δd.
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2.1.2 Rate Distortion

Rate distortion theory was created by Claude Shannon in his foundational

work on information theory, and now it is a major branch of information theory.

Rate distortion theory addresses the problem of determining the minimal amount

of information R that should be used, so that the input signal or data can be

reconstructed at the receiver without exceeding a given distortion D.

The term rate refers to the minimal amount of information R. Therefore, the

rate is a function of the distortion and the input signal.

Lossy compression techniques that are used in many of the existing audio,

speech, image, and video compression uses the concept of rate distortion. Given a

signal or a data stream, a lossy compression technique looks for an estimate, which

can be stored using small number of bits, and, at the same time, is close to the

original signal or data stream in some sense. This process is irreversible, i.e., we

cannot obtain the original signal/data stream back from its estimate, hence the

name lossy compression. In this context, the rate is understood as the number of

bits per sample to be stored or transmitted, and the distortion is essentially the

size of the error, which is the difference of the original signal/data stream and its

estimate.

Both PCM and Sigma-Delta quantization can be considered as lossy com-

pression techniques. For our discussion, the distortion is the distance between the

original data vector x ∈ C
d and the quantized vector with respect to a FUNTF

F = {en}N
n=1, in a suitable metric on C

d. The rate is bN , where b is the number of

15



bits for quantization, and N is the redundancy of the frame. If ρ is a metric on C
d,

x ∈ C
d, and if

x̃b =
d

N

N∑

n=1

qnen

is the quantized estimate of x that b-bit PCM or Sigma-Delta produces, then, the

rate distortion problem in our setting is the problem of finding b and N that results

in the smallest value for bN such that

ρ(x, x̃b) ≤ D,

for a given distortion D.

Generally, a b-bit quantization scheme with a FUNTF F = {en}N
n=1 maps an

x ∈ C
d to an element in the set of all possible quantized expansions

S =

{
d

N

N∑

n=1

qnen : qn ∈ AK
δ

}
,

where AK
δ is given as in Definition 5. It is not hard to show that S has at most 2bN

elements (exactly 2bN if all of the elements in S are distinct). Theorem 8 provides

an information theoretic lower bound for the worst case error, which is independent

of the quantization scheme.

Theorem 8. Let ‖.‖ be a norm on C
d. For a b-bit finite frame quantization scheme,

let x̃b denote the quantized estimate of an x ∈ C
d. Then, the worst case error

max
‖x‖≤1

‖x− x̃b‖

is bounded below by 2−bN/d for the unit ball {x ∈ C
d : ‖x‖ ≤ 1}.
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Proof. Let r be equal to the worst case error. Let

Br(x) = {ξ : ‖x− ξ‖ < r}

denote the ball centered at x with radius r, and let Ld denote the Lebesgue measure

on C
d. Then, B1(0) ⊆ ⋃x∈S Br(x). It is well known that the Lebesgue measure on

C
d is translation invariant, and it satisfies

∀A ⊆ C
d,∀t > 0, Ld(tA) = tdLd(A).

Then,

B1(0) ⊆
⋃

x∈S

Br(x) ⇒ Ld(B1(0)) ≤
∑

x∈S

Ld(Br(x)) = |S|rdLd(B1(0))

⇒ r ≥ |S|−1/d ≥ 2−bN/d.

If {vn}d
n=1 is an orthonormal basis for C

d, then the b-bit PCM quantization

error satisfies

2−b ≤ ‖x−
d∑

k=1

Q(〈x, vn〉)vn‖ ≤
√

2(
d∑

k=1

‖vn‖)2−b.

Therefore, PCM with an orthonormal basis is an asymptotically optimal quantiza-

tion method in the rate distortion sense. However, using redundant expressions has

its advantages over bases in some applications. For example, frames are used in

noise reduction in communications (Theorem 44). Also, redundancy has a key role

in overcoming the erasure problem in communications [49, 52, 53, 54]. We shall talk

about these problems more in Section 4.1.4.

17



Even though PCM is optimal with an orthonormal basis, it is far from being

optimal with redundant expressions for the worst case error [10]. First order Σ∆ is

not (asymptotically) optimal in the rate distortion sense, either, but it outperforms

PCM in the worst case error and in the expected mean-square error [10]. However,

this leaves open the question of whether the signal-wise PCM error can be less than

the signal-wise error for Sigma-Delta at specific signals.

In the remainder of this chapter, we investigate the class of signals where

the signal-wise first order Sigma-Delta quantization error is less than the signal-

wise PCM error. We use the same redundant frame {en}N
n=1 for both quantization

methods, which we choose to be a finite unit-norm tight frame.

In Section 2.2, we show that 1-bit Sigma-Delta totally outperforms 1-bit PCM

for each x, ‖x‖ ≤ 1. In Section 2.3, we show that 1-bit Sigma-Delta outperforms

multibit PCM for a class of low amplitude signals. We also give certain properties of

the quantization error function errPCM(.) of multibit PCM for a family of structured

FUNTFs.

2.2 Comparison of 1-bit PCM and 1-bit Sigma-Delta

Definition 6. Let x ∈ C
d, let F = {en}N

n=1 be a FUNTF for C
d with the analysis

matrix L, and let qPCM(x, b) and qΣ∆(x, b) denote the quantized sequences given

by b-bit PCM and b-bit Sigma-Delta, respectively. We define the quantization error

functions

errPCM(x, F, b) = ‖x− d

N
L∗qPCM(x)‖, errΣ∆(x, F, b) = ‖x− d

N
L∗qΣ∆(x)‖.
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Notationally, we omit writing F when we compare two schemes with the same

FUNTF, and we omit writing b when we compare at the same bit rate.

Theorem 9. Let x ∈ C
d satisfy 0 < ‖x‖ ≤ 1, and let F = {en}N

n=1 be a FUNTF

for C
d. Then, the 1-bit PCM error satisfies

errPCM(x, F, 1) ≥ αF + 1 − ‖x‖

where

αF := inf
‖x‖=1

d

N

N∑

n=1

|Re(〈x, en〉)| + |Im(〈x, en〉)| − 1 ≥ 0. (2.5)

Proof. First, Re(Q(a+ ib)(a− ib)) = |a| + |b|. Then,

errPCM(x) = ‖x− d

N

N∑

n=1

Q(〈x, en〉)en‖

≥ ‖x− d

N

1

‖x‖2

N∑

n=1

Q(〈x, en〉)〈en, x〉x‖

= ‖x‖
∣∣∣∣∣

d

N‖x‖2

N∑

n=1

Q(〈x, en〉)〈x, en〉 − 1

∣∣∣∣∣

≥ ‖x‖
∣∣∣∣∣

d

N‖x‖2

N∑

n=1

|Re(〈x, en〉)| + |Im(〈x, en〉)| − 1

∣∣∣∣∣

=
d

N

N∑

n=1

|Re(〈x, en〉)| + |Im(〈x, en〉)|
‖x‖ − ‖x‖

≥ αF + 1 − ‖x‖.

In Lemma 2, we prove that αF is always nonzero for a FUNTF, but first we

need the following.

Definition 7. A frame F is robust to 1-erasure if for any x ∈ F , F\{x} still

constitute a frame.
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Theorem 10. Let N > d. Every FUNTF F = {en}N
n=1 for C

d is robust to 1-erasure.

Proof. Let F be a FUNTF for C
d, and let F−x = F\{x} for a fixed x ∈ F . Then,

for every y,

∑

φ∈F−x

|〈y, φ〉|2 =
∑

φ∈F

|〈y, φ〉|2 − |〈y, x〉|2

=
N

d
‖y‖2 − |〈y, x〉|2

≥
(
N

d
− 1

)
‖y‖2.

Therefore, F−x is still a frame with the frame bounds A = N
d
− 1 and B = N

d
.

In general, if N > rd, then any FUNTF {en}N
n=1 for C

d is robust to r-erasures,

i.e., if we remove any r elements of the frame, the remaining vectors constitute a

frame for C
d (Theorem 45).

Lemma 1. Let {vk : k = 1, . . . , n} ⊆ C
d\{0}, and

∑n
k=1 ‖vk‖ = ‖∑n

k=1 vk‖. Then,

∃w ∈ C
d such that vk = w, ∀k = 1, . . . , n.

Proof.
n∑

k,l=1

〈vk, vl〉 = ‖
n∑

k=1

vk‖2 =

(
n∑

k=1

‖vk‖
)2

=
n∑

k,l=1

‖vk‖‖vl‖,

which is possible only if 〈vk, vl〉 = ‖vk‖‖vl‖ for every k and l. Then

∀k, l = 1, . . . , n, vk 6= 0 ⇒ vk = vl.

Lemma 2. Let F = {en}N
n=1 be a FUNTF for C

d with the property

∀k = 1, . . . , N, ek ∈ F and |λ| = 1 ⇒ λek /∈ F.
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Then αF > 0.

Proof. For every n and ‖x‖ = 1, |〈x, en〉| ≤ 1, so

|Re(〈x, en〉)| ≥ |Re(〈x, en〉)|2, |Im(〈x, en〉)| ≥ |Im(〈x, en〉)|2. (2.6)

Then,

αF = inf
‖x‖=1

d

N

N∑

n=1

|Re(〈x, en〉)| + |Im(〈x, en〉)| − 1 (2.7)

= inf
‖x‖=1

d

N

N∑

n=1

|Re(〈x, en〉)| − |Re(〈x, en〉)|2 + |Im(〈x, en〉)| − |Im(〈x, en〉)|2 ≥ 0.

By compactness of {x ∈ C
d : ‖x‖ = 1}, either αF > 0, or there is an x0, ‖x0‖ = 1

such that

0 = αF =
N∑

n=1

|Re(〈x0, en〉)| − |Re(〈x0, en〉)|2 + |Im(〈x0, en〉)| − |Im(〈x0, en〉)|2.

In the latter case, we must have

∀n = 1, . . . , N, |Re(〈x0, en〉)| = 0 or 1 and |Im(〈x0, en〉)| = 0 or 1

by (2.6). Then, since

1 ≥ |〈x0, en〉|2 = |Re(〈x0, en〉)|2 + |Im(〈x0, en〉)|2,

either |Re(〈x0, en〉)| = 0 or |Im(〈x0, en〉)| = 0 or both. Hence,

|〈x0, en〉| = |Re(〈x0, en〉)| + |Im(〈x0, en〉)|. (2.8)

Then, (2.7) and (2.8) imply

N∑

n=1

|〈x0, en〉| =
N

d
‖x0‖ = ‖

N∑

n=1

〈x0, en〉en‖.
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Then, by Lemma 1, there is a w such that 〈x0, en〉en = w if 〈x0, en〉 6= 0. Hence, there

is a v ∈ C
d, such that for every en, for which 〈x0, en〉 6= 0, there is a λn ∈ C, |λ| = 1

and en = λnv. But, by the hypothesis, there can only be one such frame element.

Thus, there is only one frame element nonorthogonal to x0. Erasing this element,

remaining vectors would not span C
d, i.e., F would not be robust. But, this is a

contradiction to Theorem 10.

Therefore, αF > 0.

Theorem 11. Let {FN = {eN
n }N

n=1} be a family of FUNTFs for C
d. Then,

∀ε > 0 ∃N0 > 0 ∀N ≥ N0 errΣ∆(x, FN , 1) ≤ errPCM(x, FN , 1)

for every 0 < ‖x‖ ≤ 1 − ε.

Proof. By Theorem 7, for any ‖x‖ ≤ 1 and for any N ,

errΣ∆(x) ≤MN−1/2d.

Then, by Theorem 9

∀ε > 0 ∃N0 > 0 ∀N ≥ N0 MN−1/2d ≤ ε ≤ 1 − ‖x‖ + αF ≤ errPCM(x)

for every x, 0 < ‖x‖ ≤ 1 − ε.

We want to note that the bound N ≥ (M/ε)2d is a crude lower bound for

N . In practice, we can choose a significantly small N that satisfies the condition of

Theorem 11.

Let {FN = {eN
n }N

n=1} be a family of FUNTFs. If there is a positive uniform

lower bound for (αFN
), then we can improve the result of Theorem 11. Namely, we
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can replace Theorem 11 by the assertion

∃N0 > 0 such that ∀N ≥ N0 and ∀0 < ‖x‖ ≤ 1 errΣ∆(x, FN , 1) ≤ errPCM(x, FN , 1).

The families {FN} of FUNTFs for which αFN
→ 0 are extreme cases, which

we describe in Theorem 12.

Theorem 12. Let {FN = {eN
n }N

n=1} be a family of FUNTFs for C
d such that

limN→∞ αFN
= 0. Then, there is an x0 ∈ C

d, ‖x0‖ = 1 such that

∀ε > 0, lim
N→∞

card{n ∈ {1, . . . , N} : |〈x0, e
N
n 〉| − |〈x0, e

N
n 〉|2 ≤ ε}

N
= 1.

Proof.

αFN
≥ inf

‖x‖=1

d

N

N∑

n=1

|〈x, eN
n 〉| − 1 > 0.

Let xN ∈ C
d, ‖xN‖ = 1 be a point where

∑N
n=1 |〈x, eN

n 〉| attains its minimum. Since

αFN
→ 0, we have

lim
N→∞

d

N

N∑

n=1

|〈xN , e
N
n 〉| = 1.

On the other hand,

∣∣∣∣∣
d

N

N∑

n=1

|〈xN , e
N
n 〉| −

d

N

N∑

n=1

|〈x0, e
N
n 〉|
∣∣∣∣∣ ≤ d‖xN − x0‖. (2.9)

Since the unit ball of C
d is compact, (xN) has a convergent subsequence. Without

loss of generality, assume that limN→∞ xN = x0. Letting N → ∞ in (2.9), we obtain

lim
N→∞

d

N

N∑

n=1

|〈x0, e
N
n 〉| = 1.
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Next, define the sets Aε
N and Bε

N ,

Aε
N = {n = 1, . . . , N : |〈x0, e

N
n 〉| − |〈x0, e

N
n 〉|2 ≤ ε},

Bε
N = {n = 1, . . . , N : |〈x0, e

N
n 〉| − |〈x0, e

N
n 〉|2 > ε}.

Then,

dε cardBε
N

N
≤ d

N

N∑

n=1

|〈x0, e
N
n 〉| − 1.

Therefore,

lim
N→∞

cardBε
N

N
= 0, and so lim

N→∞

cardAε
N

N
= 1.

Theorem 13 gives an example of a family {FN} of frames for which the sequence

(αFN
) is bounded from below. The families given by Theorem 13 comes from a

continuous curve in R
d, which is of bounded variation. Such curves were named

frame paths in [13].

Definition 8. A function e : [a, b] → C
d is of bounded variation (BV) if there is a

K > 0 such that for every a ≤ t1 < t2 < · · · < tN ≤ b,

N−1∑

n=1

‖e(tn) − e(tn+1)‖ ≤ K.

The smallest such K is denoted by |e|BV , and defines a seminorm for the space of

functions of bounded variation.

Theorem 13. Let e : [0, 1] → {x ∈ C
d : ‖x‖ = 1} be continuous function of

bounded variation such that FN = (e(n/N))N
n=1 is a FUNTF for C

d for every N .
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Then,

∃N0 > 0 ∀N ≥ N0 errΣ∆(x, FN , 1) ≤ errPCM(x, FN , 1)

for every 0 < ‖x‖ ≤ 1.

Proof. Let eN
n = e(n/N). By Lemma 2, for any x, ‖x‖ = 1, we have

d

N

N∑

n=1

|Re(〈x, eN
n 〉)| + |Im(〈x, eN

n 〉)| − 1 ≥ αFN
> 0.

Also,

lim
N→∞

d

N

N∑

n=1

|Re(〈x, eN
n 〉)| + |Im(〈x, eN

n 〉)| − 1

= lim
N→∞

(
d

N

N∑

n=1

|Re(〈x, e(n/N)〉)| + |Im(〈x, e(n/N)〉)|
)

(2.10)

− lim
N→∞

(
d

N

N∑

n=1

|Re(〈x, e(n/N)〉)|2 + |Im(〈x, e(n/N)〉)|2
)

= d

∫ 1

0

|Re(〈x, e(t)〉)| + |Im(〈x, e(t)〉)| − |Re(〈x, e(t)〉)|2 − |Im(〈x, e(t)〉)|2 dt.

The integrand in (2.10) cannot be equal to zero for every t. For a contradiction,

assume the integrand is zero for every t. Then,

∀t, |Re(〈x, e(t)〉)| = 0 or 1 and |Im(〈x, e(t)〉)| = 0 or 1.

But, since

1 ≥ |〈x, e(t)〉|2 = |Re(〈x, e(t)〉)|2 + |Im(〈x, e(t)〉)|2,

we must have |Re(〈x, e(t)〉)| = 0 or |Im(〈x, e(t)〉)| = 0 or both. Hence,

|〈x, e(t)〉| = 0 or 1.

Since x 6= 0, there should exist a t∗ such that |〈x, e(t∗)〉| = 1 which implies that

there is a |λ0| = 1 such that x = λ0e(t
∗), and that 〈x, e(t)〉 = 0 for every t for which
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there is a λ ∈ C, |λ| = 1 and e(t) 6= λe(t∗). But this contradicts the continuity of e.

By contradiction, the integrand in (2.10) is not zero at every point.

Next, since the integrand is continuous, for each x, ‖x‖ = 1,

∫ 1

0

|Re(〈x, e(t)〉)| + |Im(〈x, e(t)〉)| − |Re(〈x, e(t)〉)|2 − |Im(〈x, e(t)〉)|2 dt > 0.

Then, since the unit ball of C
d is compact,

α := d inf
‖x‖=1

∫ 1

0

|Re(〈x, e(t)〉)|+|Im(〈x, e(t)〉)|−|Re(〈x, e(t)〉)|2−|Im(〈x, e(t)〉)|2 dt > 0.

Clearly, limN→∞ αFN
= α. Then, (αFN

) is bounded below by a β > 0. For this β

errPCM(x) ≥ αFN
+ 1 − ‖x‖ ≥ β + 1 − ‖x‖

for every 0 < ‖x‖ ≤ 1, and for every N .

Third,
∑N

n=1 ‖en − en+1‖ ≤ |e|BV =: M . Then, by Theorem 5, for every N ,

errΣ∆(x) ≤ d

N
(1 +M).

Choose N0 ≥ d(1 +M)/β. Then

∀N ≥ N0, errΣ∆(x) ≤ d

N
(1 +M) ≤ β ≤ αFN

+ 1 − ‖x‖ ≤ errPCM(x)

for every 0 < ‖x‖ ≤ 1.

Example 2. Real Harmonic Frames Hd
N = {eN

n }N
n=1 for R

d for d = 2k are defined

by

eN
n =

1√
k

(
cos(2πn/N), sin(2πn/N), . . . , cos(2πkn/N), sin(2πkn/N)

)
.

Hd
N come from the curve

e(t) =
1√
k

(
cos(2πt), sin(2πt), . . . , cos(2πkt), sin(2πkt)

)
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by regularly sampling that curve. Hd
N is a FUNTF for each N . It can be shown

that the frame variation of each Hd
N can be bounded by the number

M = |e|BV = 2π

√√√√1

k

k∑

j=1

j2.

The family H2
N is also known as the family of roots of unity frames for R

2. Our

simulations show that the smallest N0 that satisfy the condition given in Theorem 13

is 17.

Real Harmonic Frames Hd
N for R

d for d = 2k + 1 are defined by

eN
n =

1√
k

( 1√
2
, cos(2πn/N), sin(2πn/N), . . . , cos(2πkn/N), sin(2πkn/N)

)
.

In this case, Hd
N come from the curve

e(t) =
1√
k

( 1√
2
, cos(2πt), sin(2πt), . . . , cos(2πkt), sin(2πkt)

)
,

such that M = |e|BV = 2π
√

1
k

∑k
j=1 j

2.

2.3 Comparison of Multibit PCM and 1-bit Sigma-Delta

If the amplitude of a signal x is low, then a b-bit PCM does not use all of

its dynamic range. For instance, if ‖x‖ ≤ δ/2, then for each frame coefficient,

|〈x, en〉| ≤ δ/2, so Qδ(〈x, en〉) = ±δ/2. Therefore, b-bit PCM uses only 1-bit to

quantize x. As a result, we have the following result by Theorem 9

Theorem 14. Let b ≥ 2, δ = 21−b and let x ∈ C
d satisfy 0 < ‖x‖ ≤ δ/2. Let

F = {en}N
n=1 be a FUNTF for C

d. Then, the b-bit PCM error satisfies

errPCM(x, F, b) ≥ δ

2
(αF + 1) − ‖x‖,
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where αF is defined as in (2.5).

Proof. For 0 < ‖x‖ ≤ δ/2,

errPCM(x, F, b) =
δ

2
errPCM(

2

δ
x, F, 1) ≥ δ

2
(αF + 1 − ‖2

δ
x‖) =

δ

2
(αF + 1) − ‖x‖.

As a result of Theorem 14, we have the counterparts of 1-bit comparison

theorems, Theorem 11 and Theorem 13, for the multibit case.

Theorem 15. Let b ≥ 2 and let δ = 21−b. Let {FN = {eN
n }N

n=1} be a family of

FUNTFs for C
d. Then,

∀ε > 0, ∃N0 > 0, ∀N ≥ N0, errΣ∆(x, F, 1) ≤ errPCM(x, F, b).

for every x, 0 < ‖x‖ ≤ (δ/2) − ε.

Proof. By Theorem 7, errΣ∆(x, F, 1) ≤ KN−1/2d for some constantK. Given ε > 0,

choose N0 ≥ (K/ε)2d. Then, for any N ≥ N0, and for every x, 0 < ‖x‖ ≤ (δ/2)− ε,

errΣ∆(x, F, 1) ≤ KN−1/2d ≤ ε ≤ errPCM(
2

δ
x, F, 1).

Theorem 16. Let e : [0, 1] → {x : ‖x‖ = 1} be continuous function of bounded

variation for which FN = {e(n/N)}N
n=1 is a FUNTF for C

d for every N . Then,

∃N0 > 0 such that ∀N ≥ N0, errΣ∆(x, F, 1) ≤ errPCM(x, F, b)

for every x, 0 < ‖x‖ ≤ δ/2.
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Proof. The proof is essentially the same as the proof of Theorem 13.

The class of frames that we consider in Theorem 13 and Theorem 16 include

the family of Harmonic frames for R
d (Example 2), and Harmonic frames for C

d.

If we choose any d columns of the N × N DFT matrix, and form a new matrix L

using these d columns, then, the rows of (1/
√
d)L constitute a finite unit norm tight

frame for C
d. We think that it is important to understand how the multibit PCM

quantization error function behaves for this family of frames.

In the remainder of this section, we focus on a family {FN = {e(n/N)}N
n=1} of

FUNTFs for C
d coming from a continuous curve e of bounded variation. For any

x ∈ C
d, ‖x‖ ≤ 1, the b-bit PCM quantized estimate x̃N

b is given by

x̃N
b =

d

N

N∑

n=1

Qδ(〈x, e(
n

N
)〉)e( n

N
).

where δ = 21−b. Then, x̃N
b is nothing but a Riemann sum of the integral

Φ(x) := d

∫ 1

0

Qδ(〈x, e(t)〉)e(t)dt.

The integrand is piecewise constant and it has finitely many jumps since e is of

bounded variation. Therefore,

∣∣∣∣∣
d

N

N∑

n=1

Qδ(〈x, e(
n

N
)〉)e( n

N
) − d

∫ 1

0

Qδ(〈x, e(t)〉)e(t)dt
∣∣∣∣∣ = O(

1

N
), as N → ∞.

(2.11)

We would like to note that Φ(x) might not be equal to x, for every x. Figure 2.1

and Figure 2.2 depict two such examples. Thus, if Φ(x) 6= x, the PCM quantization

error errΣ∆(x, FN , b) does not even converge zero, as N → ∞. Moreover, N−1 is the
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Figure 2.1: The limit Φ of 2-bit PCM quantization error function for the family H2
N .

best possible error decay rate the quantity in (2.11) when the integrand has jump

discontinuities.

By (2.11), 1-bit Sigma-Delta can potentially outperform b-bit PCM at every

point in the unit ball of C
d. Since the families of the type have bounded frame

variation, i.e.,

∃M > 0, such that ∀N, σ(FN , p) ≤M,

1-bit Sigma-Delta error errΣ∆(x, FN , 1) asymptotically decays at least as fast as

N−1 as N → ∞. In fact, by Theorem 5 and Theorem 6, and the bounded frame
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Figure 2.2: The limit Φ of 3-bit PCM quantization error function for the family H2
N .
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variation property, we have

errΣ∆(x, FN , 1) ≤ d

N
(σ(FN , p) + 1) ≤ d

N
(M + 1).

We can always choose M = |e|BV .

In [47] Güntürk showed that 1-bit Sigma-Delta error for bandlimited signals

can be bounded above by a bound that decays asymptotically in the oversampling

rate λ, faster than λ−1 by using number theoretical tools. In fact, he proved that for

every bandlimited signal x and ε > 0, there is a constant Cε,x such that the Sigma-

Delta error can be uniformly bounded above by Cε,xλ
−4/3+ε. Benedetto, Powell and

Yilmaz [10] proved that b-bit Sigma-Delta error decays faster than N−1 for certain

classes of frames. In fact, they proved a more general version of Theorem 17 with

additional assumptions. Theorem 17 and a proof can also be found in [10].

Theorem 17. Let d be an even integer and let {Hd
N} be the family of real Harmonic

frames for R
d. For an x ∈ R

d, ‖x‖ ≤ 1, let x̃b denote the first order b-bit Sigma-

Delta estimate. Let δ = 21−b. Then there is a constant Cx depending on x, such

that

‖x− x̃b‖ ≤ Cxδ
logN

N5/4
.

These improved error bounds for Sigma-Delta show that, Sigma-Delta error, in

fact, is decaying faster than the PCM error for certain families of frames, including

{Hd
N} for d even. PCM error function for these families of frames is closely related

to Φ(.). Therefore, we investigate the function Φ(.) more carefully.

Definition 9. t ∈ [0, 1] is a quantization crossing of x if

∃n ∈ N such that 〈x, e(t)〉 = nδ.
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Lemma 3. Let x ∈ R
d, ‖x‖ ≤ 1, and let t∗ be a quantization crossing of x.

Suppose further that e is differentiable at every point. If 〈x, e′(t∗)〉 6= 0, then there

is a neighborhood W of x and a C1 function τ : W → [0, 1] such that

• τ(x) = t∗, and

• 〈y, e(τ(y))〉 = 〈x, e(t∗)〉, ∀y ∈W .

Proof. Let G(y, t) = 〈y, e(t)〉 − 〈x, e(t∗)〉. Then, G(x, t∗) = 0, and

∂G

∂t
(x, t∗) = 〈x, e′(t∗)〉 6= 0.

The result follows by the Implicit Function Theorem.

Theorem 18. Let x0 ∈ R
d, ‖x0‖ ≤ 1, and assume that 〈x0, e

′(t∗)〉 6= 0 for any

quantization crossing t∗ of x0. Moreover, if e is differentiable at every point in a

neighborhood of t∗, then Φ(.) is C1 around a neighborhood of x0.

Proof. Let 0 ≤ t1 < t2 < · · · < tr ≤ 1 be distinct quantization crossings of x0. Then,

by Lemma 3, there is a neighborhood W of x0 and C1 functions τj : W → [0, 1] such

that τj(x0) = tj and

〈x, e(τj(x))〉 = 〈x0, e(tj)〉, ∀j = 1, . . . r.

For notational convenience, we let τ0 ≡ 0 and τr+1 ≡ 1 on W .

W can be chosen such that

Q(〈x, e(t)〉) =

(
njδ +

δ

2

)
,∀t ∈ [τj(x), τj+1(x)),
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for every j = 0, . . . , r and some integers nj. Since e is continuous, nj and nj+1 must

be successive integers. Moreover, nj+1 − nj = sign(〈x, e′(tj)〉). Then, on W , Φ has

the form

Φ(x) =
r∑

j=0

(
njδ +

δ

2

)∫ τj+1(x)

τj(x)

e(t)dt.

Since τj are C1 on W , so is Φ. In particular,

DΦ(x0) =
r∑

j=0

(
njδ +

δ

2

)
[e(tj+1)Dτj+1(x0) − e(tj)Dτj(x0)]

= δ

r∑

j=0

sign(〈x, e′(tj)〉) e(tj)Dτj(x0).

t∗ is an isolated quantization crossing of x if 〈x, e′(t∗)〉 6= 0. In particular,

if 〈x, e′(t∗)〉 6= 0 for every quantization crossing t∗, then, x has only finitely many

quantization crossings.

In general, if x has only finitely many quantization crossings, e(.) leaves cuts

every hyperplane {y : 〈x, y〉 = kδ} at most at one point, i.e., if 〈x, e(t∗)〉 = kδ for

some integer k, then there is an η > 0 such that

i. either {e(t∗ + t) : t ∈ (0, η)} and {e(t∗ − t) : t ∈ (0, η)} are separated by the

hyperplane {y : 〈x, y〉 = kδ} (the case 〈x, e′(t∗)〉 6= 0),

ii. or e(.) is tangent to the hyperplane (the case 〈x, e′(t∗)〉 = 0).

Therefore,

Theorem 19. Let x ∈ R
d, ‖x‖ ≤ 1. If x has only finitely many quantization

crossings. Then, Φ is continuous at x.
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Figure 2.3: 40th and 41st roots of unity frames, 2-bit PCM vs. 1-bit and 2-bit

Sigma-Delta. In the white area, the Sigma-Delta quantization error is less than the

PCM quantization error.
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Figure 2.4: 60th, 61st and 80th roots of unity frames, 2-bit PCM vs. 1-bit and 2-bit

Sigma-Delta. In the white area, the Sigma-Delta quantization error is less than the

PCM quantization error.
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Figure 2.5: 100th and 101st roots of unity frames, 2-bit PCM vs. 1-bit and 2-bit

Sigma-Delta. In the white area, the Sigma-Delta quantization error is less than the

PCM quantization error.
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Figure 2.6: 200th and 201st roots of unity frames, 2-bit PCM vs. 1-bit and 2-bit

Sigma-Delta. In the white area, the Sigma-Delta quantization error is less than the

PCM quantization error.
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Figure 2.7: 40th and 41st roots of unity frames, 3-bit PCM vs. 2-bit and 3-bit

Sigma-Delta. In the white area, the Sigma-Delta quantization error is less than the

PCM quantization error.
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Figure 2.8: 60th and 61st roots of unity frames, 3-bit PCM vs. 2-bit and 3-bit

Sigma-Delta. In the white area, the Sigma-Delta quantization error is less than the

PCM quantization error.
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Figure 2.9: 81st, 100th and 101st roots of unity frames, 3-bit PCM vs. 1-bit and

2-bit Sigma-Delta. In the white area, the Sigma-Delta quantization error is less than

the PCM quantization error.
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Figure 2.10: 200th and 201st roots of unity frames, 3-bit PCM vs. 1-bit and 2-bit

Sigma-Delta. In the white area, the Sigma-Delta quantization error is less than the

PCM quantization error.
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Chapter 3

New Quantization Techniques

In this chapter, we shall consider the quantization problem in the finite frame

setting. In the frame quantization setting, typically, a finite set of numbers, an

alphabet is specified. The midrise quantization alphabet Aδ (Definition 5) is an

example of an alphabet with equally spaced numbers.

Given an x and a frame {en}N
n=1 with the dual {ẽn}N

n=1, the finite frame quan-

tization problem is the problem of finding a linear combination of frame elements

with coefficients coming from the pre-specified alphabet, which is close to x in some

prescribed way. In other words, if ρ is a pre-specified metric, then we want to find

qn in the alphabet such that the quantity

x̃ =
N∑

i=1

qnẽn

makes the distance ρ(x, x̃) sufficiently small.

The geometry of the coefficient space and the signal space give us a clearer

picture of the quantization problem. The main objects in the coefficient space are

the range R(L) of the analysis matrix L, the null space N (L̃∗) of the synthesis

matrix L̃∗ of the dual frame, and the set

S = {q = (qn)N
n=1 : qn in the alphabet}

of quantized coefficients. If the numbers in the alphabet are equally spaced, then

S is a rectangular grid. The matrix LL̃∗ is the orthogonal projection onto R(L).
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Using the definition of frames (Definition 1) we have

A‖x− L̃∗q‖2 ≤ ‖Lx− LL̃∗q‖2 ≤ B‖x− L̃∗q‖2, (3.1)

where A and B are the lower and upper frame bounds of {en}N
n=1. In particular,

when {en}N
n=1 is a finite unit-norm tight frame, L̃ = (d/N)L and

‖x− d

N
L∗q‖2 =

d

N
‖Lx− d

N
LL∗q‖2. (3.2)

Having (3.1), (3.2) and the geometry of the coefficient space in mind, we

reformulate the quantization problem as follows: “Given a frame {en}N
n=1 and x ∈

R
d, find a q ∈ S such that the projection of q onto R(L) is sufficiently close to Lx.”

We would like to note that

‖Lx− LL̃∗q‖ = min{‖q − ξ‖ : ξ ∈ Lx+ N (L̃∗)}. (3.3)

The main object in the signal space is the set

L̃∗(S) = {
N∑

n=1

qnẽn : qn in the alphabet}.

In particular, if the alphabet is Aδ, then

L̃∗(S) ⊆ δ

2
L̃∗(2Z

N + 1) =
δ

2

N∑

n=1

ẽn + δL̃∗(ZN),

and L̃∗(ZN) is an additive subgroup of R
d.

In Section 3.1, we give a general description of a perfect quantizer, and give

a characterization of a perfect quantizer in this general setting. For the remainder

of the chapter, we consider x ∈ R
d, finite unit-norm tight frames for R

d, Euclidean

norm for metric, and the midrise quantization alphabet Aδ only.
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In Section 3.2 we shall talk about how we can use the geometry of the coefficient

space. We shall consider the Sigma-Delta quantization in this context. We present a

method to eliminate the boundary terms for the second order Sigma-Delta scheme. In

Subsection 3.2.3 we shall give a description of the generalized Sigma-Delta schemes.

In Section 3.3 we shall talk about how the geometry and the group structure of

L̃∗(ZN) can be exploited. We shall use the generalized Sigma-Delta schemes, and

the almost periodic solutions of those schemes in Section 3.3.

In Section 3.4, we shall provide a new 1-bit quantization method that uses

minimization techniques. Frame quantization problem is inherently a combinatorial

minimization problem. We replace the combinatorial constraint with a penalty

term. We show that the solution of this new minimization problem are close to the

constraint set {q ∈ R
N : qn = ±1}.

3.1 Perfect Quantizer

Throughout this section, (X, d) is a metric space, and S ⊆ X is a finite of X.

We call a map p : X → S a quantizer relative to S. Every quantizer induces an

error function, which is defined by

∀y ∈ X, errp(y) = d(y, p(y)).

We use the notation A to denote the closure of a subset A ⊆ X.

Definition 10. Let (X, d) be a metric space, S ⊆ X be a discrete subset. Let

x ∈ S. The set of all points y ∈ X that are closer to x than to any other point in
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S, i.e.,

C(x) := {y ∈ X : d(y, x) < d(y, x′), ∀x′ ∈ S − {x}}

is the Voronoi cell or Voronoi region of x. In this case, x is the center of the Voronoi

cell C(x).

Voronoi cells are disjoint, open subsets of X. Their union might not cover all

of X since there might be points in X that are on the mutual boundary of two or

more Voronoi cells. On the other hand, the union of the closures of all Voronoi cells

is equal to X. (see Figure 3.1)

Definition 11. A quantizer p : X → S is a perfect quantizer if it maps every

y ∈ X to the center x of the Voronoi region that it belongs to. If y is on a mutual

boundary of two or more Voronoi cells, then p maps y to the center of one of these

cells. Equivalently, p : X → S is a perfect quantizer if it satisfies

∀x ∈ S, C(x) ⊆ p−1({x}) ⊆ C(x), (3.4)

where p−1({x}) = {y ∈ X : p(y) = x}.

A perfect quantizer achieves the minimum possible quantization error, hence

the name perfect quantizer.

We can define a perfect quantizer in many equivalent ways, which we summa-

rize in Lemma 4.

Lemma 4. The following assertions are equivalent.

i. ∀x ∈ S, C(x) ⊆ p−1({x}) ⊆ C(x),
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Figure 3.1: Voronoi regions for four tight frame constellation
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ii. ∀x ∈ S, C(x) ⊆ p−1({x}) ⊆ C(x),

iii. ∀x ∈ S, C(x) ⊆ p−1({x}),

iv. ∀x ∈ S, C(x) ⊆ p−1({x}).

A perfect quantizer p satisfies two nice properties. It fixes the elements of S.

Also the error function errp(x) = d(x, p(x)) of a perfect quantizer is continuous

in the metric. Theorem 20 shows that the converse is also true, i.e., these two

properties are sufficient conditions for a perfect quantizer.

Theorem 20. p is a perfect quantizer if and only if

i. ∀x ∈ S, p(x) = x,

ii. errp(y) = d(y, p(y)) is continuous in the metric d.

Proof. For the forward implication, assume that p is a perfect quantizer. For every

x ∈ S, p(x) = x by Definition 11. Now, let (yn) be a convergent sequence with

limn→∞ yn = y. If y ∈ C(x) for some x ∈ S, then for all but finitely many n, yn is

in C(x) since C(x) is open. Therefore,

lim
n→∞

errp(yn) = lim
n→∞

d(yn, x) = d(y, x) = lim
n→∞

errp(y).

If y lies in a mutual boundary of two or more Voronoi cells, say with centers

x1, . . . , xr, then

d(y, x1) = · · · = d(y, xr),

and p maps y to one of those points, say p(y) = x1. (We can always renumber
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finitely many xk to make p(y) = x1.) Consider the subsequences

(yn)n∈Jk
, Jk = {n : p(yn) = xk}.

Renumber those subsequences so that, with no ambiguity, (yn)n∈Jk
= (y

(k)
n )n≥1. It

is enough to show that limn→∞ errp(y
(k)
n ) = errp(y). But, for any k,

lim
n→∞

errp(y
(k)
n ) = lim

n→∞
d(y(k)

n , xk) = d(y, xk) = d(y, x1) = lim
n→∞

errp(y).

Hence, errp is continuous.

For the converse, assume (i) and (ii). p(x) = x by (i), so p−1({x})∩C(x) 6= ∅.

We want to show that C(x) ⊆ p−1({x}). For a contradiction, assume not. Then,

there exist a y ∈ p−1({x})∩C(x), and a sequence (yn) in the open set C(x)\p−1({x})

such that limn→∞ yn = y.

Since y ∈ p−1({x}), there exist xn ∈ p−1({x}) such that limn→∞ xn = y. Since

errp is continuous by (ii), we have

d(y, x) = lim
n→∞

d(xn, x) = lim
n→∞

errp(xn) = errp(y) = d(y, p(y)). (3.5)

Then, by (3.5), we have

lim
n→∞

errp(yn) = errp(y) = d(y, p(y)) = d(y, x). (3.6)

For every n, p(yn) 6= x. Then, there is an x′ ∈ S\{x}, and a subsequence, (ynl
) such

that liml→∞ p(ynl
) = x′. Then,

0 = lim
n→∞

(err(yn)−d(y, x)) = lim
l→∞

(d(ynl
, p(ynl

))−d(ynl
, x)) = d(y, x′)−d(y, x) (3.7)

which implies that d(y, x′) = d(y, x). However, y ∈ C(x), so we must have that

d(y, x) < d(y, x′). Contradiction.
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By contradiction,

∀x ∈ S, C(x) ⊆ p−1({x}).

Hence the result follows by Lemma 4.

3.2 Sparse Matrices and Periodic Solutions

In this section, we shall consider the geometry of the coefficient space in the

frame quantization setting. With (3.3) in mind, given x ∈ R
d and a FUNTF {xn}N

n=1

with analysis matrix L, we would like to find a q = (qn) such that q−Lx is sufficiently

close to N (L∗).

One approach is to find a basis, or more generally a spanning set for N (L∗).

Given a spanning set {b1, . . . , br}, we form a matrix B, whose k − th column is bk.

Then, L∗B ≡ 0, and for any u ∈ R
r, we have

‖q−Lx−Bu‖2 ≥ d

N
‖LL∗(q−Lx−Bu)‖2 =

d

N
‖L∗(Lx+Bu−q)‖2 = ‖x− d

N
L∗q‖2,

(3.8)

since (d/N)LL∗ is an orthogonal projection. Therefore, one might want to find a u

and a quantized sequence q such that ‖q − Lx − Bu‖ is smaller than a prescribed

tolerance.

For a fast and memory efficient numerical algorithm, one might want to choose

a sparse spanning set for N (L∗). Since {xn}N
n=1 is a FUNTF for x ∈ R

d, any d+ 1

element subset of {xn}N
n=1 is linearly dependent. Therefore, we can choose bl ∈ R

N

such that

xk +
d∑

l=1

bl(k)xk+l = 0, ∀k = 1, . . . , N − d,
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and bl(k) = 0 otherwise. Then, {b1, . . . , bN−d} gives a basis for N (L∗). Furthermore,

each bl has at most d+ 1 nonzero entries.

However, one might want to use sparser vectors. Also we might want to

impose certain restrictions on the entries of bl, for instance, for numerical stability.

In this case, we might want to approximate N (L∗) with a sparse set of vectors. By

“approximating N (L∗)”, we mean finding a sparse set of vectors {b1, . . . , br} such

that the span of those vectors is close to N (L∗) in the sense that the quantity

‖L∗B‖a,b = sup
‖u‖b=1

‖L∗Bu‖a

is small, where ‖.‖a and ‖.‖b are two norms on R
d and R

r, respectively. (This

distance, in fact, is ambiguous, because it depends on the choice of the basis.

‖L∗B‖a,b/‖B‖b,r is a better distance measure, however for the practical purposes

in this section, we use ‖L∗B‖a,b.) We shall show that ‖L∗B‖a,b is closely related to

the frame variation [10, 9] in the coming subsections.

Similar to (3.8), for any u ∈ R
r, we have

‖x− d

N
L∗q‖a =

d

N
‖L∗(Lx− q)‖a

≤ d

N
‖L∗(Lx+Bu− q)‖a +

d

N
‖L∗Bu‖a (3.9)

≤ C‖q − Lx−Bu‖a +
d

N
‖L∗B‖a,b‖u‖b

where C > 0 is a constant depending on ‖.‖a and L. We can choose C =
√
d/N for

the usual Euclidean norm.

Notation 1. We intend to use the notation ‖.‖a and ‖.‖b for arbitrary norms defined

on an m-dimensional Euclidean space R
m. However, we reserve the notation ‖.‖p to
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denote the p-norm (1 ≤ p <∞)

∀v ∈ R
m, ‖v‖p =

(
m∑

k=1

|v(k)|p
)1/p

,

and the notation ‖.‖∞ to denote the infinity-norm

∀v ∈ R
m, ‖v‖∞ = max{|v(k)| : k = 1, . . . ,m}.

When p = 2, we drop the subscript.

In the remainder of this section, for notational convenience, we sometimes

index frames with ZN . In this case, without mentioning, we view every v ∈ R
m as

a real valued function v : Zm → R, i.e.,

∀t ∈ Z, ∀k = 1, . . . ,m v(tm+ k) = v(k).

3.2.1 First Order Sigma-Delta Scheme

Let x ∈ R
d, {en}N

n=1 a FUNTF for R
d. First order Sigma-Delta scheme for

finite frames is defined by the iteration

q(n) = Qδ(u(n− 1) + Lx(n)) (3.10)

u(n) = u(n− 1) + Lx(n) − q(n)

for n = 1, . . . , N , with the initial condition u(0), and the input sequence Lx. Qδ is

the uniform quantizer with step size δ, defined in Definition 5.

(3.10) gives rise to the matrix equation q = Lx−Bu+η, where u ∈ R
N−1 and
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B is the N × (N − 1) matrix

B =




1

−1 1

−1
. . .

. . . 1

−1




, η =




u(0)

0

...

0

u(N)




i.e., for every k, b(k, k) = 1, b(k + 1, k) = −1, and all the other entries of B are

equal to zero. In other words, B is defined by

∀n = 2, . . . , N − 1, ∀u ∈ R
N−1, (Bu)(n) = u(n) − u(n− 1),

and (Bu)(1) = u(1), (Bu)(N) = −u(N − 1).

The columns of the matrix B spans an N − 1 dimensional subspace of R
N . If

we use the regular Euclidean norm for ‖.‖a, and ‖.‖∞ for ‖.‖b, then the quantity

‖L∗B‖a,b is less than or equal to the frame variation [10]

σ({en}N
n=1, p) =

N−1∑

n=1

‖en − en+1‖

for the identity permutation p, p(k) = k. We prove this result in Lemma 6 using

Lemma 5.

Lemma 5. Let A be an M × r matrix with columns {a1, . . . , ar}. Then,

‖A‖p,∞ = sup
‖u‖∞=1

‖Au‖p ≤
r∑

k=1

‖ak‖p.

Proof. Au =
∑
u(k)ak. Therefore, it is it is enough to show

‖Au‖p = ‖
r∑

k=1

u(k)ak‖p ≤
r∑

k=1

|u(k)| ‖ak‖p ≤ ‖u‖∞
r∑

k=1

‖ak‖p.
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Lemma 6. Let ‖.‖a = ‖.‖, ‖.‖b = ‖.‖∞, and let the matrix B be as above. For a

permutation p, let L be the analysis matrix of the permuted frame {ep(n)}N
n=1. Then,

‖L∗B‖2,∞ ≤ σ({en}N
n=1, p) =

N−1∑

n=1

‖ep(n) − ep(n+1)‖.

Proof. The nth column of L∗B is ep(n)−ep(n+1). Therefore, the inequality is a direct

result of Lemma 5.

Benedetto, Powell and Yilmaz [10] proved Theorem 21. We shall give an

alternative proof using (3.9).

Theorem 21. Let {en}N
n=1 be a FUNTF for R

d, let p be a permutation of {1, . . . , N},

let |u(0)| ≤ δ/2, and let x ∈ R
d satisfy ‖x‖ ≤ 1. Let x̃ denote the 1st order Sigma-

Delta estimate of x. Then,

‖x− x̃‖ ≤ d

N

(δ
2
σ({en}N

n=1, p) + |u(0)| + |u(N)|
)
.

Proof. By (3.10) if |u(0)| ≤ δ/2, then it is not hard to show that

|u(n)| ≤ |(u(n− 1) − Lx(n)) −Qδ(u(n− 1) − Lx(n))| ≤ δ/2.

Let p be a permutation, and let L denote the analysis matrix of the frame {ep(n)}N
n=1.

Then

‖L∗η‖ = ‖u(0)ep(1) − u(N)ep(N)‖ ≤ |u(0)| + |u(N)|.

Therefore, by (3.9), we have

‖x− x̃‖ ≤ d

N
‖L∗η‖ +

d

N
‖L∗B‖2,∞‖u‖∞ ≤ d

N

(
δ

2
‖L∗B‖2,∞ + |u(0)| + |u(N)|

)
.

The result follows using Lemma 6.
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We could have chosen a slightly different B, and an η accordingly. Namely, if

B =




1 −1

−1 1

−1
. . .

. . . 1

−1 1




, η =




u(0) − u(N)

0

...

0

0




,

then we would have a slightly different version of Theorem 21. In this case, we have

the inequality

‖x− x̃‖ ≤ d

N

(δ
2

∑

n∈ZN

‖ep(n) − ep(n+1)‖ + |u(0) − u(N)|
)
. (3.11)

The proof of (3.11) is very similar to the proof of Theorem 21, so we shall not

provide a separate proof.

3.2.2 Second Order Sigma-Delta Scheme

Let x ∈ R
d, {en}N

n=1 a FUNTF for R
d. Second order Sigma-Delta scheme for

finite frames is defined by the iteration

q(n) = Qδ(2u(n− 1) − u(n− 2) + Lx(n)) (3.12)

u(n) = 2u(n− 1) − u(n− 2) + Lx(n) − q(n)

for n = 1, . . . , N , with the initial conditions u(−1) and u(0), and the input sequence

Lx.

(3.12) gives rise to a matrix equation of the form q = Lx − Bu + η for the

following choices of B and η.
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B =




1

−2 1

1 −2
. . .

1
. . . 1

. . . −2

1




, η =




u(−1) − 2u(0)

u(0)

0

...

0

u(N − 1)

u(N) − 2u(N − 1)




B =




1 1 −2

−2 1 1

1 −2
. . .

1
. . . 1

. . . −2 1

1 −2 1




, η =




(u(−1) − u(N − 1)) − 2(u(0) − u(N))

u(0) − u(N)

0

...

0

0




We shall focus on the second choice. B is a cyclical convolution matrix, which

can also be defined as

∀u ∈ R
d, ∀n ∈ ZN , (Bu)(n) = u(n) − 2u(n− 1) + u(n− 2).

The quantity ‖L∗B‖2,∞ is closely related to the second frame variation [9]. We

establish this relation in Lemma 7.

Lemma 7. Let ‖.‖a = ‖.‖, ‖.‖b = ‖.‖∞, and let the matrix B be as above. For a

permutation p, let L be the analysis matrix of the permuted frame {ep(n)}N
n=1. Then,

‖L∗B‖2,∞ ≤
∑

n∈ZN

‖ep(n) − 2ep(n+1) + ep(n+2)‖.
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Proof. The nth column of L∗B is ep(n) −2ep(n+1) + ep(n+2). Therefore, the inequality

is a direct result of Lemma 5.

If we used the first choice for B in this subsection, then we would have

‖L∗B‖2,∞ ≤
N−2∑

n=1

‖ep(n) − 2ep(n+1) + ep(n+2)‖ = σ2({en}N
n=1, p),

where σ2({en}N
n=1, p) is the second frame variation.

Benedetto, Powell and Yilmaz [9] proved the following upper bound for the

1-bit second order Sigma-Delta scheme, with a slight change in notation:

‖x−x̃‖ ≤ d

N

(
‖u‖∞σ2({en}N

n=1, p)+|u(N−1)| ‖ep(N−1)−ep(N)‖+|u(N)−u(N−1)|
)
.

(3.13)

A slightly different version of (3.13) is in Theorem 22.

Theorem 22. Let {en}N
n=1 be a FUNTF for R

d, let p be a permutation of {1, . . . , N},

and let x ∈ R
d satisfy ‖x‖ ≤ 1. Let x̃ denote the 1-bit second order Sigma-Delta

estimate of x. Then,

‖x− x̃‖ ≤ d

N

(
‖u‖∞

∑

n∈ZN

‖ep(n) − 2ep(n+1) + ep(n+2)‖ + |u(N) − u(0)| ‖ep(1) − ep(2)‖

+ |u(N) − u(N − 1) − u(0) + u(−1)|
)
. (3.14)

Proof. Let p be a permutation, and let L denote the analysis matrix of the frame

{ep(n)}N
n=1. Then

‖L∗η‖ = ‖(u(N) − u(0))(ep(1) − ep(2)) + (u(N − 1) − u(−1) − u(N) + u(0))ep(1)‖.
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Therefore, by (3.9), we have

‖x− x̃‖ ≤ d

N
‖L∗η‖ +

d

N
‖L∗B‖2,∞‖u‖∞ (3.15)

≤ d

N

(
‖L∗B‖2,∞‖u‖∞ + |u(N) − u(0)| ‖ep(1) − ep(2)‖

+|u(N) − u(N − 1) − u(0) + u(−1)|
)
.

The result follows using Lemma 7.

In certain cases, for example, for the family of Harmonic frames FN , the second

frame variation satisfies

σ2(FN , p) ≤
C

N
,

for some constant C > 0 [9]. However, since we have extra terms in (3.15), the

upper bound has a decay rate of N−1. If we could eliminate these extra terms, then

we could have an error decay rate of N−2.

Having (3.12) in hand, we have




1 1 . . . 1

N N − 1 . . . 1


 (Lx− q) =




1 −1

1 0







u(N) − u(0)

u(N − 1) − u(−1)


 .

(3.16)

Conversely, if Lx and q, u(N), u(N − 1), u(0) and u(−1) were given that satisfies

(3.15), then we could set

u(n) = u(0) + (N − n)(u(−1) − u(0)) +
n∑

k=1

(n− k + 1)(Lx(k) − q(k)), (3.17)

for n = 1, . . . , N − 2, and this u would satisfy the first equation in (3.12).

The extra terms in (3.15) vanish if and only if the right hand side of (3.16) is

zero.
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The quantity
∑N

n=1 q(n) is an integer, and all of the values that it can get lie

in the set

{−N + 2k : k = 0, . . . , N}. (3.18)

Therefore, the best possible value that
∑N

n=1 q(n) can get is the integer α(x) in

this set that is closest to
∑N

n=1〈x, en〉. Given a q, we can always generate a q̃ by

switching the signs of some of the entries of q such that α(x) =
∑N

n=1 q̃(n).

The quantity
∑N

n=1(N − n + 1)q(n) is also an integer. Moreover, all of the

values that this quantity can get lie in the set

{2k −N(N + 1)/2 : k = 0, . . . , N(N + 1)}. (3.19)

Given a q that satisfies α(x) =
∑N

n=1 q(n), switching the signs of two entries

with opposite signs leaves the value of
∑N

n=1 q(n) intact. For instance, if q(k) = −1

and q(k + 1) = 1 are two successive entries, then switching the signs of these two

entries does not affect the value of
∑N

n=1 q(n). However, same operation increases

the value of
∑N

n=1(N − n + 1)q(n) by 2. Therefore, if β(x) is the closest integer

in the set in (3.19) to the quantity
∑N

n=1(N − n + 1)〈x, en〉, we can find a q that

simultaneously satisfies

α(x) =
N∑

n=1

q(n) (3.20)

β(x) =
N∑

n=1

(N − n+ 1)q(n). (3.21)

Having this q in hand, (3.17) gives us a u that satisfies
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


1 −1

1 0







u(N) − u(0)

u(N − 1) − u(−1)


 =




∑N
n=1〈x, en〉 − α(x)

∑N
n=1(N − n+ 1)〈x, en〉 − β(x)


 .

(3.22)

In particular,

|u(N) − u(0) − u(N − 1) + u(−1)| = |
N∑

n=1

〈x, en〉 − α(x)|.

With (3.20) and (3.22) in hand, we have a direct corollary of Theorem 22.

Theorem 23. Let N be an even integer, and let {en}N
n=1 be a zero sum FUNTF.

With u and q given by (3.20) and (3.22), we have the upper bound

‖x− x̃‖ ≤ d

N

(
‖u‖∞

∑

n∈ZN

‖en − 2en+1 + en+2‖ + ‖ep(1) − ep(2)‖.
)

3.2.3 Generalized Sigma-Delta Schemes

All of the Sigma-Delta schemes can be expressed as a convolution equation

q(n) = Qδ((h ∗ u)(n) + Lx(n)) (3.23)

u(n) = (h ∗ u)(n) + Lx(n) − q(n)

for n ≥ 1, where h ∈ R
N . For instance, if h(1) = 1 and h(k) = 0 otherwise, we

obtain the first order Sigma-Delta scheme. If h(1) = 2, h(2) = −1 and h(k) = 0

otherwise, we obtain the second order Sigma-Delta scheme. If we choose

h(k) = (−1)r−k+1 r!

k! (r − k)!
, k = 1, . . . , r,

and h(k) = 0 otherwise, we obtain the rth order Sigma-Delta scheme [28, 46, 9].
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In the bandlimited setting, Güntürk constructed a family of finitely supported

filters (h(n)), and showed that the limit of the generalized Sigma-Delta error upper

bounds decrease exponentially in the oversampling rate, as the oversampling ratio

tends to infinity [46].

We consider (3.23) for the finite frame setting with the input sequence Lx.

For this setting, we choose h ∈ R
N such that h(r+ 1), . . . , h(N) = 0 for some index

r < N . In this case, we need r initial conditions u(0), u(−1), . . . , u(−r+ 1) in order

to be able to define (3.23) for every 1 ≤ n ≤ N .

A natural choice for B is

B =




1 h(r) . . . h(1)

h(1)
. . . . . .

...

...
. . . 1 h(r)

h(r) h(1) 1

. . .
...

...
. . .

h(r) h(r − 1) . . . 1




,

i.e., B is defined by

∀w ∈ R
N , ∀n ∈ ZN (Bw)(n) = w(n) + (h ∗ w)(n) = w(n) +

∑

k∈ZN

h(n− k)w(k).

Accordingly, given u, we define

∀n = 1, . . . , r η(n) =
r−n∑

k=0

h(n+ k)(u(−k) − u(N − k)),

and η(n) = 0 otherwise.
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A further generalization to the system (3.23) is given in

q(n) = Qδ(
n−1∑

k=n−d

b(n, k)u(k) + Lx(n)) (3.24)

u(n) =
n−1∑

k=n−d

b(n, k)u(k) + Lx(n) − q(n)

for n ≥ 1, where b : Z
2
N → R function such that b(n, n) = 1, and b(n, k) = 0 if 1 ≤

k < n−d or n < k ≤ N . Again, we need d initial conditions u(0), u(−1), . . . , u(−d+

1) in order to be able to define (3.24) for every 1 ≤ n ≤ N . In fact, we can define

(3.24) for every n ≥ 1 if we consider Lx an N -periodic sequence. A candidate for

B is

B =




1 b(1, N − d+ 1) . . . b(1, N)

b(2, 1) 1
. . .

...

... b(3, 2)
. . . b(d,N)

b(d+ 1, 1)
... 1

b(d+ 2, 2) 1

. . .
...

...
. . .

b(N,N − d) b(N,N − d+ 1) . . . 1




,

i.e., B is defined by

∀w ∈ R
N , ∀n ∈ ZN (Bw)(n) =

n∑

k=n−d

b(n, k)w(k).

Accordingly, given u, we define

∀n = 1, . . . , d η(n) =
d−n∑

k=0

b(n,N − k)(u(−k) − u(N − k)),
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and η(n) = 0 otherwise.

If {xn}n∈ZN
is a FUNTF for R

d, then, any d+1 element subset of this FUNTF

is linearly dependent. Then, we can choose b ∈ Z
2
N in such a way that

∀k = 1, . . . , N − d, xk +
d∑

l=1

b(k + l, k)xk+l = 0,

set b(n, n) = 1, and set b(n, k) = 0 otherwise. Then, L∗B ≡ 0. Since q = Lx+Bu+η,

we have

‖x− d

N
L∗q‖a ≤ d

N
‖L∗η‖a

by (3.9). We want to note that η = 0 if and only if u, defined for all n ≥ 1 is

N -periodic.

For this particular example, it is unrealistic to assume that we can find a u for

every x, since this would imply that x = (d/N)L∗q. On the other hand, we might

hope to find a u that satisfies the condition

∀ε > 0, ∃t,M > 0, ∀n ≥M, |u(n+ tN) − u(n)| ≤ ε. (3.25)

The condition (3.25) is closely related to the concept of almost periodicity.

We give the definition of almost periodic sequences in Definition 12, and prove that

every almost periodic sequence satisfy (3.25) in Theorem 24

Definition 12. A sequence u : Z → C is almost periodic if it is in the uniform

closure of the linear span of the set

{eγ : Z → C : 0 ≤ γ < 1},

where eγ(n) = e2πinγ. In other words, u : Z → C is almost periodic if for every
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ε > 0, there are c1, . . . , cr ∈ C and γ1, . . . , γr ∈ [0, 1) such that

∀n ∈ Z, |u(n) −
r∑

k=1

cke
2πinγk | ≤ ε.

Theorem 24. If a sequence u : Z → C is almost periodic then

∀ε > 0, ∃m ∈ N, ∀n ∈ Z, |u(m+ n) − u(n)| ≤ ε.

Proof. By Definition 12, for every ε > 0, there are c1, . . . , cr ∈ C and γ1, . . . , γr ∈

[0, 1) such that

∀n ∈ Z, |u(n) −
r∑

k=1

cke
2πinγk | ≤ ε/3.

Let α be such that 10α
∑r

k=1 |ck|ε > 3. Then, for every k, there are pk such that

|γk −
pk

10α
| ≤ 10−αε/3

r∑

k=1

|ck|.

Let m = 10α. Then,

|u(n) − u(m+ n)| ≤ |u(n) −
r∑

k=1

cke
2πitγk | + |

r∑

k=1

cke
2πinγk(1 − e2πimγk)|

+|u(m+ n) −
r∑

k=1

cke
2πi(m+n)γk |

≤ ε/3 +
r∑

k=1

|ck||(1 − e2πimγk)| + ε/3

≤ 2ε/3 +
r∑

k=1

|ck||mγk − pk|

≤ ε

Therefore, if u is almost periodic, then u satisfies (3.25) by Theorem 24.
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Theorem 25. Let u be a solution of the 1-bit generalized Sigma-Delta system (3.24)

that satisfies the condition (3.25). Then, for every ε > 0, there exists a q̃ ∈ R
N with

integer entries, and a constant C > 0 depending only on b such that

‖x− d

tN
L∗q̃‖a ≤ d

N
‖L∗B‖a,b‖ut‖b +

d

Nt
Cε, (3.26)

where ut ∈ R
N is defined by the quantity

∀n = 1, . . . , N, ut(n) =
1

t

t∑

k=1

u(kN + n+M).

Proof. Let q be the output of (3.24), and let

∀n = 1, . . . , N, q̃(n) =
t∑

k=1

q(kN + n+M).

Also, let ηt ∈ R
N be defined by

∀n = 1, . . . , d ηt(n) =
d−n∑

k=0

b(n,N − k)(u(N − k +M) − u((t+ 1)N − k +M)),

and let ηt(n) = 0 otherwise. Then,

‖ηt‖b ≤
N−1∑

k=0

‖b(., N − k)‖b|(u(N − k+M)− u((t+ 1)N − k+M)| ≤ ε

N∑

k=1

‖b(., k)‖b.

Let

C = ‖L∗‖a,b

N∑

k=1

‖b(., k)‖b.

Moreover, a straightforward (and long) calculation shows that q̃ = tLx+ tBut + ηt,

where B = [b(n, k)]Nn,k=1. Therefore, we have

‖x− d

tN
L∗q̃‖a ≤ d

N
‖L∗B‖a,b‖ut‖b +

d

Nt
‖L∗‖a,b‖η‖b.

≤ d

N
‖L∗B‖a,b‖ut‖b +

d

Nt
Cε.
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Almost periodic sequences are bounded. However, the generalized Sigma-Delta

schemes does not always give a bounded u : N → R. The reason is that the range

of the quantizer Qδ is restricted to a finite range. In the next section, we show that

both u and q can be made bounded if we choose a sufficiently wider range for the

quantizer. We shall replace the quantizer Qδ in (3.24) with

round(x) = argmin{|n− x| : n ∈ Z}.

This corresponds to increasing the range of the quantizer Qδ for the variable-bit

quantization scheme we shall describe in the next section.

We conclude this section with a few examples, for which the system (3.24)

could find an almost periodic u. In the following examples, {en}7
n=1 is 7th roots-

of unity frame for R
2, and h = (1.247,−1, 0, . . . , 0) so that for every n ∈ Z7,

en = h(1)en+1 + h(2)en+2.

Example 3. x = (2/7)L∗(1,−1, 1,−1,−1, 1,−1). u is 7-periodic in {n : n ≥ 4N},

exact reconstruction. There is a plot of u in Figure 3.2.

Example 4. x = (2/7)L∗(1,−1, 1, 1,−1, 1, 1). u is almost periodic in {n : n ≥ 6N}

with t = 10. There is a plot of u in Figure 3.3.

q̃ = 1
10

(2, 2,−4,−4, 2, 2, 0), error= 0.0025.

Example 5. x = (−0.1020, 0.4468). u is almost periodic for {n : n ≥ 2N} with

t = 6. There is a plot of u in Figure 3.4.

q̃ = 1
6
(0, 0, 6, 0, 0,−2,−2), error= 0.00092273.

66



0 50 100 150 200 250
−1

−0.5

0

0.5

1

1.5

Figure 3.2: Plot of u given in Example 3
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Figure 3.3: Plot of u given in Example 4
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Figure 3.4: Plot of u given in Example 5
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3.3 Z-span of Frames and a Variable-bit Quantization

Let b ≥ 1 be an integer, δ = 21−b and Kδ = 1. Then, the mid-rise quantization

alphabet Aδ for real sequences {y ∈ R
d : ‖y‖∞ ≤ 1} is of the form

Aδ = {−1 +
δ

2
+ kδ : k = 0, 1, . . . , 2K − 1}.

Let {en}N
n=1 be a FUNTF for R

d with the analysis matrix L. Let Sδ be the set of

all linear combinations of frame vectors with coefficients coming from Aδ, i.e., let

Sδ :=
d

N
L∗(Aδ ×Aδ × · · · × Aδ) = { d

N

N∑

k=1

qnen : qn ∈ Aδ}.

Given x ∈ R
d, the b-bit quantization problem concerns finding an element in Sδ that

is sufficiently close (closest, if possible) to x.

Any element in the alphabet Aδ, multiplied by the number (2/δ) is an odd

integer. In fact,

(2/δ)Aδ = {(2a/δ) : a ∈ Aδ} = {2b + 2k + 1 : k = 0, . . . , 2K − 1} ⊆ 2Z + 1.

Then,

Sδ ⊆ dδ

2N
L∗(2Z

N + 1) =
dδ

2N

N∑

n=1

en +
dδ

N
L∗(ZN), (3.27)

or,

N

dδ
Sδ −

1

2

N∑

n=1

en ⊆ L∗(ZN). (3.28)

Therefore, one considers approximating x by a y in this intermediate set in

(3.27), and approximating y by an element x̃ in Sδ. This double approximation

process would double the difficulty level of the problem if the structure of the inter-

mediate set is not nicer than the structure of Sδ.
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The structure of the second set is determined by the group structure of L∗(ZN).

L∗(ZN) is an additive subgroup of R
d, so is its closure L∗(ZN). Using Theorem 26,

which is known as the structure theorem for locally compact Abelian groups, or Van

Kampen’s theorem, we describe the geometric structure of L∗(ZN). The proof of

Theorem 26 can be found in [67].

Theorem 26. Every locally compact Abelian group (LCAG) G has a subgroup G0,

which is isomorphic to a direct sum of a compact group K and an Euclidean space

R
n. Moreover, the factor group G/G0 is a discrete group.

Theorem 27. Every closed additive subgroup of R
d is direct a sum of a subspace

and a discrete lattice.

Proof. Let G be a closed additive subgroup of R
d. Then, G is a LCAG. Let G0

be a subgroup of G, let K be a compact group, and let φ : K ⊕ R
n → G be the

isomorphism as described in Theorem 26. Let x ∈ K. Then, the closure of the

subgroup of K generated by x, < x > is also compact. Therefore,

φ(< x >) = {nφ(x) : n ∈ Z}

is a compact subgroup of G0 ⊆ R
d. But, every compact subset of R

d is bounded, so

we must have that φ(x) = 0. Thus, since φ is an isomorphism, K can only have one

element. Therefore, G0 is isomorphic to R
n, so G0 is a subspace of R

d.

Next, G/G0 is a subgroup of R
d/G0. Since G0 is a subspace, R

d/G0 is iso-

morphic to the orthogonal complement of G0 in R
d. But, any nontrivial discrete

additive subgroup of a linear space is a discrete lattice.
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Hence, G = V ⊕D, where V is a subspace of R
d and D is a discrete lattice.

G is a subspace, if D is trivial, and G is a discrete lattice if V = {0}.

Example 6. Let e1 = (1, 0), e2 = (−1/2,
√

3/2) and e3 = (−1/2,−
√

3/2). Then,

{e1, e2, e3} is a FUNTF for R
2. This frame satisfies e1 + e2 + e3 = 0. Let L be the

analysis matrix of this FUNTF. Then, L∗(Z3) is a discrete lattice, generated by any

of the two frame elements, i.e,

L∗(Z3) = {me1 + ne2 : m,n ∈ Z}.

Example 7. Let e1 = (1, 0), e2 = (0, 1) and e3 = (1, 1). Then, {e1, e2, e3} is a frame

for R
2. L∗(Z3) is a direct sum of the discrete lattice generated by e1 and e2, and

the line generated by e3, i.e.,

L∗(Z3) = {me1 + ne2 + te3 : m,n ∈ Z, t ∈ R}.

Example 8. Let en = (cos(2πn/N), sin(2πn/N)). {en}N
n=1 is the Nth roots of unity

frame for R
2, and it is a FUNTF for R

2. Then, L∗(ZN) is equal to R
2 for N ≥ 7.

In fact, let

e(1)n = en−1 − 2en + en+1 = 2 sin2(π/N)en,

e(k+1)
n = e

(k)
n−1 − 2e(k)

n + e
(k)
n+1 = (2 sin2(π/N))k+1e(k)

n .

Then, e
(k)
n ∈ L∗(ZN) for every n and k. Moreover, 2 sin2(π/N) < 1 if and only if

N ≥ 7.

If L∗(ZN) were not dense in R
2, then there would exist an x ∈ R

2, and an

ε > 0 such that the intersection of L∗(ZN) and the ε ball Nε(x) centered at x is
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empty. Choose the biggest possible ε > 0 such that there is an element z of L∗(ZN)

on the boundary of Nε(x). Then, Nε(x− z) ∩ L∗(ZN) is empty, and 0 lies on the

boundary of Nε(x− z). However, such a ball must intersect with {e(k)
n }N

n=1 for some

k. Therefore, L∗(ZN) must be dense in R
2.

If L∗(ZN) is a discrete lattice in R
d, the frame {en}N

n=1 includes a basis B for

R
d, and all the other frame vectors can be expressed as a linear combination of this

basis elements with integer coefficients. B cannot be less than a basis, since a frame

is a spanning set. B cannot be more than a basis, either. Since otherwise, L∗(ZN)

would have an accumulation point by Theorem 28, and so, it would not be a discrete

lattice.

Given y ∈ R
d, we calculate the B basis coefficients of y, and round them to

the nearest integer. The basis expansion ỹ with these integer coefficients c = (ck)

is usually the closest point in L∗(ZN) to y. ỹ might not be the closest point if the

determinant of B is too close to zero. On the other hand, this expansion is not

the only way to express ỹ as a linear combination of frame elements with integer

coefficients. If we let

NZ(L) = {z = (zk)
N
k=1 ∈ Z

N :
N∑

k=1

zkek = 0},

then any (c̃k) that satisfy

ỹ =
N∑

k=1

c̃kek

can be expressed as a sum c̃ = c+ z for some z ∈ NZ(L). Therefore, we have a wide
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variety of choices for coefficients.

By (3.28) we have

N

dδ
Sδ −

1

2

N∑

n=1

en = {
N∑

n=1

znen : zn = −K, . . . ,K − 1}.

Therefore, we want each coefficient ck to fall in the range −K, . . . ,K− 1. If not, we

need to find another coefficient sequence c̃ with entries falling in the required range

such that c̃ = c+ z for some z ∈ NZ(L) if possible. Otherwise, we want c̃ minimize

the quantity

‖
N∑

k=1

ckek −
N∑

k=1

c̃kek ‖.

Hence, given x ∈ R
d, to quantize x relative to Aδ, we set

y =
N

dδ
x− 1

2

N∑

n=1

en,

then find the corresponding c̃, and then let

x̃ =
dδ

N

N∑

k=1

c̃ek +
dδ

2N

N∑

n=1

en =
d

N

N∑

k=1

δ

(
c̃k +

1

2

)
ek.

However, finding such (c̃k) is a difficult problem. Instead, we refer to another

method, with which we can make (ck) fall into the desired range. We describe

this method in (3.29). Theorem 30 shows how we can guarantee to make (ck) to fall

in a desired range with a proper choice of b for (3.29).

If L∗(ZN) is not a discrete lattice, then the problem of approximating a y ∈ R
d

by a ỹ in L∗(ZN) is a relatively difficult problem using V and D. L∗(ZN) is not

a discrete lattice if and only if the frame includes a d + 1 element Z-independent

subset in the sense of Definition 13.
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Definition 13. x1, . . . , xN ∈ R
d is Z-independent if for every c1, . . . , cN ∈ Z

N∑

i=1

cixi = 0 ⇒ ci = 0, ∀i = 1, . . . , N.

Definition 14. Let a = (a1, a2, . . . , ad) ∈ R
d. We define the floor of a as

⌊a⌋ = (⌊a1⌋, . . . , ⌊ad⌋).

The following theorem is a direct result of Theorem 27. We also provide an

alternative proof.

Theorem 28. Let {xi}d+1
i=1 be a Z-independent subset of R

d. Then, 0 is an accu-

mulation point of the additive group

Z[x1, . . . , xd+1] :=

{
d+1∑

i=1

cixi : ci ∈ Z

}
.

Proof. Let L be the matrix with kth row is equal to xk. Then, Z[x1, . . . , xd+1] =

L∗(Zd+1). For a contradiction, assume that 0 is not an accumulation point. Then,

∃ε0 > 0 : Nε0
(0) ∩ Z[x1, . . . , xd+1] = {0}.

For any ε < ε0, let

Cε = {y ∈ R
d+1 : ||L∗y|| < ε}.

Then,

∀ε ≤ ε0, Cε ∩ Z
d+1 = {0}.

In fact, if there existed y 6= 0, y ∈ Cε ∩ Z
d+1, then L∗(y) ∈ Nε0

(0) ∩ Z[{xi}] = {0},

so L∗y = 0. But then, {xi}d+1
i=1 would not be Z-independent.

Now, for any z ∈ Z
d+1, ε ≤ ε0, let

Cε
z := {a− ⌊a⌋ : a ∈ Cε, ⌊a⌋ = z}.
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Clearly, each nonempty Cε
z lies in the unit cube {a = (a1, . . . , ad+1) : 0 ≤ ai < 1}.

Moreover,

∀z1 6= z2 ∈ Z
d+1, ∀ε ≤ ε0

2
, Cε

z1
∩ Cε

z2
= ∅.

In fact, if there existed α ∈ Cε
z1
∩ Cε

z2
, then there would exist a, b ∈ Cε such that

α = a − z1, α = b − z2. But, ||L∗(a − b)|| ≤ ||L∗(a)|| + ||L∗(b)|| ≤ 2ε < ε0, and so

z1 − z2 = a− b ∈ Cε0 . Then, since Cε0 ∩ Z
d+1 = {0}, we would have z1 = z2.

Hence, for ε ≤ ε0/2, {Cε
z}z∈Zd+1 is a countable, disjoint family of sets, satisfying

• ⋃(z + Cε
z) = Cε, and

• ∀z ∈ Z
d+1, Cε

z ⊆ {a = (a1, . . . , ad+1) : 0 ≤ ai < 1}.

Let Ln denote the usual Lebesgue measure on R
n. Then,

Ld+1(Cε) =
∑

z

Ld+1(z+Cε
z) = Ld+1(

⋃
Cε

z) ≤ Ld+1({a = (a1, . . . , ad+1) : 0 ≤ ai < 1}) = 1.

But, Ld+1(Cε) = ∞. Contradiction.

By contradiction, 0 must be an accumulation point of the group Z[x1, . . . , xd+1].

If we have a prior knowledge about the structure of V and D, then given

y ∈ R
d, we first project y onto the closest lattice shift of V . Let this point be

y0. This affine subspace can be expressed as d + V for some d ∈ D. Then, we

approximate y0 − d in V ∩ L∗(ZN). One might want to choose a suitable basis

B ⊆ L∗(ZN) for V , and find integer coefficients such that B basis expansion is

close to y0 − d. This B basis expansion is, in turn, a frame expansion with integer

coefficients ck.
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Alternatively, we use the following system, which is a modified version of (3.24)

q(n) = round(−
n−1∑

k=n−d

b(n, k)u(k) + Lx(n)) (3.29)

u(n) = −
n−1∑

k=n−d

b(n, k)u(k) + Lx(n) − q(n)

for n ≥ 1 with the initial conditions u(0), u(−1), . . . , u(−d + 1), and a b : Z
2
N → R

such that b(n, n) = 1, and b(n, k) = 0 if 1 ≤ k < n− d or n < k ≤ N .

System (3.29) is equivalent to (3.24) with a slight change in the quantizer.

This relation is stated in Theorem 29.

Theorem 29. Let δ > 0, and let Q̃δ(a) = δround(δ−1a). Then, the system (3.29)

with the input sequence Lx and the initial conditions u(0), . . . , u(−d+ 1) is equiva-

lent to the generalized Sigma-Delta system (3.24) with the quantizer Q̃δ, the input

sequence δLx and the initial conditions δu(0), . . . , δu(−d + 1) , in the sense that u

and q are outputs of (3.29) if and only if δu and δq are outputs of (3.24).

The following theorem shows that the output sequences q and u of (3.29) are

always bounded.

Theorem 30. Given x ∈ R
d, let q and u be the output sequences of the system

(3.29). Then, ‖u‖∞ ≤ 1/2, and

∀n ≥ 1, |q(n)| ≤ 1

2

N∑

k=1

|b(n, k)| + |Lx(n)|.

Proof. If βn = −∑n−1
k=n−d b(n, k)u(k)+Lx(n), then |u(n)| ≤ |βn − round(βn)| ≤ 1/2.

Second,

|q(n)| ≤ |
n∑

k=n−d

b(n, k)u(k)| + |Lx(n)| ≤ ‖u‖∞
N∑

k=1

|b(n, k)| + |Lx(n)|.
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Hence, the result follows.

By Theorem 30 and Theorem 29, we can show that if the range of the quantizer

Qδ we use for the generalized Sigma-Delta system (3.24) is wide enough to include

±δ max
1≤n≤N

(
1

2

N∑

k=1

|b(n, k)| + 1

)
,

then the output sequences of (3.24) are bounded.

Theorem 31. Let u be a solution of the system (3.29) that satisfies the condition

(3.25). Let B = [b(n, k)]Nn,k=1. Then, there exists a constant C > 0 depending only

on b, and for every ε > 0, there is a positive integer t, and a q̃ ∈ R
N with integer

entries such that

|q̃(n)| ≤ t(
C

2
+ |Lx(n)|).

Furthermore,

‖x− d

tN
L∗q̃‖ ≤ d

2N
‖L∗B‖2,∞ +

d

Nt
Cε. (3.30)

Proof. First part follows from Theorem 30 with any

C > C1 := max
1≤n≤N

N∑

k=1

|b(n, k)|.

Let q be the output of (3.29), and let

∀n = 1, . . . , N, q̃(n) =
t∑

k=1

q(kN + n+M).

Also, let ηt ∈ R
N be defined by

∀n = 1, . . . , d ηt(n) =
d−n∑

k=0

b(n,N − k)(u(N − k +M) − u((t+ 1)N − k +M)),
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and let ηt(n) = 0 otherwise. Then,

‖ηt‖∞ ≤ max
1≤n≤N

n−d∑

k=0

|b(n,N − k)| |(u(N − k +M) − u((t+ 1)N − k +M)|

≤ ε max
1≤n≤N

N∑

k=1

|b(n, k)|

= εC1.

Let ut ∈ R
N is defined by the quantity

∀n = 1, . . . , N, ut(n) =
1

t

t∑

k=1

u(kN + n+M).

Then, q̃ = tLx+ tBut + ηt. Therefore, we have

‖x− d

tN
L∗q̃‖ ≤ d

N
‖L∗B‖2,∞‖ut‖∞ +

d

Nt
‖L∗‖2,∞‖ηt‖∞.

≤ d

N
‖L∗B‖2,∞‖ut‖∞ +

d

Nt
‖L∗‖2,∞C1ε.

The result follows with ‖ut‖∞ ≤ ‖u‖∞ ≤ 1/2, and C = max{‖L∗‖2,∞, 1}C1

We would like to note that, even if u does not satisfy (3.25), for any integer

t > 0, we still have that

‖ηt‖∞ ≤ 2‖u‖∞
d

Nt
‖L∗‖2,∞C1 ≤

d

Nt
‖L∗‖2,∞C1.

Therefore, if L∗B = 0, then

‖x− d

tN
L∗q̃‖ = O(

1

t
) as t→ ∞.

If we think of t−1q̃ as a log2(t)-bit quantized sequence of x, then, the quantization

system (3.25) attains the best error decay rate in the bit rate.
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Definition 15. Let {en}N
n=1 be a given frame for R

d, and let b : Z
N
2 → R with

the corresponding matrix B = [b(n, k)]Nn,k=1 satisfy L∗B = 0. We call the system

(3.29) with this choice of B a variable-bit rate generalized Sigma-Delta quantization

scheme.

Using a variable-bit rate quantization scheme is more advantageous than a

fixed b-bit scheme. If there is no solution u of the variable-bit rate scheme, then,

both quantization schemes have the same error decay rate as b → ∞. However, if

for some given ε > 0, there is a t satisfying t < ε2b, and if there is a solution u the

variable-bit system satisfying (3.25) for this ε > 0, then we can achieve the same

quantization error with a lower bit number log2(t).

3.4 1-bit Quantization by Minimization

Frame quantization problem is inherently a combinatorial problem. Given a

frame {en}N
n=1 for R

d, and an x ∈ R
d, the frame quantization problem concerns

minimizing the quantity

fx(q) = ‖x− d

N

∑
qnen‖,

subject to the constraint

q ∈ S± := {q ∈ R
N : qn = ±1}.

In this section, we relax this constraint by means of adding a penalty term to the

objective function. This way, we replace the combinatorial problem with an analytic

problem.

79



In general, one might consider to construct functions Fx : R
N → R, Fx ≥ 0

such that a minimizer y of Fx makes the quantity

‖x− d

N
L∗y‖

sufficiently small, while y is in or close to the set S±. In this section, we consider

functions Fx of the form

Fx(y) = λ‖x− d

N
L∗y‖ + P (y),

where P : R
N → R, P ≥ 0 is a penalty term that has small values if y is in or close

to S± and gets bigger values as y moves away from S±. λ > 0 is a tuning parameter,

with which we adjust the weight of the penalty term on the functional Fx.

We shall consider a penalty term of the form

P (y) =
N∑

k=1

f(yk),

where f ≥ 0, and f ∈ C2(R). In particular, we shall investigate the nature of the

local/global minimizers of the functional

Fx(y) = λ‖x− d

N
L∗y‖2

2 +
N∑

k=1

f(yk), (3.31)

for

f(t) = (1 − tn)2 + c(1 − tm),

where m,n are even positive integers with m ≤ n, and c ≥ 0.

Lemma 8. Let Fx be given as in (3.31). Then, Fx is a C2-function. Moreover, the

80



−1.5

−1

−0.5

0

0.5

1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5

0

2

4

6

8

Figure 3.5: P (y) = f(y1) + f(y2) with n = 20, c = 1, m = 2.
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gradient DFx and the Hessian D2Fx of Fx are given by

DFx(y) =
2λd

N

(
d

N
LL∗y − Lx

)
+ (f ′(y1), . . . , f

′(yN)),

D2Fx(y) =
2λd2

N2
LL∗ + diag(f ′′(y1), . . . , f

′′(yN)),

where diag(f ′′(y1), . . . , f
′′(yN)) is a diagonal matrix with diagonal entries f ′′(y1), . . . , f

′′(yN).

The penalty term P with the choice f(t) = (1 − tn)2 + c(1 − tm), i.e.,

P (y) =
N∑

k=1

(1 − yn
k )2 + c(1 − ym

k )

effectively works as a barrier. By this we mean, P gets relatively large values off of

the unit cube, and this property of P guarantees that the minimizers of Fx are in

or close to the unit cube (Theorem 33.a).

We need the following theorem for the proof of Theorem 33. Theorem 32 and

a proof can be found in [62].

Theorem 32. Let G : R
N → R be a C2 function satisfying G ≥ 0. Then, every

nonconstant bounded solution of the ordinary differential equation

γ̇(t) = −DG(γ(t))

converges to a local minimum of G. Also, every isolated local minimum y of G is

asymptotically stable, i.e.,

∃ε > 0 such that ‖y − γ(0)‖ < ε⇒ lim
t→∞

γ(t) = y.
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Theorem 33. Let c ≥ 0, m,n positive even integers with m ≤ n, and let

Fx(y) = λ‖x− d

N
L∗y‖2

2 +
N∑

k=1

(1 − yn
k )2 + c(1 − ym

k ).

a. Let ε > 0. Every solution of the ordinary differential equation γ̇(t) = −DFx(γ(t))

enters the bounded set

Bε
n,m,λ :=

{
y ∈ R

N :
N∑

k=1

(
yn

k − 1

2

)2

− cm

2n

N∑

k=1

ym
k ≤ N

4
+

λ

4n
‖x‖2 + ε

}

and stays there.

b. If y is a local minimum of Fx, then y is in the set

Bn,m,λ :=

{
y ∈ R

N :
N∑

k=1

(
yn

k − 1

2

)2

− cm

2n

N∑

k=1

ym
k ≤ N

4
+

λ

4n
‖x‖2

}
.

In particular ‖y‖∞ ≤ R, where R is the positive root of the polynomial

Π(ρ) = ρ2n − ρn − cmN

2n
ρm − λ

4n
− N − 1

4

that depends on n,m, c and λ. Moreover, R = 1 + O(n−1) as n→ ∞.

c. If y is a local minimum of Fx, then |yk| ≥ r for at least N − d indices, where

r is the positive root of the polynomial

π(ρ) = ρn−m((2n− 1)ρn − (n− 1)) − cm(m− 1)

2n

that depends on n,m and c. Moreover, r = 1 −O(n−1) as n→ ∞.

Proof. a. By Lemma 8,

DFx(y) =
2λd

N

(
d

N
LL∗y − Lx

)
+ 2n(y2n−1 − yn−1) − cmym−1,
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where yr := (yr
1, . . . , y

r
N) with the abuse of notation. Let γ = (γ1, . . . , γN) be a

solution of the system γ̇(t) = −DFx(γ(t)). Then,

1

2

d

dt
‖γ(t)‖2

2 = −〈DFx(γ(t)), γ(t)〉

= −2λ

(∥∥∥∥
d

N
L∗γ(t)

∥∥∥∥
2

− 〈x, d
N
L∗γ(t)〉

)
− 2n

N∑

k=1

(
γ2n

k (t) − γn
k (t)

)
+ cm

N∑

k=1

γm
k (t)

= −2λ

∥∥∥∥
d

N
L∗γ(t) − 1

2
x

∥∥∥∥
2

+
λ

2
‖x‖2 − 2n

N∑

k=1

(
γn

k (t) − 1

2

)2

+ cm
N∑

k=1

γm
k (t) +

2nN

4
.

Hence,

∀ε > 0,
d

dt
‖γ(t)‖2

2 ≤ −ε

if γ(t) is outside of the bounded set Bε
n,m,λ. Therefore, γ is bounded, and so it

converges to a local minimum of Fx by Theorem 32. Then,

lim
t→∞

d

dt
‖γ(t)‖2

2 = 0.

Thus, γ must enter and stay in each Bε
n,m,λ.

b. If y is a local minimum of Fx, there is a nonconstant solution to γ̇ =

−DFx(γ) with limt→∞ γ(t) = y by Theorem 32. By part (a), for every ε > 0,

y ∈ Bε
n,m,λ. Therefore, y ∈ Bn,m,λ.

Second, since y ∈ Bn,m,λ,

(
‖y‖n

∞ − 1

2

)2

≤ cmN

2n
‖y‖m

∞ +
N

4
+

λ

4n
‖x‖2.

Hence,

‖y‖2n
∞ − ‖y‖n

∞ − cmN

2n
‖y‖m

∞ − λ

4n
− N − 1

4
≤ 0.
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From this, part (b) follows.

c. Since Fx is a C2-function, if y is a local minimum, then the Hessian matrix

D2Fx(y) is positive definite. By Lemma 8,

D2Fx(y) =
2λd2

N2
LL∗ + diag(f ′′(y1), . . . , f

′′(yN)),

where f ′′(t) = 2ntn−2((2n− 1)tn − (n− 1)) − cm(m− 1)tm−2. Then,

∀z ∈ R
N , 0 < 〈D2Fx(y)z, z〉 =

N∑

k=1

f ′′(yk)|zk|2 +
2λd2

N2
‖L∗z‖2. (3.32)

Let J = {k : f ′′(yk) ≤ 0}. If |J | > d, since KerL∗ is N − d dimensional, we

could find a z ∈ KerL∗ such that zk = 0 if k /∈ J . But, this would contradict (3.32).

Thus, |J | ≤ d. Hence,

∀k /∈ J, 0 < f ′′(yk) = 2nyn−2
k ((2n− 1)yn

k − (n− 1)) − cm(m− 1)ym−2
k .

Then, yn−m
k ((2n − 1)yn

k − (n − 1)) − cm(m − 1)/2n > 0, and from this, part (c)

follows.

Example 9. If we choose n = 10, c = 0, N = 500 and λ = 1000, then

r = 0.928 and R = 1.273.

If we choose n = 100, m = 2, c = 2, N = 256, d = 16 and λ = 2N/d, then

r = 0.993 and R = 1.028.

Theorem 34. Let y be a local minimizer of Fx, let q = (round(y1), . . . , round(yN)),

and let J ⊆ {1, . . . , N} be the set of indices where |yk| < r. Then, we obtain the
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decomposition

x− d

N
L∗q = xλ + xns + xJ (3.33)

where

xλ = x− d

N
L∗y, and ‖xλ‖ = O(λ−1) as λ→ ∞,

xns =
d

N

∑

k/∈J

(yk − qk)ek, and ‖xns‖ = O(n−1) as n→ ∞,

xJ =
d

N

∑

k∈J

(yk − qk)ek, where |J | ≤ d.

Proof. For a fixed N , since y is a local minimum,

DFx(y) =
2λd

N

(
d

N
LL∗y − Lx

)
+ (f ′(y1), . . . , f

′(yN)) = 0.

Then,

‖xλ‖2 = ‖x− d

N
L∗y‖2 =

d

N
‖Lx− d

N
LL∗y‖2 =

1

2λ

N∑

k=1

|f ′(yk)|2 = O(λ−1) as λ→ ∞.

By Theorem 33, there is a set of indices J , |J | ≤ d, such that if k ∈ {1, . . . , N}\J ,

then

|y(k) − q(k)| = |y(k)| − 1 = O(n−1) as n→ ∞.

Therefore,

‖xns‖ = ‖ d
N

∑

k/∈J

(yk−qk)ek‖ ≤ d

N

∑

k/∈J

|yk−qk| ≤ max
k/∈J

|yk−qk| = O(n−1) as n→ ∞.

We finish this section with a few examples. In the following examples, we used

the simple MATLAB code to minimize Fx. For each example, the minimization

starts at the point y0 = Lx.
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n=100; c=1; m=4; [N d]=size(L); lambda=2^(N/d); y0=Lx;

optns=optimset(Display,on,Largescale,on,...

MaxIter,1e+4, MaxFunEvals,1e+5,...

Gradobj,on,Hessian,on);

y=fminunc(@(y)F_x(y,x,L,lambda,n,c,m),y0,optns); q=round(y);

Example 10. For this example, we used the real Harmonic frame for R
4. The real

harmonic frames Hd
N with N elements for R

d are defined by

• If d = 2k,

eN
n =

1√
k

(
cos(

2πn

N
), sin(

2πn

N
), . . . , cos(

2πkn

N
), sin(

2πkn

N
)

)
,

• If d = 2k + 1,

eN
n =

1√
k

(
1√
2
, cos(

2πn

N
), sin(

2πn

N
), . . . , cos(

2πkn

N
), sin(

2πkn

N
)

)
.

We quantized the vector x ∈ R
16

x = (−0.33778, 0.008157, 0.12914, 0.53439, 0.55974,−0.031804,

0.60443,−0.057976,−0.59448, 0.159230, 0.333, 0.35353,

0.88502, 0.5403, 0.47481, 0.73252),

and calculated the quantization error for various values of N , which can be seen in

Figure 3.8. The parameters we used are λ = 2N/d, n = 100, c = 1, m = 4.

For N = 216, we obtained the following values for each of the components

of the decomposition given in Theorem 34. Figure 3.7 shows how the sequence
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(yk − qk)
N
k=1 behaves. It can be seen that

J = {15, 37, 46, 72, 87, 101, 107, 138, 144, 167, 190, 214}.

‖xλ‖ = 4.1062e− 005

‖xns‖ = 0.0012903

‖xJ‖ = 0.085473

card{k ∈ J : qk = 0} = 4,

‖x− (d/N)L∗q‖ = 0.085565

Example 11. For this example, we used the real Harmonic frame for R
4. The other

parameters we used are λ = 2N/d, n = 100, c = 1, m = 4. We quantized the vector

x ∈ R
4

x = (−0.046816, 0.96742, 0.8447, 0.12239)

for every N = 20, 21, . . . , 120. Figure 3.9 shows how the quantization error behaves

as N increases.

For N = 120, we obtained the following values for each of the components

of the decomposition given in Theorem 34. Figure 3.10 shows how the sequence

(yk − qk)
N
k=1 behaves.

‖xλ‖ = 5.12241e− 009

‖xns‖ = 3.3921e− 004

‖xJ‖ = 0.021658
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Figure 3.7: N = 216 in Example 10. |J | = 12
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Figure 3.8: The quantization error for various values of N in Example 10. Dots

represent the values of quantization error, and the dashed line is the curve y = d/N .
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Figure 3.9: The quantization error for various values of N in Example 11. Dots

represent the values of quantizatin error, and the dashed line is the curve y = d/N .
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Figure 3.10: N = 120 in Example 11. J = {2, 40, 109}

card{k ∈ J : qk = 0} = 0,

‖x− (d/N)L∗q‖ = 0.0217534

For N = 70, we obtained the following values for each of the components

of the decomposition given in Theorem 34. Figure 3.11 shows how the sequence

(yk − qk)
N
k=1 behaves.

‖xλ‖ = 2.4368e− 006

‖xns‖ = 9.8816e− 004

‖xJ‖ = 0.024926
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Figure 3.11: N = 70 in Example 11. J = {19, 42}

card{k ∈ J : qk = 0} = 1,

‖x− (d/N)L∗q‖ = 0.0249428

Example 12. For this example, we used the eleventh roots of unity frame for R
2.

d = 2, N = 11, and the parameters we used are λ = 2N/d, n = 100, c = 1, m = 4.

We quantized each point in the regular grid

G = {x = (x1, x2) : x1, x2 = −1,−0.9, . . . , 0.9, 1}

In Figure 3.12 shows the quantization error for every point in the grid. Considering

G as a matrix, we stacked the columns of G, and plotted G versus the quantization
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Figure 3.12: Plot of quantization errors for 441 points given in Example 12. The

Average Noise is equal to 0.0665, and the Average Noise-Squared is equal to 0.0056

error. Therefore (x1, x2) in Figure 3.12 corresponds to k = 11(10+10x1)+11+10x2

on the horizontal axis.

Example 13. d = 2, N = 10, λ = 2N/d, n = 100, c = 1, m = 4. The rows of the

matrix L constitute a unit-norm tight frame for R
2:
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L =




−0.26753 −0.96355

−0.25355 −0.96732

−0.67101 −0.74145

−0.81442 −0.58028

−0.97042 −0.24142

−0.99797 0.06367

−0.8892 0.45752

−0.73249 0.68078

−0.64949 0.76037

−0.25279 0.96752




We quantized each point in the regular grid

{x = (x1, x2) : x1, x2 = −1,−0.9, . . . , 0.9, 1}

Figure 3.13 shows the quantization error for every point in the grid.
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Figure 3.13: Plot of quantization errors for 441 points given in Example 13. The

Average Noise is equal to 0.0757, and the Average Noise-Squared is equal to 0.0072.
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Figure 3.14: Plot of all linear combinations of the frame given in Example 13 with

±1 coefficients. ”o” represents the quantized estimate of ”x”.
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Figure 3.15: Plot of all linear combinations of the frame given in Example 13 with

±1 coefficients. ”o” represents the quantized estimate of ”x”.
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Figure 3.16: Plot of all linear combinations of the frame given in Example 13 with

±1 coefficients. ”o” represents the quantized estimate of ”x”.
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Figure 3.17: Plot of all linear combinations of the frame given in Example 13 with

±1 coefficients. ”o” represents the quantized estimate of ”x”.
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Figure 3.18: Plot of all linear combinations of the frame given in Example 13 with

±1 coefficients. ”o” represents the quantized estimate of ”x”.
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Figure 3.19: Plot of all linear combinations of the frame given in Example 13 with

±1 coefficients. ”o” represents the quantized estimate of ”x”.
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Figure 3.20: Plot of all linear combinations of the frame given in Example 13 with

±1 coefficients. ”o” represents the quantized estimate of ”x”.
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Chapter 4

Equiangular Tight Frames

Equiangular tight frames have arisen in different areas of pure and applied

mathematics. For instance, equiangular tight frames are shown to be optimal con-

figurations for the Grassmanian line packing problem [18, 19]. It was shown in [65]

and [49] that equiangular tight frames are spherical designs, which are used for fast

numerical integration of certain polynomials on the sphere. Holmes and Paulsen

[49] and Heath and Strohmer [69] proved that equiangular tight frames minimize

the error due to erasures in communications. Tropp, Dhillon, Heath and Strohmer

[72, 71] showed that equiangular tight frames have potential application for CDMA

systems in wireless communications, and they provided an algorithm to design such

equiangular signature sequences.

Definition 16. A unit norm frame (not necessarily tight) {xi}N
i=1 ⊆ F

d (F = R or

C) is equiangular if

∃c > 0 such that ∀i 6= j |〈xi, xj〉| = c.

If, in addition, {xi}N
i=1 is tight, then it is called an equiangular tight frame.

It is known that equiangular tight frames always exist when N = d and N =

d + 1. When N = d, equiangular tight frames are orthonormal bases. When

N = d+1, an equiangular tight frame is given by the vertices of the regular simplex
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in R
d. This particular frame can be characterized by its Grammian matrix LL∗ as

LL∗ = I +
1

d
(I − 1)

where 1 is the matrix of all ones. Other than these trivial cases, Paulsen and

Bodmann [13] showed that Hadamard matrices induce equiangular tight frames for

R
d. They also show that we can construct equiangular tight frames for R

d using

graphs with certain special structure, which are regular two-graphs.

Equiangular tight frames with a prescribed redundancy do not always ex-

ist. The problem of determining for which values of N an equiangular tight frame

{en}N
n=1 exists for F

d is still an unsolved problem. There are many necessary condi-

tions in the literature for the existence of equiangular tight frames for a given pair

(d,N). However, no sufficient condition has been established, yet.

Table 4.1, which is taken from [73] shows whether an equiangular frame exists

for several pairs (d,N). Also, a list of (d, d2) equiangular tight frames for several

values of d can be found in [65].

In Section 4.1.1, we discuss the nonexistence results in the literature. In Sec-

tion 4.1.2 we shall describe the numerical method presented in [73], and in Section

4.1.3 we shall talk about the theorem given in [65], which establishes a connec-

tion between the spherical designs and the equiangular tight frames. And then, we

shall briefly talk about how equiangular tight frames are related to the erasure and

the line packing problems in Section 4.1.4 and Section 4.1.6, respectively. Finally,

we shall present our results in Section 4.2. Also, we shall talk about the relation

between the new results given in Section 4.2.2 and the main result of [14].
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4.1 Known Results in the Literature, and Relations to Other Prob-

lems

4.1.1 Nonexistence Results

Equiangular tight frames do not exist for certain pairs (d,N). The following

theorems rule out many pairs (d,N), and provide necessary conditions for equian-

gular tight frames to exist.

Theorem 35. Equiangular tight frames with N elements for F
d can exist only if

N ≤ d(d+ 1)/2 if F = R,

N ≤ d2 if F = C.

Different proofs of this theorem can be found in [70] and [19], as well as in the

proof of Theorem 51.

Theorem 36. Let {xi}N
i=1 be a unit norm tight frame for F

d, and let L be the

associated Bessel map. Then,

max
i6=j

|〈xi, xj〉| ≥
√

N − d

d(N − 1)
=: cN,d.

Moreover, this lower bound is attained if and only if {xi}N
i=1 is equiangular.

Proof. The result follows from

∑

i6=j

|〈xi, xj〉|2 = trace((LL∗)2) −N =
N

d
trace(LL∗) −N =

N2

d
−N =

N(N − d)

d
.
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Theorem 37. If {xi}N
i=1 is an equiangular tight frame for R

d, and L is the associated

Bessel map, then

Q =
1

cN,d

(
LL∗ − N

d
I

)

is a matrix with zeros on the diagonal and ±1 on the off diagonal entries, and has

exactly two eigenvalues

λ1 = −
√
d(N − 1)

N − d
, λ2 =

√
(N − d)(N − 1)

d

with multiplicities N − d and d respectively. Moreover, if N 6= 2d and N 6= d + 1,

then λ1, λ2 are odd integers.

Proof of Theorem 37 can be found in [73].

The cases listed in Table 4.1, for which an equiangular tight frame does not

exist, can actually be verified by the Theorems 35, 36 and 37.

4.1.2 Numerical Computation

Tropp, Dhillon, Heath and Strohmer [73] developed a numerical method,

with which they computed equiangular tight frames for F
d for several values of d

and N . They translate the problem of finding equiangular tight frames to an inverse

eigenvalue problem. They construct N ×N matrices G subject to the constraints

i. Structural constraint: G = (gij) is a self adjoint matrix that has 1s on the

diagonal entries, and

|gij| ≤
√

N − d

d(N − 1)
∀i 6= j.
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ii. Spectral constraint: G has precisely two distinct eigenvalues, N/d with multi-

plicity d, and 0 with multiplicity N − d.

If G satisfies both of the constraints above, then it is the Grammian of an

equiangular tight frame. In fact, let

G = UDU∗

be a singular value decomposition of G, where U is unitary, and D is a diagonal

matrix with first d diagonal entries are 1 and the rest are zero. Then, if we take first

d columns of U and form a new N × d matrix L, the rows of L gives an equiangular

tight frame. Moreover, we would have LL∗ = G.

These two constraints above induce two sets, per se,

A = {G : Structural constraint},

B = {G : Spectral constraint}.

Both sets are compact, with respect to the Frobenius norm in the space of all

N ×N matrices. Also, A is convex, while B is not.

The projections onto A and B are defined in Theorem 38 and Theorem 39,

respectively. Proofs of these theorems are in [73].

Theorem 38. Let Z = (zij) be an N × N self adjoint matrix. Then, the closest

unique matrix H = (hij) ∈ A to Z in Frobenius norm is given by hii = 1, and

hij =





zij, if |zij| ≤
√

N−d
d(N−1)

,

N−d
d(N−1)

zij

|zij |
, otherwise.
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Theorem 39. Let Z be an N ×N self adjoint matrix with a unitary factorization

UDU−1 where the entries of D are arranged in a non-increasing order. Let L be

the N × d matrix formed using the first d columns of U . Then, N
d
LL∗ is the closest

matrix in B to Z with respect to the Frobenius norm. This matrix is unique if the

eigenvalues of Z are strictly decreasing.

When both sets are convex, the alternating projections converge. Theorem 40

summarizes this result. However, if one of the sets is not convex, the alternating

projections algorithm may fail to converge. Theorem 41 is taken from [73], and it

describes scenarios that can take place for this particular alternating projections

problem we consider in this subsection.

Theorem 40. Let A,B be two compact convex subsets of a Hilbert space H. Define

the projections PA(x) = argmina∈A||x − a||, PB(x) = argminb∈B||x − b||. For any

starting point x1, define the sequences

xi+1 = PA(yi), yi = PB(xi).

Then,

∃x, y ∈ H, such that xi → x, and yi → y,

and

• if A ∩B = ∅, then min{||a− b|| : a ∈ A, b ∈ B} = ||x− y||

• if A ∩B 6= ∅, then x = y ∈ A ∩B.

Theorem 41. Assume that the Alternating Projection between A and B generates

a sequence of iterates (Gi, Hi), and suppose there is J ∈ N such that ||GJ −HJ ||F <
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N/(d
√

2). The sequence of iterates possesses at least one accumulation point (Ḡ, H̄).

Then,

i. Every accumulation point lies in A×B.

ii. (Ḡ, H̄) is a fixed point of the alternating projection algorithm, i.e., if we start

with (Ḡ, H̄), then, every iterate would be equal to (Ḡ, H̄).

iii. Every accumulation point satisfies

||Ḡ− H̄||F = lim
j→∞

||Gj −Hj||F .

iv. The component sequences are asymptotically regular, i.e.,

||Gj+1 −Gj||F → 0 and ||Hj+1 −Hj||F → 0

v. Either the component sequences both converge,

||Gj − Ḡ||F → 0 and ||Hj − H̄||F → 0,

or the set of accumulation points forms a continuum.

4.1.3 Spherical t-designs

Spherical designs are the spherical analogues of Gaussian quadrature sequences.

A set {xi}N
i=1 of unit norm vectors in F

d is a spherical t-design if the integral on the

surface of the unit sphere Sd−1 of any polynomial f of degree at most t is equal to

the average value of the polynomial evaluated at {xi}N
i=1, i.e.,

1

|Sd−1|

∫

Sd−1

fdσ =
1

N

N∑

i=1

f(xi).
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d

N 2 3 4 5 6

3 R R .. .. ..

4 C R R .. ..

5 .. . R R ..

6 .. R . R R

7 .. C C . R

8 .. . C . .

9 .. C . . C

10 .. .. . R .

11 .. .. . C C

12 .. .. . . C

13 .. .. C . .

14 .. .. . . .

d

N 2 3 4 5 6

15 .. .. . . .

16 .. .. C . R

17 .. .. .. . .

18 .. .. .. . .

19 .. .. .. . .

20 .. .. .. . .

21 .. .. .. C .

22 .. .. .. . .

23 .. .. .. . .

24 .. .. .. . .

25 .. .. .. C .

26 .. .. .. .. .

d

N 2 3 4 5 6

27 .. .. .. .. .

28 .. .. .. .. .

29 .. .. .. .. .

30 .. .. .. .. .

31 .. .. .. .. C

32 .. .. .. .. .

33 .. .. .. .. .

34 .. .. .. .. .

35 .. .. .. .. .

36 .. .. .. .. C

Table 4.1: R and C indicate that the alternating projection method was able to

compute an equiangular tight frame for R
d and C

d, respectively. Every equiangular

tight frame for R
d is automatically an equiangular tight frame for C

d, so C in turn

indicates that there is no equiangular tight frame for R
d. One period (.) means

that no equiangular tight frame for R
d exists, and two periods (..) mean that no

equiangular tight frame exists at all. [73]
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where σ is the surface measure on Sd−1, which is invariant to unitary operations.

There are several characterizations of spherical designs. We give one of the

caracterizations of spherical 2-designs in Theorem 42, and provide an original proof.

Theorem 42. A set {xi}N
i=1 of unit norm vectors in F

d is a spherical 2-design if and

only if {xi}N
i=1 is a zero sum FUNTF.

Proof. Suppose {xi}N
i=1 is a spherical 2-design, and let

Tx =
1

|Sd−1|

∫

Sd−1

〈x, y〉ydσ(y).

It is not hard to check that T is linear, and commute with every unitary matrix. As

a result, T = λI, for some constant λ.

Since {xi}N
i=1 is a spherical 2-design, for every x ∈ R

d

λ||x||2 = 〈Tx, x〉 =
1

|Sd−1|

∫

Sd−1

〈|〈x, y〉|2〉dσ(y) =
1

N

N∑

i=1

|〈x, xi〉|2.

Therefore, {xi}N
i=1 is a FUNTF, and also λ = 1/d. Second, by symmetry,

∫

Sd−1

ydσ(y) = 0.

Therefore, for every x ∈ R
d,

1

N
〈

N∑

i=1

xi, x〉 =
1

|Sd−1|

∫

Sd−1

〈x, y〉dσ(y) = 0.

Thus,
∑N

i=1 xi = 0.

Conversely, suppose {xi}N
i=1 is a zero sum FUNTF for F

d. Every degree ≤ 2

polynomial is of the form

f(x) = a+ 〈x, b〉 + 〈Ax, x〉.
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1

N

N∑

i=1

a = a =
1

|Sd−1|

∫

Sd−1

adσ(y),

1

N

N∑

i=1

〈xi, b〉 = 0 =
1

|Sd−1|

∫

Sd−1

〈y, b〉dσ(y),

1

N

N∑

i=1

〈Axi, xi〉 = trace(A
1

N
S)

= trace(A)/d

= trace(AT )

=
1

|Sd−1|

∫

Sd−1

〈Ay, y〉dσ(y).

Therefore, {xi}N
i=1 is a spherical 2-design.

Blume-Kohout, Scott, Caves and Renes [65] generalized the concept of spher-

ical designs to C
d. Analogous to the sphere Sd−1 in R

d, they define

S
d−1 = {x ∈ C

d : ‖x‖ = 1}.

They also define a measure σ on S
d−1, which is invariant under unitary transforma-

tions. They proved Theorem 43 that links the (d, d2) equiangular tight frames and

the spherical 4-designs. The original theorem and its proof can be found in [65].

Theorem 43. A set {xi}d2

i=1 of unit norm vectors is a spherical 4-design if and only

if
d2∑

i,j=1

|〈xi, xj〉|4 =
2d3

d+ 1
.

This value is the global minimum of
∑d2

i,j=1 |〈xi, xj〉|4. Moreover, when this 4-design

exists, we obtain an equiangular tight frame.
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4.1.4 Optimal Frames for Erasures

The simplified scenario in communications is that a given data/signal is first

encoded, then divided into packets, and then sent to another location through a

channel. Simply, a channel is a medium between the two locations, the transmitter

and the receiver.

Usually, the channel alters the data. A noisy channel adds a noise on the

original data and a lossy channel erases some of the packets of the data in transit.

In our simplified scenario, x ∈ C
d represents a data vector. Given a finite

unit-norm tight frame {xi}N
i=1 for C

d, the frame coefficients (〈x, xi〉) are the packets

to be transmitted.

Tight frames are advantageous in this setting for many reasons including

i. Linear encoding/decoding,

ii. Noise reduction,

iii. Robustness to erasures.

Noise reduction is achieved by projecting the noise onto the range of the anal-

ysis operator. If we transmit the frame coefficients through a noisy channel, the

channel will alter each frame coefficient 〈x, xi〉 by adding a certain amount of noise

ηi. We can represent the noise as η = {ηi}N
i=1 in the vector form. Therefore, what

we obtain at the receiver after reconstruction is

d

N

N∑

i=1

(〈x, xi〉 + ηi)xi = x+
d

N

N∑

i=1

ηixi.
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Therefore, the effect of the noise realized at the receiver is

η′ :=
d

N

N∑

i=1

ηixi.

The noise vector η does not necessarily lie in the range of the analysis operator

L of the frame. Therefore, we can think of η as a sum of an in-space component,

which lies in the range R(L) of L, and an out-of-space component, which lies in the

orthogonal complement of R(L). Orthogonal complement of R(L) is the Kernel (or

Null space) of the synthesis operator L∗. Therefore, the out-of-space component of

η vanishes during the reconstruction.

Theorem 44 shows how much noise reduction is possible when the channel

noise is a zero mean uncorrelated random noise.

Theorem 44. Suppose x ∈ F
d (F = R or C) is a data vector, {xi}N

i=1 is a FUNTF

for F
d, and suppose that (〈x, xi〉)N

i=1 is sent from a transmitter to a receiver through

a noisy channel. Suppose also that the channel noise is zero mean uncorrelated

random noise with variance σ2. Then, the sum of the variances of the noise realized

at the receiver is d2σ2/N , i.e.,

E(||η′||2) =
d2

N2
E(||η||2) =

d2

N
σ2,

where E(X) denotes the expected value of a random variable X.

Proof. The realized noise η′ is given by

η′ =
d

N

N∑

i=1

ηixi.

Then,

||η′||2 =
d2

N2

N∑

i,j=1

ηiηj〈xi, xj〉.
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Since ηi and ηj are uncorrelated for i 6= j, E(ηiηj) = 0, and so

E(||η′||2) =
d2

N2

N∑

i,j=1

E(ηiηj)〈xi, xj〉 =
d2

N2

N∑

i=1

E(|ηi|2) =
d2

N
σ2.

In the erasure problem, some of the packets, i.e., the frame coefficients, might

be delayed for too long, or get lost inside of the channel. These lost or delayed

packets/coefficients are erasures.

Tight frames are robust to erasures in the sense of Definition 17. One can

perfectly reconstruct the data x from a subset of frame coefficients provided that the

number of erasures is not too big. For instance, if J is the set of indices corresponding

to the frame coefficients that are received, and if {xi}i∈J still constitutes a frame,

then, we can compute the dual of this frame, apply this dual to the data received,

and reconstruct x accurately.

Definition 17. A frame {xi}N
i=1 is robust to m erasures if {xi}i∈J is still a frame

for any index set J with |J | = N −m.

Theorem 45. Let {xi}N
i=1 be a FUNTF for F

d, and N > dm. Then, {xi}N
i=1 is

robust to m erasures.

Proof. Let |J | = N −m. Then, for each x ∈ F
d,

N

d
||x||2 −

∑

i∈J

|〈x, xi〉|2 =
∑

i/∈J

|〈x, xi〉|2 ≤ m||x||2.

Therefore,

(
N

d
−m)||x||2 ≤

∑

i∈J

|〈x, xi〉|2 ≤
N

d
||x||2.

Hence, {xi}i∈J is still a frame with frame bounds N
d
−m and N

d
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By Theorem 45, the perfect reconstruction is possible in the presence of up to

m < N/d erasures if we use a FUNTF. However, even though the perfect reconstruc-

tion is possible, computing the duals of frames {xi}i∈J might not be preferred for

every application. We might have time constraints or scarce resources, or we might

be willing to trade precision for speeding up the reconstruction process. In either

case, using the synthesis operator of the original FUNTF is more attractive rather

than using the duals of frames {xi}i∈J that were subject to erasures. However, we

must make sure that the error due to erasures is below a reasonable level.

If we know in advance that the number of erasures is limited by a certain

number, then dividing data evenly into equal sized packets minimizes the maximum

loss due to erasures. In fact, Holmes and Paulsen [49] define the optimal frames for

erasures in the following way

Definition 18. A FUNTF {xi}N
i=1 is optimal for m erasures if it is a minimizer of

the function

Fm({xi}N
i=1) = max

||x||≤1
max

|J |=N−m

∥∥∥∥∥x−
d

N

∑

i∈J

〈x, xi〉xi

∥∥∥∥∥

among all FUNTFs.

Theorem 46 is from [49]. We provide a slightly different proof here.

Theorem 46. A FUNTF {xi}N
i=1 is optimal for 2 erasures in the sense of Definition

18 if and only if it minimizes the quantity

max
i6=j

|〈xi, xj〉|

among all FUNTFs.
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Proof. {xi}N
i=1 is optimal for 2-erasures in the sense of Definition 18 if it attains the

minimum of

F2({xi}N
i=1) = max

||x||≤1
max
i6=j

∥∥∥∥
d

N
(〈x, xi〉xi + 〈x, xj〉xj)

∥∥∥∥

among all FUNTFs.

Let Sijx = 〈x, xi〉xi + 〈x, xj〉xj. It is not hard to show that Sij has precisely

two nonzero eigenvalues 1 ± |〈xi, xj〉|, and the corresponding eigenvectors are

xi ∓
〈xi, xj〉
|〈xi, xj〉|

xj.

Therefore, the operator norm of Sij,

‖Sij‖ = 1 + |〈xi, xj〉|.

Then,

N

d
F2({xi}N

i=1) = max
i6=j

||Sij|| = 1 + max
i6=j

|〈xi, xj〉|.

Therefore, {xi}N
i=1 is optimal for 2-erasures if and only if it minimizes the

quantity maxi6=j |〈xi, xj〉| among all FUNTFs.

By Theorem 36, Equiangular tight frames are minimizers of the quantity

maxi6=j |〈xi, xj〉| among all FUNTFs. Therefore, equiangular tight frames are op-

timal for 2 erasures by Theorem 46.

4.1.5 Graph Theory Connection

Paulsen and Bodmann [13] characterized the equiangular tight frames for R
d

in terms of certain graphs, called regular 2-graphs. We shall provide the character-

ization in Theorem 47, and refer the reader to [13] for the proof.
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Definition 19. Given a graph with N vertices, Seidel adjacency matrix is the N×N

matrix Q = (qij) where qii = 0, qij = 1 if ith and jth vertices are adjacent, and

qij = −1 if not.

A two-graph (Ω,∆) consists of a vertex set Ω and a set ∆ of three element

subsets of Ω such that every four element subset contains an even number of sets

from ∆. A two-graph is regular if every two element subset of Ω is contained in

same number of sets in ∆.

Theorem 47. Let {xi}N
i=1 be a FUNTF for R

d and L be its Bessel map. Then,

{xi}N
i=1 is an equiangular tight frame for R

d if and only if

Q =

√
d(N − 1)

N − d
(LL∗ − I)

is the Seidel adjacency matrix of a regular two-graph.

4.1.6 Grassmanian Packing Problem

The Grassmannian Gk(V ) is the set of all k-dimensional subspaces of a d-

dimensional vector space V . Thus, the Grassmannian G1(V ) is the space of lines

through the origin in V , i.e., it is the projective space P (V ).

Gk(V ) has a topology induced by the metric

d(ℓ1, ℓ2) = ‖P1 − P2‖, ℓ1, ℓ2 ∈ Gk(V )

where Pi is the orthogonal projection onto ℓi, and ‖.‖ is the operator norm.

Grassmanian packing problem is the problem of locating N k-dimensional

subspaces of V so that the minimum distance with respect to this metric between any
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two subspaces are maximized. Such those packings are called the optimal packings.

In other words, Grassmanian packing problem is the min-max problem

max
(ℓi)N

i=1

min
i6=j

d(ℓi, ℓj). (4.1)

The Grassmanians are compact metric spaces [18, 19], therefore, a solution to

the problem (4.1) always exists.

Theorem 48. Let {ℓi}N
i=1 ⊆ G1(V ), and xi ∈ ℓi be a unit norm vector. Then,

{ℓi}N
i=1 is an optimal packing of lines if and only if {xi}N

i=1 attains the minimum of

max
i6=j

|〈xi, xj〉|

among all sets {xi}N
i=1 of unit norm vectors.

Proof. Let Sij = Pi − Pj. Then, Sij is Hermitian, and it has precisely two nonzero

eigenvalues. Let

b± =
−1 ±

√
1 − |〈xi, xj〉|2
〈xj, xi〉

, λ± = ±
√

1 − |〈xi, xj〉|2, v± = xi + b±xj.

It is not hard to show that λ± are eigenvalues of Sij with corresponding eigenvectors

v±. Therefore,

d(ℓi, ℓj) = ‖Pi − Pj‖ = ‖Sij‖ =
√

1 − |〈xi, xj〉|2.

Hence, {xi}N
i=1 is the solution of the Grassmanian line packing problem (4.1) if and

only if it minimizes the quantity maxi6=j |〈xi, xj〉| among all sets {xi}N
i=1 of unit norm

vectors.
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Definition 20. An equinorm set of vectors {xi}N
i=1 in F

d is a Grassmanian frame

if it attains the minimum of

max
i6=j

|〈xi, xj〉|

among all sets {xi}N
i=1 of unit norm vectors.

Unlike equiangular frames, Grassmanian frames always exist for any pair

(d,N) due to compactness. More precisely, for a fixed N , the set of all unit norm

frames

{{xi}N
i=1 : xi ∈ F

d, ‖xi‖ = 1}

is a compact metric space, endowed with the metric

d({xi}N
i=1, {yi}N

i=1) =

(
N∑

i=1

‖xi − yi‖2

)1/2

,

and f({xi}N
i=1) = maxi6=j |〈xi, xj〉| is continuous in this metric. Every continuous

function attains its minimum value on a compact set.

Let {xi}N
i=1 be a frame for F

d. In Theorem 36, we proved that

max
i6=j

|〈xi, xj〉| ≥
√

N − d

d(N − 1)
,

and that this bound is attained if and only if {xi}N
i=1 is an equiangular tight frame.

Therefore, equiangular tight frames are Grassmanian frames.
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4.2 New Results

4.2.1 p-th Frame Potential

Benedetto and Fickus [5] proved that finite unit-norm tight frames are mini-

mizers of the frame potential function

FP ({xi}N
i=1) =

N∑

i6=j

|〈xi, xj〉|2.

In analogy to the frame potential, Blume-Kohout, Scott, Caves and Renes [65]

defined the p-th frame potential (Definition 21). They proved that (d, d2) complex

equiangular tight frames are the minimizers of the second frame potential function,

whenever they exist.

Definition 21. Let p > 1 and let N be a positive integer. Let {xi}N
i=1 be a set of

unit norm vectors in F
d (F = R or C). The p-th frame potential function FPp is

defined by

FPp({xi}N
i=1) =

N∑

i6=j

|〈xi, xj〉|2p.

We generalize the result of Blume-Kohout, Scott, Caves and Renes to an ar-

bitrary (d,N) in Theorem 50. In order to prove Theorem 50, we need Theorem 49.

Theorem 49 is taken from [5], and a proof can be found in [5].

Theorem 49. Let d < N , and let {xi}N
i=1 be a set of unit norm vectors in F

d (F = R

or C). Then,

FP ({xi}N
i=1) =

N∑

i6=j

|〈xi, xj〉|2 ≥
N(N − d)

d
.

Furthermore, the lower bound is achieved if and only if {xi}N
i=1 is tight.
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Theorem 50. Let d < N , 1 < p <∞, and let {xi}N
i=1 be a set of unit norm vectors

in F
d (F = R or C). Then,

FPp({xi}N
i=1) =

N∑

i6=j

|〈xi, xj〉|2p ≥ N(N − 1)

(
N − d

d(N − 1)

)p

. (4.2)

Furthermore, the lower bound is achieved if and only if {xi}N
i=1 is an equiangular

tight frame.

Proof. Let AN be the image of set of all unit-norm frames for F
d consisting of N

elements under the map

{xi}N
i=1 → (〈xi, xj〉)i6=j ∈ F

N(N−1).

For any p > 1, and ψ ∈ AN , we have

||ψ||2p ≥ (N(N − 1))( 1

2p
− 1

2
)||ψ||2

by Hölder’s inequality. Moreover, the equality holds if and only if

∃c > 0 ∀k = 1, . . . , N(N − 1), |ψ[k]| = c. (4.3)

Therefore,

N∑

i6=j

|〈xi, xj〉|2p ≥ (N(N − 1))2p( 1

2p
− 1

2
)

(
N∑

i6=j

|〈xi, xj〉|2
)p

(4.4)

≥ N(N − 1)

(
N − d

d(N − 1)

)p

.

We used Theorem 49 for the second inequality in (4.4).

If FPp attains the lower bound in (4.2), then, {xi}N
i=1 must be equiangular

by (4.3). Moreover, by (4.4) we must have
∑N

i6=j |〈xi, xj〉|2 = N(N − d)/d, and so,
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{xi}N
i=1 must be tight by Theorem 49. Therefore, {xi}N

i=1 must be an equiangular

tight frame.

Conversely, if {xi}N
i=1 is an equiangular tight frame, then

∀i 6= j |〈xi, xj〉| =

√
N − d

d(N − 1)

by Theorem 36. Therefore, FPp attains the lower bound at {xi}N
i=1.

4.2.2 Equiangular Tight Frames for C
d with Maximum Redundancy

Notation 2. We use the notation xx∗ to denote the linear map y → 〈y, x〉x, i.e.,

(xx∗)y = 〈y, x〉x.

Lemma 9. Let {xi}N
i=1 be a frame for C

d, let L be its Bessel map, and let L∗ be

the adjoint of L. Then, span {xix
∗
i : i = 1, . . . , N} = {L∗DL : D diagonal}, and

dim(span{xix
∗
i }) = N − dim(W )

where W = {D diagonal : L∗DL = 0}.

Proof.

A ∈ span{xix
∗
i } ⇔ A =

N∑

i=1

λixix
∗
i for some λi ∈ C

⇔ ∀y ∈ F
d, Ay =

N∑

i=1

λi〈y, xi〉xi = L∗DLy

where D = diag(λ1, . . . , λN).

Second, the map D → L∗DL is linear, and W is its Null space. As a result,

dim(span{xix
∗
i }) = N − dim(W ).
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Lemma 10. If {xi}N
i=1 is an equiangular tight frame, then dim(span{xix

∗
i }) = N

Proof. If L∗DL = 0 for some D = diag(λ1, . . . , λN)

⇒
N∑

i=1

λi|〈xj, xi〉|2 = 0, ∀j = 1, . . . , N

⇒ N − d

d(N − 1)

(
N∑

i=1

λi

)
+

(
1 − N − d

d(N − 1)

)
λj, ∀j = 1, . . . , N

but then there is a λ such that λj = λ for every j. Then,
∑N

i=1 λ|〈x1, xi〉|2 = 0, so

λ = 0. Therefore, W = {0}.

Theorem 51. If {xi}N
i=1 is an equiangular tight frame for F

d, then

N ≤ d(d+ 1)/2 if F = R

N ≤ d2 if F = C

Proof. M(Fd), the set of all d× d matrices over F, is a d2 dimensional vector space.

Then, N = dim(span{xix
∗
i }) ≤ d2.

When F = R, span{xix
∗
i } is a subspace of the space of all real symmetric

matrices SM(Rd), which is d(d+ 1)/2 dimensional, so

N = dim(span{xix
∗
i }) ≤ d(d+ 1)/2.

Theorem 52. let {xi}d2

i=1 be a set of unit norm vectors in C
d. Then, the following

assertions are equivalent.

i. {xi}d2

i=1 is an equiangular tight frame for C
d,

ii. For any d× d complex matrix B

d2∑

i=1

〈Bxi, xi〉xix
∗
i =

d

d+ 1
(B + trace(B)I),
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iii. For every k, l, k′, l′ = 1, . . . , d

d2∑

i=1

xi(k) xi(l) xi(k′) xi(l
′) =

d

d+ 1
[δ(k − k′)δ(l − l′) + δ(k − l)δ(k′ − l′)],

iv. For every y ∈ C
d

d2∑

i=1

|〈y, xi〉|4 =
2d

d+ 1
||y||4.

Proof. (i ⇒ ii) If {xi}d2

i=1 is an equiangular tight frame, then {xix
∗
i } spans M(Cd)

by Lemma 10. Then, for any B ∈ GL(Cd), there are λi s such that B =
∑
λixix

∗
i .

Next, define

S(B) =
d2∑

i=1

〈Bxi, xi〉xix
∗
i .

Then, S is linear, and S(xjx
∗
j) =

∑d2

i=1 |〈xj, xi〉|2xix
∗
i = d

d+1
(I + xjx

∗
j). By linearity,

S(B) =
d

d+ 1

∑

i

λi(I + xix
∗
i ) =

d

d+ 1

(
∑

i

λi

)
I +

d

d+ 1
B

and the result follows with trace(B) = trace(
∑
λixix

∗
i ) =

∑
λi.

(ii⇒ iii) Assume (ii). Then, for any matrix B = [bkl], we have

d2∑

i=1

|〈Bxi, xi〉|2 =
d

d+ 1
trace(BB∗) +

d

d+ 1
|trace(B)|2.

⇔
d2∑

i=1

∣∣∣∣∣
∑

k,l

bklxi(l)xi(l)

∣∣∣∣∣

2

=
d

d+ 1

(
∑

k,l

|bkl|2 + |
∑

k

bkk|2
)

⇔
∑

k,l

∑

k′,l′

bklbk′l′

(
d2∑

i=1

xi(k) xi(l) xi(k′) xi(l
′)

)
=

d

d+ 1

(
∑

k,l

|bkl|2 + bkkbll

)

⇔
∑

k,l

∑

k′,l′

bklbk′l′

(
d2∑

i=1

xi(k) xi(l) xi(k′) xi(l
′) − d

d+ 1
[δ(k − k′)δ(l − l′) + δ(k − l)δ(k′ − l′)]

)
=
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Since this is true for any matrix B, (iii) follows.

(iii⇒ iv) Assume (iii). Then, For every y ∈ C
d

d2∑

i=1

|〈y, xi〉|4 =
d2∑

i=1

∣∣∣∣∣

d∑

k=1

y(k) xi(k)

∣∣∣∣∣

4

=
d∑

k,l,k′,l′=1

d2∑

i=1

y(k′) y(k) y(l′) y(l)xi(k) xi(l) xi(k′) xi(l
′)

=
d

d+ 1

d∑

k,l,k′,l′=1

y(k′) y(k) y(l′) y(l) [δ(k − k′)δ(l − l′) + δ(k − l)δ(k′ − l′)]

=
2d

d+ 1
||y||4.

(iv ⇒ i) Assume (iv). Then,

d2∑

i,j=1

|〈xi, xj〉|4 =
d2∑

j=1

2d

d+ 1
||xj||4 =

2d3

d+ 1
.

Then, by Theorem 43, {xi}d2

i=1 is an equiangular tight frame for C
d.

The following theorem is analogous to Theorem 52 for the real equiangular

frames with maximum redundancy. The proof is the same as the proof of Theorem

52, except we use Theorem 50 to prove (iii⇒ i) instead of Theorem 43. Therefore,

we shall not provide a separate proof for Theorem 53.

Theorem 53. let N = d(d + 1)/2 and let {xi}N
i=1 be a set of unit norm vectors in

R
d. Then, the following assertions are equivalent.

i. {xi}N
i=1 is an equiangular tight frame for R

d,
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ii. For any d× d real symmetric matrix B

N∑

i=1

〈Bxi, xi〉xix
∗
i =

d

d+ 1
(B + (1/2)trace(B)I),

iii. For every y ∈ R
d

N∑

i=1

|〈y, xi〉|4 =
3(d+ 1)

2(d+ 2)
||y||4.

It has been conjectured that for every d, there is a finite Heisenberg frame for

C
d2

, which is also an equiangular tight frame. In fact, there is a short list of such

frames for d = 2, 3 and 4 in [65], for which there is a (d, d2) equiangular tight frame.

Renes, Blume-Kohout, Scott and Caves [65] also claim that they could numerically

calculate an equiangular Heisenberg frame for 5 ≤ d ≤ 45.

Definition 22. Let φ = (φ(a))a∈Zd
∈ C

d. The modulation and the translation

operators are defined as follows:

Mbφ(a) = eib.aφ(a),

τbφ(a) = φ(a− b).

let ω = e2πi/d. The finite group

G = {T (n, a, b) = ωnMbτa : a, b, n ∈ Zd}

is the finite Heisenberg-Weyl group.

The center of this group, the subset of elements that commute with every

element in the group, is Z(G) = {ωnI : n ∈ Zd}. Also, it has no nontrivial invariant

subspace of C
d, i.e., G is a d-dimensional irreducible unitary representation of itself

[50].
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Definition 23. Let x ∈ C
d be a unit-norm vector. The system {Mbτax : a, b ∈ Zd}

constitutes a frame for C
d, is called a Heisenberg frame.

Heisenberg frames are the orbits of the factor group G/Z(G). Thus, irre-

ducibility of G implies the irreducibility of G/Z(G). Then, Heisenberg frames are

always FUNTFs by Theorem 55.

Definition 24. Let G be a group and let GL(Cd) be the group of all invertible d×d

complex matrices. A group homomorphism ρ : G→ M(Cd) is a representation of G

in GL(Cd).

A subspace V of GL(Cd) is an invariant subspace of ρ(G) if

∀g ∈ G, ρ(g)(V ) ⊆ V.

ρ is an irreducible representation if ρ(G) has no invariant proper subspace.

We need the following well-known result of Representation Theory known as

“Schur’s Lemma”, which we use to prove Theorem 55.

Theorem 54. Let G be a group, let ρ be an irreducible representation of G in

GL(Cd), and let S ∈ GL(Cd) be a matrix that commutes with every element in

ρ(G), i.e.,

∀g ∈ G, Sρ(g) = ρ(g)S.

Then, S is a constant multiple of the d× d identity matrix I.

Proof. Let λ be an eigenvalue of S, and Eλ be the corresponding eigenspace. Since

S commutes with every ρ(g) ∈ ρ(G), we have

∀v ∈ Eλ, (S − λI)ρ(g)v = ρ(g)(S − λI)v = 0.
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Thus, ρ(g)v ∈ Eλ for every g. Hence, Eλ must be an invariant subspace of ρ(G). But,

ρ is an irreducible representation, and so ρ(G) does not have any proper invariant

subspace. Hence, Eλ = C
d, and so S = λI.

Theorem 55. Let G be a finite group of matrices over C
d that has no proper

subspace, let |G| ≥ d, and let x ∈ C
d be a unit norm vector. Then,

{gx : g ∈ G}

constitutes a FUNTF for C
d.

Proof. The frame operator is defined by Sy =
∑

g∈G〈y, gx〉gx and it satisfies

∀h ∈ G,∀y ∈ C
d (hS)y =

∑

g∈G

〈y, gx〉hgx = (Sh)y,

i.e., S commutes with every g ∈ G. Then, by Theorem 54, S = λI for some constant

λ. Moreover, since S is positive definite, λ > 0.

{gx : g ∈ G} is a spanning set, for otherwise span{gx : g ∈ G} would be an

invariant proper subspace of G, which contradicts one of the hypotheses.

Hence, {gx : g ∈ G} is a FUNTF for C
d.

The following theorem is a direct result of the Theorem 52, and an alternative

proof is in [14].

Theorem 56. Let x ∈ C
d has unit norm, and

Mbx(n) = e2πibn/dx(n),

Tax(n) = x(n+ a).
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Then, (MbTax)
d−1
a,b=0 is an equiangular tight frame for C

d if and only if

d−1∑

a=0

x(a) x(a+ k) x(a+ l) x(a+ k + l) =
1

d+ 1
[δ(k) + δ(l)].

Proof. By Theorem 52 {xi}d2

i=1 is an equiangular tight frame for C
d if and only if for

every k, l, k′, l′ = 1, . . . , d

d2∑

i=1

xi(k) xi(l) xi(k′) xi(l
′) =

d

d+ 1
[δ(k − k′)δ(l − l′) + δ(k − l)δ(k′ − l′)].

Substituting the expression (MbTax)
d−1
a,b=0 for {xi}d2

i=1 and simplifying, we obtain the

result.
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[47] C.S. Güntürk, Approximating a bandlimited function using very coarsely quan-
tized data: Improved error estimates in sigma-delta modulation, Journal of the
American Mathematical Society 17 (2004), 229–242.

[48] B. Hochwald, T. Marzetta, T. Richardson, W. Sweldens, and R. Urbanke, Sys-
tematic design of unitary space-time constellations, IEEE Trans. Inform. The-
ory 46(6) (2000), 19621973.

[49] R. Holmes and V. Paulsen, Optimal frames for erasures, Lin. Alg. Appl. 377
(January 2004), 31–51.

[50] S. Howard, R. Calderbank, W. Moran, H. Schmitt, and C. Savage, Relationships
between radar ambiguity and coding theory, IEEE International Conference on
Acoustoustics, Speech and Signal Processing (Philadelphia, PA, USA), vol. 5,
2005, pp. 897–900.

[51] D. Jimenez, L. Wang, and Y. Wang, PCM quantization errors and the white
noise hypothesis, SIAM Journal on Mathematical Analysis 38 (2007), no. 6,
2042–2056.
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[53] J. Kovačević, M. Vetterli, and V.K. Goyal, Multiple descripton transform cod-
ing: Robustness to erasures using tight frame expansions, in Proc. International
Symposium on Information Theory(ISIT) (1998), 326–335.

[54] , Quantized frame expansions as source-channel codes for erasure chan-
nels, in Proc. IEEE Data Compression Conference (1999), 326–335.

[55] A.B. Kuijlaars and E.B. Saff, Asymptotics for minimal discrete energy on the
sphere, Trans. Amer. Math. Soc. 350(2) (1998), 523538.

[56] L.C.Washington, Introduction to Cyclotomic Fields, Springer-Verlag, 1982.

[57] P. Lemmens and J. Seidel, Equiangular lines, Journal of Algebra 24 (1973),
494–512.

[58] S. Mallat, A Wavelet Tour of Signal Processing, 2 ed., Academic Press, 1999.

[59] J. Munch, Noise reduction in tight weyl-heisenberg frames, IEEE Transactions
on Information Theory 38(2) (1992), 608616.

[60] S.R. Norsworthy, R.Schreier, and G.C. Temes (eds.), Delta-Sigma Data Con-
verters, IEEE Press, 1997.

135



[61] E. L. Pennec and S. Mallat, Sparse geometric image representation with ban-
delets, IEEE Trans. Image Proc. 14 (2005), 423–438.

[62] L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New
York, NY, 1991.

[63] G. Rath and C. Guillemot, Syndrome decoding and performance analysis of
DFT codes with bursty erasures, In Proc. Data Compression Conference (2002),
282291.

[64] , Recent advances in DFT codes based on quantized finite frames expan-
sions for ereasure channels, Preprint (2003).

[65] J. Renes, R. Blume-Kohout, J. Scott, and C. Caves, Symmetric informationally
complete quantum measurements, Journal Of Mathematical Physics 45 (2004),
no. 6, 2171.

[66] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise
removal algorithms, Physica D 60 (1992), 259–268.

[67] W. Rudin, Fourier Analysis on Groups, Interscience Publishers - John Wiley
and Sons, New York, NY, 1962.

[68] S. Sarvotham, D. Baron, and R. G. Baraniuk, Measurements vs. bits: Com-
pressed sensing meets information theory, Proc. 44th Allerton Conference on
Communication, Control, and Computing (Monticello, IL), 2006.

[69] T. Strohmer and R. Heath, Grassmanian frames with applications to coding
and communications, Appl. Comput. Harmon. Anal. 14(3) (2003), 257–275.

[70] M. Sustik, J. Tropp, I. Dhillon, and R. Heath, On the existence of equiangular
tight frames, Preprint (2004).

[71] J. Tropp, I. Dhillon, and R. Heath, Finite-step algorithms for constructing
optimal cdma signature sequences, IEEE Trans. Info. Theory 50 (2004), no. 11,
2916–2921.

[72] J. Tropp, I. Dhillon, R. Heath, and T. Strohmer, Construction of equiangular
signatures for synchronous cdma systems, Proc. of IEEE Int. Sym. on Spread
Spectrum Techniques and Applications (Sydney), 2004.

[73] , Designing structured tight frames via an alternating projection method,
IEEE Transactions on Information Theory 51 (2005), no. 1, 188–209.

[74] S. Waldron, Generalized Welch bound equality sequences are tight frames, IEEE
Trans. Info. Th. 49, no. 9, 2307–2309.

[75] Y. Wang, Sigma-delta quantization errors and the traveling salesman problem,
To Appear.

136
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