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Intervertebral disc degeneration is the major cause of back pain in the US, which can 

be both physically debilitating and costly to treat.  Current treatments include 

invasive surgeries, which can be effective in ameliorating pain, but also contain the 

risk of complications.  Additionally, these strategies target clinical manifestations of 

disc degeneration, rather than examine the cause of degenerative changes.  Therefore, 

current research focuses on finding minimally invasive treatments for disc disease 

such as gene therapy.  Regulating intervertebral disc cell interactions with their 

immediate environment can be a useful tool in the development of therapeutic 

strategies.  This was explored through environmental changes to assess shifts in cell 

phenotype as well as genetic modulation to elucidate alterations in cell function.  

Biochemical, nutritional, and physical factors were examined in immature nucleus 

pulposus cells to assess changes in gene expression, attachment, and proliferation.  It 

was found that nutritional and physical factors can alter gene expression levels of NP 



  

cells, thereby altering cell phenotype.  In addition, down-regulation of the proteolytic 

enzyme MMP-2 was explored through RNAi interference.  Five shRNA lentiviral 

vectors were designed and validated for the sustained gene silencing of MMP-2.  

Silencing MMP-2 activity resulted in the inability of disc cells to focally degrade 

gelatin films as well as reduced ability of disc cells to remodel fibers in type I 

collagen gels, resulting in weakened gel architecture.  These functional consequences 

were further explored in an in vivo study utilizing an annular needle-puncture model 

of disc degeneration.  Injection of the shMMP lentiviral construct lead to decreased 

expression of MMP-2 in the disc, as well as improved disc height and morphology.  

Thus, the functional consequences of silencing MMP-2 were examined, elucidating 

its role in the degradative pathway leading to degenerative disc disease.  The results 

of these studies can lay the foundation for developing therapeutic treatments for 

intervertebral disc degeneration. 
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Chapter 1: Background and Significance 

The research presented in this dissertation is based on the study of 

intervertebral disc degeneration.  While treatments for this prevalent disorder are well 

established, current research focuses on the cause of, and preventative strategies for, 

degenerative changes in the disc.  Specifically we are interested in understanding the 

interplay between intervertebral disc cells and their microenvironment, in terms of 

changes in gene expression.  For this work, we are particularly interested in using 

RNA interference (RNAi) as an engineering tool to modulate these interactions, and 

elucidate the consequences of these changes. 

 

Significance 

  Back pain associated with musculoskeletal disorders of the spine is an 

extremely common condition that leads to enormous psychosocial and economic 

ramifications [1].  Current treatments, attempting to reduce pain rather than repair the 

degenerated disc, include muscle relaxants or injection of corticosteroids, 

manipulation therapies, discectomy or immobilization of the affected vertebrae [2].  

Approaches such as these are not only unpredictable, but also deal almost exclusively 

with endstage clinical manifestations, and therefore do nothing to alter the disease 

process itself [1].  The discovery of RNAi presents a promising method to study 

mechanisms of intervertebral disc degeneration and to engineer cellular function for 

cell/molecular-based therapies.  However, as with any novel technology, the 

foundation of the research needs to be established in each system.  The proposed 

research is designed to lay out the groundwork for implementing RNAi in the 
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intervertebral disc, both in vitro and in vivo.  This work will make a significant 

contribution in characterizing the functional role of MMP-2 in the progression of 

disc degeneration, and identifying key targets in the development of preventative and 

therapeutic interventions.  

 

Societal Impact  

  Intervertebral disc degeneration is one of the conditions that has been linked 

to back pain.  This prevalent medical disorder is the leading source of disability in 

people under 45 years of age [1] which results in national economic losses exceeding 

100 billion dollars annually [3].  Up to 85% of people in the US will experience back 

pain at some point in their lifetime, and it is the second most common reason for 

symptomatic physician visits in this country.  The vast majority of chronic back pain 

is associated with degeneration of the intervertebral disc, which can manifest in many 

different clinical conditions including spinal stenosis and instability, radiculopathy, 

myelopathy, and disc herniation [1].  Although a direct relationship between disc 

degeneration and discogenic pain has yet to be established, clinical indications 

through MRIs and cadaveric studies [4-7] suggest disc degeneration is at least a 

contributing factor since 90% of surgical procedures performed to alleviate pain 

involve degenerate discs [8]. 

 

Function of the intervertebral disc 

The intervertebral disc plays a mechanical role in the body as it enables the 

spine to bend and twist as well as support compressive loads.  In a normal healthy 
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disc, the axial loads applied to the spine induce hydrostatic pressure in the nucleus 

pulposus [9, 10].  To support the load, this pressure distributes the forces evenly on 

the fibrous collagen network, along the circumference of the inner annulus and keeps 

the lamellae bulging outward.  In the process of disc degeneration, this pressurization 

is lost, and the inner annulus lamellae collapse inward and become susceptible to 

degradation [10].  

Dynamic loading is important for intervertebral disc physiology and 

prevention of disc degeneration.  Mechanical loads vary across the disc, exposing 

intervertebral disc cells to complex physical stimuli including compressive, tensile, 

and shear stresses, fluid flow, hydrostatic pressure, and osmotic pressure.  It has been 

suggested that these different mechanical stimuli influence disc matrix synthesis and 

turnover.   Studies support the hypothesis that loading directly influences disc cell 

metabolism and that abnormal loading, may accelerate disc degeneration [11].    

 

Structure and composition of the intervertebral disc  

 

The disc is composed of the 

annulus fibrosus, nucleus pulposus 

and cartilaginous  

endplates (Fig. 1.1 [12]).  The outer 

annulus fibrosus is firm [13, 14] with 

high levels of organized collagen 

fibers [15], containing fibroblasts towards the outside and fibrochondrocytes towards 

Figure 1.1. Intervertebral disc 

(12) 
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the inside [16].  The inner nucleus pulposus is soft and highly hydrated [13, 14], 

consisting of a viscous proteoglycan gel with small amounts of collagen [15], 

containing chondrocytes and notochordal cells [16].  The cartilaginous endplates form 

a transition zone to the adjacent vertebral bodies.  Together, these structures form an 

organic unit [17]. 

The three major constituents of the disc are water, fibrillar collagens, and 

aggrecan [9, 18].  The nucleus has a higher concentration of aggrecan and water than 

other regions of the disc, allowing it to resist compression and distribute forces [13].  

In contrast, the annulus has the highest concentration of collagen.  Collagen types 

also vary across the disc [18].  Type I collagen is found mainly in the outer annulus 

and type II collagen is found primarily in the inner annulus and nucleus [9, 18].  The 

disc contains many other matrix molecules whose distributions vary across the disc.  

The concentrations of these components changes with time, as seen in the decrease of 

water and aggrecan with age [18]. 

 

Development of the intervertebral disc  

The discs develop from 

both the embryonic mesenchyme 

and notochord [15], which guides 

the embryonic development of the 

vertebral column [9].  Around day 

30, mesenchymal cells begin to 

condense around the notochord to form the annulus fibrosus [19] and the non-

Figure 1.2. Formation of 

the nucleus pulposus (22) 
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condensed regions form the osseous vertebral bodies [19-21].  It is believed that the 

entrapped notochord cells synthesize the nucleus pulposus.  (Fig.  1.2 [22]) These 

cells continue to express genes and proteins characteristic of the embryonic notochord 

[9, 19-21].   

 The cell population of the nucleus pulposus varies with age and species.  In 

the early embryo, the cells of the nucleus are notochordal, producing a highly 

hydrated matrix different from those of mature human discs.  Some species retain 

notochordal cells into adult life, while in others they disappear by birth.  In humans, 

they disappear by 4 to 10 years of age [18].  It is unclear whether the change in cell 

population is due to differentiation of notochordal cells into chondrocytic cells, or 

whether it is a result of apoptosis and the migration of cells from the cartilaginous 

endplates and/or annulus [19-21]. 

 

Intervertebral Disc Degeneration 

The intervertebral disc is a well encapsulated, essentially avascular organ that 

depends almost exclusively on diffusion of nutrients from a vascular supply found 

only at its very peripheral region.  Cells of the nucleus are sometimes nearly a full 

centimeter away from the nearest blood supply [1].  Intervertebral disc degeneration 

is a multifactorial process involving mechanical, genetic, and biologic factors.  

Degenerative changes begin relatively early in life and progress through a definable 

sequence of events.  A hallmark of disc degeneration is loss of the normal 

extracellular matrix in the nucleus pulposus [23], leading to diminished biochemical 

properties of the disc [17].  In discs containing notochordal cells, collagen content is 
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low and discs remain hydrated, rarely showing signs of degeneration.  The mature 

human intervertebral disc has low cell density, possibly due to loss of notochordal 

cells.  Intervertebral disc degeneration can first be observed in the nucleus pulposus 

shortly after the disappearance of notochordal cells although peak incidence in 

humans occurs much later in life [9].   

During the aging process, the low proteoglycan content of the nucleus leads to 

decreased hydration and the loss of hydrostatic pressure [1].  Therefore, the collagen-

rich lamellae of the inner annulus collapse inward and become vulnerable to disease 

[10].  The collagen content increases and nucleus eventually becomes more fibrous 

and less hydrated [9].  The annulus fibrosus is then forced to carry larger loads, 

leading to tears, bulging, rupture, and herniation which can ultimately lead to the 

failure of the tissue [9].  Other signs of degeneration include the inability to maintain 

disc height and vertebral body pathology including subchondral sclerosis, end plate 

ossification and osteophyte formation [1].  If the exact mechanism of the disc 

pathology was understood, the biologic repair or regeneration of the intervertebral 

disc could theoretically be achieved by the stimulation of matrix molecules or the 

prevention of matrix degradation and cell death [24]. 

 

Disc repair and remodeling 

Damage to the intervertebral disc can result in trauma or arise from 

degeneration accompanying aging or disease.  Healing of such damage often does not 

occur and degradative processes may lead to herniation of the annulus fibrosus, 

resulting in pain and predisposing to complete intervertebral disc degeneration [25].  
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There is currently little information on the healing process of the disc.  Most of the 

research focuses on elucidating the process of disc degeneration, as well as treatments 

and measures of prevention. 

Tissue engineering for the disc may lead to cell-based techniques appropriate 

for biologic therapies for disc degeneration.  The microenvironment surrounding a 

cell provides not only mechanical support but also a molecular framework, the 

molecules of which may promote signaling pathways that influence important cell 

functions, such as proliferation and extracellular matrix production [26].   However, 

the cell density in normal human discs is low, and many of the cells in degenerate 

discs are dead, therefore stimulation of the remaining cells using cell based therapies 

may be insufficient to repair the matrix [2].  Gene therapy is another technique for 

disc repair that is under investigation.  In this strategy, a gene or genes encoding 

biologically active molecule are introduced into the disc, leading to a stimulation of 

indigenous disc cells to increase the output of matrix constituents [27].  However, low 

cell density limits its potential. 

Research has also identified many potential molecular targets for biologic 

intervention in the disc.  These molecules can be divided into mitogens, which affect 

cellular division, and cytokines which can affect a wide variety of intracellular 

processes by binding to cell surface receptors.  At the molecular level, they influence 

a wide variety of cellular processes including inflammation, matrix stability, vascular 

ingrowth, and cell viability.  Molecular factors may have potential as a means of 

treatment for symptomatic degenerative disc disease by achieving tissue repair or 
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symptom reduction [27], however their mode of action is often too diverse to be 

effective as a therapeutic. 

 

MMP-2 

The timely breakdown of extracellular matrix is essential for embryonic 

development, morphogenesis, reproduction, and tissue resorption and remodeling [28, 

29].  The matrix metalloproteinases (MMPs), a family of metallo-dependent proteases 

capable of degrading all components of the extracellular matrix of connective tissues 

[30-32], are thought to play a central role in these processes.  The expression of most 

MMPs is transcriptionally regulated by growth factors, hormones, and cytokines [28-

30, 32-35].  The proteolytic activities of MMPs are precisely controlled during 

activation from their precursors, and inhibition by endogenous inhibitors, α-

macroglobulins and tissue inhibitors of metalloproteinases (TIMPs) [28].  MMPs 

have been found to play a role in a number of  pathological processes including 

arthritis, cancer, and cardiovascular disease [28]. 

All MMPs are synthesized as prepro-enzymes and secreted as inactive 

zymogens  [28-31, 33, 34].  Activation of secreted pro-enzymes requires disruption of 

the Cys-Zn
2+

 (cysteine switch) interaction and the removal of the propeptide proceeds 

often in a stepwise manner.  The activation of pro-MMP2 is thought to take place 

primarily on the cell surface [28] through complex formation with TIMP-2 [29, 33-

35]  and membrane type 1-MMP (MT1-MMP or MMP-14) [29, 30, 35].  In this 

activation mechanism, TIMP-2 binds to MT1-MMP at the cell surface leaving the 

TIMP carboxyl terminus available for interaction with the carboxyl terminus of pro-
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MMP-2.  The resultant TIMP-2:MMP-2 interaction presents the amino terminus of 

the docked proMMP-2 molecule to an adjacent unoccupied MT1-MMP molecule 

which converts the MMP-2 to the 62kDa fully active form, from its 72 kDa inactive 

form [29, 33]. 

 

MMP-2 and IVD 

High levels of mRNA for a number of MMPs, including MMP-1, MMP-2, 

MMP-3 and MMP-13, have been found in the degenerating IVD [32] and are thought 

to be responsible for the remodeling of the disc extracellular matrix components [29, 

33].  MMP-2, or gelatinase A, is the major gelatinolytic proteinase constitutively 

produced by the NP in vitro and in vivo [30].  It is of particular importance to IVD 

tissue homeostasis due to its broad substrate specificity [29, 30, 33].  It is therefore an 

MMP of potential significance in disc degeneration where excessive matrix 

catabolism is a prominent feature [33].  However, since almost all MMPs are produced 

as inactive pro-enzymes and may reside in the tissue in their inactive conformation, it 

is important to measure the actual levels of activity rather than the presence of this 

enzyme [32]. 

Intervertebral disc degeneration favors a shift towards primarily catabolic 

remodeling responses.  This shift can arise through changes in enzyme production 

and activity, matrix production, as well as anti-catabolic agents [36].  Studies have 

correlated increased MMP-2 production and activation with age and degenerative 

changes in the NP, as well as alterations in MMP-2 activity in NP cells in response to 

growth factor stimulation or prolonged loading [30].  In mechanically loaded 
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specimens, patterns of mRNA levels were consistent with turnover/repair in the 

nucleus and remodeling and/or injury in the annulus [36].  MMP-2 was shown to be 

increased in herniated discs [34], and levels of pro- MMP-2 were found to be 

negatively correlated with collagen type II content in the nucleus [32].  Increases in 

MMP-2 have also been found in human disc degeneration in autopsy and surgical 

specimens [32, 36].  In addition, expression of MMPs, specifically the gelatinases, 

has been shown to be up-regulated after spinal cord injury [37].  Moreover, it has 

been suggested that MMP-2 contributes to the induction of neovascularization that 

occurs in the early stages of disc degeneration [30] further implicating MMP-2 in 

remodeling and degenerative changes in the disc. 

 

Mechanism of RNA interference 

The RNA interference pathway was first recognized in Caernorhabditis 

elegans as a response to exogenously introduced long double-stranded RNA 

(dsRNA), which unexpected led to reduced gene expression [38-40].  RNAi is a form 

of primitive immunity considered to protect the genome against viral infections and 

genomic instability caused by mobile genetic elements such as transposons [38, 41].  

RNAi-mediated gene silencing suppresses gene expression by several mechanisms, 

including the targeted sequence-specific degradation of mRNA, translational 

repression, and the maintenance of silenced regions of chromatin [38].  The 

endogenous RNAi pathway contributes significantly to regulating cellular gene 

expression [38].  Compared to knockout genetics, RNAi-based silencing is rapid, cost 
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effective, and can be easily adapted to study homologous gene function in a wide 

variety of organisms [42]. 

 RNAi involves post-

transcriptionally silencing gene 

expression through double-

stranded RNA highly 

homologous to its own sequence 

(Fig. 1.3 [43]).  Normally, long 

strands of dsRNA activate the 

interferon response in cells, 

leading to apoptosis.  However, 

this response can be bypassed by 

the introduction of short 

interfering RNAs in two distinct 

steps [39, 41, 44].  First, the 

ribonuclease III enzyme Dicer 

cleaves long dsRNA into short 

interfering RNA (siRNA) molecules of 21–23 bp in length [38, 45, 46].  Second, the 

siRNA duplexes are subsequently unwound [46] and bind to a RNA-induced 

silencing complex (RISC) which uses the siRNA to guide the sequence-specific 

cleavage of the RNA transcripts of the target gene [42].  RNAi can also be initiated 

by introducing chemically synthesized siRNAs in to cells, shRNAs through viral 

vectors, or miRNAs.  Many chemically synthesized siRNAs are commercially 
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available due to the completion of many animal genome sequencing projects.  

miRNAs are endogenously produced and involved in development, while shRNAs 

are usually transfected through a viral vector and offer the advantage of stable 

silencing in cells[44].  Introducing a single nucleotide change to the siRNA sequence 

could abrogate siRNA-mediated silencing implying that silencing is highly sequence 

specific [38].   

 

RNAi in mammalian cells 

RNAi is a powerful research tool for reverse genetic studies, which determine 

the function of a gene by its disruption.  Target genes can be silenced by chemically 

or enzymatically synthesized siRNAs or by DNA-based vector systems that encode 

short hairpin RNAs (shRNAs) that are processed intracellularly into siRNAs.  

Typically, RNAi-mediated silencing is said to be incomplete (a “knockdown,” not a 

“knockout”), however, the targeted mRNA is undetectable even with  highly sensitive 

PCR assays in some cases [38].  In mammalian cells, siRNAs suppress gene 

expression only for short periods of time, with silencing lasting up to a week 

depending on cell proliferation, siRNA dilution, and half-life of the target protein [38, 

41, 46].  However, siRNA-mediated silencing can persist for several weeks in 

terminally differentiated, nondividing cells, such as macrophages or neurons.  To 

prolong silencing, plasmid vectors have been developed that effectively express 

shRNAs, using expression systems based on adenovirus, adeno-associated virus, 

oncoretroviruses, and lentiviruses [38, 41].  RNAi has now been established as a 
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standard technique to investigate gene function and can be used routinely in both cell 

culture models and transgenic animals [41]. 

 

shRNA and lentiviruses 

Although first discovered with siRNAs, RNAi can also be achieved through 

the use of short hairpin RNAs (shRNA).  The shRNA contains a perfectly double 

stranded stem of 19–29 bp with one strand identical in sequence to the target mRNA.  

The two strands of the stems are linked by a loop sequence, and the shRNA is 

processed by Dicer to generate functional active siRNA.  While siRNAs are directly 

transfected, shRNAs are endogenously transcribed from expression cassettes 

incorporated into the host cell genome usually from viral gene transfer.  Important 

advantages of shRNAs as compared to siRNAs are (i) lower costs as constructs are 

continually produced by cells, (ii) the induction of stable gene silencing, and (iii) the 

ability to track and isolate infected cells based on reporter gene expression [41].   

Efficient delivery and stable transduction of target cells by shRNA-expression 

cassettes into the host cell genome can be readily achieved by retroviral, lentiviral or 

adenoviral vectors infecting a broad range of cell types [41, 42].  The lentivirus 

system can express integrated shRNA efficiently in a wide variety of cell lines and 

primary cells both in vitro and in vivo [47].  In addition, lentiviruses can efficiently 

integrate into the genome of primary dividing and non-dividing cells [41] which 

allows direct injection into a tissue or organ to knockdown the expression of specific 

genes [47, 48].  Because lentiviral vectors incorporate into the host chromosome, the 

succeeding progeny is likely to inherit the provirus and express the appropriate genes 
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[47].  Moreover, lentiviruses are relatively easy to generate, show minimal 

immunogenicity, and can be produced with high titers so that it can be applied for 

large-scale RNAi assays for studying gene functions [48].  Furthermore, the ability to 

stably express shRNAs in human cells using viral vectors raises the possibility of 

using RNAi as a form of gene therapy to selectively inhibit the expression of disease 

specific genes such as oncogenes [45] or MMPs. 

 

RNAi as a therapeutic 

RNAi has been said to be the next new class of therapeutics.  Since RNAi is a 

naturally occurring process and all genes are potential targets, the possible 

applications in medicine are unlimited.  The widespread applicability, relative ease of 

use, and low cost of production makes siRNAs an attractive small-molecule drug, 

compared to costly antibodies or recombinant growth factors [44, 49].  In addition, 

siRNAs are chemically stable and can be stored lyophilized without refrigeration.  

Once in cells, the anticipated duration of silencing is predicted to vary from 5 days to 

several weeks, which makes dosing as an injectable drug possible.  The sequence 

specificity of RNAi promises potent therapies with little toxicity due to off-target 

gene silencing [38].  Although this specificity might lead to resistance due to 

sequence mutations when treating viral infections or cancer, which has been the case 

in several in vitro studies, resistance to RNAi may be overcome by introducing a new 

siRNA that targets a different site on the same mRNA.  Moreover, siRNAs that target 

conserved sequences or multiple sequences at once may abrogate this problem [38].  

The use of shRNAs provides the opportunity for long-term improvement of a 
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persistent problem by using lentiviral vectors that integrate into the genome and can 

be used to transduce hematopoietic stem cells and other slowly dividing progenitor 

cells in a variety of tissues [38, 44].  The therapeutic potential of RNAi achieved 

through vectored expression of shRNAs has been shown in mouse models using 

adeno-associated viruses, retroviruses, and lentiviruses [38, 43, 44]. 

 

RNAi and IVD 

Previous studies in the IVD using RNAi suggest that not only is the disc an 

immune-privileged site, but disc cells are also capable of transfection.  Kakutani et al. 

[50] demonstrated siRNA mediated gene silencing of reporter plasmids introduced 

into NP cells from both humans and rats in vitro.  The inhibitory effects were 

maintained for 2 weeks, but disappeared completely by 3 weeks.  Although the study 

utilized siRNAs targeting externally produced plasmids, rather than endogenously 

produced genes, it illustrated the efficacy of RNAi in disc cells.  A later study by 

Suzuki et al. [51] presented long-term gene silencing of both reporter plasmids, as 

well as an endogenously produced gene in vivo in rat coccygeal discs.  The inhibitory 

effects were maintained for up to 24 weeks suggesting that RNAi might be a 

promising therapy for disc degeneration.  Seki et al.  [52] explored knockdown of 

genes associated with disc degeneration with promising results in vivo in a rabbit 

needle-puncture model.  Injection of siRNA against ADATS5 induced the 

suppression of degeneration in NP tissues.  These and other studies have reported 

beneficial properties of gene delivery of therapeutic factors to the IVD as a potential 

treatment strategy for DDD [53]. 
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Specific Aims and Hypotheses 

Disc degeneration is a prevalent medical problem with current research 

focusing on finding new treatments for back pain.  In an effort to further these 

studies, the global objective of this work is to investigate how cells of the 

intervertebral disc interact with their microenvironment in order to develop 

methodologies for novel therapies for disc degeneration.  The global hypothesis is 

that alterations in cellular environment can induce changes in gene expression, and 

changes in genetic make-up of cells can, in turn, alter cellular response and function.  

The specific aims of this thesis will test this hypothesis by investigating the role of 

the cellular microenvironment in the maintenance of disc cell phenotype, and the use 

of gene silencing as a tool for cellular engineering. 

 

Specific Aim 1 – Determine how biochemical, nutritional and physical factors 

regulate notochordal gene expression in vitro. 

Research studies of the intervertebral disc often involve in vitro cell culture 

techniques.  It is hypothesized that changes in cell microenvironment can alter 

cellular phenotype and function, which can confound experimental results.  Hence, 

experiments examining these alterations are needed to lay the foundation for future 

cell culture work in vitro.   
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Specific Aim 2 – Determine the efficacy of multiple shRNA vectors targeting MMP-2 

in disc cells and optimal parameters to implement RNAi in vitro. 

RNAi is often difficult to achieve in primary cells.  The hypothesis is that among 

multiple shRNA sequences targeting a gene, one will achieve the greatest level of 

knockdown.  Subsequently, in vitro experiments will optimize parameters and verify 

sequences capable of effectively knocking down MMP-2 gene expression in disc 

cells.   

 

Specific Aim 3 – Determine the functional consequences of silencing MMP-2 in an in 

vitro cell culture model. 

It is hypothesized that silencing MMP-2 can initiate a number of molecular changes 

in disc cells.  In order to elucidate the role of MMP-2 in degradation of the disc, 

cellular alteration of their environment will be examined using gelatin films and 

three-dimensional collagen gels. 

 

Specific Aim 4 – Determine efficacy of RNAi in vivo in degenerate disc models. 

MMP-2 has been found in high levels in degenerate discs.  In order to examine 

whether it is the cause of matrix degradation, RNAi studies silencing MMP-2 in a 

physiologic system are necessary.   It is hypothesized that silencing MMP-2 will 

hinder the degenerative process in IVDs.  Furthermore, it is crucial that gene 

knockdown in a pathological system be accomplished in vivo to establish the use of 

RNAi as a therapeutic tool for disc degeneration.   

 



 

 18 

 

Chapter 2: Environmental Regulation of Notochordal Gene 

Expression in Nucleus Pulposus Cells 

(Rastogi A., et al.  Environmental Regulation of Notochordal Gene Expression in 

Nucleus Pulposus Cells J Cell Physiol, 2009, 220 p.698–705.) 

 

Abstract 

 Cells of the nucleus pulposus (NP) in the intervertebral disc are derived 

directly from the embryonic notochord.  In humans, a shift in NP cell population 

coincides with the beginning of age-related changes in the extracellular matrix that 

can lead to spinal disorders.  To begin identifying the bases of these changes, the 

manner by which relevant environmental factors impact cell function must be 

understood.  This study investigated the roles of biochemical, nutrient, and physical 

factors in regulating immature NP cells.  Specifically, we examined cell morphology, 

attachment, proliferation, and expression of genes associated with the notochord and 

immature NP (Sox9, CD24, and type IIA procollagen).  Primary cells isolated from 

rat caudal discs were exposed to different media formulations and physical culture 

configurations either in 21% (ambient) or 2% (hypoxic) O2.  As expected, cells in 

alginate beads retained a vacuolated morphology similar to chordocytes, with little 

change in gene expression.  Interestingly, NP tissues not enzymatically digested were 

more profoundly influenced by oxygen.  In monolayer, α-MEM preserved vacuolated 

morphology, produced the highest efficiency of attachment, and best maintained gene 

expression.  DMEM and Opti-MEM cultures resulted in high levels of proliferation, 

but these appeared to involve small non-vacuolated cells.  Gene expression patterns 

for cells in DMEM monolayer cultures were consistent with chondrocyte de-
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differentiation, with the response being delayed by hypoxia.  Overall, results indicate 

that certain environmental conditions induce cellular changes that compromise the 

notochordal phenotype in immature NP.  These results form the foundation on which 

the mechanisms of these changes can be elucidated. 

 

Introduction 

 The nucleus pulposus (NP) of the intervertebral disc (IVD) represents the fate 

of the notochord after embryonic morphogenesis.  As a developmental organ of 

chordates, the notochord serves an important function in signaling and in axial 

support [54] and consists of a laminin- and aggrecan-rich basement membrane sheath 

[55, 56] that encases a population of highly vacuolated chordocyte cells [57-60].  

Small chordoblasts, distinct from chordocytes, line and presumably maintain the 

sheath.  During development of the vertebral bodies, ventrally localized expression of 

alkaline phosphatase, and chordoblast rearrangement propagates circumferentially 

[56].  The resulting formation of the vertebral bodies generates islands of notochordal 

remnants that constitute the immature NP [56, 61].   

 The fate and regulation of notochordal cells after establishment of the spinal 

column have not been extensively studied, but an improved understanding may 

provide clues into aging and disorders of the IVD, such as degenerative disc disease 

(DDD).  It has been well documented that the cellular and extracellular matrix (ECM) 

makeup in humans is age-dependent.  In immature discs, the NP is a highly hydrated, 

almost fluidic, translucent matrix [18] that confers a unique biological and 

biomechanical environment for NP cells.  Although details are undocumented, the 



 

 20 

 

immature human NP likely contains not only chordocytes but also chordoblasts.  The 

adult NP is populated exclusively by what have been described as “chondrocyte-like 

cells,” which are smaller and do not possess the vacuolated appearance of 

chordocytes, within a cartilaginous matrix [18, 62].  There is still no definitive 

evidence as to whether the change in cell population evolves from the remaining 

chordoblasts and chordocytes, or results from an influx of chondrocytic cells from the 

endplates and/or annulus fibrosus [21, 63, 64].  The impetus that brings about these 

changes in the adult disc and the mechanisms by which they occur are also unknown, 

but some evidence in the literature point to mechanical and chemical stress as 

potential mediators of notochordal cell survival and phenotype in the adult organism 

[12, 65].  In other animals, the retention of the notochordal population depends on 

species.  Some, such as rabbit, rat, mouse, and pig, possess notochordal cells through 

most of their adult life, as the presence of vacuolated chordocytes indicates [18].  In 

these discs, cells of the mature NP are described as having a mixed population of 

notochordal and chondrocyte-like cells, though it is unclear how chordocytes, 

chordoblasts, and extrinsic cells fit into these classifications [10, 18].  It has been 

suggested that the co-existence of these cells may pose some biological significance 

due to cell-cell interactions and paracrine signaling [10].   

 The relatively few studies on cells isolated from immature NP tissues have 

yielded large variation in published and anecdotal findings.  For instance, some 

studies have been able to passage NP cells in monolayer [66, 67] while others have 

observed extremely slow growth kinetics [68].  There have also been conflicting 

observations regarding the ability of NP cells to maintain viability in hydrogel 
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cultures after enzymatic isolation from tissues [20, 69].  Finally, because the disc is 

avascular, nutrient supply – particularly, oxygen – has been thought to be a strong 

determinant of IVD form and function during growth [70, 71].  Despite findings that 

hypoxia regulates MAPK signaling and VEGF expression in rat NP cells [66, 72-74], 

the physiologic environment does not appear to generate oxaemic distress compared 

with cultures at normal O2 levels [75-77].  It is not clear how hypoxia might regulate 

other genes associated with the immature NP such as CD24, type IIA collagen, α 6 

integrin subunit, and galectin-3 [9, 15, 78-81].  The use of varied experimental 

conditions have further made it difficult to reconcile any differences among reported 

results.  

 Because of the continually evolving conditions in the aging disc and our 

currently limited understanding of post-embryonic notochordal cells, this study 

sought to determine how cells isolated from immature NP might be regulated by 

environmental variables.  Specifically, we utilized NP from rat caudal discs as a 

model of immature NP cells, and investigated biochemical, nutritional, and 

biophysical stimuli by varying media formulation, oxygen concentration, and culture 

configuration.  The goal was to determine how NP tissues are affected as a mixed 

population culture system, and perhaps gain some insight into the relative functions 

of the two cell types.  Based on current views of the NP cell regulation, we 

hypothesized that monolayer and hypoxia would have detrimental effects, and posed 

the null hypothesis that cells would be insensitive to media formulation.  Surprisingly, 

we found strong interactions among these three factors, so that outcomes depended on 

the specific combination of conditions.  Maintenance of notochord-associated genes 
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was supported by alginate bead culture and α-MEM monolayer cultures, while 

mechanically disrupted tissues in hypoxia and DMEM monolayer cultures promoted a 

loss of notochordal phenotype. 

 

Materials and Methods 

Cell isolation and culture 

 A total of 56 male Sprague-Dawley rats (6-9 months) were obtained and 

euthanized using CO2 asphyxiation, as approved by the Institutional Animal Care and 

Use Committee at the University of Maryland, College Park.  Excised tails were 

promptly removed of skin and transported into a biosafety cabinet where they were 

subjected to two washes in sterile PBS. Surrounding soft tissues were completely 

removed to expose caudal intervertebral discs.  For each disc, a cut was made close to 

one of the vertebral bodies, and the gelatinous NP was scooped out with a 

microcurette.  Care was taken not to disturb the underlying endplate.  Six NP tissues 

from each tail were pooled and prepared for culture using one of three methods 

(below).  Qualitative assessments of cell morphology were made using an Olympus 

IX81 (Olympus America, Inc., Center Valley, PA) for light microscopy of 

experimental samples and for fluorescence microscopy using a fluorescein-based 

cytoplasmic stain (CellTracker; Invitrogen, Carlsbad, CA) in separate identically 

prepared alginate bead samples. 

1. Monolayer culture: Upon removal, NP tissues were digested in 0.4% (w/v) 

pronase for 1 hour followed by 0.025% (w/v) collagenase overnight.  Digests 

were centrifuged, cells were resuspended in fresh media, and plated.  
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2. Disrupted NP in alginate beads: NP tissues were placed directly into 500 µl of 

2% (w/v) alginate in a microcentrifuge tube and then mechanically disrupted 

using a pestle.  The alginate was expelled dropwise from a 22 gauge needle into 

102 mM CaCl2 to form beads.  The beads were cured for 10 minutes and then 

placed in fresh culture media.  

3. Cells dispersed in alginate beads: Upon removal, NP tissues were digested in 

0.4% (w/v) pronase for 1 hour followed by 0.025% (w/v) collagenase overnight.  

Digests were filtered through a 70 µm cell strainer and centrifuged.  Cells were 

resuspended in 500 µl of 2% (w/v) alginate, expelled dropwise from a 22 gauge 

needle into 102 mM CaCl2, and cured for 10 minutes before being placed in fresh 

culture media. 

 Hypoxic conditions were maintained by filtering pre-mixed gas consisting of 

2% O2, 5% CO2, and the balance N2 and humidifying the gas using a sparger.  

Continuous inflow of humidified gas terminated in a chamber containing the 

flasks/dishes of cells, and exhausted.   

 

Cell attachment and proliferation 

 Twenty Sprague-Dawley rats were used for cell attachment and proliferation 

measurements, which were based on DNA quantitation by PicoGreen reagent 

(Invitrogen, Carlsbad, CA).  The design involved nine experimental groups: one Day 

0 baseline assessment of DNA content, and eight different combinations of FBS (2, 

10%) with basal media (DMEM, α-MEM, Opti-MEM, and RPMI) (Invitrogen, 

Carlsbad, CA).  For these experiments, caudal discs from two rats (12 discs total) 
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were pooled to generate enough material for one replicate containing all nine groups.  

Cells were isolated according to procedures for monolayer culture described above.  

Equal volumes of digested tissues were distributed among the nine experimental 

groups and, with the exception of the Day 0 group, placed in the incubator for 3 days 

without media exchange.  For Day 3 assays (n=5), cells were washed with PBS and 

trypsinized (0.25% trypsin, 0.1% EDTA; Invitrogen, Carlsbad, CA).  For Day 10 

assays (n=5), media was exchanged at day 3 and then cultured for 7 additional days 

with normal media changes before being trypsinized.  For all samples, cells were 

pelleted, resuspended in TE buffer, and subjected to five freeze-thaw cycles for lysis.  

The PicoGreen reagent was used according to manufacturer’s instructions with a 

calibration curve generated from Lambda DNA.  Fluorescence was measured using a 

SpectraMax M5 plate reader (Molecular Devices, Sunnyvale, CA).  Attachment was 

defined as DNA content at Day 3 relative to that at Day 0.  Proliferation was defined 

as the ratio of DNA content at Day 10 relative to that at Day 3. 

 

Gene expression 

 Thirty-six rats were allocated for studying the impact of physical culture 

configuration, hypoxia, and media conditions.  Relative quantitation of gene 

expression was performed using separate freshly isolated tissues as physiologic 

reference samples.  Effects of physical configuration was examined by comparing (1) 

cell monolayers, (2) mechanically disrupted NP in alginate beads, and (3) 

enzymatically digested NP in alginate beads all cultured in DMEM 

(Gibco/Invitrogen, Carlsbad, CA) containing 2% FBS (Sigma, St. Louis, MO), 100 
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U/mL penicillin, and 100 µg/mL streptomycin (Gibco/Invitrogen, Carlsbad, CA).  

Sensitivity to biochemical environment was studied by including an additional group 

of cell monolayers cultured in α-MEM also containing 2% FBS (Sigma, St. Louis, 

MO), 100 U/mL penicillin, and 100 µg/mL streptomycin (Gibco/Invitrogen, 

Carlsbad, CA).  The role of oxygen concentration was examined in every preparation 

by culturing in either 2% or 21% O2, with 5% CO2 and the balance N2 at 37°C.  

 Each tail was assigned to one of the four treatment groups: DMEM monolayer 

(n=3), DMEM disrupted in alginate (n=3), DMEM digested in alginate (n=3), and α-

MEM monolayer (n=3).  From each tail, six discs were pooled and divided equally 

between hypoxic (2% O2) and normoxic (21% O2) to form matched pairs cultured in 

parallel.  Cells were maintained with regular media changes for 1, 2, or 4 weeks (n=3 

for each time point).  

 For alginate samples, cells were released from beads by submersion in a 

sodium citrate solution (55 mM sodium citrate, 0.15 M NaCl, 25 mM HEPES) for 10 

minutes, and then collected by centrifugation and lysed.  Cell monolayers were lysed 

directly.  RNA purification was performed using the RNeasy Mini Kit (Qiagen Inc., 

Valencia, CA).  Samples were reverse transcribed, and real-time PCR using SYBR 

Green was performed (iCycler, Bio-Rad Laboratories, Hercules, CA) to quantify 

expression of type IIA procollagen, Sox9, CD24, and GAPDH (Table 2.1).  
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Table 2.1. Sequences of Primers used for RT-PCR Analysis 

Gene Forward and Reverse Sequence GenBank accession no. 

5’-AGGAGGCTGGCAGCTG-3’ 

Type IIA procollagen 5’-CACTGGCAGTGGCGAG-3’ NM_012929 

5’-AATCTCCTGGACCCCTTCAT-3’ 

Sox9 5’-TTCCTCGCTCTCCTTCTTCA-3’ XM_343981 

5’-CTTCTGGCACTGCTCCTACC-3’ 

CD24 5’-AGAGACGTTTCTTGGCCTGA-3’ NM_012752 

5’-AACCCATCACCATCTTCCAG-3’ 

GAPDH 5’-GTGGTTCACACCCATCACAA-3’ NM_017008 

 

 

Data and statistical analysis 

 Relative quantitation of real-time RT-PCR data was performed using the 

∆∆Ct method [82].  Briefly, the Ct values for each triplicate were averaged and used 

for subsequent calculations.  ∆Ct was computed by subtracting the averaged Ct values 

of the internal control gene GAPDH from those of the gene of interest (i.e. ∆Ctcol2a = 

Ctcol2a – CtGAPDH).  ∆∆Ct for each gene of interest was computed by subtracting the 

∆Ct of the baseline reference (time zero specimen obtained from tail discs) from the 

∆Ct for the preparation and time point of interest (i.e. ∆∆Ctcol2a; preparation X, time Y = 

∆Ctcol2a; preparation X, time Y – ∆Ctcol2a; baseline).  These ∆∆Ct values for each gene of interest 

of each preparation and time combination were then expressed as relative changes in 

mRNA levels (fold difference) through the exponential relation: 2
-∆∆Ct

.  Data are 

reported as the average value of the range of calculated fold difference, which 

incorporates the standard deviation of the ∆∆Ct value in the fold difference 
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calculation as ∆∆Ct + SD and ∆∆Ct – SD.  Statistical analyses (SPSS 14.0, Chicago, 

IL) were performed using one-way ANOVA with Tukey’s HSD post hoc tests (α = 

0.05). 

 

Results 

Cell morphology 

 For monolayer cultures, we observed clear distinctions among media 

conditions.  In DMEM, cells were initially small and vacuolated when first plated on 

polystyrene (Figure 2.1 a, d).  Over time, cells formed large complexes as they 

proliferated and flattened out (Figure 2.1 c).  Cell monolayers in α-MEM also started 

as small cells, although larger in size and containing more pronounced vacuoles than 

cells in DMEM.  There was also noticeably greater cell attachment in α-MEM than 

DMEM, and cells appeared to form larger vacuole-containing complexes (Figure 2.1 

e, h).  It is unclear whether the initially higher cell attachment contributed by allowing 

more cells to be included within each complex.  Cells plated in RPMI were very small 

with few noticeable vacuoles, and attachment characteristics similar to that of DMEM 

(Figure 2.1 i).  No dramatic changes in cell size or features were observed in RPMI 

over time.  Cells plated in Opti-MEM appeared similar to those plated in DMEM, but 

with what appeared to be less proliferation over time (Figure 2.1 j).  In most 

monolayer cultures, there was clearly the formation of colonies consisting of smaller 

cells, which expanded faster in 10% FBS media than in 2% (Figure 2.1 b).  Fewer of 

these smaller cells were observed in α-MEM cultures, but this also may have 

appeared as such due to the relatively greater numbers of vacuolated cells.   
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Figure 2.1. Microscopic images of monolayer cell cultures: (a,b) DMEM culture at 1week in 

2%FBS and 10% FBS, respectively; (c) DMEM culture at 2 weeks; (d) magnification of part 

b; (e,f) α-MEM culture at 1 week; (g,h) α-MEM culture at 2 weeks; (i) RPMI culture at 1 

week; (j) Opti-MEM culture at 1 week. Cells maintained a vacuolated morphology in DMEM 

and α-MEM. Cell attachment was greater in α-MEM culture, while DMEM culture promoted 

proliferation of small chondrocyte like cells. Cells cultured in RPMI and Opti-MEM had low 

cell attachment and proliferation, and were unable to maintain their vacuolated morphology. 

Scale bars represent 50µm. 
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For alginate bead cultures, other than sizes of cell clusters, there were no 

obvious distinctions between mechanically disrupted and enzymatically digested 

tissues.  In mechanically disrupted NP cultures, large islands of cells were visible 

through the alginate beads.  Despite being in clusters with unique cell-cell and cell-

matrix contacts, cells were generally rounded and contained large vacuoles (Figure 

2.2 a).  Enzymatically digested cells were found mostly as singlets but sometimes in 

smaller groups than mechanically disrupted samples.  Most of the cells were 

vacuolated, and they were rounded, as one would expect in hydrogel culture (Figure 

2.2 b). 

There did not appear to be any marked influence of oxygen concentration on 

cell morphology in any of the preparations and conditions. 

 



 

 30 

 

 

Figure 2.2. Fluorescence micrographs of (a) mechanically disrupted NP tissues and (b) 

enzymatically digested NP cells, both at 2 weeks in alginate bead culture. Cells are stained 

with CellTracker Green to indicate viability and DAPI to stain the cell nuclei (400X 

magnification). Both mechanically disrupted and enzymatically digested NP tissue showed 

cells which were vacuolated and able to maintain physiologic morphology. Mechanically 

disrupted tissue in alginate beads contained large clusters of cells, which were able to 

maintain both cell-cell and cell-matrix interactions, while enzymatically digested cells 

appeared in small clusters of 1 to 2 cells. 
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Cell attachment and proliferation 

 Using DNA quantitation, we observed a strong dependence of cell attachment 

on biochemical formulation of basal culture media, with a more modest effect of FBS 

concentration (Figure 2.3 a).  In low serum conditions, attachment with α-MEM was 

75% compared with approximately 50% for DMEM and RPMI, and 33% for Opti-

MEM.  Higher levels of serum resulted in mild increases in attachment with α-MEM 

increasing to 83%.  Interestingly, DMEM exhibited lower attachment rates in 10% 

FBS, and we observed this trend in four of the five trials. 

 As one would expect, media containing 10% FBS generally resulted in greater 

cell proliferation (Figure 2.3 2b).  Comparable growth characteristics between 

DMEM and α-MEM were observed for both 2% and 10% FBS conditions.  For these 

media, cell numbers increased approximately 25% from Day 3 to Day 10 in 2% FBS, 

and 137% in 10% FBS.  RPMI yielded much fewer cells at Day 10 compared with 

Day 3.  It is unclear whether the 75% decrease in DNA content is due to cells unable 

to maintain attachment or to cell death.  Culturing in RPMI with 10% FBS resulted in 

maintenance of cell number.  Opti-MEM appeared to exhibit worse proliferative 

characteristics in 10% FBS; however, this is slightly misleading due to a more 

pronounced variability in this particular media condition.  None of the differences 

were statistically significant due to the inherent variability of cell isolation procedures 

in general. 
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Figure 2.3. Dependence of (a) cell attachment and (b) proliferation on media conditions. 

Overall, α-MEM provided optimal attachment while Opti-MEM had the lowest cells 

attachment. Cell culture in DMEM, α-MEM and Opti-MEM provided high growth 

characteristics, however, DMEM culture allowed proliferation of different cell types, while 

growth in Opti-MEM was lower in 10% FBS compared to 2% FBS.  
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Gene expression 

 The role of culture configuration appeared to serve as an interacting factor 

with oxygen levels.  For monolayers in DMEM (Figure 2.4 a), expression of genes 

associated with the immature NP began either unchanged or upregulated compared 

with fresh tissues.  However, by four weeks of culture, monolayers exhibited marked 

decreases in expression of all genes.  Hypoxia did not influence trends in gene 

expression, but did generate more pronounced changes in expression levels.  In 

contrast, cells cultured in alginate beads (Figure 2.4 b) retained modest, but steady, 

increases in expression for all genes examined, with no apparent effect of hypoxia.  

Mechanically disrupted NP tissues (Figure 2.4 c) exhibited interesting patterns of 

gene expression that strongly depended on oxygen levels.  In hypoxia, Sox9 and type 

IIA procollagen were immediately upregulated and showed modest decreases over 

four weeks.  But at normal oxygen levels, these genes were comparable to 

physiologic, and expression increased over four weeks.  CD24 decreased over time in 

hypoxia, and maintained steady expression levels in normoxia. 

 The use of α-MEM for monolayer culture induced gene expression patterns 

drastically different from DMEM monolayers (Figure 2.4 d).  As opposed to steady 

decreases in immature NP cell-associated gene expression over four weeks in 

DMEM, cells cultured in α-MEM maintained levels of Sox9 and CD24 expression 

above physiologic throughout 4 weeks.  Type IIA procollagen was similar to 

physiologic over the first two weeks, before an increase observed at 4 weeks.  There 

was a very modest effect of oxygen level on all genes. 
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 Overall, in DMEM culture, the preparation with cells dispersed in alginate 

exhibited more consistent upregulation of all genes. The two other culture 

preparations resulted in more complex regulation of the genes of interest that was 

strongly dependent on time point and/or O2 level.  For monolayer cultures, α-MEM 

also stimulated a consistent upregulated expression of essentially all genes. 
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Figure 2.4. PCR data showing relative changes in gene expression at 1, 2, and 4 weeks in 2% 

and 21% oxygen levels for (a) monolayer culture in DMEM. Changes in gene expression of 

CD24 at 4 weeks in hypoxia are significantly different from time zero levels (P = 0.035); (b) 

mechanically disrupted NP in alginate beads cultured in DMEM. There are no significant 

differences in gene expression. Down-regulation of CD24, a marker of notochordal cells, in 

both configurations demonstrates loss of the notochordal cell phenotype over time in culture. 
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Figure 2.4 cont’d. PCR data showing relative changes in gene expression at 1, 2, and 4 weeks 

in 2% and 21% oxygen levels for (c) cells embedded in alginate beads cultured in DMEM. 

Changes in gene expression of Sox9 at all time points (P < 0.007), collagen IIA at all time 

points (P < 0.011) except 4 weeks in 21% O2 (P = 0.14), and CD24 at 1 and 2 weeks in 2% 

O2 (P < 0.008) are significantly different from time zero levels; (d) monolayer culture in α-

MEM for 1, 2, and 4 weeks in 2% and 21% oxygen levels. There are no significant 

differences in gene expression. Both culture configurations resulted in maintenance of 

notochordal cell gene expression levels, and therefore notochordal cell phenotype. 
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Discussion 

 Results of this study demonstrate that physical, nutritional, and biochemical 

factors interact to generate distinct cellular responses.  Although scientific efforts 

have primarily focused on embryonic development, the significance of notochordal 

cells likely extends even beyond morphogenesis of the spine.  The immature NP 

derives its mechanical and biological function from these cells [83, 84], and 

understanding their regulation by environmental variables will provide insight into 

aging, disease, and potentially repair.  Evidence suggests that discogenic spinal 

disorders may be linked with changes in the NP’s abilities to sustain a high internal 

turgor pressure, maintain flexibility, and provide proper IVD load distribution.  For 

instance, chondrodystrophoid dogs exhibit a loss of notochordal NP cells and are 

known to develop DDD, while their non-chondrodystrophoid counterparts retain 

these cells and generally avoid such disorders [21].  Experimental procedures that 

compromise the notochordal NP likewise have adverse effects on disc health; 

compressive loads that induce apoptosis and puncture injuries that lead to NP 

extrusion both result in degenerative changes [12, 65, 85-87].  Importantly, if we 

consider mechanically disrupted NP tissues as a scaled down version of the immature 

NP complete with physiologic cellular microenvironment, the results of hypoxic 

effects are consistent with the enhanced pro-chondrogenic, anti-notochordal 

phenotype observed in larger animals.  Such a postulate would also underscore the 

potential for some in vitro cell culture preparations, like enzymatic cell isolates, to 

generate results that cannot be translated to the organism. 
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 To our knowledge, there have been no definitive descriptions of cell 

morphologic changes for notochordal NP cells in culture.  Prior reports where 

notochordal NP have been specifically used either employed different biomaterials 

[20], examined only short duration cultures [81], or have not provided detailed 

observations or images [66, 67, 69, 72, 75].  Considering the existence of multiple 

subpopulations of cells involved, interpreting results from different studies requires 

adequate standardization of the system.   

 Using alginate bead culture, we did not observe any detectable loss of cell 

viability either in mechanically disrupted or enzymatically digested cells, contrary to 

published data [20].  This may be due to a difference in cell source species or the use 

of a non-thermal setting hydrogel.  In all culture durations and preparations, more 

heavily vacuolated cells – presumably of chordocyte lineage – was observed as the 

predominant initial cell type, but their vacuolar appearance varied among different 

preparations.  Thus, there did not appear to be any survival-limiting factor.  However, 

because small chondrocyte-like cells appeared to proliferate faster in monolayer, our 

observations suggest that vacuolated chordocytes may eventually be overrun over 

time/passage, making long-term cultures of these cells challenging.  Future studies in 

sorted populations and controlled co-cultures will provide better insight into these 

effects. 

 Since the nature of NP cells evolves with age and most likely with time in 

culture, we examined a subset of genes associated with NP cells: Sox9, CD24, and 

type IIA procollagen.  Type IIA procollagen, a longer alternatively spliced isoform of 

type II procollagen, is expressed by progenitor cells during chondrogenesis [88], but 
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not by mature chondrocytes [89, 90].  This isoform has also been identified in the 

immature NP and the inner annulus of the IVD.  The NH2-propeptide of type IIA 

collagen has been hypothesized to play a signaling, rather than structural, role, 

because it does not co-localize with the triple helical region in the NP [15].  Sox9, a 

transcription factor for type II collagen, is expressed both by chondrocytes [91, 92] 

and by notochordal cells [93-95], but not hypertrophic chondrocytes [95] or de-

differentiating chondrocytes in monolayer [96].  Expression of Sox9 and other 

chondrogenic processes have been shown to be regulated by hypoxia through the 

transcription factor HIF-1α [97, 98].  Finally, CD24 is a cell surface marker 

predominantly associated with lymphocytes and neuronal development, but recently 

found to be expressed in the notochordal NP [78].  CD24 appears to be associated 

with the larger chordocytes, as identified by FACS analysis, and expression levels are 

much higher in NP cells than cells from the AF or any other musculoskeletal tissues.  

Our rationale was to examine relative changes in expression of these three genes as a 

means to identify key cellular alterations. 

 Results show that the effects of hypoxia are drastic for mechanically disrupted 

preparations, but negligible for enzymatic digestions, either in monolayer or in 

alginate beads. This may be a less acute manifestation of cell-cell or cell-matrix 

interactions that was deemed necessary for cell survival in other preparations [20], 

but it is not clear what the nature of these interactions are.  Based on our data, 

normoxia appears to favor notochordal maintenance with steady CD24 levels and 

upward trends in Sox9 and type IIA procollagen.  Conversely, hypoxia may induce 

chondrogenic differentiation with maintenance of Sox9, reduction of CD24, and high 
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initial but low long-term expression of type IIA procollagen.  Perhaps the organized 

“micro-mass-like” clusters of cells in mechanically disrupted preparations facilitated 

hypoxia-induced chondrogenesis.   

 In DMEM, the NP cell population exhibited changes in gene expression that 

were consistent with loss of chondrogenic and notochordal phenotypes.  For 

normoxia, all expression levels steadily decreased.  For hypoxia, there was a transient 

increase in Sox9 and type IIA procollagen up to 2 weeks, suggesting an initial 

hypoxia-induced chondrogenic response, followed by a sharp decline in expression at 

4 weeks.  Hypoxia appeared to be detrimental for notochordal gene expression, since 

CD24 continuously decreased.  The de-differentiation of primary chondrocytes 

cultured on tissue culture plastic has been well documented, one of the most notable 

changes being a shift in the type of collagen produced [99, 100].  Consistent with 

these previous observations, our present findings also show a decrease in type II 

collagen and, to our knowledge, is the first reported evidence that this occurs in 

intervertebral disc NP cells.  However, further study is needed to determine whether 

other collagen species are concurrently upregulated. 

 In contrast, α-MEM cultures were able to sustain chondrogenic and 

notochordal phenotypes over time in an oxygen concentration-independent manner.  

We noted very little difference in the formulations between α-MEM and DMEM, 

except for one potentially crucial distinction that ascorbic acid (50 mg/L) is present in 

α-MEM, but not DMEM.  It may be that improved procollagen secretion in the 

presence of ascorbic acid [101, 102] allows cells to recreate a more physiologic 

substrate to inhibit the de-differentiation response.  
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 In DMEM, enzymatically digested cells embedded in alginate beads exhibited 

levels of expression that were slightly higher than physiologic, but steady through 4 

weeks, just as observed for α-MEM.  Similar to what others have observed for 

chondrocytes, embedding NP cells in hydrogels for cell culture may provide a better 

microenvironment than tissue culture plastic for maintaining physiologic NP 

phenotype.  Agarose and alginate bead cultures allow cells to maintain a more 

rounded shape and have been shown to “rescue” de-differentiated chondrocytes, 

allowing them to re-acquire a chondrocytic phenotype [103-105].  Similarly, 

mesenchymal stem cells have been found to undergo chondrogenic differentiation by 

encapsulation in a hydrogel environment alone [106-108].  In terms of oxygen 

concentration, there was no apparent difference for both Sox9 and type IIA collagen.  

Insensitivity of enzymatically digested cells to oxygen concentration (both in 

monolayer and alginate) is consistent with previous findings that HIF-1α, a regulator 

of Sox9, remains constant whether monolayer NP cells are in normoxia or hypoxia 

[66, 72, 75, 76].  Since some signaling pathways in NP cells have been shown 

influenced by hypoxia [66, 72], genes other than those we examined are likely 

differentially influenced.  It is interesting, however, that two distinct environmental 

variables (monolayer in α-MEM and alginate bead in DMEM) were able to provide 

sustained expression of chondrogenic and notochordal genes. 

 Attachment and proliferation assays were consistent with our morphologic 

observations and gene expression results in monolayers.  Chordocytes in α-MEM 

appeared to attach with greater efficiency than in other media formulations, and their 

prevalence did not change drastically over time.  Cells were able to attach in RPMI, 
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but NP cell growth and/or survival was clearly problematic, consistent with the lack 

of spreading in vacuolated cells we observed.  DMEM and Opti-MEM yielded robust 

proliferation, but these appeared to favor growth of chondrocyte-like cell colonies.  

Gene expression results for cells in DMEM are consistent with hypoxia and de-

differentiation behaviors in chondrocytes.   

 Overall, our data demonstrate that hypoxic conditions promoted a 

chondrogenic response that was detrimental to a notochordal phenotype in immature 

NP cells, but only in mechanically disrupted cultures.  Notochordal gene expression 

was improved in normoxia.  The distinction might be attributed to physiologic cell-

cell or cell-ECM interactions, since enzymatically digested cells were not oxygen-

sensitive.  On the other hand, digested cells maintained notochordal gene expression 

either in 2% or 21% oxygen if cultured in alginate beads or with α-MEM in 

monolayer.  Low serum levels did not have any striking influence on cell attachment. 

 One difficulty encountered in this study was identifying and interpreting cell 

type-specific responses for these cultures that possess at least two known 

subpopulations.  It was not possible to determine whether one subpopulation might be 

more responsive, and consequently dominate the ensemble response.  Pure 

populations of chordocytes, and smaller chordoblasts and “chondrocyte-like” cells 

might provide more precise characterization of their responses.  Since reports had 

indicated the potential significance of cell-cell interactions between these two 

subpopulations, we chose to sacrifice the interpretive value by examining how 

immature NP cells, as a whole, would respond to biochemical, nutritional, and 

physical variables.  The current results together with future studies in sorted cell 
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populations will make it possible to elucidate potential synergistic effects of cell-cell 

interactions and other microenvironmental variables.  These results are important 

considering how little is understood about the notochord-derived cells of the NP and 

their age-related changes.  Such findings may secondarily be useful for establishing in 

vitro cell culture protocols for NP cells, and potentially their subpopulations. 
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Chapter 3: Engineering Matrix Metabolism of Intervertebral 

Disc Cells using RNA Interference 

(Chapters 3 and 4 will be combined for submission to the Journal of Biological 

Chemistry with revision of technical content) 

 

Abstract 

A majority of chronic back pain is associated with degeneration of the 

intervertebral disc (IVD) and involves a cascade of events influenced by several 

interacting factors.  During degeneration the extracellular matrix is dramatically 

altered, and this is believed to arise from increased activities of MMPs, ADAM-TSs, 

and other proteolytic enzymes.  Proposed therapeutic and regenerative strategies for 

the IVD require the ability to modulate cell function, in particular the inhibition of 

catabolic molecules.  This study validates an approach to inhibit matrix degradation 

by silencing MMP activity using RNA interference (RNAi) in in vitro cell culture.  

Five short hairpin RNAs (shRNAs) were designed to target the cellular mRNA for 

MMP-2, cloned into a lentiviral vector, and introduced into annulus fibrosus cells.  

Gene expression was assessed using real-time RT-PCR, and an activity assay was 

used to measure MMP-2 protein levels in both cell lysates and cell culture media.  We 

found that treated cells had decreased MMP-2 protein levels in both media and cell 

lysates compared to non-infected control cells.  There was also a decrease in the 

amount of cellular mRNA for MMP-2 in infected cells as compared to non-infected 

cells.  However, the five constructs exhibited differential effectiveness of MMP-2 

knockdown.  This system suggests a promising method to enable the implantation of 
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cell-based therapies into a toxic microenvironment.  Specifically, silencing MMP-2 

activity can suppress matrix breakdown and tissue remodeling, minimizing the 

degradative events that may be triggered with transplantation of engineered constructs 

into the disc. 

 

Introduction 

There have been numerous studies focusing on the intervertebral disc (IVD) 

and explicating the factors that may lead to degenerative disc disease (DDD).  The 

etiology of degeneration is not well understood, but is thought to involve biological, 

chemical, and mechanical changes, and is as well a factor of age and environment 

[109].  Current treatments can be both debilitating and costly, intensifying the 

research efforts in developing therapies for treatment of DDD [110].  Intervertebral 

disc degeneration favors a shift towards primarily catabolic remodeling responses in 

the extracellular matrix (ECM) [30, 31, 110, 111].  Although the precise mechanisms 

of disc degeneration are not well understood, it is known that there are several 

interacting factors involved in the events leading to a diseased state [16, 112]. 

The use of RNA interference (RNAi) to manipulate genes has become a 

powerful tool in research over the last few years.  This technique can be applied 

towards discovering or validating gene functions as well as engineering decreases in 

gene expression [113, 114].  The advantages of RNAi include the ability to induce 

sequence specific gene silencing, its genome wide capabilities, and the ability to 

induce both transient and stable effects, all harnessed from a naturally occurring 

process [38, 113].  Although extensive studies are required to elucidate unanticipated 
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effects, RNAi is a promising technology that holds tremendous promise for treating 

human disease.  The main goal of this work is to develop the methodology for 

implementing RNAi in the intervertebral disc in vitro in order to elucidate the process 

of disc degeneration.   

The family of matrix metalloproteinases (MMPs) is responsible for the 

breakdown and synthesis of the extracellular matrix proteins in the body.  Thus they 

are key mediators of tissue remodeling, but also play a role in cell proliferation, 

migration, differentiation, angiogenesis, apoptosis and host defense [28].  A number 

of different MMPs have been found in diseased discs, but their functional roles in the 

degenerative cascade are not clear.  MMP-2, a gelatinase thought to participate in the 

secondary breakdown of collagen, has been found in elevated levels in degenerate 

discs [30, 32-34].  One of the putative roles of matrix metalloproteinase-2 (MMP-2) 

is the remodeling of the extracellular matrix.  Increased activation of MMP-2 has also 

been shown to be induced by mechanical stress [36, 115].   

As a first step towards improved understanding of MMP function, this current 

study validates an approach to silence MMP-2 gene expression using RNA 

interference (RNAi) in an in vitro cell culture system.  While, many studies have 

implemented siRNAs to regulate gene expression, to our knowledge this is the first 

study to utilize small hairpin RNAs (shRNAs) to achieve stable knockdown of  

MMP-2.   
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Materials and Methods 

Construct preparation 

The BLOCK-iT U6 RNAi Entry Vector Kit and the BLOCK-iT Lentiviral RNAi 

Expression System (Invitrogen, Carlsbad, CA) were used for procedures.  Five 21-23 

nucleotide sequences (Table 3.1) were identified from the rat MMP-2 gene from 

which shRNA target sequences were designed using a 4 nucleotide hairpin loop.  A 

nonsense control (shNon) was also constructed which contained a scrambled 

sequence.  Oligonucleotides (oligos) complementary to the shRNA target sequences 

were designed and designated D-H.  The two complementary oligos were annealed 

together and ligated into the provided pENTR/U6 entry vector, which contained a 

kanamycin resistance gene.  The vector was transformed in OneShot TOP10 E.coli 

and selected on LB agar plates with 50 ug/ml kanamycin.  Antibiotic-resistant 

colonies were cultured overnight in LB broth also containing antibiotic.  Plasmid 

from overnight bacterial cultures was purified and sequenced to ensure no mutations 

occurred to the target sequence during processing.   

 

Table 3.1. MMP-2 shRNA sequences 

Sequence 
Name 

Top and Bottom “stem-loop-stem” sequences, 5’ to 3’ 

CACCGCTGAAGGACACCCTCAAGAACGAATTCTTGAGGGTGTCCTTCAGC MMP-2 
D AAAAGCTGAAGGACACCCTCAAGAATTCGTTCTTGAGGGTGTCCTTCAGC 

CACCGCCGGGATAAGAAGTATGGATTCTCGAAAGAATCCATACTTCTTATCCCGG MMP-2 
E AAAACCGGGATAAGAAGTATGGATTCTTTCGAGAATCCATACTTCTTATCCCGGC 

CACCGCTGTGTTCTTCGCAGGGAATCGAAATTCCCTGCGAAGAACACAGC MMP-2 
F AAAAGCTGTGTTCTTCGCAGGGAATTTCGATTCCCTGCGAAGAACACAGC 

CACCGCAATACCTGAACACTTTCTACGAATAGAAAGTGTTCAGGTATTGC MMP-2 
G AAAAGCAATACCTGAACACTTTCTATTCGTAGAAAGTGTTCAGGTATTGC 

CACCGTGGTGGTCACAGCTATTTCTTCCGAAGAAGAAATAGCTGTGACCACCA MMP-2 
H AAAATGGTGGTCACAGCTATTTCTTCTTCGGAAGAAATAGCTGTGACCACCAC 

CACCGCCGATTAGCTGATCGTGCTTAGTCGAAACTAAGCACGATCAGCTAATCGG MMP-2 
scrambled AAAACCGATTAGCTGATCGTGCTTAGTTTCGACTAAGCACGATCAGCTAATCGGC 



 

 48 

 

 The purified entry vector was recombined with the provided pLenti6/BLOCK-

iT-DEST vector, which contained an ampicillin resistance gene.  The resultant 

expression construct was transformed in OneShot Stbl3 Competent E.coli and 

selected on LB agar plates with 100ug/ml ampicillin.  Antibiotic-resistant colonies 

were cultured overnight in LB broth also containing antibiotic.  Purified plasmid was 

again sequenced to ensure no mutations occurred during processing.   

 The purified expression construct was then packaged into a replication-

deficient lentivirus to obtain a lentiviral stock to be used for subsequent experiments.  

Briefly, 293FT packaging cells were cotransfected with the purified expression 

construct and ViraPower Packaging mix using Lipofectamine 2000 (Invitrogen, 

Carlsbad, CA).  Virus containing supernatants were harvested 72 hours later, 

centrifuged to remove cell debris, sterile filtered, and stored at -80°C until use. 

 

Primary cell isolation and culture 

 Annulus fibrosus (AF) tissue was harvested from Sprague-Dawley rat caudal 

discs and digested overnight in 3 mg/ml collagenase.  The next day, the digests were 

centrifuged, resuspended in fresh culture media, and plated in tissue culture flasks.  

The cells were cultured until passage 3 with media changes everyday.  The cells were 

maintained in DMEM containing 10% FBS and 1% Penicillin-Streptomycin at 37°C 

with 5% CO2 and balance air.    
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Cell infection 

Passage 3 AF cells were plated in 6-well tissue culture plates in complete 

media at 50% confluence.  Each of the five viral constructs and the nonsense control 

were added to one well each, at an MOI of 0.1, along with Polybrene (Sigma, St. 

Louis, MO) to facilitate infection.  Virus was removed the next day and replaced with 

complete culture medium.  Blasticidin (Invitrogen, Carlsbad, CA) was added in 

appropriate samples the day after virus removal, at a concentration of 8 µg/ml.  Media 

was changed every 3 days, each media change contained blasticidin in the appropriate 

samples.  Each time point also included a corresponding non-infected control (plated 

cells with no virus).   

Three separate experiments were conducted to screen the five viral constructs.  

For experiment 1: Cells were infected and harvested at 1, 4, 7, and 10 days following 

virus removal.  For experiment 2: Cells were infected, then harvested at 1, 4, 7, and 

10 days following addition of blasticidin.  For experiment 3: Cells were infected and 

then subjected to a 10 day blasticidin treatment, followed by culture in complete 

media without blasticidin.  Cells were harvested at 1, 4, 7, and 10 days following 

removal of blasticidin.  At each time point, samples were collected by scraping cells 

using Tris-HCl, pH 7.5-8.0, and a cell scraper.  Harvested samples were divided into 

3 groups to measure (1) DNA content (2) MMP-2 content, and (3) gene expression.  

Media was also harvested from samples for measurement of MMP-2 content.  The 

construct with the highest level of knockdown, designated shMMP, was validated for 

use in future experiments (n=4). 
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MMP-2 expression 

MMP-2 content was quantified using a microplate-based activity assay (R&D 

Systems Inc., Minneapolis, MN).  Cell samples were pulverized with a pestle in Tris-

HCl solution then loaded into microplates, along with media samples and standards.  

Protein levels were obtained according to the manufacturer’s protocol.  Protein levels 

were normalized to DNA content, which was determined using PicoGreen assay 

(Invitrogen, Carlsbad, CA).  Cell samples were subjected to 5 freeze-thaw cycles for 

cell lysis and loaded into a microtiter plate along with standards generated from 

Lambda DNA.  PicoGreen reagent was then added to all wells.  All absorbance 

(MMP-2) and fluorescence (DNA) measurements were made using a SpectraMax M5 

plate reader (Molecular Devices, Sunnyvale, CA). 

 For quantitative RT-PCR, RNA was isolated and reverse transcribed for PCR 

to obtain gene expression levels of GAPDH and MMP-2, using primers designed for 

rat genes (Table 3.2) from Primer3 software (http://frodo.wi.mit.edu).  Results were 

analyzed using the ∆∆Ct method [82].  These ∆∆Ct values were then expressed as 

relative changes in mRNA levels (fold difference) through the exponential relation: 2
-

∆∆Ct
.  For validation of shMMP, data are reported as the average value of the range of 

calculated fold difference, which incorporates the standard deviation of the ∆∆Ct 

value in the fold difference calculation as ∆∆Ct + SD and ∆∆Ct – SD.   Statistical 

analyses (SPSS 14.0, Chicago, IL) were performed using one-way ANOVA (α = 

0.05). 
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Table 3.2. Sequences of Primers used for RT-PCR Analysis 

Gene Name Forward and Reverse primers 
GenBank 

accession no. 
Length of 

product (bp) 

5’-AACCCATCACCATCTTCCAG-3’ 
GAPDH 

5’-GTGGTTCACACCCATCACAA-3’ 
NM_017008 197 

5’-AGCTCCCGGAAAAGATTGAT-3’ 
MMP-2 

5’-TCCAGTTAAAGGCAGCGTCT-3’ 
NM_031054 180 

 

 

Results 

Three separate experiments were conducted to screen the five viral constructs, 

designated D-H, targeting MMP-2.  Overall, stable silencing was achieved in each of 

the 3 experiments.  All constructs, except D were able to down-regulate gene 

expression and protein levels through 10 days, in Experiments 1 and 2 (Figure 3.1 and 

Figure 3.2).  In addition, the constructs maintained stable knockdown of MMP-2 

throughout the 3 week culture period in Experiment 3 (Figure 3.3).  Similar trends of 

gene silencing were observed in each of the 3 experiments for each of the 5 

constructs.  However, the level of knockdown was greater in Experiment 1 as 

compared to Experiments 2 and 3.  Overall, constructs F and G were more successful 

in knocking down MMP-2 mRNA and protein compared to the other constructs.  Up 

to 80% gene silencing was observed for both constructs.  Therefore, construct G, 

designated shMMP, was validated for use in future experiments. 
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Figure 3.1. Cells were infected with each of the five viral (D-H) constructs and then lysed 

after 1, 4, 7, and 10 days. (a) PCR results for gene expression of MMP-2 were compared to 

nonsense controls for each time point. (b) Protein results for cell lysates. The values of 

nonsense and non-infected controls (Cells) are shown for comparison. Each of the five viral 

constructs were able to knock down gene expression and protein levels of MMP-2, although 

to varying degrees through 10 days in culture. 
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Figure 3.2. Infected cells were treated with blasticidin and then lysed after 1, 4, 7, and 10 

days. (a) PCR results were compared to nonsense controls for each time point. (b) Protein 

results for cell lysates. The values of nonsense controls are shown for comparison. 

Treatment with blasticidin resulted in a pure population of only infected cells. Gene 

expression and protein levels of MMP-2 were down-regulated throughout the culture 

period for each of the five viral constructs. 
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Figure 3.3. Infected cells were treated with blasticidin for 10 days followed by culture in 

DMEM and then lysed after 1, 4, 7, and 10 days. (a) PCR results for gene expression levels of 

MMP-2 were compared to nonsense controls for each time point. (b) Protein results for cell 

lysates. The values of nonsense controls are shown for comparison. Cells were cultured in 

DMEM following treatment with blasticidin to allow for proliferation of only infected cells. 

Both MMP-2 gene expression and protein levels were down-regulation by each of the 

constructs for the culture period.  
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Experiments 1 and 2 were repeated (n=4) with shMMP and shNon to validate 

the results from the initial gene knockdown experiments.  As before, MMP-2 mRNA 

levels were down-regulated in shMMP infected cells as compared to shNon infected 

cells.  In addition, MMP-2 protein levels were lower in shMMP infected cells and 

media as compared to shNon infected cells and media through 10 days in culture 

(Figure 3.4).  

 

 

 

 

Figure 3.4. Cells infected with shMMP and shNon, with and without treatment with 

blasticidin. Cells were lysed at 4 and 10 days. (a) PCR results for gene expression levels of 

MMP-2 were compared to non-infected controls for each time point. Down-regulation  

MMP-2 with shMMP are significantly different from shNon at 4 (P = 0.036) and 10 days     

(P = 0.042) in culture with blasticidin. PCR results from validation studies corroborate results 

from initial experiments, as there was a greater extent of down-regulation of MMP-2 gene 

expression levels in shMMP infected cells compared to shNon infected cells. 
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Figure 3.4 cont’d. Cells infected with shMMP and shNon, with and without treatment with 

blasticidin. Cells were lysed at 4 and 10 days.  (b) Protein data for cell lysates and (c) spent 

media. The values of non-infected controls (Cells) are shown for comparison. Protein results 

from validation studies corroborate results from initial experiments, as MMP-2 protein levels 

were down-regulated in shMMP infected cells compared to shNon infected cells. 
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Discussion 

Intervertebral disc degeneration is the leading source of morbidity and a major 

cause of work disability [116].  Treatment strategies for disc degeneration include 

increasing levels of anabolic growth factors, or blocking the activity of catabolic 

factors, or both [52].  RNAi technology offers the advantage of stable silencing of 

catabolic factors which can be of therapeutic value in treating disc degeneration.  To 

this extent, lentiviral vectors have provided an advancement in RNAi and offer the 

means to achieve significant levels of gene transfer both in vitro and in vivo [117].  

Although various studies have used siRNAs for gene therapy in IVD cells, to our 

knowledge this is the first study to utilize shRNAs to achieve stable knockdown of an 

endogenously produced gene in the intervertebral disc. 

Many proteinases are capable of degrading ECM components, but MMPs 

appear to be particularly important for matrix degradation [117].  MMP-2 has been 

widely studied in the treatment of cancer.  siRNAs against MMP-2 resulted in 

decreased tumor invasion, migration and angiogenesis, with a 60% reduction in tumor 

size [118].  Since MMP-2 has also been implicated in matrix degeneration and tissue 

remodeling in the intervertebral disc [28, 36, 115], evaluating its role in the 

degenerative cascade that leads to DDD can serve as an important step in the 

development of therapeutic treatments.   Five viral vectors were made targeting 

MMP-2 in rat AF cells.  Silencing of MMP-2 gene expression was achieved with 

each of the constructs, in each of the three screening experiments.  In addition, down-

regulated levels of MMP-2 were maintained up to 3 weeks in culture.   
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Some constructs were more successful in silencing MMP-2 than others, 

however.  While constructs F and G achieved up to 80% knockdown, suppression of 

gene expression was diminished by 10 days in culture for construct D.  During the 

transfection protocol, not all cells are transduced with the shRNA.  It is possible that 

cell metabolism slows for transduced cells, therefore proliferation rates for 

untransduced cells may be greater than transduced cells.  In addition, it is known that 

siRNAs that target different regions of the same gene vary markedly in their 

effectiveness [38].  siRNA efficacy depends largely on multiple factors, including the 

secondary structure of the mRNA target, the binding of the RNA-binding proteins, 

and thermodynamic stability of the duplex [38, 44].  Together, the lesser extent of 

gene silencing and greater proliferation of untransduced cells and a may have masked 

the effects of MMP-2 knockdown in construct D.   

Treatment of cells with blasticidin yielded a pure population of only infected 

cells, eliminating masking effects by untransduced cells.  It was expected that the 

pure population would exhibit higher levels on knockdown compared to a mixed 

population.  However, both Experiments 2 and 3 resulted in a lower extent of gene 

silencing.  It is possible that the 10 day blasticidin treatment used to kill untransduced 

cells in these experiments may trigger an increase in MMP-2 gene expression leading 

to a lower degree of knockdown.  During antibiotic treatment, multiple metabolic 

processes are interfered with or changed [119], which may trigger an up-regulation of 

genes.  Since overall gene expression levels may be higher in these cells, the level of 

MMP-2 knockdown is effectively reduced.   
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 Although the shNon contained a scrambled sequence, some level of 

knockdown was seen in these cells as well.  It is known that the interferon response 

may be triggered in the process of cell transfection with a viral vector [38, 44].  Thus, 

there are changes occurring in cells at the molecular level.  The infection may cause 

overall changes in the gene expression profile in cells as well [120].  These factors 

together could lead to some level of gene knockdown observed in cells infected with 

the shNon vector.  In addition, there is some debate as to the specificity of sequences 

required for effective RNAi [121].  It is possible that various bases in the scrambled 

nonsense sequence may be able to match the MMP-2 mRNA found in cells causing 

some knockdown effect.  Compared to the nonsense construct however, shMMP was 

successful in knocking down MMP-2 mRNA and protein levels to a higher degree.  

Therefore the chosen sequence for shMMP was considered effective for use in future 

RNAi experiments.   

The present study validates lentiviral shRNA delivery and the targeting of 

MMP-2 in intervertebral disc cells.  We have demonstrated significantly reduced 

mRNA and protein levels in both cells and media samples in vitro.  These results help 

establish RNAi protocols using lentiviral delivery of shRNA to study the function of 

MMP-2 in disc degeneration.  Studies using transfection of siRNA allow for only the 

transient down-regulation of gene expression, making it difficult to adapt for 

therapeutic purposes.  However, shRNA delivery can allow for long-term studies to 

determine the functional role of genes relevant to intervertebral disc degeneration, 

such as MMP-2.  These techniques can be applied to future in vitro studies 

elucidating the effects of silencing MMP-2 on cellular interaction with their 
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surrounding microenvironment, as it is held responsible for remodeling and 

degradation of extracellular matrix components.  Improvements in shRNA delivery 

and reduction of off-target effects can make RNAi an attractive method for gene 

silencing to treat intervertebral disc degeneration. 
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Chapter 4: Functional Consequences of Silencing MMP-2 in 

Intervertebral Disc Cells using RNA Interference 

 

Abstract 

One of the putative roles of matrix metalloproteinase-2 (MMP-2), a 

gelatinase, is the remodeling of the extracellular matrix.  We have previously 

designed and validated an shRNA sequence cloned into a lentiviral vector to 

knockdown MMP-2 expression in cells from the annulus fibrosus (AF) of the 

intervertebral disc.  To further the investigation of the functional role of MMP-2 in 

AF cells, this study utilized RNA interference to examine the effects of MMP-2 

silencing on gelatin degradation and type I collagen gel remodeling.  Infected and 

non-infected AF cells were seeded on gelatin films and analyzed for degradation.  

Additionally, type I collagen gels were embedded with infected and non-infected cells 

and mechanically tested to examine differences in material properties.  The ability of 

cells to remodel collagen fibers was also examined through histological staining.  

Silencing MMP-2 resulted in the inability of cells to degrade gelatin and remodel 

collagen gels.  Gels were also weaker, possibly due to a lesser degree of remodeling.  

The findings of this study will help to elucidate the interactions between MMP-2, 

collagen and gelatin.  The breakdown of the collagen found in the AF is thought to 

play a major role in intervertebral disc degeneration.  Knowledge of the functional 

significance of MMP-2 is essential to understanding and treating this prevalent 

disorder. 
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Introduction 

Various physiologic and pathophysiologic processes, including tissue growth, 

repair, and degeneration, involve cell-mediated tissue remodeling events.  During 

remodeling, extracellular matrix (ECM) turnover rates are increased [122], causing 

shifts in tissue architecture and composition.  While a number of molecules are 

thought to regulate this process, the family of matrix metalloproteinases (MMPs) is 

believed to be particularly important in processing ECM protein degradation [30-32].  

In addition to being key mediators of tissue remodeling, however, MMPs are also 

known to be involved in cell proliferation, migration, differentiation, angiogenesis, 

apoptosis and host defense [28]. 

 One example of chronic pathophysiologic remodeling occurs in the 

intervertebral disc (IVD) of the spine with degenerative disc disease (DDD).  In the 

annulus fibrosus (AF) subregion of the disc, there is an acceleration of age-related 

degradative changes, which are thought to be caused by enhancement of catabolic 

processing of the ECM [30, 31, 110, 111].  A number of different MMPs have been 

shown to be expressed at elevated levels in diseased discs [32].  One of these is 

MMP-2, a gelatinase thought to participate in the secondary breakdown of collagen 

critical for remodeling [30, 32-34].  Activation of MMP-2 above endogenous baseline 

levels has been shown to be induced by mechanical stress [36, 115] and by 

inflammation [27].  However, the functional role of MMP-2 in disc health and 

degeneration remain unclear.  Current treatments can be both debilitating and costly, 

intensifying the research efforts in developing therapies for treatment of DDD [110].  

An improved understanding of the molecular mechanisms involved in DDD would 



 

 63 

 

contribute to the development of interventional strategies to decelerate the 

degenerative processes. 

   In this study we examine the effects of silencing MMP-2 on collagen 

remodeling and gelatin degradation in an in vitro cell culture system.  With the use of 

RNAi technology, we can investigate the functional role of MMP-2 in annulus 

fibrosus cells.  Many studies have effectively silenced various genes using RNAi in 

the disc; however few have examined the functional consequences.  Elucidating the 

action of MMP-2 can aide in designing more specific therapies for DDD. 

 

Materials and Methods 

Primary cell isolation and infection 

 Annulus fibrosus tissue was harvested from Sprague-Dawley rat caudal discs 

and digested overnight in 3 mg/ml collagenase.  The next day, the digests were 

centrifuged, resuspended in fresh culture media, and plated in tissue culture flasks.  

The cells were cultured until passage 3 with media changes everyday.  AF cells were 

maintained in DMEM containing 10% FBS and 1% Penicillin-Streptomycin at 37°C 

with 5% CO2 and balance air. 

 Passage 3 AF cells were plated in tissue culture flasks in complete media at 

50% confluence.  A validated lentiviral vector containing an shRNA sequence 

targeting MMP-2, designated shMMP, and a vector containing a nonspecific 

scrambled sequence, designated shNon, were added to one flask each, at an MOI of 

0.1, along with Polybrene (Sigma, St. Louis, MO) to facilitate infection.  Virus was 

removed the next day and replaced with complete culture medium.  To obtain a pure 
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population of infected cells, blasticidin (Invitrogen, Carlsbad, CA) was added the day 

after virus removal, at a concentration of 8 µg/ml.  Media was changed every 3 days, 

each media change contained blasticidin when necessary.   

 

Gelatin Films 

A 5% gelatin solution was pipetted onto glass slides and allowed to air dry.  

Once cooled, the slides were chemically cross-linked in 4% formalin for 1 hour at 

room temperature.  The slides were then washed extensively with sterile PBS, and 

stored overnight in PBS at 4°C.  The next day, the PBS was removed and slides were 

equilibrated in complete cell culture media for 30 minutes before cell seeding. 

Separate populations of AF cells infected with the shMMP construct and the 

shNon construct were treated with blasticidin to obtain a pure population of infected 

cells.  Infected cells (n=4 for shMMP and shNon each) and non-infected control cells 

(n=4) were seeded onto the films at a density of 200,000 cells/film.  The cell 

suspension was allowed to settle for 30 minutes before cell culture media was added.  

Gelatin films without cells served as negative controls (n=4).  Films were cultured for 

4 days at which time media was removed from the dish and films were washed once 

with PBS.  Films were stained with 1% Ponceau S for 1 minute and washed with 

DIH2O for 5 minutes on a shaker.  Films were visualized immediately after staining. 

Percent degradation of gelatin was quantified using Image J (U.S. National Institutes 

of Health, Bethesda, MD) analysis. Statistical analysis (SPSS 14.0, Chicago, IL) was 

performed using Kruskal-Wallis test with Games-Howell post hoc analysis. 
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Collagen Gels 

Three-dimensional type I collagen  gels were made from rat tail collagen (BD 

Biosciences, San Jose CA) at a concentration of 3 mg/ml following manufacturer’s 

protocols.  All the components were pre-chilled and sterile.  Briefly, the type I 

collagen stock solution was diluted in 10X PBS (Gibco/Invitrogen, Carlsbad, CA), 

sterile water, and 1N NaOH to achieve a final concentration of 3 mg/ml collagen in 

1X PBS at pH 7.4.  The collagen solution was kept on ice until use.   

Passage 3 AF cells were infected with the shMMP and shNon viruses, as 

described previously.  Two separate populations of cells were used for each of the 2 

viruses, one of which was treated with blasticidin to obtain a pure population of only 

infected cells, while the other was used as a mixed population of infected and non-

infected cells (n=3 for each).  Non-infected AF cells were used as positive controls 

(n=3) while gels without cells were used as negative controls (n=3).  Cells were 

trypsinized, pelleted and resuspended in collagen solution at 500,000 cells/ml.  Cells 

were pipetted into custom-made dog-bone shaped molds (3mm thick) fabricated to be 

15mm in width at the grips with a 5mm wide x 10mm long gauge region, placed in 

petri dishes.  Polypropylene mesh (Small Parts, Inc., MA) with approximately 300µm 

pore size was embedded in the collagen at each end of the mold for gripping.  The 

gels were incubated for 90 minutes at 37°C incubator to allow polymerization, then 

placed in 6-well plates in complete culture media.  Gels were cultured for 7 days.  At 

the time point, gels were used either for mechanical testing to ascertain changes in 

material properties, or for histology to evaluate structural changes.   
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Mechanical Testing and Histology 

For mechanical testing, gels were removed from culture and their cross-

sectional area was measured using calipers since they exhibited varying degrees of 

contraction during culture.  Gels were clamped on each end at the mesh, and creep 

testing was performed in tension using hanging weights.  An initial weight of 1.5g 

was added, followed by increments of 0.5g, each at 2 minute intervals.  The gels were 

loaded until failure.  Deformations were captured using a video system, and strain 

computed by image analysis of individual frames.  Ten frames per second were 

captured for the first 10 seconds, and two 

frames were second were captured for the 

remainder of the first increment. Changes in 

gel length in each frame were evaluated using 

ImageJ. The material properties of each gel 

were evaluated by fitting data to the standard 

linear viscoelastic solid model (Figure 4.1) using Matlab. Values were obtained for 

E1 and E2 (measures of strength), and µ (a measure of viscosity). Thus changes in the 

viscoelastic properties of the gels were evaluated. 

For histology, gels were fixed overnight in 10% buffered formalin.  The 

collagen gels were then infiltrated with paraffin before being embedded in paraffin 

blocks.  7µm sections were cut and stained with Hematoxylin, Fast Green and 

Safranin-O to evaluate changes in collagen structure.   
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Results 

Gelatin films 

After culture for 4 days, blank films which served as negative controls stained 

homogeneously red with the Ponceau S (Figure 4.2 a).  In contrast, gelatin films 

seeded with non-infected control AF cells showed focal degradation of the gelatin 

immediately surrounding the cells.  This area appeared lighter pink to white, 

compared to the red-stained gelatin in areas without cells (Figure 4.2 b).  Films 

seeded with cells infected with shNon also appeared to have focal degradation 

surrounding the infected cells, similar to what was seen in the films with non-infected 

AF cells (Figure 4.2 d).  However, in films seeded with cells infected with shMMP, 

little to no focal degradation was observed around the cells.  The gelatin was stained 

more homogeneously red, similar to the blank films (Figure 4.2 c).  Quantification of 

degradation (Figure 4.3) verified visual results, with non-infected cells and shNon 

infected cells having similar percent degradation, while shMMP infected cells 

showed minimal percent degradation. 

 

 

 

 

 



 

 68 

 

 

Figure 4.2. Microscopy images of gelatin films seeded with: (a) no cells, (b) non-infected AF 

cells, (c) cells infected with shMMP, (d) cells infected with shNon. Films were stained at 4 

days in culture with Ponceau S, and visualized immediately. Scale bars represent 200 µm. All 

images were taken at 100X. Films with no cells (a) stained evenly red, while films seeded 

with non-infected AF cells (b) showed focal degradation of gelatin in the areas immediately 

surrounding cells, which is shown by the lighter stained regions. Similar results are seen with 

cells infected with shNon (d), while cells infected with shMMP (c) show little to no focal 

degradation of gelatin, implicating that MMP-2 is directly involved in gelatin breakdown. 
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Gelatin Film Degradation
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Figure 4.3. Quantification of gelatin degradation. Gelatin films seeded with non-infected AF 

cells and shNon infected cells were similar in percent degradation of gelatin, which 

corroborated visual results. Non-infected AF cells were significantly different than shMMP 

infected cells (P = 0.001), with non-infected cells having a higher percentage of gelatin 

degradation, as was seen in microscopic images. In addition, shNon infected cells were 

significantly different than shMMP infected cells (P = 0.002), with a higher percentage of 

degradation in films seeded with shNon infected cells, as seen visually. 
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Collagen Gels  

After the 7 day culture period, gels were mechanically tested or fixed.  

Visually, blank gels remained the same size through culture while gels embedded 

with non-infected AF cells contracted to approximately 17% of their original size.  

Gels embedded with cells infected with shMMP contracted to a lesser degree than 

gels with cells infected with shNon. 

Collagen gels without cells exhibited the highest strength and viscosity, but 

low rupture stress.  In contrast, collagen gels with non-infected AF cells had the 

highest rupture stress, but lowest viscosity, while gels with cells infected with 

shMMP had among the lower values for strength, but higher values for viscosity 

(Figure 4.4).   

 

 

 

 

 

 



 

 71 

 

 

 

 

Figure 4.4. Material properties of collagen gels containing no cells, non-infected AF cells, 

and AF cells infected with shMMP construct or shNon construct. (a) E1 and E2 represent gel 

strength and (b) µ represents viscosity. Gels containing non-infected AF cells had among the 

higher values of strength and lower values for viscosity, possibly due to the ability of AF 

cells to restructure collagen fibers within gels, giving them higher strength, and carry out both 

catabolic and anabolic processes, giving them lower viscosity values. In contrast, gels 

containing cells infected with shMMP had lower values for strength, and higher values for 

viscosity. These cells were unable to restructure their surrounding collagen network, making 

gels weaker, and were also unable to breakdown gelatin, making them more viscous. 
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Histological staining of blank gels revealed unstructured collagen fibers with 

heterogeneous porous structure throughout (Figure 4.5 a).  Gels with non-infected 

control cells contained much denser regions of collagen surrounding the cells, on 

which they seemed to be anchored.  The collagen fibers appeared to be restructured in 

the entire gel (Figure 4.5 b).  However, in gels embedded with shMMP infected cells, 

minor changes in dimensions were seen over the culture period.  The collagen fibers 

appeared much less structured, similar to the blank gels.  The cells did not appear to 

be anchored on the fibers, and instead were rounded in appearance (Figure 4.5 c).  

Gels containing cells infected with shNon were also contracted, containing 

restructured collagen fibers and denser regions surrounding the cells (Figure 4.5 d).  

Collagen gels imbedded with mixed populations of cells exhibited qualities similar to 

the non-infected controls, as they were contracted with dense areas of fibers (Figure 

4.5 e, f).  However, shMMP infected cells were visible in the gels as rounded and 

unattached to their surrounding matrix (Figure 4.5 e, circled).   
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Figure 4.5. Histology images of collagen gels containing: (a) no cells, (b) non-infected AF 

cells, (c) a pure population of cells infected with shMMP, (d) a pure population of cells 

infected with shNon, (e) a mixed population of cells infected with shMMP, and (f) a mixed 

population of cells infected with shNon. Each gel was fixed at 7 days. Images for (a)-(d) were 

taken at 400X, scale bars represent 50 µm. Images for (e)-(f) were taken at 100X, scale bars 

represent 200 µm. Non-infected AF cells (b) and shNon infected cells (d) were shown to 

restructure collagen fibers within gels. These cells appeared elongated and anchored to the 

fibers. Cells infected with shMMP (c) appeared similar to gels without cells (a) with little to 

no restructuring of the collagen network and rounded cells. In gels containing mixed 

populations of cells, collagen fibers were reorganized, however in the shMMP mixed 

population gels (e), rounded cells were clearly visible without reorganization of fibers in their 

immediate surroundings. These were not found in shNon mixed population gels (f).  

 



 

 74 

 

Discussion 

MMP-2 is one of the gelatinases in the family of MMPs, responsible for the 

secondary breakdown of collagen.  It is thought to be involved in general ECM 

breakdown in the process of disc degeneration [30-32].  The functional role of MMP-

2 in this process can be evaluated through RNAi technology.  Lentiviral delivery of 

shRNA allows stable silencing of gene expression [47], which can be beneficial in the 

development of therapies.  By silencing MMP-2, we can evaluate changes in the 

interaction of AF cells with their surrounding matrix, and therefore elucidate their 

role in the degenerative cascade.  Seeding infected and non-infected cells on gelatin 

films allows us to evaluate the effectiveness of the gelatinase activity of MMP-2.  In 

addition, embedding these cells in type-I collagen gels can help explicate the role of 

MMP-2 in tissue remodeling.  To our knowledge, this study is the first to utilize 

shRNA technology to ascertain the functional role of a catabolic molecule in the 

process of disc degeneration.  Together these results can be applied to designing 

interventional strategies to decelerate IVD degeneration. 

 Gelatin is a substrate widely used for cell adhesion and growth [123, 124].  It 

can also be used to measure gelatinase activity of enzymes such as MMP-2.  A 

gelatinase in the family of MMPs, it is directly responsible for the secondary 

breakdown of collagen, along with MMP-9 [30, 33].  AF cells seeded on gelatin films 

were capable of degrading the area immediately surrounding them.  Films were 

stained evenly red with areas of white immediately surrounding the cells.  This focal 

degradation suggests that MMP-2 has a greater role in degradation of immediate 

cellular surroundings, rather than general degradation capabilities.  These results are 
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similar to other studies performed with cancer tissues.  Fujiwara et al. [125] found a 

significant correlation between gelatinolytic activity and the detection of MMP-2 by 

immunocytochemistry in breast tumor samples.  Alternatively, silencing MMP-2 in 

AF cells through RNAi resulted in diminished gelatinolytic activity, implicating 

MMP-2 as the major enzyme responsible for breakdown of gelatin.  These cells 

exhibited little to no degradation of the gelatin films, compared to non-infected cells.  

However, cells infected with shNon resembled non-infected cells in their ability to 

focally degrade gelatin.  It was interesting to note that while MMP-2 may be secreted 

by cells into the surrounding media, there was little to no general degradation of the 

films seen.  However, it is possible that with a longer culture time, enough MMP-2 

may be secreted to cause complete breakdown of the films, rather than the focal 

degradation that was seen.   

In in vitro cell culture, collagen gels are widely used as a three-dimensional 

cell scaffold [126].  In this study, we evaluated structural changes in collagen gels, 

which would lead to a shift in material properties of the gels, in order to assess the 

functional significance of silencing MMP-2.  Infected and non-infected cells were 

embedded in collagen gels which were polymerized in dog-bone shaped molds to 

facilitate testing.  In many cases, the weakened architecture of the gels caused them to 

break immediately, making it difficult to obtain reproducible results.  A shorter 

incubation time or higher concentration of collagen may be able to abate these 

problems.  However, creating too stiff of a scaffold may deter changes in structure as 

well.  Although there was no significant difference between experimental groups, 

some variation in material properties between groups was visible.   
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Collagen gels without cells had the highest strength and viscosity but lowest 

rupture stress.  In contrast, gels with non-infected AF cells had among the highest 

values for rupture stress and lowest values of viscosity.  These cells were able to 

reorganize collagen fibers (Figure 4.5 b), giving gels higher strength, and therefore 

the highest rupture stress.  These cells are capable of implementing both catabolic and 

anabolic events as well.  Since MMP-2 is thought to play a role in the remodeling and 

degradation of ECM components [29, 33], it is likely to be involved in this process.  

These cells can also actively remove broken down collagen with active MMP-2, 

resulting in lower viscosity.  Collagen gels containing cells infected with shMMP had 

among the lowest values for strength and rupture stress and higher values for 

viscosity.  By silencing MMP-2, it is possible these cells have the inability to 

restructure collagen fibers; however the cells may still be degrading their surrounding 

scaffold through other proteinases.  These cells are also potentially producing ECM, 

but have compromised collagen turnover, leaving them not only weaker, but also 

more viscous.  Cells infected with shNon were able to reorganize collagen fibers, but 

to a lesser extent compared to non-infected cells; therefore, gels were weaker and 

viscosity higher, comparatively.  This data, combined with histological analysis, may 

be able to give us some insight into the consequences of silencing MMP-2.   

Through histology, we can evaluate the structural changes in the gels over 

time in culture.  These physical changes can help corroborate the differences seen in 

material properties between the experimental groups.  As expected, non-infected AF 

cells embedded in collagen gels contracted the gels to a great extent.  The cells were 

found anchored on the collagen fibers present in the gel, with denser areas of collagen 
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surrounding them.  Reorganization of the collagen fibers was clearly visible 

throughout the gels.  Since MMP-2 is implicated in reorganization and remodeling of 

matrix components, it was likely a key mediator of this process.  In contrast, gels 

containing cells infected with shMMP did not contract as much and were similar in 

appearance to gels without cells.  Silencing MMP-2 resulted in the inability of cells to 

restructure their surrounding collagen scaffold.  This further identifies the role of 

MMP-2 in ECM remodeling.   

Through these experiments, we can elucidate the functional significance of 

MMP-2 in intervertebral discs.  Our results have shown that AF cells have the 

capability to focally degrade gelatin films restructure collagen fibers in type I 

collagen gels.  Upon silencing MMP-2 through RNAi interference technology, these 

cells lose their ability to do either.  Therefore, these results help substantiate the 

theory that MMP-2 is the key enzyme responsible for gelatin degradation in the ECM 

as well as remodeling of tissue architecture.  Since higher levels of MMP-2 have been 

associated with diseased discs, it is likely playing an important role in the process of 

intervertebral disc degeneration.  These results suggest that MMP-2 may be a 

qualified candidate for gene therapy techniques to treat DDD using RNA interference. 
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Chapter 5:  RNA Interference Mediated Gene Silencing of 

MMP-2 In Vivo in an Annular Needle-Puncture Model of Disc 

Degeneration 

 

Abstract 

 Degenerative disc disease is a leading source of morbidity and disability, the 

etiology of which is unknown.  Several studies have presented the beneficial effects 

of gene delivery in the intervertebral disc as a potential treatment strategy.  While 

these studies have mainly focused on the use of siRNA technology, there has been 

little research in sustained down-regulation of endogenously produced genes through 

shRNAs in the intervertebral disc.  This study utilizes a validated shRNA sequence 

against MMP-2 to down-regulate gene expression in order to decelerate the process of 

disc degeneration in an annular needle-puncture model in rats.  Lentiviral vectors for 

MMP-2 and a nonsense sequence were injected into rat caudal discs, punctured with 

an 18G needle to induce disc degeneration.  Discs were compared to non-punctured, 

and puncture only discs for changes in disc height and morphology, as well as 

immunopositivity of MM-2.  Injection with shMMP resulted in decreased MMP-2 

presence in the disc, and disc height and overall disc morphology was similar to non-

punctured control discs.  While results were inconsistent, they are promising in terms 

of successful down-regulation MMP-2 expression in degenerating discs.  These 

results can be applied towards the development of strategies to decelerate the 

degenerative process in intervertebral discs.   
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Introduction 

Intradiscal gene therapy is one approach that could potentially serve as a 

minimally invasive treatment of intervertebral disc (IVD) degeneration.  

Manipulating cell behavior to slow or reverse degeneration has been the focus of 

much of the current research [53, 127-129].  The physiology of the disc, with its 

avascularity and lack of direct nutrient supply [50, 51], make the disc a good target 

for lentiviral-based RNAi as there is low probability of exposure to adjacent tissues 

[53].  Regeneration of the disc through extracellular matrix (ECM) stimulating factors 

may prove difficult as the processes are energy consuming [51] in an already depleted 

environment.  Therefore, decreasing catabolic factors in the ECM is a favorable 

alternative for slowing the degenerative process.   

 The ECM of the disc is comprised of mainly type I collagen in the annulus 

fibrosus (AF) and type II collagen in the nucleus pulposus (NP).  An array of 

proteoglycans exists in the NP of the disc, with a main component being aggrecan [9, 

18].  Matrix-degrading enzymes such as aggrecanases, collagenases and gelatinases 

contribute to disc homeostasis through timely breakdown of the ECM, essential for 

matrix turnover [36, 122].  However, excessive activity of catabolic processes has 

been implicated in degenerative conditions, in which ECM composition is 

inappropriately altered.  Data have specifically implicated MMP-2, a gelatinase, to be 

involved in the process of disc degeneration.  Studies have correlated increased 

MMP-2 production and activation with age and degenerative changes in the NP, as 

well as alterations in MMP-2 activity in NP cells in response to growth factor 

stimulation or prolonged loading [30].  In addition, MMP-2 was found to be 
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negatively correlated with collagen type II content in the NP, making it a potentially 

useful candidate for gene therapy [32]. 

 Previous studies have proven successful in terms of delivering vector-based 

therapies to disc cells both in vitro and in vivo [50-52, 116].  Seki et al. [52] recently 

suppressed IVD degradation through injection of ADAMTS siRNA.  However, 

inhibition of a catabolic gene through shRNA, which can offer the advantage of 

sustained silencing, has not yet been studied.  The purpose of this study was to 

evaluate the effectiveness of injections of MMP-2 shRNA in vivo in a rat caudal disc 

needle-puncture model.  Modulating the catabolic activity of MMP-2 might be a valid 

approach for gene therapy of intervertebral disc degeneration. 

 

Materials and Methods 

Virus preparation 

All virus preparation procedures were carried out in a biological safety 

cabinet.  A validated lentiviral vector containing an shRNA sequence targeting MMP-

2, designated shMMP, and a vector containing a nonspecific scrambled sequence, 

designated shNon were sterile filtered, and concentrated 10X.  A sterile 1½ inch 27G 

hypodermic needle was fitted to each of two sterile 20 µl Hamilton glass syringes.     

6 µl of each virus was drawn up in one syringe each.  The needles were capped, 

removed from the biological safety cabinet, and placed in the surgical area. 
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Surgical Procedures 

Surgical procedures were approved by the Institutional Animal Care and Use 

Committee at the University of Maryland, College Park.  Four discs per rat were used 

for surgical procedures corresponding to: 

(1) 18G needle puncture, disc c4-c5 (2) 

18G needle puncture with shMMP 

injection, disc c5-c6 (3) Control disc, disc 

c6-c7 (4) 18G needle puncture with 

shNon injection, disc c7-c8 (Figure 5.1).  

Five Sprague-Dawley retired breeder male 

rats (Harlan Laboratories, Frederick, MD) 

were placed in an induction chamber.  

Rats were anesthetized using 5% isoflurane 

vaporization in a 2 L/min flow of oxygen.  A subcutaneous injection of analgesic 

(Buprenorphine 0.03mg/0.1ml) and an intramuscular injection of antibiotic (Baytril 

2.5mg/0.1ml) were given to the rat.  The rat was then placed on an isothermic heating 

pad in the surgical area containing a miniature C-arm fluoroscopic imager 

(Fluoroscan Imaging System Inc., Northbrook, IL).  Ocular lubricant (Artificial 

Tears, Webster, Sterling, MA) was applied to both eyes to prevent desiccation of 

corneas.  The rat tail was swabbed with 10% Betadine, followed by rinsing with 70% 

isopropyl alcohol pads.  The surgical site was draped with sterile cloth drape with an 

opening, exposing the tail.  The individual vertebrae of the rat tail were palpated and 

marked, to identify the intervertebral disc space from c4-c5 to c7-c8.  Positioning was 

Figure 5.1 Schematic representation 

of rat tail for surgical procedures. 
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confirmed using fluoroscopic imaging.  A 4 cm cut was made exposing all 4 discs and 

the surrounding fascia was removed from the skin.  A sterile18G hypodermic needle 

was marked to the depth corresponding to the radius of the tissue, obtained from 

radiographic images, and inserted into the c4-c5 disc.  Needle location and depth of 

puncture was confirmed using radiography, and the needle was removed.  A new 

sterile 18G hypodermic needle was marked, inserted into the c5-c6 disc, and again 

placement was confirmed via x-ray.  The 27G needle loaded with shMMP was 

inserted through the 18G needle and the 18G needle was withdrawn.  After 

radiographic confirmation of the position of the 27G needle, virus was injected into 

the disc and the needle removed after 2 minutes.  The c6-c7 disc served as non-

punctured control.  The procedures were repeated for the c7-c8 disc, injecting the disc 

with shNon.  The surgical area was rinsed with 50ml of sterile saline (DPBS, 

Invitrogen, Carlsbad, CA) and the skin closed with tissue glue (VetBond Tissue 

Adhesive, 3M, St. Paul, MN).   

 

Post-Surgical Procedures and Tissue Harvest 

After full recovery, the rats were returned to their cages with unrestricted 

activity, food, and water.  The rats were monitored for 2 weeks daily to ensure 

complete closure of the surgery site, as well as pain or infection.  Analgesia 

(Buprenorphine at 0.05 mg/kg rat), anti-inflammatory (Carprofen at 5 mg/kg rat), and 

antibiotic (Cephalexin at 60 mg/kg rat) was administered if needed in accordance 

with our pain/distress assessments and consultation with the veterinarian.   
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After 2 weeks, rats were euthanized by carbon dioxide asphyxiation (6-8 

L/min until loss of consciousness, followed by 12 L/min for 10 min) followed by 

bilateral thoracotomy.  The tail was cut at c3-c4 and c8-c9 and the skin and 

surrounding muscle was removed.  The tissues were placed in 10% buffered formalin 

overnight to fix the tissue.  The next day, the tissues were placed in 10% formic acid 

buffered with 10% sodium citrate for decalcification.  The solution was changed daily 

for 1 week.  Motion segments were then separated, rinsed in water overnight before 

paraffin infiltration, then embedded in paraffin blocks.  7 µm sections were cut and 

dried overnight on a slide warmer.  Sections were used for both 

immunohistochemical and histological analysis.   

 

Immunohistochemistry and Histology 

  A commercially available kit, Vectastain ABC kit (Vector Laboratories, 

Burlingame, CA) and monoclonal antibody to MMP-2 (Lab Vision, Fremont, CA) 

were used.  Paraffin sections were rehydrated through xylene and a series of graded 

ethanol incubations.  Endogenous peroxidase was inactivated by incubation in 3% 

H2O2 for 15 min.  After washing with PBS, antigen retrieval with 0.05% trypsin was 

conducted at 37°C for 15 minutes.  This was followed by a 40 minute block step with 

normal horse serum.  Sections were incubated with anti-MMP-2 primary antibody for 

one hour.  After washing, a biotinylated secondary antibody was applied for 30 

minutes.  The reaction was visualized using DAB (3,3-diaminobenzidine) and the 

sections were counterstained with Gill’s hematoxylin.  Procedures for negative 
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controls remained the same except tissue sections were not incubated with primary 

antibody. 

 For histology, paraffin sections were rehydrated through xylene and a series of 

graded ethanol incubations.  Sections were stained with Weigert’s hematoxylin, Fast 

Green, and Safranin-O to visualize cells, collagen and proteoglycan content in the 

disc as well as changes in the overall structure of the IVD.  The slides were mounted 

with Permount before visualization. 

 

Results 

Immunohistochemical staining of tissue sections revealed apparent 

immunopositive staining (seen as brown stain in sections) for both control discs 

without needle puncture, as well as discs punctured with an 18G needle (Figure 5.2 b, 

d).  Negative controls for each section were not reactive, demonstrating that positive 

results were associated only with presence of MMP-2 (Figure 5.2 a, c, e, g).  The 

reactivity was found mainly in the NP of the disc, with little to no staining in the AF.  

Within the NP, MMP-2 was associated mainly with the ECM surrounding the cells.  

Discs punctured with the 18G needle, followed by injection of shNon, also showed 

immunopositive staining in the NP (Figure 5.2 h).  In contrast, discs punctured with 

the 18G needle then injected with shMMP exhibited little to no immunoreactivity, 

comparatively (Figure 5.2 f).   
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Figure 5.2. Immunohistochemical staining with anti-MMP-2 antibody of: (a,b) Non-

punctured control disc, (c,d) 18G punctured disc, (e,f) 18G punctured disc injected with 

shMMP, and (g,h) 18G punctured disc injected with shNon. (a), (c), (e), (g) are negative 

control sections without MMP-2 antibody, while (b), (d), (f), (h) were incubated with MMP-2 

primary antibody. Negative control sections were all negative for MMP-2, as they did not 

stain brown. Non-punctured control disc (b), 18G punctured disc (d), and 18G punctured disc 

injected with shNon (h), were all immuno-positive for MMP-2 as brown staining was clearly 

visible in these sections. The 18G punctured disc injected with shMMP (d) showed little to no 

brown staining, demonstrating down-regulation of MMP-2 in this disc.  
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 Histological examination of sections stained with Fast Green and Safranin-O 

revealed compromised tissue architecture in discs punctured with the 18G needle.  

Tears and disorganization in the AF, decrease in proteoglycan content in the NP, as 

well as decreases in overall NP area were visible (Figure 5.3 b).  In contrast, the 

control discs displayed well organized AF lamellae, a rounded NP, well defined 

boundaries of the disc (Figure 5.3 a).  Discs injected with shMMP also exhibited tears 

in the AF, however, NP area and proteoglycan content and was similar to control 

discs (Figure 5.3 c).  Discs injected with shNon appeared similar to control discs, 

with little damage visible in the AF (Figure 5.3 d) 
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Figure 5.3. Histological images of (a) Non-punctured control discs, (b) 18G punctured disc, 

(c) 18G punctured disc injected with shMMP, and (d) 18G punctured disc injected with 

shNon. 7µm sections were stained with Fast Green and Safranin-O. The non-punctured 

control disc (a) had an intact NP and structured AF lamellae, while the 18G punctured disc 

(b) showed a disrupted NP and AF, with tears clearly visible in the lamellae of the AF. The 

18G punctured disc injected with shMMP (c) seemed to be able to retain disc morphology, 

and appeared similar to the control disc. The shNon injected disc (d) also appeared similar to 

the non-punctured control disc, although disorganized outer AF lamellae were clearly visible. 
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Discussion 

In this study we explored the efficacy of MMP-2 shRNA in a needle-puncture 

model of rat caudal intervertebral disc degeneration.  We anticipated that silencing 

the catabolic activity of MMP-2 would attenuate the progression of the degenerative 

process.  Thus it was expected that disc height, NP content, as well as overall disc 

structure would be similar to that of non-punctured control discs.  In addition, we 

hypothesized that MMP-2 immunoreactivity would be negative in discs injected with 

shMMP, as compared to punctured discs with and without shNon.   

 RNAi studies have shown that efficacy of gene silencing depends largely on 

trandsduction efficiency and the stability of the tranduced gene [49].  Many different 

methods of transduction have been explored including systemic transduction [130], 

local gene delivery [131], electroporation [132, 133], intradermal administration 

[134], and ultrasound [51, 116].  In this study, we injected the lentiviral vector 

containing shMMP directly into the intervertebral disc since lentiviruses are able to 

infect both dividing and non-dividing cells.  While some samples displayed little to 

no reactivity with MMP-2 antibody, some samples displayed positive, although 

reduced, immunoreactivity.  This inconsistency was cause for some concern, as our 

previous studies were successful in silencing MMP-2.  However, our previous work 

with the shMMP construct was performed in vitro, where matrix components are 

digested away before cells are plated in monolayer.  It is possible that viral 

transduction is greater in this case, as there is direct access to cells.  In contrast, 

transduction efficiency may be reduced in vivo as cells are surrounded by the ECM in 

the disc.  In addition, since the disc is pressurized and NP content was not removed in 
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order to maintain disc integrity, it is possible that some of the injected virus was 

expelled from the disc upon needle withdrawal.  This could reduce the amount of 

virus introduced into the disc space, reducing the overall effect of the injected 

shMMP.  This could be a cause for the reduction of MMP-2 expression in some of the 

animals, as opposed to silencing, as was expected.   

 Previous in vitro studies with the shMMP vector used a specific MOI for each 

experiment, with controlled methods for counting and plating cells.  In vivo studies 

differ in that there are inherent differences between discs within a tail, as well as 

differences between animals within a study.  Indeed, the size of the disc decreases 

down the tail of the rat.  Although the virus was concentrated, it is possible that there 

were not sufficient virus particles to transduce the majority of the cells within the 

disc.  As such, further studies in dosing and concentration of injections are required in 

order to obtain definitive results. 

 Histological staining revealed that the structures of the punctured discs were 

indeed compromised 2 weeks after needle puncture.  The lamellae of the AF appeared 

disorganized, the disc height was reduced, and the overall structure of the disc was 

altered.  These results are consistent with other needle-puncture models to induce 

degeneration of the disc [128, 135-138].  However, in some animals, discs appeared 

healthy, with little degradative changes after needle puncture.  It is possible that, 

although needle placement was measured via x-ray, needles were not inserted to the 

correct depth to fully puncture the AF, and reached only the outer boundaries.  In 

most animals, discs injected with shNon resembled the puncture only discs.  In 

contrast, discs injected with shMMP were similar in appearance to the non-punctured 
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control disc.  As these discs also exhibited reduced immunopositivity for MMP-2, it 

is possible that progression of degeneration was decelerated, making them appear 

healthier.   

 Although these results are promising, of the animals tested, the outcomes were 

not consistent.  While surgical procedures remained the same between animals, and 

depth and positioning of inserted needles was confirmed via radiograph, some discs 

exhibited complete loss of NP, while others revealed non-degenerated structures.  In 

addition, immunoreactivity of MMP-2 in shMMP injected discs was variable.  

Further studies, modifying surgical procedures, and taking dosing and virus 

concentration into consideration, are required to ascertain the effects of MMP-2 

shRNA injection into needle-puncture models of degeneration in rat tail discs. 

 Nevertheless, this study is the first to utilize shRNAs to down-regulate an 

endogenously produced catabolic gene associated with intervertebral disc 

degeneration.  In addition, this study demonstrates that suppression of MMP-2 was 

associated with a healthier disc structure, suggesting that MMP-2 contributes to the 

degeneration of IVD tissues.  Although further studies are required, this is a first step 

towards development of lentiviral based gene therapies for treatment of disc disease.  

The use of shRNA allows for sustained suppression of genes, which can be essential 

for designing therapies for clinical use.   
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Chapter 6:  Conclusions and Future Work 

The work presented in this dissertation aims to investigate the interaction of 

intervertebral disc cells with their surrounding microenvironment.  The objective of 

this work is to explore the factors involved in degeneration of the intervertebral disc.  

In order to do so, this research examined how environmental changes can cause a 

shift in the genetic profile of cells as well as how modulating endogenous gene 

expression can alter cell function.   

 The first study examined the effects of biochemical, nutrient, and physical 

factors on immature NP cells.   Specifically, cell morphology, attachment, 

proliferation, and gene expression of these cells was investigated.  NP cells were 

cultures in different media formulations, with and without a three-dimensional 

scaffold, in both hypoxic and ambient O2 conditions.  Cells in alginate beads retained 

the vacuolated morphology associated with notochordal cells, with little change in 

gene expression.   In monolayer, NP cells cultured in α-MEM resulted in the highest 

attachment efficiency, maintained gene expression levels, as well as preserved 

vacuolated morphology.  While the highest proliferation levels were observed with 

DMEM and Opti-MEM cultures, these appeared to involve small non-vacuolated 

cells.  Through these results, we can ascertain that certain environmental conditions 

induce cellular changes that can alter the notochordal phenotype in immature NP.   

These results can be used to establish a framework that can be followed for tissue 

engineering techniques in in vitro cell culture.   

In another aspect of observing cellular interplay with their surrounding 

environment, RNA interference technology was explored in silencing matrix-
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degrading enzymes in intervertebral disc cells.  While RNAi is now a widely used 

research tool, few studies have utilized shRNAs for sustained down-regulation of 

genes.  In this study, five shRNA sequences were designed against MMP-2, an ECM 

degrading enzyme associated with intervertebral disc degeneration.  These were 

cloned into lentiviral vectors to facilitate transfection of annulus fibrosus cells in 

vitro.  Gene expression levels using real-time RT-PCR were analyzed, as well as 

MMP-2 protein levels in both cell lysates and cell culture media.  It was found that 

cells infected with virus had decreased MMP-2 protein levels in both media and cell 

lysates compared to non-infected control cells.  Additionally, cellular mRNA for 

MMP-2 was down-regulated in infected cells compared to non-infected cells.  

Although the five constructs exhibited differential effectiveness of MMP-2 

knockdown, some were able to silence MMP-2 levels up to 80%.  One construct, 

designated shMMP, was chosen and validated for future RNAi work.  These results 

present a promising method to enable the implantation of cell-based therapies for disc 

degeneration.  In addition, this study is the first to utilize shRNA-mediated gene 

silencing in IVD cells. 

MMP-2 function and its potential role in intervertebral disc degeneration were 

then further investigated in the following study.  MMP-2 is a gelatinase, capable of 

degrading most components of the extracellular matrix, and also responsible for tissue 

remodeling.  Reverse gene studies using RNAi can help elucidate the role of MMP-2 

in these processes.  With the previously designed and validated shMMP lentiviral 

vector, this study examined the effects of MMP-2 silencing on gelatin degradation 

and type I collagen gel remodeling.  Annulus fibrosus cells from the disc were 
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infected with the shMMP vector and a nonsense vector, seeded on gelatin films, and 

analyzed for degradation.  Additionally, infected and non-infected cells were 

embedded in type I collagen gels and mechanically tested to examine differences in 

material properties.  Changes in gel structure and remodeling of collagen fibers were 

also examined through histological staining.  It was found that silencing MMP-2 

resulted in the inability of cells to degrade gelatin, compared to non-infected cells 

which exhibited a focal degradation in their immediate surroundings.  Collagen gels 

with shMMP infected cells were found to be marginally weaker, possibly due to the 

lesser degree of remodeling observed through histology.  The findings of this study 

will help to elucidate the interactions between MMP-2, collagen and gelatin, and the 

functional role of MMP-2 in the degradative pathway leading to disc degeneration.  

Knowledge of the functional significance of MMP-2 is essential to understanding this 

disorder and designing preventative therapies to treat it. 

Finally, the results and techniques from these studies were applied to an in 

vivo model of disc degeneration.  Since MMP-2 has been found associated with 

degenerated discs, it can be a promising candidate for gene silencing to slow the 

degenerative cascade.  Previous studies have validated needle-puncture of the annulus 

fibrosus as a model for intervertebral disc degeneration.  In this study, the shMMP 

vector and a nonsense vector were injected into rat caudal discs, punctured first with 

an 18G hypodermic needle to induce degenerative changes in the disc.  These discs 

were compared to non-punctured control discs as well as puncture only discs.  

Immunohistochemical analysis revealed that discs injected with shMMP showed little 

to no staining of MMP-2 compared to the other discs.  Control, punctured, and 
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nonsense vector injected discs were clearly immunopositive comparatively.  shMMP 

injected discs also exhibited a similar disc morphology to control discs compared to 

puncture only discs.  However, these results were not observed among all of the 

animals tested.  Nonetheless, they indicate that silencing MMP-2 can be of potential 

therapeutic value in designing treatment strategies for intervertebral disc 

degeneration. 

Together these studies further our understanding of the interplay of 

intervertebral disc cells with their surrounding environment and can lay the 

foundation for future research in this field.  Reverse gene studies using RNAi can be a 

useful tool in understanding gene function and how it relates to degenerative changes 

in the disc.  While this work focused specifically on elucidating the functional role of 

MMP-2 in intervertebral disc cells, genes associated with MMP-2 can also be 

explored.  MMP-9, a gelatinase homologous to MMP-2, has been found associated 

with MMP-2 in degenerated discs.  In addition, MMP-14, and TIMP-2 are both genes 

responsible for the activation of MMP-2, while TIMP-2 is involved in its inhibition as 

well.  RNAi-mediated silencing of these genes may lead to an understanding of the 

upstream events involved in the process of disc degeneration.   

Furthermore, MMP-2 stimulation via cytokine exposure, in conjunction with 

gene silencing studies can further our understanding of MMP-2 function within the 

disc environment.  While the in vitro studies presented here focused mainly on AF 

cells of intervertebral disc, the research can be carried out using cells from the NP as 

well.  In addition, the effect of silencing MMP-2 on the genetic profile of disc cells is 

another area of exploration.  There are numerous potential applications for RNAi in 
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the advancement of knowledge of intervertebral disc degeneration.  These studies 

would not only be of scientific value, but can aide in the development of preventative 

therapies for the treatment of disc disease. 
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Glossary 

α-MEM – Minimum Essential Medium alpha 

ADAMTS - A Disintegrin And Metalloproteinase with Thrombospondin Motifs 

AF – annulus fibrosus  

Ct –  cycle threshold 

DDD – degenerative disc disease  

DMEM – Dulbecco’s Modified Eagle Medium 

dsRNA – double stranded RNA 

ECM – extracellular matrix 

G – gauge 

GAPDH - Glyceraldehyde-3-phosphate dehydrogenase 

IVD – intervertebral disc 

miRNA – microRNA 

MMP – matrix metalloproteinase 

MOI – multiplicity of infection 

MT-MMP – membrane-type matrix metalloproteinase 

NaOH – sodium hydroxide 

NP – nucleus pulposus 

Opti-MEM – reduced serum medium  

PBS – phosphate buffered saline 

RNAi – RNA interference 

RPMI – cell culture medium 

RT-PCR – reverse transcriptase polymerase chain reaction 
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SD – standard deviation 

shMMP – lentiviral vector containing an shRNA sequence targeting MMP-2 

shNon – lentiviral vector containing a scrambled sequence 

shRNA – small hairpin RNA 

siRNA – small interfering RNA 

TIMP – tissue inhibitor of metalloproteinase 
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