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In [11], Lichtenbaum established the arithmetic utility of the Weil group of a

finite field, by demonstrating a connection between certain Euler characteristics in

Weil-étale cohomology and special values of zeta functions. In particular, the order

of vanishing and leading coefficient of the zeta function of a smooth, projective va-

riety over a finite field have a Weil-étale cohomological interpretation. These results

rely on a duality theorem stated in terms of cup-product in Weil-étale cohomology.

With Lichtenbaum’s paradigm in mind, we establish results for the cohomology

of the Weil group of a local field, analogous to, but more general than, results from

Galois cohomology. We prove a duality theorem for discrete Weil group modules,

which implies the main theorem of Local Class Field Theory. We define Weil-

smooth cohomology for varieties over local fields, and prove a duality theorem for

the cohomology of Gm on a smooth, proper curve with a rational point. This last

theorem is analogous to, and implies, a classical duality theorem for such curves.
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Chapter 1

Introduction

1.1 Background and Motivation

Arithmetic applications of Weil groups have been a popular topic in recent years,

starting with the article [11] of Lichtenbaum. In this article, Lichtenbaum defines a

cohomology theory for varieties over finite fields, Weil-étale cohomology, wherein the

Weil group plays the role that the Galois group plays in étale cohomology. The Weil-

étale cohomology groups of smooth, projective varieties with Z coefficients are shown

to be finitely generated abelian groups. The resulting Euler characteristics provide

a cohomological interpretation of the order of vanishing and leading coefficient of

the zeta function Z(X, t) at t = 1.

More recent work by Lichtenbaum [12], Flach [4], Morin [16] and [17], and

Flach and Morin [5] has been done towards a definition of Weil-étale cohomology for

schemes of finite type over Spec Z. These approaches have been partially successful

in giving a Weil-étale cohomological interpretation of special values of zeta functions

and L-functions of such schemes. In this thesis, we study Weil-étale cohomology over

p-adic fields. Hopefully, this will provide an intermediate step between Weil-étale

cohomology over finite fields and (the still largely conjectural) Weil-étale cohomology

for arithmetic schemes.

If k is a finite field and we let X = Spec k, the étale cohomology and Weil-étale
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groups of X with Z coefficients are given, respectively, by

H
i(Ẑ,Z) =






Z if i = 0

0 if i = 1

Q/Z if i = 2

0 if i ≥ 3

and H
i(Z,Z) =






Z if i = 0

Z if i = 1

0 if i ≥ 2.

In general, taking Weil-étale cohomology of Spec k instead of étale cohomology

has the effect of shifting the Q/Z’s that appear in the cohomology groups down a

degree and turning them into Z’s. In this sense, Weil-étale cohomology of Spec k

determines the étale cohomology, as is made precise by Lemma 1.2 of [11].

Let K be a p-adic local field with absolute Galois group G and Weil group W .

If we let X = Spec K, the étale cohomology and Weil-étale cohomology groups of

X with Z coefficients are given, respectively, by

H
i(G,Z) =






Z if i = 0

0 if i = 1

(K×)∗ if i = 2

0 if i ≥ 3

and H
i(W,Z) =






Z if i = 0

Z if i = 1

U
∗
K

if i = 2

0 if i ≥ 3.

Here UK denotes the units of K, and (−)∗ denotes Homcont(−,Q/Z). Again, notice

that the copy of Q/Z in H
2(G,Z), coming from dualizing the valuation map K

× →

Z, has shifted down a degree and become a copy of Z. This behavior is generalized

and made precise by our Theorem (4.1.3), which also implies that for any G-module

2



M , the groups H i(W,M) determine the groups H i(G,M) up to isomorphism. One

can see that the converse fails by taking M = Q with trivial action.

Let L be the completion of the maximal unramified extension of K, and let

L̄ be a fixed algebraic closure of L. The group W acts naturally on L̄, a fact first

observed in the unpublished note [10] of Lichtenbaum. If A/K is a commutative

algebraic group, we take this idea further by letting W act on A(L̄) and studying

the groups H i(W,A(L̄)). Taking A = Gm and computing the groups H i(G,A(K̄))

and H
i(W,A(L̄)), we obtain

H
i(G, K̄

×) =






K
× if i = 0

0 if i = 1

Q/Z if i = 2

0 if i ≥ 3

and H
i(W, L̄

×) =






K
× if i = 0

Z if i = 1

0 if i ≥ 2,

which is familiar behavior. For any connected, commutative algebraic group A/K,

the groups H
i(W,A(L̄)) determine the groups H

i(G,A(K̄)) up to isomorphism,

which is made precise by our Theorem (4.1.5).

Lichtenbaum’s computation of the groups H
i(XW ,Z) for a curve X over a

finite field, and therefore his interpretation of special values of zeta functions, relies

on a duality theorem stated in terms of cup-product in Weil-étale cohomology. Our

main theorems are analogous duality theorems for the Weil-étale cohomology of zero

and one-dimensional schemes over p-adic fields. The former is the Weil analogue of

Tate-Nakayama Duality, and the latter is the Weil analogue of Lichtenbaum Duality
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for curves over p-adic fields.

Our main theorem concerning the cohomology of W -modules is Theorem

(3.3.1). Let ΓW : W -Mod→ Ab be the functor M �→ M
W , whose right derived

functors define the groups H
i(W,M). Let RΓW : D(W ) → D(Z) be the derived

functor of ΓW . For a W -module M , let M
D = Hom(M, L̄

×). There is a natural

map in D(Z),

ψ(M) : RΓW (MD) → RHom(RΓW (M),Z[−1]),

induced by a cup-product pairing. Our theorem is the following:

Theorem 3.10. Suppose that M is finitely generated as an abelian group. Then

ψ(M) is an isomorphism in D(Z).

This theorem implies Tate-Nakayama Duality, which in turn implies the main

theorem of Local Class Field Theory. This theorem was originally proven by Jiang in

[8] under the assumption that M be a G-module, and using Tate-Nakayama Duality.

We have removed this assumption, and provided a proof which is independent of

the main results of Galois cohomology.

Our second main theorem is a duality theorem for the Weil-étale cohomology of

smooth, projective, geometrically connected curves X/K, which contain a rational

point. Let ΓX be the functor which takes a Weil-étale sheaf F on X to H
0(XW , F ),

whose derived functors define the Weil-étale cohomology groups H
i(XW , F ). Let

RΓX be the derived functor of ΓX . Our duality theorem for X is the following:

Theorem 5.13. Let X/K be a smooth, projective, geometrically connected curve
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over K, such that X(K) �= ∅. There is a symmetric pairing

RΓX(Gm)⊗
L
RΓX(Gm) → Z[−2],

such that the induced map

RΓX(Gm) → RHom(RΓX(Gm),Z[−2])

is an isomorphism on cohomology in degree 0 and 1, and injective on cohomology

in degree 2 and 3. The cohomology of both complexes vanishes outside of degrees 0

through 3.

Our theorem is stated and proved more naturally in the setting of Weil-smooth

cohomology, which is defined in the last chapter. However, Weil-smooth and Weil-

étale cohomology groups agree when the sheaf is given by a smooth, commutative

group scheme, just as smooth and étale cohomology agree for such sheaves.

What prevents the map from being an isomorphism on the nose is that one

essentially encounters the inclusion map U
∗
K

→ Hom(UK ,Q/Z), which is not sur-

jective as there exist discontinuous maps UK → Q/Z. This self-duality of Gm is the

Weil analogue of the classical duality theorems of the article [9]. In fact, for curves

with rational points, one can deduce the main result of [9], namely that there is a

natural isomorphism Br(X) → Pic(X)∗.

5



1.2 Notation

If R is a commutative ring, then D(R) denotes the bounded derived category of R-

modules. If G is a discrete group, then D(G) denotes the bounded derived category

of G-modules; if G is profinite, then we will always restrict our attention to discrete,

continuous G-modules, unless stated otherwise. If f : X → Y is a map between two

cochain complexes, we use f i to denote the induced map in i
th cohomology. We will

often write an exact triangle X → Y → Z → X[1] as simply X → Y → Z, with

the X[1] being implied.

If M is an abelian group and n is an integer, we use M [n] and M/n to denote

the kernel and cokernel, respectively, of the multiplication-by-n maps on M . If

M and N are abelian groups with some possible extra structure (for example, M

and N could be G-modules for some group G), then Hom(M,N) will always mean

HomZ(M,N), and similarly for Ext and ⊗. When working in the derived category of

abelian groups, we will write RHom for RHomD(Z). If X and Y are objects in D(Z),

we will write Exti(X, Y ) for their ith hyperext group, as defined in ([24], Definition

10.7.1). If X, Y are actually abelian groups, this coincides with the usual notion of

Ext groups.

For a topological abelian group A, we define A
∗ = Homcont(A,Q/Z), where

Q/Z has the discrete topology. If A is the group of rational points of some com-

mutative algebraic group scheme over a local field, it will be understood that A is

endowed with the natural topology coming from the local field.

If G is a discrete group and M is a G-module, then by H
∗(G,M) we mean the

6



traditional group cohomology of G with coefficients in M . If G is profinite, or an

extension of a discrete group by a profinite group, and M is a discrete G-module,

then by H
∗(G,M) we mean Galois cohomology in the sense of [21].

We briefly recall the notion of cohomological dimension. Let G be a discrete

group, or an extension of a discrete group by a profinite group. The cohomological

dimension of G is defined to be the smallest integer n such that for all m > n

and all torsion G-modules M , we have H
m(G,M) = 0 (provided such an n exists).

We write cd(G) for the cohomological dimension of G. The strict cohomological

dimension of G is defined to be the smallest integer n such that for all m > n and

all G-modules M , we have H
m(G,M) = 0 (provided such an n exists); we denote

the strict cohomological dimension of G by scd(G).

If X is any Grothendieck site, we denote by S(X) the category of sheaves of

abelian groups on X. We let D(X) denote the bounded derived category of S(X).

1.3 Setup

Let K be a local field of characteristic zero, with finite residue field k. Let Kur be

its maximal unramified extension, and let L be the completion of Kur. Let K̄ be an

algebraic closure of K, and let L̄ be an algebraic closure of L containing K̄.

Let g = Gal(Kur/K) = Gal(k̄/k) � Ẑ, and let w � Z be the subgroup of

g consisting of integral powers of the Frobenius morphism σ : k̄ → k̄. The action

of w on Kur extends by continuity to L. We let N = Gal(K̄/Kur) be the inertia

subgroup of G = Gal(K̄/K). It follows from Krasner’s Lemma (see Lemma 8.1.6 of
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[18]) applied to the extension Kur ⊂ L that N = Gal(L̄/L).

We let W be the Weil group of K; it is the pullback of w under the surjection

G → g. The diagram

0 �� N ��W ��

��

w ��

��

0

0 �� N �� G �� g �� 0

best summarizes the relationship between all of these groups. The topology on W

is such that N is open, and translation by any preimage of σ is a homeomorphism.

By Chapter XIII, Lemma 1 of [20], the fixed points of w acting on L are

exactly K; it is immediate that the fixed points of W acting on L̄ are also K.

Similar remarks apply to w and W acting on the L and L̄-points, respectively, of

some commutative algebraic group scheme defined over K.

8



Chapter 2

Weil Groups of Finite Fields

We begin by studying the cohomology of the Weil group w of k, the residue field

of our local field. As w � Z as abstract groups, this is mostly an exercise in

homological algebra. We prove a duality theorem for certain (complexes of) w-

modules, and restate the theorem as a duality theorem in Weil-étale cohomology.

Since our goal is to prove duality theorems, we start by explicitly describing

the Z-dual of a complex in the bounded derived category of abelian groups.

Proposition 2.0.1. Let C be a bounded cochain complex of abelian groups, con-

sidered as an object in D(Z). Let Z[−n] be the cochain complex with Z in degree

n and 0 everywhere else. Then for all i we have short exact sequences

0 → Ext(Hn−i+1(C),Z) → Exti(C,Z[−n]) → Hom(Hn−i(C),Z) → 0. (2.1)

Proof. The exact sequence 0 → Z → Q → Q/Z → 0 defines an exact triangle in

D(Z). Applying RHom(C,−) we obtain the exact triangle

RHom(C,Z[−n]) → RHom(C,Q[−n]) → RHom(C,Q/Z[−n])
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Because Q is an injective abelian group, we have

Exti(C,Q[−n]) = Hom(Hn−i(C),Q)

for all i, and similarly for Q/Z. By taking cohomology, we obtain the long exact

sequence

· · · →Hom(Hn−i+1(C),Q) → Hom(Hn−i+1(C),Q/Z) → Exti(C,Z[−n]) →

Hom(Hn−i(C),Q) → Hom(Hn−i(C),Q/Z) → · · · .

The result is now clear.

2.1 Duality for Finitely Generated Modules

Proposition 2.1.1. Let R be a commutative ring with 1, and suppose that M is

an R[w]-module. Let D be an injective R-module on which w acts trivially, so that

H
1(w, D) = D. Then the cup-product pairing

H
i(w,M)⊗R H

1−i(w,HomR(M,D)) → D

induces isomorphisms H1−i(w,HomR(M,D)) � HomR(H i(w,M), D) for i = 0, 1.

Proof. Applying the functor HomR(−, D) to the exact sequence 0 → M
w → M

σ−1
→

10



M → Mw → 0 we obtain the exact sequence

0 → HomR(Mw, D) → HomR(M,D)
σ−1
→ HomR(M,D) → HomR(M

w
, D) → 0.

The proposition now follows from the fact that the groups H0(w,HomR(M,D)) and

H
1(w,HomR(M,D)) are, respectfully, the kernel and cokernel of the map σ−1 from

HomR(M,D) to itself.

This proposition is particularly interesting in the following two cases:

Example 2.1.2. Let R = Z, D = Q/Z, and suppose that M is finite. By the

canonical isomorphism M = M
∗∗, we obtain perfect pairings

H
i(w,M)⊗H

1−i(w,M
∗) → Q/Z (2.2)

of finite abelian groups.

Example 2.1.3. Let R be a field F of characteristic zero, and suppose that M = V

is a finite-dimensional representation of w. Let D = F be the trivial representa-

tion, and consider the dual representation HomF (V,D). By (2.1.1) we have perfect

pairings

H
i(w, V )⊗F H

1−i(w,HomF (V, F )) → F (2.3)

of vector spaces over F .

Suppose that M is a bounded complex of w-modules, considered as an object

in D(w). Let us define its dual complex by M
D := RHom(M,Z) ∈ D(w). There is

11



a canonical pairing

M ⊗
L
M

D
→ Z (2.4)

in D(Z). If the cohomology modules of M are finitely generated as abelian groups,

then by Verdier Duality (see [11], Proposition 4.1) this pairing induces a canonical

isomorphism M = M
DD of objects of D(w).

Consider the trivial w-module Z. Because H
1(w,Z) = Z, there is a natural

projection map RΓw(Z) → Z[−1] in D(Z). Thus if M is a bounded complex of

w-modules, we have a cup-product pairing

RΓw(M)⊗L
RΓw(M

D) → Z[−1] (2.5)

which induces a map

ψ(M) : RΓw(M
D) → RHom(RΓw(M),Z[−1]) (2.6)

in D(Z).

Proposition 2.1.4. Suppose that M is finite. Then ψ(M) is an isomorphism.

Proof. Because M is finite, we have identifications MD = M
∗[−1] and

Exti(RΓw(M),Z[−1]) = H
2−i(w,M)∗, (2.7)

the second of which follows from (2.1.2). The map ψ(M)i is the mapH
i−1(w,M

∗) →

H
2−i(w,M)∗ induced by cup-product, which is an isomorphism by (2.1.2).

12



Proposition 2.1.5. Suppose that M is free and finitely generated as an abelian

group. Then ψ(M) is an isomorphism.

Proof. Since the module M is fixed throughout, let us write ψ for ψ(M) for simplic-

ity. Because M is free, we have an identification M
D = Hom(M,Z). To explicitly

describe the maps on cohomology, we apply (2.0.1) with C = RΓw(M) and n = 1.

The map ψ
0 : Homw(M,Z) → Hom(C,Z[−1]) = Hom(Mw,Z) is induced by

the evaluation pairing Homw(M,Z) ⊗Mw → Z. An argument similar to the proof

of (2.1.1) shows that ψ0 is an isomorphism.

Now consider ψ1 : Hom(M,Z)w → Ext1(C,Z[−1]). The short exact sequence

of (2.0.1) which describes the latter group is

0 → Ext(Mw,Z) → Ext1(C,Z[−1]) → Hom(Mw
,Z) → 0.

We will prove that Hom(M,Z)w fits into an isomorphic short exact sequence.

The inclusion M
w → M gives us a surjection Hom(M,Z)w → Hom(Mw

,Z),

which is the map induced by the evaluation map Hom(M,Z)w ⊗ M
w → Z. To

identify the kernel of this surjection, consider the diagram

0 0

0 �� Hom(Mw
,Z) ��

��

Hom(Mw
,Q)

��

Homw(M,Q) �� Homw(M,Q/Z) δ �� Hom(M,Z)w ��

��

Hom(M,Q)w

α1

��

Hom(Mw,Q) ��

α2

��

Hom(Mw,Q/Z)

α3

��

0.

��

(2.8)
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It follows from (2.1.1) that the αi are all isomorphisms. Diagram chasing now

shows that the kernel we are seeking to describe is equal to the cokernel of δ, which

is Ext(Mw,Z).

By the previous paragraph, we have a commuting diagram

0 �� Ext(Mw,Z) �� Ext1(C,Z[−1]) �� Hom(Mw
,Z) �� 0

0 �� Ext(Mw,Z) ��

id

��

Ext1w(M,Z) ��

ψ
1

��

Hom(Mw
,Z) ��

id

��

0

and the Five Lemma now shows that ψ1 is an isomorphism. For i �= 0, 1 it is easy

to see that the cohomology of both complexes vanishes.

Theorem 2.1.6. Let M be a bounded complex of w-modules, whose cohomology

groups are finitely generated as abelian groups. Then the map ψ(M) of (2.6) is an

isomorphism.

Proof. Suppose that M is a w-module which is finitely generated as an abelian

group. Write T for the torsion subgroup of M and F for the quotient M/T so that

we have a short exact sequence 0 → T → M → F → 0 of w-modules. We have a

map of exact triangles

RΓw(FD)

��

ψ(F )
�� RHom(RΓw(F ),Z[−1])

��
RΓw(MD)

��

ψ(M)
���� RHom(RΓw(M),Z[−1])

��
RΓw(TD)

ψ(T )
�� RHom(RΓw(T ),Z[−1])

(2.9)
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in D(Z). By the previous two propositions, ψ(T ) and ψ(F ) are isomorphisms.

Therefore ψ(M) is an isomorphism. The result for a general complex M follows by

induction on the length of the complex.

2.2 Weil-étale Cohomology over Finite Fields

To paint a more complete picture, we restate the duality theorem of the last section

in terms of Weil-étale cohomology. This rephrasing, together with Lichtenbaum’s

duality theorem for the Weil-étale cohomology of curves, give duality theorems for

zero and one-dimensional schemes, which will later be paralleled in the local field

setting.

For a scheme X which is finite type over k, let XW denote X endowed with

the Weil-étale topology, let ΓX : S(XW ) → Ab be the global sections functor, and

let RΓX : D(XW ) → D(Z) be its derived functor.

Proposition 2.2 of [11] states that Weil-étale sheaves on XW are equivalent to

étale sheaves on Xk̄ with a w-action. If we let X = Spec k, then Weil-étale sheaves

onXW are simply w-modules. Theorem (2.1.6) has the following rephrasing in terms

of Weil-étale cohomology:

Theorem 2.2.1. Let F be a bounded complex of Weil-étale sheaves on X =

Spec k, such that the cohomology sheaves H
i(F ) correspond to finitely generated

w-modules. Let FD = RHom
X
(F,Z). Then the cup-product pairing

RΓX(F )⊗L
RΓX(F

D) → Z[−1] (2.10)
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induces an isomorphism

RΓX(F
D) → RHom(RΓX(F ),Z[−1]) (2.11)

in the derived category of abelian groups.

We remind the reader of Lichtenbaum’s duality theorem for the Weil-étale

cohomology of curves, proved in [11]. Let X/k be a smooth, geometrically connected

curve. For simplicity we assume X is projective, though Lichtenbaum does not make

this assumption. One has H2(XW ,Gm) = Z, and the higher cohomology groups of

Gm on X vanish. The duality theorem is the following:

Theorem 2.2.2. ([11], Theorem 5.1) Let F be a locally constant Weil-étale sheaf on

X, representable by a finitely generated abelian group, and let FD = RHom
X
(F,Gm).

The cup-product pairing

RΓX(F )⊗L
RΓX(F

D) → Z[−2] (2.12)

induces an isomorphism

RΓX(F
D) → RHom(RΓX(F ),Z[−2]) (2.13)

in the derived category of abelian groups.
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2.3 Some Finiteness and Vanishing Lemmas

The following two lemmas can be thought of as extensions of the additive and

multiplicative Hilbert Theorem 90 for finite fields, which will prove useful in the

next chapter. It is convenient to collect in this section results on the cohomology of

the types of w-modules that will appear when we study the cohomology of the Weil

group of a local field.

Lemma 2.3.1. Let M be a w-module which is finitely generated and free as an

abelian group. Then:

(i) H
0(w,Hom(M, k̄

×)) is finite.

(ii) H
0(w,Hom(M, k̄)) is finite.

(iii) H
0(w,Hom(M,UL)) is profinite.

Proof. (i) Let f : M → k̄
× be w-equivariant. Then f(σm) = f(qm), so f factors

through the finite group M/(σ − q)M . Since k̄
× has only finitely many elements of

any particular order, the image of f lands in a finite set which is independent of f .

Therefore there are only finitely many possible f .

(ii) Choose a Z-basis of M and a matrix A representing the action of σ on

M ∼= Zr. This Z-basis provides us with an isomorphism Hom(M, k̄) � k̄
r. Under

this isomorphism, elements of H
0(w,Hom(M, k̄)) correspond to solutions of the

equation Ax = x
q, for x ∈ k̄

r (here raising to the q
th power is done component

wise).

17



Writing the coordinates of x as X1, . . . , Xr, we see that we must show that

the affine variety V defined by the equations
�

r

i=1 aijXi −X
q

j
= 0 for 1 ≤ j ≤ r is

finite, where A = (aij). Note that Jac(V ) = A has full rank at every point of k̄r, by

the invertibility of A.

Let Vj ⊂ k̄
r be the hypersurface defined by

�
r

i=1 aijXi−X
q

j
, so that V =

�
j
Vj.

Let v ∈ V , and let Tv be the tangent space to V at v. Then

0 = dimker(A) = dimTv ≥ dimV,

hence V has dimension zero and is therefore finite.

(iii) Since H
0(w,−) commutes with inverse limits, we have

H
0(w,Hom(M,UL)) = lim

←−
i

H
0(w,Hom(M,UL/U

(i)
L
)).

Using induction on i on the sequences 0 → U
(i)
L
/U

(i+1)
L

→ UL/U
(i+1)
L

→ UL/U
(i)
L

→ 0,

we see from parts (i) and (ii) that the terms appearing in the above inverse limit

are all finite, hence the result.

Lemma 2.3.2. Let M be a w-module which is finitely generated and free as an

abelian group. Then:

(i) H
1(w,Hom(M, k̄

×)) = 0.

(ii) H
1(w,Hom(M, k̄)) = 0.
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(iii) H
1(w,Hom(M,UL)) = 0.

Proof. (i) Writing the group law on k̄
× additively, we wish to show that the map

(σ − 1) : Hom(M, k̄
×) → Hom(M, k̄

×) is surjective. Choosing a Z-basis of M

determines an isomorphism Hom(M, k̄
×) � (k̄×)r and a matrix A ∈ GLr(Z) repre-

senting the action of σ on M . Direct calculation shows that under our isomorphism

Hom(M, k̄
×) � (k̄×)r, the map σ − 1 is transformed into qA

−1 − 1 : (k̄×)r → (k̄×)r.

Multiplying by the automorphism −A, we conclude that it suffices to prove that

A− q is surjective, as a map from (k̄×)r to itself.

It is clear that q is not an eigenvalue of A, since the product of the eigenvalues

of A is 1, but all of these eigenvalues are algebraic integers. It follows that the map

A − q : Zr → Zr is injective with finite cokernel C. Tensoring with k̄
×, we obtain

an exact sequence

(k̄×)r
A−q

→ (k̄×)r → C ⊗ k̄
×
→ 0.

But C ⊗ k̄
× = 0, because k̄

× is divisible and C is finite.

(ii) As in part (i), we choose a Z-basis for M and a matrix A representing

the action of σ on M . On the group Hom(M, k̄), direct calculation shows that

((σ − 1)f)(m) = f(A−1
m)q − f(m), and replacing m with Am and multiplying by

−1, we are reduced to showing that the map f �→ f ◦ A − f
q is surjective. Under

the isomorphism Hom(M, k̄) � k̄
r, this is the map x �→ Ax − x

q, where raising to

the q
th power is done component-wise.

Let y ∈ k̄
r; we must show that Ax− x

q − y = 0 has a solution in x. Replacing
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the components of x with formal variables X1, . . . , Xr and projectivizing by adding

in appropriate powers of Xr+1, we obtain the equations

L1X
q−1
r+1 −X

q

1 − y1X
q

r+1 = 0

...

LrX
q−1
r+1 −X

q

r
− yrX

q

r+1 = 0

where Li is a homogeneous linear polynomial in X1, . . . , Xr. By Chapter I, Theorem

7.2 of [7], the intersection of the corresponding hypersurfaces in Pr

k̄
is non-empty.

It is clear from the equations that the intersection of the hypersurfaces with the hy-

perplane Xr+1 = 0 is empty. Thus any point in the intersection of the hypersurfaces

is also a solution to the original affine equations, proving that our map is surjective.

(iii) Recall that UL comes equipped with a filtration

· · · ⊂ U
(i)
L

⊂ · · · ⊂ U
(1)
L

⊂ UL

of w-modules, with UL/U
(1)
L

� k̄
×, and higher successive quotients all isomorphic

to k̄. Let f : M → UL, and reduce modulo U
(1)
L

. We obtain a map f̄ : M → k̄
×,

and by part (i) we can write f̄ = (σ − 1)f̄0 for some f̄0 : M → k̄
×. As M is free,

we can lift f̄0 to a map f0 : M → UL, and we have f = (σ − 1)f0 + g1 for some

g1 : M → U
(1)
L

.

Reducing g1 modulo U
(2)
L

, we have a map ḡ1 : M → k̄, which by part (ii) we

20



can write as ḡ1 = (σ−1)f̄1 for some f̄1 : M → k̄
×. Lifting f̄1 to some f1 : M → U

(1)
L

,

we obtain the equality f = (σ−1)f0+(σ−1)f1+g2 where g2 : M → U
(2)
L

. It is clear

that by repeating this process, we can write f =
�

i≥0(σ−1)fi, where fi : M → U
(i)
L
.

Because w acts continuously on Hom(M,UL), we have f = (σ − 1)(
�

i≥0 fi), and

this is a well-defined homomorphism because UL is complete.
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Chapter 3

Weil Groups of Local Fields

We now turn our attention to local fields. The main theorem of this chapter is a

duality theorem for the cohomology of the Weil group, which can be interpreted as

a duality theorem for the Weil-étale cohomology of zero-dimensional schemes over

Spec K.

The exact sequence 0 → N → W → w → 0 of topological groups gives rise to

a spectral sequence

H
i(w, H

j(N,M)) ⇒ H
i+j(W,M)

for any W -module M . Because scd(w) = 1, this spectral sequence degenerates to a

collection of short exact sequences

0 → H
1(w, H

i−1(N,M)) → H
i(W,M) → H

0(w, H
i(N,M)) → 0 (3.1)

for all i ≥ 0. We recall from Chapter II, §3.3(c) of [21] that cd(N) = 1 and

scd(N) = 2; it follows that H i(W,M) = 0 for all i ≥ 4 and all M .
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3.1 Cohomology of Gm and µn

Proposition 3.1.1. The cohomology groups H i(W, L̄
×) are given by

H
i(W, L̄

×) =






K
× if i = 0

Z if i = 1

0 if i ≥ 2.

Proof. The field L is a C1, hence the cohomology groups H
i(N, L̄

×) all vanish for

i ≥ 1. It follows immediately from (3.1) that H i(W, L̄
×) = 0 for i ≥ 2.

For i = 1, (3.1) yields an isomorphism H
1(w, L

×) � H
1(W, L̄

×). The long

exact sequence ofw-cohomology of 0 → UL → L
× → Z → 0 now gives us a canonical

isomorphism H
1(W, L̄

×) = H
1(w,Z) = Z, since H

1(w, UL) = 0 by (2.3.2).

Corollary 3.1.2. Let µn be the group of nth roots of unity in L̄
×. Then

H
i(W,µn) =






µn(K) if i = 0

K
×
/(K×)n if i = 1

Z/nZ if i = 2

0 if i ≥ 3,

and thus H2(W,µ) = lim
−→n

H
2(W,µn) = Q/Z.

Proof. Consider the long exact sequence in cohomology of the Kummer sequence

0 → µn → L̄
× → L̄

× → 0. Using (3.1.1), we see that the long exact sequence reads

0 → µn(K) → K
× n
→ K

×
→ H

1(W,µn) → Z
n
→ Z → H

2(W,µn) → 0
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from which the results follow immediately.

Corollary 3.1.3. Suppose thatM is a finiteW -module. Then the groupsH i(W,M)

are finite for all i, and vanish for i ≥ 3.

Proof. If M = µn this is clear from (3.1.2). Otherwise, pick some finite Galois

extension K
� of K with Weil group W

�, such that as a W
�-module, M is a direct

sum of modules isomorphic to µn for various n. The quotient W/W
� is naturally

identified with Gal(K �
/K). We thus have a spectral sequence

H
i(Gal(K �

/K), Hj(W �
,M)) ⇒ H

i+j(W,M) (3.2)

where all the terms appearing on the second page are finite; it follows that all of

the limit terms are finite as well. The vanishing of H i(W,M) for i ≥ 3 is immediate

from (3.1) and cd(N) = 1.

Corollary 3.1.4. We have cd(W ) = 2.

Proof. From scd(w) = 1 and cd(N) = 1, and the short exact sequences of 3.1, we

see that cd(W ) ≤ 2. But H2(W,µn) �= 0, hence the equality cd(W ) = 2.

Suppose that M is a finite W -module, and let M � = Hom(M,µ); then M
� is a

W -module in the obvious way. There is a cup-product pairing

H
i(W,M)⊗H

2−i(W,M
�) → Q/Z (3.3)

coming from the identification H
2(W,µ) = Q/Z of (3.1.2). The rest of this section
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is devoted to proving the following:

Theorem 3.1.5. (Weil-Tate Local Duality) The pairing of (3.3) is a perfect pairing

of finite groups.

Proof. We will simply mimic the proof of Tate Local Duality in [21], checking along

the way that the machinery used to prove Tate Local Duality still works in the

setting of the cohomology of the Weil group.

Consider the functor M �→ H
2(W,M)∗ from finite W -modules to finite abelian

groups. By Chapter I, §3.5, Lemma 6 of [21], this functor is representable by a W -

module I which is a direct limit of finite modules. That is, for all finite W -moules

M , there is a functorial isomorphism H
0(W,Hom(M, I)) � H

2(W,M)∗. Let us call

I the dualizing module for W .

Let V ⊆ W be an open, normal subgroup of finite index. If M is a finite

V -module, we let IndW
V
(M) be the set of continuous maps f : W → M , such that

f(vw) = vf(w) for all v ∈ V and all w ∈ W . It is easy to check that IndW

V
(M) is

finite, and carries an action of W by (wf)(w0) := f(w0w). The standard proof of

Shapiro’s Lemma (see Proposition 10 of Chapter I, §2.5 of [21]) applies, and shows

that there are isomorphisms H i(W, IndW

V
(M))

∼
→ H

i(V,M) for all i.

Shapiro’s Lemma and the defining property of the dualizing module I of W
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show together that we have functorial isomorphisms

H
0(V,Hom(M, I)) = H

0(W,Hom(IndW

V
(M), I))

= H
2(W, IndW

V
(M))∗

= H
2(V,M)∗

for any finite V -module M . We conclude that I is also the dualizing module for any

open, normal subgroup V ⊆ W of finite index.

By the above paragraph and (3.1.2), we have

HomV (µn, I) = H
2(V, µn)

∗ = (Z/nZ)∗ = Z/nZ

for any open, normal, finite index V ⊆ W . Thus we obtain an equality HomV (µn, I) =

Z/nZ which is independent of V , and we conclude that Hom(µn, I) = Z/nZ, as a

W -module with trivial W -action. The canonical generator of Z/nZ thus determines

a W -module isomorphism µn → I[n], and by passing to the limit over all n, we

conclude that µ = lim
−→n

µn is the dualizing module for W .

The rest of the proof the theorem can be copied verbatim from the proof of

Theorem 2 of Chapter II, §5.2 of [21].

3.2 Vanishing of H3(W,M) for Finitely Generated M

The main theorem in this section is the vanishing of H3(W,M), for M which are

finitely generated as abelian groups. The vanishing theorem of this section is needed
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to prove the duality theorem of the next section, but it is interesting in its own right.

As a consequence of this vanishing theorem, we deduce a theorem of Rajan (and

offer a slight correction to his proof).

Theorem 3.2.1. Let M be a W -module which is finitely generated and free as an

abelian group. Then H
3(W,M) = 0.

Proof. Let Q be the trivial W -module, and consider the exact sequence

0 → M → M ⊗Q → (M ⊗Q)/M → 0

ofW -modules. LetMQ = M⊗Q and let P = MQ/M . The abelian groupMQ is aQ-

vector space, and hence uniquely divisible. Therefore H
1(N,MQ) = H

2(N,MQ) =

0, which implies by (3.1) that H
2(W,MQ) = H

3(W,MQ) = 0. Therefore we have

an isomorphism H
2(W,P ) � H

3(W,M).

Let Pn denote the n-torsion of P . Then Pn is finite, so we have by Weil-Tate

Local Duality (3.1.5) that

H
2(W,P ) � lim

−→
n

H
2(W,Pn)

� lim
−→
n

HomW (Pn, µ)
∗

� (lim
←−
n

HomW (Pn, µ))
∗

� HomW (P, µ)∗,

where µ is the group of roots of unity endowed with its natural W -module structure,

and lim
←−n

HomW (Pn, µ) has its profinite topology. From these isomorphisms, we see
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that it suffices to show HomW (P, µ) = 0.

Let f : P → µ be W -equivariant, and let N
� be an open, normal subgroup

of N such that N
� acts trivially on M . Then for all τ ∈ N

� and e ∈ P , we have

f(e) = f(τ · e) = f(e)τ . It follows that f(P ) ∩ µp∞ is finite, where p = char(k).

Since P has no finite quotients and we wish to prove that f(P ) = 1, we may assume

that f(P ) ⊆ µ
�, the group of roots of unity of order prime to p. On µ

�, W acts via

the natural action of σ, which is ζ �→ ζ
q, where q = #k.

Let a ∈ W be a preimage of σ. Applying the W -equivariance of f to a, we

see that f(a · e) = f(e)q = f(q · e) for all e ∈ P . Therefore (a − q)(P ) ⊆ ker(f).

We claim that (a − q) : P → P is surjective, which implies f = 1. By the Snake

Lemma, it suffices to prove that a− q is surjective on MQ. Surjectivity of a− q on

MQ is equivalent to injectivity, and injectivity will hold if and only if q is not an

eigenvalue of a. But q cannot be an eigenvalue of a, because det(a) = ±1 and the

characteristic polynomial of a has integer coefficients.

Theorem 3.2.2. Let M be a W -module which is finitely generated as an abelian

group. Then H
3(W,M) = 0.

Proof. This follows easily from (3.2.1) by considering the short exact sequence

0 → Mtors → M → M/Mtors → 0

and taking cohomology.

Suppose now that A is a topological W -module; that is A is a topological
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abelian group with a continuous action of W . For such A, we can define cohomology

groups H i

cc
(W,A) using complexes of continuous cochains. It follows from Corollary

2.4 of [12] and Corollary 2 of [4] that the groups H i

cc
(W,A) agree with the topological

group cohomology used in [12] and [4], which is defined using the classifying topos

BW .

The non-discrete topological W -modules we are interested in are all complex

manifolds, and hence Remark 2.2 of [12] shows that the groups H i

cc
(W,A) also agree

with the cohomology groups H i

M
(W,A) defined by Moore in [15] and used by Rajan

in [19]. If A is discrete, then H
i

cc
(W,A) can be identified with the Galois cohomology

groups H i(W,A); this follows from the remarks preceding Lemma 1 of [19].

Theorem 3.2.3. Let T be an algebraic torus over C, equipped with an action of

W via algebraic automorphisms. Then H
2
cc
(W,T (C)) = 0.

Proof. From Corollary 8 of [4], it follows thatH i

cc
(N, V ) = 0 for any finite-dimensional

complex vector space V and any i ≥ 1. Thus the spectral sequence of Moore (quoted

by Rajan as Proposition 5 of [19]) gives isomorphisms

H
i(w, H

0
cc
(N, V )) = H

i

cc
(W,V ),

and thus this latter group vanishes for i ≥ 2.

Let X∗(T ) denote the cocharacter group of T ; it is a finitely generated W -

module. There is a short exact sequence of topological W -modules,

0 → X∗(T ) → X∗(T )⊗C → T (C) → 0
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where X∗(T ) gets the discrete topology. By the previous paragraph, the groups

H
i

cc
(W,X∗(T )⊗C) vanish for i ≥ 2. By (3.2.1), the groups H i(W,X∗(T )) vanish for

i ≥ 3. The theorem now follows from taking the long exact cohomology sequence of

the above short exact sequence.

In [19], Rajan proves that H2
M
(W,T (C)) = 0, for those tori with an action of

W that comes from an action of G. His proof seems to be slightly flawed, because

his Proposition 6 asserts that H2(G,A) → H
2(W,A) is an isomorphism for any G-

module A, when in fact this map has a kernel for A = Z. However, Rajan’s proof of

the vanishing of H2
M
(W,T (C)) ultimately only relies on the fact that the restriction

map H
2(G,A) → H

2(W,A) is surjective for all discrete G-modules A, which is true

by (4.1.3).

Corollary 3.2.4. Consider C× as a trivial W -module with its natural Euclidean

topology. Then H
2
cc
(W,C×) = 0.

Proof. Take T = Gm in (3.2.3), with trivial action.

Corollary (3.2.4) implies that the map H
1(W,GLn(C)) → H

1(W,PGLn(C))

is surjective, which says exactly that every projective complex representation of W

lifts to an affine representation.

3.3 Duality for Finitely Generated Modules

Our duality theorem is best stated using derived category language. The fixed points

functor ΓW : W -Mod → Ab has a derived functor RΓW : D(W ) → D(Z), such that

H
i(RΓW (M)) = H

i(W,M) for any W -module M .
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Consider now the W -module L̄
×. Because H

1(W, L̄
×) = Z and all higher

cohomology groups vanish, there is a natural projection map RΓW (L̄×) → Z[−1].

If M is any bounded complex of W -modules, we set MD := RHom(M, L̄
×). If M

is concentrated in degree 0, then M
D = Hom(M, L̄

×). The cup-product pairing

RΓW (M)⊗L
RΓW (MD) → Z[−1] (3.4)

induces a map

ψ(M) : RΓW (MD) → RHom(RΓW (M),Z[−1]) (3.5)

in D(Z).

Theorem 3.3.1. Suppose that M is a bounded complex of W -modules, whose

cohomology groups are finitely generated as abelian groups. Then the map ψ(M)

of (3.5) is an isomorphism in D(Z).

By induction on the length of the complex, it is clear that it suffices to prove

the result for M concentrated in degree 0; i.e. we may assume M is a W -module

which is finitely generated as an abelian group.

The proof of this theorem relies on several lemmas. To begin, the discrete

valuation L
× → Z induces a valuation L̄

× → Q. Let UL̄ be the kernel of this map,

so that we have a short exact sequence

0 → UL̄ → L̄
×
→ Q → 0 (3.6)
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of W -modules. Taking W -cohomology, it follows easily that H2(W,UL̄) = Q/Z, and

H
i(W,UL̄) = 0 for i ≥ 3. Cup-product therefore induces the map

RΓW (Hom(M,UL̄)) ��

��

RHom(RΓW (M),Q/Z[−2])

��
RΓW (MD)

��

ψ(M)
�� RHom(RΓW (M),Z[−1])

��
RΓW (Hom(M,Q)) �� RHom(RΓW (M),Q[−1])

(3.7)

of exact triangles in D(Z).

Lemma 3.3.2. To prove Theorem (3.3.1), it suffices to show that the maps

H
i(W,Hom(M,UL̄)) → H

2−i(W,M)∗ (3.8)

and

H
j(W,Hom(M,Q)) → Hom(H1−j(W,M),Q) (3.9)

induced by cup-product are isomorphisms for all i ≥ 0 and all j ≥ 0.

Proof. By the Five Lemma, it to prove Theorem (3.3.1), it suffices to prove that

the two outside vertical maps of (3.7) are isomorphisms. Because Q and Q/Z are

injective abelian groups, this is easily seen to be equivalent to the statement of the

lemma.

Lemma 3.3.3. Suppose that M is finite. Then the map ψ(M) of Theorem (3.3.1)

is an isomorphism.

Proof. This is a restatement of (3.1.5).
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By considering the short exact sequence 0 → Mtors → M → M/Mtors → 0

of W -modules, we are now reduced to proving the maps of (3.8) and (3.9) are

isomorphisms for finitely generated, free M . We will begin by showing that (3.9) is

an isomorphism.

Proposition 3.3.4. Suppose thatM is finitely generated as an abelian group. Then

the map

H
j(W,Hom(M,Q)) → Hom(H1−j(W,M),Q)

induced by cup-product is an isomorphism for all j ≥ 0.

Proof. Let V = M ⊗Q. Because the quotient V/M has only trivial maps to Q, our

map can be identified with the map

H
j(W,HomQ(V,Q)) → HomQ(H

1−j(W,V ),Q).

Since H
i(N, V ) vanishes for i ≥ 1, proving the proposition is equivalent, by (3.1),

to showing that the map

H
j(w,HomQ(V

N
,Q)) → HomQ(H

1−j(w, V
N),Q)

is an isomorphism for all j ≥ 0. This follows immediately from our results on

w-duality for vector space coefficients.

To prove that the maps H i(W,Hom(M,UL̄)) → H
2−i(W,M)∗ are all isomor-

phisms, we will use (3.1). In particular, for every i ≥ 0, we have a map of short
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exact sequences

0

��

0

��

H
1(w, H

i−1(N,Hom(M,UL̄))) ��

��

H
0(w, H

2−i(N,M))∗

��

H
i(W,Hom(M,UL̄)) ��

��

H
2−i(W,M)∗

��

H
0(w, H

i(N,Hom(M,UL̄)) ��

��

H
1(w, H

1−i(N,M))∗

��
0 0

(3.10)

and to prove that the middle arrow is an isomorphism, we will prove, for i ≥ 1, that

the top and bottom horizontal arrows are isomorphisms. It should be noted that

the top and bottom arrows are not isomorphisms for all i ≥ 0: take M = Z and

i = 0, then the bottom arrow is the zero map UK → 0.

Let L
�
/L be a finite Galois extension with group H and degree e. Consider

the long exact sequence in H-cohomology of 0 → UL� → L
�× → Z → 0. Since the

groups H i(H,L
�×) and H

i(H,Q) vanish for i ≥ 1, the long exact sequence reads

0 → UL → L
×
→ Z → H

1(H,UL�) → 0 (3.11)

which gives us a canonical identification H
1(H,UL�) = Z/eZ. Taking the limit over

all L�
/L gives an identification H

1(N,UL̄) = Q/Z.

Throughout the proof of the next proposition, we will make use of the Tate

cohomology groups Ĥ∗(H,−), for a finite group H. For definitions and basic prop-
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erties of Tate cohomology groups, see Chapter VIII of [20].

Proposition 3.3.5. Let M be a W -module which is finitely generated and free as

an abelian group. Then the maps

H
i(w, H

1(N,Hom(M,UL̄))) → H
1−i(w, H

0(N,M))∗ (3.12)

are isomorphisms for all i ≥ 0.

Proof. Let M be an N -module which is finitely generated and free as an abelian

group. We will show that

α : H1(N,Hom(M,UL̄))) → H
0(N,M)∗ (3.13)

is an isomorphism. The proposition then follows easily from w-duality.

If M = Z with trivial N -action, then α is the canonical map Q/Z → Z∗. Since

cohomology commutes with direct sums, this proves the result for M with trivial

action.

Now let M be any finitely generated N -module, and choose a finite Galois

extension L
�
/L with group H, such that the open subgroup N

� = Gal(L̄/L�) of

N acts trivially on M . We mimic the argument on page 128 of [9]. Consider the
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diagrams

0 �� H1(H,Hom(M,UL�)) inf ��

γ

��

H
1(N,Hom(M,UL̄))

res ��

α

��

H
1(N �

,Hom(M,UL̄))

α
�

��
0 �� Ĥ0(H,M)∗ �� H0(N,M)∗ tr∗ ��M∗

(3.14)

and

H
1(N �

,Hom(M,UL̄))
tr ��

α
�

��

H
1(N,Hom(M,UL̄))

α

��

M
∗ �� H0(N,M)∗ �� 0

(3.15)

Where α
� is the corresponding map for L

�. By the previous paragraph, α� is an

isomorphism. From (3.15) we see that α is surjective. To show that α is an isomor-

phism, we only need to show it is injective, and for this, it suffices to prove that γ

is an isomorphism.

By ([20], Chapter X, §7, Proposition 11) L�× is cohomologically trivial for H.

By ([20], Chapter IX, §5, Theorem 9) it follows that Hom(M,L
�×) is also cohomo-

logically trivial for H. Applying the exact functor Hom(M,−) to 0 → UL� → L
�× →

Z → 0 and taking reduced H-cohomology gives us an isomorphism

δ : Ĥ0(H,Hom(M,Z)) → H
1(H,Hom(M,UL�)) (3.16)
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which commutes with cup-product in the sense that the diagram

Ĥ
0(H,Hom(M,Z)) ��

δ

��

Ĥ
0(H,M)∗

H
1(H,Hom(M,UL�))

γ �� Ĥ0(H,M)∗

(3.17)

commutes. By ([18], Chapter III, Proposition 3.1.2) the top horizontal arrow is an

isomorphism, and we conclude that γ is an isomorphism.

Proposition 3.3.6. Suppose that M is a W -module which is finitely generated and

free as an abelian group. Then the map

H
1(w, H

0(N,Hom(M,UL̄))) → H
0(w, H

1(N,M))∗ (3.18)

induced by cup-product is an isomorphism.

Proof. Let L�
/L be a finite Galois extension with groupH, such thatN � = Gal(L̄/L�)

acts trivially on M . Using the same argument as in the previous proposition and

([18], Chapter III, Proposition 3.1.2), we see that the map

Ĥ
0(H,Hom(M,UL�)) → H

1(H,M)∗ (3.19)

is an isomorphism.

We claim that there is an isomorphism

H
1(w, H

0(N,Hom(M,UL̄))) = H
1(w, Ĥ

0(H,Hom(M,UL�))). (3.20)
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Together with the fact that the inflation map H
1(H,M) → H

1(N,M) is an isomor-

phism (since H
1(N �

,M) = 0), this will suffice to prove the proposition. It is clear

that H0(N,Hom(M,UL̄)) = H
0(H,Hom(M,UL�)), which reduces us to showing that

the natural map

H
1(w, H

0(H,Hom(M,UL�))) → H
1(w, Ĥ

0(H,Hom(M,UL�))) (3.21)

is an isomorphism.

For any H-module P , let NmH : P → H
0(H,P ) be the norm map, defined by

m �→
�

s∈H s ·m. Consider the reduction map

NmH(Hom(M,UL�)) → NmH(Hom(M,UL�/U
(1)
L� )) = NmH(Hom(M, k̄

×)).

The extension L
�
/L is totally ramified, hence H acts trivially on k̄

×. Thus for any

f : M → k̄
×, we have

NmH(f)(m) =
�

s∈H

sf(s−1
m)

=
�

s∈H

f(s−1
m)

= f(NmH(m))

which proves that NmH(Hom(M, k̄
×)) = Hom(NmH(M), k̄×). As NmH(M) ⊂ M

is a finitely generated and free abelian group, we see from (2.3.2) that σ − 1 maps

Hom(NmH(M), k̄×) surjectively onto itself. The same argument shows that σ − 1
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maps Hom(NmH(M), k̄) surjectively onto itself. One now proceeds in the same

fashion as in the proof of (2.3.2) to show that σ − 1 maps NmH(Hom(M,UL�))

surjectively onto itself, hence H
1(w,NmH(Hom(M,UL�))) = 0.

Proposition 3.3.7. Let M be a W -module which is finitely generated and free as

an abelian group. Then the maps

H
i(W,Hom(M,UL̄)) → H

2−i(W,M)∗ (3.22)

are isomorphisms for all i ≥ 0. For i = 0, this is a topological isomorphism of

profinite groups.

Proof. For i ≥ 1, this follows immediately from (3.10), (3.3.5), and (3.3.6). For

i = 0, we consider the Kummer sequences

0 → M
n
→ M → M/n → 0 (3.23)

and

0 → Hom(M,UL̄)[n] → Hom(M,UL̄)
n
→ Hom(M,UL̄) → 0. (3.24)

These Kummer sequences induce maps of long exact sequences, the relevant part of

which reads

0 �� H0(Hom(M,UL̄))/n
δ ��

��

H
1(Hom(M,UL̄)[n]) ��

�
��

H
1(Hom(M,UL̄))[n]

�
��

0 �� H2(M)[n]∗ δ
∗

�� H1(M/n)∗ �� (H1(M)/n)∗

(3.25)
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where we have written H
i(−) for H

i(W,−) for convenience. The middle arrow is

Weil-Tate Local Duality applied to the finite modules Hom(M,UL̄)[n] = Hom(M/n, µn)

and M/n. The right-most arrow is the map of (3.22) when i = 1, restricted to n-

torsion; it is therefore an isomorphism. We conclude by the Five Lemma that

H
0(W,Hom(M,UL̄))/n → H

2(W,M)[n]∗ (3.26)

is an isomorphism for all n. Taking the inverse limit over all n, we conclude that

lim
←−
n

H
0(W,Hom(M,UL̄))/n → H

2(W,M)∗ (3.27)

is an isomorphism (recall that H2(W,M) is torsion).

It remains to show that the natural map

H
0(W,Hom(M,UL̄)) → lim

←−
n

H
0(W,Hom(M,UL̄))/n (3.28)

is an isomorphism; in other words, to show that H0(W,Hom(M,UL̄)) is profinite. If

N acts trivially on M , then this is contained in the statement of (2.3.1). Otherwise,

pick an open normal subgroup N
� of N acting trivially on M , corresponding to a

finite Galois extension L
�
/L with group H. We have

H
0(W,Hom(M,UL̄)) = H

0(w, H
0(H,Hom(M,UL�)))

and the latter group is clearly profinite, hence we are done.
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A natural question to ask is whether the other map induced by the cup-product

pairing, namely

η(M) : RΓW (M) → RHom(RΓW (MD),Z[−1]), (3.29)

is an isomorphism. The next proposition shows that this map fails to be an isomor-

phism when M = Z with trivial action, due to the non-trivial natural topology on

the cohomology groups of the complex RΓW (MD). However, elucidating this map

will prove useful in later sections, so we now describe it explicitly.

Proposition 3.3.8. The map

η(Z) : RΓW (Z) → RHom(RΓW (L̄×),Z[−1]) (3.30)

has the following properties:

(i) η(Z)i is an isomorphism for i �= 2.

(ii) η(Z)2 induces an isomorphism of H2(W,Z) with the torsion subgroup U
∗
K

of

Ext2(RΓW (L̄×),Z[−1]).

The cohomology of both complexes vanishes outside of degrees 0 through 2.

Proof. For i = 0, 1, explicit calculation using (2.0.1) shows that the cohomology of

both sides is Z, and the map between them is the identity map. For i ≥ 3, using

(2.0.1) one shows easily that the cohomology of both complexes vanishes.

The only assertion left to prove is that of (ii). Coming from the sequences
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0 → Z → Z → Z/nZ → 0 and 0 → µn → UL̄ → UL̄ → 0 we have a map of short

exact sequences

0 �� H1(W,Z)/n ��

�
��

H
1(W,Z/nZ) δ ��

�
��

H
2(W,Z)[n] ��

��

0

0 �� (H1(W,UL̄)
∗)/n �� H1(W,µn)∗

δ
∗

�� U∗
K
[n] �� 0.

(3.31)

Here the left vertical arrow is the natural isomorphism Z/nZ → Ẑ/nẐ, and the

middle arrow is the isomorphism of Weil-Tate Local Duality. Therefore the right

vertical arrow is an isomorphism, and by passing to the limit over all n, we see that

H
2(W,Z) → U

∗
K

is an isomorphism. A simple calculation using (2.0.1) shows that

Ext2(RΓW (L̄×),Z[−1]) = Ext(UK ,Z), whose torsion subgroup is U∗
K
.

Corollary 3.3.9. The cohomology groups H i(W,Z) are given by

H
i(W,Z) =






Z i = 0, 1

U
∗
K

i = 2

0 i ≥ 3.

(3.32)

Proof. This is contained in the proof of the previous proposition.

The main theorem of this chapter was proven by Jiang in his thesis (see Propo-

sition 4.15 and Theorem 5.3 of [8]). However, Jiang assumes that M is a G-module,

and uses the duality theorems of Local Class Field Theory in his proof. We have

removed the condition that M be a G-module, and presented a proof which is inde-

pendent of the main results of Local Class Field Theory.
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Chapter 4

Local Class Field Theory via the Weil Group

In this chapter we show how to deduce the main theorems of Local Class Field

Theory from the theorems of the previous chapter. We prove, in particular, that

Br(K) = Q/Z and that there is a canonical isomorphism K
× ⊗ Ẑ → G

ab.

4.1 Comparison with Galois Cohomology

Any G-module can be given a W -module structure via the map W → G, and

this process induces restriction maps H i(G,M) → H
i(W,M) on cohomology. The

following comparison theorems describe these restriction maps.

Proposition 4.1.1. Let M be a torsion G-module. Then there are functorial iso-

morphisms H i(G,M) = H
i(W,M) for all i ≥ 0.

Proof. Since Galois cohomology is always torsion, and g and w cohomology agree

for torsion coefficients (see [20], Chapter XIII, Proposition 1), the restriction maps

H
i(g, Hj(N,M)) → H

i(w, H
j(N,M)) are isomorphisms for all i, j ≥ 0. Thus the

map of spectral sequences

H
i(g, Hj(N,M)) ��

��

H
i+j(G,M)

��

H
i(w, H

j(N,M)) �� H i+j(W,M)
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is an isomorphism on the second page and therefore in the limit.

Corollary 4.1.2. (Tate Local Duality) The cup-product pairing

H
i(G,M)⊗H

2−i(G,M
�) → Q/Z (4.1)

is a perfect pairing of finite groups.

Proof. This follows from (3.1.5), and (4.1.1) applied to the finite module M .

Theorem 4.1.3. Let M be a discrete G-module. Then there are functorial isomor-

phisms

(i) H
0(G,M) = H

0(W,M) and

(ii) H
1(G,M) = H

1(W,M)tors,

(iii) there is a short exact sequence

0 → H
1(W,M)⊗Q/Z → H

2(G,M) → H
2(W,M) → 0,

(iv) and there are isomorphisms H i(W,M) = H
i(G,M) for all i ≥ 3.

Proof. Since W is dense in G it is clear that H0(G,M) = H
0(W,M). Suppose for

now that M is torsion-free, and fix n ∈ Z. Kummer sequences give rise to a diagram

0 �� H0(G,M)/n ��

�
��

H
0(G,M/nM) δ ��

�
��

H
1(G,M)[n] ��

��

0

0 �� H0(W,M)/n �� H0(W,M/nM) δ �� H1(W,M)[n] �� 0.
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SinceH1(G,M) is all torsion, we see by passing to the limit over all n thatH1(G,M) =

H
1(W,M)tors.

Now consider the diagram

0 �� H1(G,M)/n ��

β

��

H
1(G,M/n) δ ��

�
��

H
2(G,M)[n]

κ

��

�� 0

0 �� H1(W,M)/n �� H1(W,M/n) δ �� H2(W,M)[n] �� 0.

From the Snake Lemma it is clear that κ is surjective and that ker(κ) = coker(β).

Passing to the limit over all n, we have

lim
−→
n

coker(H1(G,M)/n → H
1(W,M)/n)

= coker(H1(G,M)⊗Q/Z → H
1(W,M)⊗Q/Z)

= H
1(W,M)⊗Q/Z

because H
1(G,M)⊗Q/Z = 0. The existence of our exact sequence is now clear.

For i = 3, we have the diagram

0 �� H2(G,M)/n ��

��

H
2(G,M/n) δ ��

�
��

H
3(G,M)[n]

��

�� 0

0 �� H2(W,M)/n �� H2(W,M/n) δ �� H3(W,M)[n] �� 0.

and it follows from the exact sequence 0 → H
1(W,M) ⊗ Q/Z → H

2(G,M) →

H
2(W,M) → 0 that the left arrow is an isomorphism. Therefore H

3(G,M)[n] =

H
3(W,M)[n], and passing to the limit over all n gives H3(G,M) = H

3(W,M). The
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result for i ≥ 4 follows immediately by induction on i and considering Kummer

sequences.

Consider now a general G-module M , and the exact sequence 0 → Mtors →

M → M/Mtors → 0. The map on long exact cohomology sequences, (4.1.1), and

what we have shown above prove the results for M .

The above theorem implies that the groups H
i(W,M) determine the groups

H
i(G,M) up to isomorphism, since H1(W,M)⊗Q/Z is an injective abelian group.

The converse fails: take for example M = Q with trivial action. Then H
i(G,Q) = 0

for i ≥ 1, but H
1(W,Q) = Hom(w,Q) = Q. Thus the groups H

i(W,M) contain

more information than their Galois counterparts.

Corollary 4.1.4. The strict cohomological dimension of G is 2.

Proof. Let M be a G-module. Since the orbit under G of any m ∈ M is finite,

we can write M as a direct limit of G-modules Mn which are finitely generated

as abelian groups. Then by the above comparison theorem and (3.2.2), we have

H
3(G,M) = lim

−→n
H

3(W,Mn) = 0

Let A/K be a commutative algebraic group scheme defined over K. Then

A(K̄) is naturally a G-module, and A(L̄) is naturally a W -module. The inclusion

map A(K̄) → A(L̄) induces restriction maps H
i(G,A(K̄)) → H

i(W,A(L̄)). We

have the following comparison theorem:

Theorem 4.1.5. Let A be a connected commutative algebraic group scheme over

K. There are functorial isomorphisms:
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(i) H
0(G,A(K̄)) = H

0(W,A(L̄)) and

(ii) H
1(G,A(K̄)) = H

1(W,A(L̄))tors,

(iii) there is a short exact sequence

0 → H
1(W,A(L̄))⊗Q/Z → H

2(G,A(K̄)) → H
2(W,A(L̄)) → 0,

(iv) and the higher cohomology groups H i(G,A(K̄)) and H
i(W,A(L̄)) vanish for

i ≥ 3.

Proof. First we will show that the multiplication-by-n maps A → A are all surjec-

tive. Since A is connected, we have a short exact sequence

0 → H → A → B → 0

of algebraic groups, where H is linear and B is an abelian variety (see Theorem

1.1 of [2]). As H is commutative, it is the product of a torus and a commutative

unipotent group. It follows that the multiplication-by-n maps on H and B are

surjective, hence the same is true of A by the Five Lemma.

The n-torsion of A(L̄) is contained in A(K̄), hence there is a map of Kummer

sequences

0 �� A[n] �� A(K̄) n ��

��

A(K̄) ��

��

0

0 �� A[n] �� A(L̄) n �� A(L̄) �� 0.

The rest of the proof is exactly as in (4.1.3).
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Corollary 4.1.6. There is a natural isomorphism H
1(W, L̄

×)⊗Q/Z = Br(K), and

thus Br(K) = Q/Z.

Proof. The isomorphism is the map in the short exact sequence of (4.1.5), and the

second statement follows from (3.1.1).

From now on, we will denote the groups H i(G,A(K̄)) by H
i(G,A), and the

groups H i(W,A(L̄)) by H
i(W,A).

4.2 The Reciprocity Isomorphism

In the previous chapter, we proved that for a W -module M which is finitely gener-

ated as an abelian group, cup-product gave a natural isomorphism

RΓW (MD)
∼
→ RHom(RΓW (M),Z[−1]) (4.2)

in the derived category of abelian groups. Suppose now that T/K is a torus with

character group M = Hom(T,Gm). Then T (L̄) can be identified with M
D as a

W -module, and the duality theorem reads

RΓW (T )
∼
→ RHom(RΓW (M),Z[−1]). (4.3)

We can use our duality theorem to prove the following:

Proposition 4.2.1. Let T/K be a torus. Then H
2(W,T ) = 0.

Proof. By the duality theorem, this group is isomorphic to Ext2(RΓW (M),Z[−1]).
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By (2.0.1), there is an isomorphism

Ext(H0(W,M),Z) → Ext2(RΓW (M),Z[−1]), (4.4)

but the group Ext(H0(W,M),Z) vanishes because H
0(W,M) ⊆ M is finitely gen-

erated and free.

Corollary 4.2.2. Let T/K be a torus. Then there are natural isomorphisms

(i) H
0(G, T ) = H

0(W,T )

(ii) H
1(G, T ) = H

1(W,T )tors

(iii) H
2(G, T ) = H

1(W,T )⊗Q/Z

Proof. This follows immediately from (4.1.5) and (4.2.1).

Corollary 4.2.3. (Tate-Nakayama Duality) Let T/K be a torus with character

group M . Then the map

H
i(G, T ) → H

2−i(G,M)∗ (4.5)

induced by cup-product is an isomorphism for i = 1, 2, and an isomorphism for i = 0

upon passing to the profinite completion of the left-hand side.

Proof. Using (3.1) it is easy to see that the group H
1(W,M) is finitely generated,

hence Ext(H1(W,M),Z) ⊗ Q/Z = 0. Our duality theorem therefore gives an iso-
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morphism

H
1(W,T )⊗Q/Z

∼
→ Hom(H0(W,M),Z)⊗Q/Z = H

0(W,M)∗ (4.6)

which, by the previous corollary, can be identified with the map H
2(G, T ) →

H
0(G,M)∗.

Now consider the case where i = 1. Our duality theorem gives an isomorphism

H
1(W,T )tors

∼
→ Ext(H1(W,M),Z) = (H1(W,M)tors)

∗ (4.7)

which, again by the previous corollary, can be identified with the map H
1(G, T ) →

H
1(G,M)∗.

Finally we treat the case i = 0. Consider the commutative diagram

0 �� Ext(H2(W,M),Z) ��

=
��

H
0(G, T ) ��

��

Hom(H1(W,M),Z) ��

��

0

0 �� H2(W,M)∗ �� H2(G,M)∗ �� (H1(W,M)⊗Q/Z)∗ �� 0

(4.8)

where the top row comes from the identity H
0(G, T ) = H

0(W,T ), our duality

theorem, and (2.0.1). The bottom row is the dual of the exact sequence of (4.1.3).

The left vertical arrow is the identity since H
2(W,M) is all torsion, as can be seen

easily from (3.1). The right vertical arrow is an isomorphism upon passing to the

profinite completion of Hom(H1(W,M),Z), hence the same is true of the middle

vertical arrow.
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Of course, for T = Gm and i = 0, one recovers from Tate-Nakayama Duality

the reciprocity isomorphism K
× ⊗ Ẑ

∼
→ G

ab of Local Class Field Theory, where

−⊗ Ẑ denotes profinite completion. Hence one can recover the main statements of

Local Class Field Theory by studying the cohomology of the Weil group.
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Chapter 5

The Weil-smooth Topology on Schemes over K

For any arbitrary scheme Y , let us recall the definition of the smooth site Ysm, as

stated in [23]. The underlying category is the category of schemes which are smooth

and locally of finite type over Y , and the coverings are the surjective families. In

[23], van Hamel illustrates the utility of the smooth site in the study of duality

theorems; the cohomology groups coincide with those familiar from the étale site,

but the internal hom functor is better suited to proving duality results.

This chapter is devoted to introducing a variant of the Weil-étale topology,

the Weil-smooth topology. This definition is inspired the definition of the Weil-étale

topology given by Jiang in [8], and is related to the smooth topology in the same way

that the Weil-étale topology is related to the étale topology. As with the smooth

site, the internal hom functor on the Weil-smooth site is more appropriate for a

functorial approach to duality results.

5.1 Definitions and Basic Properties

Throughout this section we fix a scheme X which is smooth and finite type over K.

Definition 5.1.1. Let π1 : XL → X and π2 : XL → Spec L be the projections. We

define the Weil-smooth topology W (X) to be the following Grothendieck topology:

(i) The objects of W (X) are the schemes which are smooth and locally of finite
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type over XL. That is, they are the objects of the smooth site of XL.

(ii) A morphism (V
f

→ XL) → (Z
g

→ XL) of objects in W (X), for connected V , is

a map φ : V → Z of schemes, such that (a) π1◦g◦φ = π1◦f , and (b) there exists

n ∈ Z such that σn◦π2◦f = π2◦g◦φ, where σ is the Frobenius automorphism

of L. If V is not connected, we impose these conditions component-wise.

(iii) The coverings in W (X) are the surjective families.

We let XW denote X endowed with the Weil-smooth topology.

We recall some basic results on groups acting on sheaves. If Y is a scheme,

G is a discrete group of automorphisms of Y , and F ∈ S(Ysm), we say that G acts

on F if there are morphisms F → τ∗F of sheaves for all τ ∈ G, compatible in the

obvious sense with the multiplication in G. We denote the category of sheaves on

Ysm which carry a G-action by S(Ysm)G.

Proposition 5.1.2. The category S(XW ) is equivalent to the category S(XL,sm)w

Proof. This is the same proof as the analogous result for Weil-étale sheaves on

schemes over finite fields; see ([11], Proposition 2.2). We restate it here for the sake

of completeness.

Let F ∈ S(XW ); then F defines a sheaf υ(F ) on XL,sm by restricting to the

smooth site. We must show that υ(F ) carries an action of w. Let U → XL be

smooth and locally of finite type, and consider Uτ = U ×XL XL, where the map

from XL to itself is the map induced by τ . Applying υ(F ) to the projection map
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Uτ → U , we obtain a map υ(F )(U) → τ∗υ(F )(U) which is functorial in U , and

therefore defines a map of sheaves.

Conversely, suppose that H ∈ S(XL,sm) has a w-action. Let τ ∈ w. A map

V → Z of objects in the underlying category of XW gives rise to a diagram

V ��

��

Z

��
XL

τ �� XL.

The universal property of the fiber product now gives a unique map V → Zτ ,

which commutes with the maps to XL. Applying H to this map, we get a map

H(Z) → H(Zτ ) → H(V ), where the first map comes from the w-action on H.

Therefore H defines an object of S(XW ).

Let X̄ = X ×K L̄, and let F ∈ S(XW ) = S(XL,sm)w. The sheaf F defines a

sheaf on X̄sm by pulling back along the map φ : X̄ → XL; let us denote this pullback

by the standard notation φ
∗
F .

Proposition 5.1.3. The abelian group φ
∗
F (X̄) is naturally a W -module, and we

have H
0(W,φ

∗
F (X̄)) = H

0(w, F (XL)).

Proof. It is clear that φ
∗
F (X̄) is an N -module; we must show that this action

extends to all of W . Let a ∈ W be a preimage of the Frobenius element σ of

w. We have φ
∗
F (X̄) = lim

−→L�/L
F (XL�) where the limit ranges over all of the finite

extensions L� of L.

For a fixed finite extension L
�
/L, let N

� ⊆ N be the open subgroup corre-

sponding to L
�, and let a

� ∈ W/N
� be the image of a. There is a short exact
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sequence

1 → Gal(L�
/L) → W/N

�
→ w → 1

of groups, and the choice of a
� determines a splitting W/N

� � Gal(L�
/L) � w.

Because F is endowed with an action of w, the groups Gal(L�
/L) and w both act on

F (XL�), and it is easy to check these actions are compatible with the decomposition

of W/N
� as a semi-direct product. Therefore W/N

� acts on F (XL�), and passing to

the limit over all L� shows that φ∗
F (X̄) is a W -module. One can verify easily that

a different choice of a gives an isomorphic W -module.

The second statement follows from the description of the W -module structure,

and the fact thatH0(Gal(L�
/L), F (XL�)) = F (XL) for any finite extension L

�
/L.

Definition 5.1.4. Let F ∈ S(XW ). Define the i
th

Weil-smooth cohomology group

of X with coefficients in F by setting ΓX(F ) = H
0(XW , F ) = H

0(w, F (XL)), and

letting H
i(XW , F ) be the i

th right derived functor of H0(XW ,−) applied to F . If

F is a complex of sheaves in D(XW ), we let RΓX(F ) denote the derived functor of

ΓX applied to F .

Theorem 5.1.5. There are spectral sequences

(i) H
p(w, H

q(XL,sm, F )) ⇒ H
p+q(XW , F ), and

(ii) H
p(W,H

q(X̄sm, φ
∗
F )) ⇒ H

p+q(XW , F )

for any F ∈ S(XW ).

Proof. To establish the first spectral sequence, note that we can factor ΓX as F �→

F (XL) �→ H
0(w, F (XL)). The functor F �→ F (XL) preserves injectives, since it has
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as exact left adjoint the functor w-Mod → S(XL,sm)w which takes a w-module to

the corresponding locally constant sheaf. Part (i) is now just the spectral sequence

of composite functors.

To see that the second spectral sequence holds, note that for any sheaf F ∈

S(XL,sm)w, we have a spectral sequence

H
p(N,H

q(X̄sm, φ
∗
F )) ⇒ H

p+q(XL,sm, F )

of w-modules; see Theorem III.2.20 and Remark III.2.21(a) of [13]. In derived

category language, we have an isomorphism RΓN◦RΓX̄(φ
∗
F ) � RΓXL(F ). Applying

RΓw to both sides of this isomorphism, we obtain

RΓW ◦RΓX̄(φ
∗
F ) � RΓw ◦RΓN ◦RΓX̄(φ

∗
F )

� RΓw ◦RΓXL(F )

� RΓX(F ).

The first isomorphism is simply the spectral sequence coming from the group ex-

tension 1 → N → W → w → 1, and the third isomorphism is from part (i). The

isomorphism RΓX(F ) � RΓW ◦RΓX̄(φ
∗
F ) defines the desired spectral sequence, as

in ([24], Corollary 10.8.3).

Corollary 5.1.6. Suppose that F ∈ S(KW ) is given by a smooth commutative

group scheme defined over K. Then H
p(KW , F ) = H

p(W,F (L̄)).

Proof. This is immediate from the second spectral sequence of the previous theorem,
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and the fact that Hq(L̄sm, F ) = 0 for all q ≥ 1 and all such F . This last statement

follows, for example, from the fact that smooth and étale cohomology agree for

sheaves given by smooth commutative group schemes; see §1.2 of [23].

5.2 Smooth and Weil-Smooth Sheaves

Let ρ : XL → X be the natural map. Following ([11], Proposition 2.4), we use ρ

to define a pair of adjoint functors. For any F ∈ S(Xsm), the sheaf ρ∗F ∈ S(XL)

carries a natural w-action, and so we define ρ
∗ : S(Xsm) → S(XW ) to be the

standard pullback functor. We define ρw∗ : S(XW ) → S(X) by the rule (ρw∗G)(U) =

H
0(w, G(UL)) for any G ∈ S(XW ).

Proposition 5.2.1. Let ρ∗ and ρ
w
∗ be as above. We have the following:

(i) ρ
∗ is left adjoint to ρ

w
∗ .

(ii) ρ
∗ is exact, and therefore ρ

w
∗ preserves injectives.

(iii) If G/X is a smooth commutative group scheme which is locally of finite type,

then there is natural isomorphism ρ
∗
G

∼
→ GL in S(XW ).

(iv) For any G ∈ S(Xsm), there is a canonical map G → ρ
w
∗ ρ

∗
G, which is an

isomorphism when G is representable by a smooth commutative group scheme

while is locally of finite type.

(v) For any smooth sheaf F ∈ S(Xsm), there is a map of spectral sequences from

H
i(G,H

j(XK̄,sm, F )) ⇒ H
i+j(Xsm, F )
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to

H
i(W,H

j(X̄, φ
∗
ρ
∗
F )) ⇒ H

i+j(XW , ρ
∗
F ).

Proof. Part (i) is proved in the usual manner, and part (ii) holds because pullback

is always exact.

To see part (iii), we imitate the proof of ([13] Chapter II, Remark 3.1(d)). Let

G/X be a smooth commutative group scheme, which we identify with the sheaf it

defines on Xsm, and let F ∈ S(XW ) be any Weil-smooth sheaf. By definition of ρw∗

we have H
0(w, F (GL))

∼
→ (ρw∗ F )(G). By basic properties of representable sheaves,

this implies that

HomXW (GL, F )
∼
→ HomXsm(G, ρ

w
∗ F )

and the result follows by uniqueness of adjoints.

The map described in part (iv) is the map induced by the adjunction map G →

ρ∗ρ
∗
G, the image of which lands in the subsheaf of w-invariants, which is exactly

ρ
w
∗ ρ

∗
G. When G is given by a smooth commutative group scheme, we have by part

(iii) that ρ∗G = GL, and thus the map is the natural map G(U) → H
0(w, GL(UL)).

It is easy to see that this induces an isomorphism of sheaves.

The map of spectral sequences in part (v) is simply the map induced by the

inclusion W → G and the projection X̄ → XK̄ .

The functor ρ∗ extends naturally to a functor ρ∗ : D(Xsm) → D(XW ) between

the corresponding derived categories. If F ∈ D(Xsm) is a complex such that H i(F )

is representable by some smooth commutative group scheme Gi
/X for all i, then by
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the exactness of ρ∗ we have H
i(ρ∗F ) = ρ

∗
G

i = G
i

L
. If F ∈ S(Xsm) is representable

by a smooth commutative group scheme which is locally of finite type, then we

will often simply write F instead of ρ∗F for the corresponding Weil-smooth sheaf it

defines.

5.3 Internal Hom and Pairings

Let X/K be a smooth scheme of finite type over K, and let F, F � ∈ S(XW ). We de-

fine theWeil-smooth sheaf hom by Hom(F, F �) = Hom
XW

(F, F �) = Hom
XL,sm

(F, F �),

which carries a naturalw-action. The functor Hom(F,−) is left exact, and we denote

by RHom(F,−) its derived functor.

Lemma 5.3.1. For any F,G ∈ D(Ksm), there is a canonical map

Φ(F,G) : ρ∗RHom
Ksm

(F,G) → RHom(ρ∗F, ρ∗G) (5.1)

in D(KW ). If G = Gm and F is a torus, an abelian variety, or a free finitely

generated group scheme, then Φ(F,G) is an isomorphism.

Proof. By standard adjointness properties (see [24], Chapter 10.7.1), we have iden-

tifications

HomD(KW )(ρ
∗
RHom

Ksm
(F,G), RHom(ρ∗F, ρ∗G))

= HomD(Ksm)(RHom
Ksm

(F,G), ρw∗RHom(ρ∗F, ρ∗G))

= HomD(Ksm)(RHom
Ksm

(F,G), RHom
Ksm

(F, ρw∗ ρ
∗
G)).
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We define Φ(F,G) to be the map induced by the canonical map G → ρ
w
∗ ρ

∗
G of

(5.2.1 (iv)), which is the identity map when G = Gm.

Now set G = Gm, and suppose that F = M is a free finitely generated

commutative group scheme. In this case RHom
Ksm

(M,Gm) = Hom
Ksm

(M,Gm) =

T is a torus (see [23], Corollary 1.4). Thus Φ(M,Gm) is the natural map

Φ(M,Gm) : TL → Hom
KW

(ML,Gm,L)

which is clearly an isomorphism. For F = T a torus, the same argument, with the

roles of T and M reversed, shows that Φ(F,Gm) is an isomorphism.

For F = A an abelian variety we have RHom
Ksm

(A,Gm) = Ext1
Ksm

(A,Gm) =

A
t[−1] (see [23], Corollary 1.4), where At is the dual abelian variety of A. The map

Φ(A,Gm) now reads

Φ(A,Gm) : A
t

L
[−1] → Ext1

KW
(AL,Gm,L)

which is an isomorphism by the compatibility of the Barsotti-Weil formula with base

change.

If F ∈ D(KW ) is any bounded complex of sheaves, we define its Cartier Dual

by F
D := RHom(F,Gm). If G ∈ D(Ksm) we define G

Dsm := RHom
Ksm

(G,Gm).

The previous proposition essentially says that if we restrict ourselves to tori and

their cocharacter groups, and abelian varieties, we have ρ
∗((−)Dsm) = (ρ∗(−))D.

Proposition 5.3.2. Let T be a torus over K with cocharacter group M , and A an
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abelian variety over K with dual abelian variety A
t. Then we have the following

natural isomorphisms in D(KW ):

M
D

� T (5.2)

T
D

� M (5.3)

A
D

� A
t[−1]. (5.4)

Proof. By Corollary 1.4 of [23], the isomorphisms we are trying to demonstrate hold

in D(Ksm). Applying ρ
∗ to van Hamel’s isomorphisms and using (5.3.1), we arrive

at the corresponding isomorphisms in D(KW ).

Let us return now to an arbitrary smooth scheme X/K of finite type over K,

and let F ∈ D(XW ). There is a Yoneda pairing

F
�
⊗

L
RHom(F �

, F ) → F (5.5)

for any F
� ∈ D(XW ). Suppose that Hn(XW , F ) �= 0, but Hm(XW , F ) vanishes for

all m > n. Then by applying RΓX(−) and projecting, we arrive at a pairing

RΓX(F
�)⊗L

RΓX(RHom(F �
, F )) → H

n(XW , F )[−n] (5.6)

in D(Z), which we will also call the Yoneda pairing. If X = Spec K, F � = T is a

torus with cocharacter group M , and F = Gm, then by the above proposition we

arrive at the pairing RΓK(T )⊗L
RΓK(M) → Z[−1] of (3.3.1).
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Proposition 5.3.3. Let π : X → K be a smooth, projective curve over a p-adic

field K. Then in D(KW ), there is a canonical isomorphism

RHom(Rπ∗Gm,Gm[−1])
∼
→ Rπ∗Gm (5.7)

which induces a pairing

Rπ∗Gm ⊗
L
Rπ∗Gm → Gm[−1]. (5.8)

Proof. Quite generally, Let S be a scheme, and let π : X → S be a smooth, proper

curve over S. Deligne, in [3], has constructed an isomorphism

τ≤1RHom(τ≤1Rπ∗Gm[1],Gm) → τ≤1Rπ∗Gm (5.9)

of sheaves on Sfppf . Let us make this isomorphism explicit when S is the spectrum

of a field F of characteristic zero. As noted in [23], in this case (5.9) holds even on

the smooth site of S.

Let F (X) denote the function field of X. Then in D(Xsm), the complex Gm[1]

is isomorphic to the complex F (X)×[1] → DivX where the map takes a function to

its divisor. Applying Rπ∗ to this complex, we see that π∗Gm[1] = Gm[1] and

R
1
π∗Gm[1] = PicX , where by PicX we mean the sheaf on Fsm defined by the Picard

scheme of X/F .

For U smooth over F , let Z[X(U)] be the free abelian group on the set of

morphisms from U to X over F , and let ZX be the sheaf on Fsm associated to
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U �→ Z[X(U)]. There is a map ZX → Rπ∗Gm[1] in D(Fsm), given by taking a

morphism U → X to its divisor in Div(X ×F U). Applying RHom
Fsm

(−,Gm) to

this map, we arrive at Deligne’s isomorphism

RHom
Fsm

(Rπ∗Gm[1],Gm)
∼
→ RHom

Fsm
(ZX

,Gm) = Rπ∗Gm, (5.10)

which encodes the auto-duality of the Jacobian of X, and the duality between

the sheaves Z and Gm. The identity RHom
Fsm

(ZX
,Gm) = Rπ∗Gm follows from

Yoneda’s Lemma (this is where we use the fact that X is smooth over S).

When F = K Deligne’s isomorphism reads (Rπ∗Gm[1])Dsm
∼
→ Rπ∗Gm. The

cohomology sheaves of the complex Rπ∗Gm are all free finitely generated group

schemes, tori, or abelian varieties, or extensions of such sheaves. Thus (5.3.1) and

(5.3.2) imply that

(ρ∗Rπ∗Gm)
D
� ρ

∗(Rπ∗Gm[1])
Dsm � ρ

∗
Rπ∗Gm (5.11)

which is the desired canonical isomorphism. The pairing Rπ∗Gm ⊗L
Rπ∗Gm →

Gm[−1] is induced by standard adjoint properties and a degree shift.

On applying RΓK(−) to each term in the pairing (5.3.3) and composing with

the map RΓK(Gm[−1]) → Z[−2], we arrive at a pairing

RΓX(Gm)⊗
L
RΓX(Gm) → Z[−2] (5.12)
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in the derived category of abelian groups. We let

λ(X) : RΓX(Gm) → RHom(RΓX(Gm),Z[−2]) (5.13)

be the induced map (by the symmetry of Deligne’s pairing, both induced maps are

the same). The main theorem of this chapter will describe to what extent λ(X) is

an isomorphism.

5.4 Cohomology of K with Abelian Variety Coefficients

Studying the map λ(X) will require us to understand the cohomology of W acting

on the L̄-points of the Jacobian of X. Therefore, it will be useful to establish a

Weil group analogue of Tate’s duality theorem for abelian varieties over local fields,

found in [22].

To that end, we devote this section to the pairing (5.6) when F = Gm and

F
� = A is an abelian variety over K. Using (5.2) and shifting, we see that the

Yoneda pairing induces a pairing

RΓK(A)⊗
L
RΓK(A

t) → Z (5.14)

which is equal to the pairing induced by the biextension map A ⊗L
A

t → Gm[1].

We let τ(A) denote the induced map,

τ(A) : RΓK(A
t) → RHom(RΓK(A),Z). (5.15)
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Our duality theorem for abelian varieties will describe to what extent τ(A) is an

isomorphism. For simplicity, we will write H i(W,A) for H i(W,A(L̄)) and H
i(G,A)

for H i(G,A(K̄)).

Lemma 5.4.1. H i(W,A) = 0 for i �= 0, 1.

Proof. (see [21], Chapter II.§5.3, Proposition 16) The only non-trivial assertion is

that H2(W,A) = 0. By considering Kummer sequences, we see that H2(W,A[n]) →

H
2(W,A)[n] is surjective. Thus it suffices to show that the group lim

−→n
H

2(W,A[n])

is zero. The Weil pairing gives us an identification A
t[n] = Hom(A[n], µ) of W -

modules. Weil-Tate Local Duality gives us isomorphisms

lim
−→
n

H
2(W,A[n]) � lim

−→
n

H
0(W,A

t[n])∗

� (lim
←−
n

H
0(W,A

t[n]))∗

but this last group vanishes, since A
t(K)tors is finite.

Lemma 5.4.2. Let Y be any of the following groups: Zp,OK , UK , A(K). Then

Hom(Y,Z) is zero.

Proof. First consider the case of Y = Zp. Let f : Zp → Z be a non-zero homo-

morphism; since the only non-trivial subgroups of Z are isomorphic to Z, we may

assume f is surjective. Composing with the surjection Z → Z/pnZ, we see that f

induces a surjection Zp → Z/pnZ. This latter map must factor through Zp/p
nZp,

and therefore f induces a surjection Zp/p
nZp → Z/pnZ. As these two finite groups

have the same order, this is an isomorphism. It follows that ker(f) ⊆
�

n
p
nZp = 0,
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and hence f is injective. Thus f is an isomorphism, which is a contradiction.

Now suppose that Y = OK . The vanishing of Hom(OK ,Z) follows immediately

from the fact that OK is a free Zp-module of rank equal to [K : Qp]. The result for

Y = UK follows from the fact that UK contains a subgroup of finite index isomorphic

to OK as abstract abelian groups. Similarly, A(K) contains a finite index subgroup

isomorphic to dimA copies of OK .

Lemma 5.4.3. The restriction map RΓG(A) → RΓW (A) is an isomorphism in

D(Z).

Proof. We must show that the maps H
i(G,A) → H

i(W,A) are isomorphisms for

all i ≥ 0. In light of (4.1.5), we only need to show that H1(W,A) is torsion. Recall

from (3.1) that the group H
1(W,A) fits into the exact sequence

0 → H
1(w, A(L)) → H

1(W,A) → H
0(w, H

1(N,A)) → 0.

The group on the right is torsion, because it is a subgroup of a Galois cohomology

group. Thus we are reducing to showing that H1(w, A(L)) is torsion.

Let A/OL be the Néron model for A over the ring of integers of L (A is the

base change to OL of the Néron model for A/K; see [1], Theorem 7.2.1 and Corollary

2.). Let A0 ⊆ A be the subscheme whose special fiber is the identity component of

the special fiber of A, and whose generic fiber is AL. We have an exact sequence of

w-modules,

0 → A0(OL) → A(OL) → π0(k̄) → 0,
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where π0(k̄) is the group of connected components of the special fiber of A. This

sequence is exact by Hensel’s Lemma; see ([14], proof of Proposition I.3.8). Taking

cohomology gives a short exact sequence

H
1(w,A0(OL)) → H

1(w,A(OL)) → H
1(w, π0(k̄)) → 0,

and it follows from Proposition 3 of [6] that H
1(w,A0(OL)) = 0. Since A(OL) =

A(L), we have that H1(w, A(L)) = H
1(w, π0(k̄)), which is finite.

Theorem 5.4.4. The map τ(A) of (5.15) has the following properties:

(i) τ(A)0 : At(K) → Ext(H1(W,A),Z) = H
1(W,A)∗ is an isomorphism of profi-

nite groups.

(ii) τ(A)1 : H
1(W,A

t) → Ext(A(K),Z) induces an isomorphism of H
1(W,A

t)

with the torsion subgroup A(K)∗ of Ext(A(K),Z).

The cohomology of both complexes vanishes outside of degrees 0 and 1. In particular,

τ(A)i is injective for all i.

Proof. By (2.0.1) and (5.4.2), the maps τ(A)i reduce to maps

τ(A)i : H i(W,A
t) → Ext(H1−i(W,A),Z). (5.16)

The group H
1(W,A) is torsion, hence has no non-zero maps to Q. Part (i) of the

theorem now follows from (5.4.3) and Tate’s duality theorem on abelian varieties

over local fields (see the main theorem of [22]).
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The profinite group A(K) admits no continuous maps to Q, so A(K)∗ injects

into Ext(A(K),Z). Part (ii) of the theorem now follows again from (5.4.3) and

Tate’s theorem.

5.5 Duality for Weil-smooth Cohomology of Curves

Before stating our Weil-smooth duality theorem for curves, we would like to remind

the reader of Lichtenbaum’s duality theorem for curves over p-adic fields, and van

Hamel’s approach to its construction and proof of non-degeneracy. As always, let

π : X → K be a smooth, projective, geometrically connected curve.

Theorem 5.5.1. (Lichtenbaum, [9]) There are natural pairings

H
i(Xsm,Gm)⊗H

3−i(Xsm,Gm) → Q/Z

which induce isomorphisms H
i(Xsm,Gm) ⊗ Ẑ → H

3−i(Xsm,Gm)∗ for all i, where

H
i(Xsm,Gm) has the natural topology coming from that on K.

Lichtenbaum defines his pairing by explicitly evaluating representatives of the

Brauer group on divisor classes. Since our objects live in the derived category where

the notion of “element” does not make sense, van Hamel’s more functorial approach

adapts better to the Weil-smooth situation.

Let F = Rπ∗Gm ∈ D(Xsm), so that RΓKsm(Rπ∗Gm) = RΓXsm(Gm). In [23],

van Hamel’s approach to Lichtenbaum’s duality theorem is to put an “ascending

filtration” on F . That is, he defines complexes Fi and constructs a series of mor-
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phisms 0 → F0 → F1 → F2 = F in D(Ksm). For each i ≥ 0, van Hamel defines the

i
th graded piece Gi to be the mapping cone of Fi−1 → Fi, yielding an exact triangle

Fi−1 → Fi → Gi → Fi−1[1] in D(Ksm).

The sheaf F0 is defined by F0 := H
0(F ) = Gm, and F1 is defined to be the

mapping cone of the composite F → PicX [−1]
deg
→ Z[−1]. Thus there are triangles

F1 → F → Z[−1] → F1[1] and Gm → F1 → Pic0
X
[−1] → Gm[1]

in D(Ksm). The graded pieces Gi are the given by

Gi =






Gm i = 0

Pic0
X
[−1] i = 1

Z[−1] i = 2

0 i ≥ 3.

(5.17)

The filtration on F induces a “descending filtration” F
Dsm = F

Dsm
2 → F

Dsm
1 →

F
Dsm
0 → 0 on F

Dsm , and also induces triangles GDsm
i

→ F
Dsm
i

→ F
Dsm
i−1 → G

Dsm
i

[1]

for all i. The sheaves GDsm
i

are given by

G
Dsm
i

=






Z i = 0

AlbX i = 1

Gm[1] i = 2

0 i ≥ 3.

(5.18)

To prove the non-degeneracy and perfectness results of the pairing, van Hamel then
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uses duality theorems for finitely generated group schemes, tori, and abelian varieties

to analyze the pairings

RΓKsm(Gi)⊗
L
RΓKsm(G

Dsm
i

) → Q/Z[−2],

and pieces together a duality theorem for RΓKsm(F ) = RΓXsm(Gm) using the Five

Lemma. We will essentially copy this approach, by applying ρ
∗ to van Hamel’s

filtration and exact triangles.

We can now state and prove our duality theorem for the Weil-smooth coho-

mology of curves.

Theorem 5.5.2. Let X/K be a smooth, projective, geometrically connected curve

over K, such that X(K) �= ∅. The map

λ(X) : RΓX(Gm) → RHom(RΓX(Gm),Z[−2]) (5.19)

induced by the pairing (5.12) has the following properties:

(i) λ(X)i is an isomorphism for i = 0, 1.

(ii) λ(X)i is injective for i = 2, 3.

The cohomology of both complexes vanishes outside of degrees 0 through 3.

Proof. As above, let F be the complex Rπ∗Gm considered on the smooth site of K,

so that

RΓX(Gm) = RΓKW (ρ∗Rπ∗Gm)
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Applying ρ
∗ to van Hamel’s filtration provides us with a filtration 0 → ρ

∗
F0 →

ρ
∗
F1 → ρ

∗
F2 = ρ

∗
F on F which comes equipped with exact triangles ρ

∗
Fi−1 →

ρ
∗
Fi → ρ

∗
Gi → ρ

∗
Fi−1[1].

Now we apply ρ
∗ to the dual filtration, and note that by (5.3.2), ρ∗ commutes

with the dualizing functors in the sense that ρ∗(GDsm
i

) = (ρ∗Gi)D for all i. Repeat-

edly applying the Five Lemma and (5.3.1) to van Hamel’s exact triangles shows that

ρ
∗(FD

i
) = (ρ∗Fi)D for all i. Now the Yoneda pairing induces pairings

RΓK(ρ
∗
Gi)⊗

L
RΓK((ρ

∗
Gi)

D) → Z[−1] (5.20)

RΓK(ρ
∗
Fi)⊗

L
RΓK((ρ

∗
Fi)

D) → Z[−1] (5.21)

in D(Z) for all i. In a slight abuse of notation, we suppress ρ∗ from now on.

Let

γi : RΓK(G
D

i
) → RHom(RΓK(Gi),Z[−1]) (5.22)

be the induced map in D(Z). We will describe the maps γi in terms of duality

theorems we have already proven.

From (3.3.8) we see that γ0 = η(Z) has the following properties: γ
i

0 is an

isomorphism for i �= 2, and γ
2
0 maps H

2(W,Z) isomorphically onto the torsion

subgroup U
∗
K

of Ext(K×
,Z).

Let JX be the Jacobian variety of X. Any rational point of X determines

an embedding X �→ JX defined over K, and thus a Weil-equivariant isomorphism

Pic0
X
(L̄) → JX(L̄). Hence we can identify Pic0

X
(L̄) with the L̄-points of an abelian
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variety defined over K, and apply (5.4.4) to Pic0
X
and its dual abelian variety AlbX .

From (5.4.4), we see that γ1 = τ(Pic0
X
) has the following properties: γ

0
1 is

an isomorphism which maps AlbX(K) isomorphically onto H
1(W,Pic0

X
)∗, and γ

1
1

is an injective map which maps H1(W,AlbX) isomorphically onto the torsion sub-

group Pic0
X
(K)∗ of Ext(Pic0

X
(K),Z). From (3.3.1) we see that γ2 = ψ(Z)[1] is an

isomorphism.

Now consider the maps

φi : RΓK(F
D

i
) → RHom(RΓK(Fi),Z[−1]) (5.23)

induced by the Yoneda pairing. We can determine to what extent the maps φi are

isomorphisms, by using the triangles which defined Gi and G
D

i
. When i = 0 one has

G0 = F0 = Gm, hence φ0 = γ0 = η(Z) is the map of (3.3.8). When i = 1 we have a

diagram

RΓK(AlbX)
γ1 ��

��

RHom(RΓK(Pic
0
X
[−1]),Z[−1])

��
RΓK(FD

1 )
φ1 ��

��

RHom(RΓK(F1),Z[−1])

��

RΓK(FD

0 )
φ0 �� RHom(RΓK(FD

0 ),Z[−1]).

(5.24)

It follows that φ
0
1 is an isomorphism, φ

1
1 is injective, and φ

2
1 maps H

2(KW , F
D

1 )

isomorphically onto the torsion subgroup U
∗
K

of Ext2(RΓK(F1),Z[−1]). The coho-

mology of all of these complexes vanishes outside of degrees 0 through 2.
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When i = 2 we have a diagram

RΓK(Gm[1])
ψ(Z)[1]

∼
��

��

RHom(RΓK(Z[−1]),Z[−1])

��
RΓK(FD

2 )
φ2 ��

��

RHom(RΓK(F2),Z[−1])

��
RΓK(FD

1 )
φ1 �� RHom(RΓK(F1),Z[−1]).

(5.25)

It follows that φ−1
2 = ψ(Z)0 is an isomorphism from K

× to Hom(RΓK(F2),Z[−1]),

that φ0
2 is an isomorphism, that φ1

2 is injective, and that φ2
2 is an isomorphism from

H
2(KW , F

D

2 ) to the torsion subgroup U
∗
K

of Ext2(RΓK(F2),Z[−1]).

The theorem is now clear, once we recall that λ(X) is the map induced by the

isomorphism F2[1]D → F2 of Weil-smooth sheaves, the map φ2, and shifting degrees

by one.

One could speculate that there exists a natural way to “topologize” the com-

plex RΓX(Gm) so that its cohomology groups inherit their natural p-adic topology,

and a functor RHomcont(−,−), such that the following “theorem” would be true:

There exists a natural isomorphism

RΓX(Gm)
∼
→ RHomcont(RΓX(Gm),Z[−2]), (5.26)

inducing short exact sequences

0 → Ext1cont(H
3−i(XW ,Gm),Z) → H

i(XW ,Gm) → Homcont(H
2−i(XW ,Gm),Z) → 0

(5.27)
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for all i.

While an isomorphism such as (5.26) seems out of reach, establishing (5.27)

seems plausible using Yoneda-ext in the category of topological abelian groups,

especially since Homcont(H i(XW ,Gm),Z) = Hom(H i(XW ,Gm),Z) for all i. Fur-

thermore, when i = 0, 1, H3−i(XW ,Gm) has the discrete topology, and thus (5.27)

holds.

5.6 Comparison with Smooth Cohomology

In this section we compare the duality theorem of the previous section with the

main theorem of [9]. That the our pairing is compatible with the original pairing

defined by Lichtenbaum follows from the results of §3.3 of [23].

Proposition 5.6.1. Suppose that X/K is a smooth, proper variety over K, and let

F be a torsion sheaf in S(Xsm). Then the restriction map RΓXsm(F ) → RΓX(F ) is

an isomorphism in D(Z).

Proof. By ([13], Chapter VI, Corollary 2.6), the map RΓXK̄,sm
(F ) → RΓX̄sm

(F ) is

an isomorphism. The result now follows from (4.1.1), since RΓXsm = RΓG◦RΓXK̄,sm

and RΓX = RΓW ◦RΓX̄sm
.

By the previous proposition, smooth and Weil-smooth cohomology agree for

the sheaf µn, hence we can use Kummer sequences to study the restriction maps
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H
i(Xsm,Gm) → H

i(XW ,Gm). In particular there is a diagram

0 �� H i(Xsm,Gm)/n
δ ��

resi/n
��

H
i+1(Xsm, µn) ��

�
��

H
i+1(Xsm,Gm)[n] ��

resi+1[n]
��

0

0 �� H i(XW ,Gm)/n
δ �� H i+1(XW , µn) �� H i+1(XW ,Gm)[n] �� 0

(5.28)

from which we deduce an isomorphism δ
i

n
: ker(resi+1[n]) → coker(resi/n) for any

pair of integers i, n. Passing to the limit over all n, we obtain a canonical isomor-

phism

δ
i : ker(resi+1

|tors) → coker(resi ⊗ 1) (5.29)

where resi ⊗ 1 is the obvious map H
i(Xsm,Gm)⊗Q/Z → H

i(XW ,Gm)⊗Q/Z.

Proposition 5.6.2. Let X/K be a smooth, projective, geometrically connected

curve over K such that X(K) �= ∅. The restriction maps resi : H i(Xsm,Gm) →

H
i(XW ,Gm) are described by the following exact sequences:

0 → H
1(Xsm,Gm)

res1
→ H

1(XW ,Gm) → H
1(W,Gm) → 0 (5.30)

0 → Br(K) → H
2(Xsm,Gm)

res2
→ H

1(W,Pic0
X
) → 0 (5.31)

0 → H
1(W,Z)⊗Q/Z → H

3(Xsm,Gm)
res3
→ H

3(XW ,Gm) → 0. (5.32)

Proof. The map of Hochschild-Serre spectral sequences computing smooth and Weil-
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smooth cohomology gives us a map of short exact sequences

0 �� 0 ��

��

H
1(Xsm,Gm)

∼ ��

res1

��

H
0(G,PicX) ��

�
��

0

0 �� H1(W,Gm) �� H1(XW ,Gm) �� H0(W,PicX) �� 0

(5.33)

coming from the long exact sequences of low degree. That the non-zero map in the

top row is an isomorphism follows from X(K) �= ∅. The existence of (5.30) follows

by applying the Snake Lemma.

To prove the second existence of the second exact sequence, note thatH2(Xsm,Gm)

is a torsion group, so ker(res2tors) = ker(res2). We will show that there is a natural

identification ker(res2) = Br(K). The long exact sequences of low degree from the

Hochschild-Serre spectral sequences give us a map of short exact sequences

0 �� Br(K) ��

��

H
2(Xsm,Gm) ��

res2

��

H
1(G,PicX) ��

��

0

0 �� 0 �� H2(XW ,Gm)
∼ �� H1(W,PicX) �� 0.

(5.34)

It follows from (4.1.3) and (4.1.5) thatH1(G,PicX) can be identified with the torsion

subgroup of H1(W,PicX) via the restriction map.

On the other hand, consider the long exact sequence in W -cohomology of

0 → Pic0
X

→ PicX → Z → 0. Since X(K) �= ∅, any rational point determines a

Weil-equivariant degree 1 divisor class on X̄, hence the map deg : H0(W,PicX) → Z
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is surjective. The relevant part of the long exact sequence now reads

H
0(W,PicX)

deg
→ Z

0
→ H

1(W,Pic0
X
) → H

1(W,PicX) → Z → 0, (5.35)

and we have an identification H
1(W,Pic0

X
) = H

1(W,PicX)tors. That (5.30) and

(5.31) are exact is now clear.

The only remaining task is to identify the kernel of res3. By (5.29) we have an

identification ker(res3) = coker(res2 ⊗ 1). But as H2(Xsm,Gm) is torsion, this last

cokernel can be identified with H
2(XW ,Gm) ⊗ Q/Z = H

1(W,PicX) ⊗ Q/Z. The

map on cohomology induced by the degree map gives an isomorphism of this last

group with H
1(W,Z)⊗Q/Z, since H

1(W,Pic0
X
)⊗Q/Z = 0.

With the above comparison theorem, we can reprove the main result of [9] for

curves X/K containing a rational point.

Theorem 5.6.3. Suppose that X/K is a smooth, projective, geometrically con-

nected curve, such that X(K) �= ∅. Then the Lichtenbaum pairing H
2(Xsm,Gm)⊗

H
1(Xsm,Gm) → Q/Z induces an isomorphism H

2(Xsm,Gm) → H
1(Xsm,Gm)∗.

Proof. The map induced by the Lichtenbaum pairing fits into the diagram

0 �� Br(K) ��

�
��

H
2(Xsm,Gm) ��

��

H
1(W,Pic0

X
) ��

�
��

0

0 �� Z∗ �� H1(Xsm,Gm)∗ �� Pic0
X
(K)∗ �� 0

(5.36)

where the top row is the exact sequence of (5.31). The result follows by the Five

Lemma.
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