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Title of Dissertation: PLATE AND MICRO-SCALE STRUCTURES: 
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Directed By: Dr. B. Balachandran, Professor and Associate 

Chair of Mechanical Engineering 
 
 

Within this work, plate and micro-scale structures are studied.  Methodologies are 

developed to analyze the laminate stiffness, residual forces, moments and stresses, and 

deformations in these thin composite laminate structures to facilitate better designs, 

enable device characterization, and enhance device performance.  Specific devices 

studied in this work are cantilevered and clamped-clamped PZT resonators of various 

lengths, widths, and laminate thicknesses.  In order to better understand the behavior of 

these devices, analytical and experimental methods have been developed.  The analytical 

methods are based on linear and nonlinear beam and plate models, with reduced-order 

models developed to study dynamic behavior.  Parameter identification techniques have 

been applied to characterize residual stress induced deformation of micro-scale 

structures.  Extensive data has been collected through careful experiments to aid the 

development of identification techniques and to determine device deflections and 

individual device residual stress values. 



  

An analytical model has been developed to describe the behavior of thin composite 

laminate plate-like structures.  Since an exact solution for plate mode shapes does not 

exist for all boundary conditions, appropriate combinations of orthogonal functions are 

assumed for the mode shapes of a plate with all edges simply supported or all edges 

clamped.  These functions make the development of reduced-order models possible for 

these boundary conditions.  In addition, these plate-like structures are asymmetric 

isotropic laminates.  A procedure was applied to calculate the stiffness, forces and 

moments for a laminate comprised of multiple isotropic layers regardless of symmetry.   

Parametric identification techniques were developed to identify system parameters and to 

characterize residual stress induced deformation in plate and micro-scale structures.  

These techniques are based on linear and nonlinear beam models and reduced-order 

methodologies, and they enable the first characterization of residual stress in PZT micro 

scale devices post-fabrication and release processing.  The obtained results indicate that 

post-release residual stress measurements in devices can be considerably different from 

the corresponding measurements made before release. 
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1 INTRODUCTION AND BACKGROUND 

In this chapter, background information and prior research on residual stress in micro-

scale structures is discussed.  Background information related to plate analysis is 

provided in Chapter 2.  The scope and organization of this dissertation is also provided. 

1.1 Micro-scale Structures 

Residual stress deformation in micro-scale structures is considered in this work.  Residual 

stress can arise from the deposition of thin-films below their flow temperatures as well as 

the mismatch of the coefficients of thermal expansions among thin-film lamina layers.  

Fabrication processes requiring extreme temperatures exacerbate these problems and this 

can also lead to substantial thin-film stresses.   

There are two major types of residual stresses, namely, intrinsic residual stress and 

thermal residual stress.  Intrinsic residual thin-film stress either originates from strained 

regions within the films (grain boundaries, dislocations, voids, impurities, etc.), or at the 

film/substrate and film/vacuum interfaces, or is due to dynamic processes such as re-

crystallization and inter-diffusion [1].  In addition to intrinsic stress, thermal residual 

stress is an important issue as well.  Thermal residual stress is highly dependent on the 

geometrical shape change during the growth of the film.  
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The effects of residual stress are often detrimental to microelectromechanical (MEMS) 

structures.  This stress induces axial stretching and bending moments within the film 

layers, which in turn, cause unwanted deflections or deformations.   

  

Figure 1.1:  Resonator exhibiting deformation [2]. 

A representative deformation observed in a micro-resonator device is shown in Figure 

1.1. Such deformations may cause structural defects or impede device performance in 

MEMS devices after release.  For example, a MEMS switch that is deformed via residual 

stress may now require too high of a voltage to close.  For this reason, as thin-films are 

being deposited, it is necessary to accurately measure, characterize, and control residual 

stress.  Modeling of actual residual stress that occurs in thin-films and MEMS devices is 

extremely difficult.  Experimental thin-film stress measurements can have extreme 

variation from run-to-run or wafer-to-wafer.  This variation can lead to miscalculations in 

device deflections, material parameters, and operability.  Past measurement techniques 

have focused on a specific fabrication process or single/bilayer thin-film structures.   

To study and accurately characterize residual stress in thin-films and MEMS structures, 

two things are necessary, one, an accurate model, and second, techniques and 
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experiments that use this model to characterize residual stress in these structures.  MEMS 

structures have often been modeled with linear or nonlinear beam models.  One of the 

first early work was that of Fang and Wickert ([3], [4], [5]) where the static deflection of 

a clamped-clamped resonator is modeled with 

 [ ] [ ] ( ) 0
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2

,, =
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where [ ]EI  is stiffness due to bending, [ ]EA  is stiffness due to stretching, w is the 

transverse displacement and the last part of equation (1.1) is a nonlinearity due to axial 

stretching.  In addition, Pulskamp, Wickenden, Polcawich, Piekarski, and Dubey [6] 

modeled the static deflection of a cantilevered device as  
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In equation (1.2 a), the curvature is nonlinear and needs a numerical method to solve for 

w.  Equation (1.2 b) is already integrated for the static transverse deflection.  In addition, 

many analyses have used a linear form of equation (1.1) for buckling analysis ([3], [4], 

[5], [7], [8], [9]) 

 [ ] 0, =+ xxxxxx PwwEI  (1.3) 
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where P is the axial force acting along the beam length.  Finally, these equilibrium 

equations have often been put in the form of reduced-order models similar to [10] 
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for the purpose of linear and nonlinear frequency-response analysis, often around the 

fundamental mode of vibration.  In equation (1.4) and (1.5), ( )xnφ  is considered the 

model mode shape function.   

In addition to beam models, micro-scale structures can take the form of a thin laminate 

plate.  Hou and Chen ([11],[12]) studied the width effect on ultra wide cantilevers.  A 

linear curvature model was used to predict the static deflection in their cantilevers; 

however, they used formulae for calculating beam stiffnesses from thin laminate plate 

theory and noted improvements in the model predictions.  Though many micro-scale 

devices can take on the form and dimensions suited for a plate model, beam models are 

often used for simplification purposes.  However, in the packaging field, printed wiring 

boards are often modeled with plate-like models and methodologies.  These applications 

in the packaging field are on a macro-scale and maybe used on a micro scale for MEMS 

devices.  Such work is that of Suhir ([13],[14]) who evaluates the dynamic response of a 

flexible rectangular thin plate to an acceleration at its support contour as well as periodic 

shocks.  He ([15], [16]. [17]) took Suhir’s models and expanded them to include 
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symmetric multi-laminate schemes that more accurately describe the make up of a printed 

wiring board.  Plate models can potentially play an important role in the modeling and 

response of micro-scale structures.  For example, cantilevers often have large deflections 

in comparison to a clamped-clamped resonator.  It’s been noted by Hou and Chen 

([11],[12]) that not only do certain types of cantilevers deflect along the axial length 

direction, but curvatures exist across the widths as well.  This means that plane strain 

assumptions made for a cantilever aren’t possible, and further analysis can aid in better 

predictive models of these plate-like micro-scale structures.   

In addition to accurate modeling of micro-scale structures, it is necessary to develop 

identification techniques capable of predicting stress that occurs during thin-film 

deposition, stress that occurs immediately post-fabrication and release processes, stress 

that occurs with the application of applied voltages, and stress that occurs during various 

static and dynamic loadings.  These techniques involve linear and nonlinear beam and 

plate models, and are they solved numerically so that additional studies can be conducted.  

Experiment data are used as inputs into these techniques as well as to verify results of 

simulations.  Identification techniques and uses will be further covered in the next few 

Sections. 

1.2 Residual Stress Approximations in Thin-films 

Past work has focused on approximating residual stress in thin-films, usually post 

deposition of the thin-film on a substrate.  The first such work was that of G. Stoney [18].  

Stoney investigated stresses in metallic films deposited electrolytically.  Stoney 
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discovered that when nickel was deposited on a very thin sheet of steel (102mm 

long/12mm wide/.32 mm thick), bending of up to four millimeters occurred ( 

Figure 1.2).   

 

Figure 1.2:  Bending of steel rule due to deposition of nickel. 

Stoney then developed a formula based on linear beam theory for converting stress 

induced curvatures into residual thin-film values.   
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=  (1.6) 

where P is the axial force, E is the Young’s modulus, d is the thickness of the steel, t is 

the thickness of the deposited nickel, Z is the deflection of the steel, and L is the length of 

the structure.  Equation (1.6) is used to calculate the thin-film stress in the deposited 

nickel layer.  This formula is commonly used today for approximating thin-film stress in 

any number of deposited layers.  After each individual thin-film layer stress value is 

steel nickel 
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calculated, a composite value for the entire thin-film or structure may be calculated via 

volumetric averaging. 

Although Stoney’s formula is valuable in many cases, its applicability can be limited 

because of its basis in linear mechanics [19].  Modifications to Stoney’s formula have 

been proposed by Brenner and Senderoff [20] and Atkinson [21].  Freund, Floro and 

Chasen [22] relaxed Stoney’s main assumptions that the film is very thin in comparison 

to the substrate and that the deformations are infinitesimally small.  By utilizing the 

expression for the elastic strain energy and radial and transverse strains, they obtained 
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equations (1.7) and (1.8) are inserted into the total potential energy in order to derive the 

expression for the substrate curvature. 

 ( ) 








++++

+
=

2424641

16

mhhhhm

h
hm

hsubstrate

mε
κ  (1.9) 

where substratefilm hhh =  and substratefilm MMm = .  Freund et al. [22] then compares 

Equation (1.9) to Stoney’s curvature relation, STκ , and shows that 
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Figure 1.3:  Solid and dashed lines indicate locus of points where 

Stoney’s formula overestimates  and underestimates curvature by 

10% [22]. 

in Figure 1.3.  Here the solid and dashed lines represent the locus of points where 

Stoney’s formula is estimates the curvature within 10% of the formula derived by Freund 

et al. [22].  The region in between these lines represents the area where Stoney’s formula 

is valid within 10%.   

In addition to the work of Freund et al., Klein [23] developed a formula based off of 

general theory of elastic interactions in multilayer laminates for thin-film stress, and used 

this formula to develop a correction factor for Stoney’s formula 

 Stoney

Correction

Klein σ
δ

γδ
σ

43421



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+

+
=

1

1
 (1.11) 
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where γ  is the ratio of the biaxial moduli and δ  is the ratio of the layer thicknesses.  

Klein emphasizes that it’s straightforward to extend Stoney’s formula to be valid in 

situations involving thick films with ratios less than 0.1.   

  
Figure 1.4:  Error in percentage in applying Stoney’s formula to 

thicker films [23]. 

  

Figure 1.5:  Error in percentage in applying Atkinson’s formula to 

thicker films [23]. 
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Figure 1.6:  Error in percentage in applying Brenner-Senderoff’s 

approximation [23]. 

Klein also notices that Atkinson’s [21] proposed modification yields improved results for 

ratios up to 0.4, and those expressions provided by Brenner-Senderoff [20] yield large 

errors and should be avoided for thicker films.  Besides the thin-film stress 

characterization of Stoney, Brenner-Senderoff, Atkinson. Freund and Klein, Chen and Ou 

[19] assumed a shaped energy-based approach to improve the curvature/stress conversion 

by simultaneously considering effects of geometrical nonlinearity and mid-plane offsets.  

Via this approach, a conversion factor is defined, 
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 (1.12) 

where Ef is the thin-film Young’s modulus, Bf, C0 and C2 are predetermined coefficients, 

ds and df are the thicknesses of the thin-film and substrate, dnp is the mid-plane offset, υf is 

the poisson’s ratio of the thin-film and L is the length of the rule to be considered.  Chen 

and Ou compare equation (1.12) to the conversion factor of Stoney 
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and analyze the error between the two for tick films and that of a finite element model.   

  

Figure 1.7:  The effect of film thickness on Stoney’s formula for 

various temperatures or stresses [19]. 

  
Figure 1.8:  The effect of film thickness on Chen and Ou’s formula 

for various temperatures or stresses [19]. 
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Results from these comparisons are shown in Figure 1.7 and Figure 1.8 where H* is the 

ratio of film to substrate thicknesses.  Chen and Ou’s expressions clearly produce much 

lower errors than that of Stoney for large thicknesses and most temperatures. 

Zhang, Chen, Ghodssi, Ayon, Spearing [24] and Zhang, Chen, Spearing ([25], [26]) also 

studied residual stress effects on thin-films while temperature was being cycled.  

Motivation for Zhang et al. ([24], [25], [26]) comes from the need to elucidate factors 

contributing to residual stress, deformation and fracture of silicon oxide films so as to 

refine fabrication processes for manufacturing MEMS.  In the studies of Zhang et al. 

([24], [25], [26]), PECVD oxide films were deposited by using a five-station continuous 

plasma processing system.  Thermal cycling tests were conducted and the in situ wafer 

curvature was measured between room temperature and 500˚C by using a KLA-TencorTM 

FLX-2320 system with a ramp rate of 5˚C/min.  Some results are shown in Figure 1.9 for 

a 40 µm oxide film with respect to temperatures ranging from room temperature to 

500˚C.  The dependence of residual stress on temperature is highly nonlinear with a 

significant amount of hysteresis during the first thermal cycle. 
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Figure 1.9:  40 µm thick silane-based PECVD oxide film cycled at 

500˚C [26]. 

1.3 Static Techniques:  Residual Stress Identification via 
Deflection or Curvature Measurements 

In addition to the characterization of residual stress in thin-films, residual stress has also 

been characterized in microelectromechanical systems post-fabrication and post-release 

processes.  In 1994, Fang and Wickert [3], the finite amplitude of a clamped-clamped 

beam was predicted by modeling the nonlinear dependence of the out-of-plane 

deformation on compressive residual stress (Figure 1.10). 
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Figure 1.10:  Natural, compressed and post-buckled state of a 

micro machined beam [3]. 

 

The axial load in the post-buckled state is given by 
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and the governing static equation of motion describing transverse deflection is given by 
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The solution to the eigenvalue problem, the simplified version of equation (1.15) 

( )0,, =+ xxxxxx wEAEIw ε , provides 
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where Pc is the critical residual axial load due to compression.  The profile of the beam at 

critical loading is 
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SiO2 beams were fabricated with lengths ranging from 30 µm to 140 µm, and width and 

thickness of 15 µm and 2 µm, and profiles were compared to those obtained from 

equation (1.17) and results obtained are shown in Figure 1.11. 

  
Figure 1.11:  Comparison of measured and predicted profiles of 

beams with lengths in the prebuckling (48 µm), transition (56 µm) 

and postbuckling (72 µm) regions.  Measured results are taken 

over six beams. [3]. 
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Figure 1.12:  Bilayer cantilever schematic of Fang and Wickert [4]. 

In 1995, Fang and Wickert [4] moved from single single-layer SiO2 beams to bilayer 

AlCu and diamond like carbon films deposited on premade SiO2 cantilevers (Figure 

1.12).  Fang and Wickert utilize the strain-deflection model 
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where E=EF/EB and t=tF/tB are the nondimensional moduli and thicknesses, ε1=tB/2r, and 

R is the radius of curvature.  Once constants are known and the radius of curvature is 

measured, Fang and Wickert solved equation (1.18) for the residual strain, εF.  

Representative results are shown in Figure 1.13 where it is clear that for thicker AlCu 

films the residual strain tends to be more compressive.   

Thin-film 

Base Layer 

Substrate 

y 
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Figure 1.13:  Variation of residual strain with AlCu film thickness.  

Data points averaged over five samples ([3], [4], [5]). 

Fang et al. [5] finally extend their analyses to include gradient residual stresses with 

application to single layer SiO2 cantilevers.  They represent the residual stress in a thin-

film via the polynomial 

 ∑
∞

=









=

0

2

2k

ktotal
/h

y
σσ  (1.19) 

where ( )22 /y,/yy −∈  is the coordinate across the thickness, h, with the origin chosen 

at the film’s midplane.  Higher order terms are neglected and equation (1.19) becomes 
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where σ0 represents the constant mean stress and σ1 represents the gradient stress. 
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Similar to Fang and Wickert ([3], [4], [5]), Nicu, Temple-Boyer, Berguad, Schied and 

Martinez [27] SiO2 microfabricated clamped-clamped beams under buckling due to 

compressive residual stress.  The deflected SiO2 beams indicated the presence of residual 

stress.  These deflections were them measured via atomic force microscopy.  The 

potential energy stored in the buckled beam was computed and the residual stress value 

was determined by considering the measured buckling maximal deflection and by making 

approximations too the shape of the micro-beam deflection curve.  This energy approach 

permits one to compute the residual stress value many times for the different lengths 

micro-bridges by using the same thin-film under compressive residual stress.  The shape 

of this deflection curve is chosen as 
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and the critical residual stress is obtained as 
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where E is the Young’s modulus, h the film thickness and L0 the beam length.  Nicu et al. 

approximated the SiO2 residual stress in 300 µm long beams as 9191±−  MPa and 

7185 ±−  MPa for 0.45 µm and 0.62 µm thick films and varying lengths (Figure 1.14) 
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Figure 1.14:  Residual stress σ versus microbridge length for .45 

µm and .62 µm thick SiO2 film [27]. 

Min and Kim [28] approached approximating residual stress in cantilevers via 

experimentally measured micro-cantilever tip deflections as model inputs, instead of 

using curvature or bow measurements.  In order to model their composite bilayer beams, 

the composite beam is first considered at a single-layer beam (Figure 1.15), a thin-film is 

deposited, and then, the composite beam is considered as a bilayer beam (Figure 1.16). 
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Figure 1.15:  Deflection of the base layer of a bilayer cantilever 

[28]. 

 

  

Figure 1.16:  Deflection of composite bilayer cantilever [16]. 

Based on small deflection theory, the applied moments, Mb and Mc shown in Figure 1.15 

and Figure 1.16, are described as 
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The induced moments for the single and bilayer cantilever can also be calculated as 
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The applied moment in the additional film is found by subtracting the moment in the 

single-layer cantilever from that of the composite cantilever (equation (1.25)). 
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Inserting equation (1.23) into equation (1.25), and solving for σa, results in a formula for 

the additionally deposited thin-film 
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where σa is the residual stress of an additional film layer, σb is the residual stress of the 

base layer, E is the Young’s modulus, w is the width, L is the cantilever length, I is the 

moment of inertia, and yc is the neutral axis location.  By using this formula, several 

parameter variations and simulations are carried out.  These simulations are verified in 

the data for fabricated aluminum/gold and aluminum/titanium cantilevers. 

Hou and Chen ([11], [12]) expand upon Min and Kim’s work [28] to incorporate the 

width effect on stress-induced bending of micromachined bilayer cantilevers.  

Polysilicon/chromium cantilevers are considered and the residual stress in the chromium 

layer is exploited to deform the test cantilevers.  The residual stresses in Hou and Chen 

([11]) are calculated via Fang and Wickert ([3], [4]), equation (1.1).   
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Figure 1.17:  Comparing deflection before and after additional 

thin-films are deposited [12]. 

A three dimensional finite element model was used to analyze and compare residual 

stress values and cantilever deflection profiles to that of fabricated polysilicon/chromium 

cantilevers.  Hou et al. expands the work in [11] and that of Min and Kim [28] 

analytically to include width effect on ultra-wide polysilicon/chromium cantilevers ([11], 

[12]).  Hou et al. ([11], [12]) begin their methodology via a single layer and bilayer 

cantilever model (Figure 1.17).  

In general, a cantilever’s moment can defined as a function of its flexural rigidity and 

transverse deflection, 
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and integrating results in an expression representing the tip deflection of a cantilever.   
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2
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LLw κ=  (1.27) 

where D is the flexural rigidity, E is the Young’s modulus, h is the layer thickness, υ is 

the Poisson’s ratio and κ is the beam curvature.  Noting that 
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A general expression for the moment in a cantilever beam becomes 
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where Wtip represents the deflection of the tip of the cantilever.  In Figure 1.17 (a) and 

(b), the single and bilayer cantilevers’ tip deflections, moment expressions and flexural 

rigidity are given by 
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where K2 is an expression comprised of thickness, Young’s modulus and Poisson’s ratio 

values for the bilayer cantilever.  If the moment from the single layer cantilever is 

subtracted from the moment expression for the bilayer cantilever (Similar to that of Min 

et al., equation (1.25)), 



 

 24 
 

 







−−








−+=−

22
2

22
1

2112

h
zhz

h
hhMM CCC σσ  (1.31) 

an expression for the residual stress in the additional film may be obtained as 
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The main difference between the approaches of Hou et al. and Min et al. is that Hou et al. 

calculate the flexural rigidity of the ultra wide cantilevered beams using expressions for 

the plate stiffnesses.  Simulations are shown in (Figure 1.18). 
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Figure 1.18:  Comparison of simulations of Hou and Chen’s model 

[12] (straight lines) and Min and Kim’s (dashed lines)  model 

approximating the residual stress in an addition thin-film layer [28] 

versus the deflection in the composite cantilevered beam.  Beams 

are assumed 100 µm long, E1 and E2 are 105 GPa and 70 GPa, the 

base layer thickness is h2 = 2 µm, and three additional film layer 

thicknesses are considered h1 = 300. 600, 900 A, and the deflection 

in the single layer cantilever is assumed to be   w2 = -1.0 µm. (Hou 

and Chen [12]). 
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1.4 Dynamic Techniques:  Parametric Identification of MEMS 
Device System Parameters and Residual Stress 
Identification 

In addition to static techniques, dynamic techniques are also useful in determining device 

residual stress values.  Dynamic techniques are especially useful in determining system 

parameters such as modal mass, damping, linear and nonlinear stiffnesses, and forcing 

amplitudes.  Dynamic characterization of MEMS devices was carried out by Piekarski, 

DeVoe, Dubey, Kaul, and Conrad [29].  Piezoelectric actuation and sensing of a 

suspended beam MEMS resonant filter was demonstrated and resonance frequencies are 

observed for various dimensions.  With these PZT resonators, linear frequency data may 

be taken for various poling voltages and time and the axial force, and hence, the residual 

stress in the structures.  In the work of Jaksic and Boltezar [30],  parameter identification 

for a single-degree-of-freedom system was carried out.  The free acceleration response of 

the system was studied in order to estimate the parameters in the equation of motion.  

Yahiaoui and Bosseboeuf [31] modeled cantilever beams using finite element analysis 

software and conducted material characterization with an experimental setup designed for 

the vibration spectra measurements of micromechanical devices and 

microoptoelectromechanical systems (MOEMS).  A beam correction factor was found 

that includes the width effect from the plate stiffness in the natural frequency 

calculations.   

In the work of Ayela and Fournier [32], resonance sensors were used with high 

mechanical Q factors based on a vibrating element acting as a harmonic oscillator.  Ayela 

et al. modeled these resonators as 
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where x is the transverse displacement, λ is the damping factor, a is the inertial 

coefficient (kg), ω0 is the natural frequency, β is the nonlinear stiffness coefficient, F is 

the forcing amplitude and ω is the excitation frequency.  Free standing silicon resonators 

were electrostatically excited in the flexural or fundamental mode.  In the anharmonic 

mode with 0≠β  and close to the resonance frequency, the relation between the 

frequency ω and the main amplitude A is 

 ( )[ ] Γλε =+− 2222 AXA  (1.34) 

and from equation (1.34) one can find 
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This derivative used to locate maximum amplitudes for frequency values that correspond 

to forward and backward sweeps.  In addition, by analyzing these parameters as well as 

parameters describing the location, forcing and amplitude where jumps in the frequency 

response occur, system parameters for the weakly nonlinear system are determined.  

Some of these parameters are shown in Figure 1.19 for a general linear and nonlinear 

frequency response.   
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Figure 1.19:  Frequency – response spectrum of Ayela et al. [32].   

Malatkar and Nayfeh [33] presented a procedure for the identification of parameters on 

the basis of a single-mode response of a spatially continuous system.  Malatkar et al. 

modeled a cantilever with the following equation 
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where m is the beam mass, l is the beam length, E is the Young’s modulus, I is the area 

moment of inertia, v(s,t) is the transverse displacement, s is the arclength, t is time, ab is 

the acceleration of the supported end of the beam, cv is the coefficient of linear viscous 

damping, ĉ  is the coefficient for quadratic damping,  and Ω is the excitation frequency.  

The method of multiple scales is used to obtain a first order approximation to the 

response and the approximation and the modulation equations are given by 
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where µ is the modal damping coefficient, α are the nonlinear stiffness coefficients, f is 

forcing amplitude, and Φ(s) represents the linear mode shape of the undamped system.  

These equations are then used to examine the frequency-response of a system.  The 

parameter values of the system can then be estimated by a least-square curve fitting the 

experimental frequency-response data. 

Finally, Dick, Balachandran, DeVoe and Mote [10] devised a parameter identification 

scheme based on device frequency response.  Dick et al. observed nonlinear behavior in 

experimentally measured frequency-response of microresonators.  A least squares 

parameter identification scheme was devised in combination with the analytical model 

 ( )tcosFzkzxcxm ωα =+++ 3
3

&&&  (1.38) 

(m and c are the modal mass and damping, k is the linear stiffness, α3 is the nonlinear 

stiffness, F is the forcing amplitude and ω is the excitation frequency).  in order to 

determine system parameters for the micro-resonators considered. 

Although considerable work on determining residual stress in micro-scale structures has 

been done before, the determination of residual stress post-release and pre release states 

has not been given careful consideration before.  This is addressed here.   
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1.5 Scope and Organization of Dissertation 

Within this dissertation, plate models and their applications to the residual stress 

deformation in micro-scale structures are explored.  Analytical models are developed to 

study the deformation and stresses in these devices.  Reduced-order models are 

developed to aid in analysis of frequency-response data.  Micro-scale cantilevered PZT 

structures and clamped-clamped PZT structures are fabricated to validate and enhance 

these models.  Experiments were performed to collect data from these devices to aid in 

validation of models.  Parametric identification schemes were developed to analyze the 

residual stress and system parameters.  Through these studies, a greater understanding of 

plate-like micro-scale structures has been gained and multiple methods that can be used 

to analyze them have been developed.   

The organization of this dissertation is as follows.  In Chapter 2, the development of 

linear and nonlinear thin composite laminate beam and plate models are presented.  In 

Chapter 3, symmetric and asymmetric laminate schemes are described.  Chapter 4 

contains reduced-order linear and nonlinear beam models as well as a technique meant 

for developing reduced-order models for a plate that is either simply supported on all 

edges or clamped on all edges.  In Chapter 5, a description on the fabrication processes, 

used in this work, for micro-scale cantilevers and clamped resonators as well as 

descriptions on all experimental arrangements are provided.  In Chapter 6, residual stress 

induced deformation is analyzed in MEMS cantilevers as well as neutral axis location 

and its effect on residual force/moment/stress and laminate stiffness calculations.  

Following that, in Chapter 7, four different techniques based on models and 

methodologies presented in earlier chapters are presented and the results obtained are 
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discussed.  Finally, concluding remarks and suggestions for future work are presented in 

Chapter 9.  Appendices containing the programs used in the calculations as well as other 

particulars are included along with the references. 
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2 LINEAR AND NONLINEAR ANALYSIS OF COMPOSITE 
BEAMS AND PLATES 

In this chapter, a Newtonian approach is first taken to derive the Euler-Bernoulli beam 

equation.  Later, a linear equilibrium equation describing transverse deflections of a thin 

plate is developed.  This linear plate model is expanded to include nonlinear stretching at 

its mid plane.  Finally, classical laminate plate theory is presented.   

2.1 Euler-Bernoulli Theory for Thin Beams 

To begin the derivation of the equilibrium equation for an Euler-Bernoulli thin beam, first 

apply the Newtonian approach to the beam element in Figure 2.1 and sum the forces in 

the vertical direction, 
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Figure 2.1:  Differential beam element. 
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For “small” angles, equation (2.1) becomes 
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Summing the moments about the end of the beam element, one obtains 
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Figure 2.2:  Differential distances and rotation angle of rotating 

beam element. 
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Solving equation (2.3) for the shear force, V(x), 
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and inserting equation (2.4) into equation (2.2) results in 
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θ 

 dw 
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The rotation angle, θ, can be related to the transverse displacement, w, by examining 

Figure 2.2., that is 
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If the rotation angle θ is assumed small, 

 
x

w

∂

∂
−=θ  (2.7) 

Next, inserting equation (2.7) into (2.5) and noting that the force, F, is constant results in 
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The bending moment, My, is related to the bending displacement via (2.9 
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and noting that RNF = , where RN  is a constant force resultant due to residual stress, 

then the nonlinear equilibrium equation for a thin beam becomes 
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If large curvatures are present, then (2.9 becomes 

 

( )

( )













+









∂

∂
−

∂

∂
−=























∂

∂
+

∂

∂
−=

−

L

2

2

2

2

3
2

2

2

2

3
1

1

x

w

x

w
EI

x

w

x

w
EIM y

 (2.11) 

The second derivative of the first two terms (2.11 are 
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and equation (2.10) becomes 
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Equation (2.13) is the nonlinear equilibrium equation describing the transverse 

displacement of a thin beam in its entirety.  If all nonlinear terms in equation (2.13) are 

neglected, the equilibrium equation becomes 
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Equation (2.14) will be used in later chapters for finding a general solution in terms of the 

transverse displacement w(x,t), analyzing system natural frequencies and mode shapes, 

buckling analysis, and residual stress identification utilizing the residual force, NR. 

2.2 Linear Equilibrium Equation for Thin Plates:  Static 
Equilibrium 

To begin the derivation of the equation of motion of a thin plate, one must first consider 

some basic assumptions.  First, the stress analysis of a thin plate can involve solutions of 

differential equations in three-dimensions and can be quite complex to determine.  But, 

for many applications, applying Kirchhoff’s classical theory of thin plates can yield 

sufficiently accurate results without the need to carry out a full, three-dimensional stress 

analysis [34].  The underlying assumptions are as follows: 

1. The material is linear, homogeneous, isotropic, linear elastic, and 

follows Hooke’s Law 

2. The plate is initially flat 

3. The thickness of the plate is constant and very small in comparison 

to its other dimensions 

4. The mid-plane of the thin plate remains unstrained 

5. Straight lines normal to the mid-plane before bending, remain 

straight, normal, and undeformed during bending ( xzσ , yzσ , zzσ  are 

negligible and the normal strain zε  is assumed to be zero). 
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The above assumptions are common for a linear classical thin plate.  In order to derive 

the differential equation of motion of a thin plate, one first considers the plate element 

shown in Figure 2.3.  The M’s and Q’s are the mechanically applied moments and forces, 

and p is a generally applied transverse force.  To begin, the force balance along the z-

direction leads to: 
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Dividing by dx dy, canceling out terms and taking limits as dx � 0  and dy � 0, results 

in 
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Figure 2.3:  Plate Element. 
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Again, dividing by dx and dy, canceling out terms and taking the limits dx � 0 and dy � 

0, results in: 
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Likewise, a moment balance about the y-axis results in 
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After substituting from the moment balance equations, (2.18) and (2.19) into the force 

balance equation (2.16), one obtains 
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One defines the moments as 
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D is the flexural rigidity of the thin plate, ν  is the Poisson’s ratio, and xxw , yyw , and 

xyw  are the plate curvatures, written in terms of the transverse deflection, w.  When 

equations (2.21) are inserted into (2.20), the result is the static linear differential equation 

governing a thin isotropic plate subjected to transverse loading: 
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2.3 Nonlinear Equilibrium Equation for a Thin Plate 

Plate deflections are usually assumed “small” in comparison to the thickness of the plate.  

By increasing the magnitude of the deflections beyond a certain level, the relationship 

between the external load and the deflection is no longer linear [34].  Due to large 

deflections, the stretching of the mid-plane now needs to be taken into consideration.  To 

account for large deflections, nonlinear theory needs to be considered.  According to 

Kirchhoff’s theory, if the deflection in the z-direction is greater than 1/5 of the plate’s 
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Figure 2.4:  Deformed plate element with membrane forces. 

thickness, then the deformation is considered to be nonlinear.  Linear deformation theory 

neglects the straining of the mid-surface of the plate and the corresponding in-plane 

stresses, whereas in nonlinear deformation theory, one does not.  To incorporate the 

membrane forces, consider the plate element shown in Figure 2.4. 

The expressions (1) through (4) in Figure 2.4 are the membrane forces and the 

expressions (5) through (8) are the curvatures if the plate element is in bending.  Now, 

consider the projections of the membrane forces in the z-direction, as given in [34], that 

is,  
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If equation (2.23) is divided by dx dy throughout, and the limits as dx →  0 and dy →  0 

are considered, equation (2.23) becomes 
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Thus the effect of the membrane forces on the transverse deflection is equivalent to a 

fictitious lateral force [34].  Introducing the Airy stress function ( )y,xΦ  [34] and 

 xyxxxyyyxx ηΦηΦηΦ −===  (2.25) 

and the nonlinear differential equation describing the static deflection of a thin plate 

subjected to large deflections becomes 

 ( )[ ]
xyxyxxyyyyxxyyyyxxyyxxxx wwwy,xp

D
www ΦΦΦ 2

1
2 −++=++  (2.26) 

Comparing equation (2.26) with equation (2.22), it is mentioned that equation (2.26) 

includes the membrane force terms.  To obtain the equation governing dynamic 

equilibrium, inertia forces would have to be included and the time variable t would also 

need to be introduced.   
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2.4 Classical Laminated Plate Theory:  Dynamic Case 

Classical laminated plate theory (CLPT) is an extension of classical plate theory [35].  In 

CLPT, it’s assumed that the Kirchhoff hypothesis holds and that the displacement 

kinematics are of the form 
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where u, v, and w are the displacements along the x, y, and z directions, respectively, ou , 

ov , and ow  are the translational displacements along the respective directions and 

z*(dw/dx) and z*(dw/dy) are due to the rotations about the x and y axes.  The Euler-

Lagrange equations are obtained by substituting expressions for the potential energy U , 

the virtual work done by applied forces W , and the kinetic energy T into the extended 

Hamilton’s principle 

 ( ) 0
2

1

=−−∫
t

t
dtTWU δδδ  (2.28) 

As in [35], by inserting the energy expressions and setting the coefficients of the virtual 

displacements ouδ , ovδ , and owδ  equal to zero separately provides the Euler-Lagrange 

equations as 
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where the inertia properties have also been considered.  In equation (2.29), if the equation 

corresponding to 0uδ  is solved for 22
t/uo ∂∂  and likewise, the equation corresponding to 

0vδ  is solved for 2
o

2 t/v ∂∂ , and then both of these expressions are inserted into the 

equation corresponding to 0wδ , one obtains 
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where 
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and 
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2I  is often ignored since it does not contribute to lower vibration modes (but can 

contribute to higher order vibration modes).  The force and moment relations for classical 

laminate plate theory are given by  
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where the strain-displacement relations take the form 
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([34], [35]).  Equations (2.30) through (2.34) effectively describe the dynamics of a 

general, nonlinear, laminated, composite plate. 
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3  LAMINATE STIFFNESS ANALYSES 

In this chapter, general laminate stiffness formulae are presented.  These are followed by 

schemes for calculating stiffnesses in single and multi-layer laminates with either a 

symmetric layout or an asymmetric layout.  Finally, a general laminate stiffness scheme 

is presented to calculate the stiffnesses for an isotropic laminate, regardless of the number 

of layers, material types or symmetry involved.   

3.1 General Laminate Stiffness Formulae 

Though laminate strains are continuous through thickness, the stresses are not due to the 

change in material coefficients through each lamina.  Integration of the stresses through 

the laminate thickness requires lamina wise integration [35].  The force and moment 

resultants for a generalized laminate are given by 
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and similarly 
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Here, A is the extensional stiffness matrix, D is the bending stiffness matrix,and B is the 

bending-extensional coupling stiffness matrix of the laminate.  They are determined as 
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The coefficients, ijQ , can be written as 
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where 1E  and 2E  are the Young’s modulus, 12ν  and 21ν  are the Poisson’s ratios, and 

12G is the shear modulus.  If a laminate is made of several layers, each of whose material 

axes is oriented arbitrarily, the constitutive equations in each layer must be transformed 

as 
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where the rotation angle is θ. 

3.2 Single Layer Plates 

Single Isotropic Layer 

For a single isotropic layer (principal material coordinates coincide with those of the 

plate) the laminate stiffnesses become 
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The plate constitutive equations for classical and first-order theories become 
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  (3.7) 
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Since the [ ]B  matrix has zero entries, it is clear that there is no coupling between bending 

and extensional motions.   

Single Specially Orthotropic Layer 

For a single specially orthotropic layer (material coordinates also lined up with plate 

coordinates), the laminate stiffnesses become 
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where the plane stress reduced stiffnesses are given by 
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The plate constitutive equations for classical and first-order theories become 
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  (3.10) 
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Again, since the [ ]B  matrix has zero entries, it is clear that there is no coupling between 

bending and extensional motions. 

Single Generally Orthotropic Layer 

For a single generally orthotropic layer (principal material coordinates do not coincide 

with those of the plate), the laminate stiffnesses become 
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where the equations for transforming the coefficients are shown in equations (3.5).  The 

equations for the laminate plate become 
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3.3 Symmetric Laminates 

When lamination scheme, material properties and locations are symmetric about the mid-

plane, the laminate is called a symmetric laminate (see Figure 3.1).  In Figure 3.1, h is the 

total thickness of all laminates included.  Due to the symmetry of the laminate, the 

coupling stiffnesses ijB  are zero, and with this assumption, one can simplify the equation 

of motion. 

  

Figure 3.1:  Symmetric laminate scheme. 
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Multiple Isotropic Layers 

Similarly to a single isotropic layer, the stiffnesses and constitutive equations for a 

symmetric laminate with multiple isotropic layers become 
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where E and ν  are the Young’s modulus and Poisson’s ratio.  The forces and moments 

are 
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Multiple Specially Orthotropic Layers 

Stiffnesses of symmetric laminates with multiple specially orthotropic layers can be 

derived similarly from a single layer as 
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where the constitutive equations are 
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Multiple Generally Orthotropic Layers 

Stiffnesses of symmetric laminates with multiple generally orthotropic layers can be 

derived  similarly from a single layer as 
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where the forces and moments are 
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3.4 Asymmetric Laminates 

Anti Symmetric Laminates 

From a modeling standpoint, symmetric laminates are generally more desirable than anti 

symmetric laminates, because the bending-extensional coupling stiffness matrix, B, does 

not have to be considered.  This, in turn, simplifies the constitutive equations for the 

laminate and the second-order, nonlinear, partial differential equation that results.  

However, in many applications, this is not a reasonable assumption.  A representative anti 

symmetric laminate is shown in Figure 3.2.  In a case such as in Figure 3.2 all types of 

stiffness components need to be included in the constitutive equations, that is 
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However, suppose that this general class of anti symmetric laminates must have an even 

number of orthotropic layers, and opposite pairs of layers having identical thicknesses 

and exactly opposite orientations as pictured below in Figure 3.3. 
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Figure 3.2:  Fibers in each layer of this composite laminate have 

different orientations. 

  

Figure 3.3:  Fibers in each layer of this composite laminate have 

different orientations. 
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Then,the constitutive equations become 
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Unsymmetric Laminates 

An unsymmetric laminate is the most general case of a laminate.  In this laminate, no 

sense of symmetry exists.  Multiple material layers exist, in even or odd numbers.  

Thicknesses are not necessarily equal to or symmetric about the neutral axis and the 

neutral axis is not always at the mid-line of the laminate layers.  For the cases considered 

in this dissertion, an unsymmetric laminate scheme with multiple isotropic layers will be 

investigated (Figure 3.4).  Specifically, because there is no symmetry in the layer 

thicknesses (t1, t2, t3, t4), coupling between extension and bending is present and has to  
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Figure 3.4:  Unsymmetric laminate scheme. 

be accounted for.  In addition, the neutral axis is no longer at the mid-plane of the 

laminate.  The force and moment resultants become 
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It is clear from equation (2.21) that the coupling exists, not just from material orthotropy, 

but rather from the laminate heterogeneity [36]. 

3.5 Generalized Laminate Stiffness Scheme 

As was shown in Section 3.3, symmetric laminates are laminates where the lamination 

scheme, material properties and locations are symmetric about the mid-plane as well as  
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Figure 3.5:  Symmetric laminate with three isotropic layers. 

the neutral axis is in the same location as the mid-plane (Figure 3.5).  Asymmetric 

laminates are not symmetric about its center axis, can have multiple material layers with 

varying thickness values.  In this sction, the author presents a generalized laminate 

stiffness scheme that can be used to calculate the laminate stiffness for any number of 

material types and thicknesses, regardless of symmetry. 

To begin, a representative symmetric laminate example with three laminate layers is 

shown in Figure 3.5.  From Figure 3.5, two schemes are possible for defining laminate 

stiffnesses.  If the x-axis is assumed to be at the bottom of the laminate, zn can be written 

in terms of the layer thicknesses as 

 

213

212

11

2 ttz

ttz

tz

+=

+=

=

 (3.22) 

The extensional, coupling and bending stiffnesses can be written as 
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When (3.22) is inserted into equations (3.23), (3.24) and (3.25), the stiffness expressions 

become 
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One important observation to note is that equation (3.27) is nonzero.  This clearly 

indicates for a symmetric laminate that coupling exists when the starting axis is anywhere 

but the midline or neutral axis of the laminate.  If these calculations are taken about the 

center axis, or neutral axis, Zn, hn becomes 
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and the stiffness expressions become 
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Clearly,equation (3.31) shows that coupling between extensional and bending stiffnesses 

does not exist for a symmetric laminate and may be neglected when the starting axis is 
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taken about the neutral axis of the structure.  This can greatly simplify the governing 

equation of motion for a plate or beam by making it possible to neglect unnecessary 

linear and nonlinear terms due to coupling.   

However, similar to Figure 3.5, if an asymmetric laminate with three isotropic layers is 

considered (Figure 3.6), 

  

Figure 3.6:  Asymmetric laminate with three isotropic layers. 

then zn in terms of the layer thicknesses become 
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the extensional stiffness, coupled stiffness and bending stiffness become 
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Equation (3.35) indicates that for an asymmetric laminate that coupling exists when the 

starting axis is taken at the bottom of the laminate.  However, in the case of an 

asymmetric laminate, the neutral axis is not in the center of the laminate.  The neutral 

axis is dependent on the Young’s modulus of each laminate layer, thickness and may be 

calculated as 
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Defining hn about the neutral axis as shown in Figure 3.7, 
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Figure 3.7:  Asymmetric laminate with three isotropic layers and 

neutral axis location. 

First,considering the extensional stiffness, 

 

[ ] ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( ) ( )( )

332211

233

12211

343232121

tbEtbEtbE

ZzZzbE

ZzZzbEZZzbE

hhbEhhbEhhbEEA

nn

nnnn

tot

++=

−−−+

−−−+−−−=

−+−+−=

 (3.39) 

it is clear that the neutral axis location cancels out, and that the extensional stiffness in 

equation (3.39) is not dependent on neutral axis location and is equivalent to equation 

(3.34).   

If the coupled  and bending stiffness is revisited, 
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Clearly, for an asymmetric laminate, using the neutral axis in stiffness calculations will 

eliminate coupling between bending and extension.   

To generalize stiffness calculations for symmetric or asymmetric laminates with an 

indefinite number of isotropic layers, first define zn (Figure 3.8), 
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The neutral axis location, for a general laminate, may be calculated as 

  

Figure 3.8:  Asymmetric laminate with three isotropic layers and 

neutral axis location. 
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Once the location of the neutral axis location is known, the distances, hn, are 
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and the extensional stiffness can be defined as 
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4 REDUCED-ORDER MODELS FOR PLATE-LIKE 
STRUCTURES 

In this chapter, a reduced-order model is first presented for a thin composite laminate 

beam.  Following that, reduced-order models are developed for plate structures, Since the 

variables in the plate equation are not separable, a procedure is developed to develop and 

approximate solution to the plate mode shapes and static stress function (Airy’s function).  

Two special cases are considered, namely, a plate with all edges simply supported and all 

edges clamped. 

4.1 Thin Composite Laminate Beams 

The objective here is to determine a reduced-order model describing the transverse 

displacement of a thin beam with some given boundary conditions.  If equation (2.13) is 

revisited 
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and all nonlinear terms are neglected, equation (4.1) becomes 
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The transverse displacement may be defined as 
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 ( ) ( ) ( )tfxwtxW =,  (4.3) 

and if inserted into the linear equilibrium equation (4.2),  
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Equation (4.4) clearly indicates that the deflection variable x is separable from the time 

variable t and exact solutions exist for ( )xw  and ( )tf .   

If the transverse displacement w(x,t) is redefined as 

 ( ) ( ) ( )tfxtxW nΨ=,  (4.5) 

where Ψn represents general mode shapes for any beam boundary condition.  If equation 

(4.5) is inserted into the nonlinear equilibrium equation for a thin beam (4.1) and the 

external loading is considered, (4.1) becomes 
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 (4.6) 

In order to apply the method of weighted residuals [37]  and complete the reduced-order 

model, a set of weighting functions is chosen similar to Ψn is chosen as Ψm.  If equation 

(4.6) is multiplied by Ψm and integrated over the beam length, x, equation (4.6) becomes 
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  (4.7) 

where the over dots in equation (4.7) indicate time derivatives.  Equation (4.7) is 

considered to be a reduced-order model for a thin beam, in the form of an undamped 

Düffing oscillator.  In the damped case, an addition term and coefficient would be present 

in equation (4.7).  In addition, here is assumed that a single mode dominates the response 

in using equation (4.5).   

4.2 Thin Composite Laminate Plates 

To begin reduction of the model describing the transverse displacement of a thin plate, 

First consider the equilibrium equation (Section 2.1) with no outside forces (PZ = 0) and 

neglecting the nonlinear inplane forces, 
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If the stiffnesses are calculated via the general scheme presented in Section 3.5, then 

coupling between extensional and bending stiffnesses can be assumed negligible, the 

bending stiffness is calculated around the laminate’s neutral axis, and the moment-

urvature relation is defined as 
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where the curvatures are defined as 
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and assuming each layer is isotropic, the bending stiffnesses are defined as 
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For simplicity, the moment-curvature relation will be written as 



 

 72 
 

 





























∂∂

∂
−

∂

∂
−

∂

∂
−

















=
















yx

W

y

W
x

W

D

DD

DD

M

M

M

xy

yy

xx

2

2

2

2

2

66

2212

1211

*2

00

0

0

 (4.12) 

If equation (4.12) is inserted into equation (4.8), 
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From equation (4.11) it is seen that 1122 DD = , 1112 DD υ=  and ( ) 1166 21 D*/D υ−=  and 

the equilibrium equation describing the transverse displacement of a thin isotropic 

laminate plate becomes 
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4.3 Separation of Variables – Motivation for Plate Mode-Shape 
Approximations 

Since the equilibrium equation is a function of three variables, length x, width y and time 

t, it is convenient if the length and width dependence is first assumed to be separable 

from the dependence on time t as 

 ( ) ( ) ( )tFyxFtyxW 21 ,,, =  (4.15) 

Inserting equation (4.15) into (4.14), the author obtains 
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along with the appropriate boundary conditions.  Rearranging position variables on one 

side and time dependent variables on the other, equilibrium equation (4.16) becomes 
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where 2

1nω  is a set of constant values referred to as characteristic values or eigenvalues.  

From equation (4.17) its clear that the length dependent variables can be separated from 

time as 
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To determine where the length X is separable from the width Y, let 

 ( ) ( ) ( )yYxXyxF =,1  (4.20) 

and inserting equation (4.20) into (4.19).  This leads to 
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and grouping X and Y terms 
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  (4.22) 

Clearly, the second term in equation (4.22) makes the equation unseparable.  In other 

words, the dependence on the length x cannot be separated from the dependence on the 

width y.  An exact solution for equation (4.19) does not exist for arbitrary boundary 

conditions.   

4.4 Von Karman Strain Field and Compatibility Equation 

Before the nonlinear plate equation of (2.26) can reduced to the form of the Düffing 

oscillator, the relationship between the static stress function ( )y,xΦ  and the transverse 

displacement ( )y,xW  needs to be examined.  When considering linear plate theory based 

on Kirchhoff’s assumptions, the theory is valid for cases when the transverse deflections 

are much less then the thickness of the plate.  The extension to large deflections, where 

nonlinear terms are retained, was first provided by von Karman [38].  First, consider the 

general plate element shown in Figure 4.1. 
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Figure 4.1:  General plate element exhibiting stretching. 

In Figure 4.2, the points A, B, and C denote the original plate element, and 1A , 1B , and 

1C  signify the plate element that is deformed due to stretching.  The axial strain in the x-

direction can be defined as ([34], [35]). 
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where 11BA  represents the line segment connecting points 1A  and 1B , and AB is the line 

segment connecting the points A and B. In equation (4.23), the axial strain xε effectively 

describes the stretching of line segment AB.  The additional nonlinear strains are defined 

similarly as 
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If the compatibility equation is considered 
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and the strains given by equations (4.23), (4.24) and (4.25) are inserted into equation 

(4.26), equation (4.26) becomes 
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To obtain the nonlinear strain compatibility equation (4.27) in terms of the static stress 

function, Φ, the force-strain relation must be considered as 
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Since an isotropic laminate is considered, equation (4.28) becomes 
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Inserting the static stress function into equation (4.29) and solving for the axial and shear 

strains, 
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Noting that for an isotropic laminate, the elements of the stiffness matrix in equation 

(4.30) are such that 1122 AA = , 1112 A*A υ=  and ( ) 1166 21 A*/A υ−= .  If the strains 

defined by equation (4.30) are inserted into equation (4.27), the result is the compatibility 

equation that holds for the nonlinear strain-displacement field and the relationship 

between the static stress function and the transverse deflection w.  This result reads as 
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4.5 Solution to Compatibility Equation 

The compatibility equation, (4.31), is now a fourth order partial differential equation 

whose solution, ( )y,xΦ , is broken into two parts, the particular and complimentary 

solutions; that is 
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that can be solved in terms of the free (unforced) response (complimentary function) 

 0ΦΦ2Φ yyyyC,xxyyC,xxxxC, =++  (4.33) 

and the forced response (particular solution) as 
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The coefficients 1
ijC  and 2

ijC  of the complimentary function are solved by applying the 

plate boundary conditions.  In order to derive a solution to the compatibility equation, an 

expression must first be defined for the transverse displacement, ( )y,xW .  However, as 

was discussed in Section 4.3, the length dependent and time dependence are not separable 

in a general case.  An approximation is necessary for the transverse displacement W.  

Once ( )y,xW  and ( )y,xΦ  are known, these expressions can be insertedinto the 

equilibrium equation, and the equilibrium equation is reduced via Galerkin’s Method, to 

the form of a reduced-order model given by the undamped Düffing oscillator. 

4.6 Special Case:  Composite Laminate Plate With All Edges 
Simply Supported 

In this Section, a composite laminate plate with all edges simply-supported is considered 

([15], [16], [17], [13], [14]) .   
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Figure 4.2:  Thin laminate plate with simply supported boundaries. 

The boundary conditions for a simply supported plate are 
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and for a thin isotropic laminate, the moment-curvature relation is 
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The Navier method expands the transverse displacement w into a double trigonometric 

Fourier series in terms of unknown parameters.  The choice of trigonometric functions is 

those that satisfy boundary conditions.  The externally applied load, ( )y,xq , is similarly 

expanded.  On substitution of the displacement and load expansions into the governing 

a 

b 

x 

y 

simply supported 
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equation of motion should result in an invertible set of algebraic equations.  Otherwise, a 

Navier solution cannot be developed for that problem [35]. 

The boundary conditions in equation (4.35) are then satisfied by the Navier definition of 

the transverse displacement as 
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If equation (4.37) is inserted into (4.31),  
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and if its rewritten in terms of the particular solution, several trigonometric identities 

through Mathematica (see appendices) are used, the compatibility equation can be 

rewritten as 
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Next, a particular solution, Φ, is chosen similar to the right side of equation (4.39) as 
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where F1 and F2 are unkown coefficients.  If equation (4.40) is inserted into the left side 

of (4.39) 
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and it can be seen that the coefficients for equation (4.40 become 
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From equations (4.40) and (4.42), the particular solution ΦP exists, but does not satisfy  

the boundary conditions.  The complimentary function is solved such that the solution to 

the compatibility equation, Φ, satisfies all boundary conditions.  The complimentary 

function is chosen following He, [15], [16] and [17], as 
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and the complete solution to the compatibility equation becomes 
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From the force-strain relation of equation (4.30), the axial strains may be written as 
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If the derivatives of Φ are written as 
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and inserted into equation (4.45), the coefficients to the complimentary function may be 

solved as 
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where the [ ]A  is the extensional stiffness matrix previously defined.  The coefficients to 

the complimentary function clearly are a function of the transverse displacement, W(x,y), 

the static stress function Φ(x,y) and the axial deflections ux and uy.  Expressions and 

approximations for the transverse displacement, W(x,y), equation (4.37), and the static 

stress function Φ(x,y), equation (4.40), can be inserted into equation (4.47), however, a 

known expression for the axial strains do not exist.  Therefore, the boundary conditions 

will be applied to analyze the axial strains.  If equation (4.47) is integrated over the plate 

boundaries, 
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and the axial strains are integrated once 
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Notice that ( )axu = , ( )0=xu , ( )byv =  and ( )byv =  are all zero for simply-supported 

boundary conditions then the first set of terms on the right side of equation (4.49) may be 

neglected and the coefficients to the complimentary function become 
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Notice that in (4.50) and (4.51), the sin terms become 
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and the coefficients become 
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Now that the coefficients for the complimentary function are defined, an expression 

exists for the static stress function, Φ(x,y).  With the approximations for the transverse 

displacement W(x,y), equation (4.37), and the static stress function with the appropriate 

coefficients, equation (4.44), the equation of motion describing the transverse 

displacement of a thin laminate plate with all edges simply supported may be revisited as 
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and put in the form of a reduced-order model. If equations (4.37) and (4.44) are inserted 

into (4.54), (4.54) becomes 
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In order to apply Galerkin’s method, a technique for approximating the solution of a 

differential eigenvalue problem, an error function or residual is defined from equation 

(4.55) as 
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If a set of weighting functions are defined as 
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and the residual is multiplied by the weighting functions and integrated over the plate 

boundaries, the coefficients to equations (4.55) and (4.56) become 
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Noticing that 
2

ab
can be cancelled from every coefficient in equation (4.59), then the 

reduced-order model, from the equilibrium equation (4.54), becomes 
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( ) ( ) ( ) QtWctWc
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1  (4.60) 

Equation (4.60) is also known as the Düffing oscillator because of the cubic stiffness 

term, ( )tWmn

3 .  The method of multiple scales may be used to obtain an analytical 

approximation for a solution of this system if the nonlinearity is weak. 

4.7 Special Case:  Composite Laminate Plate With All Edges 
Clamped 

Following the special case of a thin laminate plate with all edges simply supported, in this 

Section a reduced-order model will be developed for a plate with all edges clamped 

(Figure 4.3). 

  

Figure 4.3:  Thin laminate plate with clamped boundaries. 
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The boundary conditions for a clamped plate are 
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For the clamped case, equation (4.32) will not satisfy the boundary conditions given in 

(4.61).  If the Navier method is applied to the clamped case, the transverse displacement 

of the thin plate is defined as 
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If the transverse displacement of equation (4.62) is inserted into the first set of boundary 

conditions in equation (4.61), that is, those at x = 0 
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and the second set of boundary conditions at x = a,  
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Similarly, it can be verified that the boundary conditions at y = 0 and y = b are satisfied.  

Clearly equation (4.62) satisfies the boundary conditions for a clamped plate.  If equation 

(4.62) is inserted into (4.31),  
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Similar to the procedure followed in the previous case of simply-supported boundary 

conditions,  
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From equation (4.66), the particular solution ΦP exists, but does not satisfy boundary 

conditions.  Again, the complimentary function is chosen following He, [15], [16] and 

[17], as 

 ( ) 2221
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2

1
, yCxCyx mnmnC +=Φ  (4.67) 

and the complete solution to the compatibility equation becomes 
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Applying boundary conditions for a clamped plate, the coefficients of the complimentary 

function are 
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and the coefficients to the complimentary function become 
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Now that the coefficients are known, a complete expression exists for the approximation 

of the static stress function Φ.  With the approximations for W and Φ, the equation of 

motion describing the transverse displacement of a thin laminate plate with all edges 

clamped may be revisited as 
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 (4.71) 

and put in the form of a reduced-order model.  If equations (4.62) and (4.68) are inserted 

into (4.71), and Galerkin’s method is applied with the weighting functions as 
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∞ ∞
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p q

qpWeightFcn yxyxW βα 22 sinsin,  (4.72) 

(4.71) becomes 
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  (4.73) 

The different coefficients in equations (4.73) have been determined by using 

Mathematica (see appendices).  Equation (4.73) is the reduced-order model, the 

undamped Düffing oscillator, describing the transverse displacement of thin laminate 

plate with all edges clamped. The method of multiple scales may be used to obtain an 

analytical approximation for a solution of this system if the nonlinearity is weak.  In this 

chapter, a methodology has been illustrated to obtain reduced-order models for dynamic 

analysis of composite plate structures with simply-supported and clamped boundaries. 
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5 FABRICATION OF MEMS DEVICES AND 
EXPERIMENTAL ARRANGEMENTS 

In this chapter, thin-film deposition, device design and layouts, and fabrication and 

release processes with application to MEMS devices are discussed.  During thin-film 

deposition, stress measurements are taken via wafer bow stress measurements.  In 

addition, the thickness of each of these films is taken via a Woollam Ellipsometer.  An 

optical profilometer is used to determine deflection profiles of all these devices.  Finally, 

the experimental setup used to collect frequency response data is presented. 

5.1 Fabrication of MEMS Devices 

5.1.1 Thin-film Deposition 

For the purpose of this work, piezoelectric microresonators were fabricated at the Army 

Research Laboratory in Adelphi, MD.  Each of these resonators consists of four thin-film 

layers.  To begin fabrication, a baseline wafer bow measurement is taken of the bare 

silicon wafer via the Tencor FLX-2908 instrument.  This measurement is used in the 

calculation of the stress that accrues in the deposition of the first thin-film layer.  Next, a 

silicon dioxide layer is deposited via plasma enhanced chemical vapor deposition 

(PECVD).  PECVD is a process that utilizes radio-frequency (RF) plasma to transfer 

energy into reactant gases, which allows the substrate to remain at lower temperatures in 

comparison to other processes.  Precise temperature control of the substrate-surfaces aids 
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in the quality of the deposited films [1].  The SiO2 layer and substrate are then rapid 

thermal annealed at 700˚C for 60 seconds, the oxide layer thickness is measured via the 

Woolam Ellipsometer, and a wafer bow measurement is taken over the top of the SiO2 

layer.  An extremely thin titanium layer is then sputtered to the SiO2 layer in order to aid 

in adhesion with the subsequent sputtered platinum layer.  The thickness of the combined 

titanium/platinum is measured via the Woollam eillipsometer as well as the wafer bow 

measurements made by using the Tencor FLX – 2908.  The third layer to be deposited is 

a PZT layer.  This deposition process begins using a syringe to deposit the PZT solution 

onto a stationary wafer.  The wafer is then spun and put on a hot plate for pyrolysis and 

then a crystallization process is performed via rapid thermal annealing [2].  These three 

processes are repeated until the desired PZT layer thickness is reached.  Again the 

thickness and wafer bow measurements are taken via the Woollan ellipsometer and the 

Tencor FLX-2908.  Finally, the top platinum layer is deposited with thicknesses and 

wafer bow measurements taken as before.   
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5.1.2 Device Layouts 

  

Figure 5.1:  Device layout in grid pattern on silicon wafer. 
 

Devices are initially laid out in a grid pattern on a silicon wafer (Figure 5.1).  In Figure 

5.1, the wafer is divided into four quadrants designated by Q1, Q2, Q3, and Q4.  The 

green squares on the left side represent the various sized PZT clamped-clamped 

resonators.  The blue squares on the right represent PZT cantilevers.  The light yellow 

squares represent gold structures, and the orange squares represent plate-like structures.  

For purpose of study in this work, squares R2, R5, R9, C2, C5, and C9 are full stack 

resonators (SiO2 - Ti/Pt – PZT - Pt), numbers 1, 4, and 8 are trilayered resonators 

consisting of SiO2 - Ti/Pt – PZT, numbers 10, 11, and 12 are bilayered resonators 

consisting of SiO2 - Ti/Pt and numbers 3, 6 and 7 are single layered silicon resonators.   
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Figure 5.2:  Varying layered cantilevered resonators. 
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Figure 5.3:  20 µm wide PZT cantilevers with lengths varying 

from 100 to 900 µm long. 
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Figure 5.4:  Die representation of microresonators.  Three rows of 

20, 35 and 50 µm wide resonators ranging in lengths of 100 µm to 

1000 µm are present. 
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Figure 5.2  and Figure 5.3 are AutoCad representations of cantilevered resonators.  These 

figures demonstrate the layout of the cantilevers on each die.  Each die contains three 

blocks of devices (Figure 5.4).  Each block represents a width set with the different 

widths being 20 µm, 35 µm and 50 µm wide.  Resonator lengths are ranging from 100 µm 

to 1000 µm.  The full stack PZT resonators are pictured as the thin green beams.  The thin 

blue beams beside the PZT resonators are single layered, SiO2 resonators (Figure 5.5).  A 

SiO2 resonator is placed next to each PZT resonator in order to determine whether the 

PZT resonator is fully released.  SiO2 resonators are nearly transparent and identifying 

whether they are partially or fully released under a microscope is relatively simple 

(Figure 5.6). Once the SiO2 resonators are released, the PZT resonators are assumed 

released as well.   
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Figure 5.5:  Schematic exhibiting SiO2 and PZT resonators. 
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Figure 5.6:  Silicon resonator exhibiting various stages of release. 

5.1.3 Fabrication / Release Processes 

After thin-film deposition and device design and layouts are complete, a six mask set is 

used to shape, fabricate and release the MEMS devices.  The devices are fabricated such 

that in each quarter, there are three die and with each devoted to single layered SiO2 

resonators, bilayered SiO2/TiPt resonators, trilayered SiO2/TiPt/PZT and full stack PZT, 

SiO2/TiPt/PZT/Pt resonators.  Each one of the masks is designed in AUTOCAD such that 

it contributes to the formation and shaping of the device through each of the deposited 

thin-film layers as well as the release of the entire structure.   

To begin, the first mask is used to pattern the top platinum electrode of the PZT structure.  

The platinum surface is typically patterned with photoresist, to define the shape of the top 

electrode.  The unwanted Pt is then removed via an ion milling process.  The formation of  

Release begins Release partially 
complete 

Release 
complete 
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Figure 5.7:  Mask #1 defining the top electrode area.  (a)  Full 
stack cantilevered resonators with top platinum electrode.  (b), (c), 
(d)  SiO2/TiPt/PZT, SiO2/TiPt, SiO2 cantilever with no top 
electrode layer. 

  

Figure 5.8:  Mask #2 defining PZT and bottom Pt area to be ion 

milled. 

the top electrode is clearly seen in Figure 5.7 (a).  In Mask #2, the definition of the PZT 

and the bottom Pt area to be ion milled can be seen.  Mask #3 defines area for wet etching 

and PZT removal.  Wet etching, also known as chemical etching, involves solutions of 

diluted chemicals to dissolve substrates.  In Figure 5.8, the green lines are used to show 

the protection for the inside areas from material removed and leaving only SiO2 in the  
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Figure 5.9:  Mask #3 defining area for wet etching and PZT 

removal. 

  

Figure 5.10:  Mask #4 defining area for etching SiO2. 

outside areas.  In Figure 5.8  (d), the PZT layer is clearly removed leaving only SiO2 to 

create the single layered cantilevered resonators.   

The final step is the application of Mask #4 for the final etching of the SiO2 layer (Figure 

5.10).  In Figure 5.10, all the cantilevered resonators have been shaped and formed.  

However, they are unreleased, meaning the bottom SiO2 layer is still in contact with the 

wafer substrate.  The fifth and final mask protects the entire resonator from being etched 

or damaged.  A XeF2 etch is applied in such a manner that the substrate is removed 



 

 105 
 

downward, and underneath the resonator as well (Figure 5.11) [2]. After some time has 

passed, the wafer is removed from the etch, put under a micro scope and devices are 

examined in a manner as shown in Figure 5.6.  Once its clear the neighboring SiO2 

resonator is fully released, its assumed that the other resonators containing the same 

geometries are also fully released (Figure 5.12). 

  

Figure 5.11:  XeF2 etching releasing resonators. 

  

SiO2 

TiPt 
PZT 

Pt 

Silicon Wafer 

XeF2 
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Figure 5.12:  Full stack resonator and SiO2 resonator post-

fabrication and release. 

 

5.2 Wafer Bow Stress Measurements 

During fabrication of multi-layered structures, thin-film layers are deposited, and wafer-

bow stress measurements are made via the equipment shown (Tencor FLX-2908) in 

Figure 5.13 
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Figure 5.13:  Instrumentation used for wafer bow measurement in 

thin-films [2]. 

Initially a wafer is placed on quartz pegs as shown in Figure 5.13 on the right.  A laser 

then scans the surface of the wafer in the direction of the heating elements.  Once the 

scan is complete, a radius of curvature is returned.  The wafer is rotated 90˚ and scanned 

again.  Once four scans are complete (360˚), the wafer is removed and a thin-film is 

deposited.  On completion of the deposition, the wafer is returned to the Tencor FLX – 

2908 and scanned again.  At each of the four points, a change in radius of curvature is 

calculated, and then a thin-film stress value may be calculated via Stoney’s formula.   

5.3 Woollam Ellipsometer 

Thin-film thicknesses were measured via an ellipsometer at the Army Laboratory in 

Adephi, MD.  An example of an ellipsometer is shown in Figure 5.14. 
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Figure 5.14:  Woollam Ellipsometer used for measuring thin-film 

thicknesses [40]. 

  

Figure 5.15:  Typical ellipsometry configuration, where linearly 

polarized light is reflected from the sample surface and the 

polarization change is measured to determine sample response 

[40]. 
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Ellipsometry measures a change in polarization as light reflects or transmits from a 

material structure.  The polarization change is represented as an amplitude ratio, Ψ, and 

the phase difference, ∆.  The measured response depends on optical properties and the 

thickness of individual materials [40].  An illustration of ellipsometry is shown in Figure 

5.15.  Primary tools for collecting the data are a light source, polarization generator, 

sample, polarization analyzer, and detector.  The ellipsometry measure changes in light 

polarization to determine the sample material’s properties such as film thickness.  The 

film thickness is then determined by the interference between light reflecting from the 

surface and light traveling through the film.  Depending on relative phase change of the 

rejoining light to the surface reflection, interference can be defined as constructive or 

destructive.  The interference involves both amplitude and phase information.  

Ellipsometry is typically used for films whose thickness ranges from sub-nanometers to a 

few microns.  As films become thicker, interference oscillations become increasingly 

difficult to resolve.  Thickness measurements require that a portion of the light pass 

through the entire film and return to the surface.  If the material absorbs the light, 

thickness measurements by optical instruments will be limited to thin, semi-opaque 

layers.  For metals with strong tendencies to absorb light, the maximum thickness tends 

to be 100 nm to circumvent this problem [40]. 

5.4 Optical Profilometer 

MEMS resonators deflections and curvatures are measured via the Veeco Optical 

Profilometer at the Army Research Laboratory in Adelphi, MD.   
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Figure 5.16:  Veeco optical profilometer [2]. 

White light is reflected from the sample combined with light from a reference mirror to 

produce a fringe pattern over the devices and the wafer, which the system measures [2].  

Fringes are seen in only a very small depth of field and by knowing the relative z position 

of the sample; the system can determine the vertical position of each point on the sample 

[2].  This system has a vertial range of up to 2 mm and a resolution of 3nm. 

In addition to the optical profilometer used at the Army Research Laboratory, an 

additional optical profilometer, a TM1200 system, was utilized via the Sensors and 

Actuators Laboratory in the Department of Mechanical Engineering at the University of 

Maryland. 

Wafer platform 

Scope 
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5.5 Dynamic Experiment Setup 

Dynamic experiments were conducted at the Maryland MEMS Laboratory, Department 

of Mechanical Engineering, University of Maryland.  Resonators are placed in a vacuum 

chambered probe station, with a probe on each the top and bottom electrodes (Figure 

5.17).  An electric current is applied and a sine sweep output of the resonator is 

determined via the spectrum analyzer.  A laser Doppler vibrometer is positioned in the 

center of each resonator examined, and used to measure the velocity of the top surface as 

its vibrating.   

  

Figure 5.17:  Experimental set for dynamic experiments at the 

Maryland MEMS Laboratory. 
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Figure 5.18:  Linear and nonlinear frequency response of a PZT 

resonator, 900 µm long, 35 µm wide. 

From initial sine sweeps of the resonators, the frequency response data showed decidedly 

linear characteristics (red solid line in Figure 5.18).  Typically, PZT devices are put 

through a polarization procedure before usage.  This is because PZT material is made up 

of domains of cells with dipole moments aligned in the same directions.  However, these 

directions can change from one region to another.  To align all dipoles in all regions, a 

large current is sent through the PZT resonator which aligns these dipole moments, which 

in the end, make these devices work more effectively.  However, once poling is complete, 

sine sweeps are conducted again, and the response clearly becomes nonlinear and 

exhibits Düffing behavior as shown in Figure 5.18. 
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6 RESIDUAL STRESS INDUCED DEFORMATION IN 
MEMS CANTILEVERS 

When the length of a plate is much longer than the plate width, the loading is such that 

the displacement w in the vertical direction is a function of the plate’s length L, along the 

x-axis.  In this case, the variables of displacement, u, v, and w are functions of x only 

(Figure 6.1).  In this case, spatially one-dimensional analysis of the laminated plate 

structure as a laminated beam, can be carried out on the basis of classical laminated plate 

theory.  Here, this type of analysis is carried out to determine the deformation fields. 

In this chapter, a description of a MEMS PZT cantilevered structure is presented.  The 

laminate stiffness and residual force and moments are given.  Residual stress induced 

deformation is discussed as is the neutral axis location and its effect on residual stress 

deformation, force and moments and laminate stiffness calculations. 

  

Figure 6.1:  Composite laminate plate resolved to a laminate beam 

for spatially one dimensional analysis. 
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6.1 MEMS Cantilever Description 

Beginning with a silicon wafer, SiO2 is deposited, followed by sputtered titanium and 

platinum, followed by spun PZT, and completed with a final layer of sputtered platinum.  

Through several fabrication and release processes, the MEMS cantilever in its true form 

is produced (Figure 6.2). 

  

Figure 6.2:  PZT cantilever [6]. 

6.2 One-Dimensional Analysis of MEMS Cantilevers 

In general, the stresses under consideration for a single laminate element is shown in 

Figure 6.3 
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Figure 6.3:  Lamina exhibiting stresses defined via Hooke’s Law. 

Thin beams in bending are usually modeled under the basis of the Euler-Bernoulli theory.  

According to this theory, the strains,
yy

ε , 
zz

ε , and 
yz

ε , are assumed zero for any stress 

state.  If one considers a Timoshenko beam, the strain xxε  is nonzero, and the strains xyε  

and xzε are considered to be small, but nonzero.  In Euler-Bernoulli’s theory, all strains 

are assumed to be zero, except the axial strain along the beam’s length, xxε .  This theory 

can be used to carry out one-dimensional analysis.  In the rest of this Section, this theory 

is used.  To obtain the constitutive equations describing a laminated composite beam, 

first revisit equations describing the classical laminated plate.  Since the main concern is 

analyses along the length of the MEMS cantilever, all derivatives with respect to y are set 

to zero, and equations become 
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The nonlinear strains and curvatures become 
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and the force-strain and moment-curvature relations and stiffnesses are defined as 
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Equations (6.1) through (6.5) effectively describe the transverse displacement of a 

MEMS cantilever based on classical laminate plate theory and Euler-Bernoulli beam 

assumptions. 

6.3 MEMS Cantilever Laminate Stiffness and Residual 
Force/Moment Description 

The MEMS cantilever shown in Figure 6.2 can now be modeled as an asymmetric 

laminated beam with multiple isotropic layers. 
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Figure 6.4:  Asymmetric laminate schematic of MEMS cantilever. 

The zero axis is taken from the top of the cantilever and the neutral axis is not taken into 

consideration here.  In general, the stiffnesses can be determined as 
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And hk are clearly defined by the laminate thicknesses.  Residual forces and moments are 

defined as  
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where hk is defined the same as the laminate stiffnesse, b is the cantilever width, E is 

material Young’s modulus value and Λk is the laminate layer’s residual strain.  The 

residual strain, Λk, is experimentally measured input. 

6.4 Residual Stress Induced Deformation and Preliminary 
Results 

Residual stress induced deformation can initially be predicted via the force-strain and 

moment-curvature relations.  When residual stress induced force and moments are taken 

into consideration, the force-strain and moment curvature relation can be written as  
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and solving for the curvature relation results in 
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The right side of (6.9) is constant whereas the left side is a nonlinear second order 

differential equation with respect to the transverse displacement and the beam’s length.  

For purpose of analysis in this Section, equation (6.9) can be broken into four equations 

as 
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 (6.11a,b) 

Equations (6.10 a,b) and (6.11 a,b) effectively describe the transverse displacement of a 

thin laminate beam.  The stiffnesses and residual force and moments are calculated via 

the formulae given in Section 6.3 where the h’s are formulated from using Figure 6.4.  In 

Figure 6.4, the zero axis is taken from the top of the beam and the neutral axis is not 

taken into consideration, and the extensional, bending and coupling stiffnesses are solved 

for.  (6.10 a,b) and (6.11a,b) are solved for the cases of when the coupling stiffness, B, is 

zero and nonzero to highlight the importance of including or excluding the coupling 

stiffness.   

An exact solution can be found for (6.10 a,b), by integrating the 22 xw ∂∂  twice and 

applying boundary conditions for a clamped-free beam leading to 

 ( ) 2

2

1
xxW κ=  (6.12) 
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 ( ) 2

2

1
LLW κ=  (6.13) 

and then equation (6.13) is the solution for the tip deflection of a cantilevered beam.  The 

nonlinear version of the deflection profile is solved by using the 4th
 order Runge Kutta 

method.   

Preliminary results, which describe the residual stress induced deformation of a MEMS 

cantilever are obtained through comparison of solutions from equations (6.10 a,b) and 

(6.11 a,b) with experimental data obtained from the Army Research Laboratory (ARL), 

Adelphi, Maryland.  Four wafers with MEMS cantilevers were obtained from the ARL 

(fabrication described in Chapter 5) and the results from one wafer are shown.  As the 

thin-film layers were laid on each of the wafers, the residual stress and the thin-film layer 

thicknesses were measured.  In addition to these parameters, three different sets of 

material properties (Young’s modulus) were used.  Each of the wafers has multiple 

cantilevers of different lengths.  After each of the cantilevers was released, the tip 

displacement was measured with an optical profilometer.  The residual stress and layer 

thickness values were used in calculating the residual stress induced force and moments.  

The thickness and Young’s Modulus values resulted in two sets of stiffness values that 

are used to verify the analytical model.  Finally, after the linear and nonlinear curvature 

relation are solved, the values calculated for the tip displacements of MEMS cantilevers 

were compared with the values experimentally measured via the optical microscope.  In 

Figure 6.5, the tip deflections are compared with analytical result obtained from the linear 

and nonlinear curvature relations.  If it is assumed that coupling exists between the 

extensional and bending stiffness components, from Figure 6.5, it is seen that 
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linear/nonlinear solutions to the beam’s curvature are nearly exact.  These two solutions 

clearly fit the experimental data better than if zero coupling was assumed. In Figure 6.6, 

the coupled curvatures produce a closer fit to the experimental data than the uncoupled 

curvatures.  In both Figure 6.5 and Figure 6.6, though the coupled 

 

Figure 6.5:  Tip deflections for MEMS cantilevers. 
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Figure 6.6:  Tip deflections for MEMS cantilevers. 

curvatures are a better fit, solutions fit neither set of experimental data well.  This results 

will be used as the motivation for Chapter 7.   

6.5 Neutral Axis Location and Its Effect on Residual Stress 
Deformation, Residual Force, Moment and Laminate 
Stiffness Calculations 

In calculating the tip deflections of Figure 6.5  and Figure 6.6, the curvatures in equation 

(6.13) come from calculations in (6.10 a,b) and (6.11 a,b).  These curvatures consist of 

extensional stiffness [ ]EA , bending stiffness , [ ]EI , coupled stiffnesses [ ]ES , and the 

residual force and moments.  How these parameters are calculated can have a varying 

effect on the curvature.  In this Section, the procedure developed in Section 3.5 to 

calculate stiffnesses in a laminate regardless of symmetry in laminate layers is used to 
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analyze laminate stiffnesses and residual force and moments excluding coupling 

stiffnesses and including the neutral axis location.  This method is also compared to the 

standard method of calculating the stiffnesses, forces and moments presented in Sections 

3.2, 3.3, and 3.4 that includes the coupling stiffnesses and excludes the neutral axis 

location.   

First, consider the layout of Figure 6.7 

  

Figure 6.7:  Laminate beam showing neutral axis location, Zn and 

various other locations for the zero axis starting position. 

The laminate beam in Figure 6.7 shows the neutral axis location of the beam as well as 

several zero axis starting positions (Z1,…,Z9).  Each one of these starting positions are 

placed throughout the beam in such a way as to map the location’s effect on the stiffness, 
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force, moment and curvature calculations.  From each of these starting positions, a set of 

h’s are defined Table 6.1 as 
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Table 6.1:  h locations for various zero axis starting positions (µm) 

h1 h2 h3 h4 h5 h6 

Z
1 

0 tsio2 tsio2+tpt 
tsio2+tpt+
tPZT 

tsio2+tpt 

+tPZT+tpt 
 

Z
2 

-1/2*tsio2 0 1/2*tsio2 
1/2*tsio2

+tpt 
1/2*tsio2 

+tpt+tPZT 

1/2*tsio2+
tpt 

+tPZT+tpt 

Z
3 

-tsio2 0 tsio2+tpt 
tsio2+tpt+
tPZT 

tsio2+tpt 

+tPZT+tpt 
 

Z
4 

-(1/2*tpt+tSiO2) -(1/2*tpt) 0 (1/2*tpt) 
(1/2*tpt+t

PZT) 
(1/2*tpt 
+tPZT+tpt) 

Z
5 

-(tpt+tSiO2) -(tpt) 0 tPZT tPZT+tpt 
 

Z
6 

-(1/2*tPZT 

+tpt+tSiO2) 

-
(1/2*tPZT

+tpt) 

-
(1/2*tPZT) 

0 (1/2*tPZT) 
(1/2*tPZT

+tpt) 

Z
7 

-(tPZT+tpt+tSiO2) -(tPZT+tpt) -(tPZT) 0 tpt 
 

Z
8 

-
(1/2*tpt+tPZT+tpt+t

sio2) 

-
(1/2*tpt+t

PZT+tpt) 

-
(1/2*tpt+t

PZT) 

-
(1/2*tpt) 

0 
(1/2*tpt) 

Z
9 

-(tpt+tPZT+tpt+tsio2) 
-
(tpt+tPZT+
tpt) 

-(tpt+tPZT) -(tpt) 0 
 

 
Table 6.2:  Zero axis positions (µm) 

Z1 = 0 Z6 = tsio2+ tpt+tPZT/2 

Z2 = tsio2/2 Z7 = tsio2+ tpt+tPZT 

Z3 = tsio2 Z8 = tsio2+ tpt+tPZT+tpt/2 

Z4 = tsio2+ tpt/2 Z9 = tsio2+ tpt+tPZT+tpt 

Z5 = tsio2+ tpt Zn = Neutral Axis Location 

and the zero axis positions in relation to the laminate thicknesses for the h’s in Table 6.1 

are listed in Table 6.2.   

The stiffnesses, forces and moments are calculated first, about the listed zero axis 

positions. Then, the tip deflections are calculated similar to those  used to generate the 

results of Figure 6.5 and Figure 6.6.  The results obtained are shown in Figure 6.8. 
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Figure 6.8:  Cantilever deflections (µm) versus cantilever lengths 

(µm) for nine different zero axis locations, and three stiffness 

methods (Coupled – straight black line, Uncoupled – dashed line, 

Neutral axis – straight black line included, Experimental Data - 

dotted). 
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Figure 6.9:  Zero axis locations (µm) versus curvatures taken from 

thin laminate curvature calculations from equations 6.14. 

When considering coupled, uncoupled and neutral axis included stiffnesses, the general 

curvature formula considered is  
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 (6.14) 

In equation (6.14), the only difference between Method #1 and Method #2 is that in 

Method #2 the coupled stiffness is assumed zero.  Method #1 and Method #2 do not take 

the neutral axis into consideration as does Method #3.  In method three, the coupling 

stiffness naturally becomes zero and may be dropped (derived in Section 3.5) from 
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equations of motion.  Several conclusions can be drawn from the figures in Figure 6.8.  

First, that Method #1 and Method 3 have the exact same solution which is also shown in 

Figure 6.9 where the curvatures are plotted (represented by the black line).  In addition, 

no matter the location of the zero axis, the curvatures do not vary and produce the exact 

same solutions.  However, the uncoupled solution of Method #2 varies in curvature and 

deflections and should never be used in these types of calculations.  Finally, since 

Method #1 and Method #3 produce the same solutions, Method #3 would be more ideal 

to use in modeling because it enables the coupling terms to always be neglected.  Method 

3, in a sense, takes an asymmetric laminate and makes it a symmetric laminate about its 

neutral axis, thereby allowing for the neglect of coupling stiffness terms.   

In addition, Methods 1 and 3 have been plotted for the stiffness, force and moments for a 

varying zero axis in Figure 6.10 to Figure 6.19.  Though they produce the same curvature 

values as was shown in Figure 6.9, there is large variations in individual laminate layer 

values.  In Figure 6.10 and Figure 6.11, the coupling stiffnesses are plotted.  As seen 

from Figure 6.10, when the zero axis changes, the stiffness values also change.  In 

addition, the composite coupling stiffness changes over a very large range, -60 N/µm^2 

to 40 N/µm^2.  In comparison, Method #3 whose results are pictured in 6.11 clearly show 

that though the individual layer coupling stiffnesses are nonzero, that the composite 

stiffness is always zero, enabling that stiffness to be neglected.  Figure 6.12 and Figure 

6.13 show the exact same result for both methods when calculating the extensional 

stiffness.  This is because the neutral axis location cancels out when calculating Method 

#2, thereby making the extensional stiffness not dependent on neutral axis location.  In 

Figure 6.14, there is a large difference and variation in the determined values of the 
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bending stiffnesses for each layer, the composite structure, compared to the results of 

Figure 6.15.  Figure 6.16 and Figure 6.17 show similar results for the residual moments.  

The residual forces in Figure 6.18 and Figure 6.19  show the exact same result, smiliar to 

the results from the extensional stiffness calculations, because the residual force 

calculation is not dependent on the neutral axis location.  In conclusion, both methods 

accurately calculate the same curvatures and deflections.  However, Method #3 should be 

more widely used for isotropic composite laminates because the coupling stiffness may 

be neglected allowing one to deal with a simpler form of the governing equation of 

motion. 
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Figure 6.10:  Coupling stiffnesses B for each individual laminate 

layer calculated via Method #1 for any zero axis position.  ESSiO2 

is the coupling stiffness for the SiO2 layer, ESPt is the coupling 

stiffness for the platinum layer, ESPZT is the coupling stiffness for 

the PZT layer,  ESPt is the coupling stiffness for the top Pt layer.    
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Figure 6.11:  Coupled stiffnesses [ ]B  are zero (composite) and 

calculated via Method #3.  ESSiO2 is the coupling stiffness for the 

SiO2 layer, ESPt is the coupling stiffness for the platinum layer, 

ESPZT is the coupling stiffness for the PZT layer, ESPt is the 

coupling stiffness for the top Pt layer. 
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Figure 6.12:  Extensional stiffnesses calculated via Method #1. 

EASiO2 is the extensional stiffness for the SiO2 layer, EAPt is the 

extensional stiffness for the platinum layer, EAPZT is the 

extensional stiffness for the PZT layer, EAPt is the extensional 

stiffness for the top Pt layer. 
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Figure 6.13:  Extensional stiffnesses calculated via Method #3. 

EASiO2 is the extensional stiffness for the SiO2 layer, EAPt is the 

extensional stiffness for the platinum layer, EAPZT is the 

extensional stiffness for the PZT layer, EAPt is the extensional 

stiffness for the top Pt layer. 
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Figure 6.14:  Bending stiffnesses calculated via Method #1.  EISiO2 

is the bending stiffness for the SiO2 layer, EIPt is the bending 

stiffness for the platinum layer, EIPZT is the bending stiffness for 

the PZT layer, EIPt is the bending stiffness for the top Pt layer. 
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Figure 6.15:  Bending stiffnesses calculated via Method #1. EISiO2 

is the bending stiffness for the SiO2 layer, EIPt is the bending 

stiffness for the platinum layer, EIPZT is the bending stiffness for 

the PZT layer, EIPt is the bending stiffness for the top Pt layer. 
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Figure 6.16:  Residual moments calculated via Method #1.  MRSiO2 

is the residual moment for the SiO2 layer, MRPt is the residual 

moment for the platinum layer, MRPZT is the residual moment for 

the PZT layer, MRPt is the residual moment for the top Pt layer. 
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Figure 6.17:  Residual moments calculated via Method #3. MRSiO2 

is the residual moment for the SiO2 layer, MRPt is the residual 

moment for the platinum layer, MRPZT is the residual moment for 

the PZT layer, MRPt is the residual moment for the top Pt layer. 
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Figure 6.18:  Residual forces calculated via Method #1.  NRSiO2 is 

the residual force for the SiO2 layer, NRPt is the residual force for 

the platinum layer, NRPZT is the residual force for the PZT layer, 

NRPt is the residual force for the top Pt layer. 
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Figure 6.19:  Residual forces calculated via Method #3.  NRSiO2 is 

the residual force for the SiO2 layer, NRPt is the residual force for 

the platinum layer, NRPZT is the residual force for the PZT layer, 

NRPt is the residual force for the top Pt layer. 

 



 

 140 
 

7 CHARACTERIZATION OF RESIDUAL STRESSES IN 
MEMS DEVICES 

The stress that occurs during thin-film deposition, fabrication and release processing can 

induce structural defects and impede device performance.  Modeling residual stress can 

be an extremely difficult task.  In prior studies, the focus has primarily been on residual-

stress measurements in thin-films as they are being deposited and prior to the release of a 

particular device. In this chapter, residual stresses in MEMS resonators are characterized 

pre- and post-micro-machining and release of the structures via several static and 

dynamic techniques. 

7.1 Static Technique:  Wafer Bow Measurements and Stoney’s 
Formula 

During fabrication of multi-layered structures, thin-film layers are deposited, and wafer-

bow measurements are taken to measure the residual stress in each layer by using the 

instrumentation shown in Figure 5.13 [2]. In the experiments, first an initial radius of 

curvature R1 on the substrate is measured. After deposition of a thin-film, the radius of 

curvature of the wafer is changed due to the residual stress. The measurement system is 

again used to measure the radius of curvature R2 after the thin-film deposition, and the 

radius of curvature is then defined and calculated from 
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Once the radius of curvature R is known, the residual thin-film stress is determined from 

Stoney’s formula; that is, 
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υ
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=  (7.2) 

In equation (7.2), σave is the average thin-film stress, E is the Young’s modulus, is the 

Poisson’s ratio, and t is the thickness. The average is used because in most cases, one 

scan across the wafer is not sufficient.  The wafer is scanned initially, then rotated and 

scanned again at 45º, 90º, and 135º angles. The average of all of these measurements is 

then determined. This technique determines the individual material layer stresses, and to 

find a composite value, a volumetric average is taken. Since these residual stress 

measurements are determined before fabrication, photo patterning or release steps have 

occurred, the stress values are assumed to be the residual stress values before a device is 

released.  However, though this stress value clearly characterizes thin-film stress and 

stress in a MEMS device prior to fabrication and release, this value is often used as the 

residual stress value that that exists in MEMS device post-release.  The following 

Sections will characterize the stress post-release. 
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7.2 Static Technique:  Residual Stress Identification in MEMS 
Cantilevers 

Past work related to residual stress in MEMS cantilevers had focused more on modeling 

the deflection profiles produced by the stress rather than predicting the stress and 

understanding the deflections it produces.  Pulskamp et al. [6] observed severe 

deflections in micro cantilevers post-fabrication and release processing  

  

Figure 7.1:  MEMS cantilevers exhibiting large curvatures. 

  

Figure 7.2: MEMS cantilevers exhibiting large curvatures. 
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Pulskamp et al. utilized a linear and nonlinear beam curvature model to predict the static 

transverse deflection of these cantilevers.  Residual stress measurements were taken via 

the Tencor FLX-2908 bow measurements and Stoney’s formula (Sections 5.2, 5.4, 7.1) a 

the Army Research Laboratory.  These stress measurements were taken during thin-film 

deposition and it was assumed that the stress that exists in each cantilever post-

fabrication and release processing.  In addition, these stress measurements were inserted 

into the beam curvature models and used as the driving force for the deflections that 

occurred in the cantilevers.  Pulskamp et al. models showed good correlation between 

analytical and experimental data.   

Based of Pulskamp’s model and the work completed in Chapter 6, a technique to predict 

residual stress in MEMS cantilevers is presented in this Section.  To begin, residual stress 

induced deformation can be predicted via the force-strain and moment-curvature relations 

as  
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where { }xxxx MN  are force and moments resultants induced by a general stress field.  

Furthermore, { }RR MN  are force and moment resultants produced by a residual stress 

field respectively.  [ ]EA , [ ]EI  and [ ]ES  are the extensional, coupling and bending 

stiffnesses.  If is assumed that all outside stresses are zero, besides residual stress acting 

in the MEMS cantilever, then the strains and curvatures of equation (7.4) may be solved 

as 
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and the curvature relation becomes 
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If equation (7.5) is integrated twice, stiffness methodologies and calculations of Sections 

3.5 and 6.5 are applied, the tip deflections of MEMS cantilevers may be modeled and 

solved for as 
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In general, if the laminate layer stresses are known, then the residual moment maybe 

calculated as 
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In addition,  a structure’s composite residual moment maybe be calculated as 

 cccRR twdNM σ







== 2

2

1
 (7.8) 

where NR is the residual force, d is the moment arm, wc is the width of the cross-Section 

of the beam, tc is the thickness or height of the cross-Section and σc is the composite 

residual stress that acts in the axial direction along a beam length.   
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 Table 7.1:  Residual stress range (MPa) for identification scheme 

 LowerBound UpperBound 

Composite Residual Stress -2000 MPa 2000 MPa 

To begin the residual stress identification scheme, equation (2.8 will be used in 

calculation of the beam curvature in equation (2.6.  The composite residual stress in 

equation (2.8 will be chosen in a range given in Table 7.1.  The residual stresses observed 

in the materials used in PZT structures can very dramatically in each individual layer, a 

micro structure as a whole as well as wafer to wafer and run to run as thin-films are being 

deposited and devices are fabricated and released.  Though these stresses can vary 

dramatically, they still vary within a range.  The range chosen in Table 7.1 is chosen 

initially to encompass all possible composite stresses that might occur in a PZT structure.   

Once the composite residual stress is defined, this stress is inserted into equation (7.8) to 

calculate the composite residual moment; the composite moment is then inserted into 

equation (7.6) to calculate the cantilever’s tip deflection.  This tip deflection is then 

compared to and experimentally measured tip deflection of a PZT cantilever with the 

same dimensions and material parameters.  An error function is defined and calculated as 

 ( ) ( ) ( )nWnWnerror erimentalexp_tipanalytical_tip −=  (7.9) 

where Wtip_analytical is the solution produced via equation (7.6) and Wtip_experimental are 

experimentally measured tip deflections measured experimentally.  By using this scheme, 

an error value is calculated for every stress value chosen in the range defined in Table 

7.1.  The minimal error out of all calculated is located, and the composite residual stress 
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that produces that minimal error, is assumed to be the device residual stress value post-

fabrication and release processing.  An important note to make is here is to calculate the 

residual moment via the composite residual moment formula of (7.8).  If equation (7.7) is 

used, instead of needing one composite residual moment value for the entire structure, 

four individual moment values will be needed to accurately describe each laminate layer 

in the PZT structure.  There can possibly be an infinite number of combinations of 

laminate layer residual moments that can produce one composite residual moment value.  

For this reason, the main focus of this technique will be using the composite values. 

  

Figure 7.3:  Residual stress identification process. 
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composite 
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(3) Calculate 
cantilever tip 

deflection (7.6) 

(4) Calculate 

model error (7.9) 

(5) Locate lowest ERROR(n), 
identify corresponding 

residual stress as device 
stress value 



 

 147 
 

7.3 Dynamic Technique:  Parametric Identification of MEMS 
Resonators 

In this Section, the development of a dynamic technique related to the parametric 

identification of MEMS resonators is presented.  Dick et al. ([10], [41]) observed that 

frequency-response data obtained from piezoelectric micro-scale resonators revealed 

nonlinear characteristics.  These resonators are multi-layered structures with the mid-

Section typically having three layers and each of the end Sections having four layers.  

Such a clamped-clamped resonator is shown in Figure 7.4. 

  

Figure 7.4:  Schematic of a clamped-clamped micro resonator with 

partial top platinum layers. 

The governing equation for the transverse displacement of a section of the resonator in 

Figure 7.4 can be written as 
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In equation (7.10), Wn is the transverse displacement field in the nth Section of the 

structure, x is the horizontal position along the length of the resonator, ρAn is the mass per 
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unit length of the nth Section, P is the axial force, An is the area of the nth cross-Section, 

M1 is the moment term due to the distributed piezoelectric actuation and u is the unit step 

function that is used to describe the localized actuation.   

To reduce equation (7.10) to the reduced-order model form of the Düffing oscillator, a 

single mode approximation is assumed as  

 ( ) ( ) ( )txztxW φ=,  (7.11) 

where W is the transverse displacement, z is the time dependent amplitude and Φ(x) is the 

beam deflection profile or mode shape, which depends on the boundary conditions.  After 

inserting equation (7.11) into equation (7.10), the equilibrium equation is reduced by 

using the first order approximation to produce the Düffing oscillator as 

 ( )t*cos*Fz*kzzczm ωα =+++ 3&&&  (7.12) 

where m is the modal mass, c  is the modal damping, k  is the linear stiffness coefficient, 

α  is the nonlinear stiffness coefficient, F is the forcing amplitude and ω is the excitation 

frequency.  Carrying out a weakly nonlinear analysis by using the method of multiple 

scales leads to the approximate solution 

 ( ) ( ) ( ) ...cos TOHttatz +−= γω  (7.13) 

where the amplitude and phase are governed by  
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In equation (7.14), σ is a detuning parameter.  The fixed point equations for this system 

can be combined to produce the frequency – response equation 
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
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The Jacobian matrix can be constructed, and shown that the critical points need to satisfy 

equation (7.15) as well as 
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As described in the work of Dick et al. ([10], [41]), on the basis of the frequency-

response of equation (7.16), the experimental frequency-response data is curve fit by 

using a least-squares scheme to determine the different parameters including linear 

stiffness, nonlinear stiffness, damping coefficient, and the forcing factor. In Figure 7.5, 

representative frequency-response curves (red) are shown along with the corresponding 

response curve (blue) obtained when one of the parameters in (7.16) is varied. The blue 

curves in Figure 7.5(a) correspond to the case when damping is decreased from the 

nominal case. The blue curves in Figure 7.5 (b), (c), and (d) correspond to cases where 

the linear stiffness has been increased from the nominal case, the nonlinear stiffness has 

been increased from the nominal case, and the forcing amplitude has been decreased, 

respectively. 
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Figure 7.5:  Representation frequency-response curves that aid in 

determining  various parameters: (a) sensitivity to damping, (b) 

sensitivity to linear stiffness, (c) sensitivity to nonlinear stiffness 

and (d) sensitivity to forcing amplitude. 

By using the least-squares method, the corresponding parameters in the forced Düffing 

oscillator are determined. Once these parameters are known, a finite element model is 

used to determine the modal mass and the axial force P.  The axial force, P, is then 

adjusted until the fundamental frequency of the model matches the identified 

fundamental frequency.  Once the axial force is known, the residual stress at a location 

along the resonator can be calculated.   

The equations and parametric identification scheme presented in this Section is 

implemented for the purpose of measuring the residual stress in resonators. As previously 

mentioned, residual stresses in resonators are typically measured via wafer-bow 

measurements. However, these measurements are taken during fabrication as thin-films 
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are being deposited and before the resonator is released. It’s often assumed that the 

residual stress measured via wafer-bow measurements does not change after the resonator 

is released. This Section will aid in characterizing residual stress in a micro resonator, 

after it has been released and during a frequency-response. 

7.4 Static technique:  Parametric Identification of MEMS 
Resonators 

In this Section, the resonator of interest is the clamped-clamped structure shown in Figure 

7.4.  The resonator can be thought of as a long thin structure under a compressive load 

(Figure 7.6).  This clamped-clamped structure is assumed to be subjected to an axial load 

caused by residual stress.  This residual stress or axial force (NR) induces bending in 

resonators.  The equation of motion describing the static deflection profile of the 

resonator given in Section 2.1 reads as 
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Figure 7.6:  Resonator treated as a long thin structure under a compressive load. 
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where NR is the axial force residual produced via residual stress and EI is the flexural 

rigidity or bending stiffnesses.  Equation (7.17) produces the characteristic equation 
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+ m
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which contains two repeated roots and a pair of complex conjugate roots.  This, in turn, 

produces a solution to static deflection profile of equation (7.17) 
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The boundary conditions for a clamped-clamped beam are given by 

 ( ) ( )
( ) ( ) 000

000

0

====

====

==

t,LxWt,xW

t,LxWt,xW

Lxx

xx

 (7.20) 

When the first set of boundary conditions are applied at x = 0, the first two coefficients 

are solved for as 
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Inserting these coefficients into (7.19) 
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and applying the first of the second set of boundary conditions results in an expression 

for c3 as 
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If the first three coefficients are inserted into the second boundary condition at x = L, the 

result is  the following characteristic equation as  
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Equation (7.24) is solved by applying the biSection method for an infinite number of 

roots, the first being determined as β1=6.2768.  For this value, the residual force, moment 

and stress value may be calculated from the following equation as 
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These force, moment and stresses are known as the buckling forces, moments and 

stresses due to residual stress.  From this, the buckling residual stresses will be compared 

to similar results in previous Sections. 

In addition to calculating and comparing the buckling stresses, a procedure is also 

included here to approximate the fourth coefficient of the deflection profile based off of 
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the first buckling mode as well as experimentally measured center resonator deflections.  

To begin, insert the three known coefficients into equation (7.19) as well as the center 

length, x = L/2 
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which can be simplified to 
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where the center deflection is that of an experimentally measured resonator.  Some 

important observations can be made concerning equation (7.29).  If the first buckling 
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mode is considered, then β1 = 6.2768.  This value is very close to 2π.  Because of this, 

cos(2π) = 1 and both c2 and c3 go to zero.  Equation (7.29) reduces to 
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Again, if β1 = 6.2768, then ( ) ( ) ( ) 1222 −==≅ ππβ cos/*cos/cos n  and the fourth and 

final coefficient of the deflection profile may be solve for as 
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8 COMPARISON OF TECHNIQUES, DISCUSSION AND 
RESULTS 

In this chapter, different methods that can be used to determine the residual stress values 

in a composite MEMS structure have been discussed.  Analytical and experiment results 

produced from Sections 7.1 through 7.4 are presented, by using these methods.  These 

results help understand the residual stress state before release and post-release. 

8.1 Results From Wafer Bow Measurements and Stoney’s 
Formula 

During resonator/cantilever fabrication, thin-film layers were deposited and wafer bow 

curvature measurements were taken via the Tencor FLX-2908 (Section 5.2, Figure 5.13) 

and converted to residual thin-film stress measurements via Stoney’s formula (Section 

7.1). Representative results are shown in Table 8.1. 
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Table 8.1:  Results from wafer bow measurements and Stoney’s 
formula 

Orientation Film Stress Thickness  Orientation Film Stress Thickness 
Degrees Layer MPa A  degrees Layer MPa A 

0 SiO2 -164.5 -5278  0 Pt 342.7 -1884 
45 SiO2 -108.5 -5278  45 Pt 342 -1884 
90 SiO2 -85.8 -5278  90 Pt 347.7 -1884 

135 SiO2 -93.8 -5278  135 Pt 342.8 -1884 

 

Average 
thin-
film 

residual 
stress 

-
113.15 
MPa 

   

Average 
thin-
film 

residual 
stress 

343.8 
MPa 

 

         

Orientation Film Stress Thickness  Orientation Film Stress Thickness 
Degrees Layer MPa A  degrees Layer MPa A 

0 PZT 135.5 -5202  0 Top Pt 52.8 -1050 
45 PZT 125 -5202  45 Top Pt 69.6 -1050 
90 PZT 130.6 -5202  90 Top Pt 60.6 -1050 

135 PZT 133.6 -5202  135 Top Pt 66.4 -1050 

 

Average 
thin-
film 

residual 
stress 

131.18 
MPa 

   

Average 
thin-
film 

residual 
stress 

62.35 
MPa 
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In table 8.1, the layer stress values for each orientation are shown.  Though there are 

some differences for each layer’s differing orientations, the average value is taken and 

assumed to be that layer’s residual thin-film stress value.  The composite stress for all 

four laminate layers is calculated via a volumetric average and given in Table 8.2.  This 

composite stress value is that of the four thin laminate layers that are initially deposited 

on the wafer, and before fabrication and release processes begin.  The results from the 

three techniques presented in Sections 7.2 to 7.4 be used will characterize residual 

stresses post processing in individual devices.   

Table 8.2:  Thin-film layer stresses and composite stress calculation 

Material Thickness (µm) Stress N/µm^2 

SiO2 .5278 -113.15e-06 

Pt 1884 343.8e-06 

PZT 5202 131.18e-06 

Pt 1050 62.35e-06 

 Composite Residual Stress 59.5169 
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8.2 Results From the Static Technique Applied to MEMS 
Cantilevers 

The static technique of Section 7.2 is applied to PZT cantilevered devices taken from five 

wafers with differing thicknesses, wafer bow results, and cantilever length and widths.  

The cantilever dimensions are given in Table 8.3 to Table 8.5.  Post-fabrication and 

release, the cantilevers in the following table are scanned via the optical profilometer 

shown in Section 5.4.  A typical scan is shown in Figure 8.3 and Figure 8.4.  From these 

scans, deflections profiles were saved, and cantilever tip deflections were extracted and 

inserted into the technique from Section 7.2 in order to extract individual device residual 

stress values.  These cantilever tip deflections are shown in Figure 8.1 and Figure 8.2.  

The straight lines in these figures represent analytically predicted model deflections, 

driven by residual stress value taken during thin-film deposition (composite stress values 

calculated for each wafer, Table 8.1 and Tabel 8.2).  Clearly the model predicted profiles 

via wafer bow measurements and Stoney’s formula do not match the experimental data 

well.  The technique of Section 7.2 is applied; the composite residual stress is varied until 

the deflection profile matches experimental data with the lowest error.  This lowest error 

indicates that the corresponding residual stress is the individual device stress value post-

fabrication and release.  Results for individual cantilevered devices are shown in Figure 

8.5.  For cantilevers on the same wafer, wafer #5, two widths sets corresponding to 20 

µm and 35 µm cantilevers are compared.  There are some slight differences in the stress 

values produced with each set.  However, regardless of the width, nearly the same 

residual stress value is produced for each individual length.  This indicates that the width 

effect does not affect the cantilever deflection and residual stress values as assumed 

through Euler-Bernoulli beam theory.  In comparison to other wafers of cantilevers of 
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different length and width sets, there are some noticeable differences in the residual stress 

values produced.  Wafers #1 through #4 have cantilevers of similar lengths and widths.  

However, there are differences in the individual thin-film layer thicknesses for each of 

those wafers.  If Table 8.6 is examined, it can be seen that the SiO2 and PZT are the two 

layers, whose values vary with thickness.  If wafer #3 and wafer #4 are compared, the 

residual stress values are similar for each length, with a difference of approximately 5 

MPa for each length in each set.  When examining the layer thicknesses, one can see that 

the SiO2 layer thickness for wafer #4 is over two times that of wafer #3.  This thicker 

thin-film layer clearly produced lower stress values.  The major difference in 

comparisons of all the wafers, is the laminate layer thicknesses driving the deflection 

profiles and the corresponding residual stress values. 
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Figure 8.1:  Cantilever tip deflection data.  Asterisks represent 

experimentally measured tip deflections; straight line represents 

analytically predicted tip deflections. 

  

 



 

 162 
 

  

  

Figure 8.2:  Cantilever tip deflection data.  Asterisks represent 

experimentally measured tip deflections, straight line represents 

analytically predicted tip deflections. 
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Figure 8.3:  Optical profilometer scan of three cantilevered 

resonators.  (a)  250 µm long, 20 µm wide PZT resonator.  (b) 300 

µm long, 20 µm wide PZT resonator.  (c) 300 µm long, 20 µm 

wide SiO2 resonator.  Obtained via optical profilometer at the 

Army Research Laboratory, Adelphi, MD. 
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Figure 8.4:  Y Profile from optical profilometer scan. .  Obtained 

via optical profilometer at the Army Research Laboratory, 

Adelphi, MD. 
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Table 8.3:  Wafer #1 and Wafer #2:  cantilever widths, lengths, tip 

deflections. 

Wafer #1 (µm)  Wafer #2 (µm) 
Width length tipdeflection  width length tipdeflection 
100 100 0  100 100 -1.2 
100 200 6  100 200 -6.9 
100 300 14  100 300 -10.4 
100 400 21  100 400 -20.8 
100 500 29  100 500 -28.9 
100 600 42  100 600 -37 
100 700 56  100 700 -45.1 
100 800 75  100 800 -62.5 

 

Table 8.4:  Wafer #3 and Wafer #4:  cantilever widths, lengths, tip 

deflections. 

Wafer #3 (µm)  Wafer #4 (µm) 
width length tipdeflection  width length tipdeflection 
100 50 -0.3  100 50 0 
100 75 -0.9  100 75 -0.2 
100 100 -2.1  100 100 -0.6 
100 125 -3.5  100 125 -1.1 
100 150 -4.7  100 150 -1.3 
100 175 -7.1  100 175 -1.9 
100 200 -9.3  100 200 -2.5 
100 225 -11.6  100 225 -3.2 
100 250 -14.3  100 250 -3.8 
100 275 -19.3  100 275 -4.4 
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Table 8.5:  Wafer #5:  cantilever widths, lengths, tip deflections. 

Width 
(µm) 

Length 
(µm) 

Tipdeflection 
(µm) 

Width 
(µm) 

Length 
(µm) 

Tipdeflection 
(µm) 

20 100 1.6 35 100 1.5 
20 200 4.0 35 200 3.6 
20 300 10.1 35 300 11.3 
20 400 23.7 35 400 23.8 
20 500 41.5 35 500 40.3 
20 600 72.1 35 600 62.4 
20 700 94.1 35 700 88.3 
20 800 114.3 35 800 113.0 
20 900 146.3 35 900 143.2 
20 1000 177.9 35 1000 169.2 

      
width length tipdeflection width length tipdeflection 

20 100 1.2 35 100 1.1 
20 200 2.8 35 200 3.8 
20 300 9.9 35 300 11.2 
20 400 21.1 35 400 22.9 
20 500 33.7 35 500 37.5 
20 600 53.1 35 600 57.8 
20 700 76.9 35 700 83.6 
20 800 99.4 35 800 106.3 
20 900 126.8 35 900 128.3 
20 1000 159.5 35 1000 162.4 
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Figure 8.5:  Composite residual stresses for individual cantilevered 

devices approximated from the static technique given in Section 

7.2. 
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Figure 8.6 (a) & (b):  Individual wafer composite residual stress 

(Comp. RS) in comparison to cantilevered device residual stress 

(Device RS). 
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Figure 8.7 (a) & (b):  Individual wafer composite residual stress 

(Comp. RS) in comparison to cantilevered device residual stress 

(Device RS). 
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Figure 8.8 (a) & (b):  Individual wafer composite residual stress 

(Comp. RS) in comparison to cantilevered device residual stress 

(Device RS). 
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Figure 8.9 (a) & (b):  Individual wafer composite residual stress 

(Comp. RS) in comparison to cantilevered device residual stress 

(Device RS). 
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Table 8.6:  Thin-film layer thicknesses by wafer (µm). 

Wafer SiO2 Pt PZT Pt 
Wafer#1 1.6688 0.16 2.0145 0.1 
Wafer#2 0.737 0.16 1.461 0.1 
Wafer#3 0.5122 0.1 0.5006 0.105 
Wafer#4 1.1177 0.1 0.4948 0.105 
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8.3 Results From Dynamic Technique Applied to MEMS 
Clamped-Clamped Resonators 

The dynamic technique of Section 7.3 is applied to PZT clamped-clamped devices 

through the experimental arrrangement described in Section 5.5.  From initial sine sweeps 

of the resonators, the frequency-response was decidedly linear (red line in Figure 8.10).  

Typical PZT devices are usually poled (send current through device for small length of 

time to align all dipoles in PZT material).  A current of 10V was passed through the 

resonator for 10 minutes, the sine sweep was repeated.  The frequency-response, after 

poling, now exhibits the nonlinear behavior as exhibited by a Düffing oscillator.   

 

Figure 8.10:  Linear and nonlinear frequency-response of a PZT 

resonator, 900 µm long and 35 µm wide. 
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Frequency-response data for resonators of lengths varying between 300 µm and 1000 µm 

as well as two width sets, 20 µm and 35 µm wide were taken post poling of the devices.  

The analytical model was fit to the experimental data and system parameters (mass, linear 

and nonlinear stiffness coefficients, damping coefficients, forcing factor, and axial force) 

were determined (Figure 8.11).  In addition, the RMS error was calculated and ranged 

from 1.5 nm to 25 nm.  Since most deflection amplitudes were over 1000 µm, a 

maximum error of 25 nm was considered extremely small in comparison.  The final 

results from this technique are shown in Figure 8.12 and Figure 8.13.  In Figure 8.12, the 

axial force for two width Sections are shown and  compared to the axial force produced 

via the dynamic technique for two different width sets, 20 µm and 35 µm wide.  The axial 

forces are dependent on the width of these structures.  However, when using these forces 

to calculate the residual stress values, the width is not a factor.  The residual stress value 

for each device is not dependent on width but dependent on its length (Figure 8.13.). 

  

Figure 8.11:  Sample results obtained from the dynamic technique 

for a single resonator. 



 

 173 
 



 

 174 
 

  

Figure 8.12:  Axial force calculated via the dynamic technique for 

varying lengths and widths (squares) and the axial force calculated 

via wafer bow measurements and Stoney’s formula. 



 

 175 
 

  
Figure 8.13:  Residual stress calculated via the dynamic technique 

for varying lengths and widths (squares) and the axial force 

calculated via wafer bow measurements and Stoney’s formula. 
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8.4 Results From the Static Technique: Parametric Identification 
of MEMS Resonators 

Results in this Section are obtained via the application of the Section 7.4.  Again, the 

same resonators from Sections 7.3 and 8.3 are examined.  These resonators have varying 

lengths between 300 µm to 1000 µm as well as two width sets, 20 µm and 35 µm.  Each 

of these resonators was examined under the optical profilometer (Section 5.4).  A 

deflection profile was measured and the analytical mode was fit to the experimental data 

(center deflections of these resonators), from which device residual stress measurements 

resulted.  Two representative results are shown in Figure 8.14 exhibit results from this 

technique.  Beginning with a zero residual stress value (flat resonator), the residual stress 

is increased until the shape of the deflection profile matches that of experiment.  As a 

result of fabrication and release processing, micro resonators are often deflected because 

of residual stress.  However, when the resonators in this study were fabricated and 

released, they were with zero deflections, the center deflection was flat or zero. 
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Figure 8.14:Deflection profiles for a 300 µm and 700 µm long 

resonators under various levels of residual stress. 

   

Figure 8.15 (a,b):  Critical force and residual stresses obtained 

from the static technique of Section 7.4. 

From Section 7.4, the solution to the critical equation takes the form of 

27686.EI/NL RSn ==β , then the critical force and residual stress values may be 

solved for as in equations (7.25) through (7.29).  The obtained results and are shown in 

Figure 8.15 (a,b).  Clearly, the force is width dependent, as was previously shown, and 

the residual stress is independent of a device’s width. 
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Finally, the results in this Section are compared to the dynamic technique of Section 7.3 

and the wafer bow/Stoney’s formula results of Section 7.1 in Figure 8.16.  The results 

from Section 7.4 are considered the buckling forces and stresses.  Clearly, wafer bow / 

Stoney’s formula produce much higher values than the buckling values, thereby inducing 

buckling in these resonators. 

 

   

   

Figure 8.16 (a,b):  Axial force and residual stress results for 

Stoney’s formula, the dynamic technique of Section 7.3 and the 

static technique of Section 7.4. 
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9 SUMMARY, CONCLUDING REMARKS AND 
SUGGESTIONS FOR FUTURE WORK. 

Through this dissertation effort, many contributions have been made in developing 

reduced-order models for composite structures such as micro-scale devices and 

characterizing residual stresses these devices. 

9.1 Plate-Like Structure Modeling and Reduced-Order 
Methodologies 

Within this dissertation, plate and micro-scale structures are studied.  An analytical model 

has been developed to describe the behavior of thin composite laminate plates.  In order 

to create a reduced-order model from the equilibrium equation of a plate, an expression 

for the plate mode shapes is needed.  Because an exact solution for these mode shapes 

does not exist, the Navier method has been applied to develop an expression for the mode 

shapes of a plate with all edges either simply supported or clamped.  These 

approximations satisfy the boundary conditions.  In addition, because of midplane 

stretching, the equilibrium equation for the considered plate is highly nonlinear.  This 

nonlinearity involves a static stress function that describes the midplane stress field.  In 

order to ensure compatibility of strains, the compatibility equation is applied leading to a 

linear fourth order differential equation in terms of the static stress function.  This 

differential equation is solved in two parts, producing a complimentary solution and a 

particular solution to the problem.  In order to solve for the coefficients to the 
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complimentary solution, this procedure is heavily dependent on the boundary conditions 

used.  Once an expression for the static stress function is determined, the governing 

equation describing the plate’s transverse displacement is put in the form of a reduced-

order model called the Duffing oscillator.     

9.2 Isotropic Laminate Stiffness Calculations 

In addition, these plate-like structures are asymmetric isotropic laminates.  When 

considering an asymmetric laminate, material properties, thicknesses and structures are 

not symmetric about the laminate’s center line.  Because of this, coupling stiffness occurs 

and can add complicated nonlinear terms to an equation of motion.  In addition, the 

placement for the zero axis is also critical in calculating isotropic laminate stiffness 

calculations (Figure 9.1).   
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Figure 9.1:  Laminate beam showing neutral axis location, Zn and 

various other locations for the zero axis starting position. 

It was demonstrated that placing the start/zero axis at different locations through the 

laminate in Figure 9.1 can change the value of the coupling stiffness and the bending 

stiffness.  However, an important observation was made when the zero axis was placed at 

the position of the laminate’s neutral axis location.  The coupling stiffness was zero no 

matter what the other parameters were in the calculations.  With this observation, a 

procedure was developed to calculate multi layer composite laminate stiffness about the 

neutral axis location.  In this procedure, the coupling stiffness is always zero and in a 

sense, makes the asymmetric laminate an equivalent symmetric laminate about its neutral 

axis.   
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9.3 Characterization of Residual Stress Induced Deformation in 
Plate and Micro-Scale Structures. 

Parametric identification techniques were developed to identify system parameters and to 

characterize residual stress induced deformation in plate and micro-scale structures.  The 

first technique was based of a linear curvature model and describes the curvature of a 

cantilevered resonator.  Cantilevers were fabricated and their deflection profiles were 

measured via an optical profilometer at the Army Research Laboratory.  These profiles 

were compared to the analytical model, and the residual stress was varied until the model 

matched the experimental data.  These residual stress values were then considered the 

individual device residual stress values post-fabrication and release.  These stress values 

were then compared to wafer bow measurements collected during thin-film deposition, 

and before fabrication and release processing began.  The individual device residual 

values were considerably lower than that of the wafer bow measurements.  This is 

attributed to the fact that when a cantilever is released, three sides and its underneath are 

released from the wafer.  This in a sense, causes a stress relaxation in the cantilever 

thereby making the device values post-fabrication and release have much lower values 

than that of the wafer bow measurements.  A final observation is that the individual 

cantilever stress values are clearly length dependent, but not width dependent for the sets 

studied.   

The second technique used in the work was that of Dick et al.  This technique is a 

dynamic technique that analyzes the nonlinear frequency-response of clamped-clamped 

micro resonators.  A nonlinear beam model is developed and put in a reduced-order form 

of the Duffing oscillator.  From this model, an identification technique is developed, in 
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which the model system parameters are adjusted until the nonlinear frequency-response 

matches that taken during experiments.  From this, the axial force is determined and 

thereby the residual stress in the resonator.  Once each device was tested, it was scanned 

under the optical profilometer, and determined that their was no change in device 

deformations.  Finally, these stresses were compared to that of wafer bow measurements, 

and were much closer in value than the cantilever.  This was attributed to the fact that two 

sides are clamped, and less area of the resonator has been stress relaxed.   

The final technique is also applied to a clamped-clamped resonator.  This technique is a 

static technique.  The linear static equilibrium equation is solved for the beam mode 

shapes and the critical buckling force and residual stresses are calculated.  It was 

determined that the shape of the deflection profile was clearly dependent on residual 

stress, but the amplitude was not.  The results from this Section were compared to those 

obtained by using the of wafer bow measurements and the dynamic technique.  The 

individual device buckling stresses were much lower than the previous two, indication 

that wafer bow stresses and that of the dynamic technique are high enough to induce 

buckling.   

From these identification techniques, several accomplishments have been made.  First, 

this is the first characterization of residual stresses in individual device PZT cantilevers 

and resonators post-fabrication and post-release of the devices.  This is important 

accomplishment to note because it makes clear that wafer bow measurements, though 

accurately describing stresses in thin-films, do not accurately describe the stress in 

devices post-fabrication and release processing.  In addition, the necessity of linear and 

nonlinear modeling and identification techniques has been shown.   
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9.4 Summary/Contributions and Suggestions for Future Work 

From the work presented in this dissertation, there are several interesting observations 

and contributions obtained from this work: 

 

Is a plate model necessary in describing and analyzing the static and dynamic behavior 

of MEMS devices? 

• Not necessarily.  With all the devices that I worked on, though the 

dimensions indicated that a plate model would be necessary, the data and 

results clearly showed that a plate model was not necessary and the width 

effect could be neglected. 

• For a small subset of the cantilevered devices, the data might be better 

explained by a plate model. 

• Experimental observations included curved cross-sections: plate models 

can be used here. 

 

Does the residual stress in an individual device depend on width, length, material 

thickness, or Young’s modulus? 

• Clearly the residual stress is length dependent and in some cases 

dependent on thin-film thickness.  It was shown for various widths that the 

width effect may be neglected 

 
 
How does characterization work for multilayer structures? 
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• I determined that characterization of micro-scale structures can be done in 

several steps.  Static techniques were applied to analyze residual stress via 

deflection or curvature measurements, dynamic techniques were applied to 

analyze stresses that occurred during harmonic excitations.  In addition, 

the necessity of using a linear or nonlinear model was clearly 

demonstrated 

 

Does residual stress values change from thin film deposition to post-fabrication and 

release processing? 

• I clearly showed that residual stress approximations in thin films do not 

hold true for individual device stress values post-fabrication and release 

processing.  Individual device characterization needs to be done for the 

purpose of building a body of work that will enable future predictions of 

device stress, curvatures and performance capabilities 

 
From the work presented in this dissertation, there are several interesting and necessary 

topics for future work that include the following: 

• Development of approximations for plate mode shapes that satisfy the 

boundary conditions for a clamped-clamped and cantilevered plate.  

Besides the dimensions of some of the micro-scale devices in this work fit 

that of a plate-like structure, curvatures across the width-span of some 

devices has been observed in experiments as well as across the length.  

This would indicate that plane strain conditions cannot be satisfied and 
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that the axial residual force that occurs along a beam’s length is not 

equivalent to that across its width and further needs to be studied. 

• In this work, the composite residual stress in full stack PZT resonators has 

been characterized.  However, there can be an infinite number of 

combinations of residual stress values for individual laminate layer stress 

values that can make up the composite stress value for an individual 

structure.  These individual layer values are what drive the composite 

stress value and the overall deformation of the micro-scale structure. 

• Additional techniques are needed to fully characterize residual stress in 

micro-scale structures.   

o During the dynamic testing of the clamped-clamped resonators, 

linear frequency-responses were initially observed.  A technique 

similar to the dynamic technique present from Dick et al. needs to 

be developed to characterize the residual stress during linear 

frequency-responses and compared to that of the dynamic 

technique in this work.   

o The dynamic techniques discussed in this work and in future work 

should be applied to cantilevered micro-scale structures as well. 

o An additional static technique is needed to analyze electrically 

induced buckling in MEMS cantilevers and resonators. 

• In addition to residual stress characterization, parametric dependencies 

should be further examined related to a beam or plates width, length, 

thicknesses and material Young’s modulus values. 
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A1 REDUCED-ORDER MODELS FOR PLATE-LIKE STRUCTURES: 
METHODOLOGY UTILIZING OPPOSING BEAM MODES 

Main Purpose: To reduce governing equation of motion of a composite laminate plate to 
the form of the Düffing oscillator.  

• Variables in the governing equation for a plate are not separable, so 
approximations are needed for transverse deflection W and static stress function 
Φ. 

 
GOVERNING EQUATION OF MOTION 
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 where 22a  is extensional stiffness for an isotropic unsymmetric laminate 

 

PROCEDURE FOR REDUCING EQUATION OF MOTION TO DÜFFING 
FORM 

(1) Define approximation for transverse displacement W 
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( ) ( ) ( ) ( )∑∑
∞

=

∞

=

=
1i 1j

jiij yY*xX*tWt,y,xW  

• Transverse deflection is comprised of opposing general beam modes. 

( ) ( ) ( ) ( ) ( )x*Bcoshxx*Bsinhxx*Bcosxx*BsinxxX i4i3i2i1i +++=  

( ) ( ) ( ) ( ) ( )x*Bcoshyy*Bsinhyy*Bcosyy*BsinyyY j4j3j2j1j +++=  

• The coefficients to the trigonometric and hyperbolic function are general 
and can be changed to fit whatever beam mode is being considered.  For 
example, if a clamped-clamped plate was being considered, 

 

 
 

• Transverse deflection for a plate under these boundary conditions is 
comprised of a clamped-clamped beam and a free-free beam. 
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then the transverse deflection becomes 
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• For the purpose of this work, will keep opposing beam modes in the 
general form 

( ) ( ) ( ) ( ) ( )x*Bcoshxx*Bsinhxx*Bcosxx*BsinxxX i4i3i2i1i +++=  

( ) ( ) ( ) ( ) ( )x*Bcoshyy*Bsinhyy*Bcosyy*BsinyyY j4j3j2j1j +++=  

in order to reduce the equation of motion to the Düffing form that will 
work for multiple boundary conditions, not one case at a time. 

(2) Insert the approximation for the transverse displacement W into the compatibility 
equation, and solve for the static stress function Φ. 
a. Solve for the static stress function, solve for the particular solution first. 
b. Then solve for the complimentary solution to ensure that Φ satisfies the 

boundary conditions. 

 

Clamp 

Free 
X=0 X=a 
Y=0 

Y=b 
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(3) Once expressions for Φ  and W are known, insert into the equation of motion. 
(4) Define residual, apply Galerkin’s procedure, integrate over boundaries and the 

Düffing form will result  
(5) Want a reduced-order model to find frequency responses of various plates, with 

application to MEMS cantilevered and clamped-clamped devices. 
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A2 MATLAB PROGRAM: CRITICAL FORCE AND STRESSES 

 
This program plots the data in Figure 8.15 

 
clear all 
close all 
clc 
  
  
YM=[0.100000    0.190000    0.025000    0.190000]; 
b=[20 35]; 
TH=[0.5270 0.1880 0.5202 0.1050]; 
h=[0 TH(1) (TH(1)+TH(2))... 
    (TH(1)+TH(2)+TH(3))... 
    (TH(1)+TH(2)+TH(3)+TH(4))];         
[ST20]=... 
    StiffnessForceMoments3(YM,h,b(1)); 
[ST35]=... 
    StiffnessForceMoments3(YM,h,b(2)); 
  
B1=6.2768; 
L=100:100:1000; 
  
for incL=1:length(L) 
    Nrs20(incL)=ST20(3)*B1^2/L(incL)^2; 
    Nrs35(incL)=ST35(3)*B1^2/L(incL)^2; 
    Ors20(incL)=ST20(3)*B1^2/(L(incL)^2*sum(TH)*b(1)); 
    Ors35(incL)=ST35(3)*B1^2/(L(incL)^2*sum(TH)*b(2)); 
end 
  
figure(1) 
axes('FontSize',16,'FontName','TimesNewRoman','FontWeight','bold') 
plot(L,Nrs20*10,'ks-','MarkerFaceColor',[1 1 1],... 
    'MarkerSize',8,... 
    'LineWidth',2); hold on; 
plot(L,Nrs35*10,'ko-','MarkerFaceColor',[1 1 1],... 
    'MarkerSize',8,... 
    'LineWidth',2); hold on; 
xlabel('Length \mum','FontSize',16,'FontWeight','bold') 
ylabel('Critical Force (N)','FontSize',16,'FontWeight','bold') 
legend('20 \mum wide','35 \mum wide') 
axis tight 
  
figure(2) 
axes('FontSize',14,'FontName','TimesNewRoman') 
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plot(L,Ors20*10^6,'ko-','MarkerFaceColor',[1 1 1],... 
    'MarkerSize',8,... 
    'LineWidth',2); 
xlabel('Length \mum','FontSize',16,'FontWeight','bold') 
ylabel('Critical Stress (MPa)','FontSize',16,'FontWeight','bold') 
legend('20 & 35 \mum wide') 
axis tight 

A3 MATLAB PROGRAM:  CALCULATING RESIDUAL STRESS VALUES 
FROM SECTION 7.1 

clear all 
close all 
clc 
 
YM=[0.100000 0.190000 0.025000 0.190000]; 
for incW=8 
    clear x W 
    if incW==1 
        %%% analying wafer, 437 
        L=100:100:800; 
        W437=[0 6 14 21 29 42 56 75]; 
        b=100; 
        TH=[1.6688 0.16 2.0145 0.1]; 
        h=[0 TH (1) (TH (1)+TH (2))... 
                  (TH (1)+TH (2)+TH (3))... 
                (TH (1)+TH (2)+TH (3)+TH (4))]; 
        RS=[0.000069 0.000651 0.000056 0.000215]; 
    elseif incW==2 
        %%% analying wafer, 469 
        L=100:100:800; 
        W469=[-1.2 -6.9 -10.4 -20.8 -28.9 -37 -45.1 -62.5]; 
        b=100; 
        TH=[0.737 0.16 1.461 0.1]; 
        h=[0 TH (1) (TH (1)+TH (2))... 
                  (TH (1)+TH (2)+TH (3))... 
                (TH (1)+TH (2)+TH (3)+TH (4))]; 
        RS=[0.00005 0.00071 0.00006 -0.00005]; 
    elseif incW==3 
        %%% analying wafer, 1287 
        L=50:25:275; 
        W1287=[-0.3 -0.9 -2.1 -3.5 -4.7 -7.1 -9.3 -11.6 -
14.3 -19.3]; 
        b=100; 
        TH=[0.5122 0.1 0.5006 0.105]; 
        h=[0 TH (1) (TH (1)+TH (2))... 
                  (TH (1)+TH (2)+TH (3))... 
                (TH (1)+TH (2)+TH (3)+TH (4))]; 
        RS=[0.0001090.00112 0.000134 0.000208]; 
    elseif incW==4 
        %%% analying wafer, 1288 
        L=50:25:275; 
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        W1288=[0 -0.2 -0.6 -1.1 -1.3 -1.9 -2.5 -3.2 -3.8 -
4.4]; 
        b=100; 
        TH=[1.1177 0.1 0.4948 0.105]; 
        h=[0 TH (1) (TH (1)+TH (2))... 
                  (TH (1)+TH (2)+TH (3))... 
                (TH (1)+TH (2)+TH (3)+TH (4))]; 
        RS=[0.0000980.00111 0.000123 0.000146]; 
    elseif incW==5 
        L=100:100:1000; 
        W1780_W20set1=[1.6 4.0 10.1 23.7 41.5 72.1 94.1 
114.3 146.3 177.9]; 
        b=20; 
        TH=[0.5270 0.1880 0.5202 0.1050]; 
        h=[0 TH (1) (TH (1)+TH (2))... 
                  (TH (1)+TH (2)+TH (3))... 
                (TH (1)+TH (2)+TH (3)+TH (4))];         
        RS=[-0.00011320 0.00034380 0.00013118 0.00006235]; 
    elseif incW==6 
        L=100:100:1000; 
        W1780_W35set1=[1.5 3.6 11.3 23.8 40.3 62.4 88.3 
113.0 143.2 169.2]; 
        b=35;         
        TH=[0.5270 0.1880 0.5202 0.1050]; 
        h=[0 TH (1) (TH (1)+TH (2))... 
                  (TH (1)+TH (2)+TH (3))... 
                (TH (1)+TH (2)+TH (3)+TH (4))];         
        RS=[-0.00011320 0.00034380 0.00013118 0.00006235]; 
    elseif incW==7 
        L=100:100:1000; 
        W1780_W20set2=[1.2 2.8 9.9 21.1 33.7 53.1 76.9 99.4 
126.8 159.5]; 
        b=20; 
        TH=[0.5270 0.1880 0.5202 0.1050]; 
        h=[0 TH (1) (TH (1)+TH (2))... 
                  (TH (1)+TH (2)+TH (3))... 
                (TH (1)+TH (2)+TH (3)+TH (4))];         
        RS=[-0.00011320 0.00034380 0.00013118 0.00006235];         
    elseif incW==8 
        L=100:100:1000;         
        W1780_W35set2=[1.1 3.8 11.2 22.9 37.5 57.8 83.6 
106.3 128.3 162.4]; 
        b=35;         
        TH=[0.5270 0.1880 0.5202 0.1050]; 
        h=[0 TH (1) (TH (1)+TH (2))... 
                  (TH (1)+TH (2)+TH (3))... 
                (TH (1)+TH (2)+TH (3)+TH (4))];         
        RS=[-0.00011320 0.00034380 0.00013118 0.00006235];         
    end 
     
    [ST]=... 
        StiffnessForceMoments3 (YM,RS,h,b);     
    % Ors=(-2000:10:2000)*10^-6; 
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    % Ors=(35:.002:55)*10^-6; % W437 range 
    % Ors=(-55:.005:-5)*10^-6; % W469 range 
    % Ors=(-30:.005:0)*10^-6; % W1287 
    % Ors=(-30:.005:0)*10^-6;% W1288 
    Ors=(0:.005:20)*10^-6; 
     
    for incL=1:length (L) 
        for incOrs=1:length (Ors) 
            W (incOrs)=((1/4)*(b*sum (TH)*L (incL)^2)/ST 
(3))*Ors (incOrs); 
            if incW==1 
                Err (incOrs)=abs (W (incOrs)-W437 (incL)); 
            elseif incW==2 
                Err (incOrs)=abs (W (incOrs)-W469 (incL)); 
            elseif incW==3 
                Err (incOrs)=abs (W (incOrs)-W1287 (incL)); 
            elseif incW==4 
                Err (incOrs)=abs (W (incOrs)-W1288 (incL)); 
            elseif incW==5 
                Err (incOrs)=abs (W (incOrs)-W1780_W20set1 
(incL)); 
            elseif incW==6 
                Err (incOrs)=abs (W (incOrs)-W1780_W35set1 
(incL)); 
            elseif incW==7 
                Err (incOrs)=abs (W (incOrs)-W1780_W20set2 
(incL)); 
            elseif incW==8 
                Err (incOrs)=abs (W (incOrs)-W1780_W35set2 
(incL)); 
            end 
            incOrs 
        end 
        figure (1) 
        plot (Ors,Err,' k-');hold on 
        [t1,t2]=min (Err); 
        RSdevice (incL)=Ors (t2); 
    end 
    figure (2) 
    plot (L,RSdevice*10^6,' k*-') 
     

end 
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A4 MATLAB PROGRAM: BISECTION METHOD FOR ROOTS IN SECTION 
7.4 

clear all 
close all 
clc 
  
x=sym('x','real'); 
F=2*cos(x)+(x)*sin(x)-2; 
  
a=.1;  b=.2; 
x=a; Fa=eval(F); 
x=b; Fb=eval(F); 
incR=1; 
  
while incR<=30 
    incR 
    incIT=1; incMd=1; 
    while incIT<=1000 
        c=(a+b)/2; 
        d=[incIT incMd incR vpa(a,2) vpa(b,2) vpa(c,8) vpa(Fa*Fb,4)]; 
        if Fa*Fb<0%then bisection method on this range valid 
            c=(a+b)/2; %calculate midpoint 
            x=c; Fc=eval(F); 
            if abs(Fc)<.000000001 %if this is the case, have root at c 
                Roots(incR)=c; 
                incR=incR+1; 
                break 
            else                 %if not the case, evaluate F and create new ranges 
                if Fa*Fc<0%left half interval 
                    b=c; x=b; Fb=eval(F);%rename b as midpoint c 
                elseif Fb*Fc<0 %right half interval 
                    a=c; x=a; Fa=eval(F);%rename a as midpoint c 
                end 
            end 
            incMd=incMd+1; 
        else%if range not valid, then increments b until it is 
            b=b+.2; x=b; Fb=eval(F); 
            bHold=b; 
            incIT=incIT+1; 
        end 
    end     
    a=bHold;  x=a;  Fa=eval(F); 
    b=bHold+.2;  x=b;  Fb=eval(F); 
end 
save Roots Roots 
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plot(Roots,'k*') 
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A5 MATHEMATICA SPREADSHEET: REDUCED-ORDER MODEL FOR 
PLATE WITH ALL EDGES SIMPLY-SUPPORTED (INPUTS ONLY) 

PARTICULAR AND COMPLIMENTARY SOLNS FOR STATIC STRESS FCN Φ 

PARTICULAR AND COMPLIMENTARY SOLNS FOR STATIC STRESS FCN Φ 

PARTICULAR AND COMPLIMENTARY SOLNS FOR STATIC STRESS FCN Φ 

PARTICULAR AND COMPLIMENTARY SOLNS FOR STATIC STRESS FCN Φ 
Clear[Am,Ap,Bn,Bq,m,n,p,q] 
In[]:  w=W[t]*Sin[Am*x]*Sin[Bn*y] 
In[]:  CompEqnRS=(1/a11)*((D[w,x,y])^2-D[w,x,x]*D[w,y,y]) 
In[]:  Expand[TrigReduce[CompEqnRS]] 
In[]:  PartSoln=F1*Cos[2 Am x]+F2*Cos[2 Bn y] 
In[]:  CompEqnLS=D[PartSoln,x,x,x,x]+2*D[PartSoln,x,x,y,y]+D[PartSoln,y,y,y,y] 
In[]:  Solve[16 Am4 F1==(Am2 Bn2  W[t]2)/(2 a11),F1] 
In[]:  F1=(Bn2 W[t]2)/(32 a11 Am2) 
In[]:  Solve[16 Bn4 F2 ==(Am2 Bn^2*W[t]2)/(2 a11),F2] 
In[]:  {{F2=(Am2 W[t]2)/(32 a11 Bn2)}} 
In[]:  PartSoln 
In[]:  ComplSoln=(1/2)*C1*x^2+(1/2)*C2*y^2 
In[]:   
In[]:   
In[]:  A={{A11,v*A11},{v*A11,A11}} 
In[]:  Coeff=(1/(a b)) 
Integrate[Factor[Expand[TrigReduce[A.{{1/2*(D[w,x])^2},{1/2*(D[w,y])^2}}-
{{D[PartSoln,x,x]},{D[PartSoln,x,x]}}]]],{x,0,a},{y,0,b}] 
In[]:  C1=Expand[Coeff[[2,1]]] 
In[]:  C2=Expand[Coeff[[1,1]]] 

In[]:  Am=m π/a 

In[]:  Bn=n π/b 
In[]:  m=1 
In[]:  n=1 
In[]:  Factor[C1] 
In[]:  Factor[C2] 
In[]:  Clear[Am,Bn,m,n] 
In[]:  c1=Factor[1/8 A11 Bn2 W[t]2+1/8 A11 Am2 v W[t]2] 
In[]:  c2=Factor[1/8 A11 Am2 W[t]2+1/8 A11 Bn2 v W[t]2] 
In[]:  ComplSoln=(1/2)*c1*x^2+(1/2)*c2*y^2 
In[]:  CompatibilityEqn=ComplSoln+PartSoln 

In[]:  Φssfcn=ComplSoln+PartSoln 
In[]:  COEFFICIENTS TO DUFFING OSCILLATOR 
In[]:  COEFFICIENTS TO DUFFING OSCILLATOR 
In[]:  COEFFICIENTS TO DUFFING OSCILLATOR 
In[]:   
In[]:   
In[]:   
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In[]:  w=W[t]*Sin[Am*x]*Sin[Bn*y] 

In[]:  Φssfcn=1/16 A11 (Bn2+Am2 v) x2 W[t]2+1/16 A11 (Am2+Bn2 v) y2 W[t]2+(Bn2 
Cos[2 Am x] W[t]2)/(32 a11 Am2)+(Am2 Cos[2 Bn y] W[t]2)/(32 a11 Bn2) 
In[]:  WeigthFcn=Sin[Ap*x]*Sin[Bq*y] 
In[]:  a1=Io*D[w,t,t]*WeigthFcn 
In[]:  Ap=Am 
In[]:  Bq=Bn 
In[]:  a1 
In[]:  Expand[Integrate[a1,{x,0,a},{y,0,b}]] 
In[]:  A=1/4 a b Io  
In[]:   
In[]:   
In[]:   
In[]:   
In[]:  Clear[Ap,Am] 
In[]:  w=W[t]*Sin[Am*x]*Sin[Bn*y] 

In[]:  Φssfcn=1/16 A11 (Bn2+Am2 v) x2 W[t]2+1/16 A11 (Am2+Bn2 v) y2 W[t]2+(Bn2 
Cos[2 Am x] W[t]2)/(32 a11 Am2)+(Am2 Cos[2 Bn y] W[t]2)/(32 a11 Bn2) 
In[]:  WeigthFcn=Sin[Ap*x]*Sin[Bq*y] 
In[]:  b1=TrigReduce[D11*(D[w,x,x,x,x]+2*D[w,x,x,y,y]+D[w,y,y,y,y])*WeigthFcn] 
In[]:  b2=Expand[Integrate[b1,{x,0,a},{y,0,b}]] 
In[]:  Clear[Ap,Bq,Am, Bn] 
In[]:  m=1 
In[]:  n=2 
In[]:  p=3 
In[]:  q=4 

In[]:  Ap=p*π/a 

In[]:  Bq=q*π/b 

In[]:  Am=m*π/a 

In[]:  Bn=n*π/b 
In[]:  b2 
In[]:  Clear[Ap,Bq,Am, Bn,m,n,p,q] 
In[]:  Ap=Am 
In[]:  Bq=Bn 
In[]:  b1=TrigReduce[D11*(D[w,x,x,x,x]+2*D[w,x,x,y,y]+D[w,y,y,y,y])*WeigthFcn] 
In[]:  b3=Expand[Integrate[b1,{x,0,a},{y,0,b}]] 

In[]:  Am=m*π/a 

In[]:  Bn=n*π/b 
In[]:  n=1 
In[]:  m=1 
In[]:  Factor[b3] 
In[]:  Clear[Ap,Bq,Am, Bn,m,n,p,q] 
In[]:  Factor[1/4 a Am4 b D11 W[t]+1/2 a Am2 b Bn2 D11 W[t]+1/4 a b Bn4 D11 W[t]] 
In[]:  B=1/4 a b (Am^2+Bn^2)2 
In[]:   
In[]:   
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In[]:   
In[]:  Clear[Ap,Bq,Am, Bn,m,n,p,q] 
In[]:  w=W[t]*Sin[Am*x]*Sin[Bn*y] 

In[]:  Φssfcn=1/16 A11 (Bn2+Am2 v) x2 W[t]2+1/16 A11 (Am2+Bn2 v) y2 W[t]2+(Bn2 
Cos[2 Am x] W[t]2)/(32 a11 Am2)+(Am2 Cos[2 Bn y] W[t]2)/(32 a11 Bn2) 

In[]:  Clear[Φssfcn,C1,C2,F1,F2] 

In[]:  Φssfcn=1/2 C1  x2+1/2 C2 y2+F1*Cos[2 Am x]+F2*Cos[2 Bn y] 
In[]:  WeigthFcn=Sin[Ap*x]*Sin[Bq*y] 

In[]:  Expand[(D[Φssfcn,x,x]*D[w,y,y]+D[Φssfcn,y,y]*D[w,x,x]-

2*D[Φssfcn,x,y]*D[w,x,y])*WeigthFcn] 

In[]:  c1=TrigReduce[Expand[(D[Φssfcn,x,x]*D[w,y,y]+D[Φssfcn,y,y]*D[w,x,x]-

2*D[Φssfcn,x,y]*D[w,x,y])*WeigthFcn]] 
In[]:  c2=Expand[Integrate[c1,{x,0,a},{y,0,b}]] 
In[]:  Clear[Am,Ap,Bn,Bq,m,n,p,q] 
In[]:  Collect[Collect[Collect[c2,F1],C1],C2] 

In[]:  Ap=p*π/a 

In[]:  Bq=q*π/b 

In[]:  Am=m*π/a 

In[]:  Bn=n*π/b 
In[]:  Collect[Collect[Collect[c2,F1],C1],C2] 
In[]:  m=1 
In[]:  n=2 
In[]:  p=4 
In[]:  q=7 

In[]:  Ap=p*π/a 

In[]:  Bq=q*π/b 

In[]:  Am=m*π/a 

In[]:  Bn=n*π/b 
In[]:   
In[]:  c2 
In[]:  Clear[Am,Ap,Bn,Bq,m,n,p,q] 
In[]:  Ap=Am 
In[]:  Bq=Bn 
In[]:  c2=Expand[Integrate[c1,{x,0,a},{y,0,b}]] 
In[]:  Collect[Collect[Collect[Collect[c2,C1],C2],F1],F2] 
In[]:  m=1 
In[]:  n=2 
In[]:  Clear[m,n] 

In[]:  Am=m*π/a 

In[]:  Bn=n*π/b 
In[]:  Collect[Collect[Collect[Collect[c2,C1],C2],F1],F2] 
In[]:  Clear[Ap,Bq,Am, Bn,m,n,p,q] 
In[]:  Collect[Collect[Collect[Collect[c2,C1],C2],F1],F2] 
In[]:  CC=Factor[C2 (-1/4 a Am2 b W[t])+C1 (-1/4 a b Bn2 W[t])+F1 (-1/2 a Am2 b Bn2 
W[t])+F2 (-1/2 a Am2 b Bn2 W[t])] 
In[]:  F1=(Bn2 W[t]2)/(32 a11 Am2) 
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In[]:  F2=(Am2 W[t]2)/(32 a11 Bn2) 
In[]:  C1=Factor[1/8 A11 Bn2 W[t]2+1/8 A11 Am2 v W[t]2] 
In[]:  C2=Factor[1/8 A11 Am2 W[t]2+1/8 A11 Bn2 v W[t]2] 
In[]:  Simplify[CC*4/(a b)] 
In[]:  CC 
In[]:  Simplify[1/8 A11 Bn2 (Bn2+Am2 v) W[t]2+1/8 A11 Am2 (Am2+Bn2 v) W[t]2] 
In[]:   
In[]:   
In[]:   
In[]:  Clear[Am,Ap,Bn,Bq,m,n,p,q] 
In[]:  q1=f WeigthFcn 
In[]:  q2=TrigReduce[Integrate[q1,{x,0,a},{y,0,b}]] 

In[]:  Ap=p π/a 

In[]:  Bq=q π/b 
In[]:  q2 
In[]:  p=3 
In[]:  q=3 
In[]:  q2*(4/(a b)) 
In[]:   
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A6 MATHEMATICA SPREADSHEET: REDUCED-ORDER MODEL FOR 
PLATE WITH ALL EDGES CLAMPED (INPUTS ONLY) 

Clear[Am,Ap,Bn,Bq,m,n,p,q,c1,c2,F1,F2,C1,C2] 
In[]:  w=W[t]*Sin[Am*x]^2*Sin[Bn*y]^2 
In[]:  CompEqnRS=(1/a11)*((D[w,x,y])^2-D[w,x,x]*D[w,y,y]) 
In[]:  Expand[TrigReduce[CompEqnRS]] 
In[]:  PartSoln=F1 Cos[2 Am x]+F2  Cos[4 Am x]+F3 Cos[2 Bn y]+F4 Cos[4 Bn y]+F5 
Cos[2 Am x-4 Bn y]+F6 Cos[2 Am x-2 Bn y]+F7 Cos[4 Am x-2 Bn y]+F8  Cos[2 Am 
x+2 Bn y]+F9 Cos[4 Am x+2 Bn y]+F10 Cos[2 Am x+4 Bn y] 
In[]:  CompEqnLS=D[PartSoln,x,x,x,x]+2*D[PartSoln,x,x,y,y]+D[PartSoln,y,y,y,y] 
In[]:  
Collect[Collect[Collect[Collect[Collect[Collect[Collect[Collect[Collect[Collect[CompEq
nLS,F1],F2],F3],F4],F5],F6],F7],F8],F9],F10] 
In[]:  Expand[TrigReduce[CompEqnRS]] 
In[]:  Solve[16 Am4 F1 Cos[2 Am x]==(Am2 Bn2 Cos[2 Am x] W[t]2)/(2 a11),F1] 
In[]:  Solve[256 Am4 F2 Cos[4 Am x]==-(Am2 Bn2 Cos[4 Am x] W[t]2)/(2 a11),F2] 
In[]:  Solve[16 Bn4 F3 Cos[2 Bn y]==(Am2 Bn2 Cos[2 Bn y] W[t]2)/(2 a11),F3] 
In[]:  Solve[256 Bn4 F4 Cos[4 Bn y]==-(Am2 Bn2 Cos[4 Bn y] W[t]2)/(2 a11),F4] 
In[]:  Solve[F5 (16 Am4 Cos[2 Am x-4 Bn y]+128 Am2 Bn2 Cos[2 Am x-4 Bn y]+256 
Bn4 Cos[2 Am x-4 Bn y])==(Am2 Bn2 Cos[2 Am x-4 Bn y] W[t]2)/(4 a11),F5] 
In[]:  Solve[F6 (16 Am4 Cos[2 Am x-2 Bn y]+32 Am2 Bn2 Cos[2 Am x-2 Bn y]+16 Bn4 
Cos[2 Am x-2 Bn y])==-(Am2 Bn2 Cos[2 Am x-2 Bn y] W[t]2)/(2 a11),F6] 
In[]:  Solve[F7 (256 Am4 Cos[4 Am x-2 Bn y]+128 Am2 Bn2 Cos[4 Am x-2 Bn y]+16 
Bn4 Cos[4 Am x-2 Bn y])==(Am2 Bn2 Cos[4 Am x-2 Bn y] W[t]2)/(4 a11),F7] 
In[]:  Solve[F8 (16 Am4 Cos[2 Am x+2 Bn y]+32 Am2 Bn2 Cos[2 Am x+2 Bn y]+16 Bn4 
Cos[2 Am x+2 Bn y])-(Am2 Bn2 Cos[2 Am x+2 Bn y] W[t]2)/(2 a11),F8] 
In[]:  Solve[F9 (256 Am4 Cos[4 Am x+2 Bn y]+128 Am2 Bn2 Cos[4 Am x+2 Bn y]+16 
Bn4 Cos[4 Am x+2 Bn y])==(Am2 Bn2 Cos[4 Am x+2 Bn y] W[t]2)/(4 a11),F9] 
In[]:  Solve[F10 (16 Am4 Cos[2 Am x+4 Bn y]+128 Am2 Bn2 Cos[2 Am x+4 Bn y]+256 
Bn4 Cos[2 Am x+4 Bn y])==(Am2 Bn2 Cos[2 Am x+4 Bn y] W[t]2)/(4 a11),F10] 
In[]:  F1=(Bn2 W[t]2)/(32 a11 Am2) 
In[]:  F2=-(Bn2 W[t]2)/(512 a11 Am2) 
In[]:  F3=(Am2 W[t]2)/(32 a11 Bn2) 
In[]:  F4=-(Am2 W[t]2)/(512 a11 Bn2) 
In[]:  F5=(Am2 Bn2 W[t]2)/(64 a11 (Am^2+4 Bn^2)2) 
In[]:  F6=-(Am2 Bn2 W[t]2)/(32 a11 (Am^2+Bn^2)2) 
In[]:  F7=(Am2 Bn2 W[t]2)/(64 a11 (4 Am^2+Bn^2)2) 
In[]:  F8=-(Am2 Bn2 W[t]2)/(32 a11 (Am^2+Bn^2)2) 
In[]:  F9=(Am2 Bn2 W[t]2)/(64 a11 (4 Am^2+Bn^2)2) 
In[]:  F10=(Am2 Bn2 W[t]2)/(64 a11 (Am^2+4 Bn^2)2) 
In[]:   
In[]:  A={{A11,v*A11},{v*A11,A11}} 
In[]:  Coeff=(1/(a b)) 
Integrate[Factor[Expand[TrigReduce[A.{{1/2*(D[w,x])^2},{1/2*(D[w,y])^2}}-
{{D[PartSoln,x,x]},{D[PartSoln,x,x]}}]]],{x,0,a},{y,0,b}] 
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In[]:  C1=Expand[Coeff[[2,1]]] 
In[]:  C2=Expand[Coeff[[1,1]]] 
In[]:  m=2 
In[]:  n=5 
In[]:  Am=m /a 
In[]:  Bn=n /b 
In[]:  Factor[C1] 
In[]:  Factor[C2] 
In[]:  Clear[Am,Bn,m,n] 
In[]:  c1=(3/32)*A11*(Bn^2+Am^2*v)*W[t]^2 
In[]:  c2=(3/32)*A11*(Am^2+Bn^2*v)*W[t]^2 
In[]:  ComplSoln=(1/2)*c1*x^2+(1/2)*c2*y^2 
In[]:  ssfcn=ComplSoln+PartSoln 
In[]:  COEFFICIENTS TO DUFFING OSCILLATOR 
In[]:  COEFFICIENTS TO DUFFING OSCILLATOR 
In[]:  COEFFICIENTS TO DUFFING OSCILLATOR 
In[]:   
In[]:   
In[]:   
In[]:  Clear[c1,c2,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10] 
In[]:  Clear[Am,Ap,Bn, Bq, m,n, p ,q] 
In[]:  w=W[t]*Sin[Am*x]^2*Sin[Bn*y]^2 
In[]:  ssfcn=(1/2)*c1*x^2+(1/2)*c2*y^2+F1 Cos[2 Am x]+F2  Cos[4 Am x]+F3 Cos[2 
Bn y]+F4 Cos[4 Bn y]+F5 Cos[2 Am x-4 Bn y]+F6 Cos[2 Am x-2 Bn y]+F7 Cos[4 Am 
x-2 Bn y]+F8  Cos[2 Am x+2 Bn y]+F9 Cos[4 Am x+2 Bn y]+F10 Cos[2 Am x+4 Bn y] 
In[]:  WeigthFcn=Sin[Ap*x]^2*Sin[Bq*y]^2 
In[]:  a1=Io*D[w,t,t]*WeigthFcn 
In[]:  Ap=Am 
In[]:  Bq=Bn 
In[]:  a1 
In[]:  a2=Expand[Integrate[a1,{x,0,a},{y,0,b}]] 
In[]:  m=2 
In[]:  n=4 
In[]:  Am=m /a 
In[]:  Bn=n /b 
In[]:  a2 
In[]:  A=9/64 a b Io 
In[]:   
In[]:   
In[]:   
In[]:   
In[]:  Clear[Am,Ap,Bn, Bq, m,n, p ,q] 
In[]:  w=W[t]*Sin[Am*x]^2*Sin[Bn*y]^2 
In[]:  WeigthFcn=Sin[Ap*x]^2*Sin[Bq*y]^2 
In[]:  b1=TrigReduce[D11*(D[w,x,x,x,x]+2*D[w,x,x,y,y]+D[w,y,y,y,y])*WeigthFcn] 
In[]:  b2=Expand[Integrate[b1,{x,0,a},{y,0,b}]] 
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In[]:  Clear[Ap,Bq,Am, Bn] 
In[]:  m=1 
In[]:  n=2 
In[]:  p=3 
In[]:  q=4 
In[]:  Ap=p*/a 
In[]:  Bq=q*/b 
In[]:  Am=m*/a 
In[]:  Bn=n*/b 
In[]:  b2 
In[]:  Clear[Ap,Bq,Am, Bn,m,n,p,q] 
In[]:  Ap=Am 
In[]:  Bq=Bn 
In[]:  b1=TrigReduce[D11*(D[w,x,x,x,x]+2*D[w,x,x,y,y]+D[w,y,y,y,y])*WeigthFcn] 
In[]:  b3=Expand[Integrate[b1,{x,0,a},{y,0,b}]] 
In[]:  Am=m*/a 
In[]:  Bn=n*/b 
In[]:  n=1 
In[]:  m=1 
In[]:  Factor[b3*(1/A)] 
In[]:  Expand[b3*(1/A)] 
In[]:  Clear[Ap,Bq,Am, Bn,m,n,p,q] 
In[]:  Factor[1/4 a Am4 b D11 W[t]+1/2 a Am2 b Bn2 D11 W[t]+1/4 a b Bn4 D11 W[t]] 
In[]:  B=1/4 a b (Am^2+Bn^2)2 
In[]:   
In[]:   
In[]:   
In[]:  Clear[Ap,Bq,Am, Bn,m,n,p,q] 
In[]:  w=W[t]*Sin[Am*x]*Sin[Bn*y] 
In[]:  ssfcn=1/16 A11 (Bn2+Am2 v) x2 W[t]2+1/16 A11 (Am2+Bn2 v) y2 W[t]2+(Bn2 
Cos[2 Am x] W[t]2)/(32 a11 Am2)+(Am2 Cos[2 Bn y] W[t]2)/(32 a11 Bn2) 
In[]:  Clear[ssfcn,C1,C2,F1,F2] 
In[]:  ssfcn=1/2 C1  x2+1/2 C2 y2+F1*Cos[2 Am x]+F2*Cos[2 Bn y] 
In[]:  WeigthFcn=Sin[Ap*x]*Sin[Bq*y] 
In[]:  Expand[(D[ssfcn,x,x]*D[w,y,y]+D[ssfcn,y,y]*D[w,x,x]-
2*D[ssfcn,x,y]*D[w,x,y])*WeigthFcn] 
In[]:  c1=TrigReduce[Expand[(D[ssfcn,x,x]*D[w,y,y]+D[ssfcn,y,y]*D[w,x,x]-
2*D[ssfcn,x,y]*D[w,x,y])*WeigthFcn]] 
In[]:  c2=Expand[Integrate[c1,{x,0,a},{y,0,b}]] 
In[]:  Clear[Am,Ap,Bn,Bq,m,n,p,q] 
In[]:  Collect[Collect[Collect[c2,F1],C1],C2] 
In[]:  Ap=p*/a 
In[]:  Bq=q*/b 
In[]:  Am=m*/a 
In[]:  Bn=n*/b 
In[]:  Collect[Collect[Collect[c2,F1],C1],C2] 
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In[]:  m=1 
In[]:  n=2 
In[]:  p=4 
In[]:  q=7 
In[]:  Ap=p*/a 
In[]:  Bq=q*/b 
In[]:  Am=m*/a 
In[]:  Bn=n*/b 
In[]:   
In[]:  c2 
In[]:  Clear[Am,Ap,Bn,Bq,m,n,p,q] 
In[]:  Ap=Am 
In[]:  Bq=Bn 
In[]:  c2=Expand[Integrate[c1,{x,0,a},{y,0,b}]] 
In[]:  Collect[Collect[Collect[Collect[c2,C1],C2],F1],F2] 
In[]:  m=1 
In[]:  n=2 
In[]:  Clear[m,n] 
In[]:  Am=m*/a 
In[]:  Bn=n*/b 
In[]:  Collect[Collect[Collect[Collect[c2,C1],C2],F1],F2] 
In[]:  Clear[Ap,Bq,Am, Bn,m,n,p,q] 
In[]:  Collect[Collect[Collect[Collect[c2,C1],C2],F1],F2] 
In[]:  CC=Factor[C2 (-1/4 a Am2 b W[t])+C1 (-1/4 a b Bn2 W[t])+F1 (-1/2 a Am2 b Bn2 
W[t])+F2 (-1/2 a Am2 b Bn2 W[t])] 
In[]:  F1=(Bn2 W[t]2)/(32 a11 Am2) 
In[]:  F2=(Am2 W[t]2)/(32 a11 Bn2) 
In[]:  C1=Factor[1/8 A11 Bn2 W[t]2+1/8 A11 Am2 v W[t]2] 
In[]:  C2=Factor[1/8 A11 Am2 W[t]2+1/8 A11 Bn2 v W[t]2] 
In[]:  Simplify[CC*4/(a b)] 
In[]:  CC 
In[]:  Simplify[1/8 A11 Bn2 (Bn2+Am2 v) W[t]2+1/8 A11 Am2 (Am2+Bn2 v) W[t]2] 
In[]:   
In[]:   
In[]:   
In[]:  Clear[Am,Ap,Bn,Bq,m,n,p,q] 
In[]:  q1=f WeigthFcn 
In[]:  q2=TrigReduce[Integrate[q1,{x,0,a},{y,0,b}]] 
In[]:  Ap=p /a 
In[]:  Bq=q /b 
In[]:  q2 
In[]:  p=3 
In[]:  q=3 
In[]:  q2*(4/(a b))  
In[]:   
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