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Land cover between habitat patches (“matrix”) can impact species persistence in 

fragmented landscapes by altering resource availability, edge effects, or inter-patch 

movement.  This thesis examines how the matrix affects the Neotropical bird community 

in central Jamaica in landscapes where forest is embedded in three human-dominated 

matrix types (agriculture, peri-urban development, and bauxite mining) and one natural 

“matrix” (continuous forest). 

 First, I examine whether richness, community composition, and abundances of 

resident birds differ in ~ 100 forest patches within the four matrix types, and relate 

species responses to traits influencing dispersal, resource acquisition, and/or population 

growth.  Agricultural landscapes were found to retain avian diversity and community 

assemblages most similar to intact forest relative to peri-urban and bauxite landscapes.  



  

Traits related to resource acquisition best predicted species responses, indicating that 

resource limitation driven by the matrix may be a primary factor driving bird responses to 

fragmentation. 

 Next, I determine the relative influence of patch area, isolation, vegetation 

structure, and matrix type on the occupancy dynamics of resident insectivorous birds.  

Within-patch vegetation and matrix type were the most important determinants of 

colonization and extinction, but the effects of patch area, isolation, and vegetation on 

occupancy dynamics were matrix- and species-dependent.  Across the community, the 

matrix influenced extinction probabilities more than colonization, indicating that 

extinction processes likely drive population dynamics. 

 Finally, I examine the relative permeability of peri-urban, bauxite, and forested 

landscapes on the movement of the migrant American Redstart (Setophaga ruticilla) and 

the resident Jamaican Tody (Todus todus) by experimentally translocating > 140 birds 

0.64 km from their territories across landscape treatments.  Redstarts returned with 

greater success and faster speed than Todies.  Return success was not impacted by 

landscape treatment, but both species returned more rapidly in forest relative to bauxite 

matrix, with return times intermediate in a peri-urban matrix.  These findings indicate 

that bird mobility in fragmented landscapes is mediated by the landscape matrix. 

 This research is among few empirical studies to discern the impacts of different 

matrix types on species patterns and processes.  These results inform theory on 

fragmentation as well as bird conservation in an understudied system. 
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Preface 

This dissertation contains an overall abstract and introduction, three chapters, and nine 

supporting appendices.  Each chapter is presented in manuscript form; therefore, 

background and methods may be repeated, pronouns reflect manuscript authorship, and 

tables and figures appear at the end.  A single reference section occurs at the end for 

literature cited throughout the dissertation, and appendices are labeled in the order of 

citation in the text.  All research was conducted under applicable permits and approved 

animal care/use protocols (University of Maryland IACUC protocol #R-06-83, 

Smithsonian National Zoological Park CRC-IACUC proposal #06-25, and Jamaica 

NEPA Ref. No. 18/27). 
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Introduction 

Around the world, natural areas are being converted to and fragmented by human-

dominated land uses, a change that is threatening global biodiversity (Sala et al. 2000; 

Foley et al. 2005).  Consequently, habitat fragmentation has become a major research 

theme (Fazey et al. 2005).  Despite such attention, we still have limited understanding 

and ability to predict how species will respond to habitat conversion, particularly in non-

temperate areas (Ford et al. 2001; Laurance 2008).  A major reason may be that research 

has been largely guided by patch-based models that assume landscapes can be 

simplistically reduced to habitat and undefined non-habitat.  Island biogeographic theory 

and metapopulation models (MacArthur and Wilson 1967; Hanski 1998), which provide 

the theoretical foundation for fragmentation research, focus on the effects of reducing 

habitat patch size (area effects) and increasing inter-patch distance (isolation effects), 

while often ignoring the potential role of land cover between primary habitat (Haila 2002; 

Fahrig 2003; Kupfer et al. 2006).  In reality, the process of fragmentation occurs not at 

the individual-patch but among multiple patches in a landscape (McGarigal and Cushman 

2002; Fahrig 2003), which are often surrounded by complex mosaics of different land-

cover types.  Species may be affected not only by the size and spatial location of primary 

habitat, but also by the structure and composition of the intervening land cover, termed 

the “matrix” (Haila 2002; Ewers and Didham 2006; Kupfer et al. 2006).  The matrix can 

affect inter-patch movement of animals (e.g., Revilla et al. 2004; Bender and Fahrig 

2005), can alter the resource base within a landscape by providing alternative or 

supplemental resources (e.g., Perfecto and Vandermeer 2002; Brotons et al. 2003), and 
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can impact the type and magnitude of edge effects (e.g., habitat quality, microclimate, 

predation rates) (e.g., Chalfoun et al. 2002; Ries et al. 2004).  

 Despite the potential importance of the landscape matrix, its effects remain poorly 

understood.  The relative importance of multiple human-modified land-cover types has 

rarely been examined in one study, and matrix types are often lumped together in a single 

“matrix” category or are assumed to be of subordinate importance to habitat components 

(i.e., patch area and isolation).  Given the small number of empirical studies that have 

disentangled the effects of the matrix from those of habitat area or isolation (Rodewald 

2003; Laurance 2008), the unique impacts of matrix types on species processes are only 

beginning to be discerned. 

 The central aim of my research was to determine the effects of the landscape 

matrix on the Neotropical bird community in fragmented forests in central Jamaica.  This 

island was once almost entirely covered by forests, but now less than 30% remains 

(NRCA 1995; FAO 2001; Forestry Department 2001).  Despite such extensive loss, 

remnant forests are essential to protecting the island’s unique biodiversity.  Jamaica is in 

one of the top four global biodiversity hotspots, with one of the highest rates of 

endemism (Myers et al. 2000) and the greatest number of endemic bird species in the 

Caribbean, including five endemic avian genera (Pseudoscops, Trochilus, Loxipasser, 

Euneornis and Nesopsar) (BirdLife International 2003).  Despite Jamaica’s legacy of 

forest loss and the potential threat to its endemic species (Brooks et al. 2002), this is the 

first study to examine the effects of forest fragmentation on avian assemblages in 

different landscape contexts. 
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Most of the human land conversion in Jamaica occurred by the eighteenth century 

(Eyre 1987b), when native forests were converted historically for cultivation of cash 

crops (e.g., sugar, bananas, and coffee), and more recently for cattle pasture (Eyre 1987a; 

Eyre 1987b).  Since the 1950s, land-cover change in Jamaica (Evelyn and Camirand 

2003) and on other Caribbean islands (Lugo 2002) has resulted largely from the 

conversion of agriculture to residential development and to mining for bauxite.  In a 

classic island biogeographic or metapopulation framework, these land uses would fail to 

be distinguished, given that they equally result in the creation of non-native land cover.  

Treating these three anthropogenically modified lands as a single cover type (i.e., non-

habitat), however, has the potential to lead to erroneous decision-making.  To better 

inform conservation planning and restoration efforts in the region, we need to understand 

the unique impacts of each of these three human land uses on forest-dependent birds. 

Study area 

My research sites were located in Manchester and Clarendon Parishes (latitude: 

17 56'24"-18 11'6" N; longitude: 77 23'13"- 77 37'5" W).  This region lies in the 

premontane moist forest climatic zone (Holdridge 1967), with mean annual temperature 

of 26 C.  Rainfall is bimodal, peaking in May/June and September/October, with 1000 

mm per year average (Jamaican Meteorological Service, unpublished data).  The 

landform is karst topography with white limestone hills and plateaus, ranging between 

400 and 800 m elevation (Porter 1990).  In pre-Columbian times, this region was covered 

in wet limestone forest (Asprey and Robbins 1953) composed of evergreen and semi-

deciduous trees, referred to as Evergreen Season Forest formation (Beard 1944; Beard 

1955).  Forest is now restricted to small hilltop remnants on limestone outcrops (often < 
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10 ha) surrounded by a matrix dominated by agriculture, residential (peri-urban) 

development, or bauxite mining.  Given the karst topography, the habitat fragmentation 

pattern is similar among landscapes subject to these different human land-use pressures.  

Spatial locations and extent of forest fragments in this region have remained fairly 

stationary in recent time but are embedded within a changing matrix.  Thus, this setting 

provided a unique opportunity to investigate the influence of matrix land cover on the 

Neotropical bird community. 

Over a three-year period (2005-2007), I surveyed birds in 20 landscapes that 

captured the land-cover patterns in the region:  14 landscapes in which remnant forest had 

been fragmented and converted to three dominant land-cover types (5 agriculture, 4 peri-

urban development, 5 bauxite mining), and 6 landscapes with intact forest cover.  To 

isolate the potential influence of matrix context, agricultural, peri-urban, and bauxite 

landscapes were selected such that they were similar in the major components of 

fragmentation.  I sampled ~100 forest patches similar in patch area (mean ± 1 SE: 3.89 ± 

0.45 ha) and inter-patch isolation (33.58 ± 3.48 m, 160.80 ± 19.79 m, and 2381.75 ± 

147.07 m to the nearest fragment > 0.5 ha, 5 ha, and 100 ha, respectively).  Patches were 

also embedded in landscapes with a similar proportion (35.84 ± 1.59) and spatial 

configuration of forest cover (i.e., shape complexity, inter-patch connectivity). 

Research objectives and dissertation format 

The main goals of my research were to determine (1) the effects of forest 

fragmentation and the landscape matrix on the Neotropical bird community, (2) the 

extent to which species responses are driven by intrinsic factors (i.e., life history and 

ecological traits) and extrinsic factors (i.e., patch area, isolation, within-habitat quality, 
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and matrix conditions), and (3) the relative importance of potential underlying 

mechanisms (i.e., resource limitation, dispersal limitation, and reproductive 

growth/predation). 

My first chapter examines the effects of forest fragmentation and the landscape 

matrix on the resident (non-migratory) Neotropical bird assemblage.  I determine how 

species richness, community composition, and relative abundances of birds differ in 

forest patches embedded in the three human-dominated matrix types (agriculture, peri-

urban development, bauxite mining) relative to sites in a natural “matrix” (continuous 

forest).  Individual bird responses are categorized into matrix response types, depending 

upon whether species abundances were higher, lower, or similar among the fragmented 

matrix types relative to continuous forest.  Species matrix responses were then related to 

eleven life history and ecological traits that affect dispersal ability, resource acquisition, 

and/or population growth potential to tease out plausible mechanisms underlying bird 

responses to anthropogenically modified landscapes. 

In my second chapter, I move beyond inferring potential mechanisms based on 

species abundance patterns and directly assess the role of local colonization and local 

extinction in driving differential occupancy dynamics of resident Neotropical 

insectivorous birds among the four landscape types.  I selected insectivorous birds 

because this guild is disproportionately declining in fragmented tropical forests 

worldwide (e.g., Stratford and Stouffer 1999; Castelletta et al. 2000; Ribon et al. 2003; 

Sodhi et al. 2004).  To ensure unbiased inferences, I apply recently developed multi-

season patch-occupancy models to account for the fact that species are often imperfectly 

and/or differentially detected (MacKenzie et al. 2003; MacKenzie et al. 2006).  I 
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investigate the relative effects of patch area, patch isolation, within-patch habitat 

structure, and matrix type based on an information-theoretic approach, which allows for 

the examination of alternative hypotheses and multi-model inference (Burnham and 

Anderson 2002).  I specifically examine (1) how patch area and within-patch habitat 

(vegetation) structure affect the probabilities of local extinction, (2) how patch isolation 

affects the probabilities of local colonization, and (3) whether and how matrix conditions 

mediate isolation-, area-, and habitat-relationships. 

In my third chapter, I focus directly on the role of the landscape matrix in 

mediating dispersal abilities of two insectivorous bird species  a habitat generalist, the 

Nearctic-Neotropical migrant American Redstart (Setophaga ruticilla) and a resident 

forest specialist, the Jamaican Tody (Todus todus).  These species were targeted given 

their divergent life history traits, which I predicted would impose differential constraints 

on their ability to respond to forest fragmentation.  I experimentally translocated > 140 

birds an average of 1.7  0.60 km ( 1 SE) from their territories across three landscape 

treatments:  landscapes fragmented by either peri-urban or bauxite mining development 

(i.e., peri-urban or bauxite matrix types) versus continuous forest.  I test whether return 

success or return time differ among landscape treatments as well as among species.  

Additional factors beyond landscape structure can affect both site fidelity and dispersal 

ability of birds (Bowler and Benton 2005); thus, I consider the relative influence of sex, 

body condition, territory habitat quality, and translocation distance.  Experimental 

manipulations, in particular translocations, can be an effective way to measure functional 

connectivity at a landscape scale for vagile species like birds (Desrochers et al. 1999; 

Bélisle et al. 2001). 
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By integrating research on community- and individual-level patterns, occupancy 

dynamics, and movement experiments, this dissertation provides a novel synthesis of the 

role of the landscape matrix in mediating effects of forest fragmentation on Neotropical 

bird communities.  This research is among few empirical studies to discern the relative 

impacts of different matrix types on species patterns and processes in fragmented systems 

and to evaluate the relative importance of alternative mechanisms.  These results inform 

general conservation theory on fragmentation and also Neotropical bird conservation in 

an understudied system. 
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Chapter 1:  Landscape matrix and species traits mediate responses of 

Neotropical resident birds to forest fragmentation in Jamaica 

Abstract 

 Land cover surrounding fragmented habitat can greatly impact species persistence 

by altering resource availability, edge effects, or the movement of individuals throughout 

a landscape.  Despite the potential importance of the landscape matrix, we still have 

limited understanding of differential effects of intensive land uses in empirical systems.  

Here, we investigated whether Neotropical resident bird communities differed in 

limestone forest patches embedded in three different human-dominated matrix types 

(agriculture, peri-urban development, and bauxite mining) relative to sites in continuous 

forest in central Jamaica.  We found that species richness, community composition, and 

abundances were matrix-dependent, with agricultural landscapes supporting greater avian 

diversity and more intact community assemblages than either peri-urban or bauxite 

landscapes.  Seventy percent of resident bird species had abundances that differed in 

forest embedded in the different landscape matrix types.  Traits related to resource use 

best predicted species responses, lending support to the hypothesis that resource 

availability may be a primary factor driving Neotropical bird responses to fragmentation.  

Insectivores, frugivores, canopy nesters, understory and canopy foragers, and forest-

restricted species rarely observed in matrix habitats had lower abundances in forest 

fragments embedded in human-modified matrix types than in continuous forest.  In 

contrast, nectarivores, omnivores, granivores, ground and multi-strata nesters, ground 

foragers, and species regularly in matrix habitats were least sensitive to forest 
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fragmentation.  Results suggest that structure, composition, and land use disturbance in 

matrix areas impact overall habitat quality in landscapes by potentially mediating 

resource availability inside as well as outside forest habitat.  This study reinforces the 

importance of differentiating among land uses in fragmentation research. 

Introduction 

 Around the world, forests are being converted to and fragmented by human-

dominated land uses, a change that is threatening global biodiversity (Sala et al. 2000; 

Foley et al. 2005). Despite substantial research attention to fragmentation (Fazey et al. 

2005), we remain unable to predict how most species will respond to forest conversion 

(Henle et al. 2004; Ewers and Didham 2006).  A major reason for this inability could be 

that landscapes are often simplistically reduced to inadequate binaries of habitat and 

undefined non-habitat in fragmentation studies.  This conceptualization likely stems from 

the application of island biogeography and metapopulation theories (MacArthur and 

Wilson 1967; Hanski 1998) to human-dominated systems.  These theories have 

emphasized the impacts of reducing forest patch size (i.e., area effects) and increasing 

inter-patch distance (i.e., isolation effects) on species diversity and persistence, while 

often ignoring the role of land cover between forest remnants (Haila 2002; Fahrig 2003).  

In reality, landscapes are complex mosaics of different land-cover types under varying 

intensities of use.  Species are thus affected not only by the size, shape, and spatial 

location of forest habitat, but also by surrounding non-forested areas, which we 

collectively refer to as the “landscape matrix.” 

The matrix is broadly defined as the portion of the landscape that has at some 

point in time undergone anthropogenic perturbation, such as logging or conversion of 
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native forest to human land uses such as silviculture, agricultural fields, pasture, and 

development (sensu Lindenmayer and Franklin 2002; Kupfer et al. 2006).  Despite what 

the term may imply, the matrix is neither homogeneous nor entirely inhospitable or inert 

to forest-dwelling species.  Rather, the landscape matrix can differentially mediate 

processes that influence species-area and -isolation relationships (Ewers and Didham 

2006; Prugh et al. 2008) and edge effects (Ries et al. 2004; Ries and Sisk 2004).  

Different matrix types may provide alternative or supplemental resources (e.g., food or 

nesting sites) to support greater species abundances than would be expected based on 

primary habitat alone (i.e., habitat compensation hypothesis) (e.g., Gascon et al. 1999; 

Norton et al. 2000; Brotons et al. 2003; Luck and Daily 2003; Cook et al. 2004).  Inter-

patch movement of animals may also differ in landscapes with varying matrix structure, 

thus influencing functional landscape connectivity in varying degrees (i.e., dispersal 

hypothesis) (e.g., Bélisle et al. 2001; Ricketts 2001; Gobeil and Villard 2002; Revilla et 

al. 2004; Bender and Fahrig 2005).  The type and extent of contrast between matrix 

habitats and forest remnants can also mediate the magnitude of edge effects, such as nest 

predation and parasitism (Donovan et al. 1997; Chalfoun et al. 2002; Driscoll and 

Donovan 2004) or the alteration of within-patch conditions (e.g., vegetation structure, 

microclimate) (Saunders et al. 1991; Ries et al. 2004) (i.e., edge effects hypothesis).  

Lastly, land-use pressures may vary in different landscape contexts (Friesen et al. 1995; 

Rodewald and Bakermans 2006), with hunting pressures, logging, noise, and spread of 

fire or invasives likely to increase in areas with greater human access (i.e., disturbance 

hypothesis) (Lugo et al. 1981; Laurance 2008).  Collectively, these hypotheses outline 
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mechanisms by which “matrix effects” may ultimately drive colonization-extinction 

dynamics in fragmented landscapes (e.g.,  Vandermeer and Carvajal 2001). 

Despite the potential importance of the matrix, its effects remain poorly 

understood.  Most studies examining the impact of the landscape matrix have compared 

forest fragments surrounded by intensely human-modified matrix (in particular, 

agriculture) to other fragments surrounded by matrix types that are more similar 

structurally to once-contiguous forest.  For example, researchers have compared forest 

patches embedded in pasture to patches embedded in secondary forest growth (Laurance 

et al. 2002), exotic tree plantations (Estades and Temple 1999; Hobson and Bayne 2000; 

Renjifo 2001; Lindenmayer et al. 2002; Wethered and Lawes 2003), or silvicultural 

forests (Andren 1992; Aberg et al. 1995; Bayne and Hobson 1997; Norton et al. 2000).  

These studies reveal that species movement and persistence are best maintained when 

matrix areas are similar in structure, floristic composition, and microclimate to once-

contiguous forest.  This finding has led to matrix effects being predominately based on 

gross structural characteristics.  Matrix types that have high structural contrast (i.e., 

divergent in vegetation structure) to remnant habitat are thus predicted to be less 

permeable to movement and more hostile to species than matrix types with low-contrast 

boundaries (e.g., Stamps et al. 1987; Forman 1995; Strayer et al. 2003).  Thus, in forested 

landscapes, human land uses that create “open” deforested habitats, such as for 

agricultural or residential development, may be considered equally hostile to forest-

dwelling species.  This simplification, however, ignores other potential important and less 

obvious impacts of human land uses. 
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By focusing on the differential effects of agricultural landscapes versus forested 

landscapes, previous research has failed to identify the unique impacts of matrix land 

cover because the amount of forest is inseparable from the type of land use.  Despite a 

few notable exceptions (e.g., Renjifo 2001; Rodewald and Yahner 2001; Rodewald and 

Bakermans 2006), forest amount and spatial configuration are commonly confounded 

with one another in fragmentation research and then further confounded with matrix 

composition (Rodewald 2003; Laurance 2008).  Avoiding such conflation of factors is 

essential, because the influence due to habitat elements is likely to outweigh the influence 

due to any matrix elements (Goodwin and Fahrig 2002); thus, matrix effects are more 

likely to go undetected.  Only a few studies have disentangled the effects of human land 

uses from the effects due to forest amount, and multiple human-modified land-cover 

types with similar structural “edge contrast” (Strayer et al. 2003) are rarely examined in 

conjunction; thus, few empirical data exist to evaluate the relative impact of different 

human activities on fauna within forest remnants. 

In Jamaica, as well as on other Caribbean islands, agriculture, residential 

development, and mining for bauxite are dominant land uses.  Land cover is increasingly 

being converted from subsistence agriculture to more intensive development (i.e., 

urbanization and mining) in the Caribbean (Lugo 2002; Evelyn and Camirand 2003) and 

in many other regions of the world (DeFries et al. 2004).  Despite their pervasiveness, 

intensively developed landscapes that result in more structurally “open” habitat types 

have seldom been compared to understand whether they differentially impact species 

existing in fragmented forest remnants.  The goals of this study were (1) to evaluate 

whether Neotropical bird communities in Jamaica respond similarly to fragmentation 
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when forest is surrounded by three different but intensive land uses and (2) to determine 

to what extent differential species responses are governed by life history and ecological 

traits.  Specifically, we examined whether species richness, community composition, or 

abundances of Neotropical resident birds differ in forest fragments embedded in 

agriculture (i.e., pasture), residential (peri-urban) development, or mining for bauxite 

(i.e., human-dominated matrices) relative to sites in continuous forest (natural “matrix”).  

We surveyed human-dominated landscapes that were similar in the major components of 

fragmentation (i.e., forest amount and configuration) to isolate the influence of the 

matrix.  When different landscape matrices are examined, species responses to habitat 

fragmentation are seemingly idiosyncratic (e.g., Watson et al. 2005; Mac Nally 2007; 

Ries and Sisk 2008).  To elucidate potential mechanistic explanations behind why groups 

of species may respond in a similar manner to forest conversion, we selected a suite of 

traits proposed to influence species persistence in fragmented systems (Ewers and 

Didham 2006).  We consider phylogenetic relatedness, body size, rarity, geographic and 

altitudinal ranges, clutch size, nest type, nest height, diet guild, foraging strata, and 

habitat association.  Each of these traits can affect dispersal ability, resource acquisition, 

and/or population growth potential (Henle et al. 2004); thus, we predicted these traits 

would relate to species responses to human-altered forest.  Although researchers have 

addressed associations between species traits and species responses to fragmentation 

(e.g., Laurance 1991; Hansen and Urban 1992; Pereira et al. 2004; Lampila et al. 2005; 

Sigel et al. 2006), a clear consensus has yet to emerge on which traits govern divergent 

responses and why (Henle et al. 2004).  Moreover, patterns detected are contingent upon 
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which landscape matrix types are examined (Bender et al. 1998; Debinski and Holt 2000; 

Ewers and Didham 2006), a factor that is not often explicitly addressed. 

Methods 

Study area 

 We conducted research in Manchester and Clarendon Parishes in central Jamaica 

(latitude: 17 56'24"-18 11'6" N; longitude: 77 23'13"- 77 37'5" W).  This region lies in the 

premontane moist forest climatic zone (Holdridge 1967), with mean annual temperature 

of 26 C.  Rainfall is bimodal, peaking in May/June and September/October, with 1000 

mm per year average (Jamaican Meteorological Service, unpublished data).  The 

landform is karst topography with white limestone hills and plateaus, ranging between 

400 and 800 m elevation (Porter 1990). 

 In pre-Columbian times, this region was covered in wet limestone forest (Asprey 

and Robbins 1953) composed of evergreen and semi-deciduous trees, referred to as 

Evergreen Season Forest formation (Beard 1944; Beard 1955).  Dominant canopy species 

included broadleaf (Terminalia latifolia), Jamaican cedar (Cedrela odorata), sweetwoods 

(Nectandra spp.), and bulletwoods (Daphnopsis spp.) (Asprey and Robbins 1953).  

Today, less than 30% of native forest remains (Evelyn and Camirand 2003), which is 

within the range where the effects of fragmentation are postulated to occur (Fahrig 2003).  

Forest is now restricted to small hilltop remnants on limestone outcrops, surrounded by 

valleys cleared for three dominant land uses:  agriculture (i.e., primarily cattle 

pastureland), residential development, and mining for bauxite.  The vast majority of 

forest fragments are  100 ha, with only a few large forest tracts remaining along 
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inaccessible hilltop ridges.  Large-scale deforestation occurred by the eighteenth century 

(Eyre 1987a; Eyre 1987b).  The exact rate of deforestation in the region is unknown but 

is estimated to be as low as 0.1% annually for the country; with current land-use change 

largely occurring among human-modified matrices (i.e., agricultural areas converted to 

urbanization or mining) (Evelyn and Camirand 2003).  We are thus investigating the role 

of the matrix in a region that has undergone historic rather than contemporary forest loss 

and fragmentation, but where the character of the matrix continues to shift.  Locations 

and extent of forest fragments in this region have remained fairly stationary in recent time 

but are embedded within a changing matrix.  This setting provided a unique opportunity 

to investigate the influence of matrix land cover on Neotropical birds in fragmented 

forests. 

Site selection 

We surveyed 20 landscapes that were typical of land-cover patterns in central 

Jamaica:  6 landscapes comprising continuous forest and 14 landscapes in which forest 

has been fragmented by agriculture (N = 5), by peri-urban development (N = 4), or by 

bauxite mining (N = 5) (Figure 1.1).  Landscapes were delineated as 1-km squared areas, 

which is a biologically relevant scale given known territory sizes of forest songbirds 

(Robbins et al. 1989a; Terborgh et al. 1990) and movement patterns for Jamaican birds 

(Cruz 1981).  To increase the probability that birds were independently sampled, replicate 

landscapes were separated by > 1 to 26 km, with the exception of peri-urban landscapes 

due to logistical constraints.  This distance range should be sufficient to prevent overlap 

in territories or daily movement of the majority of Jamaican forest birds within our 

sampling periods (Chapter 3, A. M. Haynes-Sutton, personal communication, S. E. 
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Koenig, Windsor Research Centre, unpublished data).  We identified landscapes based 

on 2001-2002 IKONOS imagery, land-cover maps (Forestry Department 1999), and field 

verification.  To assess the spatial characteristics of forest habitat, we digitized forest 

cover from IKONOS multispectral pan-sharpened imagery (1-m resolution, Space 

Imaging 2002) and ground-truthing surveys using ArcGIS 9.3 (ESRI 2008) (LCC, WGS 

84 projection).  Forest habitat was categorized by a closed canopy and visual dominance 

of native broadleaf trees; producer’s and user’s accuracy for this cover type were 

estimated at 92% and 84%, respectively.  Accuracy was based on 1,983 reference points 

collected across our study region:  536 forest reference points and 1446 non-forest 

reference points (493 points of scattered trees, 415 points of agricultural fields, 229 of 

cleared land, and 310 points of development) (see Appendix I for definitions).  We 

selected fragmented landscapes that contained a similar proportion and spatial 

configuration of remnant forest, but that were dominated by only one of the three target 

matrix types.  Human-modified landscapes contained ~ 36% of forest cover and ~ 20 

fragments that were an average of 4 to 6 ha.  Shape complexity of forest fragments (1.3 to 

1.4 perimeter-area fractal dimension), inter-patch distances (20 to 30 m), and patch 

connectivity (~ 34% of patches inter-connected) were also similar among the different 

landscape matrix types.  (Comparisons of patch- and landscape-level patterns of forest 

fragmentation in agricultural, peri-urban, and bauxite landscapes are detailed in Appendix 

A.)  To serve as reference sites, we selected landscapes in the largest intact forested areas 

in the region (Figure 1.1). 

Land-cover composition and vegetation structure in matrix areas differed 

substantially among the three human-modified landscape types.  We conducted > 700 
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vegetation surveys documenting both land-cover composition and foliage structure in 

matrix areas (see Appendix B for full detail).  Agricultural landscapes were dominated by 

introduced pasture and herbaceous gardens (~ 60%), followed by treelined fencerows 

(18%), paddock trees (9%), and secondary growth of Acacia stands (10%) that were 

interspersed in valleys between forested hilltops.  Peri-urban landscapes consisted mainly 

of low-density residential housing and roads that were surrounded by lawns (~ 10%), 

herbaceous gardens (9%), fruiting tree gardens (25%), ornamental shrubbery (20%), 

ornamental trees (12%), and mixed woodlands (11%).  Bauxite landscapes were former 

agricultural lands that had been converted to mining within the past ten years; relictual 

forests were surrounded by exposed bauxitic soils with vegetation cover dominated by 

planted grassland or ferns (~ 78%) and recent growth of Acacia trees (19%).  Peri-urban 

and agricultural matrices had greater foliage cover and vertical complexity than bauxite 

lands, largely due to the presence of scattered trees in peri-urban areas (i.e., ornamental 

tree gardens, vacant woodlots) and in agricultural pasture (i.e., paddock trees, live fences, 

fencerows). 

 We surveyed an average of five forest fragments per replicate landscape using 

stratified random sampling to represent the size distribution.  Twenty-two of these 

fragments were sampled in an agricultural matrix, 19 in a peri-urban matrix, and 27 in a 

bauxite mining matrix.  Qualitative assessment based on aerial photographs taken in 1968 

indicated that sampled fragments have been in existence for at least forty years (Evelyn 

1997), although the nature of matrices may have changed within this time period.  Within 

forested landscapes, we selected 31 “pseudo-patches” by randomly accumulating 

consecutive samples along transects that were located in intact forest, such that sampled 



 

 18 
 

areas were approximately equal in size to patches in fragmented landscapes.  We refer to 

both pseudo-patches sampled in a natural “matrix” and forest fragments sampled in 

human-modified matrices as “patches.”   In total, 99 forest patches were sampled across 

20 landscapes. 

Sampled patches had similar forest area (mean ± 1 SE = 3.89 ± 0.45 ha) and 

isolation (33.58 ± 3.48 m, 160.80 ± 19.79 m, and 2381.75 ± 147.07 m to the nearest 

fragment > 0.5 ha, 5 ha, and 100 ha, respectively) (Appendix A).  Vegetation structure in 

patches did differ, however, among the four landscape matrix types (comparisons are 

detailed in Appendix C).  Patches in agricultural landscapes, and to a lesser extent in 

continuous forest, had greater stand basal area, leaf area index, tree diameter, tree canopy 

height and tree cover than patches in peri-urban and bauxite landscapes.  Forest 

fragments embedded in bauxite and peri-urban matrices had lower and relatively more 

open canopies and a greater proportion of herbaceous cover and low shrubs (Appendix 

C).  We did not exclude patches where selective logging or moderate human use has 

occurred, because (1) all forest in the region is unprotected secondary forest that is 

subject to on-going human encroachment, and (2) we wanted to document bird richness 

and abundance patterns in landscapes undergoing disturbance that was representative of 

each landscape matrix type. 

Sampling of resident bird communities 

We conducted a total of 286 point counts on two or three separate occasions from 

early February to mid-June during the height of breeding activity (Raffaele et al. 1998), 

each year for three consecutive breeding seasons (2005-2007).  Point counts were 

conducted along a centrally placed transect in each of the 68 forest patches in human-
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modified landscapes, and along one to three randomly placed transects (averaging 1500 

m in length) in forested landscapes.  We surveyed an average of 12 to 15 stations per 

replicate landscape per occasion.  We conducted sampling proportional to forest area to 

ensure representative coverage, typically adding one station for each additional hectare 

(conditional on the terrain).  To minimize double-counting, stations were located 100 m 

apart and > 25 m from a matrix-forest boundary.  Surveying intensity was uniform among 

landscapes and sufficient in representing resident bird diversity in the region based on 

species accumulation curves that reached definitive asymptotes in all four landscape 

types (Gotelli and Colwell 2001) (Appendix D). 

At each point-count station, we recorded the number of individuals per species 

seen or heard within a 10-minute period (conducted between 0600-1000 hrs on clear days 

without rain) and in a 25-m fixed-radius area (Hutto et al. 1986).  We selected a 25-m 

radius because it provided reliable detection across all of our sites based on field tests, as 

found by other researchers in the Caribbean (Wunderle and Waide 1993).  Each site was 

visited by one of three trained observers for repeat counts within a season, and the order 

of site visitation was rotated throughout each field season.  Thus, potential bias due to 

heterogeneity in detection due to observer and time-of-day effects and differential effort 

was diminished with our sampling scheme, lending confidence in the reliability of our 

abundance estimates. 

To determine species occurrence in and potential use of matrix habitats, we 

conducted 241 point counts in 2005 in matrix land cover surrounding forest patches in 

fragmented landscapes.  Two to four point-count stations were located midway between 

adjacent forest fragments (when logistically feasible) and > 100 m from a matrix:forest 
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boundary in at least two cardinal directions.  We conducted matrix point counts using a 

protocol similar to that used in the forest point counts (i.e., 10-min fixed radius point 

count) during a similar time span (early March to mid June).  Matrix surveys were used 

to determine bird-habitat associations for trait analyses (as described below). 

Species traits 

 We considered the influence of 11 traits on bird responses to landscape matrix 

type.  Trait values for each species were determined from published information in field 

guides and primary literature, consultation with ornithological experts, and personal field 

observations (Appendix E).  We recorded species taxonomic order and derived body 

mass and clutch size based on averaged published estimates.  Species were classified into 

diet guilds based on dominant food sources consumed (i.e., frugivore, nectarivore, 

insectivore, omnivore, granivore, and carnivore).  We categorized where a species is 

found to forage or nest into four height zones:  ground (< 0.5 m), understory (shrub layer 

to midstory canopy, up to 5 m), canopy (upper forest layer, > 5 m), or multiple strata 

(commonly using more than one height zone).  Nest type was classified as open or 

closed, with the former containing large openings (i.e., cup, saucer, and platform nests) 

and the latter being partially enclosed (i.e., cavity, burrow, sphere, and pendant nests).  

Geographic range was based on whether species distributions were restricted to Jamaica, 

the Caribbean, the New World Tropics, or spanned both Nearctic and Neotropical 

regions.  Altitudinal range was based on species distributions among lowland, mid-

elevation, and montane regions in Jamaica. 

We determined species rarity and habitat associations based on our own field 

data.  Rarity was based on the average density of each species in continuous forest over 
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the three-year sampling period except for birds classified as open-associated (see below), 

for which we relied on average densities in matrix habitats.  We classified species as 

forest-restricted, generalist, or open-associated by comparing their average densities in 

continuous forest to their average densities in matrix habitats.  Species were classified as 

restricted to forest habitat if their average densities were at least three times greater in 

forest than in matrix areas.  In contrast, species were classified as associated with open 

habitats if their average densities were at least three times greater in matrix areas than in 

continuous forest.  Species with densities within a factor of three between forest and 

matrix habitats were classified as generalist species.  We chose this cutoff to ensure that 

species categorized as forest and open-associated had a strong affinity for respective 

cover types.  This somewhat arbitrary cut-off was necessary, because no standard exists 

in the literature to delineate habitat-specificity.  Our resulting classifications, however, 

closely matched habitat associations published in field guides (e.g., Downer and Sutton 

1995; Raffaele et al. 1998), and with the expert opinion of local ornithologists (P. P. 

Marra, A. M. Haynes-Sutton, and H. A. Davis, personal communication).  Based on 

those convergences, we are very confident in our habitat classifications 

Statistical analyses 

All resident native birds detected in our study region are included in analyses, 

with the exception of nocturnal and aquatic birds, vultures, swifts, and swallows.  Species 

richness estimates were based on all detections at forest point-count stations (i.e., within 

the 25-m fixed radius and beyond).  Abundance estimates for community and individual 

species analyses (as described below) were restricted to detections within the 25-m radius 

to minimize potential double-counting of individual birds. 
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Community composition 

 We used non-metric multidimensional scaling (NMDS) to describe variation in 

the composition of resident bird communities in forest patches embedded in the four 

matrix types.  NMDS is a non-parametric ordination technique effective for graphically 

depicting multivariate relationships in ecological data, via maximizing the rank 

correlation between calculated distances in an original matrix and distances in reduced 

ordination space (Kruskal 1964; Clarke 1993).  NMDS was performed using a Bray-

Curtis dissimilarity matrix derived from species relative abundances at the patch-level, 

where patches were standardized by dividing species abundances by the total number of 

point counts conducted within each patch across all years.  To avoid spurious effects of 

rare species, we excluded species that occurred in less than 5% of samples and 

standardized community matrices by species maximum.  Overall statistical significance 

of the ordination was determined based on a Monte Carlo unrestricted permutation test 

with 100 randomizations.  Standardized avian species composition was compared among 

matrix types using multiresponse permutation procedure (MRPP) (based on Bray-Curtis 

distance matrix), which compares distances among samples within a priori groups from 

those derived from a randomization procedure (Mielke and Berry 2001; McCune and 

Grace 2002).  To determine the importance of spatial dependence among sampled 

patches, we tested for the overall correlation between the standardized species 

community matrix with a corresponding matrix of geographic distance between patches 

using a Mantel test (Bray-Curtis distance matrix, N = 9999 randomizations) (Legendre 

and Legendre 1998). 
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Species richness and individual species abundances 

 The influence of the landscape matrix on species richness and individual 

abundances was analyzed using linear and generalized linear mixed models, respectively.  

Both richness and abundances were based on total point counts in each forest patch for 

each sampling occasion.  Species richness was estimated based on Chao1, a 

nonparametric estimator that accounts for detectability using species abundance 

distributions (Chao et al. 2005) and that is more robust than other richness estimators 

(Walther and Moore 2005).  Based on model diagnostics (e.g., histograms and plots of 

residuals versus fitted values) and dispersion scores, we modeled richness via a normal 

distribution and abundances via a Poisson probability distribution using a log link 

function.   

Because sampling was conducted hierarchically (i.e., patches sampled within 

landscapes) and over multiple time intervals (i.e., within and across three years), we 

examined eight models that captured three distinct error structures that were logical based 

on our sample design:  (1) correlations among repeat observations of a patch (temporal 

correlation); (2) correlations among patches within a landscape (spatial correlation); and 

(3) correlations among patches within a landscape across different sampling occasions 

(temporal and spatial correlations) (Pinheiro and Bates 2002).  Based on the lowest 

Akaike’s information criterion, corrected for small sample sizes (AICc), and using 

maximum likelihood estimation (Burnham and Anderson 2002), the most supported 

model for species richness and for ~ 60% of species accounted for within-patch 

correlation due to repeated measures but lacked explicit correlation among years and due 

to patch location.  Our final models therefore included landscape matrix type as the fixed 
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effect and patch identity as a random effect, using a Laplace likelihood approximation, 

which is considered more accurate for count data with small means (Bolker et al. 2009). 

 Significance of differences in species richness and relative bird abundances 

among forest patches embedded in the four matrix types was determined based on 

ANOVA F tests and Wald χ2 tests, respectively.  Posthoc pairwise comparisons were 

conducted using Tukey’s multiple comparison procedure to separate treatment means 

(Westfall and Young 1993).  We used a familywise α = 0.10 to indicate a biologically 

relevant response.  Failing to detect an effect when species were in fact differing in 

abundance by landscape matrix type (making a Type II error) had as severe a 

consequence as falsely detecting an effect (making a Type I error).  Using a familywise α 

< 0.10 would have led us to substantially under-predict species that were responding to 

forest fragmentation given stronger evidence to the contrary, which would have had 

repercussions for a subsequent analysis (see below). 

Matrix response and species traits 

 We categorized species into one of four response classes based on differences in 

relative abundance in forest patches among the human-dominated matrix types relative to 

a continuous forest matrix, as detected by mixed models and posthoc tests:  (1) lower 

abundance(s) in patches embedded in one or more of the human-dominated matrix types 

(Type L); (2) higher abundance(s) in patches embedded in one or more of the human-

dominated matrix types (Type H); (3) opposite matrix response, with higher abundance in 

patches in at least one human-dominated matrix type and lower abundance in patches in a 

different human-dominated matrix type (Type O); and (4) no significant difference in 
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abundance in patches among any of the three human-dominated matrix types relative to 

intact forest (Type N). 

 We used a classification decision tree analysis to assess whether species traits 

predicted how species grouped within response types.  This non-parametric method 

determines membership in pre-defined groups based on a suite of characteristics using 

recursive data partitioning.  This technique is well suited for non-normal, inter-correlated, 

multivariate data characteristic of life history traits (De'ath and Fabricius 2000).  We 

selected the final model based on a series of 1000 10-fold cross-validations, using the 1-

SE rule and Gini index of impurity, and prior probabilities proportional to sample sizes.  

Overall statistical significance of the final tree was determined based on Monte Carlo 

resampling (N = 1000 randomizations) (Breiman et al. 1993). 

 We tested the relative importance of each trait with regard to species sensitivity to 

forest fragmentation and landscape matrix type in two ways.  First, we calculated the 

ability of each trait to distinguish among matrix response types as determined by the 

decrease in impurity attributable to the best surrogate split for each variable on the final 

classification tree (Breiman et al. 1993).  We also conducted goodness-of-fit tests to 

determine the statistical significance of each trait in relation to matrix response.  These 

univariate tests complement the tree-based approach by detecting important variable(s) 

that may be masked in a tree-based framework (McCune and Grace 2002; Maindonald 

and Braun 2003).  For both the classification decision tree analysis and the goodness-of-

fit tests, we excluded the one species with an opposite matrix response, given this was a 

unique response and thus insufficient to analyze independently.  To increase the 

reliability of the contingency table analyses, we increased cell counts by combining the 
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seven species with higher abundances in patches in fragmented landscapes with species 

that lacked an abundance response.  This contrast provided a distinct comparison between 

birds likely to be negatively affected by forest fragmentation (i.e., exhibit lower 

abundances, Type L) versus those that may not (i.e., exhibit higher or constant 

abundances in human-modified landscapes relative to intact forest, Types H + N).  Due to 

multicollinearity among traits, separate tests were conducted on each trait and based on 

randomized chi-square tests using Monte Carlo simulations (N = 1,000,000 

randomizations), which are more accurate for sparse cell counts (Sokal and Rohlf 1995).  

We examined adjusted residuals from chi-square tests to determine classes that were 

driving significant overall differences (Everitt 1992). 

Statistical packages 

 Statistical analyses were performed using the R statistical system (v 2.8.1) (R 

Development Core Team 2008) and SAS (v 9.2) (SAS Institute, Cary, NC).  Richness 

(Chao) estimation, NMDS, MRPP, and Mantel tests were performed using the R ‘vegan’ 

package (v 1.13.1) (Oksanen et al. 2008).  Model selection for linear and generalized 

linear mixed models was conducted using ‘nlme’ (Pinheiro et al. 2008) and ‘lme4’ (Bates 

et al. 2008) packages, respectively.  The final linear mixed model was implemented using 

‘nlme’ and multiple comparisons performed via ‘multcomp’ package (Hothorn et al. 

2008) in R; final generalized linear mixed models were implemented using PROC 

GLIMMIX in SAS.  Chi-square tests were performed using ‘stats’ package and 

classification regression trees using ‘rpart’ package in R (Therneau and Atkinson 2009). 
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Results 

Species richness and community composition 

In total we detected 16,996 resident birds in forest patches among all landscapes, 

and captured 44 resident species, of which 23 were endemic to Jamaica.  Estimated 

richness of resident birds significantly differed in patches embedded in the four different 

matrix types (mixed model ANOVA, F3,95 = 6.29 P = 0.0006).  Based on pairwise 

comparisons, forest patches in an agricultural matrix had greater richness than did 

patches in peri-urban and bauxite matrices (P = 0.0225 and P = 0.0027, respectively).  

Patches embedded in a continuous forest matrix exhibited richness greater than patches in 

a bauxite matrix (P = 0.0075) and marginally greater than patches in a peri-urban matrix 

(P = 0.0595).  Avian richness did not differ in patches embedded in forest and 

agricultural matrices (P = 0.9341), nor did it differ in patches in peri-urban and bauxite 

matrices (P = 0.9665) (Table 1.1). 

We retained 41 of the 44 resident species detected in the community analyses 

based on the > 5% detection rule.  NMDS ordination resulted in a 3-axis solution, with a 

final stress of 17.702, which is within the range reliable for community data and unlikely 

to have been obtained by chance (Monte Carlo test,  P < 0.001) (McCune and Grace 

2002).  The three axes together represented 96.9% of the variance in resident bird 

communities, using a fit-based R2 measure (Oksanen et al. 2008).  Patches within the 

same matrix type tended to group together in ordination space, indicating a similarity in 

bird community composition (Figure 1.2).  Substantial overlap in patches in forest and 

agricultural matrices in ordination space indicated shared species assemblages.  Despite 

these similarities, the MRPP analyses confirmed that forest bird communities differed 
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significantly among all matrix types (A = 0.0587, P < 0.0001) (Figure 1.2).  Differences 

in community assemblage among matrix types cannot be attributed to mere spatial 

correlation among patches (Mantel test, r = 0.0869, P = 0.102). 

Individual species responses 

 Thirty-six species that were detected in > 15% of patches had sufficient 

occurrences to model via Poisson regressions (i.e., likelihood functions converged with 

reliable model fit and parameter estimates).  Relative abundances of 69.4% of these 

species differed significantly in forest patches among the four matrix types, which is 

greater than would be expected by chance (binomial test, P = 0.014).  Thirteen species 

had lower abundances in one or two of the human-dominated matrix types (agriculture, 

peri-urban, bauxite) (Table 1.1).  Six of these species had abundances that were lower in 

forest fragments in peri-urban and bauxite matrices relative to a forest matrix; but their 

abundances in fragments in an agricultural matrix were similar to in intact forest.  Seven 

species had reduced abundances in only one human-dominated matrix type; for all but 

one of these species, abundances were lowest in peri-urban forest fragments.  The Black-

faced Grassquit was the exception, being least abundant in fragments in a bauxite matrix, 

but as equally abundant in fragments embedded in a peri-urban matrix as in a forest 

matrix (Table 1.1; scientific names listed).  No species was consistently lower in 

abundance in fragments in all three human-dominated matrix types.  Two species, 

however, showed trends suggesting this response, but were too scarce for statistical 

analyses:  the Stolid Flycatcher was detected 86% of the time in continuous forest (12 

times) and the Rufous-throated Solitaire was detected only in continuous forest (8 times).  
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 No species exhibited abundances that were consistently higher in forest fragments 

in all three human-dominated matrix types, but seven species were higher in abundance 

in one or two of the human-dominated matrix types relative to continuous forest.  Of 

these species, five were higher in abundance in fragments in an agricultural matrix but 

lower in abundance in fragments in peri-urban and bauxite matrices.  Two species were 

more abundant in two types of human-dominated landscapes relative to continuous 

forest:  the Loggerhead Kingbird was higher in abundance in forest embedded in both 

agriculture and bauxite, and the Smooth-billed Ani was higher in abundance in forest 

embedded in both bauxite and peri-urban development.  Only one species, the Vervain 

Hummingbird, was more abundant in patches in a peri-urban matrix than in all other 

matrix types. 

 The White-eyed Thrush was the only species that exhibited an opposite matrix 

response, with abundances higher in agricultural patches but lower in bauxite patches.  

The remaining fifteen species did not differ in abundance in forest patches in human-

dominated matrix types relative to a forest matrix.  Four of these species, however, had 

abundances that varied among the three human-dominated landscape types. 

 Overall, peri-urban and bauxite landscapes had the highest frequency of resident 

birds with reduced abundances relative to continuous forest:  8 species were lower in 

abundance in bauxite patches, and 12 species were lower in abundance in peri-urban 

patches (Figure 1.3).  No species was less abundant in patches in agricultural landscapes 

relative to forested landscapes.  Six species were more abundant in patches in an 

agricultural matrix whereas only three species were more abundant in patches in bauxite 

and/or peri-urban matrices relative to a forest matrix. 
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Role of species traits 

 The most parsimonious classification tree model (with the greatest prediction 

accuracy) included only 1 of 11 traits (diet guild) and predicted two response types (Type 

L and Type N).  Sixty-six percent of observed bird responses to landscape matrix were 

correctly classified based on diet guild alone, which is greater than expected by chance 

(Monte Carlo simulation, P = 0.0079) (Figure 1.4).  The model correctly classified 84.6% 

of species with observed lower abundances, and 80.0% with observed similar abundances 

in patches in human-dominated matrices compared to a forest matrix.  Misclassifications 

largely stemmed from the erroneous categorization of the seven species with higher 

abundances in fragmented landscapes (Type H).  Five of these species were incorrectly 

predicted to have no difference in abundance (i.e., misclassified as Type N); and two of 

these species were incorrectly predicted to have lower abundances in fragmented forest 

relative to continuous forest (i.e., misclassified as Type L). 

 The decision tree analysis and chi-square tests provided complementary support 

that diet guild, nest height, habitat association, and to a lesser extent foraging strata, were 

strongly associated with bird responses to landscape matrix (Table 1.2).  Taxonomic 

order, geographic and altitudinal range, body size, rarity, clutch size, and nest type had 

weak prediction power and lacked any statistical association. 

 Diet Guild:  A total of 70% of insectivores and 67% of frugivores had lower 

abundances in patches in human-dominated matrices than a forest matrix.  In contrast, 

100% of nectarivores and omnivores and 86% of granivores had higher or similar 

abundances in fragments (Figure 1.4, Figure 1.5a).  Carnivores lacked a consistent 

response, with the Jamaican Lizard-Cuckoo exhibiting lower abundances, and the 
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Chestnut-bellied Cuckoo and the Mangrove Cuckoo exhibiting similar abundances, 

between human-dominated and forested landscapes. 

 Habitat association:  The extent to which a species was known to be a forest 

specialist rather than to use matrix habitats impacted its response to fragmentation.  

Forest-restricted species exhibited the greatest reductions in abundance, with 70% lower, 

30% similar, and none higher in abundance in patches in human-dominated matrices than 

in a forest matrix (Figure 1.5b).  In contrast, ~ 90% of birds associated with open habitats 

and ~ 80% of generalist birds had greater (38% and 29%, respectively) or equal 

abundances (50% each) in fragments as compared to continuous forest. 

 Nest height:  The dominant height at which a species nested also impacted its 

fragmentation response.  Eighty-six percent of canopy-nesting species were less abundant 

and 14% were equally abundant in forest patches in human-dominated matrices relative 

to a forest matrix (Figure 1.5c).  In contrast, 100% of ground-nesting species either had 

similar abundances (75%) or had higher abundances (25%); and 80% of multi-strata 

nesters had similar or higher abundances in patches in human-dominated matrices (60 

percent and 20 percent, respectively) than in a forest matrix.  Understory nesters failed to 

exhibit a consistent response, with roughly one third of species with higher (31%), lower 

(38%), or equal abundances (31%) in patches in human-dominated landscapes relative to 

intact forest. 

 Foraging strata:  Canopy foragers, and to a lesser extent understory foragers, had 

abundances that were lower in fragmented landscapes than did ground foragers (Figure 

1.5d).  Two thirds of canopy foragers were lower in abundance in fragments; whereas 

17% were higher abundance and another 17% were equal in abundance in fragments as 
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intact forest.  Fifty-six percent of understory foragers were lower in abundance, 33% 

were equal in abundance, and only 11% (one species) were more abundant in patches in 

human-dominated matrices than in a forested matrix.  In contrast, all but one ground-

foraging species had greater (30%) or similar (60%) abundances in human-dominated 

landscapes as compared to forested landscapes.  Species that foraged among multiple 

strata failed to exhibit a strong response, with 20% higher, 30% lower, and 50% 

exhibiting no change in abundance among fragmented versus forested landscapes. 

Discussion 

Richness, community composition, and abundances of birds mediated by landscape 

matrix 

 Landscapes in Jamaica would seem to adhere to the classic binary habitat versus 

non-habitat model in that historically forested areas have been converted to an intensely 

modified matrix that is superficially similar in being comprised of novel habitats with 

relatively little or no forest cover.  This study demonstrates, however, that such a 

simplistic model of habitat fragmentation does not adequately reflect responses of 

Neotropical bird communities in Jamaica.  Suites of species were profoundly affected by 

whether once-continuous forest was converted to agricultural, peri-urban, or bauxite 

mining development.  Almost 70% of bird species differed in abundance in patches 

among the four landscape matrix types.  Over 36% of species had lower abundances in 

forest fragments embedded in peri-urban and bauxite mining matrices relative to a 

forested matrix.  Another 20% had higher abundances in fragments embedded in an 

agricultural matrix than in a forest matrix.  One species had mixed responses, with 

abundances greater in forest in one human-modified matrix type (agriculture) but lower 
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in another (bauxite).  No species exhibited a consistently higher or lower abundance 

response in all human-modified landscape types.  The agricultural matrix had seemingly 

little effect even on forest-restricted species and some generalist species, and species 

associated with open habitats actually increased in this landscape type.  In contrast, peri-

urban and mined landscapes had lower native bird diversity and had communities that 

were strikingly different from those in forested landscapes; in these intensely developed 

landscapes, many insectivores and frugivores were absent or in reduced abundance.  

These matrix-specific responses were detected despite similar climate, geology, 

elevation, and forest type, and despite controlling for the amount and configuration of 

forest cover among anthropogenically fragmented landscapes. 

Role of species traits and possible mechanisms mediating responses to forest 

fragmentation 

Three proximate mechanisms have been proposed to explain divergent responses 

to forest fragmentation by species in different landscape contexts:  (1) differential 

impedence or facilitation of inter-patch movement in varying composition and 

configuration of matrix land cover (e.g., Bélisle et al. 2001; Renjifo 2001; Ricketts 2001; 

Gobeil and Villard 2002; Revilla et al. 2004; Bender and Fahrig 2005); (2) differential 

alteration of inter-species interactions, in particular predation (Rodewald and Yahner 

2001; Chalfoun et al. 2002); and (3) differential mediation of resources either via habitat 

compensation by the addition of alternative or supplemental resources (e.g., food or 

nesting sites) in certain matrix areas (e.g., Gascon et al. 1999; Norton et al. 2000; Brotons 

et al. 2003; Cook et al. 2004) or the disparate reduction of within-patch habitat quality 

(i.e., microclimate and vegetation structure) due to dissimilar edge effects (Saunders et al. 
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1991; Ries et al. 2004) or uneven human disturbances (Friesen et al. 1995; Rodewald and 

Bakermans 2006). 

Collectively, our results suggest that resource availability may be the more 

important driver of bird community changes in Jamaica’s fragmented landscapes.  

Although we cannot tie any single trait to a particular mechanistic explanation, the 

combination of traits that emerged as important provides key insights.  Diet guild, habitat 

association, nest height, and foraging strata best predicted the variation in bird responses 

to forest fragmentation in the different landscape matrices.  These four traits strongly 

relate to a species ability to acquire and use resources in human-modified landscapes.  

Jamaica’s insectivorous birds had lower abundances in fragmented landscapes relative to 

other guilds.  This finding supports growing research that insectivorous birds are 

declining disproportionately in tropical forest remnants (e.g., Castelletta et al. 2000; 

Ribon et al. 2003; Sodhi et al. 2004; Sigel et al. 2006; Stouffer et al. 2009).  One 

hypothesis is that such declines may be due to the interdependent effects of loss of 

microhabitats and decline of prey availability (e.g., Burke and Nol 1998; Zanette et al. 

2000).  The fact that forests in agricultural landscapes supported a greater number of 

insectivores may be due to greater leaf area indices (Appendix C) that could translate to 

greater foraging substrates.  Frugivores also exhibited lower abundances in human-

modified landscapes in the region.  Survival of birds in this guild has been shown to be 

jeopardized in fragmented forests (Kattan et al. 1994; Ribon et al. 2003; Ruiz-Gutierrez 

et al. 2008), potentially due to lack of year-round fruit in deforested tropical areas (Sodhi 

et al. 2004).  Understory and canopy foragers and canopy nesters also had lower 

abundances, which may be due to the reduction in the vertical complexity of forest 
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structure and the loss of canopy and emergent trees in peri-urban and bauxite mining 

landscapes (Appendix C); an effect that has also been shown to accompany tropical forest 

fragmentation (Tabarelli et al. 2004).  In contrast, nectarivores, omnivores, and 

granivores were insensitive to fragmentation, particularly in agricultural matrices.  Edge- 

and matrix-foraging birds are increasingly shown to persist and even thrive in fragmented 

tropical systems (e.g., Stouffer and Bierregaard 1995; Renjifo 1999; Sigel et al. 2006) 

due to potential cross-boundary subsidies (Fagan et al. 1999; Cantrell et al. 2001).  A 

species tolerance of forest conversion is increasingly linked to its ability to utilize 

resources in matrix habitats (e.g., Laurance 1991; Gascon et al. 1999; Henle et al. 2004). 

Many studies examining the role of the matrix have focused on how matrix 

habitats impact dispersal or movement (e.g., Renjifo 2001; Ricketts 2001; Gobeil and 

Villard 2002; Revilla et al. 2004).  Dispersal limitation is often invoked to explain bird 

responses to forest fragmentation in temperate (e.g., Bélisle et al. 2001; Bélisle and Clair 

2002) and tropical regions (e.g., Robinson 1999; Renjifo 2001; Laurance et al. 2002; 

Sekercioglu et al. 2002; Stratford and Robinson 2005).  This mechanism, however, may 

not be of overriding importance in Jamaica.  This assertion is based on the fact that traits 

linked to species dispersal abilities were not associated with bird-landscape associations.  

Body size and taxonomic order, which are found to correlate significantly with potential 

dispersal power of birds (Sutherland et al. 2000), did not emerge as important predictors.  

Geographic and altitudinal range sizes, which relate in part to species dispersal and 

establishment abilities (Gaston 1996), also failed to predict landscape matrix responses.  

Moreover, frugivores had disproportionately lower abundances in forest remnants than in 

intact forest; but we would not predict that these species would be dispersal-limited due 
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to their adaptations to search for resources that are patchily distributed in both space and 

time (Bowler and Benton 2005).  The karst countryside in central Jamaica is 

characterized by small forest hilltops, often < 10 ha, which are separated by other land 

uses but remain in close spatial proximity (e.g., hundreds of meters apart) relative to 

potential bird dispersal.  Such small distances between forest patches may not prohibit 

frequent movement of many bird species.  Moreover, the evolutionary history of 

Caribbean avifauna has likely promoted selection of species with stronger dispersal 

abilities and fewer physiological or morphological limitations than mainland 

counterparts; these characteristics have allowed them to (re)colonize and (re)establish in 

island habitats and to withstand large-scale natural disturbance events like hurricanes 

(Lack 1976; Ricklefs and Bermingham 2008). 

Other frequently cited causes of forest bird declines are increased nest parasitism 

and predation (e.g., Robinson et al. 1995; Lampila et al. 2005), the impact of which can 

vary by landscape context (Donovan et al. 1997; Rodewald and Yahner 2001; Chalfoun 

et al. 2002; Driscoll and Donovan 2004).  Traits such as nest type and nest height may 

affect a species susceptibility to nest predation, with open- and ground-nesting species 

found to be at greater risk (Ford et al. 2001; Chalfoun et al. 2002; Lampila et al. 2005) 

(but see Martin 1993).  Abundance differences between fragmented and intact forest, 

however, were not related to nest type.  Moreover, species predicted to be most sensitive 

to nest predation (ground nesters) were least likely to exhibit lower abundances; and 

species predicted to be least sensitive to nest predation (canopy nesters) were more likely 

to exhibit lower abundances in human-modified landscapes.  Traits related to 

reproductive potential (i.e., rarity and clutch size) also failed to predict bird abundance 
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patterns.   Thus, differential functional connectivity (i.e., via altering species dispersal 

and recolonization events) and differential population growth potential (i.e., via 

population sinks due to higher predation) may not be dominant mechanisms underlying 

bird responses to forest fragmentation in Jamaica. 

Impacts of land uses in the matrix interacting with forest fragmentation effects 

In contrast to findings from other temperate and mainland tropical studies, birds 

in Jamaica may be influenced more by the extent to which the landscape matrix mediates 

the availability of critical resources.  This mediation could occur through resource 

supplementation in matrix habitats, or differential reduction of within-patch forest 

quality, or some combination of both.  In many cases, matrix habitats may be hospitable 

for native species, and may provide supplemental or additional resources that allow for 

population maintenance or growth in fragmented systems (Norton et al. 2000; Brotons et 

al. 2003; Cook et al. 2004).  In comparison to bauxite lands, peri-urban and agricultural 

matrices contained greater vegetation cover and complexity (Appendix B).  Vegetation in 

agricultural matrices (e.g., pasture, paddock trees, and live fences) may have provided 

additional resources for omnivores and granivores, which were more abundant in these 

landscapes than in other matrix types.  Similarly, nectarivores may have benefited from 

residential gardens, given these birds were equally or more abundant in peri-urban 

landscapes as compared to other human-modified matrix types. 

Human land uses not only modify external matrix habitats but also can impact 

internal forest conditions.  Surface-mining activities in bauxite areas involve large-scale 

removal of vegetation and topsoil, and the creation of open pits of exposed earth, all of 

which could alter soil water retention, create dust pollution, and lead to biogeochemical 
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and hydrologic changes (Bell and Donnelly 2006).  Bauxite development also introduces 

extensive noise and road development.  All of these factors likely impact within-forest 

microclimate and structure, and can alter the composition of fauna, but the degree and 

direction of these changes are largely unknown (Simmons et al. 2008).  Even after post-

mining restoration, ecological communities may not fully recover to their original state 

(Parrotta and Knowles 1999; Parrotta and Knowles 2001).  Bird species in peri-urban 

landscapes may be disproportionately affected by forest disturbance from human 

activities (e.g., hunting, selective logging, noise, spread of fire or invasives) (e.g., 

Theobald et al. 1997; Marzluff et al. 2001; Miller et al. 2003; Rodewald and Bakermans 

2006).  Forest remnants in bauxite and peri-urban matrices have low stature and more 

open canopies, less structural complexity, and greater percent shrub layer (Appendix C); 

these factors indicate that these forests may have undergone greater disturbance and/or be 

in earlier successional stages than forests in agricultural matrices (Asprey and Robbins 

1953).  Agricultural areas tend to be in large private land holdings, which afford a greater 

level of forest protection than commonly found in bauxite and peri-urban areas. 

Even though landscapes we surveyed had similar environmental conditions (e.g., 

elevation, climate, soil substrate), we were unable to disentangle the effects of forest 

structure from matrix type because they were inter-dependent.  Rarely will alterations to 

the surrounding landscape matrix proceed without associated changes internal to forest 

habitat (Laurance et al. 2002; Laurance 2008).  Forest conditions were closely tied to 

land-cover and land-use practices in matrix areas; thus, they were part of the collective 

matrix effects in Jamaica.  Avian community structure could be driven as much by the 

degree of disturbance to internal properties of remnant forest as by the external properties 



 

 39 
 

of the matrix.  These findings are consistent with an edge model that predicts that species 

responses in complex landscapes are determined both by changes to internal habitat 

quality and by changes to the availability of matrix resources (Sisk et al. 1997; Ries and 

Sisk 2004; Ries and Sisk 2008). 

Conservation implications 

 Treating all anthropogenically modified lands as a single cover type (i.e., non-

habitat) in fragmentation research and/or conservation planning has consequences for 

biodiversity.  All matrix types examined in our study could be classified as having a 

similar “edge contrast” (Strayer et al. 2003) in that they differed dramatically in structure, 

composition, and microclimate from the once-contiguous native forest.  Consequently, 

matrix areas could be considered equally hostile to native species.  Bird communities, 

however, did not respond evenly to the three human-modified matrix types.  Patches 

surrounded by an agricultural matrix maintained greater native bird diversity and more 

intact community assemblages than did patches embedded in a peri-urban or a bauxite 

mining matrix.  Treating all modified lands equally, and categorizing Jamaica’s 

landscapes into “matrix” versus “forest” components would have hidden these important 

patterns.  The trajectory of land conversion in many regions of the world is from 

subsistence agriculture to increasing urbanization (DeFries et al. 2004).  Since the 1950s, 

land-cover change in Jamaica (Evelyn and Camirand 2003) and on other Caribbean 

islands (Lugo 2002) results largely from conversion of agriculture to residential 

development and mining for bauxite.  This study strongly suggests that such land 

conversion could cause loss of a large proportion of the Neotropical bird community, 

even without additional forest loss or fragmentation.  Although we have not 
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experimentally confirmed the mechanism, evidence suggests that human land-use 

practices in the matrix may be driving differential abundance patterns via mediating 

resource availability both within the forest and in external matrix habitats. 

 Historic declines and temporal differences among land uses must also be 

considered when interpreting trends.  Examination of current-day abundance patterns 

may underestimate  the effects of forest fragmentation on species persistence in regions 

like the West Indies, where flora and fauna have been altered by a long history of habitat 

conversion, human disturbance, and introductions of novel predators (e.g., rats, 

mongoose) (Ricklefs and Bermingham 2008).  Abundance patterns detected in Jamaica’s 

fragmented landscapes may be gross underestimates, given that the reference baseline is 

itself unprotected secondary forest that has been have been altered by decades of 

selective logging, fuelwood collection, and human-caused fire (Forestry Department 

2001; Tole 2001).  Moreover, the full extent of species responses may not have been 

captured uniformly among landscapes due to the temporal differences among land 

practices. Bauxite matrices were more recently converted (< 10 years); therefore, their 

full impacts may not yet be fully manifest.  Thus, we recommend continued research to 

document the long-term effects of land-use practices and the relative importance of 

extinction versus colonization processes on species persistence in the Caribbean.  This 

study, however, provides key insights into potential mechanisms that may underlie the 

role of the landscape matrix on Neotropical avian communities in fragmented forests.
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Table 1.1.  Estimated means ( 1 SE) of linear and generalized linear mixed models for richness and abundances of native 
resident birds in forest patches in agricultural (N = 22), peri-urban development (N = 19), or bauxite mining (N = 25) 
landscapes, or sites in continuous forest (N = 31) in central Jamaica.  P-values are based on ANOVA F tests and Wald χ2 tests 
(values in bold significant at P < 0.05 and * for P < 0.10).  Letters indicate pairwise comparisons among matrix types based on 
posthoc Tukey’s HSD tests.  Species are categorized based on abundance differences among human-dominated matrix types 
relative to intact forest. 

Diet†
Habitat 
assoc.§

Nest 
ht.║

Foraging 
strata║

Species & Response Type Mean SE Mean SE Mean SE Mean SE P- value

Species Richness 26.25a 1.76 27.30a 1.35 21.79b 1.92 20.94b 1.81 0.0006
Lower abundance in peri-urban & bauxite landscapes

Arrow-headed Warbler (Dendroica pharetra ) (e) 0.48a 0.10 0.76a 0.18 0.06b 0.02 0.14b 0.04  <.0001 I FR U M
Jamaican Becard (Pachyramphus niger ) (e) 0.23a 0.06 0.29a 0.09 0.02b 0.01 0.01b 0.01 <.0001 I FR C C
Jamaican Elaenia (Myiopagis cotta ) (e) 0.28a 0.07 0.39a 0.11 0.02b 0.01 0.11c 0.04 <.0001 I FR C C
Jamaican Pewee (Contopus pallidus ) (e) 0.36a 0.10 0.25a 0.09 0.00b 0.00 0.01b 0.01 0.0001 I FR C U
Jamaican Woodpecker (Melanerpes radiolatus ) (e) 0.67a 0.11 0.68a 0.14 0.31b 0.07 0.22b 0.05 0.0001 I G C M
Rufous-tailed Flycatcher (Myiarchus validus ) (e) 0.28a 0.07 0.36a 0.10 0.05b 0.02 0.04b 0.02  <.0001 I FR C C

Lower abundance in peri-urban landscapes
Greater Antillean Bullfinch (Loxigilla violacea ) 1.04a 0.15 1.12a 0.19 0.61b 0.12 0.95ab 0.15 0.0834* F FR M U
Jamaican Lizard-Cuckoo (Saurothera vetula ) (e) 0.06a 0.03 0.04ab 0.02 0.00b 0.00 0.03ab 0.02 0.0482 C FR U U
Jamaican Vireo (Vireo modestus ) (e) 1.41a 0.22 1.49a 0.28 0.45b 0.10 0.84ab 0.16 0.0001 I FR U U
Olive-throated Parakeet (Aratinga nana ) 0.15a 0.05 0.13a 0.06 0.02b 0.01 0.14a 0.06 0.0294 F G C M
White-crowned Pigeon (Columba leucocephala ) 0.68a 0.12 0.83a 0.17 0.28b 0.07 0.60a 0.12 0.0074 F FR M C
Yellow-shouldered Grassquit (Loxipasser anoxanthus ) (e) 0.34a 0.06 0.26a 0.06 0.09b 0.03 0.42a 0.09 0.0008 F G U U

Lower abundance in bauxite landscapes
Black-faced Grassquit (Tiaris bicolor ) 0.13ab 0.04 0.06bc 0.02 0.25a 0.06 0.019c 0.01 0.0001 G OA U G

Higher abundance in agricultural & bauxite landscapes
Loggerhead Kingbird (Tyrannus caudifasciatus ) 0.19b 0.04 0.46a 0.10 0.30ab 0.07 0.44a 0.09 0.0100 O OA M M

Higher abundance in peri-urban & bauxite landscapes
Smooth-billed Ani (Crotophaga ani ) 0.00b 0.00 0.03ab 0.02 0.05a 0.03 0.05a 0.03 0.0455 O OA M G

Forest Agriculture Peri-urban Bauxite
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Higher abundance in agricultural landscapes
Jamaican Spindalis (Spindalis nigricephala )‡ (e) 0.68b 0.13 1.33a 0.27 0.64b 0.14 0.54b 0.11 0.0125 F G U C
Jamaican Oriole (Icterus leucopteryx ) 0.57b 0.08 0.99a 0.14 0.55b 0.09 0.75ab 0.11 0.0188 I G U M
White-Bellied Dove (Leptotila jamaicensis ) 0.13b 0.03 0.36a 0.08 0.14b 0.04 0.26ab 0.06 0.0093 G G G G
White-winged Dove (Zenaida asiatica ) 0.03b 0.01 0.22a 0.07 0.04b 0.02 0.06b 0.03 0.0004 G OA U G

Higher abundance in peri-urban landscapes
Vervain Hummingbird (Mellisuga minima ) 0.15b 0.04 0.21ab 0.06 0.37a 0.10 0.15b 0.04 0.0616* N G U U

Higher abundance in agricultural & lower abundance in bauxite landscapes 
White-eyed Thrush (Turdus jamaicensis ) (e) 0.29b 0.07 0.72a 0.19 0.12bc 0.04 0.06c 0.03 <.0001 O FR M M

No difference in abundance in anthropogenic landscapes than intact forest
Bananaquit (Coereba flaveola ) 2.28 0.28 2.39 0.35 2.19 0.34 2.12 0.29 0.9382 N G M M
Chestnut-bellied Cuckoo (Hyetornis pluvialis ) (e) 0.12 0.03 0.09 0.03 0.13 0.04 0.06 0.02 0.2974 C G M M
Common Ground-Dove (Columbina passerina ) 0.08 0.03 0.06 0.03 0.06 0.03 0.05 0.02 0.7754 G G U G
Jamaican Euphonia (Euphonia jamaica ) (e) 0.54 0.10 0.75 0.16 0.47 0.11 0.52 0.11 0.4265 F G M C
Jamaican Mango (Anthracothorax mango ) (e) 0.02 0.01 0.06 0.03 0.01 0.01 0.04 0.02 0.1648 N OA C U
Jamaican Tody (Todus todus ) (e) 0.92 0.13 1.25 0.21 1.08 0.19 0.84 0.14 0.3179 I FR G M
Mangrove Cuckoo (Coccyzus minor ) 0.04ab 0.02 0.03ab 0.02 0.00b 0.00 0.07a 0.03 0.0408* C FR U U
Northern Mockingbird (Mimus polyglottos ) 0.01 0.01 0.03 0.02 0.06 0.03 0.05 0.02 0.2325 O OA M G
Orangequit (Euneornis campestris) (e) 2.63ab 0.31 3.33a 0.46 2.27ab 0.34 2.08b 0.28 0.0857* N FR NA M
Red-billed Streamertail (Trochilus polytmus ) (e) 1.65 0.23 2.18 0.35 1.82 0.31 1.74 0.26 0.6130 N G U M
Ruddy Quail Dove (Geotrygon montana ) 0.15ab 0.05 0.32a 0.10 0.07b 0.03 0.12ab 0.04 0.0275 G FR G G
Sad Flycatcher (Myiarchus barbirostris ) (e) 0.26ab 0.05 0.48a 0.10 0.17b 0.04 0.14b 0.04 0.0007 I G U U
White-chinned Thrush (Turdus aurantius ) (e) 0.99 0.12 1.26 0.18 1.34 0.19 1.41 0.18 0.1974 O G M G
Yellow-faced Grassquit (Tiaris olivacea ) 0.11 0.03 0.08 0.03 0.09 0.03 0.15 0.05 0.5329 G OA G G
Zenaida Dove (Zenaida aurita ) 0.08 0.02 0.19 0.06 0.12 0.04 0.17 0.05 0.1446 G OA M G

(e) Indicates species endemic to Jamaica
‡ Previously named Jamaican Stripe-headed Tanager (Spindalis nigricephalus ) (Banks et al. 2000)
† Primary diet guild:  (C) carnivore, (F) frugivore, (G) granivore, (I) insectivore, (N) nectarivore, (O) omnivore
§ Primary habitat association:  (FR) forest-restricted, (G) generalist, (OA) open-associated
║Primary nesting height or foraging strata:  (G) ground, (U) understory, (C) canopy, (M) multiple strata
Species included in community analyses, but with insufficient detections for Poisson mixed models were:  American Kestrel (Falco sparverius ), Jamaican Crow 
(Corvus jamaicensis ) (e), Red-tailed Hawk (Buteo jamaicensis ), Rufous-throated Solitaire (Myadestes genibarbis ), and Stolid Flycatcher (Myiarchus stolidus ).  
Species detected in the study region, but with insufficient detections to include in any analyses were:  Crested Quail Dove (Geotrygon versicolor ) (e); Yellow-billed 
Parrot (Amazona collaria ) (e); and Greater Antillean Grackle (Quiscalus niger ).
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Table 1.2.  The strength of association among the 11 traits with landscape matrix 
responses by resident birds in central Jamaica.  Variable importance was determined by 
calculating the change in impurity (i.e., Gini index) when a trait was substituted for the 
original variable on the final decision tree (i.e., diet), and is expressed as the relative 
magnitude of the total decrease in impurity (based on normalized quantiles).  The 
variable with the greatest prediction accuracy is attributed the highest value (100), and 
the variable with the lowest prediction accuracy is attributed the lowest value (0).  P-
values from randomized chi-square tests are provided with values in bold significant at P 
< 0.05 and * for P < 0.10. 

Trait Variable Importance P -value

Diet Guild 100.00 0.0105
Nest Height 72.93 0.0113
Habitat Association 67.57 0.0092
Foraging Strata 45.12 0.0788*
Taxonomic Order 30.45 0.2135
Geographic Range 28.93 0.3944
Rarity† 25.54 0.4888
Nest Type║ 19.29 0.1566
Clutch Size‡ 18.26 0.1621
Altitudinal Range 8.46 0.2639
Body Mass§ 2.61 0.7461

║One bird with unknown nest height excluded from chi-square test 

† Variable importance based on continuous distribution; chi-square test 
based on classified groups (< 0.25 and > 0.25 density)

‡ Variable importance based on continuous distribution; chi-square test 
based on classified groups (< 3 and > 3 eggs)

§ Variable importance based on continuous distribution; chi-square test 
based on classified groups (< 15, 15-50, and > 50g)
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Figure 1.1.  Locations of the 20, 1-km2 landscapes surveyed in the Manchester Parish on the island of Jamaica as shown in the 
context of the West Indies. 
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Figure 1.2.  Non-metric dimensional scaling ordination (stress = 17.0170) of resident bird 
communities in the 99 forest patches in the four matrix types over the study period (2005-
2007).  For illustration purposes NMDS axis 1 and axis 2 (of a 3-dimensional solution) 
are presented, which capture most of the variation in community structure and depict the 
overall pattern in 3-dimensional ordination space.  Dimensions represent the relative 
position among sampled patches based on species assemblages, with patches with similar 
avian composition containing similar scores in multidimensional space.  Community 
composition among the four landscape matrix types significantly differed (based on 
familywise α = 0.05) based on overall and pairwise comparisons based on MRPP results 
(inset). 
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Figure 1.3.  Percent of resident bird species in agricultural, peri-urban, or bauxite mining 
landscapes that exhibited significantly lower abundance, higher abundance, or no 
abundance difference relative to forested landscapes over the study period (N = 36 
species). 
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Figure 1.4.  Predicted response type, percentage of observations correctly classified per 
response type, the number of species (in parentheses), and the distribution of the 
observed responses per group based on classification tree analysis of the responses by 
resident birds in central Jamaica to landscape matrix in relation to 11 life history or 
ecological traits.  Species responses were categorized as: (1) Type L:  lower in abundance 
in any of the human-dominated matrix type(s) relative to intact forest; (2) Type H:  
higher in abundance in any of the human-dominated matrix type(s) relative to intact 
forest; and (3) Type N:  no difference in abundance in fragmented landscapes relative to 
intact forest.  Diet guild was the only trait retained in the final model, with two matrix 
types predicted (Type L and Type N) (with 34% misclassification rate).  
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a. Diet guild      b.  Habitat association 
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c. Nest height      d.  Foraging strata 
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Figure 1.5.  Adjusted residuals of the chi-square analyses relating the number of resident 
bird species exhibiting two matrix responses types to (a) diet guild, (b) habitat 
association, (c) nest height, and (d) foraging strata.  The two response types were 
classified as (1) Type L:  lower in abundance in any of the human-dominated matrix 
type(s) relative to intact forest, and (2) Type H + N:  higher in abundance or similar in 
abundance among human-modified landscapes relative to intact forest.  The number 
above each bar represents the number of species observed to exhibit the respective matrix 
response type and trait class combination.  Adjusted residuals with the largest absolute 
values indicate the class driving overall significant differences among matrix response 
and the trait in question. 
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Chapter 2:  Landscape matrix mediates occupancy dynamics of 

Neotropical avian insectivores 

Abstract 

Fragmentation research has traditionally focused on how patch-level attributes 

(i.e., patch area and isolation) affect animal communities, while ignoring the landscape 

context.  The nature of land cover between habitat patches, the “matrix,” may drive 

colonization and extinction dynamics in fragmented landscapes more than patch area or 

isolation.  We employed multi-season patch-occupancy models to determine the relative 

influence of patch area, patch isolation, within-patch vegetation structure, and matrix type 

on the occupancy dynamics of nine Neotropical insectivorous birds in almost 100 forest 

patches embedded in four matrix types (agriculture, peri-urban development, bauxite 

mining, and forest) in central Jamaica.  We found that within-patch vegetation structure 

and matrix type between patches were more important than patch area and isolation in 

determining local colonization and extinction, and that the effects of patch area, isolation, 

and vegetation structure on occupancy dynamics were matrix- and species-dependent.  

Across the community, the matrix influenced extinction probabilities more than 

colonization, indicating that extinction processes, rather than movement, likely drive 

interspecific differences in population dynamics.  This suggests that the nature of human 

land use surrounding primary habitat strongly impacts avian communities. These findings 

lend crucial empirical support to the hypothesis that species occupancy dynamics in 

fragmented systems depend greatly upon the landscape context. 
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Introduction 

 Island biogeography theory (MacArthur and Wilson 1967) and metapopulation 

models (Hanski 1994; Hanski 1998) predict that the processes of extinction and 

colonization, as influenced by island/habitat area and isolation, determine species 

distributions and persistence patterns.  These conceptual models have been frequently 

extended to understand species patterns and processes in fragmented landscapes (e.g., 

Laurance 2008).  As forests become fragmented, patch size decreases and patch isolation 

increases; this process is predicted to alter natural extinction and colonization rates (e.g., 

Fahrig 2003).  Smaller fragments are expected to exhibit increased species extinction, and 

more isolated fragments to have reduced colonization.  The occupancy and richness 

patterns expected, based on these theoretical predictions, are not always observed in real 

systems.  Empirical relationships of species responses to patch size and isolation have 

been found to be weak or absent in fragmented systems; this discrepancy may be 

attributed to the simplification of habitat fragments as islands separated by an 

inhospitable matrix (Bender et al. 1998; Debinski and Holt 2000; Prugh et al. 2008).  In 

reality, habitat is often embedded in complex mosaics of different land-cover types.  

Species may be affected not only by the size and spatial location of primary habitat, but 

also by the structure and composition of the intervening land cover, termed the “matrix” 

(Haila 2002; Ewers and Didham 2006; Kupfer et al. 2006).  The matrix can affect inter-

patch movement of animals (e.g., Revilla et al. 2004; Bender and Fahrig 2005), can alter 

the resource base within a landscape by providing alternative or supplemental resources 

(e.g., Perfecto and Vandermeer 2002; Brotons et al. 2003), and can impact the type and 

magnitude of edge effects (e.g., habitat quality, microclimate, predation rates) (e.g., 
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Chalfoun et al. 2002; Ries et al. 2004).  Expected species-isolation relationships may be 

altered if species inter-patch movements differ based on varying composition and 

configuration of matrix land cover (e.g., Bélisle et al. 2001; Ricketts 2001; Gobeil and 

Villard 2002; Bender and Fahrig 2005).  The type of matrix could directly influence local 

extinction within primary habitat if patch-resident species commonly obtain resources 

from certain matrix areas; this behavior has been observed of birds in the field (e.g., 

Graham et al. 2002; Luck and Daily 2003).  This phenomenon could result in higher 

extinction rates in smaller patches embedded in a “hospitable” matrix than in larger 

patches embedded in an “inhospitable” matrix (Sisk et al. 1997; Estades 2001).  Species-

area relationships may also be obscured if habitat quality is differentially altered due to 

land-use practices in the matrix (Donovan et al. 1997; Rodewald and Yahner 2001; 

Rodewald and Bakermans 2006).  For example, hunting pressures, selective logging, or 

spread of fire or invasives may disproportionately increase in landscapes with greater 

human access (Lugo et al. 1981; Laurance 2008).  Thus, the matrix may obscure 

commonly assumed relationships among species occupancy and patch size and isolation, 

and may ultimately mediate colonization-extinction dynamics in fragmented systems 

(e.g., Vandermeer and Carvajal 2001). 

 Despite the potential importance of the landscape matrix, its effects remain poorly 

understood.  The relative importance of multiple human-modified land-cover types is 

rarely examined in one study, and matrix types are often lumped together in a single 

category or assumed to be of subordinate importance to habitat components (i.e., patch 

area and isolation).  The unique impacts of matrix types on species processes are only 

beginning to be understood, given the small number of empirical studies that have 
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disentangled the effects of the matrix from those of habitat area or isolation (Rodewald 

2003; Laurance 2008).  Further, most inferences about fragmentation and matrix effects 

are based solely on species diversity, abundance, or occurrence patterns, rather than 

directly addressing the underlying processes of extinction or colonization (Fahrig 2003; 

Lampila et al. 2005); and studies rarely account for detection biases which may lead to 

false inference (Moilanen 2002; MacKenzie et al. 2006). 

In this paper, we seek to understand the relative effects of patch area, patch 

isolation, within-patch habitat structure, and matrix type on occupancy dynamics in 

fragmented landscapes.  We examine (1) how patch area and within-patch habitat 

(vegetation) structure affect the probabilities of local extinction, (2) how patch isolation 

affects the probabilities of local colonization of avian insectivores, and (3) whether and 

how matrix conditions mediate isolation-, area-, and habitat-relationships.  We chose to 

investigate resident (non-migratory) Neotropical insectivorous birds because this guild is 

disproportionately declining in fragmented tropical forests worldwide (Ribon et al. 2003; 

Sodhi et al. 2004; Sigel et al. 2006; Stouffer et al. 2009).  To ensure unbiased inferences, 

we apply recently developed multi-season patch-occupancy models to account for the 

fact that species are often imperfectly and/or differentially detected (MacKenzie et al. 

2003; MacKenzie et al. 2006).  Models were based on repeat surveys conducted over a 

three-year period (20052007) in forest patches embedded in three common human-

modified matrix types in the Caribbean (agricultural, peri-urban development, and 

bauxite mining) and in sites in a natural “matrix” (i.e., continuous forest).  To our 

knowledge, this is the first study to use estimation methods that explicitly incorporate 

detection bias to test whether occupancy dynamics differ across landscapes that are 
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similar in structural habitat fragmentation but that vary in surrounding human-modified 

land cover. 

Methods 

Study area and site selection 

 Our study sites were located in Manchester and Clarendon Parishes in central 

Jamaica (latitude: 17 56'24"-18 11'6" N; longitude: 77 23'13"- 77 37'5" W).  This region 

lies within the premontane moist forest climatic zone (Holdridge 1967), and was once 

covered in predominantly wet limestone forest (Asprey and Robbins 1953).  Less than 

30% of native forest currently remains, with most of the human land conversion 

occurring by the eighteenth century (Eyre 1987b).  Forest is now largely restricted to 

small hilltop remnants on limestone outcrops, with surrounding valleys cleared for 

agriculture (i.e., primarily cattle pasture), residential development, and mining for bauxite 

(Evelyn and Camirand 2003). 

 We sampled a total of 20 landscapes (delineated as 1-km2 areas).  In 14 of those 

landscapes, remnant forest patches were embedded in the three dominant land-cover 

types (5 agriculture, 4 peri-urban development, 5 bauxite mining), and 6 landscapes were 

located in continuous forest cover (see Chapter 1).  Forest remnants were surrounded by 

introduced pasture, treelined fencerows, paddock trees, and herbaceous garden plots in 

agricultural areas and by low-density residential housing, ornamental gardens, abandoned 

woodlots, and roadside secondary growth in peri-urban landscapes.  Bauxite landscapes 

were former agricultural lands that had been converted to mining within the past ten 

years, where relictual forests were surrounded by exposed bauxitic soils, with some 

recent growth of ferns, Acacia trees, or planted grassland.  Peri-urban and agricultural 
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matrices contained greater foliage cover and vertical complexity than bauxite lands, and 

thus are expected to provide greater potential resources (e.g., food or nesting sites) and to 

enhance structural connectivity to aid movement outside forest remnants relative to 

bauxite landscapes.  Beyond direct effects on movement among patches, land-cover 

composition and structure in the matrix can affect species extinction processes within 

remnant forest patches through human land-use practices associated with particular 

matrix types (Rodewald 2003; Rodewald and Bakermans 2006).  For example, peri-urban 

and bauxite landscapes are exposed to more ongoing human disturbance, including 

increased hunting pressures, selective logging, noise, road and surface-mining impacts, 

fire ignition sources, and escape of domestic animals or spread of invasive species than 

are agricultural landscapes that tend to be large private land holdings.  Thus, we predicted 

that agricultural and peri-urban landscapes would have colonization rates most similar to 

intact forest relative to bauxite landscapes, and that agricultural landscapes would have 

extinction rates most similar to intact forest relative to both peri-urban and bauxite 

landscapes. 

 We surveyed an average of five forest patches per replicate landscape using 

stratified random sampling of patches to represent the size distribution.  Twenty-two of 

these patches were sampled in an agricultural matrix, 19 in a peri-urban matrix, and 27 in 

a bauxite mining matrix.  Within forested landscapes, we selected 31 “pseudo-patches” 

by randomly accumulating consecutive samples along transects that were located in intact 

forest, such that sampled areas were approximately equal in size to patches in fragmented 

landscapes.  We refer to both pseudo-patches sampled in forested landscapes and forest 

remnants sampled in anthropogenic landscapes as “patches.”   In total, 99 forest patches 
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were sampled across 20 landscapes.  To increase the probability that birds were 

independently sampled, patches within replicate landscapes were separated by > 1 to 26 

km (with the exception of a few peri-urban patches), which is believed to prevent overlap 

in territories for target species (Cruz 1981, A. M. Haynes-Sutton, personal 

communication, C. M. Kennedy, unpublished data).  Previous analyses revealed no 

significant spatial correlation between bird communities and the spatial configuration of 

sampled patches (Chapter 1). 

To isolate the potential influence of matrix type, agricultural, peri-urban, and 

bauxite landscapes were selected such that they were similar in the major components of 

fragmentation.  Sampled patches had similar forest area (mean ± 1 SE = 3.89 ± 0.45 ha) 

and isolation (33.58 ± 3.48 m, 160.80 ± 19.79 m, and 2381.75 ± 147.07 m to the nearest 

fragment > 0.5 ha, 5 ha, and 100 ha, respectively).  Patches were also embedded in 

landscapes with a similar proportion (35.84 ± 1.59) and spatial configuration (i.e., shape 

complexity, inter-patch connectivity) of forest cover (Appendix A). 

Target species 

 We modeled occupancy dynamics for 9 of the 11 native resident insectivorous 

bird species found in our region (Chapter 1) (Table 2.1).  These species are ideal for an 

investigation of multi-patch dynamics because they are specialized in Jamaica’s 

limestone forests, which allows for the spatial delineation of primary habitat.  They are 

also sensitive to forest fragmentation in the region (Chapter 1).  Although these species 

are in the same broad diet guild, they are taxonomically and ecologically diverse in that 

they represent six families and a range of body masses (~ 7100 g) with different (but 

overlapping) altitudinal ranges (Table 2.1).  Species represented both foraging and 
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nesting specialists and generalists, and exhibited a variety of foraging behaviors.  The 

two species we did not include in the study were either too common (Jamaican Oriole, 

Icterus leucopteryx) or too rare (Stolid Flycatcher, Myiarchus stolidus) to model.  

Overall, we were able to fit models to > 80% of the central Jamaican insectivorous bird 

community. 

Sampling methods 

We conducted a total of 286 point counts on two to three separate occasions from 

early February to mid-June during the height of breeding activity (Raffaele et al. 1998), 

each year for three consecutive breeding seasons (2005-2007).  Point counts were 

conducted along a centrally placed transect within each of the 68 forest patches in 

anthropogenic landscapes, and along one to three randomly placed transects (averaging 

1500 m in length) in forested landscapes.  We surveyed an average of 12 to 15 stations 

per replicate landscape per occasion, proportional to patch area.  To minimize double-

counting, stations were located 100 m apart and > 25 m from a matrix-forest boundary. 

At each sampling station, we recorded the number of individuals per species seen 

or heard within a 10-minute period (conducted between 0600-1000 hrs on clear days 

without rain) and in a 25-m fixed-radius area (Hutto et al. 1986).  We selected a 25-m 

radius because it provided reliable detection across all of our sites based on field tests, as 

found by other researchers in the Caribbean (Wunderle and Waide 1993).  Each site was 

visited by one of three trained observers for repeat counts within a season, and the order 

of site visitation was rotated throughout each field season. 
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Patch-level covariates 

 We considered four patch-level covariates:  matrix type, patch area, patch 

isolation, and local vegetation structure.  Matrix type was determined categorically based 

on 2001-2002 IKONOS imagery and field verification as to whether each sampled patch 

was embedded in a landscape dominated by agriculture, peri-urban development, or 

bauxite mining or in continuous forest.  To quantify patch area and isolation, we first 

digitized forest cover from multispectral pan-sharpened IKONOS imagery (1-m 

resolution, Space Imaging 2002) and 2007 ground-truthing surveys using ArcGIS 9.3 

(ESRI 2008) (LCC, WGS 84 projection).  Forest habitat was categorized by a closed 

canopy and visual dominance of native broadleaf trees; producer’s and user’s accuracy 

for this cover type were estimated at 92% and 84%, respectively (Chapter 1).  We then 

used FRAGSTATS 3.3 (McGarigal et al. 2002) to obtain area and isolation measures for 

forest patches using a 4-m raster cell size and an eight-neighbor rule for patch 

delineation.  Patch area was the size of a forest patch in hectares.  Patch isolation was 

calculated as the nearest-neighbor distance from each sampled patch to a forest patch 

greater than 100 ha (variable ENN_100ha), reflecting the distance a bird would travel to 

reach a potential source population.  Euclidean nearest-neighbor distance is the simplest 

and most widely used metric to approximate isolation (Moilanen and Hanski 2001; 

Bender et al. 2003), and was selected because of its clear interpretation and because it 

captured the spatial variation of forest habitat.  The variable ENN_100ha was 

significantly correlated (P < 0.001) with several other measures of habitat isolation:  

distance to the nearest forest patch of any size (Spearman’s rank correlation,  = 0.6211), 

distance to a patch greater than the average size found in landscapes ( 5 ha) ( = 



 

 58 
 

0.6520), as well as distance to a  10-ha patch ( = 0.7768), and a “proximity index” ( = 

-0.6534) that incorporates the amount and proximity of habitat within a patch 

neighborhood (based on a 100-m search radius) (Gustafson and Parker 1992).  Given the 

lack of data on dispersal abilities of Caribbean birds and of tropical birds in general 

(Walters 2000), we were unable to use connectivity measures that scale the effect of 

inter-patch distance to known dispersal distances (e.g., Moilanen and Hanski 2001; 

Moilanen and Nieminen 2002). 

 To quantify vegetation structure, we measured 12 variables in a 10-m radius plot 

centered at each point-count station between April 27 and July 2, 2005:  tree diameter, 

basal area, canopy height, leaf area index, leaf litter depth, abundance of woody and 

herbaceous vines, and percent herbaceous cover (0-0.5-m height class), low shrub (0.5-2 

m), tall shrub (2-6 m), trees (> 6 m), and open canopy.  Each plot was divided into four 

equal quadrats based on 10-m transects in each cardinal direction.  We measured tree 

basal area using a 10-factor prism at each plot center.  Within each quadrat we measured 

diameter breast height (DBH) and canopy height of the largest tree, and we estimated the 

abundance of herbaceous and woody vines based on a categorical scale (0 = absent, 1 = 

solitary, 2 = few, scattered individuals, 3 = common, 4 = abundant).  At 2-m intervals 

along each transect, we measured leaf litter depth and foliage structure.  Foliage structure 

was scored based on foliage touches along a pole at four height classes (0-0.5 m, 0.5-2 m, 

2-6 m, > 6 m), with percent cover calculated as the percent of all points at a given height 

interval with  1 touch (after Schemske and Brokaw 1981).  Percent canopy openness 

and effective leaf area (Stenberg et al. 1994) were estimated using the Gap Light 

Analyzer (GLA) program (v 2.0) (Frazer et al. 1999) based on hemispherical canopy 
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photographs taken at 5-m intervals along two randomly selected transects with a Nikon 

Coolpix 950 Camera and FC-E8 Nikon Fisheye lens.  All measurements were calibrated 

between two observers.  Patch-level vegetation structure was estimated by averaging all 

plots within patches.  To distill the variation in the 12 patch-level vegetation variables 

into fewer non-correlated components, we conducted a principal component analysis 

(PC).  The averaged PC axis 1 score was used as proxy for patch-level vegetation 

structure in models. 

 A major difficulty in discerning the relative influence of components of 

fragmentation (e.g., habitat amount, configuration, and quality) and the role of the matrix, 

is that effects are often highly inter-correlated (Fahrig 2003; Rodewald 2003; Laurance 

2008).  Thus, we examined whether the continuous covariates of patch area, isolation, 

and vegetation structure were inter-correlated and whether they differed by matrix type 

based on Spearman’s rank correlation () and one-way ANOVA, respectively.  Statistical 

analyses were performed using the ‘stats’ package in the R statistical system (R 

Development Core Team 2008).  All variables were tested for normality and 

homogeneity of variances, and transformations were performed where necessary.  

Untransformed means 1 SE are reported. 

Occupancy analyses 

We used multi-season patch-occupancy models to estimate initial occupancy 

(2005), local colonization (), and local extinction () probabilities for each bird species 

separately from 2005 to 2007 (MacKenzie et al. 2003; MacKenzie et al. 2006).  In 

contrast with other occupancy models (Moilanen 2002), this modeling framework 

explicitly incorporates detection probability into the estimation of initial occupancy and 
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the rate parameters (i.e., colonization and extinction probabilities), which reduces bias in 

the parameter estimation (MacKenzie et al. 2003; MacKenzie et al. 2006).  A detection 

history was constructed for each species and patch, where a presence indicated that at 

least one individual of a species was detected during any point-count survey event, and 

an absence indicated a failure to detect a species.  To overcome difficulties in separating 

true absence (i.e., species not occupying a site) from false absence (i.e., failure to detect a 

species that is truly present during a survey event), we used multiple surveys conducted 

over a short enough period to meet the assumption of population closure (no births, 

deaths, immigration or emigration from the patch).  Local colonizations and extinctions 

are allowed between seasons, and are adjusted for false absences by using repeat surveys 

within a season where closure is assumed.  Colonization and extinction probabilities were 

determined based on between-year detection histories via likelihood maximization 

(MacKenzie et al. 2003; MacKenzie et al. 2006). 

 We developed a candidate model set to test the main effects of patch isolation, 

patch area, vegetation structure, and matrix type; we predicted all of these factors would 

influence local colonization and local extinction processes of birds in our region (28 

models, Table F1 in Appendix F).  In all models, initial occupancy was modeled without 

any covariates to focus our investigation on rate parameters (after Ferraz et al. 2007).  

Following classic island biogeography and metapopulation models (MacArthur and 

Wilson 1967; Hanski 1994), we predicted that the process of colonization depended upon 

the spatial isolation of forest habitat (i.e., patch isolation), and extinction processes 

depended upon patch size.  To expand upon these traditional models, we tested whether 

local vegetation structure covaried with local extinction, given that this environmental 
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feature is known to influence habitat quality for birds due to its effects on the availability 

of food resources, perching/nesting sites, predation, and shelter against abiotic conditions 

(e.g., Wiens 1989). 

 To test how species colonization and extinction dynamics were influenced by the 

landscape matrix, we modeled both extinction and colonization as a function of the type 

of matrix in which forest patches were embedded (referred to as “matrix type”).  One 

might hypothesize that the matrix may interact with patch area, isolation, and habitat 

structure; however, we only considered additive relationships for all covariates, because 

complex models with several interaction parameters could not be reasonably supported 

by our data, particularly in a multi-season occupancy modeling framework. 

 Prior to modeling occupancy and associated rate parameters, we determined the 

best covariance structure on detection probability (p).  We predicted that survey month 

and number of point counts were the two most important factors influencing potential 

variability in bird detection (Appendix F).  Other covariates, such as observer and time of 

day, might influence species detection (Ralph and Scott 1981), but their effects were 

diminished by rotating observers and the temporal order of sampling.  We modeled p 

without a covariate relationship (i.e., constant) and as a function of survey month, 

sampling effort, or the additive effect of both (Table F2 in Appendix F).  Using the most 

general model structure for occupancy (i.e., the global model), we selected the covariance 

structure on p with the lowest Akaike’s Information Criterion (AIC), and then fit the 28 

occupancy models separately for each bird species, including the global model with all 

patch-level covariates on  and , as well as reduced model forms.  We standardized all 

covariates to their z-scores, and fit models in the program PRESENCE (Hines and 



 

 62 
 

MacKenzie 2008).  Models that failed to converge or that contained nonsensical 

parameter estimates were eliminated from the model set for the appropriate species, and 

were not used for inference.  We ranked models based on AIC and identified top models 

(i.e., ∆AIC < 2.0) for each species, and calculated the associated model weights (w) 

(Burnham and Anderson 2002).  To determine the most supported model structure for the 

avian insectivore community, we averaged the weight of each model across all species.  

To assess the relative effects of patch area, isolation, vegetation structure, and matrix 

type, we calculated model-averaged estimates of the coefficients for each of these 

covariates based on the 95% confidence set per species (Burnham and Anderson 2002).  

Model averaging combines parameter estimates from each model using their associated 

AIC weights to provide an estimate that incorporates both within- and across-model 

uncertainty.  This approach reduces model bias and allows for more robust inferences 

than those based on a single selected best model (Burnham and Anderson 2002).  We 

calculated model-averaged colonization  ̂  and extinction  ̂  for each species by matrix 

type (when all other covariates were held constant to their average values).  Interpreting 

model-averaged point estimates of colonization and extinction as a function of landscape 

matrix was of primary interest in our study; therefore, we tested whether they differed 

based on ANOVA F tests (based on P < 0.05 and 0.10) with posthoc comparisons based 

on Benjamini-Hochberg adjustments (Benjamini and Hochberg 1995).  We were unable 

to test for differences in rate parameters based on the generalized chi-square statistic 

(Sauer and Williams 1989), because associated model-averaged variance-covariance 

matrices could not be calculated for all species due to boundary problems (i.e., parameter 
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estimation at 0 or 1).  Finally, we graphed model-averaged covariates against ̂  and ̂  to 

assess the direction and strength of relationships. 

Results 

Patch-level covariates 

 Sampled pseudo-patches in continuous forest ranged from 1.2 to 25 ha, and 

sampled patches in fragmented landscapes ranged from 0.6 to 19.6 ha in agricultural, 1.0 

to 8.3 ha in peri-urban, and 0.6 to 13.3 ha in bauxite landscapes.  Overall, patch area did 

not differ among matrix types (ANOVA, F3,95 = 0.389, P = 0.761) (Table 2.2).  Patches in 

agricultural, peri-urban, and bauxite landscapes were on average 2381.75 (± 147.07) m 

from a 100 ha fragment, with isolation distances not differing among matrix types (F2,65 

= 1.435, P = 0.246).   

Local vegetation structure, as determined by PC1, was strongly positively 

associated with percent open canopy, herbaceous and low shrub cover, and abundance of 

herbaceous vines.  PC1 was strongly negatively associated with proportion of tree cover, 

canopy height, leaf area index, tree basal area, tree diameter, and leaf litter depth 

(Appendix G).  Vegetation structure differed significantly by matrix type (F3,95 = 4.616, P 

= 0.005).  Forest and agricultural patches tended to have greater forest cover and vertical 

structure, larger and more abundant trees, and more leaf litter (i.e., more negative PC1 

values) than forest in bauxite, and to a lesser extent, in peri-urban landscapes.  Bauxite 

and peri-urban landscapes tended to have greater low shrub and herbaceous cover and 

more vines (i.e., more positive PC1 values).  Only patches within bauxite landscapes, 

however, significantly differed from those in other landscape types (P < 0.05).  None of 
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the continuous covariates were significantly inter-correlated (Patch area:PC1  = 0.043, P 

= 0.672; Patch area:ENN_100ha  = -0.101, P = 0.320; PC1: ENN_100ha  = 0.032, P = 

0.756). 

Estimated species occupancy and detection 

Initial occupancy estimates (̂ 2005) ranged from < 1 to 1, and estimated species 

detection was always < 1 across species based on top models (Tables H1 and H2 in 

Appendix H).  For all species, detection probability was best modeled with sampling 

effort, with detection increasing with the number of point counts surveyed.  For five 

species, the most supported model structure on detection included both survey month and 

sampling effort, with the greatest detection earlier in the breeding season rather than later 

for all species except one (Jamaican Tody) (Table H2 in Appendix H) (refer to Table 2.1 

for scientific names).  We used the best covariate structures on detection probability for 

each species to investigate covariate relationships with the rate parameters, which were of 

primary interest in our study. 

Relative importance of patch-level covariates for colonization and extinction 

 Patch isolation was an important covariate on local colonization probabilities for 

five of the nine species, and matrix type was important for six of them (Table 2.3).  

Matrix type was included as a covariate in top-ranking models with higher AIC weights 

(w > 0.20), indicating it is a better predictor for colonization than is patch isolation.  

Patch area was an important covariate on local extinction probabilities for about half of 

the species, but was included in models with lower weights.  Extinction was most 

consistently predicted by both vegetation structure and matrix type; these patch-level 
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covariates entered in high-ranking models with higher weights for almost all species.  

The most commonly supported model structures were ones in which colonization was 

either a function of matrix type or modeled as constant, and covariates on extinction 

probability included an additive function of matrix type and vegetation structure (Table 

H1 in Appendix H).  When weights for each model were averaged across all species, the 

best model structure was one in which local colonization was a function of matrix type 

only, and local extinction was a function of both vegetation structure and matrix type.  

This model structure had an average weight of 34%, which was three times higher than 

that of any other model.  Thus, matrix type and vegetation structure were the two most 

important covariates influencing the occupancy dynamics of the insectivorous bird 

community in our study system.  

Effects of patch isolation, area, vegetation structure on colonization and extinction 

Patch isolation had no effect on colonization probabilities for four species:  

Jamaican Becard, Jamaican Elaenia, Jamaican Pewee, and Sad Flycatcher.  When models 

included patch isolation on colonization probability, increasing isolation had a negative 

effect as predicted by theory (except for one species), but the effect was often estimated 

near zero (based on approximated 95% CIs) (Table 2.4).  The magnitude and slope of the 

relationship between colonization and isolation was similar across the different matrix 

types for the majority of species with a detected effect (Figure H1 in Appendix H).  

However, increasing patch isolation negatively affected colonization only in peri-urban 

and bauxite mining landscapes for the Jamaican Tody, and only in bauxite landscapes for 

the Rufous-tailed Flycatcher (Figure 2.1a). 
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Also according to theoretical expectations, local extinction probabilities generally 

declined with increasing patch area (Table 2.4, Figure H2 in Appendix H), but there was 

no effect for four of the nine species (Jamaican Becard, Jamaican Elaenia, Jamaican 

Pewee, and Rufous-tailed Flycatcher).  Patch area had a strong influence on local 

extinction for only two species:  the Arrow-headed Warbler, for which patch area had a 

uniformly negative effect across all matrix types; and the Jamaican Woodpecker, for 

which patch area had a negative effect only in bauxite and peri-urban landscapes (Figure 

2.1b). 

The effect of vegetation structure on extinction probabilities was greater than the 

effect of patch area.  For all species except the Jamaican Vireo, the probability of 

extinction increased with greater percent herbaceous cover and low shrubs and 

abundance of vines, and decreasing canopy cover and height, tree diameter and basal 

area, and leaf area index (i.e., increasing PC1 value).  For five species, the slope of this 

relationship was consistent among matrix types, but the rate of increase in extinction 

probability was matrix-dependent (Figure H3 in Appendix H).  For example, the 

probability of extinction reached 100% for the Jamaican Becard at negative PC values in 

both bauxite and peri-urban landscapes but at positive PC values in forested and 

agricultural landscapes.  For the remainder of the species, the relationship between 

vegetation structure and local extinction was matrix-dependent, demonstrating an 

increase in extinction probabilities for some matrix types but a decrease for others.  For 

example, vegetation structure affected extinction probabilities for the Jamaican Pewee 

only in agricultural and forested landscapes, and affected extinction probabilities for the 

Jamaican Woodpecker largely in bauxite and peri-urban landscapes (Figure 2.1c).  Large 
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standard errors for many of the estimated coefficients for patch isolation and area, and to 

a lesser extent vegetation structure, may suggest these relationships are not significant or 

that our sample size was too small (Table 2.4); but model selection results clearly support 

the influence of vegetation structure and matrix type on occupancy dynamics across 

species (Table H1 in Appendix H). 

Estimated colonization and extinction by matrix type  holding patch area, isolation, 

and vegetation structure constant 

 The Jamaican Elaenia, Jamaican Pewee, and Jamaican Woodpecker had higher 

model-averaged estimates of colonization probabilities in forested and agricultural 

landscapes; the Jamaican Becard and Rufous-tailed Flycatcher had higher estimated 

colonization in agricultural landscapes; and the Jamaican Tody in all fragmented 

landscape types (Table 2.5).  The remainder of species (Arrow-headed Warbler, Jamaican 

Vireo, and Sad Flycatcher) exhibited a weak relationship between colonization and 

matrix types.  On average, model-averaged colonization probabilities were highest in 

agricultural landscapes (0.60  0.12), followed by forested (0.37  0.12), bauxite (0.24  

0.10), and peri-urban landscapes (0.18  0.11) (Table 2.5).  Lower colonization 

probabilities in forested landscapes were due to consistent occupancy of patches for 

several species (e.g., Jamaican Becard, Jamaican Pewee, Jamaican Tody).  Although they 

are supported by model selection, these estimates only differed statistically at P < 0.10 

(ANOVA, F3,32 = 2.542, P = 0.074), with colonization higher in only agricultural relative 

to both peri-urban and bauxite landscapes. 

In contrast, model-averaged extinction probabilities differed more strongly among 

matrix types (F3,32 = 5.201, P = 0.005), with the insectivore community as a whole having 
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significantly higher extinction in both peri-urban (0.43  0.15) and bauxite (0.53  0.13) 

landscapes than in either forested (0.09  0.03) or agricultural (0.07  0.04) landscapes (P 

< 0.05).  All species consistently had higher model-averaged point estimates of extinction 

in peri-urban and/or bauxite landscapes:  two species with higher extinction in peri-urban 

(Jamaican Elaenia, Jamaican Vireo), four higher in bauxite (Arrow-headed Warbler, 

Jamaican Tody, Jamaican Woodpecker, and Rufous-tailed Flycatcher), and three higher 

in both peri-urban and bauxite landscapes (Jamaican Becard, Jamaican Pewee, and Sad 

Flycatcher). 

Discussion 

Occupancy dynamics mediated by landscape matrix 

 Although it is widely recognized that land cover surrounding primary habitat can 

affect species occupancy dynamics, to our knowledge this is the first study to test the 

effects of several different types of human-modified landscapes similar in structural 

habitat fragmentation (i.e., amount and configuration of habitat) and to compare them 

with continuous forest.  We found that the landscape matrix, regardless of patch isolation, 

best explains local colonization, and the additive effect of within-patch vegetation 

structure and matrix type, regardless of patch area, best explains local extinction of 

Neotropical avian insectivores.  Thus, occupancy dynamics in Jamaica are driven more 

by matrix conditions than by the commonly assumed patch area and isolation, and local 

extinction rates are driven more by within-patch habitat structure than by patch area.  

Moreover, the effects of patch area, isolation, and vegetation structure on occupancy 

dynamics were contingent upon matrix context.  These relationships were detected even 
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though patch area, isolation, and vegetation structure were uncorrelated, and despite 

similar climate, geology, forest type, and controlling for the amount and configuration of 

forest cover among anthropogenically fragmented landscapes. 

 Although individual species responded differently, a general community-wide 

pattern emerged.  Local extinction of resident avian insectivores was substantially higher 

and local colonization marginally lower in peri-urban and bauxite mining landscapes 

relative to agricultural and forested landscapes, suggesting an eventual population 

decline.  As predicted, species colonization was higher in agricultural relative to bauxite 

landscapes, but not in peri-urban landscapes as was expected, perhaps due to higher 

mortality during movement (e.g., predation).  Colonization patterns, however, were 

variable across species.  The same number of species had similar colonization 

probabilities among matrix types as exhibited differences.  In many cases, there was low 

to moderate uncertainty as to whether matrix type was an important covariate on 

colonization, and constant colonization rates among patches were supported for some 

species.  In contrast, there was unequivocal support that extinction probabilities across 

the community were influenced by both vegetation structure and matrix type.  All species 

exhibited extinction estimates that were consistently higher in bauxite mining and/or peri-

urban landscapes in accordance with our predictions.  Kennedy et al. (unpublished 

manuscript) found lower abundances of resident avian insectivores in forest remnants in 

peri-urban and bauxite mining landscapes than in agricultural or forested landscapes in 

the region (Chapter 1).  We suggest that such differential abundance patterns are driven 

more by extinction than colonization dynamics. 
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Potential mechanisms underlying differential occupancy patterns among matrix types 

 Three broad mechanisms have been proposed to explain the decline of avian 

insectivores in fragmented forests, the impact of which may vary by landscape matrix:  

(1) impedence of inter-patch movement, which reduces functional landscape connectivity 

(e.g., Stratford and Stouffer 1999; Sekercioglu et al. 2002; Moore et al. 2008); (2) 

increased nest parasitism and predation of birds (e.g., Rodewald and Yahner 2001; 

Chalfoun et al. 2002; Lampila et al. 2005); and (3) reduction of habitat quality, including 

the interdependent effects of loss of microhabitats and decline of prey availability (e.g., 

Burke and Nol 1998; Zanette et al. 2000). 

Sekerciouglu (2002) found that the best determinant of the persistence of 

understory insectivorous birds in small fragments in Cost Rica is the ability to disperse 

through deforested matrix habitats.  Consequently, he argued that dispersal limitation is 

the dominant factor underlying the decline of insectivores in fragmented tropical forests.  

Likewise, Amazonian forest-dependent insectivores have been found averse to crossing 

even small gaps, such as road clearings (e.g., 30-40 m) (Laurance et al. 2004); and 

experiments have indicated that insectivores are the most dispersal-limited terrestrial 

avian guild in lowland Panama and disproportionately more likely to become extinct 

(Robinson 1999; Moore et al. 2008).  These studies support the hypothesis that 

insectivores, particularly understory specialists, have low mobility due to their relatively 

localized habitats and potential physiological or morphological limitations (Harris and 

Reed 2002; Laurance et al. 2002; Stratford and Robinson 2005), which could explain 

their extinction vulnerability.  However, the reverse pattern has also been found.  Based 

on long-term data at the Biological Dynamics of Forest Fragments Project in Brazil, bird 
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species previously assumed to be dispersal-limited were found to frequently move 

distances of 150 to 900 m from continuous forest post-fragmentation (Van Houtan et al. 

2007).  Species that dispersed more widely were also found more extinction-prone (Van 

Houtan et al. 2007), and for some of these tropical birds, isolation did not influence their 

occupancy (Ferraz et al. 2007), suggesting that connectivity may not be the limiting 

factor determining long-term population dynamics in fragmented landscapes.  Species 

that dispersed more widely were also found more extinction-prone, suggesting that 

connectivity may not be the limiting factor determining long-term population dynamics 

in fragmented landscapes (Van Houtan et al. 2007). 

In light of our findings and given the nature of Jamaica’s topography and the 

evolutionary history of its species, we believe that dispersal limitation is not the primary 

mechanism explaining bird distributions among forest patches.  The karst countryside in 

central Jamaica is characterized by small forest hilltops, often < 10 ha, which are 

separated by other land uses but remain in close spatial proximity (e.g., hundreds of 

meters apart) relative to potential bird dispersal.  Such small distances between forest 

patches may not prohibit frequent movement of bird species, as supported by high 

probabilities of local colonization of several of our target species in fragmented 

landscapes (Table 2.5).  Further, the evolutionary history of Caribbean avifauna has 

likely promoted selection of species with stronger dispersal abilities and fewer 

physiological or morphological limitations than mainland counterparts; these 

characteristics have allowed them to (re)colonize and (re)establish in island habitats and 

to withstand large-scale natural disturbance events like hurricanes (Lack 1976; Ricklefs 

and Bermingham 2008). 
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Other commonly cited causes of forest bird declines are increased nest parasitism 

and predation (e.g., Robinson et al. 1995; Lampila et al. 2005), the impact of which may 

vary by landscape matrix (Donovan et al. 1997; Rodewald and Yahner 2001; Driscoll and 

Donovan 2004).  Nest predation has been identified as the key cause of nest failure 

throughout the world (Martin 1993; Ford et al. 2001).  Although nest predation has yet to 

be studied for the vast majority of birds in the West Indies, traits such as nest type and 

nest height may affect susceptibility, with open- and ground-nesting species found to 

suffer greater predation (Chalfoun et al. 2002; Lampila et al. 2005) (but see Martin 1993).  

We found no detectable association between nest type and differential bird abundances 

between continuous and fragmented forest in Jamaica; and species predicted to be most 

sensitive to nest predation (ground nesters) were least likely to exhibit lower abundances 

in fragmented landscapes (Chapter 1).  Moreover, insectivores in this study showed no 

differences in local extinction patterns in relation to either nest type or nesting height 

(Table 2.1).  Brood parasitism, particularly by cowbirds (Molothrus spp), has been shown 

to increase in disturbed landscapes in North America (Brittingham and Temple 1983; 

Robinson et al. 1995).  This threat is currently considered minimal in Neotropical 

systems (Stratford and Robinson 2005).  The generalist brood parasite, Shiny Cowbird 

(M. bonariensis), has only recently arrived in the West Indies and was detected on only 6 

of 1681 occasions in our study region.  Lastly, predation of juvenile or adult birds by 

raptors has been proposed as an additional source of mortality for certain insectivores 

(e.g., those in mixed-species flocks) (e.g., Canaday 1996; Ford et al. 2001); such 

predation may increase with increasing forest disturbance (Thiollay 1992).  Given the 

lack of diversity and density of raptors in Jamaica, this is not a plausible explanation for 
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differential extinction patterns.  Only two raptor species likely pose a predation threat 

(American Kestrel, Falco sparverius; Red-tailed Hawk, Buteo jamaicensis), and they 

were detected infrequently and in essentially equal numbers among landscapes in our 

region. 

 Rather, evidence suggests that occupancy dynamics in Jamaica are driven by local 

extinctions, likely as a function of differential habitat quality among landscapes and its 

essential components (e.g., food, cover).  This assertion is based on the fact that area and 

isolation of forest patches did not vary among fragmented landscapes, but within-patch 

vegetation structure did.  Forest remnants in bauxite and peri-urban matrices had low 

stature and more open canopies, less structural complexity, reduced leaf litter, and greater 

percent shrub layer (Table 2.2), thus indicating they may be in earlier successional stages 

and/or have been subject to greater disturbance than forests in agricultural matrices 

(Asprey and Robbins 1953).  Bird species in peri-urban landscapes may be 

disproportionately affected by human-induced forest disturbance, including selective 

harvesting, road impacts, and/or spread of fire or invasive species (Theobald et al. 1997; 

Marzluff et al. 2001).  Surface-mining activities in bauxite areas involve the large-scale 

removal of vegetation and topsoil, as well as the creation of roads and open pits of 

exposed earth, which could alter soil water retention, create dust pollution, and lead to 

biogeochemical and hydrologic changes (Bell and Donnelly 2006).  Even after post-

mining restoration, ecological communities may not fully recover to their original state 

(Parrotta and Knowles 1999; Parrotta and Knowles 2001).  All of these factors likely alter 

within-forest vegetation structure and microclimate, and may have led to a reduction in 

invertebrate biomass, thereby affecting insectivorous birds (e.g., Burke and Nol 1998; 
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Zanette et al. 2000).  Given enhanced foraging specializations of insectivorous tropical 

birds on specific microhabitats (e.g., Remsen and Parker 1984; Rosenberg 1990; Marra 

and Remsen 1997), slight perturbations in a resource base could cause increased 

cascading effects on local extinction dynamics. 

 Even though surveyed landscapes had similar environmental conditions (e.g., 

elevation, climate, soil substrate), we were unable to disentangle the effects of habitat 

structure from matrix type on occupancy dynamics of birds, because land-use practices in 

the matrix are driving the internal forest changes.  The nature of within-patch vegetation 

structure, however, does not fully capture the effects of the landscape matrix on habitat 

quality, because matrix type was an additional predictor of bird occupancy dynamics and 

mediated the influence of local vegetation (Figure 2.2, Appendix H).  The role of forest 

fragmentation and disturbance on prey availability is unclear, given its effects may differ 

across arthropod taxa, with some species increasing in abundance post-fragmentation 

(Didham 1997).  Thus, additional research is needed to identify impacts of fragmentation 

in different landscape contexts on invertebrate communities and its repercussions for 

avian insectivores. 

The landscape matrix may itself mediate resource availability, both within the 

primary habitat and in the surrounding matrix areas.  In many cases, matrix habitats may 

be hospitable for native species and may provide supplemental or additional resources 

that allow for population maintenance or growth in fragmented habitats (Norton et al. 

2000; Brotons et al. 2003; Cook et al. 2004).  In fact, the ability to utilize resources 

within matrix areas has been identified as a key determinant of species tolerance to forest 

conversion for many taxa (e.g., Laurance 1991; Gascon et al. 1999; Henle et al. 2004).  
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Abundances of edge- and matrix-foragers, such as nectarivores, omnivores, and 

granivores, have been found relatively insensitive to fragmentation in Jamaica, likely due 

to potential cross-boundary subsidies (Chapter 1), as also found in other systems (e.g., 

Stouffer and Bierregaard 1995; Renjifo 1999; Sigel et al. 2006).  Compared to most avian 

foraging guilds, insectivores exhibit enhanced forest specialization; thus, we suspect that 

resource supplementation in matrix areas is not driving differential occupancy dynamics 

as much as is the reduction in forest habitat quality.  Nonetheless, resource 

supplementation may play a role in buffering against local extinction.  Based on sampling 

conducted within matrix areas (Chapter 1), the disproportionate use of matrix habitats in 

particular landscapes coincides with a reduction in local extinction probabilities for 

certain species.  For example, the Sad Flycatcher and the Jamaican Becard were 

disproportionately detected in agricultural matrix habitats (e.g., foraging in grasslands 

and using hedgerows/paddock trees as perching and/or nesting habitat) relative to other 

matrix types, which may have reduced their local extinction in agricultural landscapes 

(Table 2.5).  Similarly, the Jamaican Tody and the Jamaican Woodpecker were rarely 

detected in bauxite relative to peri-urban or agricultural matrices, and exhibited 

comparatively higher estimates of extinction in forests embedded in bauxite.  The 

Jamaican Vireo and the Jamaican Eleania had lower extinction probabilities in 

agricultural and bauxite landscapes, and were observed less often in peri-urban matrix 

habitats relative to agricultural and bauxite matrices (Chapter 1).  Further research is 

needed to identify the specific mechanism(s) driving differential long-term survival of 

birds among landscapes in Jamaica. 
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Conservation implications 

 The different matrix types in our region study could be simplistically classified as 

equally hostile to native species, given they differ dramatically in vegetation structure, 

composition, and microclimate from once-contiguous native forest.  The insectivorous 

bird community, however, was profoundly affected by whether once-continuous forest 

was converted to agricultural, peri-urban, or bauxite mining development.  Agricultural 

landscapes had occupancy dynamics more similar with continuous forest, with bird 

species in peri-urban or mining landscapes having higher extinction and marginally lower 

colonization rates.  Thus, occupancy patterns not only differed between human-

dominated versus natural matrix types as more typically found (e.g., Prugh et al. 2008), 

but also among the different human land-use types.  Treating all modified lands equally, 

and categorizing Jamaica’s landscapes into “matrix” versus “forest” components would 

have hidden these important patterns.  The trajectory of land conversion in many regions 

of the world is from subsistence agriculture to increasing urbanization (DeFries et al. 

2004).  Since the 1950s, land-cover change in Jamaica (Evelyn and Camirand 2003) and 

on other Caribbean islands (Lugo 2002) has resulted largely from conversion of 

agriculture to residential development and mining for bauxite.  This study strongly 

suggests that this conversion of agricultural lands to more intensive development will 

result in further losses of avian insectivores even without increased forest loss or 

fragmentation.  Although we have not experimentally confirmed the mechanism, our 

evidence suggests that local extinction, rather than local colonization, is causing 

differential occupancy dynamics of insectivores among fragmented landscapes in 

Jamaica via the mediation of resource availability by human land uses and practices 
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within the matrix.  This finding is in contrast to several other tropical bird studies and the 

prevailing thought in the field.  Thus, we recommend greater attention be given to the 

potential role of resource provisioning in different landscape contexts as a potential 

selective mechanism driving the decline of insectivores in fragmented landscapes.
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Table 2.1.  Life history and ecological traits of the nine resident insectivorous bird species included in analyses.  All species 
were endemic to the island of Jamaica and known to breed in mid-elevation limestone forests within the study region. 

Order: Family & Species
Body 

mass (1)
Altitudinal 
range (2)

Foraging 
strata (3)

Foraging 
mode (4)

Nest 
height (5)

Nest 
type (6)

Coraciiformes:  Todidae
Jamaican Tody (Todus todus ) 6.8 L-M-H M S, G G C

Passeriformes:  Cotingidae
Jamaican Becard (Pachyramphus niger ) 38.6 M-H C S, G C C

Passeriformes:  Parulidae
Arrow-headed Warbler (Dendroica pharetra ) 10.3 M-H M G U O

Passeriformes:  Tyrannidae
Jamaican Elaenia (Myiopagis cotta ) 12.8 L-M-H C S C O
Jamaican Pewee (Contopus pallidus ) 9.9 M-H U S C O
Rufous-tailed Flycatcher (Myiarchus validus ) 41.4 M-H C S C C
Sad Flycatcher (Myiarchus barbirostris ) 13.4 L-M-H U S U C

Passeriformes:  Vireonidae
Jamaican Vireo (Vireo modestus ) 10.5 L-M-H U G U O

Piciformes:  Picidae
Jamaican Woodpecker (Melanerpes radiolatus ) 99.8 L-M-H M BP C C

(3) Foraging height most commonly observed. (U) understory in lower to mid forest or shrub layer (0.5 to < 5 m); (C) upper 
canopy (> 5 m); (M) among multiple heights (i.e., undergrowth up to canopy) (Cruz 1974, Cruz 1980, Raffaele et al. 1998, P. P. 
Marra, A. M. Haynes-Sutton, and H. A. Davis, personal communication ).

(5) Nesting height most commonly observed. (G) ground-level (< 0.5 m); (U) understory (0.5 to < 5 m); (C) upper canopy (> 5 m) 
(Bond 1993, Downer and Sutton 1995, Raffaele et al. 1998, P. P. Marra, A. M. Haynes-Sutton, and H. A. Davis, pers. comm. ).
(6) Nest structure typically constructed. (C) partially closed, including cavity, burrow, sphere, and pendant nests; (O) nests 
with large openings, including cup, saucer, and platform nests (Downer and Sutton 1995, Raffaele et al. 1998) (definitions from 
Ehrlich et al. 1998).

(4) Foraging behavior most commonly observed.  (BP) pecking/excavating in bark; (G) glean from nearby substrate (e.g., leaves, 
twigs); (S) sally from a perch to perch to attack prey (Lack 1976, Downer and Sutton 1995, Raffaele et al. 1998) (definitions from 
Remsen and Robinson 1990).

(1) Estimated body mass (g), averaged across male, female, and unknown sexes (Lack 1976, Windsor Research Centre 2009).
(2) Altitudinal distribution on the island of Jamaica.  (M-H) found in mid-elevation (300-1200 m) up to montane forests (600-
2000m); (L-M-H) found in lowland, mid-elevation, and montane forest (0-2000 m) (Lack 1976).
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Table 2.2.  Means ( 1 SE) of patch area, isolation, and vegetation structure (PC1 scores) of sampled sites in intact forest (N = 
31) and sampled patches in agriculture (N = 22), peri-urban (N = 27), or bauxite mining (N = 19) landscapes.  P-values from 
one-way ANOVAs are provided (values in bold significant at P < 0.05).  Letters indicate pairwise comparisons among matrix 
types based on posthoc Benjamini-Hochberg adjustments. 

Mean SE Mean SE Mean SE Mean SE P- value

AREA 4.29 0.85 4.86 1.12 3.46 0.50 3.39 0.59 0.7612§

ENN_100ha 0 0 2362.34 222.76 2794.84 346.69 2106.87 204.05 0.2456‡

PC1 -0.29
a

0.31 -0.43
a

0.36 0.55
a

0.26 0.94
b

0.28 0.0047*

AREA = Area of sampled forest patch or size of sampled plot within intact forest in hectares
ENN_100ha = Euclidean nearest-neighbor distance between sampled patch and forest fragment 100 ha in meters 
PC1 = Measure of vegetation structure of sampled patch based on axis 1 of a principal component analysis
§ Based on log transformation of response variable (including sites within forested landscapes)
‡ Based on square root transformation of response variable (excluding sites within forested landscapes)
* Based on untransformed response variable (including sites within forested landscapes)

Covariate

Forest Agriculture Peri-urban Bauxite
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Table 2.3.  Contribution of patch-level covariates to top models (i.e., ∆AIC < 2) of local 
colonization and extinction dynamics of nine resident insectivorous birds in Jamaica.   
indicates a covariate included in a top model with w > 0.20; () indicates a covariate 
included in a top model with w < 0.20.  Results were qualitatively similar with other 
breakpoints (i.e., w < 0.10 or w < 0.30) (see Appendix H for individual model results).  
“Isolation” is the nearest-neighbor distance from each sampled patch to a forest fragment 
 100 ha. “Area” is the size of a forest patch.  “Vegetation” is the Principal Component 
Score that is a composite index of 12 variables measuring forest vegetation structure (see 
Appendix G).  “Matrix type” identifies whether a patch was in an agricultural, peri-urban 
development, bauxite mining, or forested matrix. 
 

Species  I
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on
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Arrow-headed Warbler √ √ √ √

Jamaican Becard √ √ √

Jamaican Elaenia √ √ √

Jamaican Pewee √ √ √

Jamaican Tody (√) (√) √

Jamaican Vireo (√) (√) √ √

Jamaican Woodpecker (√) (√) (√) (√) (√)

Rufous-tailed Flycatcher √ √ √ √

Sad Flycatcher (√) (√) (√) √

Colonization (γ) Extinction (ε)

 



 

 81 
 

Table 2.4.  Model-averaged slope parameter estimates (i.e., Beta coefficients) ( 1 SE) 
for each species based on z-transformed variables on the logit scale.  Refer to Table 2.3 
for explanations of covariates.  Slope estimates close to 0 and 1 (based on normal scale) 
are indicated in parentheses. 

Species (isol) SE (area) SE (veg) SE
Arrow-headed Warbler -0.18 0.23 -6.92 3.32 5.69 3.32
Jamaican Becard – – (412.61) –
Jamaican Elaenia – (-31.65) – (629.15) –
Jamaican Pewee – – 2.33 0.97
Jamaican Tody -0.45 2.05 -0.16 0.22 0.10 0.14
Jamaican Vireo -0.21 0.56 0.02 0.50 -0.83 1.02
Jamaican Woodpecker 0.28 1.81 -1.50 4.73 1.34 0.86
Rufous-tailed Flycatcher -0.83 1.14 – 2.34 1.93
Sad Flycatcher -0.72 2.94 -0.01 0.16 0.14 0.22

Slope Parameters

() indicates either effect was not included in 95% confidence set or model-
averaged SEs were nonsensical (i.e., unestimatable due to boundary problems).
SEs calculated based on model-averaged Betas, using delta method (Williams et al. 
2002), including only models with estimatable variance-covariance matrices.

Large (+) Beta estimates equal slope ~ 1; large (-) estimates equal slope ~ 0 (e.g., 
Beta > 10)  (as indicated in parantheses).

Colonization Extinction   
̂

 ̂

̂ ̂
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Table 2.5.  Model-averaged estimates for local colonization and local extinction probabilities ( 1 SE) by landscape matrix 
type for each species.  Estimates were determined when all other patch-level covariates (i.e., area, isolation, vegetation 
structure) were held constant at mean value. 
 

Species Forest SE Agriculture SE Peri-urban SE Bauxite SE Forest SE Agriculture SE Peri-urban SE Bauxite SE

Arrow-headed Warbler 0.41 0.37 0.24 0.27 0.13 0.27 0.29 0.26 0.16 0.46 0.17 0.49 0.18 0.50 0.57 0.85
Jamaican Becard 0.00  1.00  0.00  0.00  0.00  0.00  1.00  1.00 
Jamaican Elaenia 1.00  0.44  0.00  0.00  0.00  0.00  1.00  0.00 
Jamaican Pewee 0.18 0.12 0.30 0.28 0.00  0.03 0.05 0.17 0.11 0.35 0.35 1.00  1.00 
Jamaican Tody 0.00  0.99 0.03 0.86 0.44 0.80 0.58 0.10 0.06 0.00  0.00  0.28 0.21
Jamaican Vireo 0.78 0.30 0.81 0.24 0.66 0.36 0.65 0.36 0.00  0.00  0.23 0.34 0.08 0.16
Jamaican Woodpecker 0.69 1.65 0.64 1.49 0.00  0.00  0.01 0.03 0.00  0.05 0.25 0.31 0.92
Rufous-tailed Flycatcher 0.26 1.95 1.00  0.00  0.39 1.79 0.10 19.12 0.00  0.00  1.00 
Sad Flycatcher 0.00  0.00  0.00  0.00  0.27 0.34 0.10 0.23 0.42 0.39 0.51 0.34

Average 0.37 0.12 0.60 0.12 0.18 0.11 0.24 0.10 0.09 0.03 0.07 0.04 0.43 0.15 0.53 0.13

† Local colonization probabilities estimated at mean value of isolation for all fragmented landscapes and at 0 isolation for forested landscapes.
§ Local extinction probabilities estimated at mean value of patch area and mean value of vegetation structure (PC1) for all landscapes.
() indicates variances that could not be estimated due to estimation of Beta at boundary (i.e., 0 or 1) and/or due due to variance-covariance errors.
SEs calculated based on model-averaged Betas, using delta method (Williams et al. 2002), when covariances are assumed to be 0 and only including models with 
estimatable variance-covariance matrices.

Local Extinction       §Local Colonization       †  ̂ ̂
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Figure 2.1.  Model-averaged point estimates of occupancy parameters for representative bird species in relation to a) local 
colonization probabilities as a function of patch isolation by matrix type; b) local extinction probabilities as a function of patch 
area by matrix type; and c) local extinction probabilities as a function of within-patch vegetation structure by matrix type.  All 
patch-level covariates were modeled via additive relationships.  Species presented exhibited rate parameters strongly 
influenced by patch-level covariates (refer to Table 2.4, 2.5 for unconditional standard errors, and Appendix H for additional 
species graphs).  
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Forest Agriculture Peri-urban Bauxite
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Chapter 3:  Landscape matrix mediates movements of generalist and 

specialist avian insectivores in fragmented tropical forest 

Abstract 

Maintaining species movement among habitat patches in fragmented landscapes 

is essential to maintaining functional connectivity.  Dispersal abilities may depend in 

large part upon the landscape matrix in which habitat is embedded, but few empirical 

tests have been conducted to discern the role of the matrix on species movement.  We 

examined the relative permeability of three landscape types in central Jamaica on the 

movement of the forest generalist, a Nearctic-Neotropical migrant, the American Redstart 

(Setophaga ruticilla); and a forest specialist, the endemic Jamaican Tody (Todus todus).  

We experimentally translocated > 140 birds 0.64 km from their territories across three 

landscape treatments:  (1) landscapes fragmented by peri-urban development, (2) 

landscapes fragmented by bauxite mining, and (3) continuous forest.  We investigated the 

relative influence of sex, body condition, territory habitat quality, translocation distance, 

and landscape matrix on return success and return time of individual birds.  Redstarts 

returned with greater success and quicker return time than todies across all landscape 

types, with 95% of redstarts returning in an average of 2.5 days versus 60% of todies in 

an average of >20 days.  Return success was best predicted by translocation distance for 

redstarts and by sex for todies, with a trend of fewer returns of redstarts and todies 

released in a bauxite matrix relative to other treatments.  Return time was strongly 

affected by landscape type, with both redstarts and todies returning more rapidly in forest 

relative to a bauxite matrix and with return times intermediate in a peri-urban matrix.  
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Landscapes fragmented by peri-urban development were thus more permeable to bird 

dispersal than those fragmented by bauxite mining; this enhanced permeability is 

attributed to greater matrix vegetation cover in peri-urban areas.  These findings provide 

crucial empirical support to the hypothesis that the nature of human land use surrounding 

primary habitat influences bird mobility within fragmented landscapes. 

Introduction 

Insectivorous birds are disproportionately declining in fragmented forests 

worldwide, with Neotropical-Nearctic migrants (e.g., Robbins et al. 1989a; Robbins et al. 

1989b; Askins et al. 1990) and Neotropical residents (e.g., Sodhi et al. 2004; Sigel et al. 

2006; Stouffer et al. 2009) being particularly impacted.  Dispersal limitation is 

increasingly identified as a dominant mechanism underlying their demise (Lampila et al. 

2005; Stratford and Robinson 2005).  As forests become fragmented and converted to 

other habitat types, natural dispersal patterns may be disrupted, leading to a loss in 

connectivity among populations (e.g., Fahrig 2003).  Understanding this potential 

reduction in the functional connectivity of landscapes (sensu Bélisle 2005) is essential for 

predicting species losses due to forest loss or alteration.  Even for well-studied taxa like 

birds, movement responses to forest fragmentation are poorly known, because 

information on bird dispersal capabilities is lacking, particularly in the tropics (Walters 

2000).  Moreover, dispersal success and movement rates may be contingent upon the 

structure and composition of the intervening land cover in which habitat is embedded 

(termed the “matrix”) (Ricketts 2001; Revilla et al. 2004; Bender and Fahrig 2005). 

Despite the potential importance, actual effects of the landscape matrix on bird 

dispersal remain poorly understood.  The majority of research on bird movement has 
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been conducted in landscapes of varying amounts of forest cover (e.g., Bélisle et al. 

2001) or landscapes solely dominated by an agricultural matrix (e.g., Bayne and Hobson 

2001; Castellon and Sieving 2006; Gillies and Clair 2008; Hadley and Betts 2009).  

These studies reveal that dispersal of forest-dependent birds is generally more successful 

in landscapes with greater forest cover, and that certain species avoid venturing into open 

pasture even at the energetic cost of greater travel time.  Few studies, however, have 

compared bird dispersal in other human-modified matrix types or in multiple matrix types 

simultaneously.  Further, when alternative matrix types have been considered, the effects 

of habitat amount and configuration could not be disentangled from effects due to other 

matrix features (e.g., Gobeil and Villard 2002).  Given that the trajectory of land 

conversion in many regions of the world is from subsistence agriculture to urbanization 

(DeFries et al. 2004), a better understanding of bird mobility in these more intensively 

developed landscapes is sorely needed. 

Our central aim was to determine whether matrix type influences dispersal 

abilities of two insectivorous bird species  a habitat generalist, Nearctic-Neotropical 

migrant, the American Redstart (Setophaga ruticilla); and a resident forest specialist, the 

Jamaican Tody (Todus todus).  This study is the first in which a Nearctic-Neotropical 

migrant was translocated on its wintering grounds in comparison with a Neotropical 

resident bird.  These species were targeted given their divergent life history traits and 

evolutionary trajectories (see Methods), which we predicted would impose differential 

constraints on their ability to respond to forest fragmentation.  We experimentally 

translocated 142 birds an average of 1.7  0.60 km ( 1 SE) from their territories across 

three landscape types:  landscapes fragmented by peri-urban or bauxite mining 
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development (i.e., peri-urban or bauxite matrix types) or landscapes comprising 

continuous forest (i.e., natural “matrix”).  Understanding bird mobility in landscapes 

where forests were embedded in either a peri-urban or a bauxite matrix was important 

because land-cover change in Jamaica as well as on other Caribbean islands is 

increasingly due to these human land uses (Lugo 2002), and their effects on animal 

dispersal are not well documented.  Experimental manipulations, particularly 

translocations, can be an effective way to measure functional connectivity for vagile 

species like birds (Desrochers et al. 1999; Bélisle et al. 2001), because they allow for 

dispersal motivation to be standardized across individuals, for probable return pathways 

to be predicted, and for landscape features of interest to be isolated (i.e., intervening 

matrix types) (Bélisle 2005). 

We tested whether the probability with which birds returned (i.e., return success) 

or the time it took for them to return (i.e., return time) to territories differ among matrix 

types as well as among species.  We predicted that birds would travel more successfully 

and more quickly through continuous forest relative to the fragmented landscapes, with 

intermediate return success and return time in peri-urban landscapes.  Bird movement 

was expected to be enhanced in peri-urban landscapes because matrix areas contained 

greater vegetation cover that could act as stepping stones to aid movement while bauxite 

landscapes lacked this vegetation structure (see Study Area).  Tropical non-migratory 

specialists, particularly understory insectivores, are expected to be more dispersal-

inhibited than temperate generalist birds (e.g., Paradis et al. 1998; Harris and Reed 2002; 

Stratford and Robinson 2005); thus, we predicted that the American Redstart would have 
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greater return success and quicker return time than the Jamaican Tody across all 

landscape types. 

Additional factors beyond landscape structure can influence both site fidelity and 

dispersal ability and may in turn impact homing propensity (i.e., return of birds) (Bowler 

and Benton 2005).  Female birds are typically more dispersive than males (Greenwood 

and Harvey 1982; Clarke et al. 1997).  Birds inhabiting lower quality habitats may be less 

site-tenacious (e.g., Holmes et al. 1996), and individuals with reduced fitness may be less 

prone to return to territories (e.g., Marra and Holmes 2001) or less able to withstand 

physiological costs associated with translocation.  Because homing abilities of our study 

species are unknown, we investigated the potential influence of sex, body condition, and 

territory habitat quality on return patterns. 

Methods 

Study area 

 We conducted our experiments in Manchester and Clarendon Parishes in central 

Jamaica, an area that was once covered in predominantly wet limestone forest (Asprey 

and Robbins 1953).  Less than 30% of native forest currently remains, with most of the 

conversion occurring by the eighteenth century (Eyre 1987b).  Forest is largely restricted 

to small hilltop remnants on limestone outcrops, with low lying areas converted for 

agriculture (i.e., historically for cultivation of cash crops, and later for cattle pasture) 

(Eyre 1987b; Eyre 1987a) and more recently for residential development and mining for 

bauxite (Evelyn and Camirand 2003).  Given the karst topography, the habitat 

fragmentation pattern is similar among landscapes subject to these different human land-

use pressures.  Locations and extent of forest fragments in this region have remained 
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fairly stationary in recent time but are embedded within a changing matrix.  This setting 

provided a unique opportunity to investigate the influence of matrix land cover on 

movement patterns of forest-dependent birds. 

We targeted three landscapes types in the region: (1) landscapes in which forest 

has been fragmented by residential (peri-urban) development, (2) landscapes in which 

forest has been fragmented by bauxite mining, and (3) landscapes comprising continuous 

forest (Figure 3.1).  Open areas surrounding forest patches differed substantially in these 

peri-urban and bauxite matrices.  Forest remnants in peri-urban landscapes were 

surrounded by low-density housing, ornamental gardens, abandoned woodlots, and 

roadside secondary growth.  Bauxite landscapes were former agricultural lands that had 

been converted to mining within the past ten years, where relictual forests were 

surrounded by exposed bauxitic soils, with some recent growth of ferns, Acacia trees, or 

planted grassland (Figure 3.2).  Relative to bauxite landscapes, peri-urban matrices 

contained greater foliage cover and vertical complexity (Appendix A). 

Target species 

 We translocated the Jamaican Tody (Todus todus) and the American Redstart 

(Setophaga ruticilla) (hereafter tody and redstart).  Both species are common insectivores 

in the region.  The former species is endemic to Jamaica and the latter species is a 

migrant that winters in Jamaica from late August through May (Marra et al. 1998; Studds 

et al. 2008).  The tody occurs in several forest types in Jamaica (e.g., dry to wet montane 

tropical forest), but it is most abundant in mid-elevation limestone forests (Raffaele et al. 

1998).  It is an understory forest specialist that forages commonly < 5 m from the ground, 

taking large insects from leaf undersides (Lack 1976).  The redstart is a habitat generalist 
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that is found in forest, woodland, and non-forested habitats in the Caribbean, where it 

forages for a wide variety of insect prey on a diversity of substrates over the full vertical 

range of habitats (Sherry and Holmes 1997). 

The biology of the Jamaican Tody has yet to be rigorously studied but is known to 

breed and to hold territories between December and July (Raffaele et al. 1998, C. M. 

Kennedy, unpublished data), similar to congeners in Puerto Rico (T. subulatus, T. 

angustirostris, and T. mexicanus) (Kepler 1977; Latta and Wunderle 1996).  Redstarts 

return annually to the same territory on their non-breeding, wintering grounds in Jamaica; 

both males and females vigorously defend these territories (Holmes et al. 1989; Marra 

2000).  Given their presumed similar motivation to return to capture sites, todies and 

redstarts were model subjects for our experiment.  Both species were found in fragmented 

landscapes in the region (Chapter 1, C.  M. Kennedy, unpublished data) and were 

relatively easy to detect and capture, thus, they provided an excellent means of 

comparing bird movements between human-altered versus forested matrices. 

Capture and release sites 

We captured birds from 17 forest fragments embedded in 4 bauxite mining 

landscapes, 12 forest fragments embedded in 4 peri-urban landscapes, and in sites in 4 

intact forested landscapes (Figure 3.2).  Capture patches in fragmented landscapes were 

similar in forest area (mean  1 SE:  peri-urban:  4.24  0.64 ha; bauxite:  3.10  0.56 ha) 

and isolation (31.76 ± 7.72 m and 48.88 ± 7.60 m to nearest fragment > 0.5 ha and 

2280.00 ± 485.44 m and 2139.47 ± 251.29 m to > 100-ha fragment in peri-urban and 

bauxite landscapes, respectively) as determined from an object-based classification of 

2001-2002 multispectral pan-sharpened IKONOS imagery (1-m resolution) (Appendix I) 
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using ArcGIS 9.3 (ESRI 2008).  Patches were also embedded in landscapes with a similar 

proportion (35.84 ± 1.59) and spatial configuration of forest cover (i.e., shape 

complexity, inter-patch connectivity) (Appendix A). 

To standardize the stimulus for dispersal, we also released birds in forest patches 

of similar size (peri-urban:  2.01  0.48 ha; bauxite:  2.92  0.71 ha) and isolation (112.46 

± 14.92 m and 103.49 ± 9.73 m to nearest fragment > 0.5 ha and 2866.20 ± 352.60 m and 

2456.92 ± 481.65 m to > 100 ha fragment in peri-urban and bauxite landscapes, 

respectively).  Thus, the landscape matrix was the primary difference among our 

experimental translocations.  Release locations were predetermined from imagery, land-

cover maps (Forestry Department 1999), and our previous field research, such that 

individuals were translocated in one of three treatments:  peri-urban matrix (N = 46:  35 

todies and 11 redstarts), bauxite mining matrix (N = 50:  25 todies and 25 redstarts), or 

forested “matrix” (N = 46:  31 todies and 15 redstarts).  We captured birds in 69 unique 

locations and released them in 75 different sites ( 100 m in distance).  On nine occasions 

(three times per treatment) individuals had the same capture and release locations, due to 

logistical constraints.  Repeated use of sites was required because of a scarcity of 

locations in treatments accessible by roads and/or trails. 

Translocation protocol 

We translocated todies from mid February to early May and redstarts from late 

February to early April in 2007 (median date:  29 March 2007).  Individuals were 

targeted for translocation after three to six visits, during which we confirmed territorial 

status based on repeated presence of redstarts and the interaction of a pair of todies, 

territorial displays (e.g., agonistic displays, fighting, and chasing behavior), and/or tody 
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courtship or nesting behavior.  We used the same protocol for pre- and post-translocation 

surveys (see below) to estimate detection probabilities.  Redstarts and todies were 

detected with probabilities of 0.76 ( 0.06) and 0.72 ( 0.04) in forested landscapes, 0.70 

( 0.07) and 0.78 ( 0.04) in peri-urban landscapes, and 0.75 ( 0.04) and 0.74 ( 0.05) in 

bauxite landscapes, respectively; probabilities not differing by landscape type (2
redstart = 

1.004, 2
tody = 1.003, df = 2, P = 0.606, based on likelihood ratio tests of occupancy 

models fit in PRESENCE with and without matrix type as a covariate on detection) 

(Hines and MacKenzie 2008).  Given high detection rates and a lack of bias among 

treatments, we were confident in the reliability of our return estimates for inference.  

Moreover, we have no reason to expect systematic bias in bird behavior as a function of 

landscape type even if detectability decreased in response to capture. 

Individuals were caught between 0615 to 1220 hrs (mean:  0838 hrs) by attracting 

them into mist-nets via conspecific bird decoys and species-specific vocalizations to 

increase the capture probability of territory-holders rather than floaters that may fail to 

exhibit strong site fidelity.  Individuals of both species consistently responded to 

playbacks during the entire capture period, suggesting similar territoriality and return 

propensity during the experiment.  After catching each bird, we measured body mass and 

length of tarsus, culmen, and unflattened wing chord, and we banded it with a unique 

color combination.  We targeted male redstarts but translocated the few females caught, 

given their known defense of winter territories.  We were unable to standardize for sex 

among todies due to a lack of external dimorphism (i.e., monomorphic plumage, lack of 

detectable cloacal protuberances, brood patch development by both sexes) (Merola-

Zwartjes and Ligon 2000; Pyle et al. 2004) (C. M. Kennedy, unpublished data).  We 
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standardized age based on plumage characteristics when feasible.  Translocated 

individuals of both species were after-hatch-year birds.  We were able to distinguish 

second-year from after-second-year redstarts based on plumage characteristics (Pyle et al. 

1987); > 82% of redstarts were after-second-years.  Hatch-year todies were easily 

distinguishable by their red throat patch heavily fringed with white, the brownish tinge in 

juvenile plumage, and unpneumaticized skull areas (S. E. Koenig, unpublished data).  

However, we could not definitively age todies beyond hatch-year (Pyle et al. 2004).  In 

total, we translocated 51 redstarts (43 males and 8 females) and 91 todies (67 males and 

24 female). 

Immediately upon capture, birds were placed in an opaque cloth bag and 

transported by vehicle to release sites.  Total capture-release time averaged 60.90  1.45 

min.  Handling time was higher in forested landscapes (69.22  2.66 min) than peri-urban 

(56.54  2.46 min) or bauxite landscapes (57.26  2.03 min) due to greater road 

inaccessiblity (ANOVA, F2,139 = 8.795, P < 0.001), but did not vary by species (F1,140 = 

1.269, P = 0.262).  Individuals were translocated > 560 m to 4 km (1.741  0.06 km) 

from the site of their capture.  Redstarts were translocated on average 2.34 ( 0.08) km, 

which was significantly farther than the distance todies were translocated (1.407  0.06 

km) (ANOVA, F1,140 = 102.72, P < 0.001).  We selected these distances to be sufficiently 

large to reduce bias due to prior landscape knowledge from daily bird movements but 

small enough to reduce bias due to navigation ability during migration events (Bélisle et 

al. 2001; Bélisle and Clair 2002; Gobeil and Villard 2002).  On wintering grounds, 

redstarts are rarely observed beyond their territory boundaries (C. E. Studds, personal 

communication, P. P. Marra, unpublished data) that are generally  0.25 ha in size 
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(Holmes et al. 1989).  The size of the Jamaican Tody’s home range is unknown, but 

territories of the congener T. mexicanus are an average 0.70 ha with daily movements 

expanding only ~ 60 m beyond these boundaries (Kepler 1977); we suspect territories 

may be even smaller for T. todus based on our observations (C. M. Kennedy, unpublished 

data).  Translocation distance of todies did not vary by landscape treatment (F2,88 = 

0.048, P = 0.953) (forest:  1.47  0.14 km; peri-urban:  1.39  0.07 km; bauxite:  1.36  

0.09 km); but redstarts were translocated farther in bauxite relative to forested landscapes 

(forest:  2.10  0.12 km; peri-urban:  2.16  0.13 km; bauxite:  2.56  0.12 km) (F2,48 = 

4.977, P = 0.011).  To account for these differences, we included translocation distance 

as a covariate in our models. 

 Upon release of each bird, one to two observers remained at the site in a 

concealed location to ensure that each bird exhibited normal flight capability.  An 

additional observer returned to the capture site and monitored for the potential return of 

the color-banded individual at the vicinity of its territory and surrounding areas (> 1 ha).  

If individuals were not detected on the first day, an observer returned to the capture site 

every day for the first five days, followed by day 7, day 10, day 14, with visits thereafter 

at weekly intervals for up to three months or until the target individual was observed.  

During each visit, we patrolled the territory grounds for at least one hour, searching 

passively for the first 30 minutes followed by broadcasting playbacks at 5-minute 

intervals for the final 30 minutes. 

Covariates on return success and time 

Besides our primary interest in landscape type, we considered four variables that 

we predicted would most influence species return patterns:  sex, body condition, territory 
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habitat quality, and translocation distance.  We determined sex of redstarts based on 

plumage characteristics (Pyle et al. 1987).  We determined sex of todies sex based on 

DNA extraction from blood samples drawn from a toenail clipping for 73 of 91 

translocated individuals, using restriction fragment length differences in the ATP 

synthase gene (Carmichael et al. 2000) and sequence differences in spindlin genes (de 

Kloet and de Kloet 2005) between the Z and W chromosomes.  Twenty todies were sexed 

as female and 53 as male based on DNA analyses.  We determined sex of the remaining 

18 todies by comparing their tarsus, culmen, and wing chord lengths to those of 

individuals of known sex, using discriminant function analysis (30.14% misclassification 

rate, Wilk’s Lambda = 0.79, F4,68 = 4.586, P < 0.002, mass considered but excluded from 

final model), which resulted in all but four individuals being classified as male. 

To account for variation in body condition of translocated birds, we estimated 

body mass corrected for the structural size of each bird by first reducing data on wing 

chord, tarsus, and tail length, using principal components analysis (PC) for each species 

separately.  We then regressed body mass on PC axis 1 and axis 2 scores and used the 

model residuals as an index of body condition.  The extent to which the predicted values 

deviated from expected mass given structural body size (i.e., residuals) indicated whether 

the bird was in good (i.e., positive residuals) or poor (i.e., negative residuals) body 

condition (Marra et al. 1998). 

 To quantify territory habitat quality, we measured 12 vegetation variables in a 10-

m radius plot centered at each capture location:  tree diameter, basal area, canopy height, 

leaf area index, leaf litter depth, abundance of woody and herbaceous vines, and percent 

herbaceous cover (0-0.5-m height class), low shrub (0.5-2 m), tall shrub (2-6 m), trees (> 
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6 m), and open canopy.  We conducted a principal component analysis (PC) on these 

variables, and used the PC axis 1 score as a proxy for vegetation structure.  This metric is 

expected to indicate territory habitat quality, given it has been identified as an important 

determinant of extinction rates for todies in the region (Chapter 2), with similar measures 

linked to habitat quality for redstarts on their wintering grounds (Parrish and Sherry 

1994; Marra and Holmes 2001). 

Translocation distance was determined based on the Euclidean distance between 

capture and release locations for each bird based on measurements taken in the field with 

a hand-held global positioning system (Garmin GPS 72) ( 10-m accuracy).  Landscape 

treatment was defined categorically as to whether birds were translocated in a forested, 

peri-urban, or bauxite mining matrix, and served as a surrogate for matrix composition 

and structure, given the extent of forest fragmentation was similar between peri-urban 

and bauxite mining landscapes. 

Modeling of return success and return time 

We determined whether return success and return time differed by species over 

the entire observation period based on univariate models with species as the only 

covariate.  We tested whether return success was influenced by all variables (as listed 

above), and return time by all variables except territory habitat quality.  Given that the 

relative importance of environmental factors might vary between species, we fit models 

separately for redstarts and todies.  We also considered the interaction between 

translocation distance and landscape type for redstarts.  We analyzed return success (i.e., 

return versus no return) at a three-day threshold for redstarts and a thirty-five day 

threshold for todies, because the majority of returns for each species (84% of redstarts 
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and 80% of todies) fell within these time frames.  Additionally, we analyzed return 

success when closest to 50% (after Bélisle et al. 2001), which was at one-day and two-

week time frames for redstarts and todies, respectively.  Results for both the majority and 

the 50% thresholds were consistent; thus, final models are presented for the 3-day and 

35-day post-translocation time periods only. 

To assess the influence of covariates on return success and return time, we used 

generalized linear models with a binomial error distribution (logit link function) and Cox 

proportional hazards regression models, respectively.  We analyzed return time (i.e., days 

since translocation) using survival analysis, which compares time-to-failure curves, 

where “failure” represented the detected return of a bird to its territory.  We excluded 

birds that did not return to their territories in Cox regressions to prevent confounding 

movement with other potential mechanisms (i.e., philopatry and mortality).  Model fitting 

was conducted using forward step-wise likelihood ratio estimation (Harrell 2001), in 

which variables were added that produced the most significant change in the model chi-

square (P < 0.10), with variables considered statistically significant at  = 0.05 in final 

models.  Variables significant at  = 0.10 were not included in final models, but we 

discuss associated covariates because they may indicate ecologically important trends.  

Final model significance was determined via the likelihood ratio test and the significance 

of coefficients via the Wald statistic with posthoc comparisons among groups based on 

Tukey’s multiple comparison procedure.  To ensure our conclusions were not dependent 

on our model building procedure, we investigated backward-stepwise selection, which 

produced similar final models.  Each translocation was treated as an independent event in 

models, given that each individual bird was translocated only once and that > 90% of 
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birds were captured in and released at different locations.  To investigate the potential for 

spatial dependence, we conducted preliminary analyses in which we modeled capture and 

release patches as the only covariate on return success and time.  For both species, patch 

identity failed to be a strong predictor for either return success (P > 0.50) or return time 

(P > 0.10). 

Statistical analyses were performed in the R statistical system (R Development 

Core Team 2008) using the ‘stats’ package for univariate tests, generalized linear models, 

and principal components analysis, the ‘MASS’ package (v 7.2-44) (Venables 2002) for 

discriminant analysis, the ‘survival’ package (v 2.34-1) (Therneau and Lumley 2008) for 

Cox regressions, and the ‘multcomp’ package (Hothorn et al. 2008) for multiple 

comparisons.  We assessed model fit based on plots of residuals versus fitted values, and 

model assumptions were met (e.g., constant error variance, approximately normal errors, 

and proportional hazards for Cox regression).  Untransformed means  1 SE are reported. 

Results 

Return success 

 Return success was higher for the American Redstart (96% of 51 individuals) than 

the Jamaican Tody (62% of 91 individuals) (Figure 3.3, 2 = 24.78, df = 1, P < 0.001).  

The most important determinant of redstart return success was the distance of 

translocation, with birds translocated farther having lower return probability (2  = 8.26, 

df = 1, P = 0.004) (Table 3.1).  Body condition, territory vegetation structure, and sex did 

not influence redstart return probabilities at P > 0.10.  Sex was the only significant 

predictor of tody return success, with males more likely to return than females (2 = 5.50, 
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df = 1, P = 0.019).  Sixty-nine percent of male todies versus 42% of female todies were 

found to return to their territories by the end of the three-month observation period.  

Translocation distance, body condition, and territory vegetation structure did not 

influence the return probability for the resident species (P > 0.10).  Although not 

significant at P < 0.05, there was a trend of lower return success by redstarts and todies 

released in the bauxite matrix relative to peri-urban development and forested treatments 

(redstarts:  2  = 5.72, df = 2, P = 0.057; todies:  2  = 4.15, df = 2, P = 0.126; Figure 3.4). 

Return time 

 Mean time for todies to return to territories was 20.6 ( 2.79) days, which was 

significantly longer than that for redstarts (2.6  0.49 days) (2  = 50.00, df = 1, P < 

0.001).  The return time of redstarts was influenced by the additive effects of landscape 

treatment and translocation distance (2  = 16.40, df = 3, P < 0.001), whereas landscape 

treatment was the only significant factor influencing the return time for todies (2  = 8.46, 

df = 2, P < 0.001).  For both species, individuals returned faster in forested than in 

bauxite mining landscapes; return times were intermediate in peri-urban landscapes 

(Table 3.1, Figure 3.5).  Redstarts that were translocated farther from their territories had 

slightly longer return times (P < 0.05), but translocation distance did not affect return 

time for todies (P > 0.10).  Sex and body condition were not important predictors for the 

return time for either species (P > 0.10). 
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Discussion 

Species traits mediate bird movement 

The American Redstart returned with greater success across all landscape types 

than the Jamaican Tody, with almost 1.5 times as many redstarts found to return to 

territories.  The lower return probability of todies may be explained in part by a greater 

proportion of female todies (26.4%) translocated than female redstarts (15.7%), which 

may have been less site-faithful.  The age of individuals and their pairing status 

(Greenwood and Harvey 1982; Holmes et al. 1996) may also underlie the reason why 

fewer todies returned if we translocated juveniles and/or siblings that were acting as 

helpers on territories (this type of communal breeding has been documented for the 

congener T. mexicanus; Raffaele et al. 1998).  The ultimate reason(s) todies failed to 

return to capture sites within the three months surveyed is thus unknown  whether due 

to mortality during dispersal (i.e., predation), behavioral decisions to settle in new 

locations, and/or an inability to orient successfully to original territories after 

displacement.  The landscape matrix may also have played a role, given fewer returns of 

both redstarts and todies in bauxite landscapes, but this factor was not found to be 

significant, perhaps due to insufficient sample size. 

An even more striking result was that of individuals that returned, redstarts were 

eight times faster than todies.  With an average return time > 20 days, the tody displayed 

relatively poor dispersal capabilities when considering that temperate (e.g., Bélisle et al. 

2001; Bélisle and Clair 2002; Gobeil and Villard 2002) and other tropical bird 

insectivores (Gillies and Clair 2008) have been reported to return to territories within 2 to 

3 days using similar translocation experiments.  Such low vagility was surprising, given 
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todies are more abundant in disturbed and fragmented forests in Jamaica than are many 

other forest-dwelling insectivorous birds (Chapter 1, Lack 1976).  Enhanced dispersal by 

redstarts may be due to their greater willingness to cross open spaces and to navigate in a 

wide variety of non-native habitats.  This assertion is based on the fact that redstarts 

commonly use diverse habitats on their wintering grounds (e.g., Greenberg 1992; 

Wunderle and Waide 1993; Confer and Holmes 1995); thus, they may be less 

behaviorally inhibited in fragmented landscapes (e.g., Greenberg 1983).  Given they are 

long-distance migrants, redstarts may have also evolved greater cognitive abilities (e.g., 

memory and processing of environmental information) that enhance their exploratory and 

navigational abilities (e.g., Mettke-Hofmann and Gwinner 2004). 

Landscape matrix mediates bird movement 

Although it is widely recognized that land cover surrounding primary habitat can 

affect bird mobility, this is the first study of which we are aware to test this hypothesis 

among different types of human-modified landscapes that are similar in structural habitat 

fragmentation (i.e., amount and configuration of forest cover) and in continuous forest.  

We found no significant difference in return success among landscape treatments in 

contrast to our predictions, perhaps due to low sample size, but a weak trend was detected 

of fewer returns of birds released in the bauxite matrix.  The speed of return, however, 

did significantly differ in accordance with our predictions, with both species returning 

significantly more quickly in a forested matrix than in a bauxite matrix.  Movement rates 

through peri-urban landscapes were more similar to intact forest relative to mining 

landscapes.  This differential permeability is due to differential movement and not to 

differential mortality, because the pattern is based only on birds that successfully 
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returned.  Moreover, energetic inefficiencies from potential lower quality habitats and/or 

exposure to more stressful environmental conditions (ecto-, endo-parasite loads) in 

certain landscape types are likely not involved, given that territory habitat structure and 

body condition failed to be important predictors of return time. 

Differential landscape permeability is most parsimoniously explained by the 

behavioral inhibitions to movement.  Bauxite landscapes typically have little vegetation 

cover in matrix areas (Appendix B).  Birds are thus subject to expansive open spaces and 

are forced to cross wide gaps (often hundreds of meters) when navigating between forest 

fragments.    Previous experiments using song playbacks indicate that many forest species 

demonstrate a strong reluctance to cross even small habitat gaps (e.g., < 25-50 m) despite 

their presumed physical capabilities (e.g., Harris and Reed 2002).  Gap-crossing and 

recent translocation experiments reveal that birds may avoid venturing into open areas 

and instead preferentially move through landscape features most similar to their optimal 

habitat at an energetic cost of greater travel time (e.g., Desrochers and Hannon 1997; 

Gillies and Clair 2008).  This reluctance to cross gaps may be a response to avoid 

predators (e.g., Lima and Dill 1990), the result of a limited perceptual range that inhibits 

navigation to certain landscape elements (Lima and Zollner 1996; Zollner and Lima 

2005), or the result of a lack of motivation (e.g., few suitable resources in the matrix; 

Bélisle and Desrochers 2002).  Thus, birds in bauxite landscapes may have remained 

longer in release patches (e.g., Castellon and Sieving 2006), searched a longer time for 

suitable cover, or taken more circuitous routes back to territories (e.g., Gillies and Clair 

2008; Hadley and Betts 2009).  Given the size of target species (tody:  6.7  0.05 g; 

redstart:  7.1  0.08 g), we were unable to use radio transmitters to track behavioral 
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decisions and detailed movement patterns by birds on their return paths.  Thus, although 

the dispersal trends detected by this experiment provide essential insight into the 

differential permeability of common Caribbean landscapes, the specific landscape 

features that either facilitated or impeded movement remain unknown because we could 

not document bird dispersal trajectories and differential use of matrix features.  Recent 

advances in miniaturized tracking technology, however, are making feasible the more 

precise tracking of smaller animals (e.g., Hadley and Betts 2009), which will enhance 

future research on bird movement behavior. 

Conservation implications 

Treating anthropogenically modified lands as a single cover type (i.e., non-

habitat) and categorizing landscapes into “matrix” versus “habitat” components in 

fragmentation research and conservation planning has the potential to lead to erroneous 

decision-making.  Based on our experiments, both the migrant American Redstart and the 

resident Jamaican Tody display differential dispersal abilities contingent upon whether 

once-continuous forest was converted to peri-urban or bauxite mining development.  We 

hypothesize that similarity in permeability of peri-urban landscapes and continuous forest 

was due to trees in the peri-urban matrix acting as stepping stones.  Residential 

landscapes have greater tree cover between forested hilltops as a result of ornamental 

gardens in lawns, abandoned woodlots, and treelined roadsides (Appendix B).  

Maintaining matrix vegetation cover, even if composed of non-native species and in 

isolated clusters of trees, seemingly facilitates bird movement between otherwise isolated 

forest patches.  Similarly, Castellón and Sieving (2006) found that the Chucao Tapaculo 

(Scelorchilus rubecula) dispersed as readily in matrix habitat composed of shrubby 
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vegetation as they did in wooded corridors, with vegetation cover the likely dominant cue 

over species composition.  Their study and our data support the utility of restoring and/or 

maintaining matrix vegetation cover to serve as potential stepping stones for bird 

movement.  Encouraging private land owners to restore tree cover either via native forest 

regeneration or ornamental planting of trees may be a more feasible, alternative 

management strategy to the creation of corridors, which has been the primary focus of 

conservation planning and may be more costly in terms of required restoration efforts and 

land acquisition. 

The persistence of populations in fragmented landscapes may hinge upon the 

ability of individuals to disperse successfully through different matrix types to 

(re)colonize habitat patches and rescue populations from local extirpation (e.g., Revilla et 

al. 2004; Wiegand et al. 2005). Lack of vegetation structure in bauxite landscapes may be 

imposing great constraints on bird movement.  After mining is complete, these 

landscapes are typically converted to pasture for cattle, which also lacks tree cover.  

These mined landscapes present an opportunity to test experimentally the importance of 

tree cover to the maintenance of functional connectivity for forest-dependent birds in an 

adaptive management framework.  Planting trees in specific spatial arrangements and 

floristic assemblages would help to ascertain the relative effect(s) of matrix vegetation 

configuration, structure, and composition on movement success of birds and to identify 

threshold gap distances (sensu Harris and Reed 2002), above which the probability of 

movements become dramatically reduced. 

Experimental studies designed to elucidate the relative impact of matrix lands on 

species dispersal abilities are thus needed for further comparison.  Given the seemingly 



 

 106 
 

idiosyncratic responses by species to fragmentation, experimental movement studies may 

prove useful in predicting which species and/or guilds are most threatened by habitat 

conversion (e.g., Lees and Peres 2009).  Our findings build upon emerging empirical 

evidence that supports long-standing hypotheses that particular groups of species may be 

more susceptible to extirpation in fragmented systems due to dispersal limitation.  In 

particular, specialists appear more at risk than generalists (Haddad 1999; Gobeil and 

Villard 2002; Lees and Peres 2009), tropical species appear more at risk than temperate 

species (Moore et al. 2008), and resident species appear more at risk than migrants 

(Paradis et al. 1998; Bélisle and Clair 2002, this study). 
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Table 3.1.  Variables that significantly influenced the return success and the return time 
(at P < 0.05) of the American Redstart and the Jamaican Tody when translocated ~ 550 m 
to 4 km from their territories in three landscape treatments (peri-urban development, 
bauxite mining, and forested matrix) in central Jamaica.  Return success was modeled via 
generalized linear models (with binomial errors) and return time via Cox regression 
models. 
 
               

    Variable   Coefficient SE P-value  

Return success       
 American Redstart Constant  5.8825 1.81 0.001  
 (N = 51) Translocation distance (m) -0.0018 0.00 0.008  
        
 Jamaican Tody Constant  -0.8873 0.45 0.048  

  (N = 91) Sex-male   1.1576 0.51 0.024  

    
Variable 

Hazard 
ratio 

Coefficient SE P-value 
 

Return time       
 American Redstart Translocation distance (m) 1.00 -0.0006 0.00 0.034  
 (N = 49) Landscape-Forest 2.73 1.0029 0.39 0.010  
  Landscape-Peri-urban 1.28 0.2431 0.43 0.570  
        
 Jamaican Tody Landscape-Forest 2.92 1.0700 0.39 0.006  

  (N = 56) Landscape-Peri-urban 2.09 0.7380 0.37 0.046  

The reference category is female for "Sex" and bauxite for "Landscape" variable.  
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Figure 3.1.  Locations of the 12 landscapes where experimental translocations were performed as shown in the context of the 
West Indies (latitude: 17 56'44"-18 05'36" N; longitude: 77 23'19"- 77 34'18" W).  Landscapes are delineated by 1-km2 areas 
centered around capture sites for geographic reference
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Figure 3.2.  Three landscape treatments where birds were translocated:  (1) landscapes 
comprising continuous forest (top), (2) landscapes fragmented by peri-urban development 
(middle), and (3) landscapes fragmented by bauxite mining (bottom).  Capture (©) and 
release (®) locations of one example translocation is overlaid on 2001-2002 IKONOS 
imagery (left panel), juxtaposed with photographs taken in the field near capture patches 
(right panel).  All birds were capture and released in limestone forest patches.  Forest 
cover appears in dark green, surrounded by lawns, ornamental gardens, roadside 
vegetation, roads, and houses in peri-urban landscapes, and exposed bauxitic soil (as 
shown in red) and early growth of ferns and Acacia stands in bauxite mining landscapes.
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Figure 3.3.  Cumulative proportion of the number of American Redstarts (N = 51) and 
Jamaican Todies (N = 91) detected to return to their territories as a function of the 
number of days since translocation. 
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Figure 3.4.  Return success 3-days after translocation (American Redstart) and 35-days 
after translocation (Jamaican Tody) in three landscape treatments (forest:  N = 46, 15 
redstarts and 31 todies; peri-urban development:  N = 46, 11 redstarts and 35 todies; and 
bauxite mining:  N = 50:  25 redstarts and 25 todies).  Return thresholds (3-day and 35-
day) were chosen to provide comparable percentages of returning birds for the two 
species.  Return success did not differ by landscape treatment at P < 0.05 for either 
species, but differed at P = 0.057 for the American Redstart and P = 0.126 for the 
Jamaican Tody. 
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Figure 3.5.  Mean return time ( 1 SE) by the American Redstart and the Jamaican Tody 
after translocation in three landscape treatments (forest:  N = 35, 15 redstarts and 20 
todies; peri-urban development:  N = 32, 10 redstarts and 22 todies; and bauxite mining:  
N = 38:  24 redstarts and 14 todies).  Shared letters indicate no significant difference (P < 
0.05) among treatments based on Cox regression models and post-hoc Tukey’s HSD 
tests.  Return time of todies differed at P < 0.10 between peri-urban and bauxite 
treatments. 
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Appendices 

Appendix A.  Habitat fragmentation pattern among landscape types 

Methods 

To characterize the nature of forest fragmentation among anthropogenic 

landscapes (Figure A1), we derived landscape-level metrics based on a map of the study 

region in which we digitized forest cover from 2001-2002 IKONOS imagery (1-m 

resolution, Space Imaging 2002) and 2007 ground-truthing surveys using ArcGIS 9.3 

(ESRI 2008) (LCC, WGS 84 projection).  Forest habitat was categorized by a closed 

canopy and visual dominance of native broadleaf trees; producer’s and user’s accuracy 

for this cover type were estimated at 92% and 84%, respectively.  We calculated ‘class-

level’ metrics based on total forest cover per landscape using FRAGSTATS 3.3 (using 4-

m raster cell size, an eight-neighbor rule for patch delineation, and 250-m search radius 

for patch connectance) (McGarigal et al. 2002).  We derived the following metrics for 

each 1-km2 agricultural, peri-urban, and bauxite mining landscape:  percent forest cover 

(PLAND), number of forest patches (NP), mean patch area (AREA_AM), patch shape 

complexity (PAFRAC), mean patch isolation (ENN_AM), number of patch connections 

(CONNECT) and spatial aggregation of forest patches (CLUMPY) (Table A1).  These 

metrics were selected because they have been found useful in quantifying the amount and 

configuration of habitat in landscapes (Neel et al. 2004), and have been shown to be 

associated with the effects of forest fragmentation on birds (e.g., Donovan and Flather 

2002).  These metrics were not highly inter-correlated (i.e., Pearson’s correlation 

coefficient r < 0.6) (McGarigal et al. 2000); thus, they captured different aspects of 
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landscape structure.  Sampled forest remnants were located within the 1-km2 landscapes; 

thus, landscape-level metrics captured the patch-level characteristics of sampled sites.  

For further comparison, we estimated the size of sampled patches, as well as their 

distances to the nearest forest fragment greater than 0.5 ha, 5 ha, or  100 ha.  These 

threshold sizes were selected because they provided an estimate of the distance a bird 

would travel to reach the nearest forest patch of any size or greater than the average patch 

size ( 5 ha) within landscapes, as well as to a potential source population ( 100 ha). 

Statistical analyses 

 Based on the seven landscape-level metrics, we tested for differences in the 

amount and spatial structure of primary habitat within agricultural, peri-urban, and 

bauxite mining landscapes using multi-response permutation procedure (MRPP) (based 

on mean standardized variables, Euclidean distance measure, and 1000 permutations) 

(Mielke and Berry 2001; McCune and Grace 2002) in the R ‘vegan’ package (v 1.13-1) 

(Oksanen et al. 2008).  We tested for differences in the size and isolation of sampled 

forest patches using one-way ANOVAs in the R ‘stats’ package (v 2.8.1) (R 

Development Core Team 2008).  For parametric tests, all variables were tested for 

normality and homogeneity of variances, and transformations were performed where 

necessary.  Untransformed means  1 standard error are reported. 

Results 

 Sampled plots within continuous forest ranged from 1.2 to 25 ha, and sampled 

patches within fragmented landscapes ranged from 0.6 to 19.6 ha in agricultural, 1.0 to 

8.3 ha in peri-urban, and 0.6 to 13.3 ha in bauxite landscapes.  The average plot size 

within forested landscapes was 4.29 (± 0.9 SE) ha, and the average fragment size was 4.9 
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(± 1.2) ha, 3.46 (± 0.5) ha, and 3.39 (± 0.6) ha in agricultural, peri-urban, and bauxite 

landscapes, respectively.  Overall, study sites within the four matrix treatments did not 

differ in forest area (ANOVA, F3,95 = 0.389, P = 0.7612) (Table A2).  Pooled across all 

anthropogenic landscapes, sample patches were 33.58 (± 3.48) m on average from the 

closest edge of another forest fragment of any size, 160.80 (± 19.79) m from a fragment 

at least 5 ha, and 2381.75 (± 147.07) m from a large forest tract at least 100 ha.  Patch 

isolation distances did not differ among the three anthropogenic landscape types 

(ENN_0.5ha:  F2,65 = 2.834, P = 0.0661; ENN_5ha: F2,65 = 2.364, P = 0.1020; 

ENN_100ha: F2,65 = 1.435, P = 0.2456). 

 In addition to sampled patches being similar in size and isolation, they were also 

embedded in landscapes with a similar proportion and spatial configuration of forest 

cover.  Agricultural, peri-urban, and bauxite landscapes contained 34.2% (± 1.6) to 

38.8% (± 3.5) of forest cover and an average of 18 (± 1.5) to 23 (± 4.0) forest fragments 

with area-weighted means ranging from 3.8 (± 0.4) to 5.8 (± 1.3) ha (Table A3).  Shape 

complexity of forest fragments was similar, based on equivalent PAFRAC estimates, 

which measure how patch perimeter increases per unit increase in area.  This suggests a 

potential similarity in the amount of edge-influenced habitat within landscapes.  The 

extent of isolation or the proximity among all forest fragments in sampled landscapes was 

similar.  The average area-weighted inter-patch distance among fragments within 

replicate landscapes was 19.8 (± 2.3) m, 24.3 (± 3.8) m, and 28.9 (± 4.0) m for peri-

urban, agricultural, and bauxite landscapes, respectively.  The number of possible 

connections among patches within a 250-m radius was consistent, with approximately 

34% connected.  This pattern remained consistent under varying search distances (i.e., 
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50, 100, and 500 m).  Forest aggregation was also consistent among replicate landscapes 

based on average CLUMPY indices of 0.92 to 0.94.  Simultaneously taking into account 

these seven landscape-level metrics, we found no difference in the amount and extent of 

forest fragmentation among the three anthropogenic landscape types (MRPP, A = 0.0247, 

P = 0.2488). 
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Table A1.  Description and units of patch-level metrics derived for sampled forest patches and landscape-level metrics derived 
for forest cover within 1-km2 agricultural, peri-urban, and bauxite mining landscapes used to characterize habitat amount and 
fragmentation (as described by McGarigal et al. 2002). 
 

Metric Description Unit

Patch-level

AREA area of a forest patch ha
ENN_0.5ha nearest neighbor dis tance between target patch and another forest patch at least 0.5 ha 

in s ize based on shortest edge-to-edge euclidean dis tance
m

ENN_5ha nearest neighbor dis tance between target patch and another forest patch at least 5 ha in 
s ize based on shortest edge-to-edge euclidean dis tance

m

ENN_100ha nearest neighbor dis tance between target forest patch and forest tract at least 100 ha in 
s ize based on shortest edge-to-edge euclidean dis tance

m

Landscape-level
PLAND proportion of forest cover percent
NP number of forest patches none
AREA_AM area-weighted mean patch area of forest patches ha
PAFRAC perimeter-area fractal dimension: a measure of convolution of forest patch boundaries none
ENN_AM area-weighted mean nearest neighbor distance among forest patches based on shortest 

edge-to-edge euclidean dis tance
m

CONNECT connectance index: a measure of the maximal number of joinings among forest patches 
within 250 m (dis tance based on unpublished mist-net data; Koenig, pers. comm .)

percent

CLUMPY clumpiness  index: a measure of spatial aggregation of forest land as  determined by the 
frequency of adjacent forest cells  as  compared to a random dis tribution

none
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Table A2.  Means ( 1 SE) of four metrics measuring the size of sampled sites within 
continuous forest (N = 31), and the area and isolation of sampled forest patches in 
agriculture (N = 22), peri-urban (N = 27), or bauxite mining (N = 19) landscapes.  P-
values from one-way ANOVAs are provided.   
 

Mean SE Mean SE Mean SE Mean SE P- value

AREA 4.29 0.85 4.86 1.12 3.46 0.50 3.39 0.59 0.7612*
ENN_0.5ha NA NA 23.67 5.10 33.16 7.01 41.95 5.65 0.0661**
ENN_5ha NA NA 124.00 31.65 140.80 35.75 204.85 33.63 0.1020**
ENN_100ha NA NA 2362.34 222.76 2794.84 346.69 2106.87 204.05 0.2456**

* Based on log transformation of response variable
** Based on square root transformation of response variable

Forest† 

† Area of s ites  within forested landscapes are based on s ize of sampled plots , and dis tance measures  
are not provided because plots  were embedded within continuous forest

Agriculture Peri-urban Bauxite

Patch Metric

 

 

Table A3.  Means ( 1 SE) of seven metrics measuring the amount and spatial 
configuration of forest cover in 1-km2 replicate landscapes fragmented by agriculture (N 
= 5), peri-urban development (N = 4), or bauxite mining (N = 5) in central Jamaica.   
   

Mean SE Mean SE Mean SE

PLAND 38.77 3.52 34.20 1.59 34.21 2.40
NP 18.00 1.52 23.00 4.02 19.80 1.56
AREA_AM 5.78 1.32 6.63 2.93 3.77 0.43
PAFRAC 1.29 0.07 1.39 0.08 1.34 0.06
ENN_AM 24.33 3.79 19.80 2.79 28.86 3.93
CONNECT* 34.30 3.48 33.17 2.22 33.82 2.27
CLUMPY 0.94 0.00 0.92 0.01 0.94 0.01

* Metric based on 250 m distance, but results similar at 50, 100, and 500 m distances

Agriculture Peri-urban Bauxite

Landscape Metric
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Figure A1.  Aerial view of representative landscapes fragmented by agriculture (left), 
peri-urban development (middle), and bauxite mining (right), based on 2001-2002 
IKONOS imagery.  Forest cover appears in dark green largely surrounded by linear 
hedgerows, tree stands, and pasture in agricultural landscapes; by houses, roads, 
ornamental lawns and gardens, and roadside vegetation in peri-urban landscapes; and 
exposed bauxitic (terra rossas) soil (as shown in red) and early growth of ferns and 
Acacia stands in bauxite mining landscapes.
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Appendix B.  Habitat structure within anthropogenic matrices 

Methods 

To determine the amount of resources available for birds outside of forest patches 

that may provide foraging or nesting substrates or aid movement in fragmented 

landscapes, we quantified land-cover composition and foliage structure in agricultural, 

peri-uban, and bauxite matrices.  On four randomly placed transects located in matrix 

areas, we established 10-m radius plots at 100-m intervals and measured percent foliage 

cover in four height classes (0-0.5 m, > 0.5-2 m, > 2-6 m, > 6 m) based on visual 

estimation.  For each survey we categorized matrix habitats into four cover types:  (1) 

Herbaceous cover:  areas dominated by herbaceous growth (usually < 0.5 m)  including 

pasture; ornamental lawns; cultivated bamboo (Bambusa vulgaris) or kinggrass 

(Pennisetum purpureum); recent growth of grass, ferns, and saplings in abandoned 

mining areas (i.e., bauxite regrowth); or herbaceous gardens dominated by non-woody 

crops (e.g., corn, pumpkin, cassava, sweet potatoes).  (2) Shrubland:  areas dominated by 

low stature shrubs (< 4 m)  including Acacia stands and ornamental shrubbery.  (3) 

Linear vegetation:  rows of trees (often 15-30 m wide) planted along property boundaries 

(i.e., live fences) or roadsides.  (4) Scattered trees:  widely-spaced trees dominated by 

cultivated species that were > 4 m in height and commonly lacking understory vegetation.  

Three subcategories of scattered trees were recognized, including tree stands, tree 

gardens, and mixed woodlands.  Tree stands were defined as clusters of ornamental trees 

(< 0.25 ha) often maintained in isolation in pasture or development.  Tree gardens were 

subsistence gardens dominated by fruit or nut trees (e.g., coffee, citrus, papaya, banana or 

breadfruit).  Mixed woodlands were areas dominated by ornamental tree species but with 
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 25% natural secondary growth.  We delineated these land-cover features because they 

captured the structural variation in vegetation among the three anthropogenic matrix 

types.  Areas lacking vegetation, including houses, roads, or active mining pits, were not 

surveyed due to lack of bird use.  Remnant native forest was also not included as a cover 

type because it was not considered a matrix feature and was sampled at bird stations.  We 

conducted ~ 55 matrix samples per landscape, for a total of 713 surveys (225 surveys in 4 

agricultural landscapes, 218 surveys in 4 peri-urban landscapes, and 270 surveys in 5 

bauxite landscapes).  One agricultural landscape was not sampled due to fire destruction 

in 2005.  Samples were proportional to the occurrence of each matrix cover type per 

landscape and were taken by three observers from May 21 to June 17, 2007.  

Statistical analyses 

 To characterize differences in land-cover composition and foliage structure 

among matrix types, we averaged surveys per replicate landscape and conducted 

multivariate tests based on multi-response permutation procedure (MRPP) (with 

Euclidean distance measure and 1000 permutations) (Mielke and Berry 2001; McCune 

and Grace 2002) using the R ‘vegan’ package (v 1.13-1) (Oksanen et al. 2008), and one-

way ANOVAs using the R ‘stats’ package (v 2.8.1) (R Development Core Team 2008).  

All variables were tested for normality and homogeneity of variances for parametric tests, 

and transformations were performed where necessary.  Familywise error was controlled 

at α = 0.05 for pairwise comparisons using the Bonferroni method (Sokal and Rohlf 

1995).  Tukey’s multiple comparison procedure was used to separate treatment means 

(Westfall and Young 1993) via the R ‘multcomp’ package (Hothorn et al. 2008).  

Untransformed means  1 standard error are reported. 



 

 122 
 

Results 

 Land-cover composition within matrix areas differed substantially among 

agricultural, peri-urban development, and bauxite mining landscapes (MRPP, A = 

0.4522, P < 0.0010).  Agricultural landscapes were dominated by pasture and herbaceous 

gardens (58.63% herbaceous cover), with interspersed fencerows, isolated tree stands, 

and shrubbery (41.37% combined) (Table B1).  The percentage of linear vegetation was 

significantly greater in agricultural than in either peri-urban or bauxite matrices 

(ANOVA, F2,10  = 11.37, P = 0.0027).  Peri-urban landscapes had fewer herbaceous cover 

types (F2,10  = 14.93, P = 0.0010) but greater scattered tree classes than either agricultural 

or bauxite landscapes due to the presence of subsistence tree gardens, ornamental tree 

stands, and mixed woodlands (F2,10  = 36.65, P = < 0.001).  Over 70% of peri-urban 

matrix areas was tree or shrub cover types.  Bauxite matrices were comparatively devoid 

of trees, but were dominated by herbaceous growth of ferns and/or grass in abandoned 

mining areas (77.79%) with some shrubs due to secondary growth of Acacia stands 

(19.29%). 

 Differences in land-cover composition translated into differences in foliage 

structure by matrix type (MRPP, A = 0.3243, P = 0.0020).  Peri-urban matrices had 

greater tall shrub cover (2-6 m) than either agricultural or bauxite matrices (Table C1).  

Percent herbaceous (< 0.5 m), low shrub (0.5-2 m), and tree (> 6 m) cover were similar in 

agricultural and peri-urban matrices.  Bauxite landscapes had less foliage cover overall – 

with less herbaceous cover (0-0.5 m) than agricultural or peri-urban landscapes (F2,10 = 

13.92, P = 0.0013); less tall shrub cover (2-6 m) and less tree cover (> 6 m) than peri-

urban landscapes (F2,10  = 10.68, P = 0.0033; F2,10 = 7.34, P = 0.0109, respectively); and 
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strong trends toward less cover of low shrubs (0.5-2 m) (F2,10 = 3.47; P = 0.0717).  These 

results confirm that anthropogenic landscapes differed substantially in composition and 

foliage structure of matrix habitats, with peri-urban and agricultural matrices containing 

greater foliage stratification than bauxite matrices, largely due to the presence of 

ornamental tree gardens, tree stands, and fencerows.
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Table B1.  Means ( 1 SE) of eight variables measuring matrix land-cover composition 
and foliage structure in landscapes fragmented by agriculture (N = 4), peri-urban 
development (N = 4), or bauxite mining (N = 5) in central Jamaica.  P-values from one-
way ANOVAs are provided (values in bold significant at familywise α = 0.05 and * at α 
= 0.10).  Letters indicate pairwise comparisons based on posthoc Tukey’s HSD tests (P < 
0.05). 

Matrix Measures Mean SE Mean SE Mean SE P- value

Percent Land Type

Herbaceous Cover 58.63
a

0.08 28.49
b

0.06 77.79
a

0.05 0.0010
Bauxite regrowth 0.00 0.00 0.00 0.00 31.47 0.06
Pasture 41.35 0.11 8.35 0.02 32.86 0.06
Herbaceous garden 15.43 0.08 9.32 0.03 7.67 0.02
Ornamental lawn 0.93 0.01 10.34 0.02 0.78 0.00
Bamboo/kinggrass 0.93 0.01 0.48 0.00 5.01 0.04

Shrubland 10.43 0.02 18.53 0.03 19.29 0.05 0.3055
Natural shrubs 10.03 0.02 9.72 0.02 19.29 0.05
Ornamental shrubs 0.40 0.00 8.81 0.02 0.00 0.00

Linear Vegetation 17.83
a

0.05 3.08
b

0.01 1.53
b

0.00 0.0027

Scattered Trees 13.12
a

0.03 49.90
b

0.08 1.39
c

0.01 <0.0001**
Tree s tand 8.77 0.04 12.33 0.01 0.70 0.00
Tree garden 1.32 0.01 26.38 0.04 0.00 0.00
Mixed woodland 3.03 0.02 11.19 0.05 0.70 0.00

Percent Vegetation Cover

Herbaceous layer*** 90.84
a

3.19 82.50
a

1.84 68.16
b

3.65 0.0013
Low shrub layer† 21.19 3.80 26.55 2.07 16.38 2.31 0.0718

Tall shrub layer‡ 13.78
b

2.86 23.86
a

2.19 8.82
b

2.05 0.0033

Tree layer 13.58
ab

3.91 24.23
a

5.81 3.72
b

1.56 0.01091*

Landscapes  with s imilar superscript letters  did not differ (P  > 0.05) in vegetation variable (ANOVA, Tukey's  HSD)
** Based on square root transformation of response variable
*** Estimated percent foliage cover of herbaceous growth <  0.5 m in height
† Estimated percent foliage cover of shrubs 0.5 - 2 m in height
‡  Estimated percent foliage cover of shrubs or trees 2 - 6 m in height
 Estimated percent foliage cover of trees  > 6 m in height

Agriculture Peri-urban Bauxite
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Appendix C.  Habitat structure within forest patches 

Methods 

 To capture habitat complexity of forest patches in the four landscape types 

(forested, agricultural, peri-urban development, and bauxite mining), we measured 12 

variables:  tree diameter, basal area, canopy height, leaf area index, leaf litter depth, 

abundance of woody and herbaceous vines, and percent herbaceous cover (0-0.5-m 

height class), low shrub (0.5-2 m), tall shrub (2-6 m), trees (> 6 m), and open canopy.  

Surveys were conducted at each bird station (with the exception of two bauxite patches 

due to logistical reasons), totaling 283 vegetation surveys (87 in forest, 77 in agricultural, 

49 in peri-urban, and 70 in bauxite landscapes).  We established 10-m radius plots 

centered at each station, divided into four equal quadrats based on 10-m transects in each 

cardinal direction.  We measured tree basal area using a 10-factor prism at each plot 

center.  Within each quadrat, we measured diameter breast height and canopy height of 

the largest tree, and we estimated the abundance of herbaceous and woody vines based on 

a categorical scale (0 = absent, 1 = solitary, 2 = few, scattered individuals, 3 = common, 4 

= abundant).  At 2-m intervals along each transect, we measured leaf litter depth and 

foliage structure.  Foliage structure was scored based on foliage touches along a pole at 

four height classes (0-0.5 m, 0.5-2 m, 2-6 m, > 6 m), with percent cover calculated as the 

percent of all points at a given height interval with  1 touch (after Schemske and 

Brokaw 1981).  Percent canopy openness and effective leaf area were estimated based on 

hemispherical canopy photographs taken at 5-m intervals in two randomly selected 

transects with a Nikon Coolpix 950 Camera and FC-E8 Nikon Fisheye lens.  Percent 

canopy openness and effective leaf area (Leaf Area Index Ring 4) (Stenberg et al. 1994) 
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were calculated using the Gap Light Analyzer (GLA) program (v 2.0) (Frazer et al. 

1999).  Sampling was conducted April 27 to July 2, 2005, with all measurements 

calibrated between two observers.  We determined patch-level vegetation by averaging 

repeat measurements across quadrats, transects, and plots within a patch (N = 97). 

Statistical analyses 

 Due to violations of multivariate normality, differences in overall forest structure 

by matrix type were determined based on multi-response permutation procedure (MRPP) 

(with mean standardized variables, Euclidean distance measure, and 1000 permutations) 

(Mielke and Berry 2001; McCune and Grace 2002) in the R ‘vegan’ package (v 1.13-1) 

(Oksanen et al. 2008).  We conducted MRPP on 10 of the 12 vegetation variables, 

excluding leaf area index and tree diameter due to high inter-correlation (r > 0.6) with 

percent open canopy and tree height, respectively.   

 We tested for differences in individual vegetation variables using one-way 

ANOVAs in the R ‘stats’ package (v 2.8.1) (R Development Core Team 2008).  All 

variables were tested for normality and homogeneity of variances.  Familywise error was 

controlled at α = 0.05 for pairwise comparisons in both MRPP and one-way ANOVAs 

using the Bonferroni method (Sokal and Rohlf 1995).  Tukey’s multiple comparison 

procedure was used to separate treatment means (Westfall and Young 1993) via the R 

‘multcomp’ package (Hothorn et al. 2008).  Untransformed means  1 standard error are 

reported. 

Results 

 Forest structure of patches differed by landscape type (MRPP, A = 0.0538, P < 

0.0001).  Based on pairwise comparisons, fragments embedded in an agricultural matrix 



 

 127 
 

differed significantly in forest structure from the other landscape types (forest:  A = 

0.0505, P < 0.0001; peri-urban:  A = 0.0399, P = 0.0004; bauxite:  A = 0.0713, P < 

0.0001).  Vegetation structure of sites within forested landscapes differed from forest 

patches in a bauxite matrix (A = 0.0338, P = 0.0003), and marginally from those in a 

peri-urban matrix (A = 0.0127, P = 0.043).  Forest structure of peri-urban and bauxite 

patches did not differ (A = 0.0072, P = 0.1348). 

 Five vegetation variables significantly differed among matrix types:  tree basal 

area, tree diameter, canopy height, percent tree layer, and percent herbaceous layer (based 

on familywise α = 0.05) (Table C1).  Tree basal area was significantly higher in patches 

in an agricultural matrix as compared to patches in forested and bauxite matrices, but did 

not differ from patches in peri-urban landscapes (ANOVA, F3,93 = 4.84, P = 0.0036).  

Tree diameter was greater in agricultural patches as compared to all other matrix types 

(F3,93 = 8.49, P < 0.0001).  Canopy height did not differ between patches in agricultural 

and forested landscapes, but was higher in agricultural patches relative to peri-urban or 

bauxite patches (F3,93 = 8.13, P < 0.0001).  Forest in agricultural landscapes had a greater 

proportion of trees (> 6 m) relative to bauxite landscapes, with no significant difference 

among patches in forested, agricultural, and peri-urban landscapes (F3,93 = 9.03, P < 

0.0031).  Percent herbaceous cover was higher in forest patches in bauxite matrices as 

compared to those in agricultural and forested matrices, but did not differ from patches in 

peri-urban landscapes (F3,93 = 9.93, P < 0.0001).   

 Leaf area index, percent open canopy, and percent low shrub and tall shrub layers 

marginally varied among landscape types at P < 0.05, whereas leaf litter depth and 

abundance of herbaceous and woody vines did not.  Forested landscapes had greater leaf 
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area index (F3,93 = 3.15, P < 0.0286), more tall shrubs (F3,93 = 3.76, P < 0.0144), and less 

open canopy (F3,93 = 3.8772, P < 0.0286).  Forest in bauxite landscapes, and to a lesser 

extent in peri-urban landscapes, had more low shrubs (F3,93 = 4.03, P < 0.0096). 

 Overall, forest patches in agricultural landscapes, and to a lesser extent sites 

within continuous forest, had greater stand basal area, leaf area index, tree diameter, tree 

canopy height, and tree cover than patches in peri-urban and bauxite landscapes.  In 

contrast, forest in bauxite and peri-urban landscapes had more open canopy and greater 

proportion of herbaceous cover and low shrubs, indicating these sites may be in earlier 

successional stages and/or have undergone greater disturbance. 
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Table C1.  Means ( 1 SE) of 12 variables measuring vegetation structure of forest 
patches in landscapes fragmented by agriculture (N = 22), peri-urban development (N = 
19), or bauxite mining (N = 25) or of sites within continuous forest (N = 31) in central 
Jamaica.  P-values from one-way ANOVAs are provided (with values significant at 
familywise α = 0.05 in bold).  Letters indicate pairwise comparisons based on posthoc 
Tukey’s HSD tests (P < 0.05). 
 

Vegetation Variable Mean SE Mean SE Mean SE Mean SE P- value

Leaf Area Index 2.90a 0.06 2.72ab 0.06 2.62b 0.09 2.65ab 0.09 0.0286
Basal Area (m2/ha) 21.57b 1.16 28.37a 1.69 23.03ab 1.61 22.20b 1.24 0.0036
Tree Diameter (cm) 17.45b 1.31 26.64a 1.86 20.37b 1.98 16.67b 1.12 <0.0001
Canopy Height (m) 12.79ab 0.66 15.05a 0.63 11.81b 0.82 10.62b 0.42 <0.0001
Percent Cover (%)
          Open canopy 9.26b 0.37 10.54ab 0.50 11.52ab 0.67 11.73a 0.85 0.0096
          Herbaceous layer 39.77b 3.51 37.44b 3.65 50.07ab 3.84 61.35a 2.98 <0.0001
          Low shrub layer 63.46ab 3.07 56.07b 2.76 67.86ab 3.63 70.62a 2.69 0.0096
          Tall shrub layer 85.32a 1.78 74.21b 1.96 78.96ab 4.16 81.07ab 2.21 0.0144
          Tree layer 48.85ab 5.46 57.89a 2.83 40.33ab 4.29 34.05b 3.95 0.0031
Abundance**
          Herbaceous vines 2.18 0.15 2.65 0.15 2.53 0.13 2.53 0.13 0.0913
          Woody vines 2.28 0.13 2.38 0.14 2.20 0.11 2.47 0.10 0.4667

Litter Depth (cm) 5.01a
0.24 5.7a

0.22 4.97a
0.20 5.72a

0.20 0.0218

Landscapes with similar superscript letters did not differ (P  > 0.05) in vegetation variable (ANOVA, Tukey's HSD)
** Based on scale: 0 = absent, 1 = solitary, 2 = few, scattered individuals, 3 = common, 4 = abundant

Peri-urban Forest Agriculture Bauxite
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Appendix D.  Sampling effort across landscapes in 20052007 
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Figure D1.  Mean number of native resident bird species detected in central Jamaica 
based on cumulative number of point counts in forested, agricultural, peri-urban 
development, and bauxite mining landscapes pooled across three years (2005-2007).  
Species accumulation curves were calculated using the sample-based rarefaction index 
(Mao Tau), rescaled in terms of numbers of individuals (as shown in x-axis, up to 4000 
individuals) and computed in EstimateS 8.0 (Gotelli and Colwell 2001).  Error bars 
denote ± 95% CI and were calculated using a general binomial mixture model with 100 
randomizations (via replacement sampling) (Colwell et al. 2004).  Curves quickly 
approached an asymptote, indicating sampling effort was sufficient in capturing species 
richness per landscape treatment during the duration of the study.  Based on overlapping 
confidence intervals, species accumulation patterns did not significantly vary among 
landscape types (at a 0.05 level).  For graphical illustration, only a subset of point count 
samples is displayed.
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Appendix E.  Traits of resident Jamaican birds 

Table E1.  Definitions, codes and data sources used to categorize species traits.  Sources are listed in order of reliance. 
 

Trait Definition and Categories Code Source(s)*

Taxonomy Taxonomic order 1
Apodiformes, Ciconiiformes, Columbiformes, Coraciiformes, Cuculiformes, Passeriformes, Piciformes, 
Psittaciformes

Body mass Estimated body mass (g), averaged across male, female, and unknown sexes 5, 6, 3
Clutch size Average number of eggs laid during single nesting period 1, 2, 4

Rarity
10

Geographic range Worldwide distribution of a species 1
Jamaica:  endemic species confined to Jamaica (J)
Caribbean:  species whose range includes Greater and Lesser Antilles, and may include Gulf of Mexico 
(i.e., South Florida, Yucatan Peninsula, or the islands of Mexico)

(C)

Neotropical:  species whose range includes Caribbean islands and New World tropics, including Central 
and South America

(N)

Temperate-tropical:  species whose range includes both nearctic (North America) and neotropical regions 
(Caribbean islands, Central and South America) 

(TT)

Altitudinal range Altitudinal distribution of a species on the island of Jamaica 3
Low-Mid-elevation: found in lowland (0-300 m) up to mid-elevation areas (300-1200 m) (L-M)
Mid-High elevation: found in mid-elevation (300-1200 m) up to montane forests (600-2000m) (M-H)
Low-Mid-High:  found in lowland, mid-elevation, and montane forest (0-2000 m) (L-M-H)

Diet guild Dominant food source 3, 7, 9, 1, 2
Frugivore:  feeds primarily on fruits (F)
Nectarivore: feeds primarily on nectar (N)
Insectivore: feeds primarily on insects (I)
Omnivore: feeds on both animals (e.g., insects, lizards) and plant substances (e.g., fruits, seeds) (O)
Granivore: feeds primarily on seeds or nuts (G)
Carnivore: preys primarily on vertebrate animals (lizards, mice, birds) (C)

Mean density within continuous forest (i.e., forested landscapes) for forest-restricted and generalist species; 
mean density within matrix habitats for open-associated species
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Foraging strata Dominant height zone where a species forages 7, 8, 1, 11
Ground:  forages predominately on the ground (< 0.5 m) (G)
Understory:  forages predominately in lower to mid forest or shrub layer (0.5 to < 5 m) (U)
Canopy:  forages predominately in upper forest canopies (> 5 m) (C)
Multiple:  forages commonly among more than one height zone (i.e., undergrowth up to canopy) (M)

Nest height Dominant height zone where a species is found to nest 1, 2, 4, 11
Ground:  nests predominately on the ground (< 0.5 m) (G)
Understory:  nests predominately in lower to mid forest or shrub layer (0.5 to < 5 m) (U)
Canopy:  nests predominately in upper forest canopies (> 5 m) (C)
Multiple:  nests commonly among more than one height zone (M)
Unknown:  nesting height is unknown (NA)

Nest type Type of nest typically constructed by the species (see Ehrlich 1988 for definitions) 1, 2, 12
open:  nest types with large openings, including cup, saucer, and platform nests (O)
closed:  partially closed nest types, including cavity, burrow, sphere, and pendant nests (C)

Habitat association Habitat preference based on relative species' densities within forest as compared to non-forest habitats (i.e., matrix) 10, 1, 2
Forest-restricted:  birds with densities three times greater in continuous forest than matrix habitats (FR)
Generalist:  birds with densities that did not differ by three fold in either forest or matrix habitats (G)
Open-associated: birds with densities three times greater in open/matrix habitats than intact forest (OA)

*Data sources:  1.  Raffaele et al. 1998; 2.  Downer and Sutton 1995; 3.  Lack 1976; 4.  Bond 1993; 5.  Windsor Research Centre 2009; 6.  Dunning 
2003; 7.  Cruz 1974; 8.  Cruz 1980; 9.  Cruz 1981; 10.  Kennedy unpublished data; 11.  Consultation with local ornithologists (P.P. Marra, A.M. Haynes-
Sutton, H.A. Davis); 12.  Ehrlich et al. 1998  
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Table E2.  Traits of the 41 resident bird species detected in the study region, and included in richness and community analyses.  
* indicates species excluded from Poisson mixed model regressions and decision tree analyses due to insufficient detections. 
 

Order: Family & Species
Body 
mass

Clutch 
size

Rarity
Geographic 

range
Altitudinal 

range
Diet 
guild

Foraging 
strata

Nest 
height

Nest 
type

Habitat 
association

Apodiformes:  Trochilidae
Jamaican Mango (Anthracothorax mango ) 7.9 2.0 0.05 J L-M N U C O OA
Red-billed Streamertail (Trochilus polytmus ) 5.2 2.0 0.68 J L-M-H N M U O G
Vervain Hummingbird (Mellisuga minima ) 2.3 2.0 0.09 C L-M-H N U U O G

Ciconiiformes:  Falconidae
American Kestrel (Falco sparverius )* 115.5 4.5 0.08 TT L-M-H C M C C OA

Ciconiiformes:  Accipitridae
Red-tailed Hawk (Buteo jamaicensis )* 1126.0 2.5 0.00 TT L-M-H C M C O G†

Columbiformes:  Columbidae
Common Ground-Dove (Columbina passerina ) 33.4 2.0 0.06 N L-M G G U O G
Ruddy Quail Dove (Geotrygon montana ) 116.6 2.0 0.11 N M-H G G G O FR
White-Bellied Dove (Leptotila jamaicensis ) 164.1 2.0 0.07 C L-M G G G O G
White-crowned Pigeon (Columba leucocephala ) 242.5 2.0 0.39 N L-M F C M O FR
White-winged Dove (Zenaida asiatica ) 153.0 2.0 0.11 N L-M G G U O OA
Zenaida Dove (Zenaida aurita ) 159.0 2.0 0.16 N L-M G G M O OA

Coraciiformes:  Todidae
Jamaican Tody (Todus todus ) 6.8 2.5 0.38 J L-M-H I M G C FR

Cuculiformes:  Cuculidae
Chestnut-bellied Cuckoo (Hyetornis pluvialis ) 178.5 3.0 0.05 J M-H C M M O G
Jamaican Lizard-Cuckoo (Saurothera vetula ) 74.5 3.5 0.04 J L-M C U U O FR
Mangrove Cuckoo (Coccyzus minor ) 66.3 2.5 0.04 N L-M C U U O FR
Smooth-billed Ani (Crotophaga ani ) 98.3 5.0 0.37 N L-M O G M O OA

Passeriformes:  Corvidae
Jamaican Crow (Corvus jamaicensis )* 277.0 3.0 0.00 J M-H O C C O FR†

Passeriformes:  Cotingidae
Jamaican Becard (Pachyramphus niger ) 38.6 3.0 0.14 J M-H I C C C FR  
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Passeriformes:  Emberizidae
Bananaquit (Coereba flaveola ) 8.5 3.0 0.99 N L-M-H N M M C G
Black-faced Grassquit (Tiaris bicolor ) 11.3 3.0 0.24 N L-M-H G G U C OA
Greater Antillean Bullfinch (Loxigilla violacea ) 28.0 3.5 0.46 C L-M-H F U M C FR
Jamaican Euphonia (Euphonia jamaica ) 15.1 3.5 0.31 J L-M-H F C M C G
Jamaican Spindalis (Spindalis nigricephala )‡ 42.3 3.0 0.31 J L-M-H F C U O G
Orangequit (Euneornis campestris) 15.7 3.0 1.15 J L-M-H N M NA O FR
Yellow-faced Grassquit (Tiaris olivacea ) 9.3 3.0 0.68 N L-M G G G C OA
Yellow-shouldered Grassquit (Loxipasser anoxanthus ) 10.7 3.5 0.20 J L-M-H F U U C G

Passeriformes:  Icteridae
Jamaican Oriole (Icterus leucopteryx ) 44.2 4.0 0.25 C L-M-H I M U C G

Passeriformes:  Mimidae
Northern Mockingbird (Mimus polyglottos ) 48.6 4.0 0.58 TT L-M O G M O OA

Passeriformes:  Muscicapidae
Rufous-throated Solitaire (Myadestes genibarbis )* 25.0 2.0 0.01 C M-H F U NA C FR†
White-chinned Thrush (Turdus aurantius ) 77.6 2.5 0.42 J L-M-H O G M O G
White-eyed Thrush (Turdus jamaicensis ) 59.6 2.0 0.15 J M-H O M M O FR

Passeriformes:  Parulidae
Arrow-headed Warbler (Dendroica pharetra ) 10.3 2.0 0.26 J M-H I M U O FR

Passeriformes:  Tyrannidae
Jamaican Elaenia (Myiopagis cotta ) 12.8 3.0 0.16 J L-M-H I C C O FR
Jamaican Pewee (Contopus pallidus ) 9.9 3.0 0.21 J M-H I U C O FR
Loggerhead Kingbird (Tyrannus caudifasciatus ) 38.2 3.0 0.25 C L-M-H O M M O OA
Rufous-tailed Flycatcher (Myiarchus validus ) 41.4 4.0 0.16 J M-H I C C C FR
Sad Flycatcher (Myiarchus barbirostris ) 13.4 3.5 0.13 J L-M-H I U U C G
Stolid Flycatcher (Myiarchus stolidus )* 22.9 3.5 0.03 C L-M I U NA C FR†

Passeriformes:  Vireonidae
Jamaican Vireo (Vireo modestus ) 10.5 2.5 0.71 J L-M-H I U U O FR

Piciformes:  Picidae
Jamaican Woodpecker (Melanerpes radiolatus ) 99.8 4.0 0.28 J L-M-H I M C C G

Psittaciformes:  Psittacidae

Olive-throated Parakeet (Aratinga nana ) 85.1 4.0 0.17 N L-M F M C C G

‡ Previously named Jamaican Stripe-headed Tanager (Spindalis nigricephalus ) (Banks et al. 2000)
† Habitat association determined from published natural history information because species were detected in fewer than 15 percent of sites 
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Appendix F.  Candidate model set 

 Four parameters were estimated based on multi-season patch-occupancy models:  

initial occupancy (), and the probabilities of local colonization (), local extinction (), 

and species detection (p).  Initial occupancy (1) is the probability that a sampled patch is 

occupied by the species in the initial year (i.e., t = 2005).  Local extinction probability (t) 

is the probability that a patch occupied by the species at year t is no longer occupied by 

the species at year t+1 (i.e., the patch goes locally extinct).  Local colonization 

probability (t) is the probability that a patch unoccupied by the species at year t becomes 

occupied at year t+1.  Lastly, detection probability (pt) is the probability that at least one 

individual of a species is detected in year t.  This modeling framework includes detection 

probability as a variable that is simultaneously estimated with local extinction and 

colonization probabilities via likelihood maximization (MacKenzie et al. 2003; 

MacKenzie et al. 2006). 

 We developed a candidate model set including 28 models specifying different 

covariate relationships for colonization and extinction probabilities (Table F1).  Detection 

probability was modeled as a constant or as a function of survey order and sampling 

effort (Table F2).  Survey order indicated whether a survey was the first, second, or third 

point count conducted within a season.  Surveys were conducted from early February to 

mid-June, and detectability may have varied during this period due to changes in bird 

activity or behavior (e.g., singing frequency) related to breeding cycles or weather (e.g., 

rainfall patterns) (Best 1981; Ralph 1981).  In addition, survey order included variability 

related to observer learning within a season; this indirectly accounted for potential 

observer bias, because observers were rotated among each survey round.  Because 
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sampling was proportional to forest area, small patches had fewer samples than larger 

patches (as described above).  A direct correlation between effort and detectability is 

widely recognized (e.g., Williams et al. 2002).  To account for this potential source of 

variability, we also modeled p based on the number of points surveyed per patch.  Other 

covariates, such as observer and time of day, might influence species detection (Ralph 

and Scott 1981), but their effects were diminished by our rotating observers and the 

temporal order of sampling.  Thus, within a season each patch was sampled at least once 

by each observer and at rotating time periods.  We also considered the potential effect of 

matrix type on detection probability.  Variation in noise, vegetation structure, and bird 

abundances in different landscape contexts could influence species detection.  Initial 

modeling of matrix type on p for over half of the species, however, gave systematic 

model convergence and parameter identifiability problems, suggesting a lack of a 

detectable relationship (J. E. Hines, personal communication).  We therefore could not 

include matrix type as a detection covariate, and were confident that survey order and 

sampling effort covariates captured the essential components of detection variability in 

our study.  The best covariate structure on detection was determined separately for each 

species and was based on the most general model structure for occupancy (i.e., global 

model, including all covariates on  and ).  The most supported detection covariates 

were then applied when modeling occupancy and related rate parameters to investigate 

the covariate relationships with the rate parameters, which was of primary interest in our 

study.   

For all models, initial occupancy was modeled without any covariates to focus 

investigation on rate parameters (after Ferraz et al. 2007).  We modeled  as a function of 
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patch isolation and matrix type and  as a function of patch area, local vegetation 

structure, and matrix type.  For a subset of models, colonization was modeled as constant 

through space and time, because previous research indicated that differential responses by 

birds to fragmentation in Jamaica were due to potential resource limitation (i.e., 

extinction processes) rather than to movement inhibition (i.e., colonization processes) 

(Chapter 1).  Only additive relationships were modeled for all covariates, given that our 

data set (N = 99 sites) would not support additional modeling complexity involving 

several interaction parameters in a multi-season occupancy modeling framework. 
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Table F1.  Candidate model structures of occupancy (), local colonization probability 
(), and local extinction probability ().  “Isolation” is the nearest-neighbor distance from 
each sampled patch to a forest fragment  100 ha.  “Area” is the size of a forest patch in 
hectares.  “Vegetation” is a composite index of 12 vegetation variables measuring canopy 
cover, canopy height, tree basal area, vertical stratification, and leaf litter depth of 
sampled patches (see Appendix G).  “Matrix type” is a categorical variable that identifies 
whether a patch was embedded in agriculture, peri-urban development, bauxite mining, 
or intact forest. 
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√ ψ (.), γ (.), ε (area)
√ ψ (.), γ (.), ε (veg)

√ ψ (.), γ (.), ε (matrix)
√ √ ψ (.), γ (.), ε (area+veg)
√ √ ψ (.), γ (.), ε (area+matrix)

√ √ ψ (.), γ (.), ε (veg+matrix)
√ √ √ ψ (.), γ (.), ε (area+veg+matrix)

√ √ ψ (.), γ (isol), ε (area)
√ √ ψ (.), γ (isol), ε (veg)
√ √ ψ (.), γ (isol), ε (matrix)
√ √ √ ψ (.), γ (isol), ε (area+veg)
√ √ √ ψ (.), γ (isol), ε (area+matrix)
√ √ √ ψ (.), γ (isol), ε (veg+matrix)
√ √ √ √ ψ (.), γ (isol), ε (area+veg+matrix)

√ √ ψ (.), γ (matrix), ε (area)
√ √ ψ (.), γ (matrix), ε (veg)
√ √ ψ (.), γ (matrix), ε (matrix)
√ √ √ ψ (.), γ (matrix), ε (area+veg)
√ √ √ ψ (.), γ (matrix), ε (area+matrix)
√ √ √ ψ (.), γ (matrix), ε (veg+matrix)
√ √ √ √ ψ (.), γ (matrix), ε (area+veg+matrix)

√ √ √ ψ (.), γ (isol+matrix), ε (area)
√ √ √ ψ (.), γ (isol+matrix), ε (veg)
√ √ √ ψ (.), γ (isol+matrix), ε (matrix)
√ √ √ √ ψ (.), γ (isol+matrix), ε (area+veg)
√ √ √ √ ψ (.), γ (isol+matrix), ε (area+matrix)
√ √ √ √ ψ (.), γ (isol+matrix), ε (veg+matrix)
√ √ √ √ √ ψ (.), γ (isol+matrix), ε (area+veg+matrix)

Colonization (γ) Extinction (ε)
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Table F2.  Candidate model structures of species detection probability (p).  “Survey 
order” refers to whether a survey was the first, second, or third survey conducted within a 
season and is correlated with survey month.  “Sampling effort” is the number of points 
surveyed per patch. 
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Appendix G.   Vegetation structure based on PC analyses 

Table G1.  Factor loadings from a principal component analysis of plot-level vegetation 
variables for each sampled forest patch.  The first principal component axis (PC1) 
explained 32.17% of variance in plot-level vegetation structure.  All variables were 
significantly correlated with PC1 scores based on Pearson correlation coefficients at 
familywise  = 0.05 (indicated in bold). 

Vegetation Variable PC1

Leaf Area Index -0.3324

Basal Area (m
2
/ha) -0.3228

Tree Diameter (cm) -0.3182

Canopy Height (m) -0.3817

Percent Cover (%)
          Open Canopy 0.3489

          Herbaceous Layer 0.2959

          Low Shrub Layer 0.2410

          Tall Shrub Layer -0.1312

          Tree Layer -0.4101

Abundance (scale 0:4)
          Herbaceous Vines 0.2308

          Woody Vines 0.1115

Litter Depth (cm) -0.1408
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Appendix H.   Model selection results 

Table H1.  Summary of model selection statistics for the top 95% confidence set ( w = 0.95) for the nine avian insectivores 
detected in central Jamaica from 2005-2007.  K is the number of parameters included in the model; -2LL is twice the negative 
log-likelihood value, where L is the maximized value of the likelihood function for the estimated model; AIC is Akaike’s 
Information Criterion, which judges a model by how close its fitted values are to true values and can be interpreted as the 
weight of evidence in favor of model i being the best model for the data with respect to the entire model set; AIC is the 
difference in AIC value for model i when compared with the top ranked model; wi is the Akaike weight of model i, which is 
interpreted as the probability that model i is the best model.  The model set provided are those whose weights sum to 0.95 
based on entire candidate model set; weights were then adjusted to sum to one for model averaging.  Models in bold are within 
2 AIC units of the top model, and considered equally supported.  The global model was (.), γ(isolation + matrix), ε (area + 
veg + matrix). 

                 

 95% Confidence Model Set Per Species K -2LL AIC ∆AIC w ∑w  
Arrow-headed Warbler (Dendroica pharetra)        
1 ψ (.), γ (matrix), ε (area+veg), p (effort) 10 546.53 566.53 0.00 0.25 0.25  
2 ψ (.), γ (isol), ε (area+veg), p (effort) 8 550.72 566.72 0.19 0.22 0.47  
3 ψ (.), γ (.), ε (area+veg), p (effort) 7 552.81 566.81 0.29 0.21 0.69  
4 ψ (.), γ (isol+matrix), ε (area+veg), p (effort) 11 546.38 568.38 1.85 0.10 0.78  
5 ψ (.), γ (matrix), ε (area+veg+matrix), p (effort) 13 542.75 568.75 2.22 0.08 0.86  
6 ψ (.), γ (isol+matrix), ε (area+veg+matrix), p (effort) 14 542.43 570.43 3.90 0.04 0.90  
7 ψ (.), γ (.), ε (area+veg+matrix), p (effort) 10 550.53 570.53 4.00 0.03 0.93  
8 ψ (.), γ (isol), ε (area+veg+matrix), p (effort) 11 548.95 570.95 4.42 0.03 0.96  

         
Jamaican Becard (Pachyramphus niger)         
1 ψ (.),  γ (matrix), ε (veg+matrix), p (effort+srvy) 14 356.60 384.60 0.00 0.80 0.80  
2 ψ (.),  γ (.), ε (veg+matrix), p (effort+srvy) 11 366.65 388.65 4.06 0.10 0.90  
3 ψ (.),  γ (matrix), ε (matrix), p (effort+srvy) 13 363.61 389.61 5.02 0.06 0.97  
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Jamaican Elaenia (Myiopagis cotta)        
1 ψ (.),  γ (matrix), ε (veg+matrix), p (effort+srvy) 14 434.97 462.97 0.00 0.86 0.86  
2 ψ (.),  γ (matrix), ε (area+matrix), p (effort+srvy) 14 439.24 467.24 4.27 0.10 0.97  

         
Jamaican Pewee (Contopus pallidus)        
1 ψ (.), γ (matrix), ε (veg+matrix), p (effort) 12 395.69 371.69 0.00 1.00 1.00  

         
Jamaican Tody (Todus todus)        
1 ψ (.), γ (.), ε (matrix), p (effort+srvy) 10 578.93 598.93 0.00 0.30 0.30  
2 ψ (.), γ (.), ε (area+matrix), p (effort+srvy) 11 577.98 599.98 1.05 0.18 0.48  
3 ψ (.), γ (.), ε (veg+matrix), p (effort+srvy) 11 578.32 600.32 1.40 0.15 0.64  
4 ψ (.), γ (.), ε (area+veg+matrix), p (effort+srvy) 12 577.33 601.33 2.40 0.09 0.73  
5 ψ (.), γ (matrix), ε (matrix), p (effort+srvy) 13 576.51 602.51 3.59 0.05 0.78  
6 ψ (.), γ (isol), ε (area+matrix), p (effort+srvy) 12 579.18 603.18 4.26 0.04 0.81  
7 ψ (.), γ (isol+matrix), ε (matrix), p (effort+srvy) 14 575.42 603.42 4.49 0.03 0.85  
8 ψ (.), γ (matrix), ε (area+matrix), p (effort+srvy) 14 575.79 603.79 4.86 0.03 0.87  
9 ψ (.), γ (matrix), ε (veg+matrix), p (effort+srvy) 14 575.80 603.80 4.87 0.03 0.90  

10 ψ (.), γ (isol+matrix), ε (area+matrix), p (effort+srvy) 15 574.41 604.41 5.48 0.02 0.92  
11 ψ (.), γ (isol+matrix), ε (veg+matrix), p (effort+srvy) 15 574.84 604.84 5.92 0.02 0.94  
12 ψ (.), γ (.), ε (veg), p (effort+srvy) 8 588.94 604.94 6.02 0.02 0.95  
         
Jamaican Vireo (Vireo modestus)        
1 ψ (.), γ (.), ε (veg+matrix), p (effort+srvy) 11 565.28 587.28 0.00 0.24 0.24  
2 ψ (.), γ (.), ε (matrix), p (effort+srvy) 10 568.45 588.45 1.17 0.13 0.38  
3 ψ (.), γ (isol), ε (veg+matrix), p (effort+srvy) 12 564.81 588.81 1.54 0.11 0.49  
4 ψ (.), γ (.), ε (area+veg+matrix), p (effort+srvy) 12 565.26 589.26 1.99 0.09 0.58  
5 ψ (.), γ (isol), ε (matrix), p (effort+srvy) 11 567.95 589.95 2.68 0.06 0.64  
6 ψ (.), γ (.), ε (area+matrix), p (effort+srvy) 11 568.14 590.14 2.86 0.06 0.70  
7 ψ (.), γ (.), ε (area), p (effort+srvy) 8 574.51 590.51 3.23 0.05 0.75  



 

 143 
 

8 ψ (.), γ (.), ε (veg), p (effort+srvy) 8 574.76 590.76 3.48 0.04 0.79  
9 ψ (.), γ (isol), ε (area+veg+matrix), p (effort+srvy) 13 564.77 590.77 3.49 0.04 0.83  

10 ψ (.), γ (isol), ε (area+matrix), p (effort+srvy) 12 567.57 591.57 4.29 0.03 0.86  
11 ψ (.), γ (isol), ε (area), p (effort+srvy) 9 574.06 592.06 4.79 0.02 0.88  
12 ψ (.), γ (matrix), ε (veg+matrix), p (effort+srvy) 14 564.22 592.22 4.94 0.02 0.90  
13 ψ (.), γ (isol), ε (veg), p (effort+srvy) 9 574.30 592.30 5.02 0.02 0.92  
14 ψ (.), γ (.), ε (area+veg), p (effort+srvy) 9 574.51 592.51 5.23 0.02 0.94  
15 ψ (.), γ (matrix), ε (matrix), p (effort+srvy) 13 567.26 593.26 5.99 0.01 0.95  
         
Jamaican Woodpecker (Melanerpes radiolatus)        
1 ψ (.), γ (matrix), ε (area+veg), p (effort) 10 633.84 653.84 0.00 0.19 0.19  
2 ψ (.), γ (isol+matrix), ε (area+veg), p (effort) 11 632.45 654.45 0.61 0.14 0.32  
3 ψ (.), γ (matrix), ε (veg+matrix), p (effort) 12 630.50 654.50 0.67 0.13 0.46  
4 ψ (.), γ (.), ε (veg+matrix), p (effort) 9 637.20 655.20 1.37 0.09 0.55  
5 ψ (.), γ (isol+matrix), ε (veg+matrix), p (effort) 13 629.67 655.67 1.83 0.07 0.62  
6 ψ (.), γ (matrix), ε (area+veg+matrix), p (effort) 13 630.37 656.37 2.53 0.05 0.68  
7 ψ (.), γ (.), ε (matrix), p (effort) 8 640.58 656.58 2.74 0.05 0.72  
8 ψ (.), γ (isol), ε (veg+matrix), p (effort) 10 636.74 656.74 2.91 0.04 0.77  
9 ψ (.), γ (matrix), ε (matrix), p (effort) 11 634.91 656.91 3.07 0.04 0.81  

10 ψ (.), γ (.), ε (area+veg+matrix), p (effort) 10 637.06 657.06 3.23 0.04 0.84  
11 ψ (.), γ (isol+matrix), ε (area+veg+matrix), p (effort) 14 629.51 657.51 3.67 0.03 0.87  
12 ψ (.), γ (.), ε (area+matrix), p (effort) 9 640.42 658.42 4.59 0.02 0.89  
13 ψ (.), γ (isol), ε (matrix), p (effort) 9 640.47 658.47 4.64 0.02 0.91  
14 ψ (.), γ (isol), ε (area+veg+matrix), p (effort) 11 636.62 658.62 4.79 0.02 0.93  
15 ψ (.), γ (isol+matrix), ε (matrix), p (effort) 12 634.65 658.65 4.82 0.02 0.94  
16 ψ (.), γ (matrix), ε (area+matrix), p (effort) 12 634.82 658.82 4.99 0.02 0.96  
         
Rufous-tailed Flycatcher (Myiarchus validus)        
1 ψ (.), γ (isol+matrix), ε (veg+matrix), p (effort+srvy) 15 442.24 472.24 0.00 0.31 0.31  
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2 ψ (.), γ (matrix), ε (veg+matrix), p (effort+srvy) 14 445.27 473.27 1.03 0.19 0.49  
3 ψ (.), γ (.), ε (veg+matrix), p (effort+srvy) 11 452.08 474.08 1.84 0.12 0.62  
4 ψ (.), γ (.), ε (matrix), p (effort+srvy) 10 454.64 474.64 2.40 0.09 0.71  
5 ψ (.), γ (isol+matrix), ε (matrix), p (effort+srvy) 14 446.77 474.77 2.53 0.09 0.80  
6 ψ (.), γ (isol), ε (veg+matrix), p (effort+srvy) 12 451.14 475.14 2.90 0.07 0.87  
7 ψ (.), γ (matrix), ε (matrix), p (effort+srvy) 13 449.70 475.70 3.47 0.05 0.92  
8 ψ (.), γ (isol), ε (matrix), p (effort+srvy) 11 454.63 476.63 4.39 0.03 0.96  

         
Sad Flycatcher (Myiarchus barbirostris)        
1 ψ (.), γ (.), ε (matrix), p (effort) 8 503.85 519.85 0.00 0.21 0.21  
2 ψ (.), γ (isol), ε (matrix), p (effort) 9 503.00 521.00 1.15 0.12 0.33  
3 ψ (.), γ (.), ε (veg), p (effort) 6 509.13 521.13 1.29 0.11 0.45  
4 ψ (.), γ (.), ε (veg+matrix), p (effort) 9 503.84 521.84 1.99 0.08 0.52  
5 ψ (.), γ (.), ε (area+matrix), p (effort) 9 503.84 521.84 2.00 0.08 0.60  
6 ψ (.), γ (.), ε (area), p (effort) 6 510.09 522.09 2.24 0.07 0.67  
7 ψ (.), γ (isol), ε (veg), p (effort) 7 508.33 522.33 2.48 0.06 0.73  
8 ψ (.), γ (isol), ε (area+matrix), p (effort) 10 502.75 522.75 2.91 0.05 0.78  
9 ψ (.), γ (.), ε (area+veg), p (effort) 7 508.78 522.78 2.93 0.05 0.83  

10 ψ (.), γ (isol), ε (veg+matrix), p (effort) 10 502.95 522.95 3.11 0.05 0.88  
11 ψ (.), γ (.), ε (area+veg+matrix), p (effort) 10 503.84 523.84 3.99 0.03 0.91  
12 ψ (.), γ (isol), ε (area+veg), p (effort) 8 508.13 524.13 4.29 0.03 0.93  

13 ψ (.), γ (isol), ε (area+veg+matrix), p (effort) 11 502.68 524.68 4.83 0.02 0.95  

(ψ) initial occupancy probability; (γ) local colonization probability; (ε) local extinction probability; (p) detection probability. 
Covariates defined as: (isol) nearest-neighbor distance from patch to forest fragment 100 ha; (area) patch size in hectares; 
(veg) patch-level vegetation structure; (matrix) whether a patch was in an agricultural, peri-urban, bauxite mining, or forested 
matrix; (effort) number of points surveyed per patch; (srvy) related to survey order and whether a survey was the first, second, 
or third survey conducted in a season. 
Best covariate structure on p was determined based on global model. When >1 covariate structure was supported (i.e., ∆AIC < 
2), we reran entire model set with all supported structures. In all cases, model outcomes were similar; so we present the p 
covariate structure based on the lowest AIC. 
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Table H2.  Estimated probabilities of initial occupancy and detection for each species, 
based on top models (see Table H1 for model structures).  Probability of occupancy was 
based on constant occupancy across all landscape matrix types.  Probability of detection 
was based on the first survey and on the average number of point counts conducted per 
patch (N = 4). 
 

           

 Occupancy  Detection 

Species  SE   SE 

Arrow-headed Warbler 0.63 0.07  0.54 0.04 
Jamaican Becard 0.42 0.08  0.31 0.05 
Jamaican Elaenia* 0.50 0.08  0.39 0.05 
Jamaican Pewee 0.39 0.06  0.67 0.05 
Jamaican Tody 1.00   0.90 0.02 
Jamaican Vireo 0.85 0.05  0.85 0.03 
Jamaican Woodpecker 0.80 0.06  0.57 0.03 
Rufous-tailed Flycatcher 0.52 0.08  0.42 0.05 
Sad Flycatcher 0.91 0.11  0.38 0.05 

Average 0.67 0.08  0.56 0.07 

*Estimates based on second best model due to variance-
covariance error associated with top model. 

() variance could not be estimated due to estimation of Beta at 
boundary (i.e., 0 or 1). 

 

̂ ̂
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Figure H1.  Relationships between local colonization probabilities and patch isolation by matrix type based on model-averaged 
estimates.  Species not presented for which there was no detected effect of patch isolation (i.e., Jamaican Becard, Jamaican 
Elaenia, Jamaican Pewee, and Sad Flycatcher).  (Refer to Table 2.4, 2.5 for unconditional standard errors). 
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Figure H2.  Relationships between local extinction probabilities and patch area by matrix type based on model-averaged 
estimates.  Species not presented for which there was no detected effect of patch isolation (i.e., Jamaican Becard, Jamaican 
Elaenia, Jamaican Pewee, and Rufous-tailed Flycatcher).  (Refer to Table 2.4, 2.5 for unconditional standard errors). 
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Figure H3.  Relationships between local extinction probabilities and patch-level vegetation structure by matrix type based on 
model-averaged estimates.  (Refer to Table 2.4, 2.5 for unconditional standard errors). 
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Appendix I.  Object-based classification of land cover in central Jamaica using high-

resolution IKONOS imagery 

Introduction 

Study area  

 This study was conducted in central Jamaica in the Manchester Parish and 

bordering Parishes (latitude: 17 56'24"-18 11'6" N; longitude: 77 23'13"- 77 37'5" W).  

This region was selected for investigation because it supports an extensive native bird 

community, yet is unprotected and experiencing increasing human development pressure.  

Wet limestone forest (Asprey and Robbins 1953) (also referred to as Evergreen Seasonal 

Forest formation (Beard 1944; Beard 1955)) once dominated the region but is now 

largely restricted to hilltop remnants on limestone outcrops that are often < 10 ha.  

Surrounding valleys are typically cleared for agriculture (i.e., primarily cattle pasture), 

residential development, and mining for bauxite (Evelyn and Camirand 2003).  

Agricultural areas in the valley floors consist of pasture for livestock grazing with 

treelined fence/hedgerows, paddock trees, fallow fields, and herbaceous garden plots.  In 

residential areas (termed peri-urban landscapes), valleys are dominated by housing 

development and native/exotic vegetation that includes grass lawns, ornamental 

plantings, gardens of fruiting trees, abandoned woodlots, and secondary tree growth 

along roadsides.  Bauxite mining areas are typically former agricultural lands, where 

bauxite is being extracted largely in the valley floors.  Bauxite landscapes comprise 

relictual hilltop forests surrounded by exposed bauxitic soils, with some recent growth of 

ferns, Acacia trees, or planted grassland.   
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 Given the karst limestone topography (Porter 1990) in combination with the 

increasing spatial proximity among native forest, non-native vegetation, and developed 

areas, detailed land-cover mapping is essential to delineate potential wildlife habitat in 

this region.  Previously developed land-cover maps for Jamaica were produced using 

moderate resolution satellite imagery, including Landsat Multispectral Scanner (MSS) 

(80-m resolution) (Tole 2002) and Landsat Thematic Mapper (TM) (30-m resolution) 

data (Grossman et al. 1992; Forestry Department 1999).  Existing land cover products 

failed to capture important landscape features, because they were limited in their spatial 

resolution and/or by the interpretation applied to the data.  Small remnant forests, less 

than < 5 ha in size, have been found to support extensive native bird assemblages in the 

region.  Vegetation cover common in human-modified landscapes may also influence 

species movement or usage patterns.  For example, certain bird species have been found 

to frequently utilize urban gardens (e.g., Bland et al. 2004; Cannon et al. 2005; French et 

al. 2005), as well as fencerows and solitary trees in agricultural landscapes for foraging 

resources and movement conduits (e.g., Haas 1995; Estrada et al. 2000; Sykes and 

Hannon 2001).  A visual comparison of high-resolution multispectral pan-sharpened 

IKONOS imagery (1-m resolution, Space Imaging 2002) clearly shows that small land-

cover features have not been captured in a previous land-cover map developed by 

Jamaica’s Forestry Department (Forestry Department 1999) (Figure I1).  Thus, our 

objective was to develop more detailed land-cover maps for the study region, based on 

IKONOS imagery, to capture both small forest fragments and surrounding vegetation 

features in human-modified landscapes. 
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Land-cover classes 

 It was necessary to identify and map five main land-cover types based on 

expected bird usage and movement in the study region:  

(1) Development  Built-up areas, including commercial and industrial buildings, 

residential housing, and road infrastructure.  

(2) Cleared land (referred to as clearings)  Areas consisting of predominantly 

exposed soil, including recently excavated bauxite mining areas, fallow fields, 

and forest clearings. 

(3) Low-stature vegetation (referred to as fields)  Areas dominated by herbaceous 

growth, including pasture, ornamental lawns, or herbaceous gardens (i.e., non-

woody crops, such as corn, pumpkin, cassava, and sweet potatoes).  This cover 

type also includes low-stature shrubs (< 4 m), in particular recent secondary 

growth of Acacia in agricultural and bauxite mining areas.   

(4) Scattered trees  Widely-spaced trees, often dominated by cultivated species > 

4 m in height and lacking understory vegetation, typical of tree stands, 

ornamental tree gardens, and rows of trees found along property boundaries of 

roadsides (termed linear vegetation).  Tree stands typically include clusters of 

ornamental trees (< 0.25 ha) often maintained in isolation in pasture or 

development.  Ornamental tree gardens are largely found within residential areas 

and comprise cultivated fruit or nut trees (e.g., coffee, citrus, pawpaw, banana, 

or breadfruit) and secondary tree growth.  Linear vegetation is rows of trees 

(often 15-30 m wide) found along property boundaries (i.e., fencerows) or 

roadsides. 
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(5) Forest – Native broadleaf forest with overlapping canopy trees and understory 

vegetation.  Non-native species may be included in this class, such as late-stage 

exotic pine plantations and bamboo (Bambusa vulgaris) embedded in forest. 

Less common land-cover types were not considered for classification because 

their inclusion would have negatively impacted the training of major land-cover classes 

(e.g., exotic bamboo stands, pine plantations, scrub vegetation, small water bodies). 

Methods 

Data acquisition and image pre-processing 

 Ten IKONOS imagery scenes (11.3 km x 11.3 km per scene) from the south 

central region of Jamaica were needed to capture the study area (scenes:  9F-G, 15A-G 

and 21B).  Scenes were acquired by the Jamaica Foresty Department and were collected 

between December and April 2001-2002.  Multispectral pan-sharpened imagery was 

orthorectified by Space Imaging, LLC. (Reference-level product, false color image, 11.8 

m horizontal accuracy, 1-m resolution) (Space Imaging 2002; Dial et al. 2003).  Cloud-

cover areas were digitized in GIS and converted to a mask prior to classification so as to 

preclude them from being involved in the statistics.  We used a 3-band combination for 

all classifications performed, using spectral wavelength regions 0.52-0.60 m (green, 

band 2), 0.63-0.69 m (red, band 3), and 0.76-0.90 m (near-infrared, band 4).  Region 

0.45-0.52 m (blue, band 1) was not used, because it is most affected by atmospheric 

water vapor.  Because the images were acquired on different dates, the digital number 

(DN) values varied per scene, reflecting differences in scene phenology, atmospheric 

conditions, and sensor view angles.  To avoid potential errors caused by these variations, 

we performed separate classifications on each IKONOS scene.  Post-classification, the 
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images were mosaicked together and accuracy was assessed on the land-cover map for 

the entire study region.  Data were projected using Lambert Conformal Conic WGS 

1984. 

Pixel-based classification 

 Prior to object-based classification, we conducted pixel-based classifications on 

one scene (15B) using a standard unsupervised classifier the Iterative Self-Organizing 

Data Analysis Technique (ISODATA) (using a range of classes, iterations and 

thresholds), as well as a supervised classifier the Maximum Likelihood algorithm with 5 

classes and 0.95 convergence threshold (Jensen 1996) on the three-band imagery using 

ENVI v 4.5 (ITT Visual Information Solutions, 2008; http://www.ittvis.com).  The results 

were visually compared to determine which classification method best represented land-

cover classes targeted for delineation (Figure I2).  Due to the high spatial resolution of 

the imagery, pixel-based classifications were found to be inferior when compared to the 

object-based classification.  Based on visual inspection, target land-cover classes were 

poorly delineated with frequent misclassifications among fields, development, and 

cleared land, and between scattered trees and forest.  Pixel-based classifications produced 

maps lacking spatial cohesiveness of class types and with spurious pixel effects, which 

led us to pursue an object-based classification.  The object-oriented software algorithm 

classifies objects based on a combination of spectral, spatial, and textural components, 

which improves the differentiation of classes often similar in spectral reflectance.  

Several studies comparing spectral and object-based classification techniques support the 

use of object-based classification for high-resolution imagery rather than standard 

spectral-based approaches (Willhauck 2000; Repaka et al. 2004; Cleve et al. 2008).     
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Object-based classification 

 We performed the object-based classification, using ENVI Feature Extraction 

(FX) (v 4.5), which is an add-on module used through the ENVI Zoom interface.   The 

first step in the object-based classification is image “segmentation,” which creates objects 

into meaningful entities (e.g., houses or forest patches) by grouping adjacent pixels with 

similar characteristics based on the computation of over 25 spatial, textural, and spectral 

attributes (ITT Visual Information Solutions 2008).  We conducted image segmentation, 

then trained the algorithm, using a supervised classification approach by selecting 

representative features (i.e., segmented objects) to discern common landscape features 

(termed “select by example” by the FX software).  This method is similar to performing a 

supervised classification using traditional methods, but rather than training by selecting 

individual pixels, segmented objects are selected and attributed specified land-cover 

classes (e.g., forest, field, development).  We selected an average of 3435 objects per 

scene to serve as training examples, based on visual interpretation of the IKONOS 

imagery as informed by our extensive field experience in the study region.  The number 

of training objects for a class was proportional to the prevalence of the class within a 

scene.  We selected an average of 1500 training points for common land-cover types (i.e., 

forest), 1000 training points for those that were moderately common (i.e., scattered trees), 

and 200-400 points for less common features (i.e., clearings, fields, and development).  

Segmented images were classified using the K Nearest Neighbor method, which is 

similar to, but more robust than, the traditional nearest neighbor classifier (ITT Visual 

Information Solutions 2008). 
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 The supervised classification algorithm in ENVI FX employs an edge-based 

approach, which has been shown to be expedient in speed and efficient in its stepwise 

approach as compared to other segmenting software (Neubert and Herold 2008).  The FX 

algorithm requires only one user-defined parameter, the scale level, which controls the 

size of the image-object or the level of segmentation.  The higher the scale level, the 

larger the image objects (i.e., fewer defined segments), and the lower the scale level, the 

smaller the image objects (i.e., more defined segments).  The optimum segmentation 

parameter depends on the scale and the nature of the features to be detected, and is 

maximized when segments resemble polygons that would be created during manual 

interpretation (Kim et al. 2009).  We devoted much time and effort to developing the best 

scale level, given that the quality of segmentation influences the accuracy of image 

classification (e.g., Dorren et al. 2003; Addink et al. 2007).  Based on systematic trial and 

error and validation by visual inspection of output object topology, we selected a scale 

level between 45 and 50.  This level best delineated the smaller features of interest (e.g., 

houses) without fragmenting larger features (e.g., forest cover) (Figure I3). 

 Following segmentation, we performed a “merge” step, which groups similarly 

classified adjacent segments by reassembling over-segmented or highly textured results.  

This proved beneficial for forested regions to better ensure that forest patches remained 

relatively intact and homogenous.  Based on systematic trial and error, we selected a 90-

95 merge level, which employs the Full Lambda-Schedule algorithm (Robinson et al. 

2002).  To remove the mixed pixel effect (Myung et al. 2001) and better extract the 

scattered tree class, we performed the sieving function in ENVI, and reclassified forest 

stands < 0.10 ha as scattered trees.  Finally, we performed majority filtering, which 
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convolves smaller classes into the dominant surrounding land-cover class (Kim 1996; 

Canty 2007).  In our classification, the smaller class was any “scattered tree” segment 

that was surrounded by a “forest” class.  To conduct this filtering in a relational manner 

(i.e., one class based solely on one other class), we performed majority filtering in 

ArcGIS 9.3 (ESRI 2008) to remove the scattered tree segments embedded completely 

within forest (Figure I4). 

Accuracy assessment 

 Classification accuracy was measured using a standard error matrix that compares 

the classes predicted by the object-oriented classifier to those observed in the field (i.e., 

reference points) (Stehman and Czaplewski 1998).  Accuracy was based on 1,985 

reference points collected across our study region that were taken with a hand-held global 

positioning system (Garmin GPS 72) ( 5 m accuracy); ~ 10% of the points were used in 

the training of the classification algorithm.  The ratio of reference to training points 

ranged from the 3% to 20% for each land-cover class (Table I1), which was well-above 

the recommended 1% (Congalton 1991).  The assessment was based on the 10 IKONOS 

scenes mosaicked together to smooth out different distributions of reference points 

collected per scene.  Descriptive statistics (user’s accuracy, producer’s accuracy, and 

overall accuracy) as well as kappa statistics (K) were computed (Congalton 1991).  

Results 

 The greatest number of pixels were classified as forest cover (45%, 38,262,915 

m2), followed by fields (22%, 18,873,033 m2), scattered trees (20%, 16,813,856 m2), 

cleared land (9%, 7,829,838 m2) and lastly development (4%, 3,073,998 m2) (see Figure 

I5 for example classifications per landscape type).  The forest class was most accurately 
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delineated (94.2% producer’s accuracy), with the greatest confusion with scattered trees 

(7.5%) (Table I2).  Cleared land had the second-highest accuracy (93.4%), with similar 

accuracy for the dominant subclasses of bauxite mining areas and fallow fields.  

Clearings were most often confused with development (8.7%) due to the similarity in 

spectral reflectance between exposed bauxitic soil/rock and impervious surfaces in 

developed areas (e.g., houses and roads).  Low-stature vegetation (i.e., fields) was 

classified with ~ 90% accuracy, with accuracy of subclasses ranging from 86.7% for 

manicured lawns, 88.6% for herbaceous gardens, and 91.4% for agricultural pasture.  The 

class most confused with fields was scattered trees (9.7%) due to secondary growth of 

Acacia stands in pasture.  Developed areas were classified with 87.7% accuracy, with 

housing/commercial development more accurately classified than road infrastructure 

(89.0 and 83.6%, respectively).  The class delineated most poorly was scattered trees 

(80.7% accuracy), which was predominantly confused with fields (5.8%) and forest 

(4.5%).  Within this class, tree stands were classified most accurately (87.6%), followed 

by linear vegetation (83.8%), and lastly ornamental tree gardens (76.0%).  The overall 

accuracy of the classification was 88.84%, which is on average higher than for other 

object-oriented classifications (e.g., Repaka et al. 2004; Mathieu et al. 2007; Cleve et al. 

2008; Kim et al. 2009). 
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Table I1.  Number of reference points collected in the field in relation to the number of 
training points used in the object-based classifier for the development of the land-cover 
map for central Jamaica. 
 
        

Land-cover class Total Reference Pts Total Training Pts Reference:Training Ratio 

Development 310 3753 8% 
Clearings 230 2529 9% 
Fields 415 2069 20% 
Scattered Trees 494 9873 5% 

Forest 536 16060 3% 
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Table I2.  Error matrix of the object-based classification of 5 land-cover classes and their representative subclasses.  The rows 
define the classes in the reference data, and the columns define the classes in the classified data being evaluated for accuracy.  
Results in the cell matrix are in percentage of producer’s accuracy, with user’s accuracy specified separately for major land 
classes.  The overall accuracy is the percentage of correct classifications based on the entire matrix.  The Kappa statistic 
measures the accuracy considering the actual agreement in relation to chance agreement, and indicates whether the 
classification is better than random. 
 

Reference Development Clearings Fields Scattered Trees Forest
User's 

Accuracy
Development 87.7 3.5 1 0.6 0.4
     Housing/Built areas 89 9.7 0 1.4 0
     Roads 83.6 1.5 3 10.5 1.5
Clearings 8.7 93.4 1.5 1.2 0
     Bauxite 4.1 93.2 2.1 0.7 0
     Fallow fields 2.4 93.9 2.4 1.2 0
Fields 2.6 2.2 89.9 9.7 0.9
     Herbaceous garden 0 2.3 88.6 4.6 4.6
     Lawn 4.9 7.9 86.7 0 0.6
     Pasture 0.7 1.3 91.4 5 1.7
Scattered Trees 0.7 0.9 5.8 80.7 4.5
     Tree gardens 9.8 1.6 0 76 12.2
     Tree stands 2.9 1 5.7 87.6 2.9
     Linear vegetation 0 0.7 12.7 83.8 2.8
Forest 0.3 0 1.9 7.5 94.2 91.65

Overall 88.84

Kappa 85.78

84.52

88.44

Classified

84.93

94.12
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Figure I1.  Comparison of Forestry Department (FD) land cover developed based on TM 
imagery (left panel) (FD, 1999) and 2001-2002 IKONOS imagery (right panel) for a peri-
urban landscape in central Jamaica.
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Figure I2. Comparison of a pixel-based unsupervised (ISODATA) (top left) and 
supervised classification (Maximum Likelihood) (top right) versus the object-based 
classification (bottom left) in reference to the true color imagery (bottom right). 
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Figure I3.  Segmentation of the IKONOS image at the scale of 20 (upper left), 50 (upper 
right), and 80 (lower left) of a true color image of a subset of our study area (lower right).  
The green lines delineate the image objects.   
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Figure I4.  Classification before post-processing (left) compared to after post-processing 
(right).  Circles indicate features removed during the sieving process and squares indicate 
those removed during majority filtering.   
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Figure I5.  Comparison of Forestry Department land cover (FD, 1999) (left panel), 
IKONOS imagery (middle panel), and the object-based land-cover classification (right 
panel).  The top row displays a representative example of a peri-urban landscape, the 
middle row an agricultural landscape, and the bottom row a bauxite mining landscape 
found within the study region in central Jamaica. 
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