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Abstract

Multiple-class multiple-resource (MCMR) systems, where each class of customers requires
a particular set of resources, are common. These systems are often analyzed under steady-
state conditions. We describe a simple numerical-analytical method, referred to as Z-iteration,
to estimate instantaneous (and steady-state) probability measures of time-dependent systems.
The key idea is to approximate the relationship between certain instantaneous measures by the
relationship between their steady-state counterparts, and use this approximation to solve dy-
namic flow equations. We show the generality of the Z-iteration by applying it to an integrated
communication network, a parallel database server, and a distributed batch system. Valida-
tions against exact numerical solutions and discrete-event simulations show the accuracy and
computational advantages of the Z-iteration.
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1 Introduction

We consider a general multiple-class multiple-resource (MCMR) system. We have a set R of
resources and a set C of customer classes. The nature of a resource depends on the system being
modeled; for example, it may be computer memory, floor space, transmission capacity, etc. Each
resource r has an attribute, denoted by r.maxz, which is a constant that indicates the maximum
number of units in terms of which r is quantified.

Each class in C represents a class of customers that requires a particular set of resources.
Depending on the system being modeled, customers can be user programs, manufactured products,
network connections (calls), etc. Specifically, each class-¢ customer requires some subset R. of
resources, R. C R. Furthermore, the class-¢ customer requires some number of units, denoted
by c.r.req, of each resource r € R, (e.g. bandwidth, storage space, etc.). For example, a network
connection would require some transmission and buffer capacity on each of the links of the path

connecting its source to its destination.
Let

e A\.(t) denote the instantaneous arrival rate of class-¢ customers, and
e 1/ul(t) denote the instantaneous service time of a class-c customer at 7.

Thus we are interested not only in the steady-state behavior of the MCMR system, but also
in its transient or non-stationary behavior. Transient conditions arise when the customer arrival
rates or the service rates at the resources vary with time, due to externally time-varying factors or
dynamic control decisions based on current or delayed system state information.

An arriving class-c customer is blocked at a resource r € R, iff c.r.req exceeds the amount of the
resource that is currently available (additional constraints can be incorporated too). An arriving
class-c¢ customer is blocked iff it is blocked at any r € R.. A blocked customer is lost or retried
later.

We want to obtain instantaneous probability measures of the different classes, such as the
instantaneous blocking probabilities (or equivalently the throughputs). We introduce the following
notation:

e B.(1), instantaneous blocking probability of class c.

)
. (1), instantaneous blocking probability of class ¢ at resource r € R..

;
BC
N[(t), instantaneous average number of class-¢ customers waiting or in service at resource r.

U!(t), instantaneous utilization of resource r by class-¢ customers (average number of class-c
customers in service at resource r).

The generality of our model allows us to consider a variety of systems, including those with
delayed feedback between changes in system state information and changes in control decisions.
Examples of such systems include database locking systems, inventory systems, distributed batch
systems, manufacturing systems, and communication networks. Because the class of a customer
can be assigned when the customer arrives, it is straightforward to model state-dependent control
policies such as assigning jobs to processors with the least workload.

MCMR systems have often been analyzed under steady-state conditions (e.g. [13, 15, 21, 5, 25,
3, 23, 11, 10]). Obtaining instantaneous measures for general time-dependent MCMR systems is



another matter. Analytical solutions would seem to be intractable. Discrete-event simulation is
a popular alternative, but it is often computationally very expensive, since it requires the averag-
ing of a large number of independent simulation runs to obtain meaningful performance estimates.
Straightforward numerical solution of equations such as the Chapman-Kolmogorov differential equa-
tions are also computationally very expensive, since it requires solving a set of coupled differential
equations equal in number to the size of the state space (which can be very large).

In this paper, we formulate a numerical-analytical method, referred to as Z-iteration, that
accurately estimates the time evolutions of instantaneous probability measures of general time-
dependent MCMR systems at a fraction of the cost of discrete-event simulation or straightforward
numerical solution. Furthermore, unlike simulation, it is easily parallelizable.

The MCMR system is decomposed into a set of multiple-class single-resource (MCSR) systems
by invoking the resource independence assumption. This reduces the complexity of the problem,
but a straightforward numerical solution of individual MCSR systems is still too expensive.

To solve an MCSR system, we use a standard flow equation (e.g. [6]) that expresses the time
evolution of the instantaneous average number of customers N (t) by a differential equation involv-
ing the instantaneous arrival and service rates (which are known), and the instantaneous blocking
probabilities B(t) and utilizations U[(t). The key idea is to express B.(t) and U!(¢) in terms of
NI(t), thereby resulting in a single differential equation in N (%) that can be solved inexpensively.

We have discovered that the function of Bl (¢) in terms of N () is very well approzimated by the
corresponding “steady-state” function of steady-state B/ in terms of steady-state N/, i.e. assuming
constant arrival and service rates. The same is true for U!(¢), and indeed appears to hold for any
instantaneous probability measure.

The desired steady-state functions are computed as the fixed-point of two steady-state expres-
sions: (1) an expression for the steady-state B in terms of the steady-state offered loads A./ul;
and (2) an expression for the steady-state A\./u in terms of the steady-state N/ and B.. The A./u!
is an intermediate quantity for the fixed-point iteration.

These two steady-state expressions are available for a variety of MCSR systems, including
self-service systems where the customer is also the server, and single- or multiple-server queueing
systems [18, 6]. We point out that the expressions do not have to be closed form and can be
implicit.

The rest of the paper is organized as follows. Section 2 describes the Ziteration for single-
class single-resource systems, and validates against exact solutions for M/M/K/K and M/M/1/K
systems. Section 3 presents the method for the general MCMR model. In Sections 4, 5, 6, we apply
the Z-iteration to three specific systems with time-varying inputs and dynamic control, namely,
an integrated communication network, a parallel database server, and a distributed batch system.
The first and third systems are modeled as systems with self-service resources, for which validations
against discrete-event simulations are given in Section 7. The second system is modeled as a system
with single-server resources, for which validations are given in Section 8. Section 9 concludes and
describes related work.

2 The Z-Iteration for Single-Class Single-Resource Systems

To illustrate the basic ideas behind our solution method, let us consider a system with only one
customer class and one resource. We will use the notation introduced in the Introduction but



without any resource superscript r or class subscript c.

In general, obtaining the instantaneous probability measures is analytically intractable [28] and
numerically very expensive due usually to the large state space [27]. For Markovian systems, the
straightforward solution involves the well-known Chapman-Kolmogorov (C-K) differential equa-
tions, that is,

dP(t)
—5— = P(0) QA1) p(1))
where the row vector P(¢) represents the instantaneous state probability vector and Q(.) is the
generator matrix whose elements represent the transition rates between the states.

The time evolution of N(?) is described by the flow equation

PO\ [ B - w0 ()

or its corresponding difference equation (with é being a small time step):
N(t+8) = N(2) = ju(t) U() 6+ M) 6 [1 = B(1)

The second term in the right-hand side of the equation represents the average number of customers
which leave during [¢, ¢4 6). The third term represents the average number of new customers that
are admitted during [¢, ¢t + ).

Observe that if we could express B(¢) and U(t) in terms of N(¢), then we could solve the
equation inexpensively for the time evolution of these measures; furthermore, this single equation
is numerically much stabler than the C-K equations (see Sections 2.2 and 2.3). Of course, obtaining
such expressions exactly is also intractable. However it turns out that the function of B(t) in terms
of N(t) is very well approximated by the function of steady-state B in terms of steady-state N, i.e.
assuming that A(¢) and p(t) are constants. The same holds for U(t), and indeed appears to be true
for any instantaneous state probability.

The steady-state functions of B and U in terms of N are available in analytical closed-form only
for very simple systems, e.g. M/M/2/2, M/M/1/2, and M/M/1/oo. They are not available for
blocking systems in general. We obtain them numerically using another approximation involving
three steady-state expressions, namely:

U in terms of N assuming a nonblocking system (1)
. A
B in terms of steady-state offered load — (2)
©
A U
. )
po [1=B]

Expressions (1) and (2) are readily available in the literature. Equation (3) follows from equating
the flow in, A[1 — B], to the flow out, pUU. We obtain U in terms of N from equation (1). We obtain
B in terms of N as the fixed-point of equations (2) and (3), where N is fixed and U is replaced by
the expression in (1).



For the self-service M/M /K /K system, the equations corresponding to (1, 2, 3) are [18]:

U = N
K -
K!
Zj:op]/]!
B N
P = =B

where p = A/u. Note that the first equation, which was obtained assuming nonblocking (K = o)
happens to be also valid with blocking.

For the single-server M /M /1/K system, the equations corresponding to (1, 2, 3) are [18]:

N
v = N4+1
K
Zj:op]
N 1
SR ST

The first equation follows from U = p and N = p/(1—p)). Note that it is not valid for the blocking
case.

In the following subsections, we illustrate the accuracy of the Z-iteration and its approximations
for the M/M/K /K and the M/M/1/K systems.

2.1 M/M/2/2

For this system, we can compute closed-form expressions. We have

2
2
B:Lz (4)
L+ p+p%/2
p+ 5)
L+p+p?/2

Inverting equation (5) (and ignoring a root that is always negative), we get

 N—-1++V1+2N - N?Z (6)
r= 2N

Substituting (6) in (4), we get B in terms of N.

To illustrate the accuracy of approximating the instantaneous relationship between B(t) and
N(t) by the steady-state relationship between B and N, we consider the evolution for A = p =1
and ¢ € [0,6] starting with an empty system at ¢ = 0. Let Bexact(t) and Nexact(t) denote the
exact solutions; they are derived in the Appendix. Figure 1 shows a plot comparing Bexact(?) and
B | N=Nuyacr (1) (1€ steady-state expression for B with N replaced by the exact N(t)). Clearly, this
shows that the approximation is quite good. In general, analyzing the errors is hard as it involves
complex nonlinear equations in the average number of customers.



B(t)
0.2
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Figure 1: Accuracy of the approximation for the M /M /2/2 system. The dot-dashed line is Bexact(?),
and the solid line is the approximation. A = g =1 for ¢ > 0. System empty at ¢ = 0.

For a general system, it is not possible to invert the equation corresponding to equation (5),
which is why we are forced to resort to the fixed-point iteration. To illustrate the convergence of
this iteration, we apply it to the M /M /2/2 case. In this case, the two equations are

2
5 P72
L+p+p*/2
N
ST

These two formulas define an equation of the form B = F(B). Figure 2 shows a graphical
example of the mapping F. It illustrates that F' is a contractive mapping of [0, 1) into [0, 1) and
hence it converges to a unique fixed point [16].

F(B) Qut put Trajectory

0 0.2 0.4 0.6 0.8 1B

Figure 2: Convergence of the iteration for B the M /M /2/2 system starting from B = 0.9 for N = 1.



2.2 M/M/50/50

Consider an M /M /50/50 system with constant u and varying A. Figure 3 shows the average number
of customers in the system obtained by the Z-iteration and by numerical solution of the C-K differ-
ential equations. Both solutions practically coincide illustrating the accuracy of our method. Both
were both coded in Mathematica using the differential equation solver NDSolve [29]. On a DECal-
pha 3000 workstation, the C-K solution required 340 seconds of execution time, while our method
required only 28 seconds. This is a significant savings in computation. In addition, NDSolve en-
countered numerical instability (and crashed) with the C-K equations for many parameter settings,
whereas no such problems were encountered with our solution method.

Figure 4 is another comparison, also showing the accuracy of the Z-iteration. Here the C-K
solution required 685 seconds of execution time, while our method required only 30 seconds.

N(t)

7

2 4 6 8 10 12 14

Figure 3: Comparison between the Z-iteration (solid) and the C-K solution (dot-dashed) for the
M/M/50/50 system. N(0)=0; p = 0.01; A =0.5fort €[0,5], A\ =1 for t € (5,10], and A = 0.1

for t € (10,15].
N(t)
20¢
15}

10+t

2 4 6 8 10 12 14

Figure 4: Comparison between the Z-iteration (solid) and the C-K solution (dot-dashed) for the
M/M/50/50 system. N(0) = 0; p = 0.0001; A = 1.5 for ¢ € [0,5]U(10,15] and A = 1 for ¢ € (5, 10].



2.3 M/M/1/50

Consider an M /M /1/50 system with constant u and varying A. Figure 5 shows the average number
of customers in the system obtained by the Z-iteration and the numerical solution of the C-K
differential equations. Although a slight discrepancy exists, the solutions are sufficiently close. The
solution methods were both coded in Mathematica. On a DECalpha 3000 workstation, the C-K
solution required around 486 seconds of execution time, while our method required only around
48 seconds. Again, this is a significant savings in computation. Again, NDSolve often encountered
numerical instability with the C-K equations, but not with our solution method.

Figure 6 is another comparison, showing agreement between the Ziteration and the C-K so-
lution. Here the C-K solution required around 710 seconds of execution time, while our method
required only around 64 seconds.

N(t)

o N
1.5 L)
1 (L J
0.5
t
5 10 15 20

Figure 5: Comparison between the Z-iteration (solid) and the C-K solution (dot-dashed) for the
M/M/1/50 system. N(0)=0; p=1; A = 0.4 for ¢t € [0,5] U (10,20], and A = 1.2 for ¢ € (5, 10].

N(t)
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Figure 6: Comparison between the Z-iteration (solid) and the C-K solution (dot-dashed) for the
M/M/1/50 system. N(0)=0; p = 0.01; A = 1.4 for ¢t € [0,5] U (10,20] and A = 0.8 for ¢ € (5, 10].



3 The Z-Iteration for Multiple-Class Muliple-Resource Systems

In this section, we present our solution method to the general MCMR, model introduced in Sec-
tion 1. As mentioned in Section 2, obtaining the instantaneous probability measures is analytically
intractable and numerically very expensive. For Markovian systems, it involves the C-K differential
equations for every resource r,

P by Q (0. 1)z e € €7))

where the row vector P"(¢) represents the instantaneous state probability vector of r, Q"(.) is the
generator matrix whose elements represent the transition rates between the states of r, and C”
denotes the set of classes requesting units of resource r.

We start with the following difference equations for ¢ € C”, where ¢ is the (small) time step:

NI(t+8) = NI(t) — pi(t) UZ(t) 8+ Ae(t) § ] 1= BL(2)] (7)
7! ERC

Note that the product term [] reflects the assumption made in Section 1 that a new class-¢ customer

is admitted iff it is not blocked at any of the required R. resources; this invokes the resource
independence assumption.

By expressing UZ(t) and B](t) in terms of {N/(¢) : ¢ € C"}, we can solve equations (7)
inexpensively. We approximate the functions of UZ(t) in terms of N/(t) and B[(t) in terms of
N/i(t) by the corresponding functions assuming steady-state, i.e., assuming that the A(¢) and
p(t) are constants. We obtain the steady-state functions as the fixed-point of other steady-state
functions.

The details are in the following subsections. We first obtain a steady-state relationship between
U! and the NJ,. We then obtain two steady-state expressions, one defining B! in terms of the

Ac

2?', and one defining ma in terms of the N, and B[. By iterating to the fixed point of these two

c

expressions with N/, fixed, we obtain the desired steady-state relationship between B[ and the N/,.

3.1 Utilization in terms of numbers of customers

Denoting the steady-state expression by 7, we have for ¢ € C":
Ur=TI(ND ey (8)

77 is a function that reflects the load and service discipline of r. The exact form of 77 is
application dependent. For a self-service facility as in an M/G/K/K queueing system, 7. is
clearly equal to N7. The derivation of 7 is not always obvious. One approximation to obtain 7.
in a systematic and easy way is to assume no blocking and then use steady-state queueing formulas

expressing N/ in terms of the 2?'. Inverting these formulas, we obtain % in terms of the N/.
Since we are assuming no blocking, we have 77 = % Thus, we get 77 in terms of the NJ. (cf.

Sections 2 and 5.)

From equations (8), we can express U/(t¢) approximately in terms of {N/(t) : ¢ € C"} by
replacing the steady-state measures U] and N[ by their instantaneous counterparts UZ(¢) and
NZ(t). Doing this yields the following instantaneous equations for ¢ € C":

UL(t) = TI{NL(1) : ¢ €C"Y) (9)



3.2 Blocking probabilities in terms of numbers of customers

Aot
MZ/

Denoting by S the steady-state expression defining B! in terms of the =&, we have for ¢ € C":

A

r
C/

S can be obtained as follows. Define a feasible state of resource r by the number of customers
of each class ¢ € C” that r can simultaneously support, i.e. for which the total number of units
requested does not exceed r.maxz. Let F” denote the set of all feasible states of r. Assuming the
Ao (t) and pl,(t) are constants for all ¢, the steady-state transition rate between two states belonging
to F" is given by some function of A, and ul,. A class-c customer is blocked in a state of F" if its
admittance would lead to a state outside F7. Refer to such states of F” as class-¢ blocking states.
Solving analytically for the probability of being in a class-c¢ blocking state yields S .

To illustrate, consider an M /G /K /K resource used by one class of customers arriving according
to a Poisson process of rate A.. Let each admitted customer be served by one of the I(Aservers for an
2Ac\K /1
GER g,

n
> o (252t

We obtain the steady-state expression defining 2—5 in terms of the N/, and B as follows. Equat-
ing the rates of departure and admission of class-c customers at resource r, we have p. Ul =
Ac [1 — B7]. From this and (8) we have for ¢ € C":

ﬁ — TCT({NZ/ € CT}) (11)
A [1 = B{]

From equations (10) and (11), we can express B[ (¢) approximately in terms of {N/,(¢): ¢ € C"}
by replacing the steady-state measures B” and N by their instantaneous counterparts B’ (¢) and
N[(t), and replacing 2—5 by an instantaneous quantity z7(¢) that we introduce. Doing this yields
the following instantaneous equations for ¢ € C":

Bl = Si({°2: ¢ ecr) (10)

average duration of 1/ul. Then S7 is the Erlang-B formula, i.e. 87 = E(%, K)=

B = SIND: <)) (12)
NI ¢ eeny)
K ) )

3.3 Overall calculation

Knowing {NZ(t): ¢ € C"} at some fixed ¢, we can solve equations (12) and (13) iteratively for
{BL(t): ¢ € C"}. In particular, starting from an initial estimate {2/(¢): ¢ € C"}, we compute
{BI(t): ¢ € C"} from equations (12). Then, we use equations (13) to compute new values for
{21(t): ¢ € C"}. We repeat this process until the values of {z](¢): ¢ € C"} stabilize.

Once we obtain {B/(t) : r € R, ¢ € C"}, we obtain {N/(t4+6): r € R, ¢ € C"} using
equations (7), and we repeat the process to obtain the time evolution of the performance measures
for time instants 0, 6, 26, ---.

Figure 7 outlines our solution method. In the outermost iteration, we obtain { N/ (t+46), BI(t):
reR, celC}fort =0, 6 26, ---. The computation for each time ¢ consists of two parts. The
first part (steps 3-9) computes, for every r € R, {BI(t): ¢ € C"} in terms of {N(t): ¢ € C"}. The
second part (step 10) computes, for every r € R and ¢ € C”, N/(t+6) in terms of {N/(¢): ¢ € C"},
Ac(t), pi(t), and {B*'(t): ' € R.}. The first part involves the iterative procedure (steps 5-9) on
equations (12) and (13) (steps 7 and 8).



1. Initialize {NZ(0): r€ R, c€C"} /* 0 for initially empty system */
2. Fort =0, ¢4, 26, ---
begin
3. For every r € R /* Obtain {B](t): ¢ €C"} interms of {N/(t): c€(C"} */
begin
4. Initialize {21(¢): ¢ € C"} /* arbitrary value if t =0 */
JRE(t—=06)ift>0%*/
5. repeat
6. zL(t) — 2[(t), for every ¢ € C”
7. Obtain {B.(t): ¢ €C"} interms of {zI(¢): c€(C"}
using an instantaneous version of a steady-state formula (see (12))
8. Obtain {22(?): ¢ € C"} in terms of {BL(t), NI(t): ¢ €C"}
using an instantaneous version of a steady-state formula (see (13))
9. until | 22(t) — 2/(t) |< ¢, for every c € C”
end
10. For every r € R and c € C7,
obtain N7 (t + &) in terms of {N/(t): ¢/ € C"}, Ao(t), pi(t), and {BI (1) : ' € R.}
using a difference equation relating arrivals and departures (see (7))
end

Figure 7: Evaluation method.

3.4 Comments

Assuming that K iterations are needed for convergence of the iterative procedure in steps 5-9 of
Figure 7, the computational complexity for each time step is O(|R| |C"| ( (|B%] + |2L) K + |NZ|)),
where |B| is the cost of evaluating B/(.) via (12), |2Z| that of evaluating z/(.) via (13), and |N]|
that of evaluating N7(.) via (7). The Z-iteration requires storage of O(V |R]| |C"|), where V' is the
number of instantaneous measures. From Figure 7, we have V = 5 since we have 5 instantaneous
measures defined, namely, BL(.), zL(.), NI(.), A:(.) and pZ(.).

We note that it might be required to make assumptions about the arrival or service distributions
in order to obtain the S7(.) and 77(.) formulas.

Above we defined the feasible state of resource r by a multi-dimension vector representing the
number of customers of each class ¢ € C" that r can simultaneously support. In fact, we can define
a feasible state differently as long as in this state, the total number of units requested does not
exceed r.maz. For example, we can define it by a single number representing the total number of
units of r currently used by customers. Also, other criteria can used to further limit admission of
customers.

The Z-iteration can also be used to directly solve for steady-state, if the A.(¢) and pl(t) are

10



constants and a solution exists. We simply set w = 0 in equations (7) and use them in

conjunction with equations (12) and (13) to iteratively solve for steady-state. There is no simple
way to determine whether there exists a solution to such a nonlinear system. Even if the physical
nature of the system suggests that a solution exists, the iteration may oscillate between different
solutions, which can alert one to the instability of the system [3]. Obviously, such oscillations can
also occur under transient conditions arising, for example, from dynamic control.

Observe that it is easy to realize parallel implementations of our method by mapping the
computations for different resources onto different processors, and we would expect almost linear
speedup.

The accuracy of our method depends on the approximation of the relationship between the
BI(t) and the NI () by its steady-state counterpart, which is the fixed point of the iteration in
steps 5-9 of Figure 7. Analyzing the errors and convergence of this iteration is hard in general
because of the complex nature of the underlying nonlinear system. However, it can be shown in
simple situations that the approximation is accurate when compared to the exact instantaneous
solution, and that the iteration is a contractive mapping of [0, 1) into [0, 1) and hence it converges
to a unique fixed point [16] (cf. Section 2). Furthermore, our experience indicates that our method
yields accurate performance measures when compared to discrete-event simulation and that the
iteration converges quickly (see Sections 7 and 8).

As we pointed out earlier, the exact form of S7(.) and 7.(.) and the values of p/(.) and A.(.)
depend on the particular application. We next consider different applications, and show how they
fit into the general model and solution procedure so far introduced.

4 Application: Integrated Network

Consider an integrated services network (e.g. ATM) that uses dynamic routing to support real-time
communication (voice, video, etc.) between pairs of source and destination nodes. The connections
of a service s arrive at the service’s source node according to a Poisson process of rate A;, and have
an end-to-end quality-of-service requirement D, (e.g. delay). Each connection, once it is successfully
setup, has a lifetime of average duration L The source node uses its routing information to choose
for the arriving connection a potential patph/route to the service’s destination node. The route and
service together define the class of the connection. Note that because of the dynamic routing, class
arrivals have time-varying statistics irrespective of whether the service arrivals have time-varying
statistics. (See Figure 8.)

Resources in a network include link bandwidths, buffer spaces, etc. For this example, we
assume link bandwidths are the main resources; thus R consists of link ids (where each id denotes
the bandwidth component of the link). We assume a connection of service s requires the reservation
of a certain amount of bandwidth on each link along its route that are enough to satisfy D;. This
reservation amount can be thought of as either the peak transmission rate of the connection or its
“effective bandwidth” [12] varying between its peak and average transmission rates. The set R,
of a class-¢ connection would thus contain the links along the route of class ¢. The instantaneous
arrival rate of class-c connections of service s, A.(%), is a function of Ay and the routing algorithm.
Consider a routing scheme that regularly assigns probabilities to the candidate paths according
to their measured loads. Arriving connections are routed independently according to these path
probabilities. In this case, class-¢ connections of service s arrive according to a Poisson process of
rate A(t) = a.(t) A, where a.(t) is the load-dependent routing probability.

11



Figure 8: A network offering two services sl and s2. Fach service has two candidate routes for
connection setup. Hence two classes are defined for each service: classes cl and c2 for s1 connections,
and classes ¢3 and ¢4 for s2 connections.

An arriving class-¢ connection of service s that finds insufficient bandwidth on any » € R, is
blocked and lost. Otherwise, the connection is admitted and bandwidths are allocated to it on each
r € R, for an average duration of —— o t = ——. Note that this is a self-service system.

Thus, r.mazx is the total link bandw1dth of r, and c.r.req is the amount of link bandwidth that
must be allocated (reserved) for a class-c connection on r € R.. Let’s assume that the c.r.req
and r.maz are integers. Let the state of r indicate the amount of bandwidth allocated. Thus,

" ={0,1,---,r.maz}. Let P"(j) denote the steady-state probability of r being in state j. Then
the P7(.) satisfy the following recurrence relation [25]:

Aet .
JP(j)= Z — c.roreq P7(j — ' .rreq)
ceCr e

j=1,...,r.max
where "0 Pr(5) = 1.
The steady-state blocking probability for class-c connections at r, B, is given by

r.max

Bl = > P(4)

j=r.maxr—c.r.req+1

This steady-state solution, which defines SZ(.) for this system, is valid for Poisson arrivals and
n(t).
C

Regarding the function 7(.) used in equations (13), since 7 is self—serviée, we have

general service times. It can be used in equations (12)

1.() = N(®)

C

Note that how and when the A.(¢) are varied with time allows one to model different routing
algorithms and routing update synchronization at the network nodes. Also, the choice of block-
ing states in F" can model various admission control schemes, in particular those which block
connections even if their admission is feasible.
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Systems with self-service resources are validated (against discrete-event simulations) in Sec-
tion 7. There we consider systems equivalent to single-link network, and multi-link network. The
multi-link network is used by several multi-hop connections representing main traffic, and several
one-hop connections representing cross-traffic.

5 Application: Parallel Database Server

Consider a system of multiple disks on which data is partitioned according to some scheme, e.g.
round-robin, range partitioning, etc. [4]. Each disk has a finite first-come-first-served (FCF'S) queue
where queries of different classes wait to be served. A query requests data retrieval from one or
more disks in parallel. (See Figure 9.) This parallelism typically leads to reduction in data access
time [4, 14]. The collection of disks needed by a query is defined by the query’s class. We assume
an arriving query requires one unit of space in the queue of each disk it needs to access.

CZ/l\CA
NN /

Figure 9: A 3-disk parallel database server. Class cl requires data retrieval from all three disks.
Other classes require data retrieval from only one disk.

—
B
L1
-
N
L1
III

Thus the resource set R. of a class-¢ query contains the queues of disks that are needed by class
¢, and this is a function of the data partitioning scheme. r.maz is the total number of queries that
r can accommodate, and c.r.req = 1 for r € R and ¢ € C". An arriving class-¢ query that finds no
space in any r € R, is blocked and lost.

Assume class-c¢ queries arrive according to a Poisson process of rate A.(¢). Also, assume that
the service time of any query in r is exponentially distributed with mean Ml—r; thus le(t) = Ml—r for all
ceCr.

Let the state of r denote the total number of queries waiting or in service in r. Thus, F" =
{0,1,..., r.maz}. The steady-state blocking probability for class-c¢ queries at r is the steady-state
probability of r being in state r.maz. This steady-state solution is well-known for the M /M /1/r.max
queueing system, in particular, for ¢ € C":

( ZCIGCT Aet )r.mayc

Bl = “ [18]
s rmaz Leff_“’)j
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This steady-state solution can be used in equations (12) after replacing # by > e 2l (1)

We employ the technique explained in Sections 2 and 3 to derive the function 7/(.) used in
equations (13). Assuming steady-state and no blocking, we can treat the M/M/1/r.max system of
ras an M/M/1/oo system. At steady-state, we know that [18]

A

N =
W= ZCIECT Act

C

(14)

From this and 77(.) = %, which holds assuming no blocking, we have!

Ne
)=
1+ ZCIECT NC,
Therefore, in the transient regime, we have
. NI
+ ZC/GCT c’(t)

The above model can be used to study various data partitioning schemes for high-performance

indexing [4]. Systems with single-server resources are validated (against discrete-event simulations)
in Section 8.

6 Application: Distributed Batch System

Consider a distributed batch system such as Condor [20]. Batch jobs (user programs) are submitted
to a central manager (CM). Assume batch jobs of type ¢ arrive to the CM according to a Poisson
process of rate A;. The CM uses its information about the load on the various workstations to
choose for the arriving batch job a potential workstation for its execution. The class of the batch
job is defined by the workstation it is routed to by the CM and the job type.

Each batch job would typically require resources such as memory, disk space, and CPU process-
ing power to execute on a workstation. For this example, we assume all required resources other
than the CPU are always available. The set R, of a class-¢ batch job would thus contain the CPU
of the workstation to which the job is routed.

We assume only one job can be running on each workstation at a time. Thus, if the owner of
the workstation executes a job of his/her own, then the batch job currently executing on his/her
workstation, if any, is suspended and its execution resumed later when the owner job finishes
execution. An arriving class-¢ batch job that finds another batch job running or suspended on
r € R. is blocked and returned to the CM. Otherwise, it is admitted for processing with mean
processing time of 1/uZ(¢). This processing time includes the time during which the batch job
is suspended due to owner processes [19]. Note that in this application, we do not assume that
blocked jobs are lost, rather they are returned to the CM for retry.

= . r A /T
NE #, d th i ,_pr NT, = ZC/ [ R R th
1_ZC/€CT I an us (ii) Zc eC" Vel = 1_ZC/€CT o T earranging the

ZC/ cr Ngl . . ceey o . . Ac
1+ZC/€CT v Substituting (iii) in (i), we get an expression for o5
which together with 77 (.) = % yields the desired result.

! From (14), we have (i)

last equation, we have (iii) ZCIGCT At 17 =

14



The instantaneous arrival rate of class-¢ batch jobs of type ¢, A.(?), is a function of A;, the load
balancing algorithm used by the CM, and the rate of retrials of type ¢ batch jobs. Assume the load
balancing algorithm regularly assigns to the candidate workstations probabilities according to their
measured loads. Arriving batch jobs are routed independently according to these probabilities. Let
a.(t) denote the load-dependent probability that the type 7 batch job belongs to class ¢, i.e. is
routed to r € R.. Then,

MO = e+ Y M-8 B - 6)] ault) (15)
classes ¢! of type ¢
T ER

The 3~ term in equation (15) represents the total rate of retrials of type ¢ batch jobs, which is
a function of their blocking probabilities. In this model, r.maz is the maximum number of batch
jobs that r handles. r.maz = 1 and c.r.reg =1 for r € R and ¢ € C". Let the state of r denote the
total number of batch jobs running or suspended on r. Then, " = {0, 1}. This system is similar
to the self-service integrated network discussed in Section 4, and hence we can use the S/(.) and
77(.) formulas presented there.

Indeed, we are assuming here the arrival processes are Poisson. This is not, in general, true
since the composite traffic contains blocked batch jobs returned immediately at the next time step
to the system for retry. This assumption is less restrictive if blocked batch jobs are returned to
the system after waiting an independent random period [23, 8]. This waiting effect can be easily
incorporated into the above model. This model can be used to study the interactions between
owner jobs and batch jobs, and examine various load balancing schemes through the 1/uZ(¢) and

a.(t).

7 Validation of Systems with Self-Service Resources

In this section, we compare the results obtained using our method with those obtained using
discrete-event simulation for systems with self-service resources. Both methods were coded in C. In
our method, we obtain instantaneous performance measures through equations (7), (9), (12), and
(13), substituting with the appropriate application-dependent parameters and formulas. We take
the discrete-time step 6 to be 0.1.

The simulation model differs from our analytical model in that the actual events of arrival and
processing of customer requests are simulated according to the specified probability distributions
and system characteristics (i.e. service disciplines, admission policy, etc.). To obtain reliable per-
formance estimates, a number of independent replications (i.e. simulation runs) must be carried
out and averaged. In particular, let X(i)(t) denote a generic measure computed at time instant ¢
in replication ¢, where ¢ takes on the successive values ¢1,%3,---,tz,---. Then, the mean value of
this measure at particular time instant ¢, is estimated as YN, X(i)(tk)/N, where N is the total
number of replications. The larger N is, the more accurate the simulation estimates are [22]. In
our simulations, the performance measures are computed for t = 1,2,3,---.

The measures considered are precisely defined as they are introduced below. In all experiments,
we start with empty systems. For the cases with N = 50, the observed mean of the simulation
measures at various time instants typically show 95% confidence interval for a + 10% range. For
the cases with higher N, 95% confidence interval is obtained for a + 3% range.

We first consider a MCSR system with a single resource r1 used by 10 customer classes whose
parameters are shown in Figure 10.
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Class ¢ | R. | c.r.req Ae 1/ pe
cl {rl} 30 0.125 5
2 | {11} | 15 05 | 1
3 | {1} | 50 02 | 2
cd | {11} | 10 0.1 | 2
ch {r1} 40 0.125 1
c6 {rl} 25 0.5 0.5
c7 {rl} 30 1.0 0.5
8 | {1} | 10 |0.0625] 10
9 |41y s 1.0 | 02
10 [ {1} | 50 | 025 | 2

Figure 10: Parameters of 10 classes using r1 with rl.maz = 200.

Class-c customers arrive at rl according to a Poisson process of rate A.. The system is self-
service. In particular, an admitted class-c¢ customer holds the acquired c.rl.req resource units for
an exponential duration with mean 1/u. before releasing them. This system is similar to a single-
link integrated network modeled as in Section 4, and hence we use the 7(.) and S7(.) formulas
presented there to obtain the performance measures by our method.

Figures 15, 16, and 17 show the time behavior of the total number of in-service customers,
the fraction of resource units allocated, and the total throughput, respectively. The first mea-
sure denotes the total number of customers currently holding resource units, which is equal to
Socent NEH(1) in our method. The second measure denotes the fraction of rl.max currently being
held by customers, which is equal to (3 .een N5H(t) X ¢/.rl.req)/rl.max in our method. The third
measure denotes the total current admission rate, which is equal to Y cen Aw[1 — BE(1)] in our
method. Generally, it is equal to }- ¢ Ao [lver,[1 - 7/ (1)] for MCMR systems.

In our simulations, the first two measures displayed at time instant ¢ (t = 1,2,3,---) are simply
the values of these measures as observed at ¢. The last measure, namely the total throughput,
displayed at time instant ¢ is defined to be the total number of customers admitted in the interval
[t—1,1).

Our method yields results very close to the exact values. In addition, we found our method much
less time-consuming than simulation. This is especially because the latter requires the averaging of a
large number of independent simulation runs. To give an idea of the computational savings, for this
experiment, on a DECstation 5000/133, our method required around 6 seconds of execution time
while the 50-run and 1000-run simulations required around 25 seconds and 8 minutes, respectively.
The number of iterations required at each time step for convergence of the iterative procedure in
steps 5-9 of Figure 7 is less than 6 iterations for € = 107° and 27(0) = \./u.

We next validate our resource independence assumption manifested in equation (7) by the
product term []. We consider a similar self-service system but with 3 resources and 20 customer
classes. Out of the 20 classes, 10 classes require all 3 resources. A class-¢ customer requires the
same number of units of each r € R.. Figure 11 shows the system parameters. Note that this
system can be regarded as a multi-link integrated network modeled as in Section 4. See Figure 12.
Here, classes 1 to 10 represent multi-hop connections modeling main traffic, while other classes
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represent one-hop connections modeling cross-traffic.

Class ¢ R c.r.req Ae 1/ pe
cl {rl, 12, 13} 30 0.125 5
c2 {rl, 12, 13} 15 0.5 1
c3 {rl, 12, 13} 50 0.2 2
c4 {rl, 12, 13} 10 0.1 2
5 | {rl, 12,13} | 40 | 0125 | 1
c6 {rl, 12, 13} 25 0.5 0.5
c7 {rl, 12, 13} 30 1.0 0.5
8 {rl, 12, 13} 10 0.0625 | 10
c9 {rl, 12, 13} 5 1.0 0.2
cl0 {rl, 12, 13} 50 0.25 2
cll {rl} 30 0.125 5
c12 {11} 15 05 | 1
c13 {11} 50 02 | 2
c14 (12} 10 0.1 | 2
c15 {12} 40 | 0125 | 1
cl6 {r2} 25 0.5 0.5
17 13} 30 1.0 | 05
c18 13} 10 |0.0625| 10
c19 {13} 5 1.0 | 0.2
€20 13} 50 | 025 | 2

Figure 11: Parameters of 20 classes using 3 resources rl, 12, and r3 with rl.maz = 150, 12.maz =
200, and r3.mazx = 250.

cll..c13 cl4...cl16 cl7...c20

Fi— Fe—{ po—|

cl...cl0

Figure 12: Multi-link network.

Figure 18 shows the instantaneous total throughput. Simulation results, denoted by Exp, are
for Poisson arrivals and exponential holding times. Simulation results, denoted by Det, are for
Poisson arrivals and deterministic holding times. The results show the accuracy of our method in
both cases as they satisfy the assumptions required to obtain the 77(.) and SZ(.) formulas used
here. (Our experiments with deterministic arrivals show large errors as expected.)
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Next, we consider a similar self-service system whose parameters are given in Figure 13. Here,
Ac1 varies with time. This mimics the effect of traffic control policies such as flow control and
routing. We assume Ay alternates every 20 time units between zero and 0.125, starting with zero.
Figures 19 and 20 show the instantaneous total throughput and blocking probability, respectively.
Our method accurately reproduces the behavior obtained by simulation. We compute the instanta-
neous blocking probability B(t) from the throughput v(¢) using the relation B(t) = 1 — v(¢)/A(%),
where A() is the instantaneous total arrival rate of customers. We do this rather than compute
B(t) directly from the simulations because doing that would require averaging over a very large
number of replications, because B(t) typically has a very low value and thus a high sample variance.

Class ¢ R c.r.req Ae 1/ pe
cl {rl, 12, 13} 30 0 0.125| 5
c2 {rl} 30 0.125 5
c3 {12} 10 0.1 2
c4 {r3} 50 0.25 2

Figure 13: Parameters of 4 classes using 3 resources rl, 12, and r3 with rl.maez = 50, r2.max =
100, and r3.max = 150.

8 Validation of Systems with Single-Server Resources

In this section, we compare the results obtained using our method with those obtained using
discrete-event simulation for systems with single-server resources. The performance measures are
computed as described in Section 7. Similar confidence intervals are also observed for the measures
obtained by simulation.

We consider a MCMR system with 3 resources and 4 customer classes. OQut of the 4 classes,
class ¢l requires all 3 resources. A class-cl customer requires one unit of each resource. Figure 14
shows the system parameters.

Class ¢ R crreq | Ao | 1/pe
cl {rl, 12, 13} 1 02| 1
2 {11} 1 o5 1
c3 {12} 1 o8] 1
cd (13} 1 o4l 1

Figure 14: Parameters of 4 classes using 3 resources with r.mazx = 5 each.

Class-c¢ customers arrive according to a Poisson process of rate A.. Fach resource consists of
a single-server with a finite waiting room and a FCFS scheduling discipline. An admitted class-c
customer occupies one unit of space, and requires an exponential service time with unit mean. This
system is similar to the parallel database server discussed in Section 5, and hence we use the 7/(.)
and &/(.) formulas presented there to obtain the performance measures by our method. Figure 21
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shows the instantaneous total throughput. The results obtained by our method agree with those
obtained by simulation.

We next consider the same system but with A, varying with time. We assume A.; alternates
every 20 time units between zero and 0.2, starting with zero. Figures 22 and 23 show the instanta-
neous total throughput and blocking probability, respectively. Our method accurately reproduces
the behavior obtained by simulation.

9 Conclusions

The Z-iteration computes instantaneous probability measures of general time-dependent MCMR
systems. It integrates techniques from several areas, including standard queueing theory tech-
niques [18]; the resource decomposition technique [17, 9]; the dynamic flow technique [7, 6, 27, 8];
and the technique of repeated substitutions used in numerical analysis to solve nonlinear equa-
tions [16].

MCMR systems have often been analyzed under steady-state conditions (e.g. [13, 15, 21, 5, 25,
3, 23, 11]). The Z-iteration differs from iterations commonly used in steady-state analysis, which
only solve for steady-state measures.

Our model yields the time-varying behavior of a general MCMR system. We use the well-known
decomposition technique [17, 15] to approximate the system as a collection of MCSR systems. For
each MCSR system, we describe the evolution of the instantaneous average number of customers
of each class by relating its instantaneous admission rate to its instantaneous departure rate. The
computation of these instantaneous rates uses a basic concept, that of approximating instantaneous
relationships by their steady-state counterparts.

To obtain the instantaneous admission rates, we adapt steady-state queueing formulas to yield
the instantaneous blocking probability of each class in terms of the instantaneous average numbers
of customers waiting or in service. This technique was originally introduced in [7], where it was
used to obtain steady-state blocking probability and carried load for a specific call routing and
network topology.

Reference [7] considered a network of source nodes, destination nodes, and intermediate nodes,
with a link from every source node to every intermediate node, and a link from every intermediate
node to every destination node. Each link can carry a fixed total number of calls. The call arrival
process from a source to a destination is Poisson with fixed rate. The call routing is not dynamic;
a fixed fraction of the call arrivals is routed through every intermediate node. In addition, overflow
traffic (due to blocking links) is routed through alternate available routes. Each call, once admitted,
has an exponential holding time of fixed mean that is the same for all calls. The blocking probability
of a link is given by the Erlang-B formula expressed in terms of combined offered load. The system
is solved for steady-state average number of calls on each link by equating the call departure rate
to the call admission rate.

Our model extends the one in [7] to any system where the steady-state blocking probabilities
can be expressed in terms of offered loads. This allows us to consider general multi-class systems,
where, for example, each class has different resource and service needs, and resources have different
scheduling disciplines. Also, our model can be applied to describe general dynamic routing schemes
with the arrival rate of a class changing as a function of the instantaneous system state.

To obtain the instantaneous departure rates, we again adapt steady-state queueing formulas to
yield the instantaneous utilization of each class in terms of the instantaneous average numbers of

19



customers waiting or in service. The same technique was used in [27], where feedforward queueing
networks were considered. Fach service center is an M/M/1 infinite FCFS queue with the same
average service time for all classes. The routing of each class is a time-dependent Bernoulli process.
Compared to our model, this does not model blocking resources, or service centers with complicated
structure (e.g. service centers consisting of multiple resources with different scheduling disciplines
serving customers with different needs). Though we do not consider here sequential resource needs
by one customer (a customer requests all needed resources simultaneously), our model can be easily
extended to capture this situation.

Our dynamic flow model is quite general, and can be used to study both transient and steady-
state performances of various MCMR blocking and non-blocking systems. Our method has advan-
tages over other methods that might be used to analyze transient behaviors. One such method
is that of time-dependent queueing models, which involve probability distributions for all events.
However, such models are extremely difficult to solve analytically [28], and computationally expen-
sive to solve numerically [27]; A second method is that of diffusion models, which utilize averages
and variances [2, 24]. Such models involve partial differential equations and are usually intractable.
A third method is that of fluid models, which utilize average quantities only [1]. Such models involve
ordinary differential equations and are usually tractable. However, dynamic flow models appear
more accurate since they include detailed probabilistic descriptions manifested in our model in the
computation of both the instantaneous blocking probabilities and the instantaneous utilizations.
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A Derivations for M/M/2/2

From [26], we have the following exact instantaneous solution. Consider the M/M/2/2 system
initially empty with customer arrival rate A(¢) = A and service rate p(t) = p for all ¢ > 0. The
Laplace transform P;(s) of the state probability P;(¢), where j denotes the number of customers
in the system (j = 0,1,2), is given by

Pi(s) = /Ooo e P(1)dt

where

2 stap) oo (s+7r
i (1) et

Bi(s) = 5

r

From the above result, we can directly obtain the exact instantaneous expressions for the block-
ing probability P5(¢), denoted by Beyact(t), and for the average number of customers in the system,
denoted by Nexact(?). In particular, we use Mathematica [29] to obtain the inverse Laplace trans-
forms of the following;:

/\2
Bexacls) = Fals) = Bals) = S o i+ sls + 1) 1 200)
Newanls) = Ps)+2s) = ) (252
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Figure 15: Total number of in-service customers versus time. MCSR self-service system.
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Figure 16: Fraction of resource units allocated versus time. MCSR self-service system.
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THROUGHPUT vs Time
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Figure 17: Total throughput versus time. MCSR self-service system.
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Figure 18: Total throughput versus time. MCMR system with self-service resources.
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THROUGHPUT vs Time
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Figure 19: Total throughput versus time. MCMR system with self-service resources. Time-varying
arrivals.
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Figure 20: Blocking probability versus time. MCMR system with self-service resources. Time-
varying arrivals.
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Figure 21: Total throughput versus time. MCMR system with single-server resources.
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Figure 22: Total throughput versus time. MCMR system with single-server resources. Time-varying



BLOCKING PROBABILITY vsTime
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Figure 23: Blocking probability versus time. MCMR system with single-server resources. Time-
varying arrivals.
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