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Abstract

Constrained regression problems appear in the context of optimal nonlinear filtering, as well
as in a variety of other contexts, e.g., chromatographic analysis in chemometrics and manufactur-
ing, and spectral estimation. This paper presents novel mathematical programming algorithms
for some important constrained regression problems in RY. For brevity, we focus on four key
problems, namely, locally monotonic regression (the optimal counterpart of iterated median filter-
ing), and the related problem of piecewise monotonic regression, runlength-constrained regression
(a useful segmentation and edge detection technique), and uni- and oligo-modal regression (of
interest in chromatography and spectral estimation). The proposed algorithms are ezact and ef-
ficient, and they also naturally suggest slightly suboptimal but very fast approximate algorithms,

which may be preferable in practice.
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I. INTRODUCTION

For the purposes of this paper, a constrained regression problem is an optimization problem

of the following form: Given a vector! y € R", find x to
minimize : d(y — x)

subject to: x€ ¢

where d(-) is typically some metric or semi-metric, and @ is some set of feasible (or, admissible)
solutions. When @ is such that the fact that the constraints imposed by ® are nowhere locally
violated implies membership in ®, then we shall say that we have a locally constrained regression
problem. Furthermore, if d(-) is squared ¢ norm, then similarity is measured via Euclidean
distance, and we have a Least Squares (LS) regression problem.

LS regression is important for several reasons. First, LS regression is optimal (in the Maximum
Likelihood sense) when measurement errors are additive Gaussian. Gaussianity is an assumption
that is most often made in practice, for both practical (tractability) and theoretical (Central
Limit Theorem [1]) considerations. Least squares regression has been applied to a wide variety
of problems [2].

Euclidean distance is measured via the €3 norm. Other norms are also of interest, e.g., absolute
distance is measured via the £; norm. If d(-) is the £; norm, we have a Least Absolute Error (LAE)
regression problem. It is well known [3] that the use of the #; norm instead of the £2 norm adds
a certain measure of robustness to the regression, and this is especially important in nonlinear
filtering applications. Least Absolute Error regression is optimal (in the Maximum Likelihood
sense) when measurement errors are additive and Laplacian-distributed. The Laplacian is a
much longer tailed distribution than the Gaussian. In this paper, we consider both LS and LAE
regression, under various constraint sets .

Another issue is whether or not ® allows the elements of x to take on continuous or only
discrete (and finitely many) values. While the latter is often the Acase of interest in digital
filtering applications (and has been considered in detail by Sidiropoulos in [4], [5], [6]), in many
other applications (e.g., chromatography) one is interested in regression in R" [7].

Locally constrained regression problems find application in numerous diverse disciplines, in-

cluding nonlinear filtering and segmentation (8], [9], [10], [4], [5], [6], statistics [11], psychology

In this paper, we use the terms vector and (finite) sequence interchangeably
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[12], databases [13], biology [14], texture perception [15], optimum decoding for magnetic media
storage [16], and holographic data storage [17]. In the context of nonlinear filtering, constrained
regression offers optimal counterparts of standard nonlinear filters, such as the iterated median,
or morphological filters like opening and closing, while obviating the restriction to monotone
increasing operators [4], [5].

In this paper, we consider locally monotonic regression and the related problem of piecewise
monotonic regression, runlength-constrained regression, and uni- and oligo-modal regression in
IRY, which find application in nonlinear filtering, segmentation and edge detection, chromatog-
raphy and spectral estimation. The first three are locally constrained problems, whereas uni-

and oligo-modal regression is not.

A. Organization

The rest of this paper is structured as follows. Section II presents a general quantization result
for a class of LAE regressions.

Section ITT addresses the locally monotonic regression problem in RY, and includes subsections
on background and motivation (III-A), previous approaches (ITI-B), locally monotonic LAE
regression (ITI-C), monotone regression and Kruskal’s algorithm (III-D), and locally monotonic
LS regression (III-E).

Section IV defines, motivates, and solves the problem of piecewise monotonic regression in RY,
using a novel hybrid algorithm based on Dynamic Programming (DP) and an enhanced variant of
Kruskal’s algorithm; this is presented in subsection IV-B. This Section also includes subsections
on necessary DP background (IV-A), and complexity analysis of the proposed algorithm (IV-C).

Section V presents detailed simulation experiments on locally monotonic (subsection V-A) and
piecewise monotonic (subsection V-B) LS regression.

Section VI is concerned with runlength-constrained regression in RY, and discusses a novel
pure DP algorithm for solving it. It includes subsections on complexity (VI-A), a fast sub-optimal
counterpart (VI-B), and a discussion on how to modify the algorithm to accommodate a LAE
metric (VI-C).

Section VII considers the problem of oligo-modal regression in R”, and includes a subsection
on oligo-modal LAE regression (subsection VII-A), unimodal LS regression (subsection VII-B),
and oligo-modal LS regression (subsection VII-C).

Finally, in Section VIII we draw conclusions and point to further research directions.

March 11, 1997 DRAFT



II. A GENERAL QUANTIZATION RESULT FOR A CLASS OF LAE REGRESSIONS

Following [9], given any x € R, we define its associated sign skeleton sx € {—1,0,1}" ! as

follows:
-1 ifz(n+1)<z(n)

sx(n) =9 41 if z(n+1) > z(n)

0 ifz(n+1)==z(n)
We have the following Lemma, which is a direct generalization of Lemma 4 of [9].

Lemma 1: Suppose that d(-) is an £, norm and p € [1, ), ie.,

1
N 3
dly —x) = (Z ly(n) — fv(n)lp)
n=1

for some p € [1,00). Furthermore, suppose that membership of x in ® can be determined by sole

knowledge of its sign skeleton sx. If x is a solution of
minimize : d(y — x)
subject to: x€ @

then x is a piecewise-constant sequence whose pieces are constant regressions of the corresponding
segments of y under the given distance metric.

Proof: Lemma 4 of [9] makes the same claim for the special case of locally monotonic
regression. The proof follows along the lines of proof in [9]. In particular, the assumption that
membership of x in & can be determined by sole knowledge of its sign skeleton sy means that

there exists some ©(®) C {-1,0,1}"~! such that x € ® if and only if s € ©(®), in which case
minges d(y — x) =

Ming, co(@) [Ming | s, d(y - x)|

Fix sy, and consider the inner minimization. The optimal x can always be thought of as a
piecewise constant sequence (some or all of its pieces may contain just one element). If any given
constant piece of x is not a constant regression of the corresponding elements of y, then its fit
(and thus the fit of x) may always be improved by perturbing its level by an infinitesimal amount
to bring it a bit closer to the said regression without changing the sign skeleton sx. This is true

because strict inequality allows for an open ball of free movement of level in either direction.
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This contradicts conditional optimality of x conditioned on sx. Thus the optimal x for any given
Sx is a piecewise-constant sequence whose pieces are constant regressions of the corresponding
segments of y under the given distance metric. This holds for all sx, and the result follows. W

Lemma 2: If d() is £1 norm, ie., d(y —x) = 3N, ly(n) — z(n)|, and membership of x in &
can be determined by sole knowledge of its sign skeleton sx, then it holds that if x is a solution

of

minimize : d(y — x)
subject to: xe€ &

then for all n = 1,2, -+, N, there exists an m € {1,2,:--, N} such that z(n) = y(m).

Proof: Constant regression under £; amounts to picking the median of the elements involved
(if the number of elements is even, any of the medians would do just as well); e.g., cf. [9]. In any
case, the selected median is one of the above elements. [ |

Corollary 1: Suppose that d(-) is £; norm. Define
A={veR|3Ine{l,2,:--,N} : y(n)=v}

Furthermore, suppose that ® is such that membership of x in ¢ can be determined by sole

knowledge of its sign skeleton sx. Then, x is a solution of
minimize : d(y — x)

subject to: x€ ®

if and only if x is a solution of

minimize : d(y — x)

subject to: x € &n AV
This is significant, because it reduces regression over a subset of RY to ¢ finite problem. In all
cases of interest to us, @ is neither convex nor does it have the algebraic structure of a subspace,
thus the original problem is a difficult one. The finite problem, on the other hand, often admits
efficient algorithmic solution. In addition, reduction to a finite problem immediately implies
existence of a solution to the original problem.
In the sequel, we explore several regression problems that satisfy the conditions of this result.

Actually, all LAE versions of nonlinear regressions considered herein fall under this category, and
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their digital counterparts admit efficient solution. As we will see, the corresponding LS versions
do not admit such a “universal” solution, and have to be addressed on a one-by-one basis using

different means.

I1I. LocALLY MONOTONIC REGRESSION IN RV
A. Background on Locally Monotonic Regression

Locally monotonic regression is the optimal counterpart of iterated median filtering. In [9],
Restrepo and Bovik developed an elegant mathematical framework in which they studied locally
monotonic regressions in RY. They proved existence of such regressions, and provided algorithms
for their computation; however, their algorithms were very complex (actually, of complexity
exponential in N, the size of the input sample). In addition to existence, they were able to show
that locally monotonic regression admits a Maximum Likelihood interpretation [10].

In [5], Sidiropoulos considered digital locally monotonic regressions, in which the output sym-
bols are drawn from a finite alphabet, and, by making a connection to Viterbi decoding, provided
a very fast linear in N algorithm that computes any such regression, be it under a metric, semi-
metric, or arbitrary bounded per-letter cost measure.

Before we proceed, we need some definitions.

If x is a real-valued sequence (string) of length N, and v is any integer less than or equal
to N, then a segment of x of length ~ is any substring of v consecutive components of x. Let

it+y—1
1

77! = {2(@), -, 2(i + v~ 1)}, >0, i +v < N, be any such segment. x is monotonic
ifeither z(3) < z(t +1) <--- <zt +vy—-1),orz(d) 222G +1) > - 22 +v-1).

Definition 1: A real-valued sequence, x, of length N, is locally monotonic of degree & < N (or

lomo-a, or simply lomo in case « is understood) if each and every one of its segments of length
« is monotonic.
Notice that some segments may be increasing, others decreasing, and the sequence may still
pass the test of local monotonicity. In general, monotonicity implies local monotonicity, but not
vice-versa. Also, any sequence is locally monotonic of degree oo = 2, so the interesting degrees
are 3 through N. Throughout the following we assume that 3 < a < N. If a < § < N, then
a sequence of length N that is lomo-g is lomo-o as well; thus, the lomotonicity of a sequence is
defined as the highest degree of local monotonicity that it possesses [9].

A sequence x is said to exhibit an increasing (resp. decreasing) transition at coordinate 7 if
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z(3) < (i + 1) (resp. (i) > =(i + 1)). The following (cf. [18], [9], [19]) is a key property of
locally monotonic signals: If x is locally monotonic of degree @, then x has a constant segment
(run of identical symbols) of length at least a — 1 in between an increasing and a decreasing
transition. The reverse is also true.

The study of local monotonicity (which led to the idea of locally monotonic regression) has
a relatively long history in the field of nonlinear filtering. Local monotonicity appeared in the
study of the set of root signals of the median filter [18], [19], {20], [21], [22], [23], [24]. The median
is arguably the most widely known and used nonlinear filter. As it turns out, in 1-D, the set of
root signals (fixed points) of a median filter of a certain length (i.e., the set of those signals that
are not affected at all as they pass through the given median filter) is the set of locally monotonic
signals of a certain degree of local monotonicity. In other words, the class of locally monotonic
signals of a given degree of local monotonicity is the set of roots of a median filter of a certain
length.

In the sense that, at least in 1-D and modulo some pathological cases, iterations of the median
do converge to a median root that somehow resembles the original input signal, and median
roots are locally monotonic signals, one may think of iterated median filtering as an attempt
to converge to a locally monotonic signal that approximates the original input signal. However,
this resemblance cannot be a priori quantified, and the final output may be well off the original
input in certain cases.

It is then natural to think about asking for the best possible locally monotonic approximation of
the input in hand, rather than settle for the arbitrarily chosen coarse locally monotonic replica
provided by iterated median filtering. This gives rise to locally monotonic regression, which
can deliver significant gains in terms of distortion [9], [10], [6]. Here, goodness of fit is usually
measured in terms of a metric or semi-metric [9], or likelihood [10}; or, it can be an arbitrary

bounded per-letter cost measure [5].

B. Previous Approaches

Previous algorithms for locally monotonic regression include:

o The original Tube and Blotching algorithms of Restrepo and Bovik [9]; these are of exponential
complexity (see also [10] for some properties of locally monotonic regression).

o The work of the first author of this paper, on fast digital locally monotonic regression [5].

This algorithm has complexity linear in the number of samples, and is therefore very efficient.
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However, it solves a digital (i.e., finite alphabet) problem. By proper choice of quantization,
this may well be entirely satisfactory in certain applications, yet unsatisfactory in others,
where one needs very fine granularity in the solution.

o The recent work of de la Vega and Restrepo [25] on an improved algorithm for, locally
monotonic regression in RY. The algorithm given in [25] applies to the case of o = 3
(the smallest meaningful ), and, according to the authors, it is of polynomial complexity.
Computational complexity, and generalization of the algorithm to the case of arbitrary « are
open questions, according to the authors of the paper, as of this writing.

None of the above efficiently solves the general locally monotonic regression problem in RY. In
the sequel, we present an exact fast algorithm for locally monotonic LAE regression in RY, and

an improved fast algorithm for locally monotonic LS pseudo-regression in RY.

C. Locally Monotonic LAE Regression in RN

Consider the locally monotonic LAE regression problem:
minimize : |y — x||;

subject to: x € AY

where AY is the set of all sequences of N elements of IR which are locally monotonic of lomo-
degree . It is easy to see that AY satisfies the condition of Corollary 1. Define A as in

Corollary 1, and consider the resulting digital problem:
minimize : |y — x|,

subject to: x € AV n AN

This is an instance of digital locally monotonic regression, which has been solved in [5] by means
of DP. The complexity of the digital algorithm is O(|.4|?aN); A as defined in Corollary 1 has
at most N elements; thus the computational complexity of locally monotonic LAE regression in
RY is O(N3a). This solution is ezact and efficient, although it may be quite tedious for long
observation sequences.

One may improve upon complexity by capitalizing on the following observation. Since at each
point the value of the optimum solution is necessarily the median of a small collection of inputs

in the neighborhood of the given point, one may restrict the alphabet at time n to be the set
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of input values in a suitable neighborhood about n. The longest streaks in a locally monotonic
regression of degree « are usually bounded in length by k x a, where k is a small integer constant;
one may therefore pick a local alphabet for z(n) that consists of, say, at most 4o elements, and
run DP under this restriction. This will be beneficial for o small relative to N, and will lead to

complexity O(a®N), without any significant loss in performance.

D. Additional Background - Monotone Regression

In order to properly understand locally monotonic LS regression, one needs, as can be expected,
to develop a good understanding of monotone LS regression.

Monotone (say, increasing) LS regression is the following problem: Given y, find x to
minimize : ||y —x||3

subject to : x is monotone increasing

or, to be more precise, monotone non-decreasing, i.e., letting x(n) denote the n-th element of

the N-dimensional vector (sequence of N elements) x:
2(1) < 2(2) < -+ < o(N)

This problem is of interest in statistics (e.g., cf. [11]), nonlinear filtering (e.g., cf. [8]), and
various other disciplines, including psychology [12], databases [13], biology [14], and texture
perception [15].

In the latter applications, the interest in monotone regression is indirect; e.g., it is a substep
in algorithms for so-called multi-dimensional scaling, a technique that allows trend spotting and
correlation analysis in very large datasets.

There exist various ways of solving a monotone regression problem. The obvious observation
is that monotone regression is a special case of Quadratic Programming (QP), and, therefore,
it can be solved using one’s favorite QP routine. However, this approach is not very efficient
(theoretically O(N3-%) using the state-of-art interior point methods of QP [26]; in practice, O(N*)
using common routines for large datasets), and it leaves much to be desired, especially in view of
the fact that monotone regression is a very special QP program that exhibits a lot of potentially
exploitable structure.

Indeed better ways of solving it exist. In 1964, Kruskal [12] came up with what appears to

be the best way of attacking this problem, as a by-product of his pioneering work in multi-
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dimensional scaling (see also [27]). Kruskal’s approach is an iterative one, that makes use of a
simple but clever observation to reduce the problem of monotone least squares regression to a
proper finite sequence of averaging steps. The theoretical complexity of Kruskal’s algorithm is
(rather loosely) upper bounded by O(N?2); in practice, it is almost O(N).

For our purposes, as we will soon see, we will need a fast algorithm for a slightly different
problem. In particular, we will need an algorithm for the following equality-constrained non-
decreasing problem:

minimize : ||y — x||3
subject to: (1) <z(2)<---<z(N-(a-1)) <
<z(N-(a-2)=2(N-(a=-1)=:--=gz(N)

i.e., the last o — 1 elements of the regression should be equal, for some 3 < o < N. In addition,
we will need a fast algorithm for the problem:
minimize : ||y — x||3
subject to: z(1) > z(2)>--- > (N - (a—-1)) >
> (N~ (a~2) =a(N = (@=1)) = - = ()

i.e., the corresponding non-increasing problem. We will refer to both these problems as suffiz-
run-constrained monotone regression. Clearly, if one has an algorithm that solves one of them,
one may also solve the other. In particular, suppose that we have an algorithm that solves the

following prefiz-run-constrained monotone non-decreasing regression problem:
minimize : ||y — x||3
subject to: z(1) = 2(2) = z(a—1) <
<z(a) <--- < z(N)

then, it is easy to see that the first of the former two suffix-run-terminated monotone regression
problems can be solved by feeding —rev(y) (where the rev(-) operation simply reverses the order
of elements of its argument) as input to the said algorithm, and then computing —rev(x); whereas
the second of the former two problems can be solved by feeding rev(y) to the said algorithm,
and then computing rev(x). These statements can be easily verified mathematically, using only

the fact that |y — x||3 = |Irev(y) — rev(x)|13, and (|||} = || — x||3.
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In addition, it will be beneficial to be able to compute all sub-regressions i.e., in the context
of the prefix-run-constrained monotone non-decreasing regression algorithm predicated above, it
will be useful to be able to obtain, as by-products, all prefix-run-constrained sub-regressions on
the first k elements of y for k > o — 1.

Such an algorithm is presented in the Appendix (in which b plays the role of x). It is based on
Kruskal’s original monotone regression algorithm, but (i) incorporates the prefix constraint, and
(ii) produces as a “free” by-product all such sub-regressions. Given that Kruskal’s algorithm is

provably correct [27], the proof of correctness of this modified algorithm is straightforward.

E. Locally Monotonic LS Regression in RN

Let us now consider locally monotonic LS regression:
minimize : ||y — x||3
. . N
subject to: x € A,

This problem turns out to be more difficult than its LAE counterpart. In particular, we cannot
resort to an equivalent of Corollary 1, for one does not really exist: the set of all averages of a
finite collection of reals is finite but very big.

The idea is to first run a computationally cheap fast digital locally monotonic LS regression
algorithm, as described in [5], to determine an approximate solution, then call the monotone
regression algorithm given in the appendix just once for each monotone piece of this digital
interim solution to improve its fit, and bring it closer to the optimum real-valued regression.
If the resulting real-valued suffix-terminated monotone regression piece respects local endpoint
consistency constraints (e.g., that the first element of an increasing segment following a decreasing
segment should be greater than the last element of the decreasing segment), then inserting
it in place of the corresponding digital piece will improve the fit without violating the local
monotonicity constraints. The process is repeated for the remaining pieces in a sequential fashion.

Since the fast digital algorithm is linear in N (but quadratic in the size of the digital alphabet
- so very fine discretization can be costly), and the monotone regression algorithm given in the
appendix is better than quadratic in N, it follows that the complexity of this sub-optimum two-
step process is loosely bounded above by O(N?) and is much better than this figure in practice.

Through simulation, one may easily convince oneself that the performance degradation caused

by this sub-optimum two-step approach relative to the true regression in RY is usually small,
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given a proper choice of quantization levels for the discrete part, while the computational gains
are very significant. Thus, this two-step approach would normally be the method of choice in

practice.

IV. PIECEWISE MoNoTONIC LS REGREssION IN RN

Piecewise monotonic LS regression of degree « is defined as the following problem:
minimize : ||y —x||3
subject to: x € IY

where ITY is the set of all sequences of N elements of IR which can be constructed by concatenating
monotone pieces, each one of which can be either increasing or decreasing, and of length at least
a—1. If x € TTY, then we shall say that x is piecewise monotonic of pimo-degree . Note that
for 8 > a, any x that is pimo-3 is pimo-« as well; thus this regression is defined over a family
of nested approximation “spaces”, and the resulting optimum fit is a non-decreasing function of
pimo-degree, .

Observe that I'I,],lV satisfies the condition of Corollary 1. In addition, the digital counterpart of
this problem admits efficient solution via DP, in a manner very similar to [5]. Therefore the LAE
variant of the above problem in RY can be solved by means of a suitable digital algorithm, at a
complexity cost of O(N3a), as predicated by Corollary 1. Here we attack the LS problem.

There are several reasons for introducing piecewise monotonic regression. First, observe that
AY c 11V, i.e., every locally monotonic sequence of degree of local monotonicity « is a piecewise
monotonic sequence of degree of piecewise monotonicity o, but the reverse is not true. Thus,
piecewise monotonic regression can,be seen as regression over a feasible set that includes all
locally monotonic sequences. However, it is still small enough to retain the attractive nonlinear
filtering properties of locally monotonic regression, and, actually, improve on some deficiencies
of the latter.

From an optimization viewpoint, piecewise monotonic regression relieves some of the con-
straints associated with local monotonicity. In particular, it relieves the segment endpoint con-
sistency constraints (e.g., that the first element of an increasing segment following a decreasing
segment should be greater than the last element of the decreasing segment), as well as the con-
straint that individual monotone segments should terminate with a suffix string of at least o — 1

equal elements. These latter constraints have been inspired by the properties exhibited by the
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roots of the median filter. The suffix constraint, in particular, leads to a now well-understood
undesirable effect of median filtering known as streaking [28]. The idea is that by relaxing the
suffix constraint one may be able to reduce? streaking without sacrificing the noise suppression
and edge preservation capabilities of the resulting nonlinear regression-based filter. This is indeed
the case, as we will soon see by means of simulation.

Also important is the fact that relaxing some of the local monotonicity constraints effectively
decouples the problem in a particular seuse, and allows us to develop a fast hybrid DP - Kruskal
algorithm for piecewise monotonic LS regression, a development that is not possible for locally
monotonic LS regression, due to an intricate coupling between pieces of the solution for the
latter problem. Of course, locally monotonic LAE regression in RY is entirely tractable, and
high-quality approximate efficient solutions for locally monotonic LS regression are also available,
as discussed earlier.

Our primary aim here is to introduce a novel related nonlinear edge-preserving smoothing
technique, that may improve upon the properties of locally monotonic LS regression and admits
efficient exact solution in R,

Finally, observe that since AY C I1Y, i.e., every locally monotonic sequence of degree of local
monotonicity « is a piecewise monotonic sequence of degree of piecewise monotonicity «, it
follows that piecewise monotonic LS regression provides a lower bound on the LS fit achievable

by locally monotonic LS regression of the same a.

A. Additional Background - Dynamic Programming and the Viterbi Algorithm

In the sequel, we will need to invoke the Viterbi Algorithm (VA) in a “master” mode that
will control an underlying special-purpose Quadratic Program in a “slave” mode to solve the
piecewise monotonic regression problem in RY. For this purpose, at this point it is useful to
clarify exactly what kind of optimization problem may be solved by the VA.

The VA is the name by which many engineers refer to an instance of forward DP. In a nutshell,

N-1
n=0

the VA is nothing but a clever method to search for an N-tuple {s(n)} of variables (each one

of which can take on only a finite number of values) that minimizes:

N-1

Y cals(n), s(n — 1))

n=0
2Streaking can be also attributed in part to the use of an £, norm, p = 1,2, and cannot be avoided altogether;

cf. Corollary 1.
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where s(—1) is a (given) dummy variable, c,(-,-) is some arbitrary one-step transition cost, and
the s(n)’s are thought of as state variables, i.e., variables that summarize the past of a system
in so far as its future evolution is concerned. Without loss of generality we may assume that
all state variables take on values in the same alphabet, .A. The VA avoids exhaustive search
and brings the complexity of this minimization from a brute-force O(|.A|") down to a reasonable
O(|A|?>N) in the worst case; actual complexity depends on the given c,(-,-)’s.

The VA achieves substantial computational savings by capitalizing on a simple observation:
by taking the last summation term out of the sum, and conditioning on any given choice of
the s(N — 2) state variable, the resulting two terms of the cost functional can be minimized
independently; this effectively decouples the problem and results in two independent problems,
one of which can be trivially solved. By iterating this argument backwards in time, one may
realize significant computational gains.

This is a very powerful and pervasive optimization technique [29], and it finds application in
many diverse areas, including, but not limited to:

« Optimum decoding of convolutional codes [30], [31], [32].

o Speech and character recognition [33].

« State estimation in Hidden Markov Models (HMM’s) [33].

« Optimal Control [34].

o Game theory [34].

In the context of solving constrained optimization problems, the key to successfully using the

VA is to come up with a state of partial solutions with respect to the given set of constraints [4],

[5], [6]-

B. Hybrid Programming Algorithm for Piecewise Monotonic LS Regression

Consider the piecewise monotonic least squares regression problem:
e e e . 2
minimize : |y — x||3
subject to: x € ITY

where IIY is the set of all sequences of N elements of R which are piecewise monotonic of
pimo-degree .

For each element x of HQ’ , define its associated trend switching set, T'(x), as the set of indices
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{t1,t2,- -+ ,tk } where x exhibits a trend transition (increasing to decreasing, or vice-versa)3. Let
us assume, without loss of generality, that x always starts with an increasing trend*.

For any x € ITY, T'(x) has the following properties, whose proofs are elementary:

Property 1: For x e Y, K = |T(x)| < trunc(%).

Convention 1: By convention, we allow the elements of T'(x) to take on the value N (which
serves as a “gate” for unused trend switches); this allows us to fix the size of T'(x).

Property 2: Let x € 1Y, and T(x) = {t1,%2, +*,tx}. Then, obviously,

Property 3: If both ¢,41 and ¢; are not equal to N, then t;41 —¢; > a—1, Vi=1,2,.-- , K — 1.

Property 4: If t; = N, thent; = N, Vi< j < K.

Property 5: In between [t;_1 + 1,%;], x is constrained to be monotonic (specifically: non-
decreasing for i: odd; non-increasing for i: even); otherwise, it is unrestricted.

Proposition 1: Under Convention 1, x € ITY, if and only if T'(x) satisfies Properties 1, 2, 3, 4,
5.
Let us denote by V¥ the set of all trend switching sets (i.e., sets of positive integer K-tuples)
that satisfy Properties 1, 2, 3, 4, 5. By the above proposition, x € II¥ if and only if T(x) € V.

Therefore, the piecewise monotonic least squares regression problem:
eoe e 2
minimize : |[y — x|[3
. . N
subject to: x ¢ II,

is equivalent to:
. e e ) 2
minimize : ||y — x||5
30ne may determine the trend switching set by knowledge of the sign skeleton but not vice-versa. In the case of
piecewise monotone regression, feasibility of a candidate solution may be determined from knowledge of its sign

skeleton or its trend switching set. The latter leads to a more compact parameterization of the feasible set, and

thus to more efficient algorithms; it is therefore adopted here as the parameterization of choice.
4Otherwise, we simply run the process twice, one time starting with an increasing trend, the other starting with

a decreasing trend, and pick the best of the two; this will double the amount of computation, but will not affect

the order of computational complexity.
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subject to: T'(x) € VN
Define
J(x) = |ly —xIi3
and the problem becomes:
My Tx)evd J (%)

= min{tl J2,tre JEVN {mmJ(x|T(x) = {th to,- -, tK})}

K
= MANG, 4 ti }EVE Z min€ (ti—1,t;)
i=1
K
— y * . .
= mm{tl stzetr YEVY ZE (tz—l,tz)
i=1

where the last two steps follow from Property 5, to = 0 by convention, and £*(t;—1, ;) is the cost
(fit) of an optimal monotonic (specifically: non-decreasing for 4: odd; non-increasing for i: even)
least squares regression on the elements of y between indices ¢;—1 + 1 and t; inclusive.

Now the problem is in a form suitable for Dynamic Programming. In particular, the problem
can be solved by DP over the trend switching variables, ¢;, and, as we will see shortly in the
complexity analysis below, the required aggregate trellis computations involve the solution of a
very special QP program (namely, monotone regression) for each node at each stage in the trellis.

Note that the hybrid DP-QP approach proposed herein is very different from the one proposed
in [5], which does not carry over in RY. The present approach is related, in spirit, to a DP
algorithm of Blake for the solution of a nonlinear regularization problem [35], and a similar DP
program of Bellman for solving a piecewise linear approximation problem subject to a budget
on the number of pieces that one may use to construct the optimum approximation [36]. Both
these DP algorithms do not need to repeatedly invoke a sophisticated optimization subroutine
to perform their respective tasks; in a sense, their respective problems are easier than piecewise

monotonic LS regression.

C. Complegity of Novel Algorithm for Piecewise Monotonic Least Squares Regression in RN

Consider Figure 1, which depicts the nodes (states) at stage-¢ and their respective potential
predecessors at stage-(1 — 1). At stage-i, the node tags correspond to all the possible values of
t;, and similarly for stage-(¢ — 1). At stage-i, the bottom node has just one predecessor that is

a nodes apart. The next node going upwards has just two predecessors, the furthest of which is
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o + 1 nodes apart. A generic node, n, of stage-i has n — i(c — 1) + 1 predecessors, the furthest
of which is n — (1 — 1)(a — 1) + 1 apart. The top node (N) is N — (1 — 1)(a — 1) + 1 apart from
its furthest predecessor.

Each node at stage-i is visited in turn, and a decision is made as to which of the associated
potential predecessors is best for the node in hand. To do this, one needs to calculate £*(¢;_1,t;)
for the specific value of ¢; assigned to the node in hand, and all values of t;_; assigned to its
potential predecessor nodes, add the respective results to the corresponding cumulative costs of
the potential predecessor nodes, pick the one that gives minimum error, update the cumulative
cost of the node in hand, set up a pointer to its best predecessor, then move on to the next node,
the next stage, and so on and so forth.

The crucial observation is that a “generic” node, say the one that has been assigned the
value t; = n, only needs to make one call to Kruskal’s monotone regression algorithm, and this
call suffices to compute all node transition cost figures £*(t;—1,n) for all potential predecessors.
Indeed, according to our earlier discussion, node n only needs to call the algorithm once with
the longest input, and all required sub-regressions will be computed along the way for free. The
length of this longest input isn — (1 — 1){a — 1) + 1.

Since Kruskal’s algorithm is better than quadratic, it follows that the computational cost for

all required computations for the worst (top) node at stage-i is bounded above by
O(IN-(i-1(a-1)+1])

Stage-i has a total of [N —i(a— 1) + 1] nodes; thus the computational cost for all required

computations for stage-i is (quite loosely) bounded above by
O(IN-i(a—1)+1]x [N - (- 1)(a—1)+1))

There exist at most % stages, and the worst stage is ¢ = 1, so the total computational cost for

the entire regression is (again, rather loosely) bounded above by

O(a—lj—l[N— (a—1)+1](N+1)2)
which is bounded above by
3
0 (92%11)— (N+1) - (a- 1)])
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We emphasize that this bound is loose, i.e., actual complexity is usually much less than the
order given by the bound. In practice, the bound may be conservative by an order of magnitude.
However, the given bound seems to be hard to improve for arbitrary « (more sophisticated

counting arguments result in a bound of the same order).

V. SIMULATION

The purpose of this section is to enhance the reader’s intuition by providing and discussing
the results of several simulation experiments on locally monotonic and piecewise monotonic LS
regression in R,

As we have seen, the corresponding LAE versions of these problems may be reduced to suitable
digital problems which admit efficient solution. For manuscript length considerations, here we

do not present simulation results for the LAE versions, and refer the reader to [4], [5], [6].

A. Locally Monotonic LS Regression in RN

At the conceptual level, we now have three ways to approach the problem of locally constrained
LS regression in RN for arbitrary o. These are (in order of decreasing complexity) exact algo-
rithms [9], the two-step algorithm, and the digital algorithm. All three provide feasible solutions
from the constraint set. What differentiates these algorithms is the trade-off that each achieves
between LS fit and computational complexity.

In terms of complexity, the digital algorithm is the simplest; the two-step algorithm is a very
close second; and there exists a very significant gap between the two-step algorithm and exact
algorithms. Actually, exact algorithms are not an option for a modest N = 300 samples, due to
exponential complexity explosion.

The two-step algorithm, as we shall see in this section, may improve the quality of the digital
solution by a considerable amount in terms of LS fit.

The two efficient algorithms have been implemented in C and MATLAB(®). Figures 2 through
19 present the results of these experiments. Numerical results are s.ummarized in Table I. The
input, y, is a 300-point (N = 300) sample of a noisy version of an ECG signal taken from the
signal processing information base (http://www.spib.rice.edu). In all figures, the spike train
at the bottom depicts optimum trend switches, as detected by the digital algorithm. In the
captions, || is the size of the digital alphabet, and « is lomo-degree.

Figures 2-4 present the results for |4| = 40, & = 50. In particular, Figure 2 presents the
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input versus the two-step real-valued regression, for |4| = 40, a = 50. Figure 3 presents the
input versus the digital regression, for the same | 4|, @. Figure 4 compares the above two-step
real-valued regression and the corresponding digital regression.

Figures 5-7 present the same for |A| = 40, a = 20; subsequent triples of Figures do the same
for various values of |A|, .

Let us consider the numerical results summarized in Table I. An important general observation
is that the difference in runtime between the digital and the two-step real-valued fast suboptimal
algorithm is really negligible. In absolute terms, both run in the order of a few seconds, or a
couple of minutes, at worst.

In terms of fit, the two-step real-valued algorithm always improves upon the fit of the digital al-
gorithm, sometimes by as much as thirty percent. This improvement becomes more pronounced,
as expected, when |A4| is reduced (which also leads to a rapid decrease in complexity, as ex-
pected, since the digital algorithm is quadratic in |.4|). Furthermore, the percent improvement
in fit afforded by the two-step real-valued algorithm increases with decreasing . This may be
intuitively explained as follows. When « is small, the digital algorithm is forced to closely track
the input, thereby exhibiting tracking oscillations, in a manner similar to a phenomenon known
as slope over/under load in delta modulation [37].

From Table I, we may also observe that the second step of the two-step real-valued algorithm
is able to compensate for inaccuracies caused by using a small alphabet in the first (digital) step.
Note that the fit of the two-step algorithm remains essentially the same regardless of whether
|A| is 40 or 20, at least for a = 50, oo = 20, with a small degradation when o = 5.

These observations are also summarized in Figure 20(a). Figure 20(b) depicts CPU time as
a function of @ and |A|. Note that actual time complexity scales up somewhat better than

theoretically expected.

B. Piecewise Monotonic LS Regression in RY

The results of experiments on piecewise monotonic LS Regression in IR" are presented in
Figures 21,22(a)-(b), and Table II

Figure 21 presents the result of piecewise monotonic regression of pimo-degree o = 75 for the
noisy N = 300-point ECG signal. Figures 22(a)-(b) present the same for a = 50, and a = 20,
respectively. In all three Figures, the spike train at the bottom depicts the locations of optimal

trend switches, as detected by the exact hybrid algorithm. Table IT summarizes LS fit and CPU
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time for these three regressions.

A couple of important remarks are in order. First, one may verify that streaking is much less
pronounced compared to locally monotonic regression, e.g., compare the corresponding regres-
sions for & = 20: the first pulse is blotched by locally monotonic regression, yet it is well-preserved
by piecewise monotonic regression. Second, this reduction in streaking is not at the expense of
noise smoothing and/or the ability to follow signal edges in the data, at least for moderate val-
ues of o. The drawback is that, as one may easily convince oneself, for very small « piecewise
monotonic LS regression is more susceptible to outliers than locally monotonic LS regression.

The choice of ECG signal data was not arbitrary; aside from it exhibiting sharp level transitions
(thus being a natural candidate for the application of novel nonlinear smoothing techniques), this
choice was also meant to hint on an interesting application of piecewise monotonic and locally
monotonic regression. In the interpretation of ECG signals, certain features like the relative
timing and duration of the so-called P-wave, QRS-complex, and T-wave are very informative.
These features are relatively easily picked up by a trained eye, even when the data is noisy, yet
automatic detection and segmentation is difficult, due to changes in heart rate, noise, and other
considerations [38].

Consider Figure 23. It depicts another portion of the same ECG, and the result of piecewise
monotonic regression of degree o = 20. The P-wave, QRS-complex, and T-wave have been
manually annotated, and the spike train at the bottom depicts the locations of optimal trend
switches, as detected by the exact hybrid algorithm. Notice that P,Q,R,S, and T can be accurately
localized by looking at the detected optimal trend switches: this spike train may be used to
develop an automated feature extraction / ECG segmentation process that does not rely heavily

on heuristics and is robust in the presense of noise.

VI. RUNLENGTH-CONSTRAINED LEAST SQUARES REGRESSION IN RY

Let us now consider the following runlength-constrained least squares regression problem:
minimize : ||y — x||3

subject to: x € Pjj

where Pf} is the set of all sequences of N elements of R which are piecewise-constant, and the

length of constituent pieces is bounded below by M.
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This problem appears in the context of segmentation and edge detection. Its digital (finite-
alphabet) version has been considered in [4], where an efficient DP algorithm was developed for
its solution, and the properties of the associated I/O operator were investigated. Here, we are
interested in the same problem, but this time in RY.

One may mimic the development presented for the case of piecewise monotonic regression, and
associate to each element x of Pj} its corresponding level switching set L(x). M plays the role
of @ — 1, and the rest of the derivation remains the same.

A major simplification in the case of runlength-constrained regression relative to piecewise
monotonic regression, is that the former does not require any relatively sophisticated regression
subroutine to be invoked repeatedly by the master trellis computation: given two subsequent level
switches under consideration, the optimum constant LS regression in-between them is simply the
average of the corresponding input elements. What is more, all constant sub-regressions can be
computed on-the-fly, while computing the longest constant regression that is required for a given

state in the trellis. The resulting program is pure DP.

A. Complezity of Novel Algorithm for Runlength-Constrained Least Squares Regression in RN

One may pre-compute all required averages and associated costs in-between any two indices at
a cost of O(N?), before running the DP program. These pre-computed data can be stored in a
table for easy access during runtime. Now replace @ — 1 by M in the complexity analysis of the
proposed algorithm for piecewise monotonic regression. Since all averages and associated costs
are stored in the table, £*(¢;—1,1;) is readily available for any ¢; and ¢;_;; thus the computational
cost for all required computations for the worst (top) node at stage-i is bounded above by
O(N — (i — 1)M + 1). Stage-i has a total of (N —iM + 1) nodes; thus the computational cost
for all required computations for stage-i is (quite tightly) bounded above by O([N —iM + 1] x
[N — (i — 1)M +1]); There exist at most 4% stages, and the worst stage is ¢ = 1, so the total

computational cost for the entire regression is bounded above by
N
O(M[N-MH] < [N+1])

Observe that when M = N this bound predicts complexity O(N), which is exactly what is

needed for computing the average of N elements.
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B. Very Fast Sub-Optimal Algorithm

Again, the above algorithm naturally suggests a very fast sub-optimal counterpart. The idea
is to first run a computationally cheap fast digital runlength-constrained regression algorithm, as
described in [4], to determine almost-optimum level switches, then compute the required averages
in-between adjacent level switches, to determine the optimum real-valued regression given the
level switches determined using the fast digital algorithm. Since the former fast digital algorithm
is linear in N, and the latter step is trivial, it follows that the complexity of this sub-optimum
two-step process is bounded above by O(N). Of course, if the number of levels utilized for the
discrete part is large, it may pay to use the direct algorithm, and this may happen in practice,

since the complexity of the direct method is not prohibitive.

C. The LAFE case

Even though one may invoke Corollary 1 to obtain an exact O(N3M) algorithm for runlength-
constrained LAE regression in RY, it turns out that there also exists an alternative way of
achieving the same goal.

Rather than invoking Corollary 1, one may proceed as follows. The above runlength-constrained
LS regression in IR" algorithm can be modified to handle runlength-constrained LAE regression
in RN, by replacing the averaging operation in-between level switches by a median calculation.
This is true by virtue of the fact that, given n numbers, their median is the constant that min-
imizes the sum of absolute errors between itself and all n given numbers (e.g., cf. [9]). Again,
computational savings may be realized by using an efficient running median algorithm, e.g.,
the one of Huang et al [39] based on histogram updates, for computing all required constant
sub-regressions under a least absolute error measure in-between level switches.

Other types of locally constrained (e.g., piecewise-convex) regression problems can be handled

in the same spirit.

VII. OLIGO-MODAL REGRESSION IN RN

Oligo-modal regression is the following problem:
minimize : d(y — x)

subject to: n(x) = P
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where n(x) is the number of peaks in x, and P is some constant (note that a plateau is counted
as a single peak). This problem is of interest in e.g., chromatography [7], and special problems

in spectral estimation [33].

A. Oligo-modal LAE Regression in RY

Observe that one may determine whether or not m(x) = P by sole knowledge of the sign
skeleton of x. In addition, one may construct a DP program to solve a discretized finite-alphabet
version of a given oligo-modal regression problem. This can be done along the lines of [4], [5], [40],
or as explained in [7] for an alternative approach to unimodal regression. One may show that
the complexity of this program will be O(|.A|>PN), where |A| is the size of the finite alphabet,
P is the number of peaks, and N is the total length of the regression. It therefore follows from
Corollary 1 that, provided d(-) is £; norm, one may construct a suitable DP program to solve

the oligo-modal LAE regression in IR" at a complexity cost of O(N*P).

B. Unimodal LS Regression in RN

Unimodal regression is the following problem. Given y € RY, find x € R" to:
minimize : ||y — x||2

subject to : x : unimodal

i.e., m(x) = 1, x has only one peak. We are particularly interested in non-negative unimodal
regression (note that a bounded problem can always be transformed to a non-negative problem),

in which case the unimodality constraint can be expressed as follows:
(0) 2 0; =(N) 2 0;
z(n) 2 z(n—1), n=2,---,73;
z(n) <z(n-1), n=j+1,---,N = size(x)

for some mode location, j, which is itself subject to optimization.

If one fixes the mode location, the constrained problem is an instance of QP. Exhaustive search
through all N possible mode locations, each time solving a QP program, gives a first naive way
of solving it.

This problem is of interest in, among other things, chromatographic analysis and flow injection

analysis [7]. It has been considered in detail in Bro & Sidiropoulos [7]. A fundamental and
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surprising result of [7] is that unimodal least squares regression (including optimization of mode
location) is not anymore difficult than two simple Kruskal monotone regressions. This is well
under O(N?) and, in practice, almost O(N); a marked improvement over the naive exhaustive

QP-based approach, which amounts to O(N*%)-O(N?®), depending on the QP routine used.

C. Oligo-modal LS Regression in RN

Along the lines of the previously presented hybrid algorithm for piecewise monotonic LS re-
gression, one may envision the construction of a similar algorithm for oligo-modal LS regression,
consisting of a master DP module, and a Kruskal monotone regression (or, our own unimodal
regression) module. However, it turns out that even after fixing peak and valley locations, the
resulting problem is not decomposable in a series of either monotone or unimodal independent
sub-regressions in-between these locations, as shown by means of counter-example in [7]. Thus
DP won’t help solve this LS problem ezactly. The point we would like to make is that it may
help solve the problem approzimately.

An alternative approzimate approach would be as follows. First, one may construct a DP pro-
gram to solve a discretized finite-alphabet version of a given oligo-modal LS regression problem.
This program is a straightforward extension of the unimodal program given in [7]. Note that the
resulting DP program provides an ezact solution of the finite-alphabet problem, which is also an
approzimate solution of the RY problem. As mentioned earlier, the complexity of this program
will be O(|.A|2PN), where |.A] is the size of the finite alphabet, P is the number of peaks, and N
is the total length of the regression. Depending on A, this solution may or may not be appropri-
ate, both in terms of precision and in terms of complexity. In any case, it will be a sub-optimum
solution of the RY problem, since it solves the oligo-modal regression problem under the ezira
constraint that the outpul regression levels may only assume values in a fized finite set, so it
provides a feasible solution whose fit is generally worse than that of a true regression in R .

There’s no obvious way to further reduce complexity, but there’s a straightforward way to
improve accuracy. That is, once the discrete solution is found, as above, one may further improve
it by posing and solving a QP program to compute the optimum regression conditioned on the
detected locations of peaks and valleys. This may improve the fit, at a computational expense of
O(N*) for typical QP routines. Observe that QP will only be called once here, and its complexity

is independent of the number of peaks, so for moderate N this is feasible.
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VIII. CONCLUSIONS

We have presented algorithms for several interesting constrained regression problems in RY.
A general quantization result for a class of LAE regressions in R" sets the stage for the efficient
solution of many regression problems in this class, by means of DP solutions of suitable finite
problems. The scope of this result extends well beyond the collection of problems considered
herein.

Locally monotonic regression has been considered in detail, as it is of special importance to the
nonlinear filtering community. Piecewise monotonic regression is a closely related problem, which
naturally suggests itself. The algorithm for piecewise monotonic LS regression in R" is especially
interesting, as it invloves an innovative master-slave combination of DP and an enhanced version
of a very special (yet relatively little appreciated) efficient algorithm for monotone regression,
due to Kruskal.

The development of the novel algorithm for runlength-constrained regression followed from
the above. Finally, the idea of using Kruskal’s monotone regression algorithm came to us while
working on unimodal regression, and we have presented exact and approximate algorithms for
oligo-modal LAE and LS regression, respectively.

This work has many interesting ramifications, several of which are currently under investiga-
tion. Future work includes the study of stability and convergence of multi-objective algorithms
incorporating some of the present algorithms as sub-steps; and extensions to handle additional
prior knowledge, e.g., smoothness or equality constraints.

Related MATLAB) and C-code can be found in http://www.glue.umd.edu/ nikos; also

at http://newton.foodsci.kvl.dk/rasmus.html.
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X. APPENDIX - MATLAB CODE FOR PREFIX-CONSTRAINED MONOTONE REGRESSION IN

RN

#function [b,B,A111Bs)=ncdRasausmonreg(y,alpha);

prriA bbb bsebahi b ivabbbabhebsyitbhi it siedvssbbiaasiitiyisibiiiniisitl

% 4 variant of tonic Least Squ gression according )
% to J. B. Kruskel, 1964. %
X Extensions to handle calculation of sub-reg 4 by R Bro %

% Minor modification to handle the equality constr. by R. Bro & N. Sidiropoulos)

b -

mnin|ly-bl|_2 subj to monotone increase, AND first alpha-1 els equal ¥

%8 = b, but condensed (runlength ded) %
X 411Bs = 411 sub-regressions, i.e. Al1Bs(1:4,1) is the 3
% Tegression of y(1:i) under the above constraints. %
% NOTE: of course, alpba-1 <= size(y), and the f£irst alpha-2 columns of 3
% the matriz A411Bs are not of interest, and should be considered invalid b

p3y384ar it eaa s st saasatasaa issstsatasssnsatvibiastiysinsyebissansiiniissiivii
{ Extensions and modification: R. Bro and N. Sidiropoulos, 1997 4

pAARAITIIELSESEANISIAAANIEIGNGIEERTIIATINIIIIANIFSININIELIANIIIENANIIFEEANIAISE

% Note that a monotone increasing regression on y that terminates with

% alpha-1
% to this
% the el

equal symbols can be performed by feeding - rev(y) as input
routine, and then -rev(b), where rev() reverses the order of
ts of its

% regression on y that terminates with

& . Similarly, a monotone decreasing

I JL > e I X e

% alpha-1 equal symbols can be performed by feeding rev(y) as inmput
% to this routine, and then rev(b). These statements are easy to
¥ prove mathematically, using only the fact that |l y - bll=]|Ivev(z) - rev(b)|I¥
% and {lyl| = Il-x|| - N. Sidiropoulos & R. Bro 4
pySAASSAN SRS INSNRIATANSTIANI AL AL IINSEATANENSAIIVENNINISLSININISASANISISNISAL
L = alpha - 1;
I=length(y);
yoev=zeros(I-L+1,1);
yaew(1,1) = mean(x(1:L,1));
yoew(2:1-L+1,1) = x(L+1:1,1);
id = ones(size(ynev}));
1d(1) = L;
B=[ynev 3d);

Al1Bs=zeros(l,I);

for j=1:L,

411Bs(1:j,§) = ynew(1,1) * ones(j,1);
end;
i=1;

while i<size(B,1)
i¢ B(1,1)>B(min(I,i+1),1)

summ=B(1,2)+B(1+1,2);
B=[B(1:4-1,:); [(B(4,1)sB(1,2)+4B(i+1,1)#B(i+1,2))/(summ) summl;B(i+2:size(B,1),:)];
OK=1;
while 0K
it 8(4,1)<B(max(1,i-1),1)
sunm=B(i,2)+B(i-1,2);

B=[B(1:4-2,:); [(B(4,1)*B(i,2)+B(i-1,1)*B(i-1,2))/(sunm) suma];B(i+1:size(B,1),:)];

iwmax(1,i-1);
else

0K=0;
end

and
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bInterim=[];

for i2=1:4
bInterim=[bInterim;zeros(B(42,2),1)48(i2,1)];

and

No=sum(B(1:4,2));

A11Bs (1:No,No)=bInterim;

else
i=i+1;
blnterinm=[];
for i2=1:4
bInterim=[bInterim;zeros(B(i2,2),1)+B(i2,1)];
end
No=sum(B(1:4,2));
411Bs(1:No,No)=bInterim;
end
end
b=0;

for is1:size(B,1)
b=[b;zeros(B(i,2),1)+B(i,1)];

end
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digital, fit | 2-step, fit | digital, cputime | 2-step, cputime
[A] =40, a =50 6946 6910 1'45” 1’477
|A] =40, a =20 1593 1518 40” 41”
|A| =40, a=5 447 358 15” 15.5”
|A| =20, a =50 6998 6912 30” 327
|Al =20, =20 1775 1518 15” 16”
|A| =20, =5 640 417 5” 5.7
TABLE 1

FIT AND EXECUTION TIME COMPARISONS FOR LOCALLY MONOTONIC REGRESSION UNDER £
(NETWORKED SUN SPARC10, N = 300 POINTS). THE DIGITAL PART HAS BEEN IMPLEMENTED IN C,
WHEREAS THE SECOND STEP OF THE TWO-STEP ALGORITHM HAS BEEN IMPLEMENTED IN
MATLAB® . CPU TIME IS IN (MINUTES’SECONDS” ), AND WAS REPORTED VIA A COMBINATION OF

cputime AND UNIX time.

fit | cputime
a=75| 3539 [ 1220”
=50 | 2206 | 17117
a=201] 570 35°2”
TABLE 11

FIT AND EXECUTION TIME FOR PIECEWISE MONOTONIC REGRESSION UNDER ¢, (NETWORKED SUN
SPARCI10, N = 300 POINTS). THE HYBRID ALGORITHM HAS BEEN IMPLEMENTED IN COMPILED

MATLAB(® . CPU TIME 1S IN (MINUTES’SECONDS”), AND WAS REPORTED VIA cputime.
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stage-(i-1)

Fig. 1. Nodes (states) at stage-i and predecessors at stage-(i — 1). At stage-i, the bottom node has just
one predecessor that is a nodes apart. The next node going upwards has just two predecessors, the
furthest of which is &+ 1 nodes apart. A generic node, n, at stage-i has n —i(a — 1) + 1 predecessors,
the furthest of which is n — (i — 1)(a — 1) + 1 apart. The top node (N) is N — (i — 1)(a— 1) + 1 apart
from its furthest predecessor. Note that node N is special, in the sense that it is possible to move

from node N at stage-(i — 1) to node N at stage-i at zero cost.
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Fig. 2. Input (dashed) versus two-step real-valued (solid) regression, |4| = 40, a = 50.
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Fig. 3. Input (dashed) versus digital (solid) regression, |A| = 40, a = 50.
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Fig. 4. Two-step real-valued (solid) versus digital (dashed) regression, |A| = 40, o = 50.
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Fig. 5. Input (dashed) versus two-step real-valued (solid) regression, |.4] = 40, a = 20.
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Fig. 6. Input (dashed) versus digital (solid) regression, |A| = 40, o = 20.
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Fig. 7. Two-step real-valued (solid) versus digital (dashed) regression, |A| = 40, a = 20.
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Fig. 8. Input (dashed) versus two-step real-valued (solid) regression, | 4| = 40, o = 5.
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Inpul {dashed) versus digitel regression (solld)

Fig. 9. Input (dashed) versus digital (solid) regression, |A| = 40, o = 5.

50 1!‘)0 150 200 250
Digial (dashed) versus iwo-step real-valued regreseion (solid)

Fig. 10. Two-step real-valued (solid) versus digital (dashed) regression, |A| = 40, a = 5.
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Fig. 11. Input (dashed) versus two-step real-valued (solid) regression, |4| = 20, a = 50.
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Fig. 12. Input (dashed) versus digital (solid) regression, |4| = 20, o = 50.
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Fig. 13. Two-step real-valued (solid) versus digital (dashed) regression, |A] = 20, a = 50.
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Fig. 14. Input (dashed) versus two-step real-valued (solid) regression, |A| = 20, a = 20.
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Fig. 15. Input (dashed) versus digital (solid) regression, |A| = 20, o = 20.
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Fig. 16. Two-step real-valued (solid) versus digital (dashed) regression, | 4| = 20, a = 20.

40
30

20l ,

J_UL_UH R

Iw {dashed) vumu Mo—otep rod—v-luod rwoﬁon (.old)

-

0

Fig. 17. Input (dashed) versus two-step real-valued (solid) regression, |A| = 20, a = 5.
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Fig. 18. Input (dashed) versus digital (solid) regression, |4| = 20, a = 5.
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Fig. 19. Two-step real-valued (solid) versus digital(dashed) regression, |A4| = 20, a = 5.
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(a) Percent improvement in LS fit  (b) CPU time (in seconds)

Fig. 20. (a) Percent improvement in LS fit curves as a function of a. Solid curve: |.4| = 40, dashed curve:
|A] = 20. This is the percent improvement afforded by the two-step algorithm versus the brute-force
digital algorithm. (b) CPU time required by the two-step algorithm as a function of a. Solid curve:
|A| = 40, dashed curve: |A] = 20. Note that complexity scales somewhat better than expected by

the theoretical complexity analysis of the algorithm, i.e., actual complexity is sub-quadratic in |.A}.
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Fig. 21. Input (dashed) versus piecewise monotonic regression, a = 75.
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Fig. 22. Input (dashed) versus piecewise monotonic regressions for o = 50, 20.
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Fig. 23. Piecewise monotonic regression may aid in the detection of significant events in ECG signals.
Here a = 20.
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