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Bioengineering applications require materials that offer tunable and precise 

control over material properties. In particular, hydrogels of the polysaccharide, alginate 

have been widely studied for applications such as drug-delivery vehicles, matrices for 

encapsulation of cells, and scaffolds for tissue engineering. The ability of alginate to form 

a physically cross-linked hydrogel under mild conditions is a key factor for many 

applications. Traditionally, alginate gelation has been induced by the addition of divalent 

ions like calcium (Ca2+). In this work, we explore new ways to induce gelation of alginate 

or its derivatives. These new routes are of interest because they can allow researchers to 

circumvent current limitations and moreover they can also enable new applications. 

Three new concepts are explored: (1) ionic gelation activated by light; (2) ionic gelation 

activated by an enzyme and its substrate; (3) gelation of hydrophobically modified 

alginate mediated by biological cells.  

In our first study, we demonstrate a concept for ionic gelation of alginate in 

response to light, which enables us to create chemically erasable and spatially selective 

patterns of alginate gels. We impart light responsiveness by combining alginate, an 

insoluble calcium vector (e.g., CaCO3) and a light responsive component, viz. a 



photoacid generator (PAG). Upon UV irradiation, the PAG dissociates to release H+ ions, 

which react with the CaCO3 to generate free Ca2+ in-situ. In turn, the Ca2+ ions cross-link 

the alginate to form a gel. We show photopatterning of alginate gels, which are used to 

entrap contents (e.g., microparticles) and subsequently release them by a Ca2+ chelator.  

In our second study, we demonstrate enzymatic gelation of alginate. Here, we use 

an enzyme/substrate reaction to generate H+ ions. The components of our system are 

glucose oxidase (GOx, enzyme), glucose (substrate), alginate and CaCO3. First, GOx 

catalyzes oxidation of glucose to generate H+ ions. These H+ ions solubilize CaCO3 and 

release free Ca2+ ions in-situ. In turn, Ca2+ ions cross-link alginate chains into a gel. A 

sol-gel transition is observed only when GOx senses and catalyzes glucose. By exploiting 

the specificity of the enzyme for its substrate, we use this concept to build a visual test for 

the presence of glucose in an unknown product.   

In our final study, we induce gels by combining a hydrophobically modified (hm) 

derivative of alginate with biological cells. Gelation occurs due to hydrophobic 

interactions between the grafted hydrophobes and the bilayers of biological cells. The 

polymer chains thus get attached to the cells and bridge the cells into a three-dimensional 

network. This gelation can also be reversed (to release the cells) by addition of a 

supramolecule, α-cyclodextrin, which has a hydrophobic binding pocket that binds to the 

hydrophobes. Cell gelation by hm-alginate may be useful in cell culture and tissue 

engineering applications. As a step towards these potential applications, we show that the 

process of gelation by hm-alginate is benign to the cells. 
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Chapter 1 

INTRODUCTION AND OVERVIEW 

1.1. PROBLEM DESCRIPTION AND MOTIVATION 

Biomedical and bioengineering applications require materials that offer tunable 

and precise control over material properties.4-6 An important class of materials in such 

applications are hydrogels, which are connected networks of polymer chains that are 

swollen with water. Hydrogels of naturally occurring biopolymers, such as proteins and 

polysaccharides, are particularly attractive due to their nontoxicity and biocompatibility. 

Among the polysaccharides, sodium alginate, an anionic polysaccharide derived from 

brown algae, has emerged as a material of choice for creating hydrogels, especially for 

cell encapsulation and tissue engineering.5 This polymer and its gelation, i.e., conversion 

from a liquid state to a gel state, will be the focus of this dissertation. 

Because of the tremendous interest in alginate as a biomaterial, there has been 

considerable effort into elucidating new routes for alginate gelation. Conventionally, 

alginate hydrogels are formed by addition of a soluble calcium salt to alginate solutions. 

The Ca2+ ions serve to connect or cross-link adjacent linear chains of alginate in water 

and thereby generate a cross-linked hydrogel. However, the addition of Ca2+ ions directly 

to the polymer solution creates an inhomogenous gel structure.7 To overcome the 

problem of inhomogeneity, alginate gelation has been carried out using in situ generated 

Ca2+ ions. This method uses the time-dependent hydrolysis of glucono--lactone (GDL) 
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to generate gluconic acid, which in turn reacts with insoluble calcium carbonate (CaCO3) 

particles to generate free Ca2+.7 Gelation via GDL has been shown to give rise to more 

homogenous alginate gels.  

While alginate gelation can be induced by Ca2+,  many researchers have sought to 

find unconventional ways to accomplish the same. For example, alginate gelation has 

been reported to occur under the action of external stimuli like light,8,9 electricity,10,11 and 

temperature12 or even with uncommon chemical inputs (e.g., enzymes or substrates). 

Extending the gelation phenomena to these new routes often imparts unique properties 

and applications to these gels (for example, light-induced gelation can be made to occur 

in a spatially selective manner). Gelation of a chemically modified derivative of alginate 

has also been made to occur upon activation of an enzymatic reaction13 or in conjunction 

with biological cells.14 Most of the above examples of alginate gelation have involved 

rather complex steps, e.g., complicated synthesis schemes to generate stimuli-responsive 

alginate derivatives or photoresponsive molecules.   

The aim of this dissertation is to explore new or uncommon concepts for gelation 

of alginate and its derivatives. Our focus is on relatively simple approaches that avoid 

labor-intensive chemical synthesis and can be conducted with inexpensive chemicals and 

materials that are readily available. Simple approaches have the advantage that they can 

be easily used (and adapted) by other researchers or even scaled-up for commercial use. 
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1.2. PROPOSED APPROACH 

 In this dissertation, we will demonstrate three new concepts for alginate gelation, 

as described below. 

1.2.1. Light-Activated Ionic Gelation of Alginate

In Chapter 3, we demonstrate a new and simple concept for ionic gelation of 

alginate in response to light. Our approach involves combining an insoluble salt of 

calcium (e.g., calcium carbonate, CaCO3) with an aqueous solution of sodium alginate 

along with a third component, a photoacid generator (PAG). Upon UV irradiation, the 

PAG dissociates to release H+ ions, which react with the CaCO3 to generate free Ca2+. In 

turn, the Ca2+ ions cross-link the alginate chains into a physical network, thereby 

resulting in a hydrogel. As a step toward potential applications, we show the ability to 

photopattern a thin film of alginate gel onto a glass substrate under mild conditions. 

1.2.2 Enzymatic Gelation of Alginate 

In Chapter 4, we present a new concept by which ionic gelation of alginate occurs 

in response to the addition of an enzyme and its substrate. Similar to the light-responsive 

alginate mentioned above, this approach also involves combining an insoluble salt of 

calcium (CaCO3) with an aqueous solution of sodium alginate. The additional 

components here are the enzyme, glucose oxidase (GOx) and its small-molecule substrate 

glucose. Addition of glucose to alginate/CaCO3/GOx triggers a cascade reaction which 

leads to gel formation. First, glucose gets oxidized by GOx to generate gluconic acid, 

which then releases H+ ions. Next, the H+ ions react with CaCO3 to generate free Ca2+ 
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ions in situ. These Ca2+ ions crosslink alginate chains to form a Ca-alginate gel. A 

notable aspect of this enzymatic gelation scheme is that gelation of alginate is very 

specific: i.e., it occurs only when the right substrate (glucose) is added, but not upon 

addition of analogous small molecules like fructose or sucrose. 

1.2.3. Cell-mediated Gelation of an Alginate Derivative 

In Chapter 5, we describe gelation of an alginate derivative in conjunction with 

biological cells. The derivative used in this context is hydrophobically modified (hm) 

alginate, formed by grafting alkyl tails (hydrophobes) to the backbone of the polymer. 

We show that hm-alginate gels a variety of biological cells (blood, cancer cells, 

endothelial cells). Gelation occurs because of hydrophobic interaction between the 

grafted hydrophobes and the hydrophobic lipid membrane of biological cells. The 

polymer chains thus get attached to the cells and bridge the cells into a three-dimensional 

network. This gelation can also be reversed (to release the cells) by addition of a 

supramolecule, α-cyclodextrin, which has a binding pocket that binds to the hydrophobes. 

1.3. SIGNIFICANCE OF THIS WORK 

The studies described in this dissertation are potentially significant from both 

scientific and practical standpoints. From a scientific point of view, the light-activated 

alginate gelation method in Chapter 3 offers a route to build spatial patterns of soft 

materials by combining the principles of triggered self-assembly and photolithography. 

This approach can be extended to other biopolymers such as pectin. Inspired by this 

study, other researchers have also extended the same approach to light-activated gelation 
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of peptides.15 Regarding the enzymatic gelation of alginate (Chapter 4), the significance 

of this approach lies in the fact that it couples the specificity of enzymes to their substrate 

with an unrelated macroscopic assembly process (gelation).  Alginate gelation can be 

caused by a variety of divalent or trivalent cations in addition to Ca2+, i.e., it is not very 

specific. However, the GOx enzyme acts only on glucose and not on similar molecules 

like fructose and we are able to impart this specificity to the gelation process. Lastly, our 

study in Chapter 5 offers a simple and benign way to connect cells into a polymer-

bridged network structure while still remaining viable. We believe this is a step towards 

the bottom-up assembly of cell clusters and tissue. Gels of cancer cells may also serve as 

a platform to test and discover new anti-cancer drugs.   

The three above studies also could prove to be useful for specific applications. 

Light-responsive alginate gelation may be useful in the creation of new biomedical 

devices or biosensors. Spatially patterned gels may be employed in combinatorial studies 

for drug discovery. Enzymatic gelation of alginate is directly applicable as a simple way 

to test for the presence of glucose in food products. Finally, the use of hm-alginate to gel 

blood cells has immediate utility in the treatment of severe bleeding injuries, i.e., this 

polymer can serve as a hemostatic material for use by the military, emergency 

responders, and trauma surgeons. In addition, gels of hm-alginate and cells could be 

potentially applicable as injectable biomaterials. Overall, our research will help to 

increase the importance and utility of alginate as a biomaterial. 
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Chapter 2 

BACKGROUND 

 

 This dissertation is focusses on gelation of alginate and its derivatives in response 

to different stimuli. In this chapter, we begin with a brief introduction to alginate and its 

properties. We then switch to the introductions of other important components of the 

gelation systems which are presented in Chapter 3, 4 and 5. In particular, we briefly 

describe background about photoacid generators, glucose oxidase, hydrophobically 

modified alginate and cyclodextrins. After that, we describe the techniques that we used 

to study the gelation system, such as rheology and microscopy. 

 

2.1. ALGINATE 

Sodium alginate, an anionic polysaccharide derived from brown algae, is a linear 

unbranched polymer containing blocks of 1,4-linked β-D-mannuronic (M) and α-L-

guluronic (G) residues. It is a block copolymer comprised of sequences of M blocks, G-

Figure 2.1. Chemical structure of sodium alginate  
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blocks and some interspersed MG blocks.16. Figure 2.1 shows a representative chemical 

structure of alginate. In water, sodium alginate forms low-viscosity solutions (sols)  

These sols can be converted to physical hydrogels by ionic crosslinking with 

multivalent cations  (like Ca2+, Ba2+, Al3+, etc).6 As shown by Figure 2.2, Ca2+ ions 

electrostatically bind to the carboxylic acid groups in the G-blocks of adjacent alginate 

chains. This creates domains where the Ca2+ ions are sequestered within the G blocks like 

eggs in an egg-box; as a result these zones are called “egg-box” junctions.17,18 When such 

junctions pervade the volume, the alginate chains are connected into a volume-filling 

three-dimensional network and thus an elastic hydrogel is formed. An advantage of these 

 

Figure 2.2. (a) Schematic illustration showing sol-gel transition of alginate upon addition 
of calcium ions. (b) Proposed structure of “egg-box” junctions in ca-alginate gel.   
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ionically cross-linked gels is that they can be reversed (or ungelled) under mild 

conditions. Upon addition of calcium chelators (e.g., sodium citrate) to Ca-alginate gels, 

they preferentially bind to calcium ions and thereby disrupting the cross-links between 

the alginate polymers which causes its un-gelation. 

2. 2. PHOTOACID GENERATORS 

Photoacids generators (PAG) are class of molecules which generate acid moieties 

in response to light. They have been extensively used in cationic polymerizations and 

photolithographic applications.19 Broadly, these ionic photoacid generators can be 

classified into diaryliodonium salts and triarylsulfonium salts with different substituent 

groups and counter ion combinations. Few notable examples are: diphenyliodonium 

Figure 2.3. Mechanism of acid generation by photolysis of diphenyliodonum nitrate. 
Upon UV irradiation, diphenyliodonium nitrate forms a mixture of hydrophobic 
byproducts (including Iodobenzene) and generates H+ ions which causes a pH decrease in 
the reaction mixture.   
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nitrate, diphenyliodonium p-toluenesulfonate, diphenyliodonium hexafluorophosphate, 

triphenylsulfonium triflate 

 

 Although there are various commercially available products, the important factors 

that determine a PAG’s successful use in an application are its solubility, amount of acid 

generated and its wavelength sensitivity. In the current study, we used a cationoic 

photoacid generator, diphenyliodonium nitrate which is commercially available from 

Sigma and is relatively inexpensive. It has its primary absorption peak at 203 nm and 

secondary absorption peak at 226 nm. Upon UV irradiation, diphynliodonium nitrate 

dissociates into a mixture of hydrophpobic compounds (including iodobenzene, 2-,3-,4- 

iodobiphenyls, biphenyls) and acid moieties (H+).19 Figure 2.3 shows a mechanism for 

ultraviolet light induced acid generation of diphenyliodonium nitrate.  

  

2. 3. GLUCOSE OXIDASE 

 Glucose oxidase is an oxidoreductase enzyme that catalyzes oxidation of β-D-

glucose to gluconic acid and hydrogen peroxide by using molecular oxygen as a co-

substrate.20 The molecular weight of GOx ranges between 130-170 kDa.20 It is widely 

used in food applications, sensing applications (glucose detection kits) and 

biopharmaceutical applications.20  
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2.4. HYDROPHOBICALLY MODIFIED ALGINATE 

Hydrophobically modified alginate (hm-alginate) was synthesized by addition of 

hydrophobic moieties to the hydrophilic alginate backbone. In this particular study, we 

focused on attaching surfactant (octylamine) based hydrophobic molecules to alginate 

backbone.  Based on previously reported studies, hm-alginate can be synthesized by three 

different reaction procedures: (i) using sodium periodate. (ii) using tertiary butyl alchohol 

(TBA) and (iii) using 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). 

Yang et al.1 reported hm-alginate synthesis using sodium periodate. Figure 2.4 

shows reaction mechanism to synthesize alkyl hydrophobe grafted hm-alginate. Briefly, 

aqueous solution of alginate was reacted with sodium periodate to generate reactive 

dialdehyde groups on alginate backbone. Oxidized alginate is then reacted with 

octylaamine (or other amine ending hydrophobe) followed by subsequent reduction of 

C=N bond using sodium cyanoborohydride and filtered to obtain hm-alginate. A 

disadvantage with this mechanism is that initial oxidation with sodium periodate also 

causes chain scission which leads to a dramatic decrease in molecular weight.  

Figure 2.4. Reaction scheme (adapted from Yang et al.1) for synthesis of hm-alginate 
using sodium periodate.
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Eslaminejad et al.3 reported synthesis of hm-alginate using TBA. Figure 2.5 

shows scheme of reactions for preparation of C18 hydrophobe grafted alginate. Briefly, 

sodium ions were first replaced with TBA (first by neutralization with sodium hydroxide 

followed by reaction with TBA). TBA substituted alginate was lyophilized, redissolved 

in DMSO and then reacted with alky bromide hydrophobe to graft alkyl hydrophobes on 

alginate. After the grafting reaction, remaining TBA ions were replaced with sodium ions 

and then purified to get do hydrophobically modified alginate.  

Figure 2.5. Reaction scheme (adapted from Eslaminejad et al.3) for synthesis of hm-
alginate using tertiary butyl alchohol.
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 Nystrom et al.2 reported synthesis of hm-alginate using EDC. Figure 2.6 shows 

reaction scheme for synthesizing hm-alginate using EDC. Briefly, aqueous solutions of 

alginate are acidified using hydrochloric acid to a pH around 3.4 and then EDC is added 

to the reaction mixture. EDC reacts (and activates) carboxylic acid groups on the alginate 

to form o-Acylisourea based intermediate which then quickly reacts with amine groups of 

the hydrophobe to form a hm-alginate with stabile amide bond between alginate and the 

hydrophobe. Acetone is added to the reaction mixture to precipitate hm-alginate.  

Figure 2.6. Reaction scheme for synthesis of hm-alginate using EDC.
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2. 5. CYCLODEXTRINS 

Cyclodextrins (CDs) are cyclic oligosaccharides containing D-(+) glucopyranose 

units attached by α-(1,4) glucosidic bonds, as shown in Figure 2.7.21 They are rigid, 

truncated cone-shaped structures, with an internal cavity of size 5 to 8 Å depending upon 

the number of glucopyranose units. The wide side of the truncated cone is bordered by 

the secondary hydroxyl groups (2-OH and 3-OH), while the primary hydroxyl groups 

(6-OH) are on the narrow side.  The molecule is stiffened by hydrogen bonding between 

the 2-OH and 3-OH groups around its outer rim. Note that all hydroxyl groups are located 

on the outside of the molecular cavity, thereby making the outer surface hydrophilic. On 

the other hand, no hydroxyl groups are located in the inner cavity, which is thus 

hydrophobic. CDs thus have hydrophilic outer surfaces and hydrophobic inner cavities. 

Because of their unique structure, CDs can form host-guest inclusion complexes with 

various hydrophobic guest molecules or hydrophobic parts of these molecules.22-26 Note 

that the bonding between the CD and the guest is through non-covalent interactions. In 

Figure 2.7. Truncated cone-shaped conformation of α-Cyclodextrin.2 
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chapter 5, we will be using α-CD (which has six glucose units) to sequester hydrophobes 

on hm-alginate chains. 

2.6. CHARACTERIZATION TECHNIQUE – I: RHEOLOGY 

Rheology is formally defined as the study of flow and deformation in materials.27 

Rheological measurements provide important information on soft materials, specifically 

on the relation between microstructure and macroscopic properties. These measurements 

are typically performed under steady or dynamic shear. In steady shear, the sample is 

subjected to a constant shear-rate   (e.g. by applying a continuous rotation at a fixed rate 

on a rotational instrument), and the response is measured as a shear-stress . The ratio of 

shear-stress  to shear-rate   is the (apparent) viscosity . A plot of the viscosity vs. 

shear-rate   is called the flow curve of the material.  

Rheological experiments can also be conducted in dynamic or oscillatory shear, 

where a sinusoidal strain 0 sin( )t    is applied to the sample. Here 0 is the 

strain-amplitude (i.e. the maximum applied deformation) and  is the frequency of the 

oscillations. The sample response will be in the form of a sinusoidal stress 

0 sin( )t      which will be shifted by a phase angle  with respect to the strain 

waveform. Using trigonometric identities, the stress waveform can be decomposed into 

two components, one in-phase with the strain and the other out-of-phase by 90°: 

0 0sin( ) cos( )G t G t         

where G′  is the Elastic or Storage Modulus and G″ is the Viscous or Loss Modulus.  
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The physical interpretations of the two moduli are as follows. The elastic modulus 

G′ is the in-phase component of the stress and provides information about the elastic 

nature of the material. Since elastic behavior implies the storage of deformational energy, 

this parameter is also called the storage modulus. The viscous modulus G″, on the other 

hand, is the out-of-phase component of the stress and characterizes the viscous nature of 

the material. Since viscous deformation results in the dissipation of energy, G″ is also 

called the loss modulus. For these properties to be meaningful, the dynamic rheological 

measurements must be made in the “linear viscoelastic” (LVE) regime of the sample. 

This means that the stress must be linearly proportional to the imposed strain (i.e., moduli 

independent of strain amplitude). In that case, the elastic and viscous moduli are only 

functions of the frequency of oscillations , and are true material functions. A log-log 

plot of the moduli vs. frequency, i.e. G′() and G″(), is called the frequency spectrum 

of the material and represents a signature of the material microstructure.  

The important advantage of dynamic shear is that it allows us to characterize 

microstructures without disrupting them in the process. The net deformation imposed on 

the sample is minimal because the experiments are restricted to small strain amplitudes 

within the LVE regime of the sample. As a result, the linear viscoelastic moduli reflect 

the microstructures present in the sample at rest. This is to be contrasted with steady 

shear, where the material functions are always obtained under flow conditions 

corresponding to relatively drastic deformations. We can therefore correlate dynamic 
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rheological parameters to static microstructures, and parameters under steady shear to 

flow-induced changes in microstructure.  

2.7. CHARACTERIZATION TECHNIQUE – II: OPTICAL MICROSCOPY

Phase-contrast microscopy, a technique frequently used to image cells, utilizes the 

relationship between diffracted light from the sample and undiffracted background light. 

28,29 In general, when light passes through an object, it is slowed down by ¼ of a 

wavelength in comparison with the undiffracted background light. However, ½ of a 

wavelength phase shift is needed in order to produce destructive interference that result in 

contrasting imaging. Based on this concept, the main components of a phase contrast 

microscope consist of an annular ring in the condenser and a phase plate in the back focal 

plane of the objective to achieve the required phase shift (Figure 2.8). The annular ring 

controls where the undiffracted background light will go. Undiffracted light, after passing 

through the plane of the sample, will focus on the back focal plane of the objective where 

it encounters the phase plate. The phase plate is modified to allow this light to travel 

through with a ¼ wavelength jump relative to the diffracted light from the sample. The 

resulting two ¼ wavelength differences (¼ wavelength for sample diffraction and ¼ from 

Figure 2.8. Schematic representation of light path in phase contrast microscopy (from 
www.microscopy.com)
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phase plate) is combined to produce ½ of a wavelength phase shift to produce the 

contrasting image 

Fluorescence microscopy is another technique used in cell measurements.29 In this 

work, we will use reflected-light fluorescence microscopy to image fluorescent particles 

embedded in alginate gels. As shown in Figure 2.9, the basic components of fluorescence 

microscope consist of a light source, a dichromatic light splitter, objective, and the 

detector. Excitation light, with short wavelength and high energy, is reflected by the 

dichromatic beam splitter through the objective and onto the sample. Upon excitation, the 

sample emits fluorescence in a lower energy wavelength which is then collected by the 

objective, passes through the dichromatic mirror and is imaged by detector.  

Figure 2.9. Schematic representation of light path in fluorescence microscopy (from 
http://en.wikipedia.org/wiki/Fluorescence_microscopy)
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We also used confocal microscopy in chapter 5 to image fluorescently labeled 

cells present in a 3D matrix. Confocal microscope is built on the concepts of fluorescent 

microscopes but has additional advantages in terms of eliminating out-of focus glare, 

ability to image thin optical slices of samples (for 3D reconstruction of objects). As 

shown in Figure 2.10, confocal microscope uses point illumination and a spatial pinhole 

(near the detector). By using this configuration it eliminates out of focus lights and 

detects light produced very close to the its focal planes. Imaging multiple focal planes 

allows us to reconstruct 3D structures of optical section of specimens.      

Figure 2.10. Schematic representation of light path in confocal fluorescence 
microscopy (from www.microscopyu.com)
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Chapter 3

LIGHT-ACTIVATED IONIC GELATION OF ALGINATE 

The results presented in this chapter have been published in the following journal article: 

Vishal Javvaji, Aditya G. Baradwaj, Gregory F. Payne, and Srinivasa R. Raghavan, 

“Light-activated ionic gelation of common biopolymers.” Langmuir, 27, 12591-12596 

(2011).  

3.1. INTRODUCTION 

The use of light as an external stimulus for tuning material properties is  being 

actively investigated by engineers and scientists.30-35 Compared to other stimuli such as 

temperature or electric fields, light offers significant advantages in that it can be directed 

precisely at a location of interest with micron-scale resolution and from a distance (i.e., 

avoiding direct contact). Accordingly, numerous researchers have been seeking to impart 

photoresponse to materials so that the properties of the material can be tuned by light. In 

the context of self-assembly, which involves weak, non-covalent interactions, there have 

been many attempts at creating assemblies that can be switched from one morphology to 

another using light. For example, light-responsive self-assembly has been used as the 

basis for photorheological (PR) fluids,36 which are fluids whose rheological properties 

can be tuned by light. One example is a system that undergoes a light-induced sol-to-gel 

(fluid-to-solid) transition due to the light-induced assembly of individual molecules into a 

nanofibrous network.32-34 Such self-assembly-based gelation is distinct from UV-

activated crosslinking (free-radical polymerization). Specifically, self-assembled gels are 
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weak networks that can be subsequently liquefied either by irradiation with a different 

wavelength of light or by changes in temperature, pH or composition.32-34  

Our lab has recently become interested in imparting photoresponse to assemblies 

such as micelles,37,38 reverse micelles,39 and nanoparticle networks40. While most 

previous work in this area focused on designing novel photoresponsive molecules (such 

as azobenzene-modified surfactants31,41 or molecular gelators32-34), we have focused on 

finding simpler routes to photoresponsive systems that involve no chemical synthesis, 

i.e., the materials can be prepared by mixing commercially available entities. For

example, we have created photoresponsive micelles by doping common surfactants with 

a cinnamic acid derivative.37,38 In another study, we developed a photoresponsive 

aqueous dispersion of clay nanoparticles that transformed from sol to gel upon UV 

irradiation.40 The concept in this case was to combine the nanoparticles with an 

amphiphilic stabilizer and a photoacid generator (PAG). PAGs are commercially 

available molecules that have been used for a long time in the microelectronics 

industry.42-45 Their distinctive property is that they get photolyzed by UV light to form an 

acidic moiety.42-45 In our system, the photolysis of the PAG caused the pH to drop by 

about 3 units, and in turn, the charges on the edges of the clay nanoparticles switched 

from negative to positive.40 This charge reversal drove the initially separated particles to 

cluster into a gel network.40  

In this study, we show how to impart photoresponsive properties to solutions of 

biopolymers. We again use a PAG as the photoactive component of the system. The 
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biopolymers employed here are sodium alginate and pectin, and the property shared by 

these is that their solutions undergo gelation in the presence of multivalent cations like 

Ca2+, Ba2+ or Al3+.6,17,46 Alginate, in particular, is a popular biopolymer that is extensively 

used for encapsulating biological cells and for other biomedical applications.6,7 For such 

applications, it would be advantageous to have an alginate formulation that could be 

crosslinked by light rather than by addition of ions. Indeed, two research groups have 

recently explored this very idea.8,9 One group synthesized a derivative of alginate 

modified with methacrylate groups, and this polymer was covalently crosslinked into a 

gel by a free-radical mechanism.8 A second group utilized a light-sensitive caged-calcium 

compound, which upon UV irradiation released Ca2+ ions that crosslinked alginate into a 

gel.9 These approaches required either additional chemical synthesis steps or the use of 

expensive molecules such as the caged calcium, which impedes their large-scale 

applicability. For example, while the latter method was suitable for use with small 

amounts of material in a microfluidic device, the authors noted that it was unsuitable for 

creating bulk gels.9 Also, with regard to covalently crosslinked alginate, one issue is that 

those gels cannot be liquefied (reversed) by addition of sodium citrate or other calcium 

chelators. The reversibility is a useful property because it permits the release from the gel 

of entrapped species such as cells or nanoparticles.   

Here, we report a simple photogelation scheme using relatively inexpensive, 

commercially available components that can be used to create bulk gels and films of 

alginate and other biopolymers. The gels are physically (non-covalently) crosslinked, 

allowing for subsequent reversal to a sol state. Our scheme for photogelation of alginate 
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is illustrated in Figure 3.1. The components of the aqueous system are sodium alginate, 

an insoluble calcium salt, typically calcium carbonate (CaCO3), and the photoactive PAG 

component, which here is diphenyl-iodinium nitrate. When the sample is irradiated with 

UV light, the PAG gets photolyzed to generate acid (H+). The acid triggers the 

dissolution of CaCO3 to generate free Ca2+ ions by the reaction shown. The Ca2+ ions 

then electrostatically bind to the L-guluronate (G) blocks of adjacent alginate chains to 

create crosslinks (“egg-box” junctions),18,47 and in the process an alginate gel is formed. 

The same method can be used with other Ca2+-responsive biopolymers, and we 

demonstrate this with a second polysaccharide, pectin. The gels are also shown to be 

reversible by addition of calcium chelators like sodium citrate. We note that our approach 

is analogous to gelation of alginate by in situ dissolution of an insoluble calcium salt 

upon the slow hydrolysis of D-glucono-δ-lactone (GdL) to gluconic acid – the difference 

here is that acid formation is triggered by light via the PAG.7,48  

Photogellable alginate solutions may be useful for the encapsulation of cells or 

biomolecules, especially since the use of light allows gelation to be realized in a local and 

spatially selective manner. Recently, there has been considerable interest in producing 

micro- or meso-scale patterns of alginate gels or films on various substrates as a means to 

interface soft biological components to hard devices.10,49,50 Towards this end, we 

demonstrate herein the creation of microscale, chemically erasable patterns of alginate 

hydrogel films using our photogellable alginate in conjunction with rudimentary 

photolithographic techniques 



3.2. EXPERIMENTAL SECTION 

Materials. Sodium alginate (product number W201502) was purchased from Sigma-

Aldrich. Its molecular weight was specified to be in the range of 12–40 kDa. Low-

methoxy (LM), deamidated pectin from fruit (product number 400505) was purchased 

from Carbomer. Its molecular weight was specified to be 500–600 kDa while its degree 

of esterification was 33–35%. Precipitated calcium carbonate (CaCO3) particles (mean 

particle radius of 70 nm) were obtained from Specialty Minerals, Birmingham, UK. 

Diphenyliodonium nitrate, a type of photoacid generator (henceforth abbreviated as 

PAG), was purchased from Sigma-Aldrich. Quantofix® calcium indicator strips were 

purchased from CTL Scientific. The calcium chelator salt, sodium citrate dihydrate 

(NaCit) was purchased from Fisher Scientific. Distilled-deionized (DI) water was used 

for all the experiments.   

Sample Preparation. Samples were prepared by combining the CaCO3 particles with a 

solution of sodium alginate and PAG in DI water. Each mixture was stirred overnight by 

a magnetic stirrer bar and was then sonicated using a Branson 1510 sonicator for 45 min 

at 40 kHz. Stock samples of 10-15 mL were prepared to enable multiple experiments. A 

similar procedure was used with the pectin samples; However, because the as-supplied 

pectin gave an acidic solution, it was first neutralized with 0.01 M NaOH to a pH 7 

before adding the PAG and CaCO3. 

Sample Response Before and After UV Irradiation. Samples were irradiated with UV 

light from an Oriel 200 W mercury lamp. A dichroic beam turner with a mirror 
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reflectance range of 280-400 nm was used along with a filter (< 400 nm) to access the 

UV range of the emitted light. Samples (2 mL) were placed in either a Petri dish of 

60 mm diameter or a 20 mL vial, covered with a quartz cover glass, and irradiated by UV 

through the cover. During irradiation, the sample was stirred by a magnetic stirrer bar.   

Rheological Studies. An AR2000 stress-controlled rheometer (TA instruments) was used 

to perform steady and dynamic rheology experiments. All rheological experiments were 

done at 25°C using a cone-and-plate geometry (40 mm diameter and 2° cone angle). A 

solvent trap was used to minimize drying of the sample during measurement. Dynamic 

stress sweep experiments were first performed on a sample to identify its linear 

viscoelastic (LVE) region and dynamic frequency sweeps were then performed within the 

LVE region.  

Hydrogel Patterning. 500 µL of a given sample was smeared on a portion of a glass 

slide and this region was then exposed to UV through a homemade photomask or stencil. 

After 20-25 min of UV exposure, the slide was rinsed with 1% NaCl to wash off the 

ungelled portions, thus revealing the photopatterned features. Certain samples were 

doped with a small amount of fluorescently-labeled, carboxylate-modified polystyrene 

latex particles (2 µm diameter; from Sigma-Aldrich), and the corresponding patterns 

were imaged by a fluorescence microscope (Olympus MVX10 Macroview). Images were 

analyzed using ImageJ software from NIH to quantify fluorescence intensity.  
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3.3. RESULTS AND DISCUSSION 

Figure 3.1. Schematic and visual depiction of UV-induced alginate photogelation. 
Sodium alginate (2 wt%) is combined with 15 mM of CaCO3 particles (insoluble) and 30 
mM of a photoacid generator (PAG). The resulting sample is a turbid dispersion (sol) and 
flows freely in the vial. Upon exposure to UV light, the PAG gets photolyzed and thereby 
releases H+ ions, which react with the CaCO3 to form soluble Ca2+ ions. These ions gel 
the alginate, and the sample holds its weight upon vial inversion. The crosslinks in the gel 
are domains of Ca2+ bridging adjacent chains, as shown in the schematic, and these are 
referred to as  “egg-box” junctions 

Figure 3.1 visually demonstrates the photogelling response of an alginate sample. 

The Ca2+-induced gelling ability of alginate is known to depend on its ratio of α-L-

guluronate (G) to β-D-mannuronate (M) units. It is the G units that have the ability to 

bind to Ca2+ ions, and for inter-chain crosslinking to occur, blocks of G units on adjacent 

chains must come into close proximity (resulting in “egg-box junctions”),18,47 as depicted 
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in Figure 3.1. For our photogelling experiments, we typically prepared a sample of 2 wt% 

of sodium alginate, 30 mM of solubilized PAG, and 15 mM of dispersed CaCO3 

particles. The particles were a nanosized precipitated form of CaCO3, with a mean 

particle radius of ~ 70 nm as stated by the manufacturer and confirmed by us using 

dynamic light scattering (DLS). Using sonication, these particles could be 

homogeneously dispersed in the polymer solution. No aggregation or settling of the 

particles was observed over a period of several hours after sonication, during which time 

the UV irradiation was conducted. As shown by the photograph in Figure 3.1, the initial 

mixture is a low-viscosity sol. When exposed to UV light for 45 min, the PAG gets 

photolyzed, releasing acid (H+).42-45 The acid reacts with the insoluble CaCO3 particles to 

generate free Ca2+ ions, which crosslink the alginate chains into a gel network.7,48 The 

resulting alginate gel is strong enough to hold its weight in the inverted vial (Figure 3.1); 

note also the stirrer bar trapped in the gel.51   

The above rheological changes were quantified using dynamic rheology. 

Frequency spectra, i.e., plots of the elastic modulus G and the viscous modulus G as 

functions of the frequency , are shown in Figure 3.2A for the above sample before and 

after UV irradiation. Before UV irradiation, the alginate/CaCO3/PAG mixture responds 

as a purely viscous sol: i.e., its G is a strong function of  (G ~ 1) while its G is too 

small to be measured accurately.52 On the other hand, after 45 min of UV exposure, the 

sample shows an elastic, gel-like response: i.e., in this case, G exceeds G over the range 

of frequencies tested and also G is nearly independent of frequency.52 From the data, the 

gel modulus (i.e., the value of G as   0) is about 40 Pa, which is comparable to 
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moduli reported previously for Ca2+-induced gels of alginate at similar concentrations.7 

Note that the value of the gel modulus depends on the source of the alginate, which 

influences its molecular weight, its ratio of G to M units, and the blockiness (distribution 

pattern) of the G units.7,17   

Figure 3.2: Dynamic rheological data demonstrating photogelling of aqueous solutions 
of two biopolymers: (A) alginate (2 wt%) and (B) pectin (0.9 wt%). In each case, the 
sample also contains 15 mM of CaCO3 and 30 mM of PAG. Before UV irradiation, both 
samples show a viscous response, with the viscous modulus G varying strongly with 
frequency and the elastic modulus G being negligible. After 45 min of UV irradiation, 
the samples are both converted into gels, which show an elastic response, i.e., G > G 
and with the moduli being nearly independent of frequency. The chemical structures of 
the two polymers are also shown.  
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To confirm the generality of our approach, we investigated photogelation of 

another biopolymer, pectin, which is also known to undergo Ca2+-induced 

crosslinking.17,46 Pectin is a polymer composed mostly of α-D-galacturonate (GA) 

residues, and its structure is shown in Figure 3.2B. In the case of a low-methoxy (LM) 

pectin, such as the one used here, a fraction of the carboxylic acid groups are esterified 

with methanol. Short blocks of GA units from adjacent chains can interact with Ca2+ ions, 

resulting in “egg-box junctions” (much like in the case of alginate; note that GA and G 

are almost mirror images) and thereby a hydrogel. 17,46 We used a 0.9 wt% solution of 

LM pectin, which was first neutralized with NaOH to a pH of 7 and then combined with 

30 mM of PAG and 15 mM of CaCO3 particles. The above mixture is initially a low-

viscosity sol, as indicated by its dynamic rheological response in Figure 3.2B: i.e., here 

again, its G ~ 1 while its G is too low to be measured accurately. Upon UV irradiation 

for 45 min, the sample is transformed into a gel that holds its weight upon vial inversion. 

Dynamic rheology confirms the gel-like character: i.e., G exceeds G over the range of 

frequencies and both moduli are nearly independent of frequency. Note that the gel 

modulus in the case of 0.9% pectin is about 150 Pa, which is higher than that of the 2% 

alginate gel.  

The above results show that our photogelation scheme can be easily applied to 

any Ca2+-responsive polymer without the need for any prior synthesis step. As stated 

earlier, the mechanism for photogelation involves release of free Ca2+ upon reaction with 

H+ produced by PAG photolysis. This mechanism is supported by a series of control 

experiments and related observations. As a first control, we confirmed that mixtures of 
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sodium alginate with CaCO3 (i.e., in the absence of PAG) did not gel upon exposure to 

UV radiation. Similarly, mixtures of alginate and PAG (i.e., in the absence of CaCO3) 

also showed no gelation upon exposure to UV light. Next, we measured pH changes 

caused by UV irradiation in samples containing alginate/PAG and alginate/PAG/CaCO3. 

In the former case, the pH dropped from ~ 7 to ~ 4, while in the latter case, the pH drop 

was from ~ 9 to ~ 7.4. These pH changes are consistent with release of acid upon PAG 

photolysis; the reason why the pH changes are not identical for the two cases is probably 

due to the buffering ability of Ca2+ salts. Next, we used a Ca2+ indicator strip to 

qualitatively confirm the UV-induced release of free Ca2+ when PAG and CaCO3 are 

both present. Together these results indicate that: (a) both PAG and CaCO3 are required 

for photogelation; (b) photolysis of PAG releases H+; and (c) the reaction of H+ and 

CaCO3 generates free Ca2+, which as expected, is effective at crosslinking alginate.  

To further probe the photogelation phenomenon, we performed additional 

experiments with alginate. First, the effect of UV irradiation time was studied and the 

results are shown in Figure 3.3. The sample again consisted of 2% alginate, 30 mM PAG 

and 15 mM CaCO3. 2 mL of the above sample was irradiated for different lengths of 

time, followed by rheological testing. Data from steady-shear rheology for the apparent 

viscosity vs. shear stress are shown in the figure. We plot the data vs. shear stress (rather 

than shear rate) because it clearly reveals the emergence of a yield stress in the sample. 

Before UV irradiation, the sample is a Newtonian liquid with a viscosity of 28 mPa.s. No 

appreciable changes in rheology occur with 5 min of UV exposure. However, after 10 

min of UV exposure, the sample viscosity is enhanced by a factor of 105 at low shear 
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stresses followed by a shear-thinning response at higher shear stresses. Further exposure 

to UV causes continued growth in the low-shear viscosity. After 45 min of UV exposure, 

the viscosity is very high (essentially infinite) at low shear stresses and then drops sharply 

around a stress of 3 Pa (which then is the yield stress of this sample52). Further UV 

exposure up to 120 min causes the yield stress to increase to ~ 8 Pa. Taken together, the 

data show that a macroscopic sample (2 mL) requires tens of minutes to reach a 

photogelled state. However, the rate of photogelling appears to be controlled by the rate 

of UV absorption by the PAG molecules (once UV is absorbed, the PAG  photolyzes in 

nanoseconds).37,40 This means that more rapid photogelling can be achieved for small 

sample volumes, and indeed this will be seen later in our experiments with thin alginate 

films. Similar trends in kinetics have been noted for other self-assembly-based 

photorheological fluids.37,40    

Figure 3.3. Effect of UV irradiation time on sample rheology. Steady-shear rheological 
data are shown for a sample containing 2% Alginate + 15 mM CaCO3+ 30 mM PAG 
before and after UV irradiation for various periods of time. The sample is transformed 
from a low-viscosity, Newtonian fluid to a gel with a yield stress 

Shear stress (Pa)

100 101

V
is

co
si

ty
 (

P
a.

s)

10-2

10-1

100

101

102

103

104

105

No UV

5 min

10 min

15 min
45 min

120 min



31

Next, we studied the effect of PAG concentration on photogelling. For this, we 

fixed a mixture of 2% alginate and 15 mM CaCO3, and to this we added varying amounts 

of PAG (5 to 30 mM). Steady-shear rheological data for the viscosity vs. shear stress are 

shown in Figure 3.4 for these samples after 45 min of UV exposure. The initial (before 

UV) viscosities of the samples were low and identical (data not shown). Samples with 

low amounts of PAG (5 or 10 mM) did not show a change in viscosity upon UV 

irradiation. However, samples with higher concentrations of PAG (13 or 30 mM) 

underwent photogelling, i.e., a significant (> 105) increase in low-shear viscosity and the 

emergence of a yield stress can be seen in Figure 3.4 for these samples. Thus, a minimum 

amount of PAG (> 13 mM) is required for photogelling a given alginate/CaCO3 sample. 

The above amount presumably correlates with the minimum concentration of Ca2+ 

required to form a sample-spanning network of alginate chains.  

Figure 3.4. Effect of PAG concentration on photogelling. Steady-shear rheological data 
are shown after 45 min of UV irradiation for samples containing 2% Alginate + 15 mM 
CaCO3 + varying amounts of PAG. 
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We then studied the effect of alginate concentration on photogelling. In this case, 

samples with 15 mM CaCO3 and 30 mM PAG were combined with varying amounts of 

alginate (0.5 to 3.5 wt%). The samples were UV-irradiated for 45 min and then studied 

by dynamic rheology (Figure 3.5).  All samples exhibited a viscous response before UV 

irradiation (data not shown). After UV irradiation, the sample containing 0.5% alginate 

shows a viscous or viscoelastic response in a dynamic frequency sweep (i.e., G > G, 

with both moduli varying strongly with frequency). Presumably, there are not enough 

alginate chains to form a sample-spanning network at this concentration. In comparison, 

samples with higher concentrations of alginate (1, 2, and 3.5%) all show a gel-like 

frequency response after UV exposure (i.e., G > G and negligible frequency 

dependence of the moduli). The alginate concentration only has a modest effect on the 

gel modulus, however: e.g., the modulus of the 3.5% alginate sample is only a factor of 2 

higher than that of the 1% alginate sample. 

Figure 3.5. Effect of alginate concentration on photogelling. Dynamic rheological data 
are displayed after 45 min of UV irradiation for samples containing different 
concentrations (wt.%) of sodium alginate along with 15 mM of CaCO3 and 30 mM of 
PAG. For the 0.5% alginate sample, both G and G are shown while for the rest of the 
samples, only G is shown.  
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Figure 3.6. (a) Schematic depiction of alginate photopatterning. The photogellable 
alginate sample is spread as a thin film and UV-irradiated through a mask. After rinsing, 
gelled regions corresponding to the pattern in the mask are revealed. (b) Alginate gel 
patterned as an array of ~ 900 mm dots using a steel photomask. Scale bar is 3 mm. (c), 
(d) Alginate gel patterned as adjacent letters of the alphabet using a stencil. Scale bars 
represent 5 mm. 



34

The above photogels of alginate and pectin can be easily converted back to 

solution state by addition of a calcium chelator such as sodium citrate (NaCit). Such 

chemical reversibility can be a useful property because it can allow entrapped species 

within a gel to be subsequently released. Here, we studied chemical reversibility of 

alginate photogels using NaCit. We began with a sample of 2% alginate, 30 mM PAG 

and 15 mM CaCO3, which was then exposed to UV to 45 min to create a photogel. To 

this we added a small amount (2 µL) of concentrated NaCit solution so as to bring the 

overall NaCit concentration in the sample to 100 mM. As expected, the sample 

immediately ungelled into a freely flowing solution because the Ca2+ cations detached 

from the alginate chains and instead became preferentially bound to the citrate anions.  

Finally, we describe the use of our photogellable alginate formulation for creating 

patterned films of alginate gels. As mentioned in the Introduction, there is considerable 

interest from the biomaterials community in forming patterns of alginate gels on various 

substrates.10,49,50 Such patterns have been created thus far mostly using chemical49,50 or 

electrochemical10 techniques. If patterning could instead be done by light,9 it would be 

easier, more convenient, and potentially amenable to higher resolutions. Moreover, 

photopatterning could make use of the techniques and infrastructure currently employed 

in photolithography. Here, as an initial step in this direction, we demonstrate a few basic 

photopatterning experiments with alginate. The inherent idea, as shown by Figure 3.6a, is 

that when a thin layer of alginate/CaCO3/PAG is exposed to UV light through a patterned 

mask, only the exposed regions get crosslinked into a solid gel. The unexposed areas can 

then be washed away to reveal the pattern corresponding to the mask. Figure 3.6b-d show 
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a few simple patterns created using a steel photomask with equally spaced holes or a 

commercial stencil. In this case, we used a mixture of 3 wt% alginate, 15 mM of CaCO3, 

and 70 mM of PAG as the sample formulation. This liquid sample was spread as a thin 

layer on a glass slide and UV-irradiated through the mask/stencil for 20-25 min, followed 

by rinsing with 1% NaCl. As can be seen, alginate gel films are formed on the glass slide 

in patterns corresponding to the respective masks, i.e., an array of microdots in the case 

of the steel mask (Figure 3.6b) and letters from the alphabet in the case of the stencil 

(Figure 3.6c,d).  

Figure 3.7. (a), (b), (c) Patterns of alginate gel with embedded fluorescent microparticles. 
Three different patterns are shown: (a) dots; (b) stripes; (c) squares, and in each case, the 
patterned regions shows green fluorescence from the microparticles. (d) Pattern erasure 
by incubation with sodium citrate (NaCit). The fluorescence intensity is observed to 
decrease with incubation time, and this is quantified in the plot. Scale bars in all images 
correspond to 2 mm.  
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Next, we show the use of these patterned gels for entrapment and release of 

microstructures. We used fluorescently labeled polystyrene latex microparticles (2 µm 

diameter) as a model payload, and we added these particles to the above sample of 

alginate/PAG/CaCO3. The resulting mixture was used to pattern gels of alginate on a 

glass slide using either the steel mask from above or other homemade masks.  Images of 

the patterns via a fluorescence microscope are shown in Figure 3.7 and all the patterns are 

observed to show green fluorescence due to the embedded microparticles. We then took 

the square pattern and exposed it to 10 mM of NaCit solution. As shown by the time-

lapse images in Figure 3.7d, the fluorescence from the patterned region decreased with 

time, and this decrease is quantified by the plots in Figure 3.7d. This pattern was 

completely erased in 50 mins under mild stirring. The decrease in fluorescence is due to 

the NaCit-induced erosion of the alginate matrix and the resultant release of the 

entrapped microparticles. Thus, patterns of alginate can be chemically erased under mild 

conditions, allowing release of embedded microstructures. The results suggest that our 

photogellable alginate formulation could be a useful material for interfacing cells or 

biomolecules to substrates in a spatially controlled fashion.        
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3.4. CONCLUSIONS 

We have presented a simple photogelation scheme for alginate and other 

biopolymers, wherein we combine alginate with nanoparticles of insoluble CaCO3 and a 

PAG. Upon exposure to UV, the PAG generates H+ ions, which solubilize the CaCO3 to 

produce free Ca2+, and these ions in turn crosslink the alginate into a gel. The scheme was 

extended to pectin in this study, and it can also be applied to other Ca2+-sensitive 

biopolymers. The method is simple because it involves no chemical modification of the 

parent polymers and uses relatively inexpensive, commercially available components. 

We have also used our photogellable alginate in photopatterning studies, wherein a 

patterned alginate gel is formed on a glass substrate by irradiating the solution through a 

photomask. The patterned gels can be used to immobilize payloads such as 

microparticles, and the patterns can be subsequently erased under mild conditions by 

subjecting the gels to a calcium chelator. We expect that photogellable alginate will prove 

to be a useful material for building the biology-device interface. 
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Chapter 4

ENZYMATIC GELATION OF ALGINATE 

The results presented in this chapter have been published in the following journal article: 

Yi Liu,*	 Vishal Javvaji,*	 Srinivasa R. Raghavan, William E. Bentley and Gregory F. 

Payne, “Glucose Oxidase-Mediated Gelation: A Simple Test to Detect Glucose in Food 

Products.” Journal of Agricultural and Food Chemistry, 60, 8963−8967 (2012). 

* These authors made equal contributions.

Author Contributions: 

The concept of enzymatic gelation of alginate was conceived by VJ and GFP. The use of 

this gelation for detecting sugars was conceived by GFP and YL. Implementation of these 

concept was spearheaded by YL and VJ. Rheological experiments and analysis were 

performed by VJ while the sugar detection experiments were performed by YL.  YL 

wrote the first draft of the manuscript with input from VJ, which was then edited and 

critically reviewed by all the authors. 
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4.1. INTRODUCTION 

Economic, political, and climatic instabilities affect the global sugar market, and 

historically the U.S. price for table sugar (sucrose) has been substantially higher than 

world prices. The abundance of starch and thus glucose syrup was an attractive 

alternative, but glucose is less sweet than sucrose. The discovery that the enzyme xylose 

isomerase could catalyze the conversion of glucose to the sweeter monosaccharide 

fructose54 coupled with advances in enzyme immobilization enabled the creation of large-

volume processes to generate high-fructose corn syrup (HFCS).55 HFCS emerged as a 

less expensive sweetener (compared to sucrose) and was broadly accepted into the 

marketplace (e.g., soft drinks) beginning in the early 1970s.56-58 At the same time that 

HFCS emerged as a major sweetener, there was an increase in the incidences of obesity 

and diabetes in affluent countries (e.g., the United States) leading to hypotheses and 

controversies over whether the timing of these observations reflects a coincidental 

correlation or a causal relationship.58-61 

Whereas the relative merits of sugar, glucose, and HFCS may be unresolved 

scientifically,62 many consumers have formed preferences and purchase products on the 

basis of the labeled ingredient statements.63 Unfortunately, ingredient statements may not 

be entirely trustworthy when a product is manufactured from many ingredients, each of 

which may have a supply chain that spans continents, cultures, and languages. 

Furthermore, strong cost incentives may encourage adulteration by substituting lower 

cost sweeteners (e.g., HFCS) for more expensive sugar. The existence of glucose in 

HFCS and other artificial sweeteners makes it a potential marker for the detection of non-
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sucrose sweeteners. Thus, a simple method to detect glucose on-site or in the home may 

allow buyers or consumers to make more informed decisions. Analysis of glucose in 

foods and beverages is challenging because of the complexity of the matrix and the 

structural similarities of various components (e.g., other sugars). A similar challenge was 

faced in the development of in-home tests for blood glucose, which became integral to 

the individualized management of diabetes.64-67 In this case, enzymes such as glucose 

oxidase (GOx) were enlisted to “recognize” glucose and generate an electrochemically 

active species (e.g., H2O2) that allows transduction into an electrical output.68-70 Here, we 

also enlist glucose oxidase to recognize glucose, but we transduce this recognition into a 

visually observable mechanical output. 

Figure 4.1 schematically illustrates the recognition−trans-duction approach used 

to detect glucose by inducing gelation of the polysaccharide alginate. First, GOx 

Figure 4.1 Schematic illustration of glucose oxidase (GOx)-mediated gelation of 
alginate. GOx-catalyzed oxidation of glucose generates protons, which solubilize the 
Ca2+ ions that trigger alginate’s hydrogel
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catalyzes the oxidation of glucose in the presence of oxygen to generate gluconic acid 

and hydrogen peroxide.71-73 The in situ-generated gluconic acid dissociates, and the 

protons react to solubilize CaCO3 and release Ca2+ ions. The released Ca2+ interacts with 

alginate to form the “egg-box” network junctions that serve as the physical cross-links 

responsible for the gelation of calcium alginate hydrogels.10,74-78  

Here, we demonstrate that the GOx-mediated oxidation of glucose can trigger 

gelation of the common food biopolymer alginate. GOx confers sugar selectivity to this 

process, whereas gel formation is a readily observable measure that requires no 

specialized instrumentation and is insensitive to color in the sample (compared to color-

based tests).  
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4.2. EXPERIMENTAL SECTION 

Materials. The following materials were purchased from Sigma-Aldrich: alginic acid 

sodium salt from brown algae (medium viscosity, molecular weight 80−120 kDa), D-(+)-

glucose (≥99.5%), D-(−)-fructose (≥99%), sucrose (≥99.5%), and GOx from Aspergillus 

niger (138800 U/g). Precipitated calcium carbonate (CaCO3) particles (70 ± 21 nm as 

reported by the manufacturer) were obtained from Specialty Minerals, Birmingham, UK. 

Syrup, table sugars, and beverages were purchased from local grocery stores.   

Sample Preparation. Alginate solutions (1−1.5%) were prepared by dissolving sodium 

alginate powder in distilled water, followed by stirring overnight; then CaCO3 (20−30 

mM) particles was dispersed into sodium alginate solution, followed by ultrasonication 

for 30 min. These alginate and CaCO3 levels are in excess of those required to form 

strong self-supporting gels. The alginate/CaCO3 thus prepared (pH ∼8.0) was stirred 

before use to ensure the particles remained homogeneously dispersed in the alginate 

solution. No aggregation or settling of the particles was observed over a period of several 

hours, during which time the gel-forming experiments were conducted. GOx solution was 

prepared by dissolving GOx (1000 U/mL) in phosphate-buffered saline (20 mM, pH 7.4). 

Purified sugars (glucose, fructose, or sucrose) were dissolved in water to a concentration 

of 0.5 M before use. Food products (e.g., beverages) containing different sugar-based 

sweeteners were diluted in water to levels of 30 mg sugars/mL on the basis of 

information provided on the ingredient statement. 
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Gel Formation. Typically, we prepared a stock suspension containing GOx (10 

U/mL)/alginate (1.5%)/CaCO3 (30 mM) and then mixed this stock suspension with a 

diluted solution containing the sugar-based product (30 mg sugars/mL). The mixed 

suspension (pH ∼7.5) was briefly vortexed and exposed to air for 1−3 h. Photographs 

were typically taken 1 h after the mixing. 

Rheology. Rheological measurements were performed on a Rheometrics AR2000 stress-

controlled rheometer (TA Instruments). A cone-and-plate geometry of 40 mm diameter 

with a 2° cone angle was used with a solvent trap to prevent drying. Time sweeps were 

typically performed at 10 rad/s with strains of 25−30% for liquid-like samples and 1% for 

gel-like samples. Dynamic stress sweep experiments were first performed on a sample to 

identify its linear viscoelastic (LVE) region, and dynamic frequency sweeps were then 

performed within the LVE region. All rheological experiments were conducted at 25 °C. 



44

4.3. RESULTS AND DISCUSSION 

In our initial study, we used rheology to demonstrate GOx-mediated gelation of 

an alginate/CaCO3 suspension. In the first experiment, a mixture of alginate (1%), CaCO3 

(20 mM), and glucose (40 mM) was prepared, and GOx (10 U/mL) was added to initiate 

the reaction. This sample was loaded onto the rheometer stage that had been set to 25 °C, 

and data were recorded 4 min after initiation of the reaction. Figure 4.2A shows that 

when GOx was added to the glucose/alginate/CaCO3 suspension, the elastic modulus (G′) 

and viscous modulus (G″) increased during the 180 min experiment. The increase in G′ 

was faster than that in G″, and after 14 min G′ exceeded G″, indicating that the solution 

was transitioning into a gel.79 Figure 4.2A also shows results for two controls lacking 

either glucose or GOx. For both controls, the moduli remained small and nearly constant 

over the course of the experiment, and G″ exceeded G′. These observations indicate that   

Figure 4.2. Demonstration that the GOx-catalyzed oxidation of glucose (Glc) triggers 
alginate gelation. (A) Time sweeps of rheological measurements show that both GOx 
(10 U/mL) and Glc (40 mM) are required to induce gelation of a mixture of alginate 
(1%) and CaCO3 (20 mM). (B) Vial inversion tests provide visual evidence that both 
GOx and Glc are required to form a self-supporting gel in 1 h. (C) Vial inversion tests 
show that gels 
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the controls remained solutions throughout the 180 min experiment. Thus, the results in 

Figure 4.2 provide a rheological demonstration that the GOx¬mediated oxidation of 

glucose can trigger the gelation of alginate as proposed in Figure 4.1 

Gel formation is a simple end-point measurement as it can be detected visually 

without the need for instrumentation.51 For instance, the results in Figure 4.2A can be 

reproduced qualitatively using a vial inversion test. For this test, we mixed alginate (1%), 

CaCO3 (20 mM), GOx (10 U/mL), and glucose (40 mM) in a 4 mL vial and exposed this 

mixture to air. Figure 4.2B shows that after 1 h of incubation, the vial could be inverted 

and the hydrogel that had formed could support its own weight. Controls lacking either 

Glc or GOx did not form gels as evidenced by the fact that they remained liquids as 

shown in Figure 4.2B 

 The limit for detecting glucose by a vial inversion method was estimated by 

observing gel formation at various glucose concentrations. In this experiment, we mixed 

alginate (1%), CaCO3 (20 mM), and GOx (10 U/mL) with various amounts of glucose 

and periodically observed whether the vial’s contents had undergone gel formation. 

Figure 4.2C shows that the gel time (the time required to form a self-supporting gel) 

decreased with increasing glucose concentration. Solutions prepared with >20 mM 

glucose formed gels within 1 h, whereas solutions prepared with 10 mM glucose formed 

weak gels only after 2 h of incubation. Solutions prepared with 5 mM glucose did not 

form gels even after overnight incubation. The photographs inserted in Figure 4.2C show 
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the vials for 10 and 50 mM samples after being incubated for 1 h. If we use 1 h as a 

reasonable incubation period, Figure 4.2C indicates that 20 mM is the limit for glucose 

detection by this vial inversion method. This detection limit is an order-of-magnitude 

lower than glucose levels typically present in beverages sweetened with HFCS. 80  

 Next we examined the sugar specificity of the GOx-mediated gel formation. In 

this study, 40 mM glucose, fructose, or sucrose was added into a suspension of alginate 

(1%), CaCO3 (20 mM), and GOx (10 U/mL), and these mixtures were exposed to air for 

Figure 4.3. GOx confers sugar selectivity to alginate gelation. (A) Dynamic frequency 
sweeps demonstrate that a suspension of GOx (10U/mL)/alginate (1%)/CaCO3 (20 mM) 
forms a hydrogel in the presence of 40 mM glucose (Glc) but not fructose (Fru) or 
sucrose (Suc) (samples incubated in air for 3 h; G′ values for controls were too low to 
measure accurately). (B) Vial inversion tests demonstrate sugar selectivity of GOx-
mediated gel formation.
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3 h. After incubation, the samples were loaded onto the rheometer stage and dynamic 

frequency sweeps were performed. Figure 4.3A shows that when glucose was present, the 

sample behaved as a soft solid with G′ exceeding G″ and both moduli being nearly 

independent of frequency. This behavior is consistent with the formation of a gel from 

the glucose-containing solution. Figure 4.3A also shows that the sucrose and fructose 

controls behave as viscous liquids with the viscous modulus (G″) varying strongly with 

frequency (note: the elastic modulus G′ is not shown for these controls because it was too 

low to be measured accurately). The rheological behavior for these controls confirms that 

neither fructose nor sucrose can induce a gel formation in the presence of glucose. 

The sugar selectivity for GOx-mediated alginate gelation is also apparent using a 

vial inversion approach. Using the same experimental conditions as for the above 

rheology experiment, Figure 4.3B shows that glucose (but not fructose or sucrose) 

triggers gel formation for the GOx/alginate/CaCO3 mixture. Thus, Figure 4.3 

demonstrates that GOx confers sugar selectivity to gel formation, and this gel formation 

can be observed without the need for complex instrumentation. 

 In subsequent studies, we examined the ability of this GOx-mediated gelation 

method to detect glucose in food products. For this, we prepared a stock suspension 

containing GOx (10 U/mL)/alginate (1.5%)/CaCO3 (30 mM). Two parts of this stock 

suspension were mixed with 1 part of a sugar-containing product that had been 

appropriately diluted (30 mg sugars/ mL) to obtain a reaction suspension containing 10 

mg/mL sugar.  



48

Our first sample was store-bought syrup containing HFCS. After mixing the 

diluted syrup with the stock suspension, the vial was left in air over 1 h. As shown in 

Figure 4.4A, a self-supporting gel was formed, indicating the presence of glucose (from 

HFCS). Concurrently, a control mixture lacking GOx was prepared, and Figure 4.4A 

shows that no gel formation was observed. Results from this control indicate that other 

ingredients in the syrup do not induce gel formation 

 Next we tested table sugar (pure cane sugar) by mixing a solution of this sugar 

with the stock suspension and exposing the sample to air for 1 h. As expected, Figure 

4.4B shows gels were not formed for samples containing table sugar either with or 

without GOx. Thus, Figure 4.4 shows that GOx-mediated alginate gelation can detect 

glucose in the syrup and distinguish it from table sugar  

Figure 4.4 GOx-mediated gel formation for samples containing highfructose corn syrup 
(HFCS) but not table sugar (sucrose). (A) Vial inversion tests show that HFCS induces 
gelation, whereas results from the control lacking GOx indicate that other ingredients in 
the syrup do not induce gelation. (B) Vial inversion tests show that table sugar does not 
induce gel formation. Samples were prepared by mixing 1 part of a solution containing 
sugar product (30 mg sugars/mL) with 2 parts of a stock suspension containing GOx (10 
U/mL)/alginate (1.5%)/CaCO3 (30 mM).
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Figure 4.5. GOx-mediated gel formation to “detect” non-table sugar sweeteners in 
selected beverages. (A) Vial inversion tests show gelation with an ice tea containing 
HFCS (ice tea I), but not with an ice tea containing “sugar” (ice tea II). (B) Vial 
inversion tests show gelation with a coffee drink containing glucose (coffee drink I) but 
not with a coffee drink containing “sugar” (coffee drink II). Samples were prepared by 
mixing 1 part of diluted beverage (30 mg sugars/mL) with 2 parts of a stock suspension 
containing GOx (10 U/mL)/alginate (1.5%)/CaCO3 (30 mM).
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As a proof-of-concept we examined the capability of GOx¬mediated gelation to 

detect glucose in beverage products. Our first example was a comparison of two brands 

of ice tea: the label for ice tea I reports “HFCS”, whereas the label for ice tea II reports 

“real sugar”. First, the ice tea was diluted in water to a sugars concentration of 30 

mg/mL, and then 1 part of this diluted ice tea was mixed with 2 parts of the stock 

suspension. After mixing, the vial was left in air for 1 h. As shown in Figure 4.5A, ice tea 

I induced gel formation consistent with the presence of glucose in the HFCS. Ice tea II 

was unable to induce gel formation, as expected for this sucrose-containing beverage. 

The controls (without GOx) did not gel, indicating no contribution of other ingredients in 

the ice teas to the gel formation  

As a second proof-of-concept, we examined two coffee drinks: the label for coffee 

drink I reports “glucose”, whereas the label for coffee drink II reports “sugar”. The gel-

forming experiments were performed as described above. Figure 4.5B shows that 

glucose-containing coffee drink I induced gel formation, whereas sugar-containing coffee 

drink II did not induce gel formation. In sum, the test results in Figure 4.5 demonstrate 

that GOx-mediated alginate gel formation allows a simple and rapid detection of glucose, 

which may serve as a marker for the presence of a non-sucrose sweetener.  

4.4. CONCLUSIONS 

In conclusions, we demonstrate a simple and rapid test for glucose-containing 

sweeteners. This method offers sugar selectivity due to the molecular recognition of the 

GOx enzyme and transduces recognition into a readily observable mechanical response 

(i.e., gel formation) that is independent of color in the sample. Furthermore, this method 
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employs common components (GOx and alginate) that should be safe in the kitchen. 

Thus, we envision this test could be used on-site by ingredient buyers or in homes, stores, 

or restaurants. More broadly, this work suggests that emerging research on enzyme-

induced gel formation for biomedicine81-84 may find broader applications in the food 

industry. 
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Chapter 5

CELL-MEDIATED GELATION OF AN ALGINATE 

DERIVATIVE

Chapter Contributions: 

The concept of cell gelation using associating polymers was previously demonstrated in 

our laboratory by Matthew B. Dowling (MBD) using a chitosan derivative. VJ extended 

this concept to the biocompatible alginate derivative (hm-alginate) discussed in this 

chapter. The synthesis of hm-alginate as well as the studies of this polymer in 

conjunction with cells was done by VJ with assistance from Hyuntaek Oh and Feili 

Huang. Prof. Ian M. White provided guidance for the cell culture and live-dead assays. 

VJ wrote the chapter, which was critically reviewed by the other authors. 

5.1. INTRODUCTION 

Biological cells are the building blocks of all organisms. Most cells in complex 

organisms, however, do not exist as discrete entities – instead, they are usually assembled 

into functional higher-order structures, viz. tissues and organs.85-90 The connection of 

cells into tissue is typically mediated by adhesive proteins embedded in neighboring cell 

membranes. When these connections proliferate across a finite volume, the resulting 

tissue is a squishy, gel-like material within which the cells are immobilized. Cells in a 

tissue are typically close-packed into aggregates and these are surrounded by the 

extracellular matrix (ECM), which is also a gel-like polymeric material 
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Inspired by the natural assembly of complex biological tissues from cells and 

ECM, scientists have begun to explore whether cells can be assembled ex vivo to create 

tissue mimics.87,88 A recent review by Taguchi discusses the growing area of “cellular 

assembly” and describes various approaches in this regard.88 It is worth emphasizing that 

cell assembly is at the heart of biomaterial and tissue engineering. The standard approach 

in tissue engineering is to culture cells within a polymeric hydrogel. In this case, the cells 

are passively entrapped as discrete structures in a three-dimensional (3-D) network of 

polymer chains. Direct connection or contact between adjacent cells occurs only at very 

high cell densities. 

Rather than the above typical case of passively embedding cells in a polymer 

network, an alternative can be envisioned. That is, a network can be formed in which the 

cells serve as active structural elements (nodes or junctions or crosslinks), with the 

various nodes being connected (bridged) by polymer chains. In such a scenario, each 

polymer chain is attached simultaneously to two or more adjacent cells and together these 

elements build a sample-spanning 3-D network. One example of such cellular assembly 

was shown by Mooney et al.14 who synthesized a derivative of the polysaccharide 

alginate with grafted cell-adhesive peptides (containing the RGD, i.e., arginine-glycine-

aspartic acid, motif). The polymer chains became bound to cell surfaces via their RGD 

domains, and the net result was the formation of a network of cells bridged by polymer 

chains 
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More recently, we and others have suggested that cell networking (gelling) can be 

induced in a simpler manner by hydrophobic interactions. In particular, we synthesized a 

hydrophobically modified (hm) derivative of the cationic aminopolysaccharide chitosan 

and combined this polymer with human blood. 91 We showed that hm-chitosan was able 

to convert a liquid suspension of blood cells into an elastic gel. To explain this gelation, 

we hypothesized that the polymer chains inserted their hydrophobes into the lipid bilayers 

of blood cells (due to their mutual hydrophobic affinity) as shown in Figure 5.1. In turn, 

this resulted in a network with the cells acting as junction points between polymer chains. 

Figure 5.1. Schematic of cell gelation using hydrophobically modified biopolymers. 
Polymer is shown schematically with its hydrophilic backbone in blue and the grafted 
hydrophobes in red. Upon addition of polymer to the cells, cells are crosslinked into a 
three-dimensional network (gel). Gelation is driven by insertion of hydrophobes into 
cell membranes (as depicted in the top inset); thereby the polymer chains connect 
(bridge) the cells into a self-supporting network.  

Cell Gels formed by connecting cells into a 
network using hm-alginate 

Hydrophobe
anchored in

cell membrane

Biological cells hm-Alginate
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 In contrast to hm-chitosan, native chitosan (with no hydrophobes) did not cause such 

gelation.91 

Based on previous studies, we hypothesize that hydrophobic interactions can be 

employed in a generic manner for cell gelation, i.e. it neither requires specific cells nor a 

specific polymer backbone (as long as hydrophobes are grafted to the backbone). The 

present study seeks to test this hypothesis, i.e., whether this gelation mechanism can be 

extended to a variety of cells and to different hm-polymers. Towards this end, we have 

studied several kinds of cells, including human or bovine blood, endothelial cells, and 

breast cancer cells. We have used a hydrophobically modified derivative of alginate (hm-

alginate). We chose alginate because it is a biocompatible and bioresorbable polymer that 

is widely used in tissue engineering and also as an implantable biomaterial. The chemical 

structure of hm-alginate is shown in Figure 5.2.  

Figure 5.2. Chemical structure of hm-alginate with alkyl hydrophobes.  
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Our results, as shown below, confirm the cell-gelling abilities of hm-polymers. 

Moreover, in the case of hm-alginate, we have assayed the viability of gelled cells and we 

find the cells to be mostly viable. We also demonstrate a unique aspect of hm-polymer-

mediated gelation of cells, which is that such gelation can be readily reversed by 

introducing the sugar-based supramolecule α-cyclodextrin (-CD). This is possible 

because the hydrophobic interactions that mediate gelation are weak, physical bonds. -

CD has a hydrophobic binding pocket that sequesters the hydrophobes present along the 

polymer and thereby eliminates the interaction between polymer chains and cells. Overall, 

cell gelling (networking) by hm-alginate is shown to be a simple, benign process, with its 

reversibility being an added benefit. This approach could have wide utility, e.g., in 

biomedical applications such as wound healing, tissue sealing, and for the injectable 

delivery of cells. In the long term, it could also provide a route towards the directed 

assembly of cell clusters and tissues. 

5.2. EXPERIMENTAL SECTION 

Materials. The polymer alginate was obtained from Sigma-Aldrich. Sodium alginate 

(product number A2033, from brown algae) had a molecular weight of 80,000–120,000. 

The following chemicals were also purchased from Sigma-Aldrich: n-octylamine,  and N-

(3-dimethylamino-propyl)-N-ethylcarbodiimide hydrochloride (EDC). The supra-

molecule -cyclodextrin (-CD) was obtained from TCI. Heparanized bovine blood was 

purchased from Lampire. Human umbilical vein endothelial cells (HUVEC) (product 

number: C2517A) was purchased from Lonza. Breast cancer cells (MCF7) were 

purchased from ATCC. MCF7 cell culture reagents: Dulbecco's modified eagle medium 
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(DMEM) containing high glucose, fetal bovine serum, pencilin, streptomycin, and 

trypsin-EDTA) were purchased from ThermoScientific. HUVEC cell culture reagents: 

endothelial growth media (EGM-2) and supplement EGM-2 bulletkit were purchased 

from Lonza. Live/Dead® assay kit for mammalian cells was purchased from Invitrogen. 

All chemicals and materials were used as received without further purification.  

Hydrophobically Modified Alginate (hm-alginate) Synthesis. hm-alginate with C8 

hydrophobes was synthesized by an amidation reaction with n-octylamine using EDC as 

the coupling reagent. The synthesis procedure was same as that described by Nystrom et 

al.2 The product was precipitated by adding acetone and separated by vacuum filtration. 

This purification step was repeated 5 times. The final product was recovered by vacuum 

drying at room temperature. The degree of hydrophobic modification was determined by 

1H-NMR as described previously.92 1H NMR spectra were taken on a Bruker AVANCE 

500MHZ spectrometer. Spectra were referenced to the 3-trimethylsilypropionic acid 

sodium salt-d4. The calculated degree of hydrophobic modification was 25 mol% of 

uronic acid residues in the alginate chains.  

Cell Culture and Cell Gelation. For culture of MCF7 cells, high-glucose DMEM media 

supplemented with 5L/mL of penicillin or streptomycin and 10% fetal bovine serum 

(FBS) was used. For HUVEC cells, EGM-2 media was first completed with EGM-2 

bulletkit (containing hydrocortisone, gentamicin or amphotericin-B, fetal bovine serum, 

growth factors, ascorbic acid, and heparin). Both cells were cultured separately in T75 

flasks in a 37°C incubator with 5% CO2. Cells were subcultured every 5-7 days by 
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trypsinization with 0.25%/0.02% trypsin/EDTA. To prepare cells for gelation 

experiments, confluent cells were harvested from the T75 flask, centrifuged to a pellet 

and re-suspended in 0.5 mL of cell growth media. Cell gelation was studied by adding 

stock solutions of the corresponding polymer to the above cell suspension, followed by 

slow mixing. In the case of alginate and hm-alginate, the polymers were dissolved in 

PBS.  In all cases, 0.9 wt% NaCl was added to the solutions for osmotic balance 

Rheological Studies. A TA Instruments AR2000 stress-controlled rheometer was used to 

perform steady and dynamic rheological experiments. All experiments were done at 25°C 

using a cone-and-plate geometry (40 mm diameter and 2° cone angle). A solvent trap was 

used to minimize drying of the sample during measurements. Dynamic frequency spectra 

were conducted in the linear viscoelastic regime of the samples, as determined by prior 

dynamic strain sweeps. 

Cyclodextrin Gel Reversal. A stock solution of 10 wt% -CD was prepared in 

deionized (DI) water and a small volume (200 µL) of this solution was added to 2 mL of 

the cell containing gel, followed by vortex mixing. Adding just a small volume of the 

α-CD solution ensured that the gel was negligibly diluted in the process.  

Live-Dead Assay. A solution containing 4 µM of live (calcien-AM) and dead (ethidium 

homodimer) assay reagent was prepared in PBS. To stain the cells, 10 µL of this solution 

was added to the cell-gel, incubated at room temperature for 15 min and then imaged on a 

confocal microscope (Leica SP5 X). For imaging calcein-AM, the excitation was done at 
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495 nm and emitted light was recorded using a 505–554 nm band-pass filter. For imaging 

ethidium homodimer, the excitation was done at 556 nm and imaging was done with a 

568-700 nm band pass filter. Cells were imaged within successive optical slices of 1.3 

µm thickness to visualize live cells (stained green) and dead cells (stained red) along 

different planes of the sample. Projections of these images along the XY plane (top view) 

and XZ plane (cross-sectional view) were then constructed using the Leica Application 

Suite. All images were obtained within 1 h of sample preparation.  
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5.3. RESULTS AND DISCUSSION 

Cell Gelation with hm-Alginate 

We explored cell gelation using hm-alginate (having C8 hydrophobes). One 

advantage of alginate derivatives including hm-alginate is that they can be dissolved in 

water at neutral pH. Our initial studies were done with heparinized bovine blood; note 

that the heparin ensures that the blood will not undergo the natural clotting cascade. To 

this blood, we added a solution of hm-alginate so that the concentration of polymer in the 

overall sample was 0.93 wt%. For comparison, a second sample was made by combining 

blood with an identical concentration of the parent alginate polymer. The mixture of hm-

alginate and blood quickly formed a gel that supported its weight in the inverted vial, as 

Figure 5.3. Effect of 0.93 wt% of hm-alginate or alginate on heparinized bovine blood. 
The photographs show that the hm-alginate/blood mixture (Photo1) is a self-supporting 
gel that holds its weight in the inverted vial whereas the alginate/blood mixture (Photo2)
is a freely flowing liquid. In (a) dynamic  of both samples is shown. The hm-alginate 
sample (closed symbols) displays the rheology of a physical gel (G’>G’’) whereas the 
alginate sample (open symbols) responds like a viscous sol. In (b) Steady-shear 
rheological data for the viscosity vs. shear stress are shown. The hm-alginate/blood 
mixture (red circles) show a significantly higher viscosity relative to both the 
alginate/blood mixture (yellow triangles) as well as a 0.93 wt% solution of hm-alginate 
with no blood (cyan hexagons).  
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shown by Photo 1 in Figure 5.3. In contrast, the mixture of alginate and blood remained a 

freely flowing liquid (similar to the blood alone), as indicated by Photo 2 in Figure 5.3.  

Rheological data confirm the differences between the above samples. Figure 5.3a 

presents data from dynamic rheology. The hm-alginate/blood sample shows the 

rheological signature of a weak gel, i.e., G > G over the frequency range, with both 

moduli showing negligible variation with frequency. On the other hand, the 

alginate/blood sample exhibits a viscous response: both moduli vary sharply with 

frequency and G > G at all frequencies. Next, Figure 5.3b presents data from steady-

shear rheology on the same samples. Here, the apparent viscosity is plotted as a function 

of shear stress. The alginate/blood sample displays a constant viscosity of ~ 0.2 Pa.s 

(Newtonian response). In contrast, the hm-alginate/blood sample shows a shear-thinning 

(non-Newtonian) response, with a high viscosity at low shear-stresses followed by a 

decrease in viscosity at higher shear stresses. The zero-shear viscosity, i.e., the viscosity 

in the low-shear limit, is ~1000 Pa.s, which is four orders of magnitude higher than that 

of the alginate/blood sample. The steep drop in viscosity around a stress of 2 Pa is 

indicative of a yield stress in the material, i.e., the sample flows negligibly at stresses 

below this value, consistent with its ability to hold its weight under vial inversion. Also, it 

should be noted that 0.93 wt% hm-alginate alone (without blood) is not a gel; rather its 

rheological profile (Figure 5.3b) is indicative of a viscous liquid with moderate shear-

thinning. The above data show that gelation of blood can be induced by hm-alginate (but 

not native alginate). Once again, this implies a cell network bridged by hm-alginate 
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Figure 5.4. Effect of 0.93 wt% of hm-alginate or alginate on heparinized bovine blood. 
(a)The photographs show that the hm-alginate/blood mixture (Photo1) is a self-
supporting gel that holds its weight in the inverted vial whereas (b) the alginate/blood 
mixture (Photo2) is a freely flowing liquid. In (c) dynamic of both samples is shown. 
The hm-alginate sample (closed symbols) displays the rheology of a physical gel 
(G’>G’’) whereas the alginate  sample  (open symbols) responds like a viscous sol. In 
(d) Steady-shear rheological data for the viscosity vs. shear stress are shown. The hm-
alginate/blood mixture (red circles) show a significantly higher viscosity relative to both 
the alginate/blood mixture (yellow triangles) as well as a 0.93 wt% solution of hm-
alginate ith no blood (cyan hexagons).  
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 chains, with the driving force being the affinity between the hydrophobes on the polymer 

and cellular bilayers (Figure 5.1).  

To demonstrate the ability of hm-alginate to gel a variety of cells, we tested two 

cell types, HUVECs and mammalian breast cancer cells (MCF7). Hm-alginate was able 

to gel both types of cells and results are shown below for MCF7. Initially, a freely 

flowing suspension of MCF7 cells (4.6  107 cells/mL) was placed in a tube. A solution 

of hm-alginate in PBS was added to achieve an overall concentration of 0.93 wt% 

polymer. Upon addition of hm-alginate, the cell suspension was transformed into a gel 

that did not flow in the inverted tube, as can be seen from the photograph in Figure 5.4a. 

When this gel was observed under optical microscopy, clusters of cells could be seen 

(Figure 5.4b). In contrast, a mixture of MCF7 cells with the native alginate (at identical 

concentrations of cells and polymer) remained a freely flowing liquid. Dynamic 

rheological data (Figure 5.4c) again confirm the differences between MCF7 samples 

containing hm-alginate and alginate. The former shows the signature of a gel (G > G, 

both nearly independent of  frequency) whereas the latter shows the response of a viscous 

liquid (G > G, both varying with frequency). Thus, our results confirm the ability of 

hm-alginate to act as a generic gelator for various cells, similar to hm-chitosan. By 

extension, we expect other hydrophobically modified biopolymers to also be capable of 

inducing cell gelation by an identical mechanism.   
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Reversal of hm-Alginate-Induced Cell Gelation 

A distinct advantage of cell gelation by hm-polymers is that it is based on weak, 

non-covalent interactions and hence can be reversed by addition of species with 

hydrophobic binding pockets. We demonstrate this now for the case of MCF7 cells gelled 

by hm-alginate. To the gel from Figure 5.4, we add the sugar-based supramolecule -

cyclodextrin (-CD) at a concentration of 0.91 wt%. As shown in Figure 5.5, the gel 

(Figure 5.5c) is immediately transformed into a freely flowing liquid (Fgure 5.5e). This 

result is corroborated by dynamic rheology (Figure 5.5d). The initial sample has a gel-

Figure 5.5. Reversal of MCF7 cell gelation by α- cyclodextrin (α-CD). (a & b) The 
top schematic illustrates the mechanism for this reversal. The α-CD molecule has a 
barrel shape with an inner hydrophobic pocket. When added to a hm-chitosan/MCF7 
cell gel, the polymer hydrophobes unhook from the cells and instead get buried within
the hydrophobic pockets of α-CDs. The connection between the cells are thus 
eliminated and the gel is liquefied releasing (or harvesting) previously entrapped cells. 
(c) Photograph (Photo1) of hm-alginate/MCF7 cell gel before the addition of α-CD. In 
(d) dynamic rheology data of hm-alginate cells gel before and after the addition of α-
CD. Sample without α-CD shows a gel-like response whereas the sample containing α-
CD shows a viscous response. (e) Photograph (Photo2) of hm-alginte/MCF7 cell gel 
after addition of α-CD showing the freely flowing sample. 
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like response whereas, after addition of -CD, the sample shows a viscous response (G 

> G, both varying with frequency). The mechanism for the reversal of gelation is shown 

by the schematics in Figure 5.5a and 5.5b. Initially, the hydrophobes (red tails) along the 

polymer chains are embedded in cell membranes. When the -CD is added, the 

hydrophobic tails instead become sequestered within the hydrophobic binding pockets of 

-CD molecules (shown in orange). The polymer chains are thus prevented from 

interacting with the cell membranes. In turn, because the cells are no longer bridged by 

polymer chains, the gel is converted to a liquid, i.e., the cells are released. Note that the 

ability to reverse gelation through -CD further substantiates the fact that hydrophobic 

interactions are responsible for the gelation in the first place. Similar results on reversal 

of gelation were observed in all the cases mentioned above, i.e., regardless of cell type or 

the type of hm-polymer. We should also note that the size of the binding pocket in -CD 

is such that it effectively binds the single-tailed hydrophobes on our hm-polymers; 

however, it is not large enough to bind the twin-tails on lipids that constitute cell 

membranes. Thus, the use of -CD to reverse cell-gels constitutes a simple, benign, and 

biocompatible approach.    

Viability of Cells in Cell-Gels 

A key remaining question is the fate of the cells within a cell gel, i.e., do the cells 

continue to remain viable even as they serve as the nodes in a 3-D polymer-bridged 

network? To assess the effect of gelation on cell viability, we performed live-dead assays 

on hm-alginate-MCF7 cell-gels (composition identical to that in Figures 5.4, 5.5). 

Calcein-AM was used as the live stain and ethidium homodimer as the dead stain.  
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Figure 5.6. Confocal microscope data showing live-dead assay of hm-alginate/ MCF7 
cell gels. Three-dimensional gel was imaged in various optical sections and the data is 
presented. (a) Top view of projection of various optical sections of the gel on XY plane. 
A large population of the cells were alive (stained green) with only a few cells dead 
(stained red) (b) Side view (vertical cross-section) of the three-dimensional gel showing 
cells held in multiple planes (presumably by hm-alginate) and majority of them were 
still alive. These results confirm that cell-gelation process with hm-alginate is benign to 
cells.   
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Following exposure of cells to these stains, confocal microscopy was used to monitor the 

resulting fluorescence. A green fluorescence due to calecin is indicative of live cells 

whereas red fluorescence due to intercalation of ethidium is indicative of dead cells. 

Figure 5.6a shows a projection of multiple optical sections captured at different heights of 

the cell gel. Figure 5.6b shows a projection of the same images on the XZ plane. The 

images reflect a superposition of both green and red fluorescence. We find that the vast 

majority of the cells are stained green whereas only a few cells are stained red. This 

demonstrates that gelation of MCF7 cells by hm-alginate is benign to the cells. The 

images also indicate the presence of a 3-D network of cells throughout the sample. 

Although more extensive studies on cell viability need to be conducted, our initial results 

do suggest that cell gelation by hm-polymers is a benign process. The ability to form gels 

of cells in this manner by self-assembly (and also to reverse the gelation, on demand) 

could prove to be useful in biomedical engineering. For example, cell-gels could serve as 

injectable biomaterials. The shear-thinning property of cell-gels (see Figure 5.3) should 

allow them to be injectable by a syringe. Once the gel is ejected from the tip of the 

syringe needle, it quickly reforms and reverts to its initial gel state, which ensures that the 

gel will remain localized at the site of injection.   

4.4. CONCLUSIONS 

We have shown that a variety of cells can be gelled by hm-alginate. These 

hydrophilic biopolymers with hydrophobic grafts attached along their backbone have the 

ability to transform freely flowing cell suspensions into elastic gels. The gelling 

mechanism is based on the insertion of hydrophobes on the polymers into the lipid-rich 
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cellular membrane) and therby bridging the cells into a physical 3-dimensional network. 

This cell gelation occurs without the need of an external crosslinking reagent because the 

functional component (cells) also serve as active structural components (nodes or 

crosslinking junction points) in the network formation rather than being passively 

entrapped in a polymeric mesh. An additional and unique advantage of cell gelation with 

hm-polymers are that the cells can be recovered from the gel by addition of a 

supramolecule a-CD,without the need of enzymes or harsh chemicals). Furthermore, the 

process of cell-gelation with hm-alginate is benign to cells, as demonstrated by live-dead 

cell assay. Owing to the generality of the hydrophobe and cell-membrane interactions, we 

envision that this gelation mechanism can be extended to other hydrophobically modified 

biopolymers to gel a variety of cells. Thus, hm-polymers for cell-gelation may find 

several significant biological applications, e.g. 3D cell culture, injectable cell gels (for 

cellular therapy), tissue sealants and other tissue engineering applications. 
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Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1. Project Summary and Principal Contributions 

In this dissertation, we have shown three new concepts for stimuli-responsive 

gelation of alginate and its derivatives to impart new structural and functional properties 

which were unavailable in conventional alginate gels. Gelation response of alginate was 

extended to the following stimuli: (1) Light (by using PAG and CaCO3); (2) Enzymes (by 

using glucose oxidase/glucose and CaCO3); and (3) Biological stimuli (by using 

hydrophobes and cells).    

In chapter 3, we demonstrated light responsive gelation of alginate. The 

components of the system were alginate/CaCO3/PAG. Upon exposure to UV light, the 

PAG gets photolyzed and thereby releases H+ ions, which react with CaCO3 to form 

soluble Ca2+ ions. Alginate cross-links in the presence of calcium ions to form Ca-

alginate hydrogel. Thus light responsiveness is imparted to alginate/CaCO3 mixtures by 

combining it with PAG.  

In chapter 4, we demonstrated enzymatic gelation of alginate in response to 

addition of glucose. The components of the system were alginate/CaCO3 and 

glucose/glucose oxidase. Glucose gets oxidized by GOx to generate H+ ions which then 

generate free Ca2+ ions in-situ. Ca2+ ions then crosslink alginate to form a Ca-alginate gel. 

Thus enzyme responsiveness and response to small molecule stimuli are imparted to 

alginate/CaCO3 mixture by addition of glucose/glucose oxidase.   
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In chapter 5, we demonstrate gelation of hm-alginate mediated by cells. The 

cross-links in this system are based on hydrophobic interactions (unlike ionic interactions 

in chapter 3,4). Alginate is made cell-responsive by grafting hydrophobes onto its 

backbone which are known to interact (and insert) into the lipid bilayers of cells. Upon 

addition of cells to hm-alginate, cells facilitate insertion of hydrophobes from different 

polymer chains and thereby serve as crosslinking junction for various polymer chains. 

Gelation occurs due to formation of a 3D network of polymers cross-linked by cells. 

Thus, cell-responsiveness is imparted to alginate by addition of hydrophobes and cells to 

hm-alginate solution.    

In addition to proving these concepts, we further demonstrated that these concepts 

can be used to impart structure (spatially selective microscale patterns) or function 

(sensing, hemostatic, therapeutic) to alginate hydrogels. Light-responsive gelation enlists 

the structural capability of building photopatterned erasable hydrogels. Enzymatic 

gelation enlists the functional capability of sensing (glucose detection). Cell-mediated 

gelation enlists the functional capability to create tissue engineering matrices.  
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6.2. RECOMMENDATIONS FOR FUTURE WORK

Based on the concepts that we have reported in this dissertation, it is highly 

possible to explore and envision new possibilities following the platforms and expertise 

that we have developed. Here, we briefly describe the outline for future work.  

6.2.1. Light-Activated Ionic Gelation of Alginate  

In chapter 3, we described a simple approach for gelation of photogelation of 

alginate. In the future, we will continue to do more studies on this system to improving its 

performance by decreasing the time of UV exposure required to form the gel. In principle, 

this can be achieved by increasing the clarity (or UV transparency) of the pre-gel solution. 

We have identified that the transparency can be improving by replacing insoluble calcium 

carbonate particles in the pre-gel with soluble calcium vectors like disodium calcium 

ethylenediaminetetraacetate. Another possible solution to improve the clarity is to 

introduce an additional component in the pre-gel solution which can absorb (or sequester) 

the hydrophobic byproducts of photolyzed PAG. α-CD, which was used in chapter 4 to 

sequester the hydrophobe, can be used in this context to sequester these hydrophobic 

byproducts and improve the clarity.  

In addition to improving the efficiency of the system, we can also envision using 

this photogelation approach for other applications. This system can have potential 

application as: (i) Microfuidic valve; (ii) Bio-photoresist; and (iii) Three-dimensional 

(3D) soft materials fabrication.   
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Microfluidic Valve. In chapter 3, we have shown the ability to photopattern hydrogels 

on a flat substrate by smearing the pre-gel on the substrate. Alternately, if the pre-gel 

solution is flowing through a microfluidic device, a section of the microfluidic channel 

can be gelled by UV irridiation through a photomask. This gel in the microfluidic channel 

can act a valve to block the flow through that channel and direct it into other channels. 

This method has a unique advantage that it can be unblocked by simply flowing a 

solution containing calcium chelators to dissolve the photogel.   

Bio-photoresist. In chapter 3, for the photopatterning studies, we have used the matrix of 

the patterned hydrogel to entrap and release components of interest on-demand. 

Alternately, we can also use the matrix as a barrier to chemicals or small biomolecules 

trying to react with the substrate. This barrier property enables us to use it as a 

biophotoresist. For example, Figure 6.1 shows spatial patterning of green fluorescent 

molecule on chitosan coated glass slide using photopatterned alginate as the photoresist. 

By direct reaction (route 1 in Figure 6.1) of NHS-flourescein (green fluorescent 

molecule) with chitosan casted on a glass slide, it yields a fluorescent chitosan film in 

which all the chitosan has reacted with NHS-fluorescein. However, it becomes very hard 

if we want only specific areas of chitosan to react (and not the other areas). By using 

photopatterned alginate as a photoresist, we can overcome this limitation. As shown in 

route 2 of Figure 6.1, specific areas on chitosan can be reacted with NHS-fluorescein if 

we follow the following steps sequentially: (i) Photopatterning of alginate hydrogel on 

chitosan casted glass slide(as shown in photograph in Figure 6.1). (ii) Reacting this 

substrate (containing alginate on top of chitosan casted glass slide) with NHS-flourescein. 
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(iii) Then removing the alginate using calcium chelator.  These steps yield a chitosan film 

with fluorescein reacted on only specific areas of chitosan (as shown in fluorescent 

micrograph in Figure 6.1. Thus by using photogelling alginate as a photoresist, we can 

achieve the capability of patterning molecules on substrates. Patterning of NHS-

fluorescein on chitosan casted glass slide is shown here as a proof-of-concept 

demonstration but in principle it can be used to pattern sensitive proteins, antibodies, etc. 

It should be noted that harsh conditions used in conventional photoresists might denature 

(or damage) these sensitive biomolecules of interest.     

Figure 6.1. Photopatterning of alginate hydrogel on a chitosan coated glass and using it 
as a sacrificial biophotoresist to pattern molecules of interest on a reactive chitosan 
substrate.  
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3D Soft-material Fabrication. The concept of photogelation and two-dimensional (2D) 

photopatterning can be extended to fabricate three-dimensional (3D) soft materials. The 

concepts of stereolithography can be used to achieve bottom-up fabrication by 

sequentially building patterned layers of 2D features on top of previously patterned layers 

(layer-by-layer fashion). Alternately, 3D spatial selectivity (and precision) of two-photon 

lithography can also be used to construct 3D soft-materials using photogelation of 

alginate. It is to be noted that the advantage of these 3D structures is that they can be 

chemically erased under mild conditions. 

6.2.2. Enzymatic Gelation of Alginate. In chapter 4, glucose detection was achieved 

by exploiting the substrate specificity of glucose oxidase to recognize glucose. In 

principle, detection can be extended to other sugars by first converting the test sugar into 

glucose (by using sugar specific enzymatic reactions) and then detecting the in-situ 

generated glucose with the procedure as explained in Chapter 4. For example, if the test 

sugar is sucrose, it can first be converted to glucose and fructose using invertase enzyme. 

The glucose generated can then be recognized by glucose oxidase and it can be 

transduced into visual result (sol-gel transition) using alginate/CaCO3 mixture.  

6.2.3. Cell-Mediated Gelation of an Alginate Derivate  

 In chapter 5, we have demonstrated that hm-alginate can be used to gel a variety 

of cells. As an initial step towards potential applications, we proved that the gelation is 

benign to cells. In the future, we are expecting to perform systematic studies on growth 

(3D cell culture) of entrapped cells (HUVECs and MCF7). As hm-alginate is cell-
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interactive, we believe that 3D culture of cells in hm-alginate matrix might be similar to 

cell growth in natural extracellular matrix. 

In chapter 5, we mentioned that the capability of gelation of blood cells with hm-

alginate will have application as hemostatic materials. As a part of future work, we are 

expecting to study the properties of hm-alginate/blood gels by varying hydrophobic 

character (% modification, length of hydrophobe). We also plan to perform in-vivo 

animal tests to confirm the hemostatic ability of hm-alginates.        

.  
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