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1 IntroductionWe consider a general multiple-class multiple-resource (MCMR) system. We have a set R ofresources and a set C of customer classes. The nature of a resource depends on the system beingmodeled; for example, it may be computer memory, 
oor space, transmission capacity, etc. Eachresource r has an attribute, denoted by r.max, which is a constant that indicates the maximumnumber of units in terms of which r is quanti�ed.Each class in C represents a class of customers that requires a particular set of resources.Depending on the system being modeled, customers can be user programs, manufactured products,network connections (calls), etc. Speci�cally, each class-c customer requires some subset Rc ofresources, Rc � R. Furthermore, the class-c customer requires some number of units, denotedby c.r.req, of each resource r 2 Rc (e.g. bandwidth, storage space, etc.). For example, a networkconnection would require some transmission and bu�er capacity on each of the links of the pathconnecting its source to its destination.Let� �c(t) denote the instantaneous arrival rate of class-c customers, and� 1=�rc(t) denote the instantaneous service time of a class-c customer at r.Thus we are interested not only in the steady-state behavior of the MCMR system, but alsoin its transient or non-stationary behavior. Transient conditions arise when the customer arrivalrates or the service rates at the resources vary with time, due to externally time-varying factors ordynamic control decisions based on current or delayed system state information.An arriving class-c customer is blocked at a resource r 2 Rc i� c.r.req exceeds the amount of theresource that is currently available (additional constraints can be incorporated too). An arrivingclass-c customer is blocked i� it is blocked at any r 2 Rc. A blocked customer is lost or retriedlater.We want to obtain instantaneous probability measures of the di�erent classes, such as theinstantaneous blocking probabilities (or equivalently the throughputs). We introduce the followingnotation:� Bc(t), instantaneous blocking probability of class c.� Brc(t), instantaneous blocking probability of class c at resource r 2 Rc.� N rc (t), instantaneous average number of class-c customers waiting or in service at resource r.� U rc (t), instantaneous utilization of resource r by class-c customers (average number of class-ccustomers in service at resource r).The generality of our model allows us to consider a variety of systems, including those withdelayed feedback between changes in system state information and changes in control decisions.Examples of such systems include database locking systems, inventory systems, distributed batchsystems, manufacturing systems, and communication networks. Because the class of a customercan be assigned when the customer arrives, it is straightforward to model state-dependent controlpolicies such as assigning jobs to processors with the least workload.MCMR systems have often been analyzed under steady-state conditions (e.g. [13, 15, 21, 5, 25,3, 23, 11, 10]). Obtaining instantaneous measures for general time-dependent MCMR systems is1



another matter. Analytical solutions would seem to be intractable. Discrete-event simulation isa popular alternative, but it is often computationally very expensive, since it requires the averag-ing of a large number of independent simulation runs to obtain meaningful performance estimates.Straightforward numerical solution of equations such as the Chapman-Kolmogorov di�erential equa-tions are also computationally very expensive, since it requires solving a set of coupled di�erentialequations equal in number to the size of the state space (which can be very large).In this paper, we formulate a numerical-analytical method, referred to as Z-iteration, thataccurately estimates the time evolutions of instantaneous probability measures of general time-dependent MCMR systems at a fraction of the cost of discrete-event simulation or straightforwardnumerical solution. Furthermore, unlike simulation, it is easily parallelizable.The MCMR system is decomposed into a set of multiple-class single-resource (MCSR) systemsby invoking the resource independence assumption. This reduces the complexity of the problem,but a straightforward numerical solution of individual MCSR systems is still too expensive.To solve an MCSR system, we use a standard 
ow equation (e.g. [6]) that expresses the timeevolution of the instantaneous average number of customers N rc (t) by a di�erential equation involv-ing the instantaneous arrival and service rates (which are known), and the instantaneous blockingprobabilities Brc (t) and utilizations U rc (t). The key idea is to express Brc (t) and U rc (t) in terms ofN rc (t), thereby resulting in a single di�erential equation in N rc (t) that can be solved inexpensively.We have discovered that the function of Brc (t) in terms of N rc (t) is very well approximated by thecorresponding \steady-state" function of steady-state Brc in terms of steady-state N rc , i.e. assumingconstant arrival and service rates. The same is true for U rc (t), and indeed appears to hold for anyinstantaneous probability measure.The desired steady-state functions are computed as the �xed-point of two steady-state expres-sions: (1) an expression for the steady-state Brc in terms of the steady-state o�ered loads �c=�rc ;and (2) an expression for the steady-state �c=�rc in terms of the steady-state N rc and Brc . The �c=�rcis an intermediate quantity for the �xed-point iteration.These two steady-state expressions are available for a variety of MCSR systems, includingself-service systems where the customer is also the server, and single- or multiple-server queueingsystems [18, 6]. We point out that the expressions do not have to be closed form and can beimplicit.The rest of the paper is organized as follows. Section 2 describes the Z-iteration for single-class single-resource systems, and validates against exact solutions forM=M=K=K and M=M=1=Ksystems. Section 3 presents the method for the general MCMR model. In Sections 4, 5, 6, we applythe Z-iteration to three speci�c systems with time-varying inputs and dynamic control, namely,an integrated communication network, a parallel database server, and a distributed batch system.The �rst and third systems are modeled as systems with self-service resources, for which validationsagainst discrete-event simulations are given in Section 7. The second system is modeled as a systemwith single-server resources, for which validations are given in Section 8. Section 9 concludes anddescribes related work.2 The Z-Iteration for Single-Class Single-Resource SystemsTo illustrate the basic ideas behind our solution method, let us consider a system with only onecustomer class and one resource. We will use the notation introduced in the Introduction but2



without any resource superscript r or class subscript c.In general, obtaining the instantaneous probability measures is analytically intractable [28] andnumerically very expensive due usually to the large state space [27]. For Markovian systems, thestraightforward solution involves the well-known Chapman-Kolmogorov (C-K) di�erential equa-tions, that is,dP(t)dt = P(t) Q(�(t); �(t))where the row vector P(t) represents the instantaneous state probability vector and Q(:) is thegenerator matrix whose elements represent the transition rates between the states.The time evolution of N(t) is described by the 
ow equationdN(t)dt = �(t) [1� B(t)]� �(t)U(t)or its corresponding di�erence equation (with � being a small time step):N(t+ �) = N(t)� �(t) U(t) � + �(t) � [1� B(t)]The second term in the right-hand side of the equation represents the average number of customerswhich leave during [t; t+ �). The third term represents the average number of new customers thatare admitted during [t; t + �).Observe that if we could express B(t) and U(t) in terms of N(t), then we could solve theequation inexpensively for the time evolution of these measures; furthermore, this single equationis numerically much stabler than the C-K equations (see Sections 2.2 and 2.3). Of course, obtainingsuch expressions exactly is also intractable. However it turns out that the function of B(t) in termsof N(t) is very well approximated by the function of steady-state B in terms of steady-state N , i.e.assuming that �(t) and �(t) are constants. The same holds for U(t), and indeed appears to be truefor any instantaneous state probability.The steady-state functions of B and U in terms of N are available in analytical closed-form onlyfor very simple systems, e.g. M=M=2=2, M=M=1=2, and M=M=1=1. They are not available forblocking systems in general. We obtain them numerically using another approximation involvingthree steady-state expressions, namely:U in terms of N assuming a nonblocking system (1)B in terms of steady-state o�ered load �� (2)�� = U[1�B] (3)Expressions (1) and (2) are readily available in the literature. Equation (3) follows from equatingthe 
ow in, �[1�B], to the 
ow out, �U . We obtain U in terms of N from equation (1). We obtainB in terms of N as the �xed-point of equations (2) and (3), where N is �xed and U is replaced bythe expression in (1). 3



For the self-service M=M=K=K system, the equations corresponding to (1, 2, 3) are [18]:U = NB = �K=K!PKj=0 �j=j!� = N[1� B]where � = �=�. Note that the �rst equation, which was obtained assuming nonblocking (K = 1)happens to be also valid with blocking.For the single-server M=M=1=K system, the equations corresponding to (1, 2, 3) are [18]:U = NN + 1B = �KPKj=0 �j� = N(1 +N) 1[1� B]The �rst equation follows from U = � and N = �=(1��)). Note that it is not valid for the blockingcase.In the following subsections, we illustrate the accuracy of the Z-iteration and its approximationsfor the M=M=K=K and the M=M=1=K systems.2.1 M=M=2=2For this system, we can compute closed-form expressions. We haveB = �2=21 + �+ �2=2 (4)N = �+ �21 + �+ �2=2 (5)Inverting equation (5) (and ignoring a root that is always negative), we get� = N � 1 +p1 + 2N �N22�N (6)Substituting (6) in (4), we get B in terms of N .To illustrate the accuracy of approximating the instantaneous relationship between B(t) andN(t) by the steady-state relationship between B and N , we consider the evolution for � = � = 1and t 2 [0; 6] starting with an empty system at t = 0. Let Bexact(t) and Nexact(t) denote theexact solutions; they are derived in the Appendix. Figure 1 shows a plot comparing Bexact(t) andB jN=Nexact(t) (i.e. steady-state expression for B with N replaced by the exact N(t)). Clearly, thisshows that the approximation is quite good. In general, analyzing the errors is hard as it involvescomplex nonlinear equations in the average number of customers.4
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Figure 1: Accuracy of the approximation for theM=M=2=2 system. The dot-dashed line is Bexact(t),and the solid line is the approximation. � = � = 1 for t � 0. System empty at t = 0.For a general system, it is not possible to invert the equation corresponding to equation (5),which is why we are forced to resort to the �xed-point iteration. To illustrate the convergence ofthis iteration, we apply it to the M=M=2=2 case. In this case, the two equations areB = �2=21 + �+ �2=2� = N[1� B]These two formulas de�ne an equation of the form B = F (B). Figure 2 shows a graphicalexample of the mapping F . It illustrates that F is a contractive mapping of [0; 1) into [0; 1) andhence it converges to a unique �xed point [16].
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Figure 2: Convergence of the iteration for B theM=M=2=2 system starting from B = 0:9 forN = 1.5



2.2 M=M=50=50Consider anM=M=50=50 system with constant � and varying �. Figure 3 shows the average numberof customers in the system obtained by the Z-iteration and by numerical solution of the C-K di�er-ential equations. Both solutions practically coincide illustrating the accuracy of our method. Bothwere both coded in Mathematica using the di�erential equation solver NDSolve [29]. On a DECal-pha 3000 workstation, the C-K solution required 340 seconds of execution time, while our methodrequired only 28 seconds. This is a signi�cant savings in computation. In addition, NDSolve en-countered numerical instability (and crashed) with the C-K equations for many parameter settings,whereas no such problems were encountered with our solution method.Figure 4 is another comparison, also showing the accuracy of the Z-iteration. Here the C-Ksolution required 685 seconds of execution time, while our method required only 30 seconds.
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Figure 3: Comparison between the Z-iteration (solid) and the C-K solution (dot-dashed) for theM=M=50=50 system. N(0) = 0; � = 0:01; � = 0:5 for t 2 [0; 5], � = 1 for t 2 (5; 10], and � = 0:1for t 2 (10; 15].
2 4 6 8 10 12 14

t

5

10

15

20

N(t)

Figure 4: Comparison between the Z-iteration (solid) and the C-K solution (dot-dashed) for theM=M=50=50 system. N(0) = 0; � = 0:0001; � = 1:5 for t 2 [0; 5][ (10; 15] and � = 1 for t 2 (5; 10].6



2.3 M=M=1=50Consider an M=M=1=50 system with constant � and varying �. Figure 5 shows the average numberof customers in the system obtained by the Z-iteration and the numerical solution of the C-Kdi�erential equations. Although a slight discrepancy exists, the solutions are su�ciently close. Thesolution methods were both coded in Mathematica. On a DECalpha 3000 workstation, the C-Ksolution required around 486 seconds of execution time, while our method required only around48 seconds. Again, this is a signi�cant savings in computation. Again, NDSolve often encounterednumerical instability with the C-K equations, but not with our solution method.Figure 6 is another comparison, showing agreement between the Z-iteration and the C-K so-lution. Here the C-K solution required around 710 seconds of execution time, while our methodrequired only around 64 seconds.
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Figure 5: Comparison between the Z-iteration (solid) and the C-K solution (dot-dashed) for theM=M=1=50 system. N(0) = 0; � = 1; � = 0:4 for t 2 [0; 5][ (10; 20], and � = 1:2 for t 2 (5; 10].
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Figure 6: Comparison between the Z-iteration (solid) and the C-K solution (dot-dashed) for theM=M=1=50 system. N(0) = 0; � = 0:01; � = 1:4 for t 2 [0; 5][ (10; 20] and � = 0:8 for t 2 (5; 10].7



3 The Z-Iteration for Multiple-Class Muliple-Resource SystemsIn this section, we present our solution method to the general MCMR model introduced in Sec-tion 1. As mentioned in Section 2, obtaining the instantaneous probability measures is analyticallyintractable and numerically very expensive. For Markovian systems, it involves the C-K di�erentialequations for every resource r,dPr(t)dt = Pr(t) Qr(f�c(t); �rc(t) : c 2 Crg)where the row vector Pr(t) represents the instantaneous state probability vector of r, Qr(:) is thegenerator matrix whose elements represent the transition rates between the states of r, and Crdenotes the set of classes requesting units of resource r.We start with the following di�erence equations for c 2 Cr, where � is the (small) time step:N rc (t+ �) = N rc (t)� �rc(t) U rc (t) � + �c(t) � Yr0 2Rc[1�Br0c (t)] (7)Note that the product termQ re
ects the assumption made in Section 1 that a new class-c customeris admitted i� it is not blocked at any of the required Rc resources; this invokes the resourceindependence assumption.By expressing U rc (t) and Brc (t) in terms of fN rc0(t) : c0 2 Crg, we can solve equations (7)inexpensively. We approximate the functions of U rc (t) in terms of N rc0(t) and Brc (t) in terms ofN rc0(t) by the corresponding functions assuming steady-state, i.e., assuming that the �c0(t) and�rc0(t) are constants. We obtain the steady-state functions as the �xed-point of other steady-statefunctions.The details are in the following subsections. We �rst obtain a steady-state relationship betweenU rc and the N rc0 . We then obtain two steady-state expressions, one de�ning Brc in terms of the�c0�rc0 , and one de�ning �c�rc in terms of the N rc0 and Brc . By iterating to the �xed point of these twoexpressions with N rc0 �xed, we obtain the desired steady-state relationship between Brc and the N rc0 .3.1 Utilization in terms of numbers of customersDenoting the steady-state expression by T rc , we have for c 2 Cr:U rc = T rc (fN rc0 : c0 2 Crg) (8)T rc is a function that re
ects the load and service discipline of r. The exact form of T rc isapplication dependent. For a self-service facility as in an M=G=K=K queueing system, T rc isclearly equal to N rc . The derivation of T rc is not always obvious. One approximation to obtain T rcin a systematic and easy way is to assume no blocking and then use steady-state queueing formulasexpressing N rc in terms of the �c0�rc0 . Inverting these formulas, we obtain �c�rc in terms of the N rc0 .Since we are assuming no blocking, we have T rc = �c�rc . Thus, we get T rc in terms of the N rc0 . (cf.Sections 2 and 5.)From equations (8), we can express U rc (t) approximately in terms of fN rc0(t) : c0 2 Crg byreplacing the steady-state measures U rc and N rc by their instantaneous counterparts U rc (t) andN rc (t). Doing this yields the following instantaneous equations for c 2 Cr:U rc (t) = T rc (fN rc0(t) : c0 2 Crg) (9)8



3.2 Blocking probabilities in terms of numbers of customersDenoting by Src the steady-state expression de�ning Brc in terms of the �c0�rc0 , we have for c 2 Cr:Brc = Src (f�c0�rc0 : c0 2 Crg) (10)Src can be obtained as follows. De�ne a feasible state of resource r by the number of customersof each class c 2 Cr that r can simultaneously support, i.e. for which the total number of unitsrequested does not exceed r.max. Let F r denote the set of all feasible states of r. Assuming the�c0(t) and �rc0(t) are constants for all t, the steady-state transition rate between two states belongingto F r is given by some function of �c0 and �rc0 . A class-c customer is blocked in a state of F r if itsadmittance would lead to a state outside F r. Refer to such states of F r as class-c blocking states.Solving analytically for the probability of being in a class-c blocking state yields Src .To illustrate, consider anM=G=K=K resource used by one class of customers arriving accordingto a Poisson process of rate �c. Let each admitted customer be served by one of the K servers for anaverage duration of 1=�rc . Then Src is the Erlang-B formula, i.e. Src = E(�c�rc ; K) = (�c�rc )K=K!PKj=0( �c�rc )j=j! [18]:We obtain the steady-state expression de�ning �c�rc in terms of the N rc0 and Brc as follows. Equat-ing the rates of departure and admission of class-c customers at resource r, we have �rc U rc =�c [1�Brc ]. From this and (8) we have for c 2 Cr:�c�rc = T rc (fN rc0 : c0 2 Crg)[1� Brc ] (11)From equations (10) and (11), we can express Brc (t) approximately in terms of fN rc0(t) : c0 2 Crgby replacing the steady-state measures Brc and N rc by their instantaneous counterparts Brc (t) andN rc (t), and replacing �c�rc by an instantaneous quantity zrc (t) that we introduce. Doing this yieldsthe following instantaneous equations for c 2 Cr:Brc(t) = Src (fzrc0(t) : c0 2 Crg) (12)zrc (t) = T rc (fN rc0(t) : c0 2 Crg)[1�Brc (t)] (13)3.3 Overall calculationKnowing fN rc (t): c 2 Crg at some �xed t, we can solve equations (12) and (13) iteratively forfBrc(t): c 2 Crg. In particular, starting from an initial estimate fẑrc(t): c 2 Crg, we computefBrc(t): c 2 Crg from equations (12). Then, we use equations (13) to compute new values forfzrc (t): c 2 Crg. We repeat this process until the values of fzrc (t): c 2 Crg stabilize.Once we obtain fBrc(t) : r 2 R; c 2 Crg, we obtain fN rc (t + �) : r 2 R; c 2 Crg usingequations (7), and we repeat the process to obtain the time evolution of the performance measuresfor time instants 0; �; 2�; � � �.Figure 7 outlines our solution method. In the outermost iteration, we obtain fN rc (t+�); Brc (t) :r 2 R; c 2 Crg for t = 0; �; 2�; � � �. The computation for each time t consists of two parts. The�rst part (steps 3-9) computes, for every r 2 R, fBrc (t): c 2 Crg in terms of fN rc (t): c 2 Crg. Thesecond part (step 10) computes, for every r 2 R and c 2 Cr, N rc (t+�) in terms of fN rc0(t): c0 2 Crg,�c(t), �rc(t), and fBr0c (t): r0 2 Rcg. The �rst part involves the iterative procedure (steps 5-9) onequations (12) and (13) (steps 7 and 8). 9



1. Initialize fN rc (0) : r 2 R; c 2 Crg /* 0 for initially empty system */2. For t = 0; �; 2�; � � �begin3. For every r 2 R /* Obtain fBrc (t) : c 2 Crg in terms of fN rc (t) : c 2 Crg */begin4. Initialize fẑrc (t) : c 2 Crg /* arbitrary value if t = 0 *//* ẑrc (t� �) if t > 0 */5. repeat6. zrc (t) ẑrc (t), for every c 2 Cr7. Obtain fBrc (t) : c 2 Crg in terms of fzrc (t) : c 2 Crgusing an instantaneous version of a steady-state formula (see (12))8. Obtain fẑrc (t) : c 2 Crg in terms of fBrc (t); N rc (t) : c 2 Crgusing an instantaneous version of a steady-state formula (see (13))9. until j ẑrc (t)� zrc (t) j< �, for every c 2 Crend10. For every r 2 R and c 2 Cr,obtain N rc (t + �) in terms of fN rc0(t) : c0 2 Crg, �c(t), �rc(t), and fBr0c (t) : r0 2 Rcgusing a di�erence equation relating arrivals and departures (see (7))end Figure 7: Evaluation method.3.4 CommentsAssuming that K iterations are needed for convergence of the iterative procedure in steps 5-9 ofFigure 7, the computational complexity for each time step is O(jRj jCrj ( (jBrc j+ jzrc j)K + jN rc j )),where jBrc j is the cost of evaluating Brc(:) via (12), jzrc j that of evaluating zrc (:) via (13), and jN rc jthat of evaluating N rc (:) via (7). The Z-iteration requires storage of O(V jRj jCrj), where V is thenumber of instantaneous measures. From Figure 7, we have V = 5 since we have 5 instantaneousmeasures de�ned, namely, Brc (:), zrc (:), N rc (:), �c(:) and �rc(:).We note that it might be required to make assumptions about the arrival or service distributionsin order to obtain the Src (:) and T rc (:) formulas.Above we de�ned the feasible state of resource r by a multi-dimension vector representing thenumber of customers of each class c 2 Cr that r can simultaneously support. In fact, we can de�nea feasible state di�erently as long as in this state, the total number of units requested does notexceed r.max. For example, we can de�ne it by a single number representing the total number ofunits of r currently used by customers. Also, other criteria can used to further limit admission ofcustomers.The Z-iteration can also be used to directly solve for steady-state, if the �c(t) and �rc(t) are10



constants and a solution exists. We simply set Nrc (t+�)�Nrc (t)� = 0 in equations (7) and use them inconjunction with equations (12) and (13) to iteratively solve for steady-state. There is no simpleway to determine whether there exists a solution to such a nonlinear system. Even if the physicalnature of the system suggests that a solution exists, the iteration may oscillate between di�erentsolutions, which can alert one to the instability of the system [3]. Obviously, such oscillations canalso occur under transient conditions arising, for example, from dynamic control.Observe that it is easy to realize parallel implementations of our method by mapping thecomputations for di�erent resources onto di�erent processors, and we would expect almost linearspeedup.The accuracy of our method depends on the approximation of the relationship between theBrc (t) and the N rc (t) by its steady-state counterpart, which is the �xed point of the iteration insteps 5-9 of Figure 7. Analyzing the errors and convergence of this iteration is hard in generalbecause of the complex nature of the underlying nonlinear system. However, it can be shown insimple situations that the approximation is accurate when compared to the exact instantaneoussolution, and that the iteration is a contractive mapping of [0; 1) into [0; 1) and hence it convergesto a unique �xed point [16] (cf. Section 2). Furthermore, our experience indicates that our methodyields accurate performance measures when compared to discrete-event simulation and that theiteration converges quickly (see Sections 7 and 8).As we pointed out earlier, the exact form of Src (:) and T rc (:) and the values of �rc(:) and �c(:)depend on the particular application. We next consider di�erent applications, and show how they�t into the general model and solution procedure so far introduced.4 Application: Integrated NetworkConsider an integrated services network (e.g. ATM) that uses dynamic routing to support real-timecommunication (voice, video, etc.) between pairs of source and destination nodes. The connectionsof a service s arrive at the service's source node according to a Poisson process of rate �s, and havean end-to-end quality-of-service requirement Ds (e.g. delay). Each connection, once it is successfullysetup, has a lifetime of average duration 1�s . The source node uses its routing information to choosefor the arriving connection a potential path/route to the service's destination node. The route andservice together de�ne the class of the connection. Note that because of the dynamic routing, classarrivals have time-varying statistics irrespective of whether the service arrivals have time-varyingstatistics. (See Figure 8.)Resources in a network include link bandwidths, bu�er spaces, etc. For this example, weassume link bandwidths are the main resources; thus R consists of link ids (where each id denotesthe bandwidth component of the link). We assume a connection of service s requires the reservationof a certain amount of bandwidth on each link along its route that are enough to satisfy Ds. Thisreservation amount can be thought of as either the peak transmission rate of the connection or its\e�ective bandwidth" [12] varying between its peak and average transmission rates. The set Rcof a class-c connection would thus contain the links along the route of class c. The instantaneousarrival rate of class-c connections of service s, �c(t), is a function of �s and the routing algorithm.Consider a routing scheme that regularly assigns probabilities to the candidate paths accordingto their measured loads. Arriving connections are routed independently according to these pathprobabilities. In this case, class-c connections of service s arrive according to a Poisson process ofrate �c(t) = �c(t) �s, where �c(t) is the load-dependent routing probability.11
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Figure 8: A network o�ering two services s1 and s2. Each service has two candidate routes forconnection setup. Hence two classes are de�ned for each service: classes c1 and c2 for s1 connections,and classes c3 and c4 for s2 connections.An arriving class-c connection of service s that �nds insu�cient bandwidth on any r 2 Rc isblocked and lost. Otherwise, the connection is admitted and bandwidths are allocated to it on eachr 2 Rc for an average duration of 1�rc(t) = 1�s . Note that this is a self-service system.Thus, r.max is the total link bandwidth of r, and c.r.req is the amount of link bandwidth thatmust be allocated (reserved) for a class-c connection on r 2 Rc. Let's assume that the c.r.reqand r.max are integers. Let the state of r indicate the amount of bandwidth allocated. Thus,F r = f0; 1; � � � ; r.maxg. Let P r(j) denote the steady-state probability of r being in state j. Thenthe P r(:) satisfy the following recurrence relation [25]:j P r(j) = Xc02Cr �c0�rc0 c0:r:req P r(j � c0:r:req)j = 1; : : : ; r.maxwhere Pr.maxj=0 P r(j) = 1.The steady-state blocking probability for class-c connections at r, Brc , is given byBrc = r.maxXj=r.max�c.r.req+1P r(j)This steady-state solution, which de�nes Src (:) for this system, is valid for Poisson arrivals andgeneral service times. It can be used in equations (12) after replacing the �c0�rc0 by zrc0(t).Regarding the function T rc (:) used in equations (13), since r is self-service, we haveT rc (:) = N rc (t)Note that how and when the �c(t) are varied with time allows one to model di�erent routingalgorithms and routing update synchronization at the network nodes. Also, the choice of block-ing states in F r can model various admission control schemes, in particular those which blockconnections even if their admission is feasible. 12



Systems with self-service resources are validated (against discrete-event simulations) in Sec-tion 7. There we consider systems equivalent to single-link network, and multi-link network. Themulti-link network is used by several multi-hop connections representing main tra�c, and severalone-hop connections representing cross-tra�c.5 Application: Parallel Database ServerConsider a system of multiple disks on which data is partitioned according to some scheme, e.g.round-robin, range partitioning, etc. [4]. Each disk has a �nite �rst-come-�rst-served (FCFS) queuewhere queries of di�erent classes wait to be served. A query requests data retrieval from one ormore disks in parallel. (See Figure 9.) This parallelism typically leads to reduction in data accesstime [4, 14]. The collection of disks needed by a query is de�ned by the query's class. We assumean arriving query requires one unit of space in the queue of each disk it needs to access.
c2 c3 c4

c1

r1 r2 r3Figure 9: A 3-disk parallel database server. Class c1 requires data retrieval from all three disks.Other classes require data retrieval from only one disk.Thus the resource set Rc of a class-c query contains the queues of disks that are needed by classc, and this is a function of the data partitioning scheme. r.max is the total number of queries thatr can accommodate, and c.r.req = 1 for r 2 R and c 2 Cr. An arriving class-c query that �nds nospace in any r 2 Rc is blocked and lost.Assume class-c queries arrive according to a Poisson process of rate �c(t). Also, assume thatthe service time of any query in r is exponentially distributed with mean 1�r ; thus 1�rc(t) = 1�r for allc 2 Cr.Let the state of r denote the total number of queries waiting or in service in r. Thus, F r =f0; 1; : : : ; r.maxg. The steady-state blocking probability for class-c queries at r is the steady-stateprobability of r being in state r.max. This steady-state solution is well-known for theM=M=1=r.maxqueueing system, in particular, for c 2 Cr:Brc = (Pc02Cr �c0�r )r.maxPr.maxj=0 (Pc02Cr �c0�r )j [18] 13



This steady-state solution can be used in equations (12) after replacing Pc02Cr �c0�r byPc02Cr zrc0(t).We employ the technique explained in Sections 2 and 3 to derive the function T rc (:) used inequations (13). Assuming steady-state and no blocking, we can treat the M=M=1=r.max system ofr as an M=M=1=1 system. At steady-state, we know that [18]N rc = �c�r �Pc02Cr �c0 (14)From this and T rc (:) = �c�r , which holds assuming no blocking, we have1T rc (:) = N rc1 +Pc02Cr N rc0Therefore, in the transient regime, we haveT rc (:) = N rc (t)1 +Pc02Cr N rc0(t)The above model can be used to study various data partitioning schemes for high-performanceindexing [4]. Systems with single-server resources are validated (against discrete-event simulations)in Section 8.6 Application: Distributed Batch SystemConsider a distributed batch system such as Condor [20]. Batch jobs (user programs) are submittedto a central manager (CM). Assume batch jobs of type i arrive to the CM according to a Poissonprocess of rate �i. The CM uses its information about the load on the various workstations tochoose for the arriving batch job a potential workstation for its execution. The class of the batchjob is de�ned by the workstation it is routed to by the CM and the job type.Each batch job would typically require resources such as memory, disk space, and CPU process-ing power to execute on a workstation. For this example, we assume all required resources otherthan the CPU are always available. The set Rc of a class-c batch job would thus contain the CPUof the workstation to which the job is routed.We assume only one job can be running on each workstation at a time. Thus, if the owner ofthe workstation executes a job of his/her own, then the batch job currently executing on his/herworkstation, if any, is suspended and its execution resumed later when the owner job �nishesexecution. An arriving class-c batch job that �nds another batch job running or suspended onr 2 Rc is blocked and returned to the CM. Otherwise, it is admitted for processing with meanprocessing time of 1=�rc(t). This processing time includes the time during which the batch jobis suspended due to owner processes [19]. Note that in this application, we do not assume thatblocked jobs are lost, rather they are returned to the CM for retry.1 From (14), we have (i) Nrc = �c=�r1�Pc02Cr �c0 =�r , and thus (ii) Pc02Cr Nrc0 = Pc02Cr �c0 =�r1�Pc02Cr �c0 =�r . Rearranging thelast equation, we have (iii) Pc02Cr �c0=�r = Pc02Cr Nrc01+Pc02Cr Nrc0 . Substituting (iii) in (i), we get an expression for �c�r ,which together with T rc (:) = �c�r yields the desired result.14



The instantaneous arrival rate of class-c batch jobs of type i, �c(t), is a function of �i, the loadbalancing algorithm used by the CM, and the rate of retrials of type i batch jobs. Assume the loadbalancing algorithm regularly assigns to the candidate workstations probabilities according to theirmeasured loads. Arriving batch jobs are routed independently according to these probabilities. Let�c(t) denote the load-dependent probability that the type i batch job belongs to class c, i.e. isrouted to r 2 Rc. Then,�c(t) = [�i + Xclasses c0 of type ir02Rc0 �c0(t � �) Br0c0 (t� �)] �c(t) (15)The P term in equation (15) represents the total rate of retrials of type i batch jobs, which isa function of their blocking probabilities. In this model, r.max is the maximum number of batchjobs that r handles. r.max = 1 and c.r.req = 1 for r 2 R and c 2 Cr. Let the state of r denote thetotal number of batch jobs running or suspended on r. Then, F r = f0; 1g. This system is similarto the self-service integrated network discussed in Section 4, and hence we can use the Src (:) andT rc (:) formulas presented there.Indeed, we are assuming here the arrival processes are Poisson. This is not, in general, truesince the composite tra�c contains blocked batch jobs returned immediately at the next time stepto the system for retry. This assumption is less restrictive if blocked batch jobs are returned tothe system after waiting an independent random period [23, 8]. This waiting e�ect can be easilyincorporated into the above model. This model can be used to study the interactions betweenowner jobs and batch jobs, and examine various load balancing schemes through the 1=�rc(t) and�c(t).7 Validation of Systems with Self-Service ResourcesIn this section, we compare the results obtained using our method with those obtained usingdiscrete-event simulation for systems with self-service resources. Both methods were coded in C. Inour method, we obtain instantaneous performance measures through equations (7), (9), (12), and(13), substituting with the appropriate application-dependent parameters and formulas. We takethe discrete-time step � to be 0.1.The simulation model di�ers from our analytical model in that the actual events of arrival andprocessing of customer requests are simulated according to the speci�ed probability distributionsand system characteristics (i.e. service disciplines, admission policy, etc.). To obtain reliable per-formance estimates, a number of independent replications (i.e. simulation runs) must be carriedout and averaged. In particular, let X(i)(t) denote a generic measure computed at time instant tin replication i, where t takes on the successive values t1; t2; � � � ; tk; � � �. Then, the mean value ofthis measure at particular time instant tk is estimated as PNi=1X(i)(tk)=N , where N is the totalnumber of replications. The larger N is, the more accurate the simulation estimates are [22]. Inour simulations, the performance measures are computed for t = 1; 2; 3; � � �.The measures considered are precisely de�ned as they are introduced below. In all experiments,we start with empty systems. For the cases with N = 50, the observed mean of the simulationmeasures at various time instants typically show 95% con�dence interval for a + 10% range. Forthe cases with higher N , 95% con�dence interval is obtained for a + 3% range.We �rst consider a MCSR system with a single resource r1 used by 10 customer classes whoseparameters are shown in Figure 10. 15



Class c Rc c.r.req �c 1=�cc1 fr1g 30 0.125 5c2 fr1g 15 0.5 1c3 fr1g 50 0.2 2c4 fr1g 10 0.1 2c5 fr1g 40 0.125 1c6 fr1g 25 0.5 0.5c7 fr1g 30 1.0 0.5c8 fr1g 10 0.0625 10c9 fr1g 5 1.0 0.2c10 fr1g 50 0.25 2Figure 10: Parameters of 10 classes using r1 with r1.max = 200.Class-c customers arrive at r1 according to a Poisson process of rate �c. The system is self-service. In particular, an admitted class-c customer holds the acquired c.r1.req resource units foran exponential duration with mean 1=�c before releasing them. This system is similar to a single-link integrated network modeled as in Section 4, and hence we use the T rc (:) and Src (:) formulaspresented there to obtain the performance measures by our method.Figures 15, 16, and 17 show the time behavior of the total number of in-service customers,the fraction of resource units allocated, and the total throughput, respectively. The �rst mea-sure denotes the total number of customers currently holding resource units, which is equal toPc02Cr1 N r1c0 (t) in our method. The second measure denotes the fraction of r1.max currently beingheld by customers, which is equal to (Pc02Cr1 N r1c0 (t)� c0:r1:req)=r1:max in our method. The thirdmeasure denotes the total current admission rate, which is equal to Pc02Cr1 �c0 [1 � Br1c0 (t)] in ourmethod. Generally, it is equal to Pc02C �c0 Qr02Rc0 [1� Br0c0 (t)] for MCMR systems.In our simulations, the �rst two measures displayed at time instant t (t = 1; 2; 3; � � �) are simplythe values of these measures as observed at t. The last measure, namely the total throughput,displayed at time instant t is de�ned to be the total number of customers admitted in the interval[t� 1; t).Our method yields results very close to the exact values. In addition, we found our method muchless time-consuming than simulation. This is especially because the latter requires the averaging of alarge number of independent simulation runs. To give an idea of the computational savings, for thisexperiment, on a DECstation 5000/133, our method required around 6 seconds of execution timewhile the 50-run and 1000-run simulations required around 25 seconds and 8 minutes, respectively.The number of iterations required at each time step for convergence of the iterative procedure insteps 5-9 of Figure 7 is less than 6 iterations for � = 10�5 and ẑrc (0) = �c=�rc .We next validate our resource independence assumption manifested in equation (7) by theproduct term Q. We consider a similar self-service system but with 3 resources and 20 customerclasses. Out of the 20 classes, 10 classes require all 3 resources. A class-c customer requires thesame number of units of each r 2 Rc. Figure 11 shows the system parameters. Note that thissystem can be regarded as a multi-link integrated network modeled as in Section 4. See Figure 12.Here, classes 1 to 10 represent multi-hop connections modeling main tra�c, while other classes16



represent one-hop connections modeling cross-tra�c.Class c Rc c.r.req �c 1=�cc1 fr1, r2, r3g 30 0.125 5c2 fr1, r2, r3g 15 0.5 1c3 fr1, r2, r3g 50 0.2 2c4 fr1, r2, r3g 10 0.1 2c5 fr1, r2, r3g 40 0.125 1c6 fr1, r2, r3g 25 0.5 0.5c7 fr1, r2, r3g 30 1.0 0.5c8 fr1, r2, r3g 10 0.0625 10c9 fr1, r2, r3g 5 1.0 0.2c10 fr1, r2, r3g 50 0.25 2c11 fr1g 30 0.125 5c12 fr1g 15 0.5 1c13 fr1g 50 0.2 2c14 fr2g 10 0.1 2c15 fr2g 40 0.125 1c16 fr2g 25 0.5 0.5c17 fr3g 30 1.0 0.5c18 fr3g 10 0.0625 10c19 fr3g 5 1.0 0.2c20 fr3g 50 0.25 2Figure 11: Parameters of 20 classes using 3 resources r1, r2, and r3 with r1.max = 150, r2.max =200, and r3.max = 250.
c1 ... c10

c11 ... c13 c14 ... c16 c17 ... c20

r1 r2 r3Figure 12: Multi-link network.Figure 18 shows the instantaneous total throughput. Simulation results, denoted by Exp, arefor Poisson arrivals and exponential holding times. Simulation results, denoted by Det, are forPoisson arrivals and deterministic holding times. The results show the accuracy of our method inboth cases as they satisfy the assumptions required to obtain the T rc (:) and Src (:) formulas usedhere. (Our experiments with deterministic arrivals show large errors as expected.)17



Next, we consider a similar self-service system whose parameters are given in Figure 13. Here,�c1 varies with time. This mimics the e�ect of tra�c control policies such as 
ow control androuting. We assume �c1 alternates every 20 time units between zero and 0.125, starting with zero.Figures 19 and 20 show the instantaneous total throughput and blocking probability, respectively.Our method accurately reproduces the behavior obtained by simulation. We compute the instanta-neous blocking probability B(t) from the throughput 
(t) using the relation B(t) = 1� 
(t)=�(t),where �(t) is the instantaneous total arrival rate of customers. We do this rather than computeB(t) directly from the simulations because doing that would require averaging over a very largenumber of replications, because B(t) typically has a very low value and thus a high sample variance.Class c Rc c.r.req �c 1=�cc1 fr1, r2, r3g 30 0 $ 0.125 5c2 fr1g 30 0.125 5c3 fr2g 10 0.1 2c4 fr3g 50 0.25 2Figure 13: Parameters of 4 classes using 3 resources r1, r2, and r3 with r1.max = 50, r2.max =100, and r3.max = 150.8 Validation of Systems with Single-Server ResourcesIn this section, we compare the results obtained using our method with those obtained usingdiscrete-event simulation for systems with single-server resources. The performance measures arecomputed as described in Section 7. Similar con�dence intervals are also observed for the measuresobtained by simulation.We consider a MCMR system with 3 resources and 4 customer classes. Out of the 4 classes,class c1 requires all 3 resources. A class-c1 customer requires one unit of each resource. Figure 14shows the system parameters.Class c Rc c.r.req �c 1=�cc1 fr1, r2, r3g 1 0.2 1c2 fr1g 1 0.5 1c3 fr2g 1 0.8 1c4 fr3g 1 0.4 1Figure 14: Parameters of 4 classes using 3 resources with r:max = 5 each.Class-c customers arrive according to a Poisson process of rate �c. Each resource consists ofa single-server with a �nite waiting room and a FCFS scheduling discipline. An admitted class-ccustomer occupies one unit of space, and requires an exponential service time with unit mean. Thissystem is similar to the parallel database server discussed in Section 5, and hence we use the T rc (:)and Src (:) formulas presented there to obtain the performance measures by our method. Figure 2118



shows the instantaneous total throughput. The results obtained by our method agree with thoseobtained by simulation.We next consider the same system but with �c1 varying with time. We assume �c1 alternatesevery 20 time units between zero and 0.2, starting with zero. Figures 22 and 23 show the instanta-neous total throughput and blocking probability, respectively. Our method accurately reproducesthe behavior obtained by simulation.9 ConclusionsThe Z-iteration computes instantaneous probability measures of general time-dependent MCMRsystems. It integrates techniques from several areas, including standard queueing theory tech-niques [18]; the resource decomposition technique [17, 9]; the dynamic 
ow technique [7, 6, 27, 8];and the technique of repeated substitutions used in numerical analysis to solve nonlinear equa-tions [16].MCMR systems have often been analyzed under steady-state conditions (e.g. [13, 15, 21, 5, 25,3, 23, 11]). The Z-iteration di�ers from iterations commonly used in steady-state analysis, whichonly solve for steady-state measures.Our model yields the time-varying behavior of a general MCMR system. We use the well-knowndecomposition technique [17, 15] to approximate the system as a collection of MCSR systems. Foreach MCSR system, we describe the evolution of the instantaneous average number of customersof each class by relating its instantaneous admission rate to its instantaneous departure rate. Thecomputation of these instantaneous rates uses a basic concept, that of approximating instantaneousrelationships by their steady-state counterparts.To obtain the instantaneous admission rates, we adapt steady-state queueing formulas to yieldthe instantaneous blocking probability of each class in terms of the instantaneous average numbersof customers waiting or in service. This technique was originally introduced in [7], where it wasused to obtain steady-state blocking probability and carried load for a speci�c call routing andnetwork topology.Reference [7] considered a network of source nodes, destination nodes, and intermediate nodes,with a link from every source node to every intermediate node, and a link from every intermediatenode to every destination node. Each link can carry a �xed total number of calls. The call arrivalprocess from a source to a destination is Poisson with �xed rate. The call routing is not dynamic;a �xed fraction of the call arrivals is routed through every intermediate node. In addition, over
owtra�c (due to blocking links) is routed through alternate available routes. Each call, once admitted,has an exponential holding time of �xed mean that is the same for all calls. The blocking probabilityof a link is given by the Erlang-B formula expressed in terms of combined o�ered load. The systemis solved for steady-state average number of calls on each link by equating the call departure rateto the call admission rate.Our model extends the one in [7] to any system where the steady-state blocking probabilitiescan be expressed in terms of o�ered loads. This allows us to consider general multi-class systems,where, for example, each class has di�erent resource and service needs, and resources have di�erentscheduling disciplines. Also, our model can be applied to describe general dynamic routing schemeswith the arrival rate of a class changing as a function of the instantaneous system state.To obtain the instantaneous departure rates, we again adapt steady-state queueing formulas toyield the instantaneous utilization of each class in terms of the instantaneous average numbers of19



customers waiting or in service. The same technique was used in [27], where feedforward queueingnetworks were considered. Each service center is an M=M=1 in�nite FCFS queue with the sameaverage service time for all classes. The routing of each class is a time-dependent Bernoulli process.Compared to our model, this does not model blocking resources, or service centers with complicatedstructure (e.g. service centers consisting of multiple resources with di�erent scheduling disciplinesserving customers with di�erent needs). Though we do not consider here sequential resource needsby one customer (a customer requests all needed resources simultaneously), our model can be easilyextended to capture this situation.Our dynamic 
ow model is quite general, and can be used to study both transient and steady-state performances of various MCMR blocking and non-blocking systems. Our method has advan-tages over other methods that might be used to analyze transient behaviors. One such methodis that of time-dependent queueing models, which involve probability distributions for all events.However, such models are extremely di�cult to solve analytically [28], and computationally expen-sive to solve numerically [27]; A second method is that of di�usion models, which utilize averagesand variances [2, 24]. Such models involve partial di�erential equations and are usually intractable.A third method is that of 
uid models, which utilize average quantities only [1]. Such models involveordinary di�erential equations and are usually tractable. However, dynamic 
ow models appearmore accurate since they include detailed probabilistic descriptions manifested in our model in thecomputation of both the instantaneous blocking probabilities and the instantaneous utilizations.
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Figure 15: Total number of in-service customers versus time. MCSR self-service system.
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Figure 16: Fraction of resource units allocated versus time. MCSR self-service system.
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Figure 17: Total throughput versus time. MCSR self-service system.
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Figure 18: Total throughput versus time. MCMR system with self-service resources.24
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Figure 19: Total throughput versus time. MCMR system with self-service resources. Time-varyingarrivals.
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Figure 20: Blocking probability versus time. MCMR system with self-service resources. Time-varying arrivals. 25
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Figure 21: Total throughput versus time. MCMR system with single-server resources.
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Figure 22: Total throughput versus time. MCMR system with single-server resources. Time-varyingarrivals. 26
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Figure 23: Blocking probability versus time. MCMR system with single-server resources. Time-varying arrivals.
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