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 For many goods, economists tend to ignore the time between the onset of 

production and the final sale of the good. In some instances, economists do model 

production with intertemporal considerations such as the extraction of groundwater, 

population dynamics in fisheries, and manufacturing with costs characterized by 

learning-by-doing; but even in these cases output at any point in time tends to be 

unconstrained except when production is limited according to resource availability. In the 

following three essays, I examine the implications for agent and market behavior when 

producers cannot perfectly adjust output over time. 

In the first two essays, I focus on the relationship between electricity markets and 

both conventional and renewable power producers. Specifically, in the first essay, I 

quantify the effect a large level of installed wind power capacity (an intermittent 

renewable energy) has on power market conditions. Because wind power has virtually no 

marginal costs for generation, and its output cannot be perfectly controlled, a high 

penetration level of wind power could potentially lower average prices while also 

impacting price volatility. 



In the second essay, I construct a computational model of a conventional power 

producer that cannot perfectly adjust its output over time and faces prices that change 

according to a stochastic process. Then, I measure the impact price volatility has on 

producers in two ways. First, I analyze changes in their optimal generation strategies in 

light of price volatility, and then I simulate and track changes in output, profit, and 

emissions over time. 

 My third essay pertains to production of whisky. While there are other examples 

of vintage goods that require a significant amount of maturation, the existing literature 

typically assumes that there is a unique optimal maturation age for a producer’s 

inventory. However, many Scottish distilleries produce a line of whiskies that vary 

primarily according to age. I demonstrate that it is possible for a profit-maximizing 

distillery to mature multiple ages of whisky without market power, but a further 

exploration of distilleries’ product lines indicates the market is far from perfectly 

competitive.   
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The Effects of Wind Energy on Power Market Conditions 

 

1. Introduction 

Despite the potential environmental and economic benefits of wind power, 

integrating a large amount of wind power capacity into a power system is generally 

perceived as difficult. Ideally, generators should be responsive to system needs and can 

be adjusted as system conditions evolve over the course of a day. Yet wind turbines, 

unlike conventional fossil fuel-burning generators, rely on a stochastic environmental 

factor to produce electricity. Subsequently, wind power is intermittent and can be 

difficult to forecast and control. It is thus unclear whether existing power systems can 

accommodate a large amount of wind power capacity, as it necessarily leads to a power 

supply that is less predictable and responsive to system needs. However, installation of 

wind power capacity is expected to continue to grow in the coming decades as costs 

decline and older conventional units are retired. It is therefore important to study the 

current system impacts of wind power so that potential future complications from wind 

power’s variable output are well understood. 

For power systems that coordinate supply decisions through power markets, the 

intermittency of wind power may be detected through changes in market conditions. 

Unfortunately, research on the market impacts of wind power has been limited so far 

because of a lack of historical data. Early work by Morthorst (2003) and Parsons et al. 

(2004) find that the initial, low levels of wind power in Danish and US systems had an 

insignificant effect on the price for power. More recent studies by Jacobsen and 

Zvingilaite (2010), Jónsson et al. (2010), Cutler et al. (2011), Woo et al. (2011a,b), 
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Ketterer (2014), and Clò et al. (2015) benefit from several additional years of growth in 

the wind power sector, and they are able to demonstrate that higher levels of wind power 

do lead to lower power market prices. However, there is some disagreement as to how to 

best capture the effects of wind power’s intermittency on power system reliability. More 

recent work emphasizes the consequences of intermittency by determining its impact on 

price volatility, though there is no consensus as to how to characterize price volatility 

among these studies. Furthermore, earlier results from Morthhorst and Parsons et al. 

suggest that wind power’s intermittency can affect markets for ancillary services, which 

are various forms of backup power supply services used to maintain the reliability of the 

overall power supply. The more recent literature generally omits ancillary services in 

their analyses entirely. 

The purpose of this paper is to completely quantify the impacts of wind power on 

power market conditions to determine how well existing systems can accommodate the 

introduction of a large amount of intermittent renewable energy. Accordingly, I divide 

market conditions into three separate components and estimate wind power’s effect on 

each of them. This includes estimating the impacts of wind power on the price for power, 

its volatility, and prices for ancillary services. This study specifically focuses on the 

power system in Texas from 2003 to 2010, during which time installed wind power grew 

from approximately 1% to 10% of total capacity in the system. The effects of wind power 

on market conditions are estimated using both Ordinary Least Squares [OLS] and 

quantile regressions. 

The contributions of this work to the existing literature are threefold. Most 

importantly, it presents a comprehensive overview of wind power’s market impacts. 
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Earlier papers emphasize the effect of wind power on power prices, but they overlook the 

overall consequences of wind’s intermittency by only including either price volatility or 

prices for ancillary services in their analyses, not both. Additionally, I give considerable 

attention to the characterization of price volatility and propose my own method for 

measuring volatility in a way that consolidates previous studies’ adopted metrics. Lastly, 

I use quantile regressions in conjunction with OLS to estimate wind power’s effects on 

market conditions. Jónsson et al. (2010) identify quantile regressions as one of several 

non- or semi-parametric techniques researchers should use to evaluate wind power’s 

impacts, though to the best of my knowledge, this paper is the first such application. 

Results from my empirical estimations confirm that an increase in wind power 

capacity has a negative effect on power market prices. This effect is especially 

pronounced on power prices in western Texas, where wind power capacity is 

concentrated. I find that wind power has no clear effect on price volatility, even though I 

consider multiple specifications to characterize it. Additionally, results show that wind 

power decreases prices for ancillary services, indicating that an increase in an intermittent 

renewable does not necessarily lead to an increase in system costs. These results confirm 

that that wind power does have economic and environmental advantages, as demonstrated 

by its ability to lower power market prices and thereby displace power from conventional 

generators, and that concerns over wind power’s intermittency may be overstated, as 

wind power has no apparent adverse impact on either price volatility or prices for 

ancillary services. 

The remainder of the paper is organized as follows. First, I present an overview of 

the power system in Texas. This includes a description of the market setup and typical 
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power producers, as well as the application of a theoretical model to demonstrate the 

effects of wind power market prices. Next, I review the existing literature’s methods for 

quantifying the market impacts of wind power. Then, I discuss my own empirical 

specifications, as well as detail the characterization of price volatility and summarize the 

data for my study. Lastly, I present results from the empirical analyses and discuss 

implications for the future. 

 

2. The Texas Interconnection 

2.A. Market Setup 

The Texas interconnection is one of three power systems in the contiguous US, 

though the Texas interconnection itself is quite isolated and very little electricity flows 

between it and the other two interconnections. It was regulated until 1995, when the state 

legislature voted in favor of deregulation and allowed for wholesale competition. The 

Electric Reliability Council of Texas [ERCOT] was then established and made 

responsible for implementing a suitable market structure that would facilitate competition 

among power producers, ensure fair access to the power system, and guarantee reliability 

of transmission. 

Scheduling generation in the Texas interconnection occurs through a series of 

markets, though participation in any one market is not mandatory. Power producers and 

retailers first have the option of negotiating contracts to schedule supply over an extended 

period of time. Successful contracts are relayed to ERCOT, which verifies whether the 

grid can accommodate the scheduled supply. Because market participants are unable to 

perfectly forecast demand or available generation capacity, contracted generation is often 
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insufficient when compared to actual need. In general, deregulated power systems often 

operate a real-time market where additional generation services are bought and sold to 

avoid imbalances between supply and demand. Whereas most power systems refer to this 

real-time market as a “spot market,” ERCOT refers to it as a “balancing market,” 

although the distinction is apparently trivial, as many power companies within 

interconnection still refer to it as a spot market. Regardless of its designation, this market 

operates in real-time, settles imbalances between supply and demand, and shapes market 

participants’ perceptions of future power prices when negotiating contracts. In theory, 

both suppliers and consumers can participate in the balancing market, though in practice 

demand-side participation is quite low, and demand is assumed to be exogenous with 

respect to real-time prices.1 

Historically, the balancing market was divided into four zones. As long as power 

lines in the system were not congested, power would flow freely between the North, 

Houston, South, and West zones, and each zone would have the same balancing price for 

power. However, if there was insufficient transmission capacity between zones, power 

lines would become congested. Balancing prices would then vary across zones according 

to load levels, generation, and the availability of transmission capacity. Beginning in 

December 2010, ERCOT switched from a zonal to a nodal setup to better incorporate 

transmission constraints and improve market efficiency. With a nodal market, the 

balancing market is divided geographically to a finer degree, and power prices vary from 

                                                 
1 The assumption of demand’s exogeneity with respect to real-time prices is universal in the literature, 

regardless of which power system is being discussed. In regards to the Texas interconnection, Zarnikau and 

Hallett (2008) estimate industrial consumers’ elasticity of demand with respect to balancing prices and find 

that it is negligible, only -0.000008 on average. Factors other than price, such as time of day, whether it is a 

workday, and weather are much stronger determinants of demand. 
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node to node depending on transmission and demand at each node. Both zonal and nodal 

markets in ERCOT are depicted in Figure 1. 

 

  

Figure 1. ERCOT Zonal and Nodal Markets 

 

 Figure 2 demonstrates the possible behavior of ERCOT’s balancing markets 

during its zonal setup. In this example, the prices for each of the four zones were identical 

between 9am and 10pm, when demand for power was high throughout the state. But 

prices were noticeably different in the early morning and late at night, and this was 

especially pronounced in the West zone. The West zone has historically had both the 

smallest population and highest concentration of wind power capacity. It was often the 

case that wind farms were more active at night, but during these hours there was 

insufficient demand for electricity in the West zone and not enough transmission capacity 

to carry the power to other parts of the state. As a result, the price for power in the West 

zone was lowered until producers appropriately adjusted their output. In this instance, the 

price became negative in the West, indicating that the power producers were actually 
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paying for the right to generate electricity. Although this may be counterintuitive, wind 

power is subsidized per watthour of generation in accordance with the Federal Production 

Tax Credit. As a result, wind power generation can still be profitable even when the price 

is negative, so long as the absolute value of the price does not exceed that of the subsidy. 

 

 

 

Figure 2. Balancing Market Prices—January 9, 2009 

 

Other than the balancing market, ancillary supply services are scheduled one day 

ahead to maintain the reliability of the power supply. This secondary market exists as 

insurance in case the balancing market cannot achieve equilibrium, and also because 

smaller, more rapid changes in producer output are sometimes required and the balancing 

market cannot facilitate these small changes. Ancillary supply services in ERCOT 

include “regulation up” and “regulation down,” as well as backup generation from 

“responsive reserves” and “non-spinning reserves.” “Regulation up” applies to instances 

in which a producer adjusts its output so as to increase the frequency of electrical load, 

and “regulation down” pertains to adjusting output to decrease load frequency. These 
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adjustments to output are small but nearly instantaneous, and are vital to maintaining a 

close balance between supply and demand over time. “Responsive reserves” and “non-

spinning reserves” are both forms of backup generation, and they operate on a longer 

time scale than regulation. Responsive reserves are backup generators that can either 

quickly turn on or stop generating electricity. Non-spinning reserves are ancillary 

generators that are off-line but can begin producing power within thirty minutes. 

 

2.B. Market Participants 

The majority of power in Texas comes from fossil fuels. Roughly two-thirds of 

installed capacity in Texas uses natural gas as its primary fuel, making it the largest 

source of electricity by far. Coal is the second most common fuel source in the 

interconnection and accounts for roughly 20% of all installed capacity. Traditionally, coal 

plants have had much lower marginal costs than natural gas, which has led to coal plants 

serving base-load demand and being run throughout the day. Additionally, coal plants 

cannot easily adjust their output and are costly to start up if turned off. Natural gas 

generators, which tend to be faster-ramping but more expensive to operate, typically 

serve as peak-load units, though the expansion of efficient combined cycle gas generators 

and lower natural gas prices have led to the presence of natural gas plants that can 

effectively serve base-load. 

Aside from natural gas and coal, nuclear and wind power are the only other major 

energy sources in the Texas interconnection. There are two nuclear plants, and together 

they make up about 5% of all installed capacity. Nuclear generation tends to be the 

cheapest dispatchable generation available in the system, so it serves as a base-load 
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power source and its output rarely, if ever, responds to power market conditions. Like 

nuclear, wind power has a very low marginal cost of output, but it is not considered a 

base-load power source because of its intermittency. Often, wind power output is treated 

as negative load for analytical purposes because its output is stochastic and does not 

readily respond to market prices. 

The penetration level of wind power varied significantly during ERCOT’s zonal 

market phase. In the beginning of 2003, wind power represented about 1% of all capacity 

in the system, and by the end of 2010, installed wind power’s penetration level was 

approximately 9.5% of all capacity. Figure 3 demonstrates the evolution of installed wind 

power capacity over time. Significant factors driving growth in installed wind power in 

Texas include the Federal Production Tax Credit, the state’s Renewable Portfolio 

Standard, and strong wind resources (Bird et al., 2005). Wind power in the Texas 

interconnection is comparatively higher than in all other US power systems, though much 

of it is located in western Texas, where it is far removed from most major cities and 

industrial hubs, and requires substantial transmission capacity in order to reliably meet 

demand. 
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Figure 3. Wind Power in Texas 

 

2.C. The Market Impacts of Wind Power 

Power markets exist to coordinate generation between producers so that system-

wide costs are minimized while also ensuring that the power supply is reliable even in the 

event of unforeseen circumstances such as a disruption in transmission capacity, an 

unplanned outage at a plant, or an unpredicted spike in demand. To evaluate the market 

impacts of wind power, as well as the consequences on total generation and total 

ancillary services, consider the following model. First, let 𝑔 be the total amount of 

generation (measured in Megawatts) from conventional power plants such as nuclear, 

coal, and natural gas. Furthermore, let c(𝑔) be the total cost from such generation. If the 

market efficiently assigns generation responsibilities, lowest-cost generators are activated 

first, and sequentially more expensive plants are brought online as needed. This naturally 

translates to c(∙) increasing in 𝑔. Assuming that c(∙) is differentiable, and denoting the 

first-order derivative as c𝑔, this implies c𝑔 > 0. 
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Next, let ancillary services be denoted as 𝑎 (also measured in Megawatts) and 

total ancillary service costs be calculated according to the function d(𝑎, 𝑔). Ancillary 

costs are also assumed to be differentiable and increasing in 𝑎, d𝑎 > 0. Generation is also 

included in ancillary service costs because of the relationship between generation and 

ancillary services. If units are needed for generation, they are run for that purpose and are 

not available for ancillary services; but if they are not actively generating power for the 

system (because their marginal cost is higher than the market price), they are available to 

provide ancillary services. This defines a competitive relationship between generator 

allocation for 𝑔 and 𝑎. As more generators are used towards 𝑔, fewer are available for 𝑎, 

and as a result the units used towards 𝑎 will be of even higher cost were 𝑔 lower. Thus, 

holding 𝑎 constant but increasing 𝑔 affects the cheapest units available for ancillary 

services, d𝑔 > 0, d𝑎𝑔 > 0. 

Putting the two together, the power market determines total generation and 

ancillary services to minimize costs 

min c(𝑔) + d(𝑎, 𝑔), 

subject to two constraints. First, generation from conventional sources plus generation 

from wind power must equal or exceed current demand 

𝑔 + 𝜔 ≥ 𝐷, 

where 𝜔 is wind power and 𝐷 is total demand (also referred to as load). Additionally, the 

system operator (ERCOT) is concerned about system reliability, hence selects ancillary 

services to maintain reliability according to the constraint 

f(𝑎, 𝐿, v) ≥ 0. 
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The reliability function f is increasing in ancillary services (f𝑎 > 0), and decreasing in 

both net load (f𝐿 < 0) and volatility conditions (fv < 0). Net load is defined as 𝐿 = 𝐷 −

𝜔, and volatility is a non-decreasing function in both load and wind power (v𝐷 ≥ 0, v𝜔 ≥

0). Reliability is decreasing in net load because greater demand will generally require 

additional generators on standby, effectively creating a larger reserve margin of power 

producers. Furthermore, system volatility (either considered as fluctuations in load or net 

load, or price volatility) is increasing in both demand and wind power because of their 

uncontrollable and erratic natures. 

Assembling all relevant terms and functions, the general activities of the power 

market can be summarized using the Lagrangian 

ℒ = c(𝑔) + d(𝑎, 𝑔) − 𝜆(𝑔 + 𝜔 − 𝐷) − 𝜇f(𝑎, 𝐿, v). 

While first order conditions will depend on the specifications of 𝜔 and 𝐷, as well as the 

shape of the reliability function f, the most common case encountered in daily operations 

is described with a strictly interior solution for 𝑔∗ and 𝑎∗, and with both constraints 

binding: 

𝑔∗) c𝑔 + d𝑔 −  𝜆∗ = 0 

𝑎∗) d𝑎 − 𝜇∗f𝑎 = 0 

𝜆∗) 𝑔∗ + 𝜔 − 𝐷 = 0 

𝜇∗) f(𝑎∗, 𝐿, v) = 0. 

Market prices are set to induce producer output to satisfy the above cost-minimizing 

conditions. That is, in order to induce producers to generate 𝑔∗, the market price must be 

high enough to cover the operational costs of the highest-cost producer; the price must 
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therefore be equal to c𝑔 evaluated at 𝑔∗. The price for ancillary services is similarly 

identified. 

In the model, parameters such as demand and wind power are considered fixed, 

and variables such as generation and ancillary services can be expressed as a function of 

these parameters. Yet wind power is only exogenous for the system operator because 

wind conditions are beyond its control. Wind power can still increase or decrease 

according to wind conditions or installed capacity. Accordingly, for a marginal change in 

wind power, 𝑔∗ and 𝑎∗ are affected thus: 

𝜕𝑔∗

𝜕𝜔
= −1 

and 

𝜕𝑎∗

𝜕𝜔
=

f𝐿 − fvv𝜔

f𝑎
. 

The relationship between wind power and generation is straightforward. Whatever 

electricity is generated using wind displaces an equal amount of electricity that would 

have been generated from conventional sources. Furthermore, this marginal decrease in 

𝑔∗ would lead to lower prices for generation, since c𝑔 > 0, and prices are set to meet the 

marginal cost of generation. 

The effect wind power has on ancillary services is less obvious. Because f𝑎 > 0, 

the sign of 𝜕𝑎∗ 𝜕𝜔⁄  is determined by the numerator. Essentially, there are two competing 

effects from wind power that could lead to either a decrease or increase in the reliance on 

ancillary services depending on which is the dominant effect. First, additional wind 

power decreases net load, leading to less overall need for ancillary services in the system. 
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However, additional wind power also increases volatility, which increases the need for 

ancillary services. 

Regardless of the net effect on 𝑎∗, it is possible that prices for ancillary services 

could increase or decrease because of a change in wind power. First, if 𝑎∗ does not 

increase, ancillary service prices will unequivocally decrease because 𝜕𝑔∗ 𝜕𝜔⁄ = −1 and 

d𝑔 > 0, and d𝑎𝑔 > 0. On the other hand, an increase of 𝑎∗ will put additional pressure on 

ancillary service costs (and therefore prices). But because a marginal increase in wind 

power leads to a marginal decrease in generation, this frees up generators that would have 

been used for 𝑔 that can now be used towards 𝑎. In that case, ancillary service prices 

might increase or decrease, and it will depend on the change in 𝑎∗ as well as the structure 

of d(𝑎, 𝑔). 

 

3. Literature Review 

Installed capacity of intermittent renewables has been low in power systems 

around the world until quite recently. Consequently, there is very little empirical evidence 

on how well power systems have been able to accommodate wind power, despite 

concerns about its fluctuating output. Much of the existing research on intermittent 

renewable energy relies on simulations to determine the potential impacts on system 

reliability and market conditions (Karki and Billinton, 2001 and 2004; Lund and Münster, 

2003a,b; Chen et al., 2006; Lund, 2006; Sensfuß et al., 2008; Green and Vasilakos, 2010; 

Delarue et al., 2011; Milstein and Tishler, 2011; Di Cosmo and Malaguzzi Valeri, 2014; 

Shcherbakova et al., 2014), emissions reductions from conventional generators (Benitez 

et al., 2008; Delarue et al., 2009), or both market conditions and abatement (Holttinen 
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and Tuhkanen, 2004; Luickx et al., 2010). While many of these studies have focused on 

power systems with liberalized power markets, they rely on simulations to assess the 

feasibility of intermittent renewable energy either because the capacity being modeled in 

the system is hypothetical (and often reflects the goals of new policies) or because the 

relevant market data are not publicly available. 

One of the earliest papers that relies on market data to study the impact of wind 

power on market prices is Morthorst (2003). Morthorst’s analysis focuses on the Nord 

Pool power exchange, which includes the western area of Denmark. Even then, the 

western area had some of the highest penetration levels of wind power in the world. Yet 

Morthorst’s findings are not particularly conclusive. He demonstrates that there is a 

general tendency for spot market prices to be lower when wind power is higher, and that 

spot market prices are higher when generation from wind is low, but no statistically 

strong relationship is found. And while wind power does increase the need for 

conventional power producers to adjust their output in response to fluctuations from wind 

power, there is not much of an effect on the price of this ancillary service. An analysis by 

Parsons et al. (2004) finds that wind power will increase expenditures for this ancillary 

service in the US in the future, though these costs were relatively low and expected to 

remain so for the next several years. 

Following Morthorst (2003), Chang et al. (2009), Jacobsen and Zvingilaite 

(2010), and Jónsson et al. (2010) conduct more recent analyses of wind power market 

impacts in Denmark. Chang et al. study the integration costs of an offshore wind farm by 

evaluating correlations between wind power output on market prices and price volatility. 

They find that wind power from a single offshore site has an insignificant effect on 
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market prices, and that the net effect of its intermittency is negligible. Jónsson et al. are 

able to demonstrate that total forecasted wind power likewise has an impact on average 

day-ahead prices, and that it also influences the variance, skewness, and kurtosis of 

prices. Jacobsen and Zvingilaite present a general overview of price behavior in western 

Denmark, including differences in average prices and prices’ distributional properties 

between other market areas within the same interconnection. 

Due the historically high levels of wind power in Denmark and the availability of 

market data, the Danish system has received a considerable amount attention. However, 

as wind power continues to expand in power systems around the world, researchers have 

been able to analyze the market impacts in a variety of new power systems, including 

Australia (Cutler et al., 2011), Texas (Woo et al., 2011a,b), Ireland (Di Cosmo and 

Malaguzzi Valeri, 2012), Germany (Ketterer, 2014), and Italy (Clò et al., 2015). Newer 

studies likewise favor different methodologies, ranging from presenting a general 

overview of price behavior (as in Cutler et al.) to an AR-GARCH model that uses wind 

power as both an explanatory variable and as a determinant of the conditional 

heteroskedasticity function (Ketterer). A consistent finding is the inverse relationship 

between wind power and mean prices, though the magnitude of this effect varies. 

Woo et al. (2011a,b) present some of the first findings on the impact of wind 

power on market conditions in the Texas interconnection. Using a two-stage model, Woo 

et al. (2011a) study the determinants of price divergence in Texas’s four zonal balancing 

markets and find that wind power has a strong and statistically significant effect on the 

likelihood of price divergence. In another paper, Woo et al. (2011b) focus on the effect 

wind power has on the balancing markets’ mean price and price volatility, where 
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volatility is estimated using the forecast variance formula suggested by Feldstein (1971).2 

Their results indicate that the average marginal effect of wind on prices varies across 

zones, and that these effects are particularly pronounced in the West zone of Texas, 

where the majority of wind power is concentrated. They also find that wind power 

increased the variance of prices, though the effect is somewhat small. 

Woo et al. (2011b) present a compelling case study of wind power’s market 

impacts, but additional insight can be gained through further research on the Texas 

interconnection for several reasons. First, their study omits the market impacts of wind 

power on ancillary services, even though earlier studies (e.g., Morthorst, 2003 and 

Parsons et al., 2004) argue that wind power would affect these markets as it becomes 

increasingly prevalent. It is also important to note that Woo et al. studied the impact of 

wind power on price volatility by measuring price variance. While it may be common in 

the finance literature to use variance or standard deviation to study volatility, it does not 

fully encapsulate the meaning of “volatility” in this instance. An increased penetration of 

intermittent renewable energy will not only increase variance about the mean. It is also 

expected to increase the occurrence of extremely high and low prices, as found in Cutler 

et al. (2011), a concept which is better measured with a distribution’s kurtosis and 

skewness, not just the distribution’s variance. 

The highly non-linear effect of wind on prices convinced Jónsson et al. (2010) to 

use a non-parametric model, and they include an analysis of price skewness and kurtosis 

in addition to price variance and mean prices. However, Jónsson et al.’s analysis of the 

first four moments relates to daily distributional properties, not intraday price 

                                                 
2 This method was also adopted by Clò et al. (2015). 
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movements. A logical extension to the existing literature is therefore to look at the 

intraday price behavior in Texas, as in Woo et al. (2011a,b), but to include ancillary 

service prices and use a non- or semi-parametric technique to better analyze potentially 

non-linear effects on price and price volatility. And variance, skewness, and kurtosis 

should all be included to better quantify the relationship between wind power and price 

volatility. 

 

4. Methodology 

4.A. Effects on Prices 

To assess the effect of wind power on power market prices, the general empirical 

estimation assumes the form: 

(1) price𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖wind𝑡 + 𝛾𝑖NGprice𝑡 + 𝛿𝑖load𝑡 + 𝜃𝑖nuclear𝑡 + 𝜀𝑖𝑡. 

In the equation above, price𝑖𝑡 is the reported price for market 𝑖 during time 𝑡, where 

market 𝑖 is either one of the four balancing zones (North [𝑁], Houston [𝐻], South [𝑆], 

West [𝑊]) or one of the markets for ancillary services (Regulation-Up [𝑅𝑈], Regulation-

Down [𝑅𝐷], Responsive Reserves [𝑅𝑆], Non-Spinning Reserves [𝑁𝑆]).3 Price is a 

function of operable wind power capacity (wind𝑡), the previous business day’s price for 

natural gas (NGprice𝑡), total hourly demand for electricity in the interconnection (load𝑡), 

and total output from nuclear generators in the interconnection (nuclear𝑡). The 

estimations also include additional month by year fixed effects and hourly fixed effects. 

                                                 
3 Other analyses of the determinants of electricity prices use either the log of price, the daily average price, 

or the log of the daily average price. None of these specifications were considered in this paper because of 

the suspected relationship wind power has with the occurrence of negative prices in ERCOT’s balancing 

markets. 
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It is expected that wind has a negative effect on balancing market prices (𝛽𝑖 <

0, 𝑖 ∈ {𝑁, 𝐻, 𝑆, 𝑊}), though the size of this effect may not be constant across zones. 

Because wind power is concentrated in the West zone, it is likely that the effect is largest 

there (𝛽𝑊 ≤ 𝛽𝑖, 𝑖 ∈ {𝑁, 𝐻, 𝑆}). At the same time, wind power may have a positive effect 

on prices for ancillary services such as Regulation-Up and Regulation-Down because its 

intermittency may require greater reliance on these services as wind power becomes more 

prevalent in the sampled timeframe (𝛽𝑖 ≥ 0, 𝑖 ∈ {𝑅𝑈, 𝑅𝐷}). Prices for Responsive 

Reserves and Non-Spinning Reserves are likely non-decreasing in wind power capacity 

(𝛽𝑖 ≥ 0, 𝑖 ∈ {𝑅𝑆, 𝑁𝑆}), since wind power’s intermittency may require additional backup 

capacity to insure system reliability, but the acquisition of these services is typically left 

to the discretion of the system operator. Alternatively, lower balancing prices would 

correspond to high-cost generators being displaced by wind power, and these could then 

be available to provide ancillary services. Thus, it may be the case that wind power 

actually decrease ancillary service prices (𝛽𝑖 ≤ 0, 𝑖 ∈ {𝑅𝑈, 𝑅𝐷, 𝑅𝑆, 𝑁𝑆}). But this is 

conditional on two other results: wind power must decrease balancing prices and it must 

have little to no effect on price volatility. 

Generally, natural gas prices should have a positive effect on all prices (𝛾 > 0) 

because natural gas is the most common fuel source in the system and it is used for both 

base-load and peaking units. Load levels should likewise have a positive effect on 

balancing prices (𝛿𝑖 > 0, 𝑖 ∈ {𝑁, 𝐻, 𝑆, 𝑊}), since periods of high demand will require a 

greater number of high-cost generators to switch on. Nuclear generation, which 

represents the lowest-cost dispatchable generation in the system, is expected to have a 

negative effect on balancing market prices (𝜃𝑖 < 0, 𝑖 ∈ {𝑁, 𝐻, 𝑆, 𝑊}) because these units 
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are typically run whenever available, and when nuclear generators are down a greater 

number of higher-cost generators will have to be run to make up for the deficit in 

capacity. 

 

4.B. Effects on Price Volatility 

While previous research has concentrated on the effect wind power has on 

average balancing market prices, many of these analyses have also noted that wind power 

may increase price volatility. Yet there is no standard definition of “price volatility,” so 

previous methodologies have varied. Some studies have presented a general overview of 

power prices and their tendency to exceed certain thresholds (e.g., Jacobsen and 

Zvingilaite, 2010, and Cutler et al., 2011). Another common method is to use variance as 

a substitute for volatility (e.g., Chang et al., 2009, Woo et al., 2011b, and Clò et al. 2015). 

Yet variance alone does not fully describe the nature of price changes in electricity 

markets. Power market prices can rapidly spike up- or downward, hence Ketterer’s 

(2014) utilization of a GARCH model. 

Figure 4 highlights the importance of defining volatility. The leftmost figure is a 

histogram of all observed prices for a simulation lasting 96 periods. Jónsson et al.’s 

(2010) analyses of wind power and power market conditions relies on an analysis of the 

basic distributional properties of the leftmost figure: mean, variance, skewness, and 

kurtosis of daily prices. At the same time, using daily distributional properties of prices 

presents an incomplete picture, since multiple random walks can create the same daily 

distribution. The center and rightmost graphs show two very different random walks for 

price that both form the same distribution on the left. Clearly, Price Walk 1 is more 
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“volatile” in the sense that its price changes are more erratic, yet Jónsson et al.’s analysis 

(or any paper that relies on the daily mean price) cannot differentiate between these price 

walks. The unpredictable nature of price changes is obviously important when describing 

volatility, hence most researchers’ reliance on the variance of price changes to as the 

measure of volatility. Even so, there is additional value in considering daily distributional 

properties of observed prices, since these properties can indicate new price behavior such 

as the increased frequency of sustained extreme prices, whereas price changes alone 

cannot. 

 

Observed Prices Price Walk 1 Price Walk 2 

   

Figure 4. Price Volatility Components 

 

In order to better characterize volatility, this paper uses two measures each for 

variance, skewness, and kurtosis of prices. The first measure (measure 𝐴) is calculated 

using all of the observed prices within a given day. This measure was chosen because the 

explanatory variables are expected to influence the general shape of price distributions 

and the occurrence of extreme prices, and is similar to the analysis by Jónsson et al. 

(2010). Since wind power is also expected to influence the erratic and unpredictable 

nature of changing prices, a second set of variables (measure 𝐵) was created by taking 
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the first difference of all sequential prices in a day and calculating the daily variance, 

skewness, and kurtosis of these differences. The effect of wind power on price volatility 

is thus measured according to the specifications in the equation 

(2) σ𝑖𝑋𝑡
𝑧 = 𝛼𝑧𝑖𝑋 + 𝛽𝑧𝑖𝑋wind𝑡 + 𝛾𝑧𝑖𝑋NGprice𝑡 + 𝛿𝑧𝑖𝑋load𝑧𝑋𝑡 + 𝜃𝑧𝑖𝑋nuclear𝑡 + 𝜀𝑖𝑡. 

In the equation above, the 𝑧th moment (𝑧 ∈ {2,3,4}) using measure 𝑋 (𝑋 ∈ {𝐴, 𝐵}) of 

zone 𝑖 during day 𝑡 is a function of the same variables used to estimate price𝑖𝑡, with the 

exception of load levels. load𝑧𝑋𝑡 is calculated as the value of moment 𝑧 from the 

distribution of day 𝑡 according to measure 𝑋. 

If wind power affects the volatility of balancing prices, it should be the case that 

𝛽𝑧𝑖𝑋 is positive for both measures of variance and kurtosis. If 𝛽𝑧𝑖𝐴 > 0 for variance and 

kurtosis, this will indicate that additional wind power capacity expands the distribution of 

daily prices, where 𝛽2𝑖𝐴 > 0 indicates that prices become more varied about in the mean 

in general, and 𝛽4𝑖𝐴 > 0 indicates an increase in the frequency and persistence of 

extremely high and low prices. At the same time, even if the distribution of daily prices 

increases, it may be the case that price movements remain small (e.g., extremely low 

prices are becoming more common as a result of wind power, but their daily appearance 

is gradual and predictable). If wind power also affects the unpredictable nature of price 

changes, it should also be the case that 𝛽𝑧𝑖𝐵 > 0 for variance and kurtosis, where 𝛽2𝑖𝐵 

would be comparable to the traditional measure of “volatility” in many analyses (e.g., 

Chang et al, 2009 and Woo et al., 2011b), and 𝛽4𝑖𝐵 would describe the tendency of 

sudden price spikes. 
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5. Data Description 

5.A. Prices 

 Balancing and ancillary service prices were obtained from ERCOT. Prices for the 

balancing markets are reported in 15-minute intervals (a standard day has 96 

observations) and ancillary service prices are reported at the hourly level. The data span 

from April 16, 2003 to November 30, 2010. Beginning December 1, 2010, ERCOT 

switched the balancing market setup from zonal to nodal, effectively creating new data 

that are not directly comparable to earlier prices. Hence an analysis wishing to utilize 

more recent data would either have to ignore previous years (and ignore the years with 

the greatest amount of growth in wind power) or make unrealistic assumptions to 

simplify and compare both zonal and nodal prices. Similarly, earlier price data were 

available, but ERCOT revised its market rules in 2003 to influence wind power 

producers’ scheduling behavior (Sioshani and Hurlbut, 2010). It is not clear that the 

estimated marginal effect of wind power capacity from earlier observations would be the 

same as later observations, hence earlier data are omitted. Summary statistics for the 

market-clearing prices are presented in Table 1. 
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Table 1. Summary Statistics – Power Prices ($/MW) 

 Count Mean Median Std. Dev. Min. Max. 

Balancing Markets      

North 267412 47.98 40.30 59.47 -1000.00 2382.50 

Houston 267412 49.78 40.68 72.08 -1536.30 3805.70 

South 267412 48.84 40.11 79.42 -2292.80 4514.70 

West 267412 45.42 39.68 61.10 -1981.80 2320.70 

Ancillary Services      

Reg.-Up 66853 13.93 9.66 15.17 0.01 500.03 

Reg.-Down 66853 11.43 8.00 14.76 0.01 700.00 

Responsive Res. 66853 13.24 8.97 19.18 0 2000.00 

Non-Spinning 66853 3.55 0.00 17.34 0 2000.00 

 

 Mean balancing prices tend to be between 45 and 50 dollars per megawatt for all 

four zones, though the median values demonstrate that prices are skewed. Average prices 

are also somewhat lower in the West, possibly because of the strong presence of wind 

power in this area and its negative effect on prices. Prices are also slightly higher in the 

Houston zone, where much of Texas’s industry is based. For ancillary services, 

Regulation-Up, Regulation-Down and Responsive Reserves have similar distributions, 

though Non-Spinning is considerably different than the other three ancillary services. 

 Whereas balancing prices are occasionally negative due to imbalances between 

supply and demand, the minimum values for all ancillary service prices are close to zero 

and strictly non-negative, indicating that ancillary service prices may need to be treated 

as left-censored data. Nevertheless, the minimum value is only observed once for 

Regulation-Up, twice for Regulation-Down, and four times for Responsive Reserves out 

of more than sixty thousand observations, indicating that accounting for censoring would 

not significantly improve results, if at all. This is not the case for Non-Spinning prices, 

whose median price is zero. For the analysis of Non-Spinning prices, OLS estimations 
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are replaced with a tobit model and quantile regressions are only run above the censoring 

point.4  

 Summary statistics for the two measures of price volatility are presented in Table 

2. Both measures of variance and kurtosis indicate that all four zones are subject to 

considerable variation in day-to-day prices. Yet the reported median statistics, as well as 

minimum and maximum values indicate that mean levels are very skewed because of 

extreme values, more so than observed prices. Mean and median statistics for skewness 

tend to be positive, though the full range includes both negative and positive values. As a 

consequence, interpreting coefficients for wind power will not be as straightforward in 

the case of skewness, since both positive and negative values of the coefficients specified 

in Eq. (2) can indicate an increase or decrease in skewness. 

  

                                                 
4 Standard quantile regressions still produce meaningful estimates for quantiles which are above the 

censoring point (Angrist and Pischke, 2009), though an alternative approach would be the censored 

quantile regression developed by Chernozhukov and Hong (2002). A similar effect was found using either 

a quantile regression or a censored quantile regression. 
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Table 2. Summary Statistics – Price Volatility 

 Count Mean Median Std. Dev. Min. Max. 

Observed Prices      

North       

 𝜎𝐴
2 2785 2991.25 297.76 17328.35 1.94 467000 

 𝜎𝐴
3 2785 1.51 0.78 2.46 -9.38 9.64 

 𝜎𝐴
4 2785 12.54 4.55 18.5 1.21 93.97 

Houston       

 𝜎𝐴
2 2785 4378.71 316.32 28796.56 1.94 959000 

 𝜎𝐴
3 2785 1.63 0.87 2.56 -9.47 9.64 

 𝜎𝐴
4 2785 13.36 4.68 19.88 1.21 93.96 

South       

 𝜎𝐴
2 2785 5350.48 298.94 45893.58 1.94 1530000 

 𝜎𝐴
3 2785 1.52 0.77 2.62 -9.52 9.64 

 𝜎𝐴
4 2785 13.37 4.52 19.94 1.21 93.95 

West       

 𝜎𝐴
2 2785 3102.62 380.28 16853.84 1.94 467000 

 𝜎𝐴
3 2785 1.25 0.65 2.49 -9.59 9.58 

 𝜎𝐴
4 2785 12.00 4.54 17.41 1.05 93.30 

Price Changes       

North       

 𝜎𝐵
2 2785 2902.76 79.81 16217.29 0.19 313000 

 𝜎𝐵
3 2785 0.40 0.38 1.65 -9.63 9.57 

 𝜎𝐵
4 2785 18.82 13.04 14.83 3.14 93.77 

Houston       

 𝜎𝐵
2 2785 3952.58 86.25 19410.83 0.19 369000 

 𝜎𝐵
3 2785 0.36 0.34 1.73 -9.63 9.64 

 𝜎𝐵
4 2785 19.34 13.35 15.45 3.11 93.90 

South       

 𝜎𝐵
2 2785 4370.51 82.52 24848.25 0.19 545000 

 𝜎𝐵
3 2785 0.38 0.36 1.75 -9.62 9.63 

 𝜎𝐵
4 2785 19.25 13.09 15.63 2.91 93.83 

West       

 𝜎𝐵
2 2785 2626.66 111.36 14522.54 0.19 306000 

 𝜎𝐵
3 2785 0.27 0.26 1.70 -9.52 9.56 

 𝜎𝐵
4 2785 19.20 14.20 14.35 3.18 92.93 
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5.B. Explanatory Variables 

Additional data relevant to wind power capacity, natural gas prices, load levels, 

and output from nuclear generators were collected from several sources. In order to 

measure wind power capacity in the Texas interconnection, multiple datasets from the 

Energy Information Administration [EIA] had to be combined to track capacity levels in 

ERCOT. First, wind farms that were within Texas but not the Texas interconnection had 

to be identified and discarded, since some generators in Texas are part of either the 

Western or Eastern interconnection and should be excluded from the analysis.5 Relevant 

wind farms were identified using the datasets EIA-906, EIA-920, and EIA-923. These 

files report general information on all power producers in the US, including whether a 

Texas-based power plant is located within the Texas interconnection or another power 

system. Unfortunately, these files do not include information on power plant capacity, 

hence they were only used for initial identification purposes. EIA-860 reports capacity at 

the generator-level (a conventional power plant usually consists of multiple generators), 

as well as each generator’s operability status, its initial month and year of activation, the 

month and year of its retirement (when applicable), and the state the generator is located 

in. Each year’s release was cross-checked with previous years’ datasets to ensure 

consistency of the data, as well as to identify changes in active generators.6 

Data on the remaining explanatory variables are from ERCOT, the EIA, and the 

Nuclear Regulatory Commission. Hourly load levels for electricity use in the Texas 

interconnection come from ERCOT.7 The natural gas prices used in the analysis are from 

                                                 
5 Approximate ERCOT borders are depicted in Figure 1. 
6 Two instances were discovered in which wind turbines were lost due to extreme weather events. 
7 While load corresponds to quantity demanded, it is treated as exogenous with respect to price. Although 

this may be somewhat counterintuitive, since demand for most goods is influenced by price, most 
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the Henry Hub spot price, as reported by the EIA. Daily generator output for nuclear 

generators comes from the Nuclear Regulatory Commission, which releases periodic 

reports of all nuclear generators in the US, including their status and utilization rates. 

Descriptive statistics for all explanatory variables are reported in Table 3. 

 

Table 3. Summary Statistics – Explanatory Variables8 

 Count Mean Median Std. 

Dev. 

Min. Max. 

Wind Capacity (GW) 92 3.97 2.70 2.96 1.02 9.18 

NG Price ($/MMBtu) 1904 6.39 6.15 2.22 1.83 15.39 

Hourly Load (GW) 66853 34.99 32.98 8.36 19.66 107.08 

Nuclear Generation (GW) 2786 4.72 5.14 0.81 1.35 5.14 

 

6. Results and Discussion 

6.A. Balancing Prices 

 Table 4 presents findings from OLS and select quantile regressions when the 

dependent variable is the balancing price for each of the four ERCOT zones.9 The second 

column includes regression results from OLS for each balancing market, the third column 

has results from quantile regressions for the twenty-fifth quantile, the fourth column has 

                                                 
consumers do not buy power directly from wholesale power markets. Some industrial consumers do 

participate in ERCOT’s wholesale markets, though findings from Zarnikau and Hallett (2008) indicate that 

demand’s impact on market prices is negligible.  
8 Explanatory variables often have fewer observations than dependent variables because they are recorded 

at different frequencies (e.g., wind capacity varies month to month, but power prices are reported every 

fifteen minutes or one hour). In the estimations, observations for explanatory variables are extended so that 

they match the dependent variables. Summary statistics in Table 3 report data in their original frequencies 

for illustrative purposes.  
9 Results without month by year fixed effects and hourly fixed effects are provided in Appendix A. 

Generally, estimated coefficients for wind power were the most sensitive variable to month by year fixed 

effects. This is likely because wind power capacity is typically increasing from month to month, and 

without fixed effects to capture unspecified trends, wind would pick up those effects as well. Hourly fixed 

effects did not influence results much. 
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results for the median quantile regression, and the fifth column has results for the quantile 

regression of the seventy-fifth quantile. 
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Table 4. Regression Results – Dependent Variables are Balancing Prices 

 OLS Q(.25) Q(.5) Q(.75) 

North     

Wind -4.178** 1.581**+ -0.172+ -2.912**+ 

NGprice 5.095** 4.286**+ 5.079** 5.845**+ 

Load 3.307** 1.738**+ 1.845**+ 2.128**+ 

Nuclear -3.852** -2.417**+ -2.189**+ -2.489**+ 

Intercept -59.933** -35.308**+ -33.159**+ -34.796**+ 

Month*Yr. FE YES YES YES YES 

Hour FE YES YES YES YES 

Houston     

Wind -4.593** -1.823**+ -3.085**+ -4.829** 

NGprice 4.386** 4.226**+ 4.970**+ 5.574**+ 

Load 3.760** 1.773**+ 1.874**+ 2.175**+ 

Nuclear -5.418** -2.649**+ -2.471**+ -2.747**+ 

Intercept -62.494** -31.779**+ -29.959**+ -32.281**+ 

Month*Yr. FE YES YES YES YES 

Hour FE YES YES YES YES 

South     

Wind -0.215 -1.256**+ -2.256**+ -3.475**+ 

NGprice 3.838** 4.130**+ 4.875**+ 5.587**+ 

Load 3.781** 1.719**+ 1.806**+ 2.078**+ 

Nuclear -5.653** -2.654**+ -2.574**+ -2.749**+ 

Intercept -63.769** -31.356**+ -28.647**+ -31.305**+ 

Month*Yr. FE YES YES YES YES 

Hour FE YES YES YES YES 

West     

Wind -7.987** -0.639+ -0.922**+ -2.913**+ 

NGprice 4.927** 4.247**+ 5.018** 5.795**+ 

Load 3.103** 1.756**+ 1.836**+ 2.105**+ 

Nuclear -4.988** -2.827**+ -2.189**+ -2.508**+ 

Intercept -46.688** -32.772**+ -32.091**+ -33.989**+ 

Month*Yr. FE YES YES YES YES 

Hour FE YES YES YES YES 

*Significant at the 5% level; **Significant at the 1% level 

+Quantile coefficient is significantly different than the corresponding OLS estimate at the 5% level 
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 OLS and quantile coefficients can be interpreted in the following manner. 

According to the OLS model in the second column, the average marginal effect of 1 

Gigawatt [GW] of wind power capacity on balancing prices in the North zone is -4.178. 

That is, if an additional 1 GW of wind power capacity were added to the system, the 

mean power price in the North zone would decrease by about $4.18. Results from the 

quantile regressions illustrate that this effect is not constant for all quantiles. For 

example, the average marginal effect of an additional 1 GW of wind power capacity 

would only decrease the median price in the North zone by about $0.17, and the effect is 

not statistically different than zero. 

Generally, the estimated effects for all explanatory variables aside from wind 

power are in line with expectations and previous findings in the literature. Natural gas 

prices have a strong significant effect on power prices, consistent with the fact that the 

majority of power in Texas is generated by natural gas-fired plants. They tend to have an 

average marginal effect on balancing prices between $3.80 and $5, depending on the 

zone. Natural gas’s effect on balancing prices is also larger for higher quantiles, which 

suggests that natural gas generators play a stronger role in price formation during peak 

prices. Quantile regressions report that for each zone, the average marginal effect on the 

seventy-fifth quantile is about $1.50 higher than the marginal effect on the twenty-fifth 

quantile. 

Load levels also have a positive and statistically significant effect on power 

prices, confirming that times of high demand require more high-cost generators to switch 

on and produce power. For each of the four zones, the average marginal effect falls 

between the range $3.10 and $3.80. Interestingly, quantile coefficients for load seem to 
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be relatively flat across the selected quantiles, yet OLS estimates are considerably higher 

for all four zones. This suggests that the typical marginal effect of load on power prices is 

between $1.70 and $2.20/GW, but load has a considerably larger effect during peak 

prices, which substantially increases the mean effect. 

The marginal effect of nuclear generation on balancing prices is similar, but not 

identical, to the absolute value of load’s marginal effect. This relationship was suspected 

because an additional GW of power from a nuclear generation would be very low cost, 

hence it could be as effective at lowering balancing prices as decreasing load levels by 

the same amount, since either scenario corresponds to a high-cost generator decreasing its 

output. Yet the average marginal effect across all four zones is larger and shows more 

variation than the marginal effect of load. Nuclear generation decreases balancing prices 

by between $3.70 and $5.70 according to OLS results. However, reported quantile 

coefficients show two trends worthy of additional consideration. First, average marginal 

effects for all zones appear relatively flat across quantiles, and the OLS coefficient does 

not appear to intersect with the quantile regressions’ coefficients between the selected 

range, suggesting nuclear generation may have a larger effect at extreme price levels that 

accounts for the discrepancy.10 Furthermore, coefficients for nuclear generation and load 

tend to be much closer in absolute value for reported quantiles, even though the OLS 

coefficients for the two variables are considerably different. This suggests that load and 

nuclear generation usually have a nearly equal but opposite relationship, except that 

                                                 
10 Additional quantile regressions were estimated up to the ninety-fifth quantile in increments of five to 

verify the OLS coefficient would only intersect quantile coefficients at extremely high quantiles, and that 

quantile regression coefficients were relatively flat between the twenty-fifth and seventy-fifth quantiles. 
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extreme quantiles and the nature of load variability may obscure this on when calculating 

mean effects. 

Most importantly, the information in Table 4 confirms that wind power has a 

negative effect on balancing prices and highlights a relative disparity in the marginal 

effects of wind power on balancing prices across the four zones. OLS results find that 

wind power has the largest effect on prices in the West zone, which is expected because 

the overwhelming majority of wind power capacity is located in the West zone. There, an 

additional GW of capacity decreases West balancing prices by $7.79 on average. 

Estimated coefficients are similar in sign and statistical significance in the North and 

Houston zones, though smaller in size. The marginal effect of wind power capacity is -

$4.18 on North balancing prices and -$4.59 on Houston prices. In the South zone, 

balancing prices are barely affected by wind power. There, an additional GW of wind 

power capacity decreases price by less than $0.22, although the effect is not statistically 

different from zero. 

 To further explore the effect wind power has on balancing prices, Figure 5 shows 

the estimated values of 𝛽 for balancing prices in all four zones using both OLS and 

quantile regressions results. The dashed and dotted lines depict estimated coefficients 

from OLS regressions and their 95% confidence intervals, respectively, which are all flat 

because the standard regression technique assumes that explanatory variables have a 

constant marginal effect across all quantiles. For all four zones, quantile regressions find 

that the marginal effects are negative, statistically significant, and slowly decreasing in 

size between the twenty-fifth and seventy-fifth quantiles. Quantile regression results are 
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also quite similar throughout that range, even though OLS results report substantially 

different mean marginal effects. 

 

5a. West 

 

5b. North 

 
5c. South 

 

5d. Houston 

 
Figure 5. Marginal Effects of Wind Power across Quantiles 

 

The difference between OLS coefficients across zones, as well as the difference 

between OLS and quantile regression coefficients within zones, demonstrates the value of 

utilizing quantile regressions in conjunction with OLS. For one, quantile regression 

results indicate that much of the variation in zonal OLS coefficients is attributable to 

differences in marginal effects at higher or lower quantiles. That is, wind power may 

normally have an identical effect on all zonal prices, but differences in marginal effects 
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for either high or low prices causes the disparity between OLS estimates. Furthermore, 

OLS coefficients for several zones appear to be heavily influenced by marginal effects at 

extreme quantiles. Consequently, relying only on OLS would overstate the variation of 

average effects of wind power for most prices, and results would not be informative as to 

the typical impact of wind power on power market prices. 

For lower quantiles, quantile regressions highlight a difference in marginal effects 

across the four zones. In the West zone, wind has a much smaller effect on lower 

quantiles. This result is potentially inconsistent with the information from Figure 2, and 

contrasts Woo et al.’s (2011a) finding that wind power is responsible for the price 

divergence and extremely low prices seen in the West zone. One possible explanation for 

this discrepancy is that the estimated coefficients are the average marginal effect, and the 

West balancing prices faced consequences from congestion early on in the analysis’s 

timeframe. If a relatively small amount of wind power already congested transmission 

lines and effected the minimum price possible, additional units of wind power capacity 

would have had little if any effect on prices in the lower quantiles. The positive effect on 

prices in the North zone may be a further consequence of this effect, as congested lines 

would make it difficult to consistently transmit generation from the lowest-cost 

producers. Quantile regressions also demonstrate that wind power has no significant 

marginal effect on Houston and South zones’ balancing prices in the lower quantiles. 

 The signs of these coefficients are similar to those in Woo et al. (2011b) though 

the exact magnitude of the marginal effects sometimes varies.11 Woo et al. found that an 

                                                 
11 Woo et al. (2011b) have the same explanatory variables (wind, natural gas price, load, and nuclear 

output) but their base units are slightly different. For one, their load data pertains to each of the four 

balancing zones, as opposed to the weather zones ERCOT typically reports load levels in. These were 

converted for present purposes by calculating a marginal effect of total load for each zone using a weighted 
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additional 1 GW of nuclear power in the system would decrease power prices by $5 to 

$7, whereas here it ranges from $3.70 to $5.70. Load and natural gas prices were also 

found to have a positive effect on prices in Woo et al.’s analysis; an additional 1 GW of 

load would increase prices by $5 to $6, and a $1/MMBtu increase in the price of natural 

gas would increase the price of power by $1 to $2. OLS estimates for wind power, on the 

other hand, are relatively close. According to Woo et al., and an additional 1 GW of wind 

power capacity in ERCOT would decrease prices by $1.525 in North, $0.975 in Houston, 

$0.80 in South, and $3.825 in West. It is not known why the estimated coefficients are 

different from those found here, though Woo et al.’s timeframe is considerably shorter 

(January 2007 – May 2010) than the analysis here (April 2003 – November 2010), and 

the present analysis sees considerably more variation in natural gas prices and wind 

power penetration levels. 

 

6.B. Price Volatility 

 With price volatility divided into three different moments (variance, skewness, 

and kurtosis) using two general measures (measures 𝐴 and 𝐵) for four balancing zones, 

there are twenty-four unique sets of results—not including separate estimation results for 

OLS and quantile regressions. Accordingly, the results here are restricted to the 

relationship between wind power and price volatility. Table 5 summarizes the estimations 

pertaining to the relationship between wind power and the distributional properties of 

daily prices (measure 𝐴). These results are excerpts from each estimation, and only 

                                                 
average. Woo et al. also use wind power output (measured in watt hours), instead of installed wind power 

capacity (measured in watts). The two are compared here assuming an average capacity factor of 25%. 

Lastly, Woo et al.’s variables are reported at the megawatt-level and were converted to correspond to 

marginal effects at the gigawatt-level. 
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display the estimated marginal effect of wind power (𝛽) on each measure of price 

volatility. Although not included in the table for legibility, natural gas prices have little 

effect on the variance measure 𝜎𝐴
2 or kurtosis 𝜎𝐴

4 for all four zones, though they do appear 

to increase leftward skewness. Load also has a strong, positive effect on price variance 

and skewness for all four zones and not much effect on kurtosis. Nuclear generation has 

no effect on the variances, skewnesses, or kurtoses. 

 

Table 5. Wind and Price Volatility (𝛽𝑖 when Dependent Variables are Volatility 

Measure 𝐴) 

 OLS Q(.25) Q(.5) Q(.75) 

North     

𝜎𝐴
2 -1462.731 -67.094+ -160.177+ -1125.490 

𝜎𝐴
3 0.004 -0.093 -0.738 -0.598 

𝜎𝐴
4 -1.328 -0.607 -2.775 -4.341 

Houston     

𝜎𝐴
2 2293.156 -87.522+ -139.217+ -927.191 

𝜎𝐴
3 -0.475 -0.205 -1.234 -0.420 

𝜎𝐴
4 3.623 -0.431+ -3.488 -6.201 

South     

𝜎𝐴
2 10637.106 -81.137+ -158.467+ -998.910+ 

𝜎𝐴
3 -0.580 -0.219 -1.160 -0.561 

𝜎𝐴
4 -3.641 -0.424+ -2.228 -5.200 

West     

𝜎𝐴
2 -2444.870 -32.489+ -66.345+ -1438.446 

𝜎𝐴
3 0.322 -0.045 -0.324 0.213 

𝜎𝐴
4 -3.636 -0.848+ -1.730 -1.984 

*Significant at the 5% level; **Significant at the 1% level 

+Quantile coefficient is significantly different than the corresponding OLS estimate at the 5% level 

 

 Using the variance from measure 𝐴 for price volatility, estimations find that wind 

power has a statistically insignificant effect on the variance of prices in all four zones. 

This size of the marginal effect varies from zone to zone, being quite large in the Houston 
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and South zones and comparably smaller in the North and West zones. Select quantile 

regression results similarly find no statistically significant effect, though these 

coefficients are considerably closer to zero and confidence intervals are relatively small 

for all four zones. This indicates that for most quantiles, wind power likely has no effect 

on 𝜎𝐴
2, and at extreme quantiles, wind power may have an effect on the variance of 

balancing prices, but the hypothesis that they have no effect cannot be rejected. 

 The skewness of prices’ daily distributions were likewise unaffected by wind 

power according to OLS estimations. Quantile regressions find a positive effect for 

several of the lower quantiles in the North, Houston, and South zones, confirming that 

wind power does affect the skewness of daily prices in these other zones. In this case, 

since the estimated marginal effect of wind power on 𝜎𝐴
3 is positive for smaller quantiles, 

and daily skewness for these zones is negative at smaller quantiles, wind power actually 

decreases the skewness of prices for these quantiles. 

 The kurtosis of daily prices is also only marginally affected by wind power, and 

initial OLS estimations find that wind power has no statistically significant effect. 

However, at lower quantiles, wind power does appear to have a small but statistically 

significant effect on kurtosis in the North, Houston and South zones. None of the four 

zones show a significant effect on kurtosis in higher quantiles. 

 These results actually somewhat conflict with the findings of Jónsson et al. 

(2010), who study the market impacts of wind power on power prices in western 

Denmark. Whereas here, wind power has no strong effect on the volatility of daily 

observed prices, Jónsson et al. find that when a power system’s penetration level of wind 

power grew from 0% to 10%, variance, skewness, and kurtosis tend to decrease. The 
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findings here represent an increase in wind power penetration in Texas for an almost 

identical range, yet no significant change in variance, skewness of kurtosis could be 

strongly attributed to changes in wind power levels. 

The effects of wind power on the distributional properties of prices changes 

(measure 𝐵) are summarized in Table 6. OLS estimations find no evidence of a change in 

any of the moments that can be attributed to wind power with reasonable statistical 

certainty. At smaller quantiles, 𝛽 is relatively small and is not statistically different than 

zero. At higher quantiles, estimated coefficients are sometimes statistically significant for 

skewness, kurtosis, or both. But the effect of wind power on the daily variance of price 

changes is surprisingly absent in all four zones’ estimations. This suggests that, contrary 

to Woo et al. (2011b), the hypothesis that wind power has no impact on price volatility 

cannot be rejected. 
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Table 6. Wind and Price Volatility (𝛽𝑖 when Dependent Variables are Volatility 

Measure 𝐵) 

 OLS Q(.25) Q(.5) Q(.75) 

North     

𝜎𝐵
2 -543.921 -17.092+ -40.021+ -474.643 

𝜎𝐵
3 0.706* 0.553 0.409 0.685* 

𝜎𝐵
4 -0.937 -1.793 -0.122 4.135 

Houston     

𝜎𝐵
2 -433.973 -15.420+ -85.103+ -346.736 

𝜎𝐵
3 0.682 0.651* 0.336 0.468 

𝜎𝐵
4 -2.959 -3.286 -1.039 -5.094 

South     

𝜎𝐵
2 4817.846 -13.142+ -39.324+ -528.891 

𝜎𝐵
3 0.711 0.358 0.224+ 0.376 

𝜎𝐵
4 -3.364 -3.487 -1.315 -4.652 

West     

𝜎𝐵
2 -1424.045 -33.243+ -163.642+ -746.848 

𝜎𝐵
3 -0.251 -0.297 0.050 0.092 

𝜎𝐵
4 0.773 -0.100 -0.787 3.457 

*Significant at the 5% level; **Significant at the 1% level 

+Quantile coefficient is significantly different than the corresponding OLS estimate at the 5% level 

 

6.C. Ancillary Services 

 Unlike the estimations for price volatility, there is an apparent effect of wind 

power on several of the markets for ancillary services, as demonstrated in Table 7. 

However, the effect is negative and generally statistically significant, indicating that an 

increased presence of wind power capacity actually led to cheaper prices for ancillary 

services. On average, an additional GW of wind power capacity decreased prices for 

Regulation-Up by $3.28/MW and Responsive Reserves by $4.03/MW. Estimations for 

Regulation-Down also find a negative marginal effect, by about $0.53/MW, though the 

effect is not statistically significant. Because of censoring the reported coefficient wind 
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power capacity on Non-Spinning Reserve prices is from a tobit model, and corresponds 

to an average partial effect of -$0.77/MW. 
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Table 7. Regression Results – Dependent Variables are Ancillary Service Prices 

 OLS Q(.25) Q(.5) Q(.75) 

Reg.-Up     

Wind -3.280** -0.691**+ -1.952**+ -3.356** 

NGprice 0.222* 0.004+ -0.102+ -0.057**+ 

Load 1.025** 0.385**+ 0.629**+ 0.812**+ 

Nuclear -1.570** -0.631**+ -0.876**+ -1.213** 

Intercept -9.216** -1.563**+ -2.328**+ -0.633**+ 

Month*YR FE YES YES YES YES 

Hour FE YES YES YES YES 

Reg.-Down     

Wind -0.534 -0.873**+ -0.109 -0.067 

NGprice 0.454** 0.166**+ 0.354**+ 0.679**+ 

Load -0.065** 0.003+ 0.010*+ 0.014+ 

Nuclear 0.418** 0.004+ -0.025+ 0.276* 

Intercept 3.926** 3.267** 2.481**+ 3.336** 

Month*Yr. FE YES YES YES YES 

Hour FE YES YES YES YES 

Resp. Res.     

Wind -4.029** -0.788**+ -2.212**+ -4.041** 

NGprice 1.833** 0.014+ 0.238**+ 0.687**+ 

Load 1.051** 0.390**+ 0.628**+ 0.817**+ 

Nuclear -1.540** -0.881**+ -1.107**+ -1.339** 

Intercept -20.062 -2.630**+ -4.943**+ -5.125**+ 

Month*Yr. FE YES YES YES YES 

Hour FE YES YES YES YES 

Non-Spinning     

Wind -2.431*   0.061 

NGprice 2.188**   0.014 

Load 1.745**   0.420** 

Nuclear -1.262**   -0.194 

Intercept -63.694**   -5.838** 

Month*Yr. FE YES   YES 

Hour FE YES   YES 

*Significant at the 5% level; **Significant at the 1% level 

+Quantile coefficient is significantly different than the corresponding OLS estimate at the 5% level 

 

 Additional results for other variables are largely consistent with expectations as 

well as findings from results from the balancing markets. Higher natural gas prices lead 
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to higher prices for all ancillary services, likely because a majority of ancillary services 

are fulfilled by gas-fired generators. Higher load levels also increase prices for 

Regulation-Up, Responsive Reserves, and Non-Spinning Reserves, though they decrease 

prices for Regulation-Down, probably because fewer generators would need to decrease 

their output when demand is high. Lastly, nuclear generation tends to have an opposite 

effect on ancillary service prices as load, indicating that when the nuclear plants are 

online fewer ancillary services are necessary as more base-load is being satisfied by low-

cost generators. 

 

7. Conclusion 

Due to the intermittency of wind power output, there is a general concern that a 

high penetration level of wind power will negatively affect the reliability of the overall 

power supply, and that this will be realized through an increase in price volatility, a 

greater need for ancillary services, or both. This paper presents an analysis of wind 

power’s observed market impacts in the Texas interconnection from 2003 to 2010, during 

which time the power system experienced considerable growth in installed wind power 

capacity. The estimations account for growth in wind power while also controlling for 

changes in hourly load levels, daily fluctuations in natural gas prices, and changes in 

output from nuclear generators. Quantile regressions, whose estimations are more 

descriptive, are used in conjunction with OLS to quantify the effects on balancing market 

prices, balancing price volatility, and prices for ancillary services. 

The majority of wind power capacity in Texas is located in the western part of the 

state and, not surprisingly, the largest effect on balancing market prices occurs in the 
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West zone. The average marginal effect of wind power on all zones’ balancing prices 

tends to be negative and statistically significant, indicating that wind power’s effects are 

not confined to one zone. However, using multiple metrics for price volatility, 

estimations failed to find a change in volatility attributable to wind power. Furthermore, 

while estimations did find that wind power had an effect on prices for ancillary services, 

the effect was negative and statistically significant, contrary to what previous analyses 

suggested would be the consequences of an increased presence of wind power. 

It is noteworthy that the analysis found any effect on power market conditions 

outside of the balancing markets. Many studies on the market impacts of wind power 

limit themselves in scope to one power market, typically the balancing market or its 

equivalent. Some extend their analyses to incorporate ancillary services or price 

volatility, but none present a comprehensive review of all power market characteristics. 

This paper analyzes the potential impacts of wind power by considering all three aspects: 

balancing prices, volatility of balancing prices, and prices for ancillary services; and 

demonstrates that installing a large amount of wind power capacity can potentially affect 

all three. Whereas many recent studies omit ancillary services and focus instead on price 

volatility, in this case prices for ancillary services decreased from a rise in wind power 

but there were no clear impacts on price volatility. This shows that the effects of wind 

power’s intermittency are not limited to price volatility, so future studies should not 

restrict themselves to price volatility when trying to assess the consequences of wind 

power’s intermittent nature. Furthermore, the severity of wind power’s intermittency 

appears to be overstated, as demonstrated by this paper’s combined results of no impact 

on price volatility and a decrease in the prices for ancillary services. 
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Changes in price volatility and prices for ancillary services will have both short 

and long run effects on power system conditions. In the short run, increases in either 

price volatility or the need for ancillary services would require conventional generators to 

run at technically inefficient levels more often. Changes in price volatility and ancillary 

services will also affect the long term profitability of generators depending on the 

flexibility of their output. If unaccounted for in cost-benefit analyses of wind power, 

these short and long term changes may also lead to overstating the potential ability of 

wind to abate emissions, both because of running generators at inefficient levels (Denny 

and O’Malley, 2006; Katzenstein and Apt, 2009) and because a heterogeneous change in 

the profitability of conventional generator types will affect the planning of future 

capacity. In this case, studies on the environmental and economic impacts of wind power 

may not need to account for wind power’s intermittency in the short run, as evidenced by 

a decrease in ancillary service prices and no clear effect on price volatility. However, 

studies on the long term impacts of wind power in Texas should acknowledge that wind 

power will not only decrease power prices, but that it will also affect the profitability of 

generators well-suited to providing ancillary services relative to those generators which 

are not. 

Although the power system in Texas is not unique, it should be emphasized that a 

discrepancy in estimated marginal effects between this study and others by no means 

negates previous findings. Many power systems’ markets are structured differently, 

penetration levels of conventional generators vary greatly, and even geographic 

differences in wind conditions could influence results. Regardless, some of the findings 

from Texas can help guide future research in several ways. First, quantile regressions 
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proved to be a natural addition to the empirical analysis. OLS occasionally found no 

statistically significant effect, and quantile regressions could explain this as either a non-

monotonic effect that varied across quantiles, or a marginal effect that might truly be 

zero. Second, wind power does have a predominantly negative effect of power prices for 

the real-time market, but if a wind farm is connected to multiple markets, the effects may 

not be identical everywhere. Researchers should therefore endeavor to incorporate all 

markets that a wind farm is realistically connected to in their analyses. Lastly, the impacts 

of an intermittent renewable energy may manifest themselves differently depending on 

the system and circumstances. In this instance, wind power increased from approximately 

1% to 9.5% of total capacity, and price volatility was not conclusively impacted but 

ancillary services were. It is not known if comparable results would have been found for 

similar growth elsewhere (e.g., the power system in western Denmark) or for the same 

system but with a different amount of growth (e.g., if wind grew from 10% to 20%). In 

general, researchers will not know how wind power’s intermittency will affect power 

market conditions a priori, so future analyses must necessarily incorporate all the 

aforementioned characteristics of power market conditions. 
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Abatement from Wind Power: Do Market Conditions Matter? 

 

1. Introduction 

The technology to generate electricity from wind has existed for decades, though 

it has not experienced widespread application until recently. Consequently, the effects of 

installing a large amount of wind power capacity into an existing power system are not 

well understood. While wind power has no marginal cost of output and no emissions 

from generation, it is an intermittent renewable energy [IRE]. That is, it generates power 

stochastically and its output is neither perfectly controllable nor forecastable. Thus, wind 

power might displace power from conventional fossil fuel-burning sources and lead to 

lower generation costs and emissions for the power system, but at the possible expense of 

system reliability and (when power systems schedule generation through power markets) 

greater price volatility. 

Historically, utility companies that provided consumers with power also generated 

the electricity they delivered. And since short run demand for power is inelastic with 

respect to price, utilities maximized their profits by deciding which generators to use 

based on the criteria of cost minimization. Today, many power systems have been 

deregulated and employ a series of wholesale power markets to coordinate supply. 

Although many utilities continue to operate power plants and sell power directly to 

consumers, other power producers either sell power solely at the wholesale-level or 

provide consumers with electricity despite not owning any generators. As a result, power 

generation is more effectively determined by profit maximization, though researchers still 

tend to use cost minimization in its place when modeling power system behavior. 
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An important example of the application of cost minimization to study power 

system outcomes is the literature that explores the installation of new wind power 

capacity. Researchers tend to use cost minimization methods not only to track savings in 

expenditures on fossil fuels attributable to wind power, but also to track changes in 

emissions. But if results from cost minimization do not accurately describe real market 

behavior, this weakens findings from existing studies on the abatement potential of wind 

power. Because conventional generators are heterogeneous in costs and emissions, 

estimated abatement could have either an upward- or downward-bias if results derived 

from cost minimization are not realistic. The purpose of this paper is therefore to assess 

the behavior of a profit-maximizing producer faced with volatile prices that change faster 

than producers can adjust their output, and determine whether simulations that use cost 

minimization might produce biased results because they do not accurately reflect 

producers’ decisions. 

The existing methodology is assessed in the following manner. First, I provide an 

overview of the various cost minimization techniques researchers have employed to 

estimate abatement from intermittent renewables. I then examine how changes in average 

prices and price volatility can alter the optimal strategy of an ex ante profit-maximizing 

producer. This concept is first illustrated using a basic computational model and a simple 

manipulation of a price distribution, then again with a more advanced computational 

model that accounts for a wide variety of parameters specific to power producers. Agent-

based simulations are also run to determine how producer output, emissions, and profit 

are all affected by a change in power market conditions attributable to wind power. While 

results from the basic computational model demonstrate that price volatility has an 
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impact on producer output, emissions, and profit, current results from the advanced 

computational model suggest that realistic changes to price volatility from wind power 

produce results that are comparable to those derived using ex post cost minimization. 

 

2. Integrating Wind Power and Abating Emissions 

 Most power systems still have little or no installed IRE capacity and generate the 

bulk of their power from conventional sources. Consequently, the system impacts of a 

high penetration of wind power tend to be derived from simulations rather than observed 

trends. The use of cost minimization is crucial to most of these studies, as it is the 

preferred technique for modeling the integration of new capacity in a power system and 

approximating generation decisions. Arguably, substituting individual producers’ 

behavior with a system-wide, cost minimization objective function is appropriate when 

results are not sensitive to market conditions. This applies to many technical studies on 

the integration costs and impacts to system reliability from new IRE capacity, as 

minimum costs will still be meaningful even if estimates are optimistic. 

Chen et al. (2006) is one such example that use cost minimization to analyze the 

integration of a high level of wind power in an isolated power system. They do so by 

developing an algorithm to determine optimal real-time dispatching decisions from 

conventional power plants that best accommodates power from intermittents, while 

factoring in spinning reserves and production costs. Lund and Münster (2003a,b) provide 

another example by developing a model to estimate optimal system management 

strategies when a power system has a high penetration of both intermittent wind power 

and combined heat and power plants, whose output is less flexible than standard power 
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plants. Lund (2006) later applies this model to estimate optimal combinations of three 

types of IRE (solar, wind, and wave power) when a power system has a target penetration 

level for cumulative power from renewable energy. Delarue et al. (2011) later 

demonstrate how wind power would fit into regional planning when choosing the optimal 

combination of generator types to minimize either expected production costs or exposure 

to risk of volatile fossil fuel prices. None of these aforementioned studies attempted to 

measure either the displacement of power from fossil fuels or abatement of GHG 

emissions, hence their included estimated benefits of IRE (avoided costs and reduction in 

risk to volatile fossil fuel prices) are still meaningful. More frequently, however, analyses 

attempt to identify abated emissions, though the complexity with which they model 

system-wide generation (and account for temporal fluctuations in demand) varies. 

Load Duration Curves [LDCs] take demand for power over a period of time and 

sequence it into descending load levels. Though LDCs cannot account for the variability 

between two consecutive load levels, they can describe variations in annual, seasonal, 

weekday, and diurnal demand. Hence LDCs can be a useful in identifying the best 

combination of power plant types to satisfy load requirements over long periods of time, 

e.g. months or years. Although LDCs do not account for spontaneous variability or 

system security, they have been used to study the integration of renewable energy in a 

power system and measure environmental benefits over time. Lehtilä and Pirilä (1996) 

measure the abatement potential of renewables in Finland with a model that included a 

four-step LDC.12 Similarly, Cormio et al. (2003) use an eight-step LDC in a regional 

energy planning model to predict generation schedules given the presence of renewables 

                                                 
12 A true LDC would be continuous, but they are traditionally discretized into “steps” for ease of 

calculations. 
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and environmental considerations. Holttinen and Tuhkanen (2004) study the abatement 

potential of wind power in Nordic countries with a model that was meant to simulate 

market conditions, though supply and demand curves are actually based on four-step 

LDCs at a weekly level. As such, their simulated market conditions cannot describe any 

changes to intraday volatility. All of these studies include cost-minimizing objective 

functions to predict generation to meet load requirements, but do not actually reflect upon 

potential volatility from IRE. 

Load Duration Curves are perhaps more realistic than a lump-sum variable for 

demand, but they are still problematic in that they ignore sequential fluctuations in 

demand. In reality, it may not be possible to perfectly minimize producer costs with the 

utilization rates predicted by LDCs. Because generators cannot instantaneously and 

perfectly adjust output in response to fluctuations in demand, it may be the case that the 

true cost-minimizing load schedule is not feasible, and that second-best generators must 

sometimes increase, or “ramp up,” their output to meet demand. To account for temporal 

constraints, additional work on the integration of IRE combines hourly load data from 

power systems with simulated generation from hypothetical IRE capacity. Researchers 

then use linear programming to determine the cost-minimizing generation schedule from 

dispatchable sources for load requirements not met by the IRE. Chen et al. (2006) and 

Delarue et al. (2011) are two previous examples that predict generation scheduling based 

on linear programming with hourly load levels and cost minimization. However, these 

papers do not attempt to quantity abatement benefits from IRE.  

There is considerable variation in the literature with respect to how researchers 

using linear programming as a proxy for power market transactions treat uncertainty of 
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load and IRE output in their models. Load forecast errors are typically ignored, though a 

spinning-reserve constraint is sometimes incorporated to ensure that the predicted cost-

minimizing generation schedule does not affect the system’s reliability.13 Examples of 

linear programming with a spinning reserve include Liik et al. (2003), Li and Kuri 

(2005), Voorspools and D’haeseleer (2006), Delarue et al. (2009), and Luickx et al. 

(2010). Note that the spinning reserve constraint is a product of the modeler’s 

specifications and not necessarily indicative of real market conditions, hence it may 

frequently miscalculate costs and emissions incurred by units on standby. 

While the literature on the integration of wind power frequently discusses its 

intermittency and forecasting difficulties, not all papers consider ex ante wind forecasts. 

From the perspective of abatement analysis, this is inherently problematic. Spontaneous 

output from wind power needs to be accommodated by having other active producers 

decrease, or “ramp down,” their generation, which subsequently lowers emissions. 

Research by Denny and O’Malley (2006) indicates that determining generation 

scheduling without accounting for day-ahead wind power forecasts could also produce 

fundamentally different results than those that do, as forecasts influence unit commitment 

decisions that determine which generators are on when output from wind power must be 

accommodated. Consequently, the abatement analyses of Voorspools and D’haeseleer 

(2006), Ummels et al. (2007), Delarue et al. (2009), and Luickx et al. (2010) may be 

more robust than those of Liik et al. (2003) and Benitez et al. (2008), as the latter model 

load and wind power output under ex post conditions. 

                                                 
13 The spinning-reserve margin effectively mandates a relationship between supply and demand in which 

supply consistently exceeds demand by the modeler’s defined amount. 
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Hourly load data has allowed cost minimization analyses to account for ramping 

constraints and fluctuations in demand, though whether power markets will necessarily 

tend to these solutions remains untested. While hourly load data is more detailed than 

LDCs, predicting load scheduling via cost minimization is not necessarily reflective of 

new market conditions effected by IREs. To a certain extent, cost minimization implies a 

decrease in average power market prices. However, using the cost-minimizing load 

schedule to model the integration of new IRE capacity will ignore any additional effect 

from an increase in power market volatility. Even if power producers are risk-neutral, a 

change in market volatility could affect power producers differently based on either ramp 

rates or marginal costs. Since quantifying abatement from non-dispatchable IRE depends 

on the technique used for estimating the displacement of fossil fuels, researchers must 

understand what implications power market volatility has for optimal producer behavior. 

 

3. Modeling Power Plant Output 

 The existing literature estimates displacement of power from fossil fuels and 

GHG abatement assuming that the integration of IRE will incur the cost-minimizing 

generation schedule but without accounting for power market conditions. A model that 

tests individual power producers’ responses to (new) market conditions is therefore 

useful in that it will indicate whether the overall system will react as predicted by these 

analyses. In this case, a computational model is more illustrative than a simple theoretical 

model for several reasons. First, an active power producer must continuously decide 

whether to ramp up, maintain, or ramp down its current level of output. Hence output 

decisions cannot be described by a static model without unrealistic assumptions on 
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demand (e.g., ignoring the variation and unpredictability of power prices). Second, the 

optimal adjustment to output may be technically infeasible because of slow ramp rates or 

minimum down-times for generators. In instances where a producer cannot perfectly 

adjust output as desired, any change in market conditions (in either volatility or mean 

prices over time) is unlikely to elicit a uniform response across power plants that differ 

by important parameters such as ramp rates and marginal costs. 

 Since electricity is not storable in large quantities and fuel use represents the 

majority of generation costs, agent-based models of power generation have historically 

been dynamic. One of the earliest applications of dynamic programming was actually the 

analysis of output decisions by hydroelectric dams with a stochastically refilling 

reservoir. At that time, however, utility companies were still regulated and did not 

produce power in competitive power markets. Hence dynamic programming applications 

were mostly limited to unit commitment problems to minimize utility companies’ costs 

from daily generation, as in Lowery (1996). Richter and Sheblé (2000) later updated the 

system-wide unit commitment model to account for deregulation and competition among 

producers by replacing the objective function of system-wide cost minimization with one 

of profit maximization, but in general cost minimization is still widely favored. 

The few examples of studies on unit commitment and output decisions by 

individual power producers in deregulated power systems include work by Arroyo and 

Conejo (2000), Garciá-González and Barquín (2000), and Valenzuela and Mazumdar 

(2001). Arroyo and Conejo’s model analyze the optimal output decisions of a thermal 

generator operating on the spot and spinning-reserve markets, though they assume that 

prices are known with certainty. Garciá-González and Barquín do study the decisions of 
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power producers when faced with price uncertainty, but their method to impute the 

distribution of hourly prices makes their method admittedly inadequate for studying 

instances of high volatility, as is particular interest here. Valenzuela and Mazumdar 

likewise account for price uncertainty for a profit-maximizing power producer, though 

their analysis fails to account for ramp rate restrictions. 

 The agent-based model here is presented in two parts. In 3.A., a basic 

computational model is presented to demonstrate the importance of marginal costs, ramp 

rates, and price volatility, as well how these different factors affect producer decisions. 

Whereas the basic model is stylized and not meant to represent an actual generator, the 

advanced model in 3.B. incorporates additional parameters specific to power plants so 

that the computational model can be calibrated to real world examples. Both models 

emphasize the importance of ramp rates in dictating the decisions of an ex ante profit-

maximizing producer, and the advanced model also includes minimum down-times and 

startup costs so that the analysis can incorporate the producer’s on/off decision. 

 

3.A. Basic Model 

3.A.1. Basic Model: Description 

 Since a generator’s output cannot be perfectly adjusted, its output is treated as a 

state variable in the model. Output is expressed as the generator-level utilization rate 𝑧 

over the interval [0,100], where 𝑧 = 100 indicates operating at full capacity. Under the 

assumption of constant returns to scale, a power producer has a constant marginal cost 

𝑐.14 Marginal revenue comes from the spot market price for power 𝑃, where the spot 

                                                 
14 Constant marginal cost is prevalent in the literature of greenhouse gas abatement, though most generators 

actually have increasing concave marginal costs. Constant marginal cost is used here to illustrate the 
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market price is a state variable that changes over time according to the distribution 

𝜋(𝑃′|𝑃). In this case, it is assumed that time periods are quite short, e.g., 15-minute 

intervals. 

 The producer controls only its ramping decision 𝑟. At most, the generator can 

ramp up or ramp down generation by its maximum ramp rate 𝛾, though the exact choice 

set is further restricted depending on the generator’s current utilization rate. For example, 

since 𝑧 is between 0 and 100, it must be the case that 𝑟 ∈ [−𝛾, 0] when 𝑧 = 100, because 

the generator cannot increase output beyond full capacity. Likewise, if 𝑧 = 0, then  𝑟 ∈

[0, 𝛾], as the generator cannot produce negative output. Formally, the power producer’s 

optimal output decision can be described with the Bellman equation 

(1) 𝑉(𝑃, 𝑧) = max
𝑟∈𝑅

  (𝑃 − 𝑐)(𝑧 + 𝑟) + 𝛽 ∑ 𝑉(𝑃𝑖 , 𝑧 + 𝑟)𝜋(𝑃𝑖|𝑃)𝑖 . 

The Bellman operator 𝜌 then satisfies Eq. (1) by maximizing a generator’s value by 

adjusting the utilization rate to 𝑧 + 𝜌. To demonstrate the impact IRE can have on 

heterogeneous plants, my analysis first focuses on the sensitivity of 𝜌 with respect to 𝛾, 𝑐, 

and the volatility of 𝜋(𝑃′|𝑃). 

 

3.A.2. Basic Model: Parameterization 

 Because the spot market price 𝑃 and the utilization rate 𝑧 are state variables, both 

are discretized and bounded from above and below in order for the model to be 

computationally feasible. In the case of power plant output, 𝑧 has upper and lower bounds 

of 100 and 0 by definition. By discretizing 𝑧, an additional restriction on the ramping 

                                                 
general effect of market volatility on producer behavior. Section 3.B. includes a more complex model with 

a realistic marginal cost curve. 
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decision 𝑟 is required. Because 𝑟 determines the size of the state space, 𝑟 cannot be a 

continuous variable. The choice set for ramping decisions and utilization rates is 

therefore restricted to increments of 5. This means that the model allows for generation at 

𝑧 = 95 or 𝑧 = 100, for example, but 𝑧 = 97.5 is infeasible. While it is possible to 

increase the fineness of 𝑧 and 𝑟, such models quickly become more computationally 

intensive. 

The probability matrix 𝜋 is a 100 × 100 matrix, where spot market prices range 

from 1 to 100 and change regularly after short intervals (e.g., 15 minutes). The 𝑗th 

column of the 𝑖th row identifies the probability of 𝑃𝑗 occurring given the current price 𝑃𝑖. 

A stylized version of 𝜋(𝑃𝑗|𝑃𝑖) is calculated by weighting prices based on their proximity 

to the current price using the formula 

(2) 𝜋(𝑃𝑗|𝑃𝑖) =
𝛿𝑖−𝑑𝑗+1

∑ (𝛿𝑖−𝑑𝑘+1)𝑘
. 

In Eq. (2), 𝑑𝑗 is the absolute value of the difference between prices 𝑃𝑗 and 𝑃𝑖, and 𝛿𝑖 is 

the difference between 𝑃𝑖 and the farthest removed price. This specification allows for 

probabilities to monotonically decrease the greater the difference between 𝑃𝑗 and 𝑃𝑖. A 

more realistic representation of 𝜋 would account for additional factors including time of 

day and characteristics of other active generators in the system. Nevertheless, this initial 

specification of 𝜋 allows for a basic analysis of how volatility affects heterogeneous 

agents separately from a change in average market prices. 

Volatility is incorporated into 𝜋 by re-weighting the distances between prices to 

calculate probabilities. For the basic model, an increase in market volatility is equivalent 

to increasing the probabilities of prices farther from 𝑃𝑖 (and simultaneously decreasing 
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the probabilities of those prices that are relatively close to 𝑃𝑖). This is done with the 

adjustment 

(3) 𝜋(𝑃𝑗|𝑃𝑖 , 𝛼) =
𝛿𝑖−𝑑𝑗+1+𝛼

∑ (𝛿𝑖−𝑑𝑘+1+𝛼)𝑘
. 

If 𝛼 = 0, then 𝜋(𝑃𝑗|𝑃𝑖, 𝛼 = 0) = 𝜋(𝑃𝑗|𝑃𝑖) as in Eq. (2). As 𝛼 goes to infinity, the 

distribution 𝜋(𝑃𝑗|𝑃𝑖, 𝛼) converges to 1/𝑛, where 𝑛 is the number of prices in the 

distribution. Because the price distribution is bounded from above and below, increasing 

𝛼 will also change next period’s expected price, so it is not exactly equivalent to 

changing a distribution’s variance. However, when a random price is simulated over 

time, the mean price should be 49.5 regardless of the value of 𝛼. Five different versions 

of 𝜋 were considered in the analysis, with volatility determined by incremental changes 

to 𝛼 ranging from 𝛼 = 0 to 𝛼 = 0.04. To demonstrate the effect on volatility from these 

specifications, 𝜋(𝑃′|𝑃 = 50, 𝛼 = 0) and 𝜋(𝑃′|𝑃 = 50, 𝛼 = 0.04) are depicted in Figure 

1. While other changes to 𝜋(𝑃′|𝑃) are possible (e.g., just increasing the probability of 

𝜋(𝑃′ = 100|𝑃) or 𝜋(𝑃′ = 1|𝑃)), it is difficult to construct other scenarios with an 

increase in volatility without also significantly altering other distribution properties such 

as the mean value over time. 
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                 𝜋(𝑃′|𝑃 = 50, 𝛼 = 0)               𝜋(𝑃′|𝑃 = 50, 𝛼 = 0.04) 

 
Figure 1. 𝜋(𝑃′|𝑃 = 50) 

 

 The remaining parameters are identified in Table 1. In addition to five different 

specifications of 𝜋, twenty different ramp rates were chosen, as well as one hundred 

different marginal costs. Eq. (2) was then optimized by solving for 𝜌 using policy 

iteration for these two thousand different combinations of parameters. 

 

Table 1. Basic Model Parameters 

Price volatility (𝛼) 0, 0.01, 0.02, 0.03, 0.04 

Price (𝑃) 1, 2, … , 100 

Ramp rate (𝛾) 5, 10, … , 100 

Utilization rate (𝑧) 0,5, … , 100 

Marginal cost (𝑐) 1,2, … ,100 

Discount factor (𝛽) 0.999 

 

3.A.3. Basic Model: Optimal Producer Behavior 

 Results from select parameter specifications are included here to highlight the 

impact of price volatility on producer behavior. For simplicity, four different 

combinations are considered: a plant is either a “low-cost” plant (𝑐 = 40) or a “high-
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cost” plant (𝑐 = 60), and its ramp rate is either slow15 (𝛾 = 25) or fast (𝛾 = 75) with 

volatility determined by 𝛼 = 0 and 𝛼 = 0.04. With 21 different utilization rates and 100 

different prices, there are 2,100 different policy decision that must be calculated to 

identify 𝜌, which is simply too many to coherently report in a single graphic. 

Accordingly, Figure 2 depicts optimal utilization rates, 𝑧∗, for these specifications under 

the volatility schemes 𝛼 = 0 and 𝛼 = 0.04, where the optimal utilization rate is identified 

based on 𝜌. Note that 𝜌 is only implicitly included in Figure 2. For example, if a plant 

with a slow ramp rate were operating at full capacity (𝑧 = 100) when 𝑃 suddenly 

dropped to 1, the producer would want to temporarily shutdown (𝑧∗ = 0). However, the 

producer could only ramp down to 𝑧 = 75 (𝜌 = −25) in a single period and would 

temporarily operate at a loss that period. The next period’s ramping decisions would then 

be determined by the next realization of 𝑃, the new utilization rate 𝑧 = 75, and the 

producer’s optimal utilization rate 𝑧∗. 

  

                                                 
15 In reality, many conventional power plants have even slower ramp rates. Based on the calculations from 

Benitez et al. (2008), a coal plant would have a ramp rate 𝛾 = 8.3 and a natural gas combined cycle plant a 

ramp rate of 𝛾 = 12.5. If periods are 15 minutes in length, a “slow” generator with 𝛾 = 25 would be able 

to ramp up to full capacity in just an hour. Parameters for 𝛾 and 𝑐 were chosen to highlight how slight 

differences in parameter values can produce marked differences in behavior from volatility, and are not 

indicative of real world conditions. The more advanced model in Section 3.B. presents results when more 

realistically calibrated. 
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Figure 2. Optimal Utilization Rates 

 

 Several patterns in producer behavior become apparent in Figure 2. For plants 

with a slow ramp rate (𝛾 = 25), producers would prefer one of five different utilization 

rates depending on the current price. For the low-cost plant (𝑐 = 40), the producer is 

often willing to operate at partial capacity for a short term loss in profit. That is, even if 

the 𝑃 < 𝑐, the producer still prefers 𝑧∗ > 0 and operates at a loss. The producer would 

only want to operate at full capacity when 𝑃 ≥ 46, even though the plant operates 
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profitably whenever 𝑃 > 40. On the other hand, the high-cost plant (𝑐 = 60) with a slow 

ramping ramp typically prefers to be inactive. So long as 𝑃 ≥ 55, it switchs on, even at a 

loss, though for many 𝑃 > 𝑐 it would still prefer not to operate at full capacity. 

 An increase in price volatility affects the two slow-ramping plants in opposite 

ways. For the low-cost plant, the producer would be more willing to operate at a 

temporary loss and will often ramp up to higher utilization rates than before. For 

example, under the low volatility scheme, the low-cost plant would prefer to operate at 

𝑧 = 25 when 𝑃 = 20. But when volatility increases, the low-cost plant would prefer to 

operate at 𝑧 = 50 when 𝑃 = 20. Conversely, the high-cost plant would often require a 

higher price than before in order to be willing to generate power. This behavior is likely 

attributable to the symmetry with which volatility increased. An increase in the 

probability of price spikes would normally encourage the high-cost plant to switch on 

more often and operate at a temporary loss. But the probability of sudden price drops also 

increased, meaning that the persistence of high prices is less certain and producers are 

more likely to be found operating at a loss before being able to adjust output. 

Plants with higher ramp rates have greater flexibility in their output. Because they 

can ramp down quickly, they can minimize losses when 𝑃 < 𝑐. As a result, they are more 

willing to operate at full capacity than their slow-ramping counterparts, and they are able 

to narrow the range of prices for which they operate at a temporary loss. Increasing 

volatility does not have much of an effect on either plant type’s optimal ramping rules, 

except that the low-cost plant will be willing to operate at a loss for a slightly greater 

range of prices, and the high-cost plant will operate at full capacity for a smaller range of 

prices.  
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3.A.4. Basic Model: Simulation Results 

 Although an analysis of producers’ ramping decisions with respect to price 

volatility identifies underlying trends that could alter plant output, changes in 𝜌 alone do 

not demonstrate the change in plant output over time. While volatility may have an 

instantaneous effect on 𝜌, its effect on cumulative producer output is arguably of greater 

importance. Once optimal ramping rules were determined for each of the two thousand 

specifications, simulations were run to track change in output from an increase in the spot 

market’s volatility. 

 To simulate producer output, the state variables 𝑃 and 𝑧 first had to be set in a 

non-arbitrary manner that would also realistically reflect potential scenarios according to 

𝜌. For example, it may be possible for a plant to find itself operating at full capacity (𝑧 =

100) while the price is at its minimum (𝑃 = 1), though the appropriateness of such a 

starting point for a simulation is dubious. Accordingly, the initial price 𝑃0 was drawn at 

random according to a probability mass function based on averages of 𝜋(𝑃′|𝑃, 𝛼) for all 

values of 𝑃 and 𝑃′. Following period 0, a random price walk lasting one hundred and 

sixteen periods was calculated using transitional probabilities defined by 𝜋(𝑃′|𝑃, 𝛼 = 0) 

and 𝜋(𝑃′|𝑃, 𝛼 = 0.04). The generator’s initial utilization rate was then set at 𝑧∗(𝑃0) and 

allowed to vary over time according to 𝜌. In case the first few observations might be 

sensitive to the simulation setup, the first twenty periods were not used to calculate 

results. This left ninety-six periods per iteration to calculate average output and profit, the 

equivalent of one day if each period represents fifteen minutes. One thousand iterations 

were run for each of the four thousand different calibrations. 



64 
 

 Relative changes in plant-level output over time are illustrated in Figure 3. The 

results demonstrate that greater volatility can lead to a change in output, though this 

result is not monotonic and varies with both marginal costs and ramp rates. Interestingly, 

results are almost perfectly inverted across 𝑐 = 50, which corresponds to the 

approximate mean price over time under both price distributions. For low-cost 

generators, output typically either remained unchanged or decreased by as much as 5% if 

the generator had an extremely low marginal cost or a fast ramp rate, possibly because 

these plants were already operating near full capacity during simulations with a low price 

volatility. Many of the low marginal cost, slow-ramping generators actually increased 

their average utilization rate as the volatility increased. Gains tended to be less than 10%, 

though the shape of the figure peaks at 𝑐 = 50, 𝛾 = 5 with a 20% increase in output. 

High-cost generators tended to increase their average output provided they were fast-

ramping or had extremely high marginal costs. This is likely because many of these 

generators tended to operate well below full capacity during simulations with a low price 

volatility, and any increase in output would then produce noticeable results. Conversely, 

many of the high marginal cost generators with only mid-range or slow ramping rates 

were unable to take advantage of the increase in price volatility. Reductions in average 

output were as significant as 40%. 

 



65 
 

 

𝜸 

𝒄 

Figure 3. Changes in Output (%) 

 

95% confidence intervals for the four previously selected generator specifications 

are depicted in Figure 4. Although some changes in output are noticeable, none would be 

described as statistically significant in a strict empirical sense. However, results are 

practically bounded. For example, slow ramping generators were often operating near full 

capacity (low marginal cost generator) or were frequently idle (high marginal cost 

generator). An increase in price volatility shifted each of these generators closer to full 

capacity or idleness, though it would have been very unlikely for the second confidence 

interval to shift entirely outside the first. Results may also be sensitive to number of 

periods per simulation. Nevertheless, the general smoothness of the results in Figure 3 

suggest that volatility does have a real effect on generator output, even if this effect 

appears statistically insignificant for any one particular parameterization. 
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Figure 4. Select Changes in Output 

 

The change in price volatility also affected producer profit, though these results 

are evidently not strongly correlated with changes in output. Relative changes in producer 

profit are illustrated in Figure 5. Generators with very high marginal costs saw large 

increases in profit regardless of whether they were slow- or fast-ramping. Slow-ramping 

plants with marginal costs close to 𝑐 = 50 actually experienced a decrease in profit. All 

other generators saw modest gains. Figure 6 depicts 95% confidence intervals for 
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profitability of select generator types for both volatility scenarios. While there are some 

minor differences, changes are rather unsubstantial for these particular parameterizations. 

 

 

𝜸 

𝒄 

Figure 5. Changes in Profit (%) 
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Figure 6. Select Changes in Profit 

 

The simulation results can be extended to abatement analysis by considering how 

output and profit change over time in response to an increase in price volatility. In the 

short term, capacity is fixed, and abatement would be limited to changes in plant output. 

Since a change in price volatility has a heterogeneous effect on producers, it is expected 

that those that increased their output the most in response to a change in volatility would 

likely not decrease their output as much as predicted using cost minimization techniques, 

if an increased level of IRE led to greater market volatility. At the same time, producers 

that decreased their output in response to a change in volatility would likely decrease 
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their output more than the amount predicted by cost minimization. Whether these results 

would lead to greater or less abatement depends on emissions rates of relevant generators. 

In the long term, capacity is not fixed and producers are able to install new 

generators and retire old ones. In this case, price volatility has implications for abatement 

analysis through the profitability of various generator types. While some generators 

experienced a decrease in profitability from the increase in price volatility, others became 

more profitable. Based on the simulation results, profit-maximizing producers would 

generally shift away from generators with slow ramp rates. Consequently, the penetration 

levels of different generator types would change over time in response to the change in 

price volatility. Since different generator types often have different emission rates, a 

change in penetration levels will have further implications for long term abatement. Fast-

ramping plants tend to be more costly, but they also burn natural gas and have lower 

emissions rates. Thus, IRE capacity may not abate the same amount during its initial year 

of operation as in subsequent years due to changes in penetration levels of conventional 

generators. 

 

3.B. Advanced Model 

3.B.1. Advanced Model: Description 

 The simple model from 3.A. demonstrates the general intuition of how changes in 

market conditions can affect producer output (and subsequent emissions), though it lacks 

several parameters and constraints to make it applicable to the case of an actual 

generator. This section outlines a more complex model that realistically represents the 
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characteristics of fossil fuel-fired generators and incorporates a more detailed power 

market price distribution into its analysis. 

 In the basic model, the utilization rate was allowed to range from 0 to 100 without 

restriction. Results were used to illustrate the general effect of price volatility, but 

included parameters and calibrations were not reflective of actual power generators. 

Necessary extensions of this model are the addition of nameplate capacity 𝜅; the 

establishment of a minimum utilization rate 𝑧, which an active generator cannot operate 

below without shutting down; imposing a minimum down-time 𝜏 if the generator is 

switched off; and introducing a fixed startup cost 𝐹. These new parameters can easily be 

incorporated into the previous model and solved using policy iteration, though the state 

space can become quite large depending on size of 𝜏. However, the inclusion of 𝜏 is 

necessary, as it incorporates a power producers’ discrete on/off decision into the optimal 

generation behavior. 

 The advanced model also relaxes the assumption of constant marginal costs. 

Many thermal generators actually operate more efficiently when at full capacity. This 

translates to needing a disproportionately high amount of fuel per MW when operating 

near 𝑧 relative to the amount required to operate at 𝑧 = 100. As a result, most generators 

exhibit increasing concave marginal costs. The model is fitted to include such a cost 

structure using the quadratic cost coefficients 𝑐1 and 𝑐2.16 An additional startup cost 𝐹 is 

also incurred if the generator is off but switched on. 

                                                 
16 In practice, 𝑐2 is quite small, so the generic assumption of constant marginal cost may not be too 

inappropriate. 
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 After accounting for the new parameters, the producer has several choices 

depending on its state. If the generator is on, its instantaneous profit is 𝑃 (
𝑧

100
) 𝜅 −

(𝑐1𝑧 + 𝑐2𝑧2). If active, it can produce up to 𝜅 MW by operating at 𝑧 = 100 or as little as 

(
𝑧

100
) 𝜅. But the exact choice set for 𝑧 in any one period is further restricted by the ramp 

rate 𝛾, as was the case in the simple model. It can also switch off, which reduces the 

utilization rate to 0 while simultaneously imposing a minimum of 𝜏 periods in which the 

generator cannot be reactivated. Once an inactive generator has been idle for 𝜏 periods, it 

can either continue to remain off, or be switched on to 𝑧. If activated, its instantaneous 

profit is 𝑃 (
𝑧

100
) 𝜅 − (𝑐1𝑧 + 𝑐2𝑧2) − 𝐹. If 𝑡 is a state variable that identifies how many 

periods the generator has been inactive and 𝑆(𝑧, 𝑟, 𝐹, 𝑡) is a function equal to either 0 or 

𝐹 depending on whether the generator is switched on, then the producer’s optimal output 

decision under the advanced model can formally be described with the Bellman equation 

(4) 𝑉(𝑃, 𝑧, 𝑡) = max
𝑟∈𝑅

  𝑃 (
𝑧+𝑟

100
) 𝜅 − (𝑐1(𝑧 + 𝑟) + 𝑐2(𝑧 + 𝑟)2) − 𝑆(𝑧, 𝑟, 𝐹, 𝑡) +

𝛽 ∑ 𝑉(𝑃𝑖, 𝑧 + 𝑟, 𝑡′)𝜋(𝑃𝑖|𝑃)𝑖 . 

The Bellman operator 𝜌 then satisfies Eq. (4) by maximizing the generators current and 

expected value by adjusting the current utilization rate as permitted by 𝛾, 𝑧, and 𝜏. 

 

3.B.2. Advanced Model: Parameterization 

Because the basic model had only 2,000 different combinations of parameters 𝛾 

and 𝑐, it was relatively straightforward to perform basic optimization and simulations for 

every possible setting and still be able to interpret results. However, the advanced model 

employs a much larger array of parameters (𝛾, 𝑐1, 𝑐2, 𝑧, 𝜅, 𝜏, 𝐹) and the resulting set of 
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feasible combinations makes it impractical to optimize and simulate for all possible 

parameterizations. Accordingly, the parameters of the complex model are set to 

approximate a 200 MW natural gas generator. Values for 𝑐1, 𝑐2, and 𝑧 were obtained 

from Wood and Wollenberg (1984) and 𝐹 was set according to information in Stoft 

(2002). Parameters are listed in Table 2. Parameters 𝛾, 𝜏, and 𝜅 were calibrated for 

periods of 15 minutes in length. Thus, although the generator can produce 200 MW in an 

hour, it can only produce one quarter of that in a single period. Similarly, 𝛾 = 50 and 𝜏 =

4 correspond to the plant being able to ramp up to full capacity in a half hour and a 

minimum down-time of one hour, respectively. 

 

Table 2. Advanced Model Parameters 

Ramp rate (𝛾) 50 

Marginal Cost 1 (𝑐1) 22.0911 

Marginal Cost 2 (𝑐2) −0.0341 

Min utilization rate (𝑧) 25 

Capacity (𝜅) 50 

Min down time (𝜏) 4 

Startup cost (𝐹) 4000 

Discount rate (𝛽) 0.999 

Note: κ and τ are calibrated for periods of 15 minutes in length. 

 

The simple price distribution described by 𝜋 is also refined in the advanced model 

to better reflect a realistic set of prices and transitional probabilities. Initially, the full set 

of prices is defined as {𝑃} and divided into three separate regimes: low, mid, and high. 

The low price regime ranges from −25 to 10 in increments of 5. The mid price regime 

ranges from 15 to 90 in increments of 1. The high price regime includes 100, 200, 500. 

1000, and 2000. Prices are considered to be in dollars per Megawatt hour [MWH]. In 
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reality, the price of power can vary in units as fine as cents, though the restriction of a 

finite and reasonably sized state space for computability necessitates discretizing prices 

and omitting certain prices (in both low and high regimes) that are uncommon in any 

case. Nevertheless, the range of included prices is realistic and based on observed prices 

in the Texas interconnection. 

Transitional probabilities are calculated using a normal distribution. Specifically, 

the probability of a price change as defined by 𝑃𝑗 − 𝑃𝑖 is calculated with a normal 

distribution with a mean of 0. Findings of Woo et al. (2011b), who quantified the effect 

wind power has on average market prices and price variance in the Texas 

interconnection, are used to simulate the effects of wind power on power market 

conditions. Specifically, Woo et al. demonstrate that a 10% increase in wind power 

capacity would decrease power market prices by $3.825/MWH and increase price 

variance from 1190.3 to 1254.1.17 Thus, {𝑃′} identifies a price regime identical to {𝑃} 

except each observation is smaller by 3.825, and a base case variance of 𝜎0
2 = 1190.3 is 

also used in conjunction with an “increased volatility” scenario with 𝜎1
2 = 1254.1. 

Simulations are then run using all four combinations of 𝑃 and 𝜎2, and the generator 

calibration in Table 2. 

 

3.B.3. Advanced Model: Simulation Results 

To adequately measure the impact price volatility has on producers, simulations 

are run similar to those for the simple model. The initial price 𝑃0 is set using the same 

                                                 
17 This result is specific to the West zone of ERCOT’s market setup, where a majority of Texas’s wind 

power is located. 
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technique as in 3.A.2., except it is restricted to prices in the mid-range of either {𝑃} or 

{𝑃′}. Additionally, the random price walk is extended to six hundred and ninety-two 

periods. This specification allows for twenty periods of adjustment and six hundred and 

seventy-two periods (seven days) to measure producer profit, output, and fuel use. The 

initial utilization rate is set to 𝑧∗(𝑃0) if 𝑧∗(𝑃0) ≥ 𝑧, and off with the option to switch on 

otherwise. One thousand iterations are run for each of the four price scenarios. 

 Confidence intervals showing the impact of different price regimes on output use 

are depicted in Figure 7. Most of the generation fluctuated between 27,000 and 28,000 

MWH under the initial price regime {𝑃} and between about 25,000 and 26,000 MWH 

under {𝑃′}, approximately a 2,000 MWH reduction attributable to the price decrease from 

wind power. Since the model has been calibrated to a natural gas generator, this 

corresponds to roughly 13,900 to 14,400 tCO2 emissions under {𝑃} and 12,900 tCO2 to 

13,400 tCO2 under {𝑃′}.18 Results were evidently not sensitive to either specification of 

𝜎2. This may be because not all possible generator calibrations are sensitive to changes in 

volatility (as was the case sometimes for the results from the basic model), because the 

change in volatility was not large enough, or because a change in volatility has no effect 

on output over time. 

 

                                                 
18 Because the generator was parameterized to include concave marginal costs, there are slight differences 

in instantaneous output and emissions. However, relative changes in cumulative output and emissions in 

this instance were found to be nearly identical, hence I omit an additional figure with 95% confidence 

intervals for changes in emissions. 
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Figure 7. Changes in Output 

 

Confidence intervals for profit are included in Figure 8. Profit from the initial 

price regime tended to be between $450,000 and $500,000. For the lower price regime 

{𝑃′}, profits are usually between $350,000 and $400,000, roughly a 20% decrease in 

profit from the decrease in price from wind. As with output, results were more sensitive 

to switching from {𝑃} to {𝑃′} than to changing the value of 𝜎2. But the range of profit 

across scenarios is relatively consistent regardless of which price scenario was used, 

indicating that these changes in power market conditions have very little effect on a 200 

MW natural gas generator. 
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Figure 8. Changes in Profit 

 

The simulation results from the advanced model demonstrate the impact market 

conditions can have on generation, emissions, and profitability of a conventional 

generator. Admittedly, results indicate that price volatility has little, if any, noticeable 

impact. However these results are likely sensitive to the specified parameters and 

transitional probabilities. In this particular case, a 200 MW natural gas generator does not 

seem to be sensitive to a change in price volatility. 

 

4. Conclusion 

 Cost-benefit analyses of IRE estimate the displacement of generation from 

conventional power plants by modeling power system outcomes with ex post cost 

minimization instead of ex ante profit maximization. Yet the intermittency of wind, solar, 
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and tidal power is expected to increase market volatility as their penetration levels 

increase, potentially invalidating ex post cost minimization as an appropriate modeling 

technique because it does not adequately account for changes in uncertainty and risk. 

This paper offers an analysis of how power market conditions, especially price volatility, 

affect ex ante profit-maximizing power producers, and therefore assesses the validity of 

ex post cost minimization for studying the benefits and costs of IRE. 

 I construct both a basic and an advanced computational model to demonstrate the 

relationship between price volatility, and producers’ ramping rates and marginal costs. 

With the optimal policy decisions from the basic model, I find that power producers with 

high marginal costs are more sensitive to market volatility than those with lower marginal 

costs. However, plants with higher ramping rates also tend to be more immune to any 

adverse effects from volatility. Generally, an increase in volatility decreases plant 

idleness, and this effect is especially noticeable in all types of high-cost plants. While 

simulation results suggest that market volatility will result in relatively more power from 

high-cost generators, this effect would not be present in results derived using ex post 

cost-minimization. 

 Traditional cost-minimizing analyses find that IREs will displace a 

disproportionate amount of power from natural gas because of its high marginal cost. Yet 

ex post cost-minimizing techniques are somewhat problematic if intermittents also 

increase price volatility in a power system, as simulation results from the basic 

computational model indicate that an increase in price volatility has a non-monotonic 

effect on power producers depending on their ramping rates and marginal costs. Even so, 

an application of the advanced computational finds that changes in output, emissions, and 
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generator profitability are not sensitive to a realistic change in price volatility attributable 

to an increase in IRE. Specifically, the advanced model was calibrated to a 200MW gas-

fired generator, and changes in market conditions were derived from Woo et al.’s (2011) 

study on wind power’s effects on average prices and price volatility in the western zone 

of the Texas interconnection. Through various combinations of alternating high and low 

price and volatility regimes, the effects of each change in market conditions on output, 

emissions, and profitability were isolated and explored. In this setting, changes in 

volatility had no discernible effect on any of the measured outcomes. 

Results from this simulation appear to support continued use of ex post cost-

minimization because of the lack of consequences from a change in volatility. However, 

it is difficult to say whether findings from this simulation can be generalized to all cases. 

Di Cosmo and Valeri (2014), for example, find that an increase in wind power would 

have a heterogeneous effect on the profitability of various conventional generators, 

specifically because of the intermittency of wind power and its effect on market 

conditions. Other calibrations of the advanced computational model may therefore prove 

to be sensitive to changes in price volatility. Furthermore, the change in price volatility 

for the advanced model’s simulation was rather small. It is possible that a larger change 

in price volatility, or perhaps if price volatility were characterized beyond variance, 

simulations would yield different results. The validity of ex post cost-minimization to 

model the impacts of IREs therefore remains unclear, though results from current efforts 

do not refute it as an acceptable methodology.  
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Why Do Distilleries Produce Multiple Ages of Whisky? 

 

1. Introduction 

Whisky19 is one of just a few goods that matures and accrues value over time. 

Other common examples include timber, which accrues value because trees gain biomass 

with age, and wine, which accrues value because it can improve in quality even after it is 

bottled. Whisky, and other aged spirits in general, also has a multi-period production 

process, but the maturation processes, traits of the final goods, and even the general 

business decisions of wine and timber producers are not perfectly relatable to whisky. 

Whisky producers consistently offer a product line in which the primary distinguishing 

factor within their own brands is product age, which implies the existence of multiple 

optimal maturation ages for a single producer. 

The existence of multiple optimal maturation ages for a single vintage is not 

usually considered in the literature. In wine economics, researchers explicitly assume a 

unique optimal maturation age (Goodhue, LaFrance, and Simon, 2009), concede 

consuming bottles from the same vintage at different years could be optimal in order to 

track quality improvements in the overall batch (Jaeger, 1989), or employ a model which 

obfuscates the product’s age (Wohlgenant, 1982). In forestry economics, the subject of 

harvesting trees of heterogeneous ages has been analyzed (Salo and Tahvonen, 2003 and 

2004; Uusivuori and Kuuluvainen, 2005), though the emphasis here is on the existence of 

and convergence towards a steady state with an even distribution of age classes. 

                                                 
19 Both “whisky” and “whiskey” are acceptable spellings, though the usage somewhat depends on the 

spirit’s origin. Because my analysis focuses on Scotch whisky, I opt to use “whisky” throughout the paper, 

except in cases in which “whiskey” is more appropriate given the context. 
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Distilleries that sell multiple ages of whisky may be comparable to other general 

instances of multiproduct firms. In this case, distilleries offer a line of goods that are 

differentiable vertically (by age) and potentially horizontally (through other product 

attributes). If consumers differentiate between brands, this would allow distilleries to 

exert some market power and encourage them to construct product lines so as to 

maximize their market share and prevent other firms from entering the market. Multiple 

maturation ages of whisky may therefore be evidence of imperfect competition and 

limited brand substitutability. 

The purpose of this paper is to explore the production decisions of whisky 

distilleries and determine what market conditions lead them to produce multiple ages of 

whisky. Accordingly, I begin by constructing a theoretical model with a multi-period 

maturation process under the assumption that distilleries are price-takers. Results from 

the model produce several testable conditions to determine the validity of the hypothesis 

that firms have no market power. Next, I exploit distillery ownership to analyze product 

line composition and determine how brand substitutability influences product variety at 

the firm-level. 

There are three contributions of this paper to the existing literature. First, it 

addresses the issue of multiple maturation ages for goods that accrue value over time. 

Furthermore, it demonstrates how product variety is affected by market concentration. 

Generally, analyses of market concentration and product variety highlight instances in 

which two firms merge and they reposition their respective products to avoid 

cannibalizing profits between brands. Many Scottish distilleries are owned by parent 

companies that own several more distilleries, allowing for further consideration of how 
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product variety is affected as concentration intensifies. Lastly, the paper exploits the 

characteristics of single malt Scotch to present a comprehensive and informative measure 

of product variety. First, product variety can be measured as the total number of products 

offered by one brand, as is often the case in the literature on product variety. 

Additionally, products’ age statements are used as a second measure to determine how 

producers’ decisions with respect to quality are influenced by market concentration.  

Results from the theoretical model are inconclusive as to whether distilleries are 

price-takers. Although the model potentially enables the calculation of firms’ discount 

rates using prices and product ages without further knowledge of quantity or costs, the 

subsequent discount rates seem implausible. While a rejection of the calculated discount 

rates suggests that distilleries are not price-takers, it is possible that factors that the model 

cannot account for bias results. However, results from the analysis of distilleries’ product 

variety do suggest distilleries are able to exert some market power. Both product line 

composition and product line size appear to be influenced by closely related brands. This 

suggests that parent companies are aware of substitutability within their brands, and 

structure their distilleries’ product lines so as to avoid offering comparable products and 

thus cannibalizing profits between brands.  

The remainder of the paper is organized as follows. First, I overview the 

production process of single malt whisky and explain the significance of maturation. 

Then, I present a theoretical model and determine under what conditions a price-taking 

producer would still produce multiple ages of whisky. The model leads to a series of 

lower- and upper- bounds for observed price ratios, and I am able to use these to estimate 

firms’ discount rates and evaluate the assumption that firms are price-takers. Lastly, I 
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analyze the distilleries’ product line composition to evaluate the determinants of a 

distillery’s product variety and assess brand substitutability and market power. 

 

2. Modeling Whisky Production 

2.A. Overview 

 Throughout the paper, I will focus on single malt Scotch whisky, though the 

analysis could easily be extended to other aged spirits, such as bourbon or rum. One of 

the key differences between Scotch and other whiskies is that Scotch whisky must be 

made from malted barley, whereas others (such as bourbon) are mostly made from other 

grains, such as corn. I will also refer to the spirit as “whisky” regardless of its actual age, 

though Scotch whisky cannot actually be sold as such until it has been aged for at least 

three years. In fact, the spirit must satisfy several conditions in order to legally be sold as 

“Scotch whisky,” including a minimum maturation age of three years, a bottled strength 

of no less than 40 percent alcohol by volume, and no additives are permitted (the sole 

exception being caramel coloring E150a). I provide a general overview of the production 

of single malt Scotch whisky here to further elucidate the process. 

 Single malt Scotch whisky is made with only two ingredients: water and barley. 

The barley is malted during the initial phase of production by first steeping it in water, 

then allowing it to dry and germinate. The seeds are next kilned, which halts the 

germination process and prevents the plant from using its stored sugars. Many distilleries 

in Scotland toast their malt with peat-fueled furnaces during this phase. Peat, which is 

decayed organic vegetable matter from bog plants, imparts the smokiness traditionally 

associated with Scotch whisky. Originally, peat was the primary fuel source available for 

most distilleries, though the advent of railroads provided them with coke and coal, and 
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thus gave distilleries much greater control over how much peat was used during the 

kilning process. Consequently, many distilleries’ flavor profiles are now only lightly 

peated. 

 After kilning, the malt is ground and mixed with hot water, which completes the 

conversion of the malt’s starches into maltose. Yeast is next added to the resulting liquid, 

and it feasts on the sugars, converting them into alcohol and carbon dioxide over the next 

several days. After fermentation, the liquid is ready for distillation. Scotch whisky is 

distilled in a pot still to purify and concentrate the spirit. Pot stills perform distillation in 

batches, and distilleries must distill the spirit at least twice. Elsewhere, such as Ireland, 

the spirit must be distilled three times.  

 After distillation the spirit is a “new-make,” which is essentially just un-aged 

whisky and typically around 70 percent alcohol by volume. The new-make is filled into 

oak casks and the maturation process finally begins. During maturation, the wood 

mellows the whisky, imparts some of its flavor, and gives it its color. Generally, older 

whiskies are smoother and more complex than younger whiskies, as they have been in 

close contact with the wood for more years. Cask sizes are typically between 180 and 500 

liters, with smaller casks being able to enhance the maturation process because of the 

greater surface area to volume ratio. Because many oak casks are reused, their original 

contents also add some character to the whisky. While almost all Scotch whisky is aged 

in casks that previously held bourbon, distilleries sometimes use ex-sherry, port, or rum 

casks, which impart their own particular flavors.  
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 During storage, the whisky evaporates and the alcohol content typically declines, 

though to what extent is determined by the climate and the type of warehouse.20 Whiskies 

can be bottled at cask strength, which is typically around 55 percent alcohol by volume, 

though most whiskies are diluted to 40 percent. Although whisky must be matured for at 

least three years, distilleries are not required to include the whisky’s age on the label. If 

the whisky’s age is not included on the label, it is known as a “no age statement” whisky. 

Standard bottlings have an age statement ranging from 10 to 40 years, though both 

younger and older whiskies are sometimes available. Unlike wine, whisky will not 

improve with age once it has been bottled, hence the maturation decision of whisky is at 

the discretion of the producer, not the consumer. 

A distillery will typically produce a “core range” of whiskies, which means that it 

will consistently bottle and sell the same types of whiskies from year to year, though 

these whiskies will each possess unique traits to differentiate themselves within the 

range. The primary distinguishing factor is often age, though distilleries can employ 

various techniques during the production process to create a whisky that is tangibly 

different in a way other than additional maturation. Examples include alternating the 

intensity of peating the malt, maturing whisky in an ex-sherry cask, or bottling at cask 

strength. The ages in a distillery’s core range also tend towards certain numbers. For 

example, many distilleries produce a 10 or 12 year old [yo.] as their youngest whisky 

with an age statement, though producing both of these ages (or an 11yo.) is very 

uncommon. The next youngest whisky produced will typically be between 14 and 16 

years old, if another is produced at all. Ages of additional bottlings tend to increase in 

                                                 
20 The evaporation rate is colloquially known as “the angel’s share.” In Scotland, it is approximately 2 

percent per year. 
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fixed increments, for example 3 or 5 years. Most distilleries produce three or fewer 

whiskies, though some distilleries have a core range with more than ten different 

whiskies. 

 

2.B. Optimal Maturation 

 Goodhue, LaFrance, and Simon (2009) use a model to analyze the production and 

aging decisions of a profit-maximizing winery when the firm’s output had no impact on 

the market price of its good. I use a similar model here, with several minor differences. 

Goodhue, LaFrance, and Simon’s model accounts for total quantity of output and 

includes a convex cost function for the production of its un-aged wines. I instead 

normalize the quantity of un-aged whisky to 1, since I wish to examine the distillery’s 

decision to mature portions of a batch to different ages irrespective of total quantity. 

Unlike Goodhue, LaFrance, and Simon, I do include bottling costs, since I wish to 

distinguish between the marginal revenue of a bottle and its net marginal revenue later in 

the analysis. I also model time discretely, since distilleries only label their whiskies’ ages 

in whole increments. 

 Let 𝑎 denote the age of whisky, where 𝑎 = 0, … , 𝑀 and 𝑀 is the maximum 

maturation age beyond which whisky loses its value. I assume that 𝑀 is finite but 

sufficiently large so as to not restrict the optimal solution. The quantity of new-make 

produced in a year is normalized to 1, and 𝑥𝑎 is the portion of new-make to be aged for 𝑎 

years before bottling. Whisky steadily evaporates during its time in storage, so let the 

evaporation rate of whisky be 𝜀. Then if 𝑥𝑎 was initially distilled, only 𝑥𝑎(1 − 𝜀)𝑎 is left 

after maturation. 



86 
 

 Production costs are incurred during three different phases of a whisky’s lifetime. 

Distillation costs are 𝑐𝐷.21 Given a discount factor of 𝛿 and marginal cost 𝑐𝑆, the present 

value of total storage costs is ∑ ∑ 𝛿𝑣𝑐𝑆𝑥𝑎
𝑎−1
𝑣=0

𝑀
𝑎=1 . Note that storage costs are a function of 

the initial amount of casked whisky and do not decrease even though a percentage of the 

whisky evaporates. Marginal storage costs are also constant, which is consistent with the 

modeling assumptions of Krasker (1979), Jaeger (1981), and Goodhue, LaFrance, and 

Simon (2009) with respect to wine storage. After sufficient maturation, whisky is taken 

out of its casks and bottled. Marginal bottling costs are 𝑐𝐵, and the present value of total 

bottling costs is ∑ 𝛿𝑎𝑐𝐵𝑥𝑎(1 − 𝜀)𝑎𝑀
𝑎=0 . 

 After the whisky has been matured for 𝑎 years, it can be sold at the price 𝑝𝑎. 

While price will naturally reflect consumers’ preferences for quality, and product quality 

increases with age, it is not necessary to assume any further relationship between price 

and age.22 In this case, the present value of total revenue is ∑ 𝛿𝑎𝑝𝑎𝑥𝑎(1 − 𝜀)𝑎𝑀
𝑎=0 . 

Combining revenue with cumulative costs, the present value of profit from a year’s batch 

of new-make is 

∑ 𝛿𝑎𝑝𝑎𝑥𝑎(1 − 𝜀)𝑎

𝑀

𝑎=0

− 𝑐𝐷 − ∑ ∑ 𝛿𝑣𝑐𝑆𝑥𝑎

𝑎−1

𝑣=0

𝑀

𝑎=1

− ∑ 𝛿𝑎𝑐𝐵𝑥𝑎

𝑀

𝑎=0

(1 − 𝜀)𝑎, 

subject to 

                                                 
21 Because the analysis focuses on the decision to mature portions of the new-make to different ages, the 

assumed form of distillation costs turns out to be unimportant. In fact, if the quantity of new-make were not 

normalized to 1, and distillation costs were instead modeled as a convex function, one could still derive the 

same results from the model discussed later in this section. 
22 If consumers are heterogeneous with respect to utility of quality, prices may naturally be discontinuous 

with respect to quality (age). Many countries also regulate the minimum number of years the spirit must 

aged before it can legally be sold as “whisky.” In that case, distilleries are still able to sell the younger 

spirit, though without the name “whisky” the product price may be considerably different. 
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1 ≥ ∑ 𝑥𝑎

𝑀

𝑎=0

, 

𝑥𝑎 ≥ 0,     𝑎 = 0, … , 𝑀. 

To find the profit-maximizing combination of maturation ages, I next obtain the 

Lagrangian ℒ = ∑ 𝛿𝑎𝑝𝑎𝑥𝑎(1 − 𝜀)𝑎𝑀
𝑎=0 − 𝑐𝐷 − ∑ ∑ 𝛿𝑣𝑐𝑆𝑥𝑎

𝑎−1
𝑣=0

𝑀
𝑎=1 − ∑ 𝛿𝑎𝑐𝐵𝑥𝑎

𝑀
𝑎=0 (1 −

𝜀)𝑎 + 𝜆(1 − ∑ 𝑥𝑎
𝑀
𝑎=0 ) and the corresponding first order conditions 

𝜕ℒ 𝜕𝑥0⁄ = 𝑝0 − 𝑐𝐵 − 𝜆 ≤ 0, 

𝜕ℒ 𝜕𝑥𝑖⁄ = 𝛿𝑖𝑝𝑖(1 − 𝜀)𝑖 − ∑ 𝛿𝑣𝑐𝑆

𝑖−1

𝑣=0

− 𝛿𝑖𝑐𝐵(1 − 𝜀)𝑖 − 𝜆 ≤ 0,     𝑖 = 1, … , 𝑀, 

𝑥𝑖 𝜕ℒ 𝜕𝑥𝑖⁄ = 0,     𝑖 = 0, … , 𝑀, 

𝜆 ≥ 0, 

𝜆 (1 − ∑ 𝑥𝑎

𝑀

𝑎=0

) = 0. 

 

I next use these basic first order conditions to determine when a distillery would 

find it profit-maximizing to produce multiple ages of whisky. Let 𝑥𝑗
∗ be the optimal 

amount of whisky to be matured for 𝑗 years before being bottled and sold, and assume 

𝑥𝑗
∗ > 0, 𝑗 > 0. Without loss of generality, let 𝑗 < 𝑘, where 𝑘 identifies a second, older 

age that the distiller also produces, 𝑥𝑘
∗ > 0. I begin with the first order conditions for 

𝑥𝑗
∗ > 0 and 𝑥𝑘

∗ > 0 and identify lower- and upper-bounds that the price ratio 𝑝𝑘/𝑝𝑗 must 

adhere to if production with multiple maturation ages is profit-maximizing. 
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PROPOSITION 1) If 𝑥𝑗
∗ > 0, 𝑥𝑘

∗ > 0, 𝑗 < 𝑘, then  

𝑝𝑘 − 𝑐𝐵

𝑝𝑗 − 𝑐𝐵
>

1

𝛿𝑘−𝑗(1 − 𝜀)𝑘−𝑗
. 

 

PROOF: By setting the first order conditions equal to each other and eliminating 

redundant terms 

𝛿𝑗𝑝𝑗(1 − 𝜀)𝑗 − 𝛿𝑗𝑐𝐵(1 − 𝜀)𝑗 = 𝛿𝑘𝑝𝑘(1 − 𝜀)𝑘 − ∑ 𝛿𝑣𝑐𝑆

𝑘−1

𝑣=𝑗

− 𝛿𝑘𝑐𝐵(1 − 𝜀)𝑘. 

Since 𝛿 > 0, it must be the case that ∑ 𝛿𝑣𝑐𝑆
𝑘−1
𝑣=𝑗 > 0. This means that  

𝛿𝑗(1 − 𝜀)𝑗(𝑝𝑗 − 𝑐𝐵) < 𝛿𝑘(1 − 𝜀)𝑘(𝑝𝑘 − 𝑐𝐵). 

The above expression can then be rearranged to find the lower limit on the price ratio. 

 

If a distillery produces multiple ages, then the ratio of net marginal revenues is 

greater than the ratio of discount and evaporation factors. This result is driven by the 

additional storage costs incurred from aging the whisky longer, and the fact that 

discounting and evaporation losses tend to make marginal profits from younger whiskies 

more attractive. In order for the older age to be desirable to a distiller when a younger age 

is also profitable, the ratio between prices net of bottling costs must exceed this lower 

bound. Furthermore, (1 − 𝜀) < 1 and 𝛿 < 1, hence 𝛿𝑗(1 − 𝜀)𝑗 > 𝛿𝑘(1 − 𝜀)𝑘. This 

implies that for 𝛿𝑗(1 − 𝜀)𝑗(𝑝𝑗 − 𝑐𝐵) < 𝛿𝑘(1 − 𝜀)𝑘(𝑝𝑘 − 𝑐𝐵), it must then be the case 

that 𝑝𝑗 < 𝑝𝑘. Although one may be tempted to naturally impose the condition 𝑝0 < ⋯ <

𝑝𝑀, this may not necessarily be true for all ages, even though price should generally 

increase with quality, and quality is strongly correlated with age. No distillery produces 
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every age of whisky, so the validity of this assumption cannot easily be checked. 

However, Proposition 1 strongly indicates that older whiskies that are produced should 

always be more expensive. 

 

PROPOSITION 2) If 𝑥𝑗
∗ > 0, 𝑥𝑘

∗ > 0, 0 < 𝑗 < 𝑘, then 

𝑝𝑘

𝑝𝑗
<

∑ 𝛿𝑣𝑘−1
𝑣=0

(∑ 𝛿𝑣𝑗−1
𝑣=0 )(𝛿𝑘−𝑗)(1 − 𝜀)𝑘−𝑗

 

 

PROOF: Take the first order conditions for 𝑥𝑗
∗ and 𝑥𝑘

∗  and solve for 𝑐𝑆 

1

∑ 𝛿𝑣𝑗−1
𝑣=0

(𝛿𝑗𝑝𝑗(1 − 𝜀)𝑗 − 𝛿𝑗𝑐𝐵(1 − 𝜀)𝑗 − 𝜆)

=
1

∑ 𝛿𝑣𝑘−1
𝑣=0

(𝛿𝑘𝑝𝑘(1 − 𝜀)𝑘 − 𝛿𝑘𝑐𝐵(1 − 𝜀)𝑘 − 𝜆). 

Because 𝑗 < 𝑘, 𝛿𝑗𝑐𝐵(1 − 𝜀)𝑗 ∑ 𝛿𝑣𝑗−1
𝑣=0⁄ > 𝛿𝑘𝑐𝐵(1 − 𝜀)𝑘 ∑ 𝛿𝑣𝑘−1

𝑣=0⁄  and 𝜆 ∑ 𝛿𝑣𝑗−1
𝑣=0⁄ ≥

𝜆 ∑ 𝛿𝑣𝑘−1
𝑣=0⁄ , taking out these terms leaves only 

𝛿𝑗𝑝𝑗(1 − 𝜀)𝑗

∑ 𝛿𝑣𝑗−1
𝑣=0

>
𝛿𝑘𝑝𝑘(1 − 𝜀)𝑘

∑ 𝛿𝑣𝑘−1
𝑣=0

. 

The above expression can then be rearranged to find the upper limit on the price ratio. 

 

 Even though Proposition 1 establishes that older whiskies must fetch a higher 

price, Proposition 2 identifies their upper-bound. If the price ratio were to violate this 

upper-bound, then 𝑥𝑗
∗ > 0 would not be optimal, as the producer could earn greater 

profits by shifting production to the older whisky. Note that if 𝛿 = 1, the distiller does 

not discount future values and the ratio simplifies to 𝑘 𝑗(1 − 𝜀)𝑘−𝑗⁄ , which is the ratio of 
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ages weighted by the evaporation losses that occur between years 𝑗 and 𝑘. With 

discounting, the price ratio is the ratio between the present value of marginal storage 

costs weighted by both evaporation losses and time preferences between years 𝑗 and 𝑘. 

 Propositions 1 and 2 have several important applications. If the evaporation rate, 

bottling costs, and the discount factor are known, the limits in Propositions 1 and 2 can be 

calculated exactly, and the observed price ratios should fall between the lower- and 

upper-bounds. Alternatively, if the evaporation rate is known but distilleries’ discount 

factors are not, Proposition 2 can be used to estimate the maximum discount factor (or 

minimum discount rate) possible, such that observed price ratios still adhere to the upper-

bound. Proposition 1 does require knowledge about distilleries’ marginal bottling costs, 

but if they are assumed to be negligible (𝑐𝐵 = 0), then Proposition 1 can be used to 

calculate distilleries’ minimum discount factor (or maximum discount rate), such that 

observed price ratios adhere to the lower-bound.23 If distilleries are not price-takers, then 

market power unaccounted for in the model could bias the distilleries’ calculated discount 

factors (or discount rate) to unreasonable levels. Propositions 1 and 2 therefore allow me 

to explore the possibility that distilleries are not price-takers using only observed prices 

and the evaporation rate.  

 

3. Analyzing Whisky Prices 

 It is known that whisky aged in Scotland incurs annual evaporation losses of 2 

percent, 𝜀 = 0.02, during the aging process. However, distilleries’ discount rates are not 

readily known, so constructing the bounds as described by Propositions 1 and 2 and 

                                                 
23 For 𝑐𝐵 > 0, the estimated minimum discount factor (maximum discount rate) would be even lower 

(higher). 
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directly testing observed price ratios is not a viable option. Instead, I opt to use observed 

retail prices to estimate distilleries’ discount rates. To do so, I collect data on single malt 

whisky prices to construct price ratios, then solve for the discount rate 𝑟, where 𝛿 =

1 (1 + 𝑟)⁄ , for which the price ratio would exactly equal the lower- and upper-bounds. 

Because the price ratio must be strictly greater than the lower-bound and less than the 

upper-bound, the calculated discount rates identify the range of possible discount rates 

for which the decision to produce multiple ages could be profit-maximizing without 

market power. 

 Although there are approximately one hundred distilleries in Scotland, I employ 

some selective criteria that preclude many of them from the analysis. First, I am only 

interested in distilleries that have been active for at least the past twenty years. I ignore 

younger distilleries because their stocks may not yet be mature enough to sell older 

whiskies, or young distilleries may produce multiple ages to explore the profitability of 

various ages, or they may even sell a portion of their immature stock to raise revenue 

during their initial years of operation. Similarly, distilleries that were previously 

mothballed and only recently resumed production may not have the ages and quantities 

on hand that they would prefer. I also only consider whiskies in a distillery’s core range, 

and for which age is the primary distinguishing factor across products. That is, limited 

and special editions, travel retail products, and special whiskies (e.g., those bottled at 

cask strength) are omitted from the analysis. I must also exclude distilleries which 

produce fewer than two ages of whisky. 

 Without access to producer-end prices, I must rely on retail data for the analysis. 

This somewhat influences my interpretation of observed price ratios, as consumer-end 
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prices will include markups not paid to producers, and hence should not influence the 

distillery’s decision to produce multiple ages of whisky. But in the case of markups that 

occur at a fixed rate, this has no impact on the analysis. Let 𝑃𝑖 be the retail price of a 

bottle of whisky aged 𝑖 years and 𝑝𝑖 be the price paid to the producer. Let 𝑃𝑖 =

(1 + 𝑣)𝑝𝑖, where 𝑣 represents a price markup such as the Value Added Tax. The 

observed price ratio is 𝑃𝑘 𝑃𝑗⁄ = (1 + 𝑣)𝑝𝑘 (1 + 𝑣)𝑝𝑗⁄ = 𝑝𝑘 𝑝𝑗⁄ , which is unbiased. On 

the other hand, retail prices may include a constant markup, which does bias the price 

ratio. Let 𝑃𝑖 = 𝑝𝑖 + 𝑠, where 𝑠 is a fixed price markup such as shipping costs. Then the 

observed price ratio is 𝑃𝑘 𝑃𝑗⁄ = (𝑝𝑘 + 𝑠) (𝑝𝑗 + 𝑠)⁄ < 𝑝𝑘 𝑝𝑗⁄ . Consequently, price ratios 

constructed from retail data may be downward-biased, which means that any calculated 

minimum discount rate 𝑟 from 𝑃𝑘 𝑃𝑗⁄  will also be downward-biased. 

 Data were collected from Master of Malt, one of the largest online retailers of 

single malt whisky in the world. I chose this retailer for several reasons. First, because it 

is one of the largest retailers, it is expected that differences between their prices and 

producer-end prices will be small. Their available stock of whiskies is also extensive, 

which is a relative strength compared to many other online inventories because price 

ratios require at least two observations per distillery, and many other retailers either do 

not carry a particular brand, or do not have enough whiskies from a particular distillery 

available. Because Master of Malt is based in the UK, shipping charges between 

producers and the retailer are expected to be low, and their prices will not include 

additional charges from importation, a distinct advantage over using price data from a 

US-based retailer. Prices do include the Value Added Tax, though as previously 

discussed, this has no significant impact on price ratios. The final dataset includes 
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whiskies from twenty-four Scottish distilleries. On average, each distillery has about 

three observations. Table 1 includes further summary statistics on the data. 

 

Table 1. Summary Statistics – Retail Prices 

 Obs. Mean Median Std. Dev. Min. Max 

Price 

(£) 
72 91.24 46.26 144.59 23.9 895 

Age 

(years) 
72 17.46 15.5 7.12 10 40 

 

 After constructing the price ratios, I solve for the distilleries’ minimum discount 

rate, 𝑟, using Proposition 2, and maximum discount rate, 𝑟, using Proposition 1 and 

assuming 𝑐𝐵 = 0. Because many distilleries have observations for more than just two 

whiskies, most distilleries have more than one estimated 𝑟 and 𝑟. For example, a 

distillery with four observations would have six different price ratios and as many as six 

different estimates for 𝑟 and 𝑟. But because Propositions 1 and 2 establish the distillery’s 

minimum and maximum discount rate, results can be simplified by finding the minimum 

and maximum values of all calculated 𝑟 and 𝑟’s for each distillery, as these identify the 

minimum and maximum discount rates that satisfy Propositions 1 and 2 for all observed 

price ratios. For instances when 𝑟 was less than 𝑟, the distillery’s minimum marginal 

bottling cost, 𝑐𝐵, was calculated such that 𝑟 = 𝑟, as higher values of 𝑐𝐵 lead to higher 
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estimates for 𝑟. Table 2 summarizes the results for the twenty-four distilleries based on 

the data.24,25  

 

Table 2. Estimated Discount Rates 

Distillery 

(Brand) 

Ages 𝑟 

(Ages 𝑘/𝑗) 

𝑟 

(𝑘/𝑗) 

𝑐𝐵 

(𝑘/𝑗) 

Aberlour 10, 12, 16, 

18 

0.087 

(18/16) 

0.056 

(12/10) 

7.38 

(12/10) 

Arran 10, 14 -0.130 

(14/10) 

0.034 

(14/10) 

0 

Auchentoshan 12, 18 0.052 

(18/12) 

0.101 

(18/12) 

0 

Balvenie 12, 14, 17, 

21 

0.125 

(17/14) 

0.033 

(21/17) 

47.74 

(21/17) 

Bowmore 12, 15, 18 0.150 

(15/12) 

0.105 

(18/15) 

13.60 

(18/15) 

Bunnahabhain 12, 18, 25 0.164 

(25/18) 

0.071 

(18/12) 

19.49 

(18/12) 

Caol Ila 12, 25 0.074 

(25/12) 

0.105 

(25/12) 

0 

Dalmore 12, 15, 18 0.185 

(18/15) 

0.079 

(15/12) 

19.37 

(15/12) 

Dufftown 

(Singleton) 

12, 18 -0.011 

(18/12) 

0.064 

(18/12) 

0 

Fettercairn 24, 30, 40 0.119 

(40/30) 

0.049 

(30/24) 

75.61 

(30/24) 

Glen Moray 10, 12 -0.025 

(12/10) 

0.082 

(12/10) 

0 

Glenfarclas 10, 15, 21, 

25, 30, 40 

0.062 

(25/21) 

0.044 

(30/25) 

21.90 

(30/25) 

Glenfiddich 12, 15, 18, 

21 

0.183 

(21/18) 

0.051 

(15/12) 

20.37 

(18/15) 

Glengoyne 10, 12, 18 0.036 0.091 0 

                                                 
24 The relationship between the distillery and its brand(s) is not always straightforward. Springbank 

distillery, for example, has three separate brands that are differentiated, among other things, based on the 

number of times the spirit is distilled. The Singleton brand, on the other hand, includes whiskies from three 

different distilleries, though only whiskies from the Dufftown distillery are included here. 
25 Some distilleries bottle their whiskies at slightly different strengths across ages. I also constructed a 

dataset which adjusted for alcohol content, though these results were not substantially different. 
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(18/12) (18/12) 

Glenlivet 12, 15, 21, 

25 

0.159 

(21/15) 

0.080 

(15/12) 

12.23 

(15/12) 

Highland Park 12, 18, 40 0.102 

(40/18) 

0.099 

(18/12) 

0.84 

(18/12) 

Jura 10, 16 -0.022 

(16/10) 

0.070 

(16/10) 

0 

Laphroaig 10, 18 0.008 

(18/10) 

0.081 

(18/10) 

0 

Macallan  

(Sherry line) 

18, 25 0.212 

(25/18) 

0.216 

(25/18) 

0 

Pulteney 

(Old Pulteney) 

12, 17, 21, 

30 

0.114 

(17/12) 

0.091 

(21/17) 

10.25 

(21/17) 

Springbank  

(Springbank) 

10, 15, 18 0.102 

(18/15) 

0.043 

(15/10) 

18.43 

(15/10) 

Tobermory 

(Tobermory) 

10, 15 0.053 

(15/10) 

0.116 

(15/10) 

0 

Tomatin 12, 15, 18, 

30 

0.037 

(15/12) 

0.049 

(18/15) 

0 

Tomintoul 10, 14, 21 -0.061 

(14/10) 

0.031 

(21/14) 

0 

 

Table 2 identifies four distilleries with a minimum discount rate that is negative. 

This does not actually mean that these distilleries have irrational time preferences, merely 

that I cannot rule out the possibility that their discount rate is exceptionally low or even 

zero. According to the data, eleven of the sampled distilleries must also have a discount 

rate of at least 0.1, or else their decision to produce some of their younger whiskies could 

not be described as profit-maximizing. It is surprising that the estimated minimum 

discount rate is so high for many distilleries. There are several possible explanations that 

may account for such high minimum discount rates. It may be the case that the older, 

more expensive whiskies are somehow biasing estimates upwards. But all products 

selected for the analysis are within each distillery’s core range, and are therefore standard 
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bottlings. Furthermore, the dataset includes five distilleries with at least one 30+ 

yo.whisky, yet two of these still have an estimated minimum discount rate less than 0.1. 

In fact, only one distillery’s minimum discount rate was determined by a price ratio that 

included at least one 30+ yo. whisky. The inclusion of exceptionally old whiskies is 

therefore not the source of upward-bias in 𝑟. 

Another possibility is that a distillery’s youngest whisky is under-priced to attract 

consumers to the brand. This would lead to abnormally high estimates for 𝑟 for prices 

ratios that included the youngest age in the line, yet this is decidedly not the case. High 

minimum discount rates for most distilleries are concentrated among prices ratios 

between whiskies in the middle of the range. Of the seven of the distilleries that have at 

least four expressions represented in the analysis, five of them have a high minimum 

discount rate because of a price ratio between two whiskies in the middle of the 

distillery’s age range. The exact relationship between age and 𝑟 is therefore unclear, 

though it seems that neither very cheap young whiskies nor expensive old whiskies are 

the dominant factor.  

The maximum discount rates, 𝑟, as calculated according to Proposition 1 and 

assuming 𝑐𝐵 = 0, show about as much variability as 𝑟. But an inconsistency often 

appears for many distilleries’ minimum and maximum discount rates, as data from the 

price ratios frequently report 𝑟 < 𝑟. Naturally, 𝑟 was calculated assuming 𝑐𝐵 = 0, and 

higher marginal bottling costs could adjust the calculated maximum discount rate such 

that 𝑟 < 𝑟. Yet for most distilleries with an initial values of 𝑟 < 𝑟, the necessary 

minimum bottling cost appears unrealistically high. Of the twelve distilleries that require 

𝑐𝐵 > 0 in order for 𝑟 < 𝑟 to hold, ten distilleries would need to have a minimum 
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marginal bottling cost of at least £10. In the case of Balvenie, whose minimum bottling 

cost is £47.74, 𝑐𝐵 would then exceed the price of their youngest whisky in the dataset, 

indicating that it would never be profitable to bottle their youngest expression, a clear 

contradiction in the assumption that all firms are profit-maximizing.  

 While the original model finds that a firm can produce multiple ages as a profit-

maximizing solution, the results from observed price ratios of whisky do not support this. 

It is worth noting that these conditions were derived assuming the distillery has perfect 

foresight with respect to prices, that costs are stable throughout time, and that there is no 

difference in marginal costs between ages. Krasker (1979), Jaeger (1981), and 

Ashenfelter (2008) demonstrate how uncertainty with respect to future vintage quality 

can influence wine prices over time. But because whisky is produced in a more controlled 

environment, it is much less sensitive to weather patterns, hence quality uncertainty is not 

a significant issue with respect to aging whisky. On the other hand, both demand and 

input prices can fluctuate, and Jaeger (1981) and Wohlgenant (1982) found evidence 

suggesting that such uncertainty can likewise influence the production and maturation 

decisions of a winery. For whisky, the price of barley has the greatest potential to 

fluctuate unpredictably from year to year, though this element of uncertainty would not 

affect the distillery’s decision to mature a batch of new-make to multiple ages according 

to the model. It may then be the case that producers offer a diverse product line to hedge 

against demand uncertainty (Carlton and Dana, 2008; Chen, Yeh, and Hu, 2011). Lastly, 

if marginal costs, especially marginal storage costs, are not constant across years, then 

calculated discount rates would be biased. 
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An alternative explanation for biased calculated discount rates and multiple 

maturation ages in this particular market is the possibility of imperfect competition. 

There are approximately one hundred distilleries in Scotland, the largest of which 

accounts for less than four percent of total industry capacity. I previously imposed the 

assumption that distilleries were price-takers and that 𝑝𝑎 was thus fixed. Instead, if the 

price the distillery faces for a whisky aged 𝑎 years is 𝑝𝑎(𝑥𝑎), where 𝑝𝑎(𝑥𝑎) is a function 

decreasing in 𝑥𝑎 and at least once differentiable, then multiple maturation ages can still 

be optimal (𝑥𝑗
∗ > 0, 𝑥𝑘

∗ > 0, 0 < 𝑗 < 𝑘), provided that the price ratios adhere to the 

lower- and upper-bounds 

𝑝𝑘(𝑥𝑘
∗) − 𝑐𝐵

𝑝𝑗(𝑥𝑗
∗) − 𝑐𝐵

>
1

(𝛿𝑘−𝑗)(1 − 𝜀)𝑘−𝑗

+ (
1

(𝛿𝑘)(1 − 𝜀)𝑘(𝑝𝑗(𝑥𝑗
∗) − 𝑐𝐵)

) (𝛿𝑗𝑝𝑗
′(𝑥𝑗

∗)𝑥𝑗
∗(1 − 𝜀)𝑗

− 𝛿𝑘𝑝𝑘
′ (𝑥𝑘

∗)𝑥𝑘
∗(1 − 𝜀)𝑘) 

and 

𝑝𝑘(𝑥𝑘
∗)

𝑝𝑗(𝑥𝑗
∗)

<
∑ 𝛿𝑣𝑘−1

𝑣=0

(∑ 𝛿𝑣𝑗−1
𝑣=0 )(𝛿𝑘−𝑗)(1 − 𝜀)𝑘−𝑗

+ (
∑ 𝛿𝑣𝑘−1

𝑣=0

𝑝𝑗(𝑥𝑗
∗)𝛿𝑘(1 − 𝜀)𝑘

) (
𝛿𝑗𝑝𝑗

′(𝑥𝑗
∗)𝑥𝑗

∗(1 − 𝜀)𝑗

(∑ 𝛿𝑣𝑗−1
𝑣=0 )

−
𝛿𝑘𝑝𝑘

′ (𝑥𝑘
∗)𝑥𝑘

∗(1 − 𝜀)𝑘

(∑ 𝛿𝑣𝑘−1
𝑣=0 )

). 

 

Propositions 1 and 2 were useful because they only required the evaporation rate 

and observed prices, but estimating 𝛿 and 𝑟 using the new upper-bound requires 

knowledge of 𝑥𝑎
∗  and the marginal change in price, or the elasticities of price for both 𝑝𝑗 

and 𝑝𝑘. To my knowledge, no such estimations have been done to date, necessitating the 



99 
 

omission of the second term in the original estimations. However, the second term in both 

expressions has the potential to bias estimates of 𝛿 and 𝑟 if it is omitted. For example, if 

𝛿𝑗𝑝𝑗
′(𝑥𝑗

∗)𝑥𝑗
∗(1 − 𝜀)𝑗 ∑ 𝛿𝑣𝑗−1

𝑣=0⁄ > 𝛿𝑘𝑝𝑘
′ (𝑥𝑘

∗)𝑥𝑘
∗(1 − 𝜀)𝑘 ∑ 𝛿𝑣𝑘−1

𝑣=0⁄ , the second term will be 

positive and estimates of 𝑟 that are not calculated with the second term will be upward-

biased. Consequently, a distillery’s market power has the potential to influence the 

estimated discount rates.  

 

4. Market Power and Product Differentiation 

 The preceding section demonstrates that the market for single malt Scotch whisky 

is likely not perfectly competitive and that distilleries are not price-takers. While this may 

not be surprising for some of the biggest brands (e.g., Glenfiddich and Glenlivet), results 

from Table 2 indicate that even many lesser-known brands from small distilleries are able 

to exert some market power. Market power and product line size may be further affected 

by the degree of substitutability between brands: because of regional differences in inputs 

(i.e., the distillery’s source of water), as well as production practices specific to 

distilleries and regions, one distillery’s 12yo. single malt Scotch is necessarily different 

than another’s 12yo. single malt Scotch. A distillery may therefore offer multiple 

expressions of whisky to capture a greater share of the market, with particular products 

targeting different segments that the distillery is well-suited to serve. However, it remains 

unclear which product attributes other than age are important to consumers and therefore 

brand differentiation. 

 In the field of industrial organization, particular attention has been given to firms’ 

product variety, with analyses that include identifying where in a particular state-space 
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firms strategically locate their products in relation to one another. The general profile of a 

distillery’s whisky is often classified with as many as a dozen flavor categories,26 and 

distilleries have further opportunities to distinguish products within their brand using 

various cask finishes, bottling their whisky at different cask strengths, etc. Hence, 

precisely defining a suitable state-space to describe Scotch whisky characteristics is 

impractical in theory, and infeasible in practice, even if only a subset of these flavors 

determines market segmentation. However, distilleries in Scotland are categorized based 

on which region they are located in. While regional classification does not necessarily 

bind the distillery to particular production practices, certain trends do emerge. For 

example, distilleries from Islay produce some of the smokiest whiskies, whereas those 

produced in the Speyside region are sweeter and considerably less smoky. Almost half of 

all Scottish distilleries are located within the Speyside region, with another quarter of 

distilleries in the Highland region. The remaining regions each have eight or fewer 

distilleries. Regions are illustrated in Figure 1. 

 

                                                 
26 For example, researchers in the Department of Mathematics & Statistics at the University of Strathclyde 

profile distilleries’ whiskies based on the following flavor categories: body, sweetness, smoky, medicinal, 

tobacco, honey, spicy, winey, nutty, malty, fruity, and floral. Further information and the data are available 

at https://www.mathstat.strath.ac.uk/outreach/nessie/nessie_whisky.html (Last accessed 1/20/2015). 

https://www.mathstat.strath.ac.uk/outreach/nessie/nessie_whisky.html
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Figure 1. Scotch Producing Regions 

 

 There are several possible scenarios for brand substitutability that would each 

uniquely affect how distilleries determine their product lines in order to maximize profits. 

First, consumers may not care about the various attributes that distinguish the single 

malts amongst themselves and treat all brands as interchangeable. That is, even if there 

are differences between brands, consumers regard a whisky from one distillery as if it is 

identical to a whisky with the same age from another distillery. In this scenario, anCnoc 

12yo. (a Speyside), Bowmore 12yo. (an Islay), and Highland Park 12yo. (an Island) are 

all considered perfect substitutes, as consumers assume they are homogenous for their 

purposes. Or consumers may give more weight to some flavor characteristics than others. 

Then most consumers would regard Aberlour 12yo. and Balvenie 12yo. (both Speysides) 

as better substitutes for anCnoc 12yo. than either Bowmore 12yo. or Highland Park 12yo. 

Lastly, consumers may have considerably stark preferences with brands’ flavor 

Speyside 

Islay 

Campbeltown 

Island 

Highland 

Lowland 
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characteristics, and view each brand of single malt Scotch as a unique product. In effect, 

brands are not substitutes for another, and each producer operates as a monopoly. 

 In the aforementioned scenarios, it is assumed the firms are aware of consumers’ 

preferences and selection criteria, and have chosen the composition of their product lines 

accordingly. A distillery’s product variety is therefore a reflection of its substitutability, 

or location, with respect to other brands. In this context, a firm’s “product variety” may 

be impacted either through the total number of products offered, the product positioning 

in regards to important attributes, or both. For example, Alexander (1997) and Watson 

(2009) find that when new firms enter a particular segment of the market where other 

firms are already competitive, the total number of products offered by each firm 

decreases. But this is not necessarily an indication that cumulative product variety 

amongst all brands decreased. Mazzeo (2002), for instance, demonstrates that product 

positioning and quality levels are both important criteria, and that if firms enter a 

particular market segment they may offer a product at a different quality level so as to 

distinguish themselves from potential competitors. 

Product positioning in response to brand substitutability would be further 

reflected in instances when a single firm owns multiple distilleries. Decades of growth in 

the industry have led to instances of firms establishing new distilleries adjacent to 

distilleries they already own, as well as firms buying distilleries from one another to 

create a portfolio of distilleries. This creates a scenario in which distilleries are owned by 

parent companies, and many distilleries have “sister” distilleries whose whiskies may be 

close substitutes. By the end of 2013, only sixteen of the ninety-nine distilleries were 

owned by a company with no other distilleries; the rest were owned by a parent company 
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that owned at least two distilleries. For example, Diageo owned twenty-eight distilleries, 

and these distilleries may have selected their product lines so as to avoid competing 

against other Diageo-owned Scotch brands. 

 Some attention has been given to the effect of mergers on the market for blended 

Scotch whiskies. Specifically, Ashenfelter and Hosken (2010) study the merger between 

Guinness and Grand Metropolitan to form Diageo, and they find that it led to a significant 

price increase for brands such J&B, Johnny Walker, and Scoresby. However, the effect of 

mergers on single malt Scotches remains unstudied. Generally, it is understood that 

mergers tend to increase product variety in the overall market. Merging firms have 

sudden incentive to reposition their products farther away from each other to better 

differentiate their brands so as to avoid cannibalizing profits while also capturing a 

greater market share for the parent firm (Berry and Waldfogel, 2001; Gandhi et al., 2008, 

Draganska, Mazzeo, and Seim, 2009; Sweeting, 2010). Unfortunately, the general 

methodologies of these analyses rely heavily on data such as costs, product prices, and a 

straightforward way to calculate distances between firms (in instances when firms literal 

location is of interest) and/or distances between goods (in terms of quality levels and 

other quantifiable characteristics). 

In the case of single malt Scotch whisky, the question of producing multiple ages 

of a vintage good appears to be a question of market power and substitutability between 

brands. In order to gauge substitutability, analyzing distilleries’ product line variety in 

light of sister distilleries is therefore key. Because of a lack of cost data and a superfluous 

number of flavor characteristics, the necessary strategy is therefore to use distilleries’ 

regional classifications as a proxy for a measurement to characterize differences in 
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brands’ flavor profiles, and determine how sister distilleries’ product lines affect the 

products offered by distilleries as compared to those without sister distilleries. 

Specifically, I estimate the probability that distilleries offer particular expressions 

(Subsection 4.A.) as well as the overall number of whiskies they offer (Subsection 4.B.), 

while also accounting for the presence of sister distilleries and potential substitutability of 

products. 

 

4.A. Brand Substitutability and Product Positioning 

 In order to measure product positioning, whiskies are classified according to the 

single malt Scotch categories from the San Francisco World Spirits Competition.27 

Categories include: whiskies 12 years and younger, whiskies between 13 and 19 years, 

whiskies 20 years and older, and whiskies with no age statement [NAS]. A more robust 

measure of product positioning would perhaps account for all yearly increments in age, as 

well as basic attributes such as alcohol content and cask-finishes, but discretizing a 

continuum quality levels to better facilitate analysis is common in practice (e.g., Mazzeo, 

2002).  

 A linear probability model is used to determine what factors influence a 

distillery’s decision to offer at least one expression of whisky in a given age category. 

The general setup is as follows. The probability that distillery 𝑖 offers age class 𝐴 is 

                                                 
27 This international competition’s categories were selected for several reasons. First, it is one of the 

premiere spirits competitions in the world, so its chosen categories are recognized by the industry and are 

not arbitrary. Other competitions and industry experts merely suggest categories for Scotch that 

differentiate products based on prices, classify single malts into two groups depending on whether a bottle 

has an age statement or not, or offer no categorization scheme at all. The categories from the San Francisco 

World Spirits Competition present a logical breakdown between single malts based on ages. 
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determined by the distillery’s capacity, what regional style of Scotch it produces, and 

whether a sister distillery offers a whisky in the same category:  

(1) 𝐴𝑖 = 𝛼 + 𝛽𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 + 𝛾𝑆𝑝𝑒𝑦𝑠𝑖𝑑𝑒𝑖 + 𝛿𝑆𝑖𝑠𝑡𝑒𝑟𝑖 + 𝜀𝑖. 

In the equation above, 𝐴𝑖 is equal to one if distillery 𝑖 has at least one product of category 

type 𝐴 and is equal to zero otherwise. 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 is the distillery’s capacity, measured in 

millions of liters of pure alcohol per year, 𝑆𝑝𝑒𝑦𝑠𝑖𝑑𝑒 is a dummy variable equal to one if 

the distillery is located in the Speyside region, and 𝑆𝑖𝑠𝑡𝑒𝑟 is the number of sister 

distilleries that offers a whisky in the same age category. It is expected that a distillery’s 

capacity will have a nonnegative effect on the probability of offering a particular age 

(𝛽 ≥0), since greater capacity corresponds with the ability to produce more output 

annually. If the distillery is located within Speyside, this may decrease the probability 

that it produces a particular age (𝛾 ≤ 0), since Speyside is the most populous region for 

distilleries and this segment of the market may therefore be more competitive. Lastly, if a 

parent company owns multiple distilleries, it may be less inclined to have its brands 

competing against each other and cannibalizing its profits. In this case, a distillery is less 

likely to offer age category 𝐴 if a sister distillery already produces that age (𝛿 ≤ 0). 

One extension is to see if all sister distilleries affect each other’s product 

positioning equally. Because of regional style differences, distilleries may be serving 

different parts of the overall market, and individual brands might not be close substitutes 

if they are located in different regions. Accordingly, a second specification splits 

the 𝑆𝑖𝑠𝑡𝑒𝑟 variable into two variables: 𝑆𝑖𝑠𝑡𝑒𝑟𝑅𝑒𝑔𝑖𝑜𝑛 and 𝑆𝑖𝑠𝑡𝑒𝑟𝑁𝑜𝑛, where 

𝑆𝑖𝑠𝑡𝑒𝑟𝑅𝑒𝑔𝑖𝑜𝑛 is the number of sister distilleries in the same region that offers at whisky 
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in age category 𝐴, and 𝑆𝑖𝑠𝑡𝑒𝑟𝑁𝑜𝑛 is the number of sister distilleries in a different region 

offering category 𝐴. The linear probability model then becomes 

(2) 𝐴𝑖 = 𝛼 + 𝛽𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 + 𝛾𝑆𝑝𝑒𝑦𝑠𝑖𝑑𝑒𝑖 + 𝛿1𝑆𝑖𝑠𝑡𝑒𝑟𝑅𝑒𝑔𝑖𝑜𝑛𝑖 + 𝛿2𝑆𝑖𝑠𝑡𝑒𝑟𝑁𝑜𝑛𝑖 + 𝜀𝑖. 

As with the first specification, it is expected that if a sister distillery offers category 𝐴, 

distillery 𝑖 is less likely to do so in order to avoid competing against its parent company’s 

brands (𝛿𝑥 ≤ 0; 𝑥 = 1, 2). However, if consumers do not perceive all whiskies as 

homogenous, then sister distilleries in the same region are likely to have a stronger effect 

than those distilleries in a different region (𝛿1 ≤ 𝛿2). 

 A linear probability model is useful for this estimation because of the obvious 

endogenous relationship between distillery 𝑖 offering 𝐴 when accounting for the products 

of sister distillery 𝑗, since distillery 𝑖 would be considered a sister distillery for 

observation 𝑗. Accordingly, the initial specification is executed as a two-stage least 

squares model, with total sister capacity and both the total numbers of sister distilleries 

located in Speyside and elsewhere as instruments for the sister distillery variables. For the 

second specification, which distinguishes between sister distilleries by region, 

instruments include total sister capacity in the same region, total sister capacity in other 

regions, and the total number of sister distilleries located in Speyside and elsewhere. 

Data on distilleries’ product lines, capacities, and ownership come from the Malt 

Whisky Yearbook 2013, an annual publication containing industry-relevant information 

and statistics. Product lines were also cross-checked with brands’ own websites in order 

to ensure accuracy. Summary statistics are presented in Table 3. 
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Table 3. Summary Statistics – Product Positioning 

 Count Mean Min. Max. 

Dependent Variables    

𝐴 ≤ 12  99 0.566 0 1 

13 ≤ 𝐴 ≤ 19   93* 0.441 0 1 

𝐴 ≥ 20   93* 0.430 0 1 

𝑁𝐴𝑆  99 0.596 0 1 

Exogenous Variables    

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦  99 3.224 0.02 12.5 

𝑆𝑝𝑒𝑦𝑠𝑖𝑑𝑒  99 0.485 0 1 

Endogenous Variables    

𝑆𝑖𝑠𝑡𝑒𝑟      

𝐴 ≤ 12  99 4.677 0 13 

13 ≤ 𝐴 ≤ 19   93* 3.806 0 10 

𝐴 ≥ 20   93* 2.656 0 7 

𝑁𝐴𝑆  99 4.152 0 12 

𝑆𝑖𝑠𝑡𝑒𝑟𝑅𝑒𝑔𝑖𝑜𝑛      

𝐴 ≤ 12  99 1.758 0 6 

13 ≤ 𝐴 ≤ 19   93* 1.280 0 4 

𝐴 ≥ 20   93* 0.968 0 4 

𝑁𝐴𝑆  99 1.232 0 5 

𝑆𝑖𝑠𝑡𝑒𝑟𝑁𝑜𝑛      

𝐴 ≤ 12  99 2.919 0 12 

13 ≤ 𝐴 ≤ 19   93* 2.527 0 10 

𝐴 ≥ 20   93* 1.688 0 7 

𝑁𝐴𝑆  99 2.919 0 11 

*Six distilleries are omitted because they were founded less than 13 years ago. 

 

 The data show that product ages are well-distributed among distilleries. A 

randomly selected distillery has roughly a fifty percent chance of producing any of the 

four age categories, with slightly higher probabilities for both the youngest and No Age 

Statement categories and slightly lower probabilities for all ages above 12 years. At the 

same time, roughly eighty percent of all distilleries have at least one sister distillery that 

offers a product in the same age category. Even accounting for regional differences 

between sister distilleries, more than half of all distilleries are paired with at least two 
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sister distilleries (one inside its region and one outside) that produces the relevant age 

category. 

Empirical results are presented in Table 4.28 For the youngest age category, 𝐴 ≤

12, neither the distillery’s capacity nor its regional style appear to have much impact on a 

distillery’s decision to offer this type of whisky. Coefficients are not statistically different 

from zero, and they tend to be small. Sister distilleries’ products do appear to have an 

impact, though. If the distillery has a sister distillery which offers a whisky 12 years or 

younger, it is less likely to offer it as well. Furthermore, when sister distilleries are 

differentiated according to their regional location, results suggest that a sister distillery in 

the same region has the larger impact, as the coefficient for 𝑆𝑖𝑠𝑡𝑒𝑟𝑅𝑒𝑔𝑖𝑜𝑛 is negative 

and statistically different from zero, whereas the coefficient for 𝑆𝑖𝑠𝑡𝑒𝑟𝑁𝑜𝑛 is smaller in 

absolute size and not statistically significant. This indicates that parent firms are aware 

that offering similar products from sister distilleries will cannibalize their own profits, but 

regionally different whiskies do not appear to be close substitutes based on product 

variety decisions, hence they are not of concern to the parent firm. 

For the mid-age category, distillery size has a positive effect on the probability 

that a distillery will produce a whisky between 13 and 19 years of age. The average 

marginal effect for an additional one million units of capacity is between 6.3% and 6.8%, 

depending on the specification for modeling sister distillery product positioning. 

Regional styles also appear to matter in this instance, as Speyside distilleries are 

considerably less likely to offer this category, by as much as 35.8%. Furthermore, sister 

                                                 
28 Results from an alternative specification are presented in the Appendix. In those estimations, the 

variables for sister distilleries’ product offerings are replaced with simple dummy variables. Dummy 

variables are equal to one so long as the distillery has at least one sister distillery that offers a whisky in age 

category 𝐴. 
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distilleries do not appear to influence product positioning with respect to this particular 

age group, as only one of the coefficients for sister distilleries is statistically significant, 

and only at the 10% level. This is somewhat surprising, as the opposite results were 

found for the younger category, but signals that the relationship between sister distilleries 

is not necessarily constant across all age categories. 

For the oldest age category, 𝐴 ≥ 20, distillery size does not seem to have an 

effect. The initial specification does find that Speyside distilleries are generally less likely 

to produce older whiskies, as are those with sister distilleries selling a product of 

comparable age. But after controlling for regional classifications of sister distilleries, 

these effects lose their statistical significance. As with other specifications, no significant 

relationship between sister distilleries in other regions is apparent.  

Whiskies without an age statement represent a fourth class of whisky that are 

harder to differentiate because their attributes are not as clearly communicated as those 

with an age statement, but almost certainly represent a more heterogeneous mix of 

whiskies because of the various production techniques distillers use to sell their product 

in lieu of an age statement. Even the NAS category appears to be sensitive to sister 

distilleries’ product lines, however, exactly as seen in the case of whiskies 12 years and 

younger. The effect appears to be concentrated on sister distilleries in the same region, 

and there is no apparent effect from sister distilleries in other regions. In general, 

Speyside distilleries are much less likely to produce NAS whiskies. 

Across age categories, capacity only seems to have a significant effect on mid-age 

whiskies. For other age categories, I cannot reject the null hypothesis 𝛽 = 0, that small 

distilleries are just as likely as large distilleries to produce a whisky of the given age 
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category. However, the qualities of Speyside whiskies and sheer number of distilleries in 

that region do appear to be factors in the NAS age category and both categories for 

whiskies at least 13 years old. In general, the signs of coefficients for sister distilleries 

product variety confirmed expectations: 𝛿 < 0. When a parent company owns multiple 

distilleries, and one of those distilleries produces a particular age category, the company’s 

other distilleries are less likely to produce a whisky in the same category. This supports 

the hypothesis that merging companies have incentive to reposition their products so as to 

avoid competition amongst themselves. Furthermore, because 𝛿1 < 𝛿2, it appears that 

parent companies are aware of the substitutability of their different brands, and that some 

brands are better substitutes for others as measured by their regional styles. If these 

distilleries were independently owned and had no sister distilleries, it seems many of 

them would be more likely to offer a greater variety of whiskies.  
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4.B. Product Line Size 

 In addition to measuring distilleries’ product variety by determining what types of 

whisky each produces, product variety can also be a measure of the total number of 

products offered (Alexander, 1997; Berry and Waldfogel, 2001; Watson 2009). In the 

context of single malt Scotch, the interaction between market organization and firms’ 

product line size is expected to produce several effects. First, segments of the market with 

a higher concentration of distilleries (e.g., Speyside) are likely more competitive than 

areas with only a few distilleries, so product lines should be smaller for these distilleries 

than those in areas where distilleries have fewer rivals (Watson, 2009). Additionally, for 

instances in which multiple companies are owned by a parent firm, companies have 

incentive to position their products to increase the distance between them, thereby 

decreasing competition between their brands but in a manner that sometimes affords them 

the opportunity to consolidate product line size while also discouraging entry of other 

firms (Alexaner, 1997; Berry and Waldfogel, 2001). Thus, it is expected that the effect of 

a sister distillery’s product line size will be non-positive. 

 The distribution of product line sizes by distillery is summarized in Figure 2. The 

mean number of products per firm is about 5.6, with a median of 3 and the full range 

between 0 and 25 for all distilleries. Distilleries that do not offer any products are not 

inactive. Rather, they represent a number of distilleries whose single malts go solely 

towards blended whiskies.29 In theory, nothing prevents distilleries from putting all of 

their whisky towards single malt Scotch bottlings. But in practice, developing single malt 

                                                 
29 Most distilleries use some of their total stock towards blends, or sell their single malt stock to third 

parties who blend it with whiskies from other distilleries. 
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brands may be price-prohibitive, and their products may have to compete in segments of 

the market that are well-saturated with other competitors who could serve as close 

substitutes. Almost all of the distilleries that offer no single malt Scotch are located in the 

Highland and Speyside regions, the two most populated regions.  

 

 
Figure 2. Number of Expressions per Distillery 

 

 A negative binomial model is used to estimate distilleries’ product line size due to 

the discrete nature of the data and the apparent overdispersion that would invalidate a 

Poisson model. As in section 4.A., the model takes two forms to account for regional 

variability in the effects of sister distilleries. The basic negative binomial model has the 

conditional mean 

(3) 𝜇𝑖 = exp(𝛼 + 𝛽𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 + 𝛾𝑆𝑝𝑒𝑦𝑠𝑖𝑑𝑒𝑖 + 𝛿𝑆𝑖𝑠𝑡𝑒𝑟𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖) 

and conditional variance 

(4) 𝜇𝑖 + 𝜃𝜇𝑖
2. 
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Similar to the estimations in section 4.A., it is expected that capacity will have a positive 

effect on distillery’s product line size (𝛽 > 0), because larger distilleries are able to 

produce more output, but distilleries may produce a greater variety of expressions to 

avoid over-saturating particular market segments. Distilleries in the Speyside region are 

likewise expected to have smaller product line sizes (𝛾 < 0) because there are so many 

active distilleries in this region producing comparable products. Ideally, the estimation 

would also include the number of products offered by sister distilleries, similar to the 

specification in 4.A., however dealing with endogenous variables in a count model is 

decidedly more difficult than instrumenting in the case of a linear probability model. 

Accordingly, total sister distillery capacity is used as a proxy for sister distilleries’ 

product line size. Because capacity should increase product line size, 𝛿 should have the 

same sign as the unbiased coefficient for sister distillery product line size (𝛿 < 0), 

however, its size and the corresponding average marginal effects obviously cannot be 

interpreted literally. Even so, if capacity is endogenous, it should demonstrate the general 

effect (if present) of product line sizes from sister distilleries. 

A second specification distinguishes between sister distilleries located in the same 

region and those located elsewhere: 

(5) 𝜇𝑖 = exp(𝛼 + 𝛽𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 + 𝛾𝑆𝑝𝑒𝑦𝑠𝑖𝑑𝑒𝑖 + 𝛿1𝑆𝑖𝑠𝑡𝑒𝑟𝐶𝑎𝑝𝑅𝑒𝑔𝑖𝑜𝑛𝑖 +

𝛿2𝑆𝑖𝑠𝑡𝑒𝑟𝐶𝑎𝑝𝑁𝑜𝑛𝑖),  

and using the same conditional variance as in Eq. (4). The same hypotheses apply with 

respect to capacity and regional differences (𝛽 > 0, 𝛾 < 0). Generally, it is expected that 

the product line sizes of sister distilleries in the same region will have a larger effect than 

the effect of sister distilleries in other regions. It is also likely that regional differences 
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determining the substitutability of brands would also lead to the relationship 𝛿1 < 𝛿2 for 

product lines. However, it is unclear whether this will necessarily translate when using 

total sister capacity by region as controls, hence I make no such assumption a priori. 

 Results for the negative binomial models in Eq. (3) and Eq. (5) are summarized in 

Table 5. The estimate for 𝜃 is positive and statistically different from zero, confirming 

that the conditional mean is overdispersed, thus a negative binomial distribution is more 

appropriate than a Poisson in this context. Both estimations report that capacity has a 

positive effect on product line size, though the effect is apparently small and only 

statistically significant at the 10% level. When sister capacity is not regionally 

differentiated, the coefficient for the Speyside dummy variable is negative and 

statistically significant, though controlling for regional differences in sister distilleries 

appears to diminish this effect, possibly because of a correlation between distilleries 

located in the Speyside region and incidence of sister distillery capacity. The initial 

estimation finds that sister distilleries’ total capacity does have a negative effect on 

product line size. Furthermore, by differentiating sister capacity based on regions, results 

for Eq. (5) find a negative and statistically significant effect for both regional variables, 

and that the effect for sister distilleries in the same region appears to be larger. 
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Table 5. Negative Binomial Results – Product Line Size 

 (3) (5) 

Constant 2.080*** 

(0.182) 

1.993*** 

(0.182) 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 0.077* 

(0.044) 

0.081* 

(0.043) 

𝑆𝑝𝑒𝑦𝑠𝑖𝑑𝑒 -0.417* 

(0.231) 

-0.151 

(0.273) 

𝑆𝑖𝑠𝑡𝑒𝑟𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 -0.016*** 

(0.003) 

 

𝑆𝑖𝑠𝑡𝑒𝑟𝐶𝑎𝑝𝑅𝑒𝑔𝑖𝑜𝑛  -0.028*** 

(0.007) 

𝑆𝑖𝑠𝑡𝑒𝑟𝐶𝑎𝑝𝑁𝑜𝑛  -0.011** 

(0.004) 

𝜃 0.828*** 

(0.171) 

0.790*** 

(0.164) 

***Significant at the 1% level; **5%; *10% 

Standard errors are reported in parentheses 

 

Section 3 identified conditions which led me to reject the hypothesis that 

distilleries are price-takers. Results from sections 4.A. and 4.B. further characterize the 

relationship between brands, market power, and substitutability. The market for Speyside 

whiskies appears to be the most competitive segment of the market, with the fewest 

opportunities to introduce products without fierce competition due to nearby substitutes. 

Distilleries in the Speyside region are generally less likely to produce a whisky of any 

particular age category, and also tend to produce fewer whisky expressions overall. 

Furthermore, regional differences suggest limitations of the substitutability between 

brands, and this is reflected in the product line decisions of distilleries owned by parent 

companies. Generally, parent companies seem to be inclined to structure their brands’ 

product lines so as to avoid offering close substitutes of their own goods. This leads to 
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instances in which sister distilleries are less likely to offer whiskies of a particular age if a 

sister distillery in the same region already produces such a whisky. But this is usually not 

the case if the sister distillery is located in another region. In that case, product variety 

offered by a sister distillery in a different region appears to have no impact. Additionally, 

the overall size of product lines also appears to be affected by sister distilleries’ product 

line sizes. This negative relationship implies that increased ownership among a smaller 

number of parent companies has led to a market equilibrium in which many distilleries 

offer fewer products than they would were they independently owned. Because of brand 

substitutability, they have carefully positioned and limited the total number of products to 

best suit the needs of the parent company. 

 

5. Conclusion 

 This paper presents an analysis of the production decisions of whisky distilleries. 

Production models for goods such as wine and timber are inadequate when trying to 

study the production of whisky. The dynamic production models in the forestry literature 

focus on the increasing quantity of timber available over time, whereas the quantity of 

casked whisky decreases over time and simultaneously improves in quality. Wine 

similarly improves with age, though it tends to be characterized as having a unique 

optimal maturation age, and consumers can easily continue the maturation process after 

purchase. Whisky distilleries, on the other hand, typically do not age all of their whisky 

to a uniform age, but will instead bottle amounts after different years of maturation. 

 I find that the decision to produce multiple maturation ages of whisky can be 

consistent with price-taking firms, and identify natural upper- and lower-bounds for the 
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price ratios of whiskies from a single distillery. Because the evaporation rate of casked 

whisky is known, I am able to use the upper-bound and observed retail prices to estimate 

the minimum discount rate of twenty-four distilleries. I am also able to use the lower-

bound to calculate maximum discount rates and, for several instances, the minimum 

marginal bottling costs of distilleries. I find that the minimum discount rates for many 

distilleries are actually quite high, and that maximum discount rates are illogically low. 

This suggests that the single malt Scotch whisky industry is not perfectly competitive, in 

spite of the presence of so many active distilleries. 

 I also perform an analysis of distilleries’ product lines to determine how general 

product characteristics, distillery size, and the presence of a parent firm affects product 

variety. These analyses find several crucial elements that define the market for single 

malt Scotch. First, distillery size does not impact the producer’s decision to produce 

whiskies of a particular age. However, distilleries in the Speyside region are less likely to 

produce most ages of whisky because there is a high concentration of distilleries in the 

Speyside region who all produce a similar product. While every distillery is said to 

produce a unique whisky, it appears that single malts are comparable enough by 

consumers’ standards, such that firms do not readily offer particular products if there is 

too much competition. This is further reflected in the effects of sister distilleries on a 

producer’s decision to offer a particular product: if two distilleries are owned by a parent 

company, each will offer products so that they are not close substitutes to those of the 

sister distillery. These results are generally only significant for sister distilleries in the 

same region, however, which further supports the notion that not all single malt Scotches 

are perfect substitutes for one another. Finally, market concentration also has an effect on 
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the total number of products a distillery is likely to offer. If the distillery is owned by a 

parent company with multiple distilleries, the distillery is likely to have a smaller product 

line size were it independently owned. These findings suggest that distilleries produce 

multiple ages of whisky to capture a greater market share, but that the existence of close 

substitutes from competing brands causes the distillery to decrease its overall product 

variety. 

 Based on my analysis, it is extremely unlikely that the Scotch whisky industry is 

perfectly competitive despite the almost one hundred distilleries active in Scotland. 

Instead, consumers differentiate between many of the brands based on product 

characteristics, which creates an opportunity for market power. Firms’ market power 

would then explain why distilleries produce multiple ages of whisky, and evidence based 

on regional styles and parental ownership support this. Future work should consider 

further developing a model with monopolistic competition, product quality, costs, and 

consumers’ utility maximization problem to better estimate maturation decisions of 

multiproduct firms using a structural approach; regrettably there is insufficient data as of 

yet to do so. I also expect that the aged spirits considered could likewise be broadened to 

include other spirits, including Irish whiskey, bourbon, and even rum. 
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APPENDIX A 

 

Table A1. Regression Results – Dependent Variables are Balancing Prices 

 OLS Q(.25) Q(.5) Q(.75) 

North     

Wind -0.535** -0.611**+ -0.466**+ -0.411**+ 

NGprice 6.437** 4.953**+ 6.041**+ 7.226**+ 

Load 2.087** 1.287**+ 1.304**+ 1.380**+ 

Nuclear -3.365** -2.025**+ -2.163**+ -2.732**+ 

Intercept -48.309** -29.471**+ -29.245**+ -28.124**+ 

Month*YR FE NO NO NO NO 

Hour FE NO NO NO NO 

Houston     

Wind 0.043 -0.555**+ -0.372**+ -0.307**+ 

NGprice 7.713** 5.249**+ 6.435**+ 7.684** 

Load 2.356** 1.309**+ 1.328**+ 1.416**+ 

Nuclear -4.706** -2.157**+ -2.417**+ -3.047**+ 

Intercept -60.030** -31.198**+ -31.149**+ -30.424**+ 

Month*Yr. FE NO NO NO NO 

Hour FE NO NO NO NO 

South     

Wind 0.347** -0.447**+ -0.316**+ -0.224**+ 

NGprice 7.607** 5.187**+ 6.321**+ 7.626** 

Load 2.356** 1.265**+ 1.282**+ 1.365**+ 

Nuclear -4.013** -2.221**+ -2.353**+ -2.831**+ 

Intercept -64.771** -29.940**+ -29.989**+ -30.423**+ 

Month*Yr. FE NO NO NO NO 

Hour FE NO NO NO NO 

West     

Wind -1.567** -1.334**+ -0.770**+ -0.564**+ 

NGprice 5.564** 4.810**+ 5.920**+ 7.197**+ 

Load 2.109** 1.446**+ 1.348**+ 1.396**+ 

Nuclear -3.517** -1.496**+ -2.177**+ -2.749**+ 

Intercept -41.254** -35.580**+ -29.404**+ -28.128**+ 

Month*Yr. FE NO NO NO NO 

Hour FE NO NO NO NO 

*Significant at the 5% level; **Significant at the 1% level 

+Quantile coefficient is significantly different than the corresponding OLS estimate at the 5% level 
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Table A2. Regression Results – Dependent Variables are Balancing Prices 

 OLS Q(.25) Q(.5) Q(.75) 

North     

Wind -4.767** 1.481**+ -0.880**+ -2.913**+ 

NGprice 5.338** 4.281**+ 5.214**+ 6.007**+ 

Load 2.810** 1.689**+ 1.630**+ 1.793**+ 

Nuclear -3.456** -2.351**+ -1.993**+ -2.022**+ 

Intercept -56.705** -38.242**+ -32.470**+ -32.568**+ 

Month*YR FE YES YES YES YES 

Hour FE NO NO NO NO 

Houston     

Wind -5.232** -1.620**+ -3.725**+ -4.924** 

NGprice 4.663** 4.224**+ 5.044**+ 5.755**+ 

Load 3.197** 1.724**+ 1.674**+ 1.853**+ 

Nuclear -4.968** -2.563**+ -2.362**+ -2.397**+ 

Intercept -58.992** -35.109**+ -28.962**+ -30.380**+ 

Month*Yr. FE YES YES YES YES 

Hour FE NO NO NO NO 

South     

Wind -0.942 -1.282** -2.840**+ -3.490**+ 

NGprice 4.138** 4.129** 4.925** 5.789**+ 

Load 3.169** 1.669**+ 1.611**+ 1.777**+ 

Nuclear -5.165** -2.598**+ -2.417**+ -2.347**+ 

Intercept -59.883** -34.422**+ -27.900**+ -30.145**+ 

Month*Yr. FE YES YES YES YES 

Hour FE NO NO NO NO 

West     

Wind -8.444** -0.065 -1.411**+ -3.282**+ 

NGprice 5.116** 4.195**+ 5.120** 5.992**+ 

Load 2.717** 1.776**+ 1.662**+ 1.793**+ 

Nuclear -4.681** -2.830**+ -2.039**+ -2.055**+ 

Intercept -44.462** -37.027**+ -32.251**+ -32.015**+ 

Month*Yr. FE YES YES YES YES 

Hour FE NO NO NO NO 

*Significant at the 5% level; **Significant at the 1% level 

+Quantile coefficient is significantly different than the corresponding OLS estimate at the 5% level 
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Table A3. Regression Results – Dependent Variables are Balancing Prices 

 OLS Q(.25) Q(.5) Q(.75) 

North     

Wind -0.487** -0.624**+ -0.440**+ -0.356**+ 

NGprice 6.467** 4.912**+ 6.054**+ 7.289**+ 

Load 1.934** 1.159**+ 1.214**+ 1.229**+ 

Nuclear -3.052** -1.159**+ -1.951**+ -2.384**+ 

Intercept -41.165** -24.228**+ -24.934**+ -23.824**+ 

Month*YR FE NO NO NO NO 

Hour FE YES YES YES YES 

Houston     

Wind 0.100* -0.556**+ -0.346**+ -0.247**+ 

NGprice 7.750** 5.241**+ 6.457**+ 7.734** 

Load 2.172** 1.174**+ 1.218**+ 1.235**+ 

Nuclear -4.332** -1.174**+ -2.159**+ -2.648**+ 

Intercept -51.390** -26.033**+ -26.564**+ -25.436**+ 

Month*Yr. FE NO NO NO NO 

Hour FE YES YES YES YES 

South     

Wind 0.394** -0.444**+ -0.290**+ -0.158**+ 

NGprice 7.637** 5.175**+ 6.342**+ 7.676** 

Load 2.206** 1.136**+ 1.183**+ 1.202**+ 

Nuclear -3.706** -1.800**+ -2.105**+ -2.463**+ 

Intercept -55.886** -24.742**+ -25.470**+ -25.586**+ 

Month*Yr. FE NO NO NO NO 

Hour FE YES YES YES YES 

West     

Wind -1.523** -1.333**+ -0.720**+ -0.518**+ 

NGprice 5.593** 4.675**+ 5.930**+ 7.253**+ 

Load 1.967** 1.272**+ 1.250**+ 1.247**+ 

Nuclear -3.227** -1.269**+ -1.913**+ -2.348**+ 

Intercept -35.428** -27.212**+ -25.194**+ -23.969**+ 

Month*Yr. FE NO NO NO NO 

Hour FE YES YES YES YES 

*Significant at the 5% level; **Significant at the 1% level 

+Quantile coefficient is significantly different than the corresponding OLS estimate at the 5% level 
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Table A4. Wind and Price Volatility (𝛽𝑖 when Dependent Variables are Volatility 

Measure 𝐴, no month by year fixed effects) 

 OLS Q(.25) Q(.5) Q(.75) 

North     

𝜎𝐴
2 570.271** -0.450+ 2.521+ 38.993+ 

𝜎𝐴
3 0.109** 0.057**+ 0.052**+ 0.117** 

𝜎𝐴
4 0.618** -0.037**+ 0.032+ 0.660** 

Houston     

𝜎𝐴
2 1192.389** 1.712+ 9.847*+ 81.098**+ 

𝜎𝐴
3 0.161** 0.073**+ 0.090**+ 0.189** 

𝜎𝐴
4 0.979** -0.032**+ 0.094+ 0.943** 

South     

𝜎𝐴
2 1742.594** 1.219+ 9.813**+ 73.682**+ 

𝜎𝐴
3 0.183** 0.082**+ 0.102**+ 0.195** 

𝜎𝐴
4 1.003** -0.039**+ 0.081 1.014** 

West     

𝜎𝐴
2 507.986** 9.417**+ 37.141**+ 96.974**+ 

𝜎𝐴
3 0.032 -0.007+ 0.009 0.066* 

𝜎𝐴
4 0.288* -0.032*+ 0.002+ 0.412* 

*Significant at the 5% level; **Significant at the 1% level 

+Quantile coefficient is significantly different than the corresponding OLS estimate at the 5% level 
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Table A5. Wind and Price Volatility (𝛽𝑖 when Dependent Variables are Volatility 

Measure 𝐵, no month by year fixed effects) 

 OLS Q(.25) Q(.5) Q(.75) 

North     

𝜎𝐵
2 694.159** -0.559+ 0.734+ 64.769**+ 

𝜎𝐵
3 0.006 0.002 0.004 0.010 

𝜎𝐵
4 0.573** -0.011+ 0.345**+ 1.220**+ 

Houston     

𝜎𝐵
2 1154.316** -0.380+ 2.282+ 106.489**+ 

𝜎𝐵
3 0.010 0.009 0.004 0.009 

𝜎𝐵
4 0.797** 0.020 0.492**+ 1.748**+ 

South     

𝜎𝐵
2 1485.572** -0.308+ 1.689+ 107.868**+ 

𝜎𝐵
3 0.006 0.005 -0.005 0.004 

𝜎𝐵
4 0.818** 0.037 0.515 1.735**+ 

West     

𝜎𝐵
2 471.999** 2.203**+ 10.047**+ 73.056**+ 

𝜎𝐵
3 -0.025* -0.049**+ -0.020* -0.012 

𝜎𝐵
4 0.644** 0.230**+ 0.584** 1.203**+ 

*Significant at the 5% level; **Significant at the 1% level 

+Quantile coefficient is significantly different than the corresponding OLS estimate at the 5% level 
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Table A6. Regression Results – Dependent Variables are Ancillary Service Prices 

 OLS Q(.25) Q(.5) Q(.75) 

Reg.-Up     

Wind 0.190** 0.008+ 0.029+ 0.208** 

NGprice 2.169** 0.786**+ 1.511**+ 2.841**+ 

Load 0.507** 0.193**+ 0.308**+ 0.425**+ 

Nuclear -0.761** -0.707** -0.528**+ 0.030+ 

Intercept -14.874** -2.157**+ -7.586**+ -16.881**+ 

Month*YR FE NO NO NO NO 

Hour FE NO NO NO NO 

Reg.-Down     

Wind 0.398** 0.303**+ 0.339**+ 0.387** 

NGprice 2.219** 1.211**+ 1.726**+ 2.628**+ 

Load -0.270** -0.064**+ -0.119**+ -0.207**+ 

Nuclear 0.340** -0.184**+ 0.046 0.344** 

Intercept 3.496** 0.230+ 0.488**+ 0.810*+ 

Month*Yr. FE NO NO NO NO 

Hour FE NO NO NO NO 

Resp. Res.     

Wind 0.718** 0.261**+ 0.352**+ 0.598**+ 

NGprice 2.665** 0.882**+ 1.791**+ 3.183**+ 

Load 0.589** 0.176**+ 0.330**+ 0.494**+ 

Nuclear -0.648** -0.596** -0.436**+ -0.266**+ 

Intercept -24.211** -4.475**+ -12.288**+ -21.778**+ 

Month*Yr. FE NO NO NO NO 

Hour FE NO NO NO NO 

Non-Spinning     

Wind 3.080**   0.102** 

NGprice 0.060   0.138** 

Load 1.309**   0.354** 

Nuclear -4.913**   -0.908** 

Intercept -47.792**   -5.451** 

Month*Yr. FE NO NO NO NO 

Hour FE NO NO NO NO 

*Significant at the 5% level; **Significant at the 1% level 

+Quantile coefficient is significantly different than the corresponding OLS estimate at the 5% level 
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Table A7. Regression Results – Dependent Variables are Ancillary Service Prices 

 OLS Q(.25) Q(.5) Q(.75) 

Reg.-Up     

Wind -3.511** -0.945**+ -1.964**+ -3.085** 

NGprice 0.310** -0.021+ -0.037+ 0.091 

Load 0.847** 0.345**+ 0.535**+ 0.734**+ 

Nuclear -1.429** -0.636**+ -0.816**+ -0.939**+ 

Intercept -7.409** 0.375**+ -1.348**+ -3.011**+ 

Month*YR FE YES YES YES YES 

Hour FE NO NO NO NO 

Reg.-Down     

Wind -0.750 -0.663** -0.294 -0.279 

NGprice 0.543** 0.236**+ 0.408**+ 0.808**+ 

Load -0.247** -0.030**+ -0.082**+ -0.159**+ 

Nuclear 0.563** -0.169+ 0.085+ 0.508** 

Intercept 8.612** 5.113**+ 5.681**+ 5.811**+ 

Month*Yr. FE YES YES YES YES 

Hour FE NO NO NO NO 

Resp. Res.     

Wind -4.175** -0.616*+ -2.404**+ -3.592** 

NGprice 1.894** 0.105*+ 0.309**+ 0.801**+ 

Load 0.927** 0.360**+ 0.554**+ 0.753**+ 

Nuclear -1.442** -0.806**+ -0.933**+ -1.182** 

Intercept -19.549** -3.152**+ -5.127**+ -7.055**+ 

Month*Yr. FE YES YES YES YES 

Hour FE NO NO NO NO 

Non-Spinning     

Wind -2.195   0.063 

NGprice 2.061**   0.034 

Load 1.957**   0.339** 

Nuclear -1.489**   -0.167 

Intercept -66.843**   -4.870** 

Month*Yr. FE YES YES YES YES 

Hour FE NO NO NO NO 

*Significant at the 5% level; **Significant at the 1% level 

+Quantile coefficient is significantly different than the corresponding OLS estimate at the 5% level 
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Table A8. Regression Results – Dependent Variables are Ancillary Service Prices 

 OLS Q(.25) Q(.5) Q(.75) 

Reg.-Up     

Wind 0.219** 0.044**+ 0.088**+ 0.210** 

NGprice 2.188** 0.773**+ 1.482**+ 2.540**+ 

Load 0.413** 0.073**+ 0.146**+ 0.259**+ 

Nuclear -0.568** -0.504** -0.262**+ 0.138+ 

Intercept -13.723** -0.304**+ -5.625**+ -11.865**+ 

Month*YR FE NO NO NO NO 

Hour FE YES YES YES YES 

Reg.-Down     

Wind 0.378** 0.285**+ 0.338**+ 0.352** 

NGprice 2.206** 1.192**+ 1.700**+ 2.415**+ 

Load -0.208** -0.074**+ -0.108**+ -0.129**+ 

Nuclear 0.214** -0.121**+ 0.038+ 0.257** 

Intercept 1.097* -0.329*+ -0.877** -1.416**+ 

Month*Yr. FE NO NO NO NO 

Hour FE YES YES YES YES 

Resp. Res.     

Wind 0.754** 0.287**+ 0.415**+ 0.633**+ 

NGprice 2.688** 0.896**+ 1.837**+ 3.182**+ 

Load 0.473** 0.061**+ 0.173**+ 0.265**+ 

Nuclear -0.411** -0.385** -0.193**+ 0.046+ 

Intercept -22.432** -2.778**+ -9.981**+ -17.751**+ 

Month*Yr. FE NO NO NO NO 

Hour FE YES YES YES YES 

Non-Spinning     

Wind 3.268**   0.110** 

NGprice 0.100   0.087** 

Load 0.939**   0.245** 

Nuclear -3.981**   -0.562** 

Intercept -47.679**   -4.289** 

Month*Yr. FE NO NO NO NO 

Hour FE YES YES YES YES 

*Significant at the 5% level; **Significant at the 1% level 

+Quantile coefficient is significantly different than the corresponding OLS estimate at the 5% level 
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