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Since the 2001 anthrax attacks, public health officials have become concerned

with planning for a potential large scale attack. Researchers have worked to model

attack scenarios in order to evaluate various response policies. One response policy
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form of MedKits before an attack occurs. Despite numerous models and studies,

there has not been a model to study the effect of distributing MedKits on the

expected number of deaths in an attack. We develop a discrete-time compartmental

difference equation model to analyze the policy. The results show that distributing

any number of MedKits reduces the number of deaths expected in all scenarios

tested. We analyze under what circumstances the MedKits have the largest life-

saving impact. We also develop a stochastic transition model to demonstrate the

accuracy of the MedKits model results.
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Chapter 1

Introduction

1.1 Bioterror Attacks

In recent years, the United States has become increasingly conscious of the

threat of terror attacks. In particular, significant attention has been given to bioter-

rorism. In September 2001, five people were killed and seventeen others were infected

after letters containing anthrax spores were mailed through the U.S. Postal Service

[9]. While deadly, this attack was relatively localized, mostly affecting those receiv-

ing the letters and the postal workers transporting them. An anthrax attack could

be realized on a much larger scale by the release of aerosolized spores in a large city.

In such a case, thousands of people could easily be exposed to this deadly disease.

Planning for a rapid response to such an attack is of great importance to various

government officials and the general public.

1.2 Anthrax: Symptoms and Treatment

The bacteria Bacillus anthracis causes the disease commonly known as an-

thrax. There are three ways in which anthrax can be transmitted. The most com-

mon is transmission through broken skin. Most often this occurs when a person

butchers an animal infected with anthrax. Anthrax contracted in this way is easily
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treated and rarely fatal. The second form of transmission is ingestion, when a person

eats infected meat. This form is relatively uncommon. The most dangerous form

of transmission is inhalation anthrax. A person needs to inhale merely 8,000-10,000

tiny (1-5µm in diameter) anthrax spores to become infected [5, 17]. It has been

reported that even just one kilogram of weapon-grade anthrax could be released

into the air and infect as many as 1.5 million people [2]. Without intervention, the

mortality rate would be extremely high.

There are three stages in anthrax disease progression. The first, incubation,

begins at infection. During incubation, the infected individual experiences no symp-

toms and will not know if he has been infected. The average incubation time is ap-

proximately 11 days [5]. From the incubation stage, an infected individual progresses

to the prodromal stage. The prodromal stage is characterized by non-headache neu-

rological symptoms such as fever, fatigue, and muscle aches similar to the flu. An

infected person next progresses to the fulminant stage, in which the individual is

very ill and experiencing respiratory distress. Generally, death occurs within days

of the emergence of symptoms.

Anthrax is most responsive to antibiotic treatments in its earliest stages. As

such, prophylaxis is an extremely important aspect of attack response. Prophylaxis

consists of an oral regimen of either ciproflaxin or doxycycline. A 60 day regimen

of prophylaxis medication is recommended to prevent illness. Those that begin pro-

phylaxis during the incubation stage and adhere to the entire 60 days of medication

will not become ill. However, those who begin taking medication but then stop may

progress to the prodromal and fulminant stages and possibly die.
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Treatment for those who have already become ill consists of three antibiotics

(rifampin, clindamycin, and either ciproflaxin or doxycycline). These drugs are

administered intravenously and require the patient to be in an intensive care unit

with access to ventilators, respiratory technicians, and the IV medications. Because

patients are hospitalized during treatment, their adherence rate is 100%. However,

not all patients recover even with treatment.

1.3 Priorities for Attack Response

The number one factor affecting the number of deaths resulting from an an-

thrax attack seems to be the speed of response. People who begin prophylaxis while

in the incubation stage have a significantly reduced risk of death. Even after be-

coming ill, those who receive treatment or prophylaxis earlier have a better chance

of survival.

Consequently, the priority of any response plan is to react as quickly as pos-

sible. There is research being conducted on ways to reduce the time between an

attack and when it is first detected and how to best inform the public of an attack.

The challenge with detection is that anthrax spores are colorless and odorless, so in

general, an attack is detected only when the first person becomes ill, which may be

days after the attack occurs. Many steps have also been implemented to minimize

the time between detection and when prophylaxis medication can be made available

to the public. This aspect of time reduction is the main focus of this thesis.
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1.4 Plans for Response

Currently, local governments primarily use Points of Dispensing (PODs) as a

means to distribute prophylaxis medication to the public. In the case of an attack,

upon detection (usually at least 1 or 2 days after the attack), a local government

can designate PODs in places such as school gymnasiums or community centers.

These places would allow for the public to come and receive a regimen of prophylaxis

medication. The dispensing capacity of PODs depends on the availability of workers

as well as medication. It is assumed that no matter what, the dispensing center will

need some time to build up to full dispensing capacity.

As soon as an attack is detected, local stockpiles of medication become imme-

diately available. The federal government maintains a national stockpile from which

it can send push packs of medication and ventilators to a local government within

12 hours of detection. There are also regional inventories called Vendor Managed

Inventory (VMI) which can send supplies within 36 hours of detecting an attack

[18].

In the early stages of distribution, the dispensing capacity is limited by the

sizes of the local stockpile and the federal push pack. Once the VMI arrives, the

supply is considered unlimited, and distribution is limited only by the rate that

the PODs can handle. The recommended prophylaxis regimen is 60 days. Often,

in order to provide prophylaxis to more people early, the PODs will distribute an

abbreviated regimen of just 14 days until the VMI becomes available. Those people

who received the shortened regimen must come back at a later time to receive the
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remainder of their medication. This can be done when the demand is much less

urgent [18].

There are other courses of action currently being considered with the goal of

reducing the time before members of the public can begin prophylaxis. The U.S.

Postal Service is investigating the possibility of delivering antibiotics directly to

homes. Another option being considered is community-based stockpiles of supplies

distributed to healthcare institutions before an event occurs. Similarly, pharmaceu-

ticals could be distributed to first responders to be kept on-hand in case of an attack.

Any combination of these and other measures could be implemented to better equip

communities to handle attacks [8].

1.5 MedKits

Another measure under consideration is the pre-attack placement of pharma-

ceuticals directly into households. This strategy is the focus of the work in this

thesis. The plan is to distribute prescription medication in the form of a kit called a

MedKit to some or all households prior to an attack. Recipients would be instructed

that the MedKit is for emergency use only and should not be opened except under

direction of government authorities.

The Centers for Disease Control and Prevention (CDC) conducted a trial in

2006 with the Missouri Department of Health and Senior Services to study such a

distribution. The study distributed a prototype MedKit to over 4,000 households

and randomly assigned each a time interval between two and eight months for a
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follow-up interview, during which they would return the kit. The results of the

study were very positive with 97% of participants returning their MedKits (99%

of those returned were intact). Of the 3% of households that did not return their

MedKits, 96% had lost theirs while the other 4% (5 households) refused to return

them. The study also looked at the participants’ attitudes towards the MedKits,

with a majority stating that they would like to have a MedKit to keep in their home

after participating in the study. Most would be willing to pay for the MedKit [8].

The main advantage to the MedKit strategy is that individuals with MedKits

could begin prophylaxis as soon as they become aware that an attack has occurred.

They would not have to wait for a POD to begin distributing medication and then

wait in line at the POD to receive the medication. As previously stated, time is

a priority in beginning prophylaxis, so MedKit distribution should have a positive

impact on the survival rate of an anthrax attack.

The goal of this thesis is to evaluate the effect of pre-event distribution of

MedKits on the number of deaths that result from a large scale attack. We use

compartmental and simulation models to investigate different scenarios and obtain

estimates of the numbers of deaths in those scenarios.

1.6 Outline of Thesis

In Chap. 2, we present other models that have been implemented. We will

look at some research studies of anthrax as well as response policies. We will review

several compartmental and simulation models that have been designed for anthrax
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attack response. We will also look at a specific compartmental model that was

designed to evaluate various aspects of anthrax attack response and which is the

basis for the model used in this thesis.

In Chap. 3, we present the MedKits model, a compartmental model that ex-

tends one presented in Chap. 2. We discuss the differences between the two models

and give the details of the implementation.

In Chap. 4, a simulation model is presented to evaluate the accuracy of the

MedKits model. We look at the changes needed in order to stochastically simulate

an attack scenario.

In Chap. 5, we detail our findings. We give the results of the MedKits model

showing the effect of the MedKit distribution on the expected number of deaths. We

then present the results of the simulation and give our interpretation of the findings.

We also briefly discuss runtime results.

Chapter 6 provides the conclusions to the thesis and ideas for future work.
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Chapter 2

Literature Review

In this chapter we look at some of the work that has been done in anthrax

research. We also give an overview of applicable types of models and look at the

model we use as the basis of our MedKits model.

2.1 Anthrax Work

Since the 2001 anthrax attacks, public health officials and other researchers

have been seeking the best plans for response to a future attack in order to save

the maximum number of lives possible. Lindner provides a listing of practices for

consideration by individual districts [12]. Among the alternatives discussed are

traditional PODs, business PODs (in which businesses distribute medications to

their employees), postal delivery, and first responder stockpiles. The guide discusses

each method and some of the logistics involved. The guide also offers some advice

on choosing the best set of policies for a specific community.

Real data is essential to developing a good model. Without data, there is no

way to know what parameters are realistic in a model. Fortunately, there have not

been many incidences of anthrax outbreaks from which to draw data. As a result,

the majority of data used for all anthrax models comes from a handful of sources.

Brookmeyer and Blades compiled a comprehensive analysis of data in 2001 [5].
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They based their analysis on data collected during an outbreak in 1979 in Sverdlovsk,

Russia. In this case the source was not a terror attack but instead an accidental

release of anthrax spores. Studying the data in this case has provided many of the

commonly accepted characteristics of anthrax. For example, the mean length of the

incubation period is 10.95 days, a number used in many anthrax models.

Holty et al. considered an array of reported anthrax cases between 1900 and

2005 in order to evaluate the effect of age, gender, and treatment factors in patient

mortality. This provides a good source of data for models that include different

treatment plans [10].

Researchers have also conducted studies relating to individual emergency plans.

We are interested in data relating to MedKit distribution. The CDC’s Division of

Strategic National Stockpile studied the results and public opinions of such a plan in

2006-2007 in the St. Louis, Missouri, area. The goals of the study were to evaluate

the ability of households to maintain their MedKit as directed and collect public

opinions of the MedKits. The study included 4,076 households which were given

a home MedKit and assigned a recall time of two, four, or eight months. After

the assigned time period, the household was asked to return its MedKit and give a

follow-up interview.

The results of the study were very positive for MedKits [8]. 97% of respondents

returned their MedKits and 99% of these were intact and missing no pills. Only

a small number of households could not return their MedKits or reported having

taken the pills. 94% of participants said they would like to have MedKits in their

homes.
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Rinchiuso-Hasslemann and others conducted a series of discussion groups in

New York in 2008 to gather information about public feelings of mass prophylaxis

[14]. This study revealed the importance of disseminating information through a

reliable source. People are more willing to comply with guidance if it comes from

a source they trust. It also discovered the trend for people to wait to take their

prophylaxis until they see how others respond to it. Because beginning prophylaxis

quickly is urgent, this study suggests that more work should be done to encourage

higher adherence to prophylaxis.

All of these studies, as well as others, provide the data and direction for the

many anthrax attack models that have been and continue to be developed.

2.2 Modeling

Mathematical modeling is integral to studying how systems actually work.

With a good model, changes can be made and tested. This is particularly helpful in

cases where it is not desirable to actually study the system in question, which is the

case with anthrax attacks. Public health officials are very concerned with finding

response policies that would save as many lives as possible if an attack occurred,

and this requires studying how the policies affect the scenario. However, testing the

success of response policies by releasing anthrax spores in a city and observing what

happens is not the best option. Instead, creating mathematical models of attack

scenarios allows us to observe the effects of response plans safely. Mathematical

models can take on many forms depending on the system they are modeling.
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One major decision that needs to be made for any model is whether it should

be agent based or differential equation based. Rahmandad and Sterman discuss the

pros and cons of both types of models [13]. An agent based model simulates each

actor in a model. For example, an anthrax model that simulated the disease stage

of each person in the population would be agent based. In contrast, compartmental

models treat the entire contents of a compartment as the same. In the anthrax

example, this would be consistent with considering all those in the incubation stage

together.

Agent based models allow for more accuracy because many subtleties can

be reflected in the model. These models allow for heterogeneity among those of

the same type in a model. The downside of agent based models is that they are

very computationally intensive and can often grow to be intractable even for simple

systems.

Models that consider entire groups together are naturally faster computation-

ally. These models involve compartments with transitions between them defined by

functions of the numbers in each compartment. While providing for better computa-

tion, these models do have limitations. Most notable is the homogeneous treatment

of members of a compartment.

Continuous advances in computer speed and capabilities make agent based

models more practical than ever before. However, they still incur time costs that

can be quite high. Because of the high numbers of people who can be affected by

an anthrax attack, an agent based model would still be very large. As a result, we

will focus on non-agent based models.
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2.2.1 Compartmental Modeling

Compartmental models are one of the most commonly used to model scenarios

in ecology, biomedicine, business and many other fields. Most compartmental mod-

els are intuitive representations of systems. The system to be modeled is partitioned

into homogeneous compartments. For example, a simple model of the spread of an

epidemic may consist of three compartments for those infected, those recovered (and

no longer susceptible), and those still susceptible to the infection.

The other needed component of the compartmental model is a definition of the

flow between compartments. Some common flows are constant, donor control, and

recipient control. In donor control, the flow from compartment i to j is generally

defined to be some function of the number in compartment i. The flow between

compartments i and j for recipient control is generally some function of the number

in compartment j. The flow equations can take many forms to realistically represent

the system in question. Compartmental models are ideal for theoretical analysis

and computer simulation. Walter and Contreras [15] provide a good introduction

to compartmental models and the theory behind them. A more detailed look at

compartmental model applications to medicine, including an in depth description of

many of the common forms of flow equations can be found in Jacquez [11].

In 2003, Wein et al. developed a model of an airborne anthrax attack in order

to compare response plans [16]. The model they developed included several compo-

nents. A Gaussian plume model was used to simulate the dispersion of the spores.

This helps to determine how many people will be infected in different locations rel-
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ative to the point of attack. The model also considers age as a factor of infection.

The disease stages are modeled as compartments with log-normal distributions for

transitions, and a 2-stage queueing system is used to model the waiting times for

the prophylaxis and treatment compartments.

To determine who will seek prophylaxis among those with no symptoms, the

model incorporates information about how many people in a certain area have de-

veloped symptoms. If the fraction of people at that location who have developed

symptoms (the anthrax burden) exceeds a set threshold, all people from that loca-

tion are placed in the queue for prophylaxis.

This model looks at prioritizing the antibiotics queue and the treatment queue.

For example, one policy considered is to give prophylaxis priority to those who are

already symptomatic, then to people over the age of 55 who are asymptomatic. The

simulations show that this prioritizing helps to decrease the number of deaths. The

model also considered different threshold values for the prophylaxis queue. p = 0

corresponds to the ideal situation in which every one receives prophylaxis regardless

of their exposure. If p = 1 (no one receives prophylaxis until they exhibit symptoms)

44% of those infected will die. Even just increasing p from 0 to 0.07 doubles the

death toll. The conclusions from this model underscore the importance of rapid

response and aggressive prophylaxis. They demonstrate that the way to obtain the

best outcome is to provide prophylaxis to all people in the affected area as soon as

possible, regardless of whether they have been infected.

Baccam and Boechler present another compartmental model of anthrax attacks

[1]. The goal of this model is to simulate and evaluate various response plans
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centering on an anthrax vaccination. The model consists of 11 compartments. There

are compartments for those people who are uninfected and those who are in the

incubation stage. There are two compartments for each of the early prodromal

stage, an intermediate stage, and the fulminant stage for those in treatment and

for those not in treatment. There are three end compartments for those who are

prophylaxed (moved from either uninfected or incubation) and never get sick, those

who recover after exhibiting symptoms and receiving treatment, and those who die.

The model assumes that everyone who reaches the fulminant stage will die.

This model considers people who have inhaled different amounts of spores and

thus have varying probabilities of becoming infected. There is also a graduated

adherence rate which says 10% of people who receive prophylactic antibiotics do

not take them, 15% take them for 15 days, 25% take them for each of 30 days,

45 days, and the full 60 day course. The model assumes a person’s likelihood of

becoming ill decreases the longer he continues to take his antibiotics, even if he does

not complete the entire course.

Baccam and Boechler compare four policies. All assume that the entire pop-

ulation receives the prophylaxis prescribed in the policy. The first is post-exposure

prophylaxis, the most commonly used policy now. The second policy combines post-

exposure prophylaxis with a two dose vaccine. The third adds a pre-exposure dose

of the vaccine to the post-exposure prophylaxis plan. The final policy combines all

three with a pre-exposure vaccine, post-exposure prophylaxis, and two more doses

of the vaccine. The policies involving the pre-exposure vaccine assume 50% of the

population was vaccinated before the attack.
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The model considers alternate parameter values to test its sensitivity. Scenar-

ios are designed to test the effectiveness of the policies and how they are influenced by

timing. The results for the first policy again show that if prophylaxis is distributed

earlier, even by a couple of days, a large percentage of deaths can be prevented.

The post-attack vaccines are most effective in saving the lives of those people who

choose not to take their prophylaxis antibiotics. The pre-attack vaccines also help

to save lives, particularly in scenarios where the prophylaxis distribution is slower.

Therefore, pre-attack vaccines act as a way to buy more time for detection and re-

sponse after an attack. The results of this model are generally consistent with the

findings of other models that time is one of the most important factors in saving

lives. The vaccines offer a measure to limit the detrimental effects of a delay.

Another compartmental model developed by Brandeau et al. uses a com-

partmental system to evaluate communication during a bioterror response [3]. The

model includes compartments for the disease stages. There are also compartments

for prophylaxis and treatment, as well as queues for both. The way asymptomatic

people become aware of an attack is through public health and emergency response

officials as well as the media. The model seeks to demonstrate the effects of commu-

nication policies. The authors have targeted aspects of the response scenario that

directly relate to the number of deaths expected and developed communication plans

to address these issues. The model is used to evaluate communication policies that

affect the rate people become aware of the attack and the rate they seek prophylaxis

and treatment. The authors also consider ways to decrease the fraction of people

not exposed who seek prophylaxis as this has an adverse affect on those who have
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been affected when the supply of prophylaxis is limited. They model the results of

attempts to better direct people to specific PODs in order to reduce overcrowding

at some PODs. They also look at the results of increasing prophylaxis adherence

and the dispensing rate.

The model considers a variety of values for each of the relevant parameters

to evaluate the effect each policy has on the mortality rate. As expected, the mor-

tality rate declines with shorter detection time, faster rates of people seeking pro-

phylaxis, limited numbers of unexposed seeking prophylaxis, equal distribution of

those seeking prophylaxis among the PODs, better adherence rates, and increased

distribution capacity. The paper provides practical communications strategies to

accomplish these and the model provides evidence that they will in fact improve the

outcome of the response policy in an attack.

Another compartmental model is presented by Bravata and Zaric [4, 18]. We

will discuss the details of this model in Section 2.3.

2.2.2 Stochastic Modeling

Stochastic modeling allows systems to be modeled using random variables to

give a distribution of likely results for a scenario. This can be useful alone as a way

of evaluating the effects of uncertain parameters, or it can be used in conjunction

with another model as a means of comparison to assess the accuracy of results.

Buckeridge uses stochastic modeling to evaluate detection of an attack [6].

Because detecting an attack earlier can save many lives, researchers are developing
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syndromic surveillance systems to detect attacks as soon as possible. One such

system is the BioSense system which gathers data on outpatient visits, laboratory

orders, and prescriptions so that if there is a small increase in anthrax (or potentially

other disease) indicators, an attack can be detected earlier than if officials wait to

see seriously ill people being admitted to hospitals. Because these indicators occur

randomly, the model must find a way to simulate them as random variables.

The model uses a Latin hypercube sampling approach to generate parameter

values for the model. For each parameter (like the probability of an outpatient visit

in the prodromal state or the time until blood culture growth), there are three equal

probability bins. There is a small bin centered around the mean, and two larger

bins on either side. Each of the healthcare parameters is distributed as either a

Bernoulli or exponential random variable. The duration of the disease stages are

also randomized with lognormal distributions.

The results of the simulation model were compared with clinical case stud-

ies of detection of actual outbreaks. The model study showed there is a careful

balance between the specificity of syndromic surveillance and the sensitivity of the

surveillance system. If the indicator levels that trigger a warning are too specific,

there will be a high incidence of false alarms, which is undesirable. However, as this

specificity is decreased, the surveillance system does not successfully detect all of the

simulated attacks earlier than the clinical detection. The stochastic model allows

data on the number of times the surveillance model detects an attack before the

clinical detection. A deterministic model would only be able to provide an expected

time of detection for the surveillance system.
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2.3 A Compartmental Model of Anthrax Response

The model that we will use as a basis for our models is presented in Bravata

et al. [4] and expanded upon in Zaric et al. [18]. The model is similar to the

model described in Brandeau et al. [3]. This model is a compartmental model used

to evaluate how different parameters affect the overall mortality rate in an attack

scenario.

The model is run with a population of 5,000,000 people. The number of

exposed individuals as well as the fraction of those not exposed who believe they were

are given as input parameters. Also, the prophylaxis adherence rate and the arrival

time of the push pack are input parameters. The model consists of 21 compartments

representing the stages of the disease as well as the stages of treatment. There

are compartments for those people who were unexposed and considered uninvolved

in the scenario as well as compartments for those people who were not exposed

but believe they were. The compartments are categorized by two statuses. Each

compartment is representative of a disease stage (incubation, prodromal, fulminant,

recovered, dead, not exposed) and an awareness/treatment stage (unaware, aware

and seeking prophylaxis, in prophylaxis, seeking treatment, and in treatment). The

flows between compartments are dictated by probabilities taken from Holty et al.

[10] and Brookmeyer and Blades [5].

The simulation is run over a 2400 hour time horizon and in each iteration

of time t, the model calculates the number that will transition between each pair

of compartments (i, j) as φij(t). At the end of each iteration, the number in each

18



compartment i is updated using this difference equation

Xi(t+ 1) = Xi(t) +
21∑
j=1

φji(t)−
21∑
j=1

φij(t)− δiXi(t), (2.1)

where δi is the death rate from compartment i.

The model is run over a variety of scenarios. The results confirm expected

outcomes. If the attack detection is later or prophylaxis supplies are delayed in

becoming available, the number of deaths increases. Increasing the numbers held in

the local stockpile decreases the number of deaths, as does increasing the dispensing

capacity. The model also considers distributing only an abbreviated regimen of

prophylaxis while the supplies are initially quite limited. If only 14-day regimens

are distributed (with the assumption that these people will later return to pick up

the remainder of their pills), prophylaxis can be distributed to a much larger number

of people and the number of deaths will decrease. The results also demonstrated that

the adherence rate to prophylaxis is a major contributor to saving lives. Increasing

the adherence rate from 65% to 90% decreases the number of deaths by about 13.7%

in the scenario tested. The model also revealed that the number of unexposed people

seeking prophylaxis directly affected the expected number of deaths. If more people

who do not need it seek prophylaxis, it prevents those who do need it from acquiring

it as quickly.

The creators of this model also look at some cost analysis in their report. They

present the cost of the various antibiotics used for prophylaxis and treatment. They

also quantify the number of life years lost in an attack based on the average life

years lost by a patient who dies (43.4 years). With these they can calculate the cost
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per life year of the response scenario.

The model does have limitations and some confusing details that we will clar-

ify and improve. The model does not contain a compartment for death but instead

eliminates people from the model when they die. While this is a reflection of re-

ality in that people do leave the population upon death, it is not a truly closed

system. There is also some confusion about how multiple transitions from the same

compartment in the same iteration are handled to ensure people are moved as they

should be. The rate of adherence to prophylaxis is incorporated unclearly in a way

that those that have been entirely adherent seem to still be susceptible to illness.

In the next chapter, we develop a compartmental model which expands upon

this model to improve the issues above and provide for our study of the effect of

MedKit distribution.

2.4 Discussion

There are models of the progression of anthrax that are based on data analysis.

These models have focused on the spread of anthrax spores after an attack and the

distributions of times spent in the disease stages.

Other models have incorporated dispersion and disease progression models to

evaluate various attack response plans. There are compartmental models as well

as stochastic simulation models that have examined how communication policies,

timing, and prophylaxis, treatment, and vaccines affect the number of deaths in an

attack scenario. Many of these models share similar conclusions. All conclude that
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time is one of the most influential factors. This has guided researchers to focus on

policies which reduce response time either by decreasing the time until detection or

decreasing the time to organize and respond once an attack has been detected.

Additional research has been conducted on the feasibility of distributing Med-

Kits prior to an attack to help decrease the time before prophylaxis can begin.

Studies have collected data on public opinion as well as the likelihood that people

would still be able to use their MedKits in the event of an attack.

No one has yet developed a model to study the effects of the MedKits on the

number of deaths in an attack. This idea is the inspiration for the work in this thesis.

We will extend the model presented by Zaric [18] and use MedKit data gathered by

the CDC [8] to develop a model to evaluate attack scenarios with MedKit policies.
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Chapter 3

The MedKits Compartmental Model

3.1 Extending the Model

In order to evaluate the effect of MedKit distribution on the number of ex-

pected deaths in an attack scenario, we began with the model described in the

previous chapter presented by Zaric et al. [18]. The original model consists of 21

compartments representing the stages of disease progression and treatment. Transi-

tions between compartments are governed by equations dependent on the probability

that a person progresses from compartment A to compartment B in a given hour.

We keep the compartmental structure of that model and calculate many of the tran-

sition equations in the same way. Like the original model, our new MedKits model

is a discrete-time model that simulates a 2400-hour time horizon.

There are some limitations to the original model which we have addressed for

the MedKits model. The original model does not represent a closed system. After

people become ill, they either recover or die. The model contains a compartment for

those people who recover, but people who die are simply removed from the model.

This reflects what happens in reality when people die and are removed from the

population. However, a better compartmental model should have the same number

of agents at the end of simulation as it had at the beginning.

Also, the model contains a compartment for those people in the incubation
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stage who are receiving prophylaxis. Each hour the probability of progressing in

illness is calculated considering the probability of becoming prodromal times 1−α,

(the probability of not adhering to prophylaxis). This gives the impression that a

person could not adhere in one hour and then become adherent again in the next. In

actuality, it should be a one time decision whether a person will adhere completely

or not.

The model is also not completely precise about how to handle people who can

progress both in disease stage and treatment stage in the same hour. We address

each of these issues in the MedKits model.

The MedKits model includes a compartment for death, as well as separate

compartments for those in prophylaxis who are adherent and those who are not.

We prioritize transitions and create a two-stage iteration so that those transitions

relating to disease progression, death, and recovery are handled first. To extend the

model to include people who have MedKits in their homes, we add new compart-

ments to the model and change transitions where necessary to reflect how people

move between the new set of compartments. In the following sections we will discuss

the details of the MedKits Model.

3.2 The Compartments

Our MedKits model contains 28 compartments in all. From this point, we will

refer to the compartments by the disease and treatment stages they represent or by

their numbers as appropriate.
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Initially, everyone is unaware that an attack has occurred. Each individual

is either exposed or not exposed. Individuals who have been exposed to the an-

thrax spores are in the incubation stage and have the potential to progress to the

prodromal and fulminant stages as well as death. As these people become aware

of the attack and their potential exposure, they will seek prophylaxis, and as they

become ill, they will seek treatment. Because there are dispensing capacities for

both prophylaxis and for treatment, these people may have to wait in a queue prior

to receiving the medication.

Those not exposed are broken into two subgroups: those who know they were

not exposed and those who think they may have been exposed. People who know

they are not exposed will never seek prophylaxis or treatment and cannot become

ill, so these people remain in the same not exposed compartment for the duration of

the simulation. The people who believe they may have been exposed, but actually

were not, cannot become ill but will seek prophylaxis as they become aware of the

attack. They will enter the same queue as those people who have been exposed to

wait for prophylaxis. However, because they cannot become ill, this is modeled by

separate compartments without flow to the next disease stage.

When a person becomes ill, his probability of becoming more ill or dying

depends partially on how early prophylaxis was started. As a result those in pro-

phylaxis during the prodromal stage are broken into two compartments depending

on if the prophylaxis began in the incubation stage or the prodromal stage. Like-

wise, those in the fulminant stage are broken into multiple compartment based on

when they began prophylaxis and if or when they began treatment.
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In our compartmental model, at every iteration, each individual is in exactly

one compartment. So for example, if a scenario begins with 100 people, after each

iteration of the model, the people will move between compartments, but the sum

of the numbers in each compartment will always be 100. This way, we ensure that

no one is lost, and we only need to count the number in compartment 22 (the

compartment for death) at the end of the simulation to know how many people

died.

Just like the rest of the population, people with MedKits all begin unaware of

the attack and are either exposed or not exposed. Those who know they have not

been exposed are no different than those without MedKits who know they are not at

risk. Therefore, we place these people in the same compartment we already have for

unexposed individuals. Those who were not exposed but think they may have been

will begin taking their MedKit as soon as they become aware of an attack, but they

can never become ill and will not join the queue for prophylaxis. Instead they move

into another new compartment for taking their MedKits, and they remain here for

the rest of the simulation.

We have a compartment corresponding to each disease stage for those people

who have MedKits and are unaware of the attack. These people are not yet taking

their MedKits because they do not yet know they should. Once they become aware

that an attack has occurred and that they are at risk, they begin taking their

MedKits and enter the existing compartments for those receiving prophylaxis. The

main difference between these people and those who began unaware and did not

have MedKits is that these people skip over the compartment for the prophylaxis
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queue. Altogether, there are five new compartments for the people who receive

MedKits prior to an attack.

We add one more compartment to our model to make more precise the tran-

sition to prophylaxis in the incubation stage. People who begin prophylaxis have

some probability α of adhering to it, in which case they cannot become ill. However

if they do not adhere to prophylaxis for the full 60-day regimen, they have a chance

of progressing to the prodromal disease stage. We make the decision of whether

each person will adhere as soon as that person begins prophylaxis. We create two

separate compartments for people in prophylaxis. Compartment 7 is only for people

who do not adhere fully, and compartment 28 is for those who will adhere fully. The

number beginning prophylaxis times α gives the number moving into compartment

28. These people can not become ill, so they remain in this compartment for the re-

mainder of the simulation. The rest of the people beginning prophylaxis are placed

in compartment 7, and it is assumed that they will not adhere to their prophylaxis

and therefore, can become ill.

Tables 3.1 and 3.2 list all of the compartments and what disease stage and

treatment stage they represent.

3.3 Model Assumptions

The MedKits model follows the timeline described below which is based on

the scenarios described in [18]. The details of the timeline, as well as the capacities

described could be adjusted to reflect different scenarios. For example, we assume
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Table 3.1: List of compartments.

Number Exposure, Progression Treatment MedKit
Treatment Status of Disease Began

1 Exposed, Incubation n.a. No
unaware

2 Exposed, Prodromal n.a. No
unaware

3 Exposed, Fulminant n.a. No
unaware

4 Aware of Incubation n.a. No
exposure

5 Aware of Prodromal n.a. No
exposure

6 Aware of Fulminant n.a. No
exposure

7 In Prophylaxis, Incubation Prophylaxis begun Both
not adherent in incubation

8 In Prophylaxis Prodromal Prophylaxis begun Both
in incubation

9 In Prophylaxis Prodromal Prophylaxis begun Both
in prodromal

10 In Prophylaxis Fulminant Prophylaxis begun Both
in incubation

11 In Prophylaxis Fulminant Prophylaxis begun Both
in prodromal

12 In Prophylaxis Fulminant Prophylaxis begun Both
in fulminant

13 In Treatment Prodromal Treatment begun Both
in prodromal

14 In Treatment Fulminant Prophylaxis or Treatment Both
begun in prodromal

15 In Treatment Fulminant Prophylaxis - incubation, Both
treatment - fulminant

16 In Treatment Fulminant Prophylaxis - none or Both
begun in fulminant

17 Exposed Recovered n.a. Both

18 Not Exposed n.a. n.a. Both
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Table 3.2: Continuation of Table 3.1

Number Exposure, Progression Treatment MedKit
Treatment Status of Disease Began

19 Potential exposure, n.a. n.a. No
not seeking
prophylaxis

20 Potential exposure, n.a. n.a. No
seeking prophylaxis

21 Potential exposure, n.a. n.a. No
in prophylaxis

22 Exposed Dead n.a. Both

23 Potential exposure, n.a. n.a. Yes
not seeking
prophylaxis

24 Potential exposure, n.a. n.a. Yes
in prophylaxis

25 Exposed, unaware Incubation n.a. Yes
26 Exposed, unaware Prodromal n.a. Yes
27 Exposed, unaware Fulminant n.a. Yes

28 Adhering to Prophylaxed Prophylaxis begun Both
prophylaxis in incubation

the attack is detected after 48 hours. However, if new research provides a way to

detect an attack earlier, the timeline could be changed to model the new scenario.

3.3.1 Timeline

We consider a time period of 100 days for this model, so we simulate the model

over t = 1, ..., 2400. We assume t = 0 is the time of the attack. The attack is detected

at t = 48 hours. It takes five hours to prepare the local stockpile for distribution,

so medication and intravenous antibiotics (IVs) from this source become available

at t = 53 hours. The push pack from the national stockpile arrives 12 or 24 hours
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after detection and requires another four hours to prepare for distribution. So more

IVs, ventilators, and antibiotics become available at t = 64 or t = 76 hours. VMI

becomes available 36 hours after detection at t = 84 hours. At this point we no

longer have capacity restrictions based on availability of antibiotics and IVs. The

VMI is assumed to be sufficient to meet all needs. We assume it takes 48 hours for

the PODs to reach full dispensing capacity, which occurs at time t = 96 hours.

3.3.2 Resource Capacities

We assume that each dispensing center operates for 14 hours per day and,

at full capacity, can dispense 1,000 doses per hour during that time. We assume

there are a total of 10 PODs, for a total of 10,000 doses per hour over 14 hours per

day. To simplify the model slightly, we recalculate the doses per hour spread out

over 24 hours per day. This means at full capacity, the entire collection of PODs

can dispense 5,833 doses per hour. We assume that the dispensing capacity begins

at 0 at time t = 48 hours (time of detection which we will call TD) and increases

linearly over the next 48 hours to reach full capacity, Dmax, at t = 96 hours. So the

dispensing capacity at time t is as follows:

D(t) = 0, t < TD (3.1)

D(t) = [(t− TD)/48] ∗Dmax, TD < t < 48 + TD (3.2)

D(t) = Dmax, t > 48 + TD (3.3)

This is, of course, the rate at which PODs could dispense antibiotics assuming

they had sufficient inventory. The rate is also restricted by the level of inventory in
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the local stockpile and the push pack.

Until the VMI becomes available, the PODs dispense only an abbreviated

prophylaxis regimen of 14 days, rather than the full 60-day supply. This allows the

limited supply to be spread to more people when they really need it. It is assumed

that those who receive only the 14-day regimen will return later, when demand is

not so urgent, to receive the remainder of their regimen. We assume that the local

stockpile contains 50,000 doses or 3,571 abbreviated regimens. When the push pack

arrives, it contains an additional 2,718,000 doses or 194,143 abbreviated regimens.

The VMI is assumed to contain enough doses for everyone to receive the full 60-day

regimen.

Treatment capacity is also controlled by the availability of the supplies needed

for treatment. Treatment requires IV antibiotics, ventilators, respiratory techni-

cians, and ICU beds. The IV antibiotics are described in terms of days. Each

person in treatment requires one day of IV medication for each day of treatment.

There must be at least one day of IV medication available to begin treating one

person. We assume the local stockpile contains 500 days of IV antibiotics, the push

pack provides an additional 21,492 days, and the VMI contains enough IV antibi-

otics for all who need them. There are 100 ventilators available at the time of attack

and 100 more arrive in the push pack. There are 200 respiratory technicians and

each can monitor 10 patients. There are 2,000 ICU beds available. At the begin-

ning, treatment capacity is slowed by the limited availability of IV antibiotics. Once

the VMI becomes available, there are enough IVs for everyone, and the number of

ventilators becomes the slowing factor.
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3.4 Calculating the Number in Each Compartment

Initially, people can be in only compartments 1, 18, 19, 23, or 25. Xi(t) is the

number of people in compartment i at time t. We say that P is the total population

size, N is the number of people exposed to the anthrax spores, M is the number of

people who received MedKits prior to the attack, pM is the probability that they

still have their MedKits and can use them (assumed to be 95% [8]), and β is the

probability that a person not exposed believes he or she was exposed. The initial

numbers in each compartment are as follows

X1(0) = (P − pMM)N/P, (3.4)

X18(0) = (1− β)(P −N), (3.5)

X19(0) = β(P − pMM)(1−N/P ), (3.6)

X23(0) = βpMM(1−N/P ), (3.7)

X25(0) = pMMN/P, (3.8)

Xi(0) = 0, for i=2,..., 17, 20..., 22, 24, and 26,..., 28. (3.9)

The model is completely dependent on a set of equations defining the tran-

sitions between compartments. These equations describe the expected number of

people who will move between a pair of compartments at time t based on the prob-

ability of moving from one state to the other. In the original model, for each pair

of compartments, φij(t) gives the number of people who move from compartment i

to compartment j at hour t. The number of people in compartment i at time t+ 1
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is calculated using the following difference equation

Xi(t+ 1) = Xi(t) +
28∑
j=1

φji(t)−
28∑
j=1

φij(t). (3.10)

This equation leads to some confusion as a person could progress in both dis-

ease and treatment status in the same hour. For example, a person in the incubation

stage waiting in the queue for prophylaxis could simultaneously move into prophy-

laxis and become prodromal. We account for this type of situation by calculating

the transitions in two steps. First, we calculate all transitions relating to disease

progression. We update the number of people in each compartment. Then we cal-

culate the transitions relating to awareness and treatment status and update the

number in each compartment again. In this model, φij(t) is the number of people

who move from compartment i to compartment j at time t due to illness, recovery

or death, and ψij(t) is the number of people who move due to awareness, prophy-

laxis, or treatment. We use these two separate difference equations to calculate the

number of people, Xi(t+ 1) in compartment i at time t+ 1,

Yi(t) = Xi(t) +
28∑
j=1

φji(t)−
28∑
j=1

φij(t), (3.11)

Xi(t+ 1) = Yi(t) +
28∑
j=1

ψji(t)−
28∑
j=1

ψij(t). (3.12)

3.5 The Transitions

Because the transitions between compartments represent actual possibilities,

not every pair of compartments can have people move between them. For exam-

ple, someone in the incubation stage will not die from anthrax without progressing
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Figure 3.1: This figure shows the possible flows between all compartments in the

model. The listing of the compartments is given in tables 3.1 and 3.2.
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through the prodromal and fulminant stages first. Also, reverse transitions are pro-

hibited, e.g. aware to unaware. For these pairs of compartments, the probability

of transition is zero. The following sections will define all of the nonzero transition

equations. Fig. 3.1 shows all of the possible flows between compartments in the

model.

As stated previously, there are two types of transitions. The first is transitions

relating to disease progression, recovery, or death. The second type is transitions

relating to awareness, prophylaxis, or treatment status. We give priority to the first

type of transitions in our model (these are the transitions we denote by φij(t)). At
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each iteration, we calculate all of the first transitions and move people to their new

compartments, then we calculate the second set of transitions (ψij(t)) and move

people again.

3.5.1 Progression from Incubation to Prodromal

The distribution for the incubation time is commonly calculated in the fol-

lowing way [18, 16]. The probability of becoming prodromal is p(t) = (F (t + 1) −

F (t))/(1 − F (t)), where F (t) is the cumulative distribution function of incubation

time distributed lognormally with mean 10.95 days, and 2.1392 and 0.713 are the

mean and standard deviation respectively of the variable’s natural logarithm [5]. So

the transition equations for moving from incubation to prodromal are of the form

φi,i+1(t) = p(t)Xi(t), for i = 1, 4, 7, and 25. (3.13)

3.5.2 Progression from Prodromal to Fulminant

The rate of becoming fulminant is dependent on the length of time a person

has been prodromal. Without prophylaxis or treatment, in the first three days

after symptoms develop, the rate of progression from prodromal to fulminant is

γ = 0.0026. After the first three days of symptoms, the rate of progression from

prodromal to fulminant rises to η = 0.0181 [10]. We keep a counter and calculate

θ2(t), θ5(t), and θ26(t) to be the fraction of those in compartments 2, 5, and 26

respectively who have become prodromal in the last 72 hours. These fractions are
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calculated as

θj(t) = min{1,
72∑
v=1

φj−1,j(t− v)/Xj(t)}. (3.14)

So at time t, the fraction of people in the prodromal stage without prophylaxis

or treatment who will become fulminant is calculated as θiγ + (1 − θi)η and the

transition equations are

φi,i+1(t) = (θiγ + (1− θi)η)Xi(t), for i = 2, 5, and 26. (3.15)

For those receiving prophylaxis or treatment, the expected time to become

fulminant is 122.4 hours, so the probability of becoming fulminant each hour is

calculated to be 1/122.4 [18, 10]. These transition equations are

φi,j(t) = (1/122.4)Xi(t), for (i,j) pairs (8,10), (9,11), and (13,14). (3.16)

3.5.3 Progression to Recovery and Death

Patients in the prodromal or fulminant stages can recover from anthrax if they

are receiving treatment. For each compartment there is a probability of recovery,

and the number moved from that compartment to compartment 17 (recovered) each

hour is the number in the compartment multiplied by the probability of recovery.

We use the recovery rates presented in [18]. So we have the following transition

equations

φj,17 = Xj(t)/21.7, for j = 8, 9, and 13, (3.17)

φj,17 = Xj(t)/720, for j = 14, 15, and 16. (3.18)
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Only patients in the fulminant stage can die from the disease. The death rate

from all other compartments is zero. Each compartment representing a fulminant

stage has a probability of death [18], and the number moved each hour from that

compartment to death is calculated in the same way that the number recovered is

calculated. The transition equations are

φi,22(t) = (1/26.4)Xi(t), for i = 3, 6, 10, 11, and 27, (3.19)

φi,22(t) = (1/38.4)Xi(t), for i = 12 and 16, (3.20)

φi,22(t) = (1/24)Xi(t), for i = 14 and 15. (3.21)

Table 3.3 gives the probabilities of all possible transitions because of illness, recovery,

or death.

3.5.4 Awareness of Exposure

We assume a constant rate at which people become aware of their exposure or

potential exposure. We use the awareness rates used by Zaric et al. [18]. For those

people not showing symptoms and those in the prodromal stage, the probability of

becoming aware is 1/3 each day or 1/72 each hour. For those people already in the

fulminant stage, the probability of becoming aware is 1/2 each day or 1/48 each

hour. These probabilities give the following transitions equations for moving from

unaware (compartments 1, 2, 19, and 3) to aware (compartments 4, 5, 20, and 6

respectively);

ψ1,4 = (1/72)Y1(t), (3.22)

ψ2,5 = (1/72)Y2(t), (3.23)
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Table 3.3: Fraction of each compartment that becomes ill, dies, or recovers each
hour.

Compartment Becomes prodromal Becomes fulminant Dies Recovers

1 p(t)
2 θ2γ + (1− θ2)η
3 1/26.4
4 p(t)
5 θ5γ + (1− θ5)η
6 1/26.4
7 p(t)
8 1/122.4 1/21.7
9 1/122.4 1/21.7
10 1/26.4
11 1/26.4
12 1/38.4
13 1/122.4 1/21.7
14 1/24 1/720
15 1/24 1/720
16 1/38.4 1/720
25 p(t)
26 θ26γ + (1− θ26)η
27 1/26.4

ψ3,6 = (1/48)Y3(t), (3.24)

ψ19,20 = (1/72)Y19(t). (3.25)

(3.26)

We assume those with MedKits have the same awareness rates as those with-

out. The probabilities of moving from compartments 25, 26, 23, and 27 to the

awareness states are the same as above.

ψ23,24 = (1/72)Y23(t), (3.27)

ψ26,9 = (1/72)Y26(t), (3.28)
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ψ27,12 = (1/48)Y27(t). (3.29)

The probability of moving from compartment 25 to a state of awareness and pro-

phylaxis in a given hour is also 1/72; however, this compartment splits transitions

between two prophylaxis compartments. This transition will be discussed in the

following section.

3.5.5 Entering into Prophylaxis and Treatment

For those people with MedKits, entering into prophylaxis occurs at the time of

awareness. So transitions from compartments 26 to 5, 27 to 6, and 23 to 24 occur at

the rate of becoming aware for those compartments. From compartment 25, people

also move into prophylaxis at the awareness rate of 1/72 per hour. However from

this point we decide if each person will be adherent to the full course of prophylaxis

(and move into compartment 28) or if they will not adhere (moving to compartment

7) and be at risk of progressing to the prodromal stage. We calculate the number

who move from compartment 25 to 28 and 7 respectively as

ψ25,28(t) = α(1/72)Y28(t), (3.30)

ψ25,7(t) = (1− α)(1/72)Y28(t). (3.31)

for all t ≥ TD.

People without MedKits move into a queue for prophylaxis when they be-

come aware of their exposure or potential exposure. From this queue, the number

of people who can be given prophylaxis in an hour is limited by the capacity de-

scribed in section 3.3.2. This capacity is spread across all compartments waiting
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for prophylaxis to calculate the probability of moving from any one of them into

prophylaxis. Likewise, treatment capacity must be spread across all compartments

waiting for treatment to determine the probability of moving into treatment from

any compartment.

Those in compartments 5 and 6 are considered to be in both the queue for

treatment and the queue for prophylaxis because they have already developed symp-

toms but have not received any prophylaxis. Obviously they would take treatment

over prophylaxis since they have already become ill. So we calculate those moving

to treatment first. If they do not move into treatment, then they would continue to

seek prophylaxis that hour.

We first calculate the number of people who will move into treatment at time

t based on the availability of IV antibiotics (IV (t)), ventilators (V (t)), respiratory

technicians (T (t)), beds (B(t)) and the number of people waiting for treatment (even

if the capacity is higher, there will not be more people moved to treatment than are

waiting for it). The number of people currently in treatment is
∑16

i=13 Yi(t), so the

available number of materials is the number of materials not expected to be used

by those people. People in compartments 5, 6, 8, 9, 10, 11, and 12 are all waiting

for treatment. The number who will be treated, CT (t) is calculated as

CT (t) = min{max[min(IV (t), V (t), 10T (t), B(t))−
16∑

i=13

Yi(t), 0],
6∑

i=5

Yi(t)+
12∑
i=8

Yi(t)}.

(3.32)

So the probability of moving to treatment from any one compartment is

π(t) = CT (t)/[
6∑

i=5

Yi(t) +
12∑
i=8

Yi(t)]. (3.33)
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So we calculate the following transitions to treatment

ψ5,13(t) = π(t)Y5(t), (3.34)

ψ6,16(t) = π(t)Y6(t), (3.35)

ψ8,13(t) = π(t)Y8(t), (3.36)

ψ9,13(t) = π(t)Y9(t), (3.37)

ψ10,15(t) = π(t)Y10(t), (3.38)

ψ11,14(t) = π(t)Y11(t), (3.39)

ψ12,16(t) = π(t)Y12(t). (3.40)

After the people who have been moved to treatment are removed from com-

partments 5 and 6, we calculate the transitions into prophylaxis. We let the available

inventory of prophylactic antibiotics at time t be I(t). The number of doses dis-

pensed to each person at time t (i.e. 14 or 60 depending on availability) is denoted

d(t). The dispensing capacity per hour of the PODs (not considering availability

of medication) is denoted by D(t). The number of people waiting for prophylaxis

at time t is Lq(t) = Y4(t)Y20(t) + (1 − π(t))(Y5(t) + Y6(t)). Each hour we calculate

CP (t), the number of people who will begin prophylaxis in that hour, by

CP (t) = min{I(t)/d(t), D(t), Lq(t)}. (3.41)

We use this number to calculate the probability of moving from each of compart-

ments 4, 5, 6, and 20 into prophylaxis by

ρ(t) = CP (t)/Lq(t). (3.42)
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And with this we calculate the transitions into prophylaxis

ψ4,7(t) = (1− α)ρ(t)Y4(t), (3.43)

ψ4,28(t) = (α)ρ(t)Y4(t), (3.44)

ψ5,9(t) = ρ(t)(1− π(t))Y5(t), (3.45)

ψ6,12(t) = ρ(t)(1− π(t))Y6(t), (3.46)

ψ20,21(t) = ρ(t)Y20(t). (3.47)

3.6 Updating the Inventory Levels

After each iteration, we must recalculate the available supplies. The number

of beds and respiratory technicians is assumed constant throughout the simulation,

so for all t, we have

B(t+ 1) = B(t), (3.48)

T (t+ 1) = T (t). (3.49)

We say tL is the time lag before local inventories become available (assumed

to be 5 hours in our model), tP is the time before the push pack arrives (12 or

24 hours), tPR is the time lag after arrival before the push pack is ready to use (4

hours), and tV is the time until the VMI becomes available (36 hours). IL and IVL

are the local supply of antibiotics and IVs respectively. IP , IVP , and VP are the

additional supply of antibiotics, IVs, and ventilators contained in the push pack.

We update the supplies in the following manner: If t = TD + tL,

I(t+ 1) = I(t)− CP (t)d(t) + IL, (3.50)
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IV (t+ 1) = IV (t)−
16∑

j=13

Xj(t) + IVL, (3.51)

V (t+ 1) = V (t). (3.52)

If t = TD + tP + tPR,

I(t+ 1) = I(t)− CP (t)d(t) + IP , (3.53)

IV (t+ 1) = IV (t)−
16∑

j=13

Xj(t) + IVP , (3.54)

V (t+ 1) = V (t) + VP . (3.55)

The VMI provides enough antibiotics and IVs for everyone in the population P , so

for at t = TD + tV , we have

I(t+ 1) = I(t)− CP (t)d(t) + IL, (3.56)

I(t+ 1) = I(t)− CP (t)d(t) + 60P, (3.57)

IV (t+ 1) = IV (t)−
16∑

j=13

Xj(t) + 3000P, (3.58)

V (t+ 1) = V (t). (3.59)

For all other times when no new inventory is added, we have

I(t+ 1) = I(t)− CP (t)d(t), (3.60)

IV (t+ 1) = IV (t)−
16∑

j=13

Xj(t), (3.61)

V (t+ 1) = V (t). (3.62)

42



Chapter 4

A Simulation Model

The MedKits model gives a completely deterministic view of the attack sce-

nario. It moves people between compartments strictly based on the probability that

they should move. If one in ten people should move from compartment 1 to com-

partment 2 this hour, then one in ten of those people will move. However, this is

not the way things work in reality. Perhaps this hour only one in twelve people

will get sick, but in the next hour, one in eight will. There can be a substantial

difference between an expected value and a random realization of a scenario. It is

this uncertainty that we are concerned about in this chapter. It would be beneficial

to know how accurate the results of the MedKits model are in an uncertain world.

How do the results vary if the compartment transitions are random? Will we still

see the same trends in the data? To answer these questions we develop a simulation

model to test the accuracy of the MedKits model results.

4.1 Model Overview

Two styles of simulation could be used in this model. The first is an agent-

based model, in which each individual’s path through the compartments would be

simulated. We consider person 1 who begins in compartment 1, and has certain

probabilities of moving to compartment 2 or compartment 4. We stochastically
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decide if and where he moves. We do this for each person in the model for each

hour of simulation. This would theoretically provide a very realistic representation.

However, due to the large populations we consider and the number of time periods

used in the model, this type of simulation is impractical and perhaps infeasible.

Instead we consider a simulation model in which we treat the compartments

as wholes. For each compartment, in each hour, we model as a random variable the

number who will move from that compartment to another. The overall structure of

the model is the same as the MedKit model. We use the same 28 compartments,

and the set of possible transitions is the same. We run the model over a 2400-hour

time horizon. In each hour, the model samples the appropriate random variables,

calculates the number moved for each transition, and moves people using equations

3.11 and 3.12. The prophylaxis antibiotics and treatment supplies are all available

in the same quantities at the same times, and they are updated each hour in the

same way as in the MedKits model.

4.2 Changes to the Model

Each person in a compartment has the same probability of making a transi-

tion. The transition of that individual can be represented with a Bernoulli random

variable. A positive result means the individual moves, and a negative result means

he does not. Thus, the transitions of the entire compartment can be modeled as a

binomial random variable with parameters n and p, where n is the number of people

in the compartment and p is the probability of the transition. All of the transitions
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relating to disease progression, recovery, death, and awareness are controlled by

probabilities and can be modeled with binomial random variables.

The transitions to prophylaxis and treatment depend upon the availability of

antibiotics and supplies. These transitions are not made randomly in the same way

as the others. We assume that people cannot enter prophylaxis or treatment if the

supplies are not available to them. But if there are people waiting, and the supplies

become available, people will certainly transition into prophylaxis or treatment up

to capacity.

A binomial random variable requires an integer for the parameter n, as it

represents a number of trials. One of the biggest changes to the model is ensuring

that all compartments contain an integer number of people at all times so that we

are able to calculate binomial random variables for the appropriate transitions. This

begins with reformulating the initial conditions to produce only integer compartment

values at the start of our simulation.

4.2.1 Initial Conditions

As described in Section 3.4, P is the population size, N is the number of

people exposed to the anthrax, M is the number of MedKits distributed, pM is

the 95% of those with MedKits that are able to find and use them, and β is the

fraction of unexposed people who believe they have been exposed. We initially place

people only in compartments 1, 18, 19, 23, and 25. We would like to place integer

numbers of people in these compartments while still nearly approximating the ratios
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determined by the input parameters. Instead of using the equations given in Section

3.4, we calculate the numbers in the compartments in the following manner.

Because they represent people, we assume the input parameters P and N are

integers. We know the total number not exposed is P − N . We must break this

group into those who know they were not exposed and those who believe they were.

We first calculate a rounded number that know they were not exposed by

X18(0) = round[(P −N)(1− β)]. (4.1)

So we now assume P −N −X18(0) is the total number who have not been exposed

but think they have been. These people are broken into two compartments based

on whether they have a MedKit. We calculate the number with MedKits who think

they have been exposed but actually have not as

X23(0) = round[
MpM
P

(P −N −X18(0))]. (4.2)

Since both of the above groups have been rounded to the nearest whole number,

we calculate the number who believe they have been exposed and do not have a

MedKit as the difference

X19(0) = P −N −X18(0)−X23(0). (4.3)

Similarly, we know that N is the number of people exposed, and they are

broken into two groups either with or without MedKits. Those with MedKits are

calculated by

X25(0) = round[
MpM
P

N ]. (4.4)
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Then we simply calculate the number without MedKits to be

X1(0) = N −X25(0). (4.5)

Calculating the initial conditions in this way guarantees that as long as P and N

are input as integers, each compartment begins with an integer number of people.

4.2.2 Stochastic Transitions

As stated above, all transitions relating to disease progression, death, and

recovery can be modeled with binomial random variables. In the MedKits model,

the expected number for each transition is defined to be the number of people in the

compartment multiplied by the probability of the transition. In general, we change

each of these to a binomial random variable with parameters n equal to Xi(t) and

p equal to the transition probability. However, there are a few issues that need to

be considered.

There are some transitions in the model which move people from the same

compartment into two other compartments. For example, from compartment 13

(people in the prodromal stage receiving treatment) a person could transition to

either compartment 17 (recovery) or compartment 14 (fulminant). Each of these

transitions should be modeled with a binomial random variable. Each of these

random variables will be a number between 0 and Xi(t). This leads to the possibility

that the sum of the two transitions could be greater than Xi(t). This means there

are fewer people in compartment 13 than we are attempting to move.

To address this issue, we use a two-stage calculation method. For each com-
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partment with more than one transition from it, we first calculate the number of

people who will leave the compartment for all transitions. We then calculate the

number of those transitions that will be of each type. Consider the following exam-

ple. We denote a binomial random variable with parameters n and p as described

by B(n, p). The number of people in compartment 13 at time t is X13(t). People

in compartment 13 move to compartment 14 with probability 1/122.4 and to com-

partment 17 with probability 1/21.7. We calculate the number of people that will

move out of compartment 13 (M13(t)) due to either transition at time t as

M13(t) = B(X13(t), 1/122.4 + 1/21.7). (4.6)

We generate a second binomial random variable to determine how many of these

transitions will be to compartment 14 by

φ13,14(t) = B(M13,
1/122.4

1/122.4 + 1/21.7
). (4.7)

We then calculate the number of transitions to compartment 17 as the difference

between M13(t) and φ13.14(t). This process preserves the distributions of transitions

while preventing the rare case in which the sum exceeds the number of people avail-

able to transition. A similar result could be obtained by calculating a multinomial

random variable with a probability vector containing the probabilities of all the pos-

sible transitions as well as the probability of remaining in the initial compartment.

For the transitions from prodromal to fulminant that depend on length of time

in the prodromal stage, it is not possible to correctly represent two populations with

two different rates of transition as a single binomial random variable. So instead, we

separate each calculation into two random variables. Consider compartment 2. We
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estimate the number of people in the compartment that have entered within the last

72 hours, N2(t), by taking the minimum of the number in the compartment and the

number counted in the last 72 hours (count2(t)). We calculate the number of these

people who will move as B(N2(t), γ). The number of people in the compartment

who have been there for more than 72 hours is X2(t)−N2(t). The number of these

who will transition is B(X2(t)−N2(t), η). The total number of transitions φ2,3(t) is

the sum of these two random variables.

The following is a list of all of the transitions related to disease progression,

recovery and death in the simulation model. For i = 1, 4, 7, and 25,

φi,i+1(t) = B(Xi(t), p(t)). (4.8)

For i = 2, 5, and 26,

Ni(t) = min{Xi(t), counti(t)}, (4.9)

φi,i+1(t) = B(Ni(t), γ) +B(Xi(t)−Ni(t), η). (4.10)

For (i, j) pairs (8, 10), (9, 11), and (13, 14),

Mi(t) = B(Xi(t), 1/122.4 + 1/21.7), (4.11)

φi,j(t) = B(Mi(t), (1/122.4)/(1/122.4 + 1/21.7)), (4.12)

φi,17(t) = Mi(t)− φi,j(t). (4.13)

For i = 14 and 15,

Mi(t) = B(Xi(t), 1/720 + 1/24), (4.14)

φi,17(t) = B(Mi(t), (1/720)/(1/720 + 1/24)), (4.15)

φi,22(t) = Mi(t)− φi,17(t). (4.16)
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For i = 16,

M16(t) = B(X16(t), 1/720 + 1/38.4), (4.17)

φ16,17(t) = B(M16(t), (1/720)/(1/720 + 1/38.4)), (4.18)

φ16,22(t) = M16(t)− φ16,17(t). (4.19)

For i = 3, 6, 10, 11, and 27,

φi,22(t) = B(Xi(t), 1/26.4). (4.20)

And for i = 12,

φ12,22(t) = B(X12, 1/38.4). (4.21)

For each iteration of the simulation, the model generates values from all of

the transition equations φij(t) and then generates the intermediate values Yi(t) as

in the MedKits model using equation 3.11.

4.2.3 Prophylaxis and Treatment Transitions

The transitions based on awareness can be calculated with the same binomial

random variable technique. We calculate transitions for the compartment pairs

(2, 5), (3, 6), (26, 9), (27, 12), (1, 4), (19, 20), and (23, 24) using B(n, p) where n is

the number in the compartment and p is the probability of becoming aware.

For the transition from compartment 25 to awareness (when we make the

decision of adherence to prophylaxis), we use a two-stage calculation similar to the

one described above. We calculate the number that will move from compartment 25

based on the probability of awareness, 1/72, as M25(t) = B(Y25(t), 1/72). Then we
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calculate a second random variable with probability α that they adhere and move

to compartment 28, ψ25,28(t) = B(M25(t), α). The number moved to compartment

7 is the difference between M25(t) and ψ25,28(t).

As stated at the beginning of this chapter, the transitions to prophylaxis and

treatment are not random but controlled by the availability of medication and sup-

plies. It would be inappropriate to model these transitions with binomial random

variables. However, because people transition from these compartments into other

compartments where transitions are determined by binomial random variables, it is

important that we ensure that these transitions are all integers. This also makes

sense in the real scenario since there is not a situation where half a person could

move into treatment.

The way we handle this issue is as follows. First we calculate those moving

to treatment. The treatment capacity, CT (t), and the probability of being treated

from any individual compartment, π(t), are the same as in the MedKits model.

We find an initial number to move from each compartment i by taking the floor

of Yi(t)π(t). Because there are seven compartments from which people can move

into treatment (5, 6, 8, 9, 10, 11, and 12) and we took a floor function for each,

we could have enough capacity to move up to six more people into treatment (de-

pending on how large the remainder was for each floor function). To divide up

this remaining capacity we iterate until the number moved is the largest integer

less than CT (t). Each time we use a multinomial random variable to choose one

of the seven compartments to draw another person from (first checking that that

compartment has another person available). This ensures that we do not move more

51



people from a compartment than are in that compartment. It also maintains integer

numbers of people in all compartments while still distributing treatment across the

compartments approximately according to π(t).

We follow the same procedure for calculating the number who will move into

prophylaxis. There are four compartments (4, 5, 6, and 20) containing people wait-

ing for prophylaxis. We first subtract the number that moved into treatment from

compartments 5 and 6. We calculate the capacity, CP (t), and probability of mov-

ing into prophylaxis, ρ(t), as in the MedKits model. We then calculate the initial

transitions using the floor function of Yi(t)ρ(t), and then distribute any additional

prophylaxis randomly among the four compartments. As for compartment 25, once

we calculate the number moving from compartment 4 into prophylaxis we use a bi-

nomial random variable to determine the number moving to compartments 28 and

7.

At each iteration of the model, we generate values for the transitions using the

equations ψij(t) and then calculate Xi(t+ 1) using equation 3.12 from the MedKits

model.
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Chapter 5

Results

We conduct a number of computational experiments with the following goals

in mind. First, we aim to show that the MedKits model is a useful tool for predict-

ing the impact of distributing MedKits before an attack. Second, we would like to

evaluate the accuracy of the MedKits model results by comparing them with the

results of the simulation model. The results in this chapter reflect specific scenarios

on which the model was tested. We attempt to model relevant changes to all im-

portant parameters. The model can, however, be used to model other scenarios as

needed.

5.1 MedKits Model

This section discusses results and observations related to the deterministic

MedKits model. All numbers are the expected numbers of deaths for specific sce-

narios.

5.1.1 Scenarios

We run the MedKits model using the set of scenarios described by Zaric et al.

[18]. Any of these assumptions can easily be changed to model different scenarios.

We assume a population size of 5,000,000 people. We consider three sizes of attacks

53



in which 50,000, 500,000, and 1,250,000 people are exposed. We consider three

possible values for β (the fraction of people who believe they are exposed but are

not). These β values are 0.01, 0.1, and 0.5. Different sources cite both 90% and

65% prophylaxis adherence rates, so we consider both. We also consider push pack

arrival either 12 hours or 24 hours after time of detection (Zaric et al. [18] uses

both, though the CDC [7] states the push pack can be delivered anywhere in under

12 hours). We consider the number of MedKits distributed prior to an attack in 11

increments of 500,000 between 0 and 5,000,000. Zero MedKits corresponds closely

to the model of Zaric et al. [18], while 5,000,000 MedKits corresponds to the entire

population receiving MedKits prior to attack (though we still assume only 95% have

access to their MedKits, and the rest will need to go to a POD to receive prophylaxis

[8]). We test every combination of these parameters for a total of 396 scenarios.

5.1.2 Results

Tables 5.1, 5.2, and 5.3 give charts with the full results of these simulations. In

every scenario, increasing the number of MedKits distributed decreases the expected

number of deaths.
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5.1.3 Analysis

The parameter α has a generally linear effect on the number of deaths. With a

lower adherence rate, more people are expected to die, but the difference is relatively

constant across the MedKit distribution. This is reasonable since adherence is not

at all dependent on where a person gets his prophylaxis.

The time lag until the push pack arrives affects the data as expected. More

people will die with a 24-hour delay than with a 12-hour delay. Higher MedKit

distribution does help to close this gap. For example, we consider the scenario in

which 1,250,000 people are exposed, α = 0.9, and β = 0.5. With no MedKits, the

expected number of deaths for t = 12 is 595,527 compared with 606,221 for t = 24,

a difference of 10,694 lives. With MedKits distributed to the entire population, the

number of deaths for t = 12 is 103,675 compared with 103,898 for t = 24. The

MedKits reduce the difference in deaths to just 223 lives. The reason for this result

is that with MedKits, most people do not have to wait for the push pack to arrive to

begin prophylaxis. They can begin as soon as they become aware of their exposure.

The small remaining difference in deaths can be attributed to the 5% of people who

are unable to use their MedKits and are therefore affected by the delay in the push

pack arrival.

Fig. 5.1 gives a graph showing trends in the data. In this graph, we consider

six of the scenarios. All were for α = 0.65 and t = 24 hours until the push pack

arrives. We consider the cases where N = 50, 000 and N = 1, 250, 000 for each of

the three possible values of β. The graph shows the percentage of those who were
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infected that are expected to die. In every scenario, as the number of MedKits

increased, the deaths decreased.

The data makes it obvious that the number of people exposed is directly

related to the number of people expected to die. However, it also reveals that

with larger exposures, a larger fraction of those exposed will die if no MedKits

are distributed. For example, we compare the cases where N = 50, 000 and N =

1, 250, 000 with all other parameters equal (α = 0.9, β = 0.5, and t = 12). With

no MedKits, the percent of those exposed who die is 39.3% for the smaller exposure

compared with 47.6% for the larger exposure. However, with the whole population

receiving MedKits, the expected percentages are 8.210% and 8.294% respectively.

Distributing the MedKits makes the percentage difference almost imperceptible.

The fraction of those not exposed who believe the have been, β, seems to be the

parameter with the biggest effect on the results. When no MedKits are distributed,

larger values of β force significantly higher death percentages. For example, as

shown in Fig. 5.1, with α = 0.65, t = 24, and N = 1, 250, 000, the percentage of

those exposed who will die is 20.3% (253,854 people) with β = 0.01 compared to

49.8% (621,907 people) with β = 0.5 when no MedKits are distributed. This means

that more than twice as many people are expected to die in the same scenario, just

because a much larger number of people believe they were exposed. Distributing

MedKits to the entire population reduces these percentages to 11.220% and 11.229%

respectively (a difference of just 123 people). The MedKits have a drastic effect on

the outcome in this case.

In both of the above situations, the reason for the trends has to do with the
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queue for prophylaxis. Both larger exposures and larger groups who believe they

have been exposed cause larger numbers of people to seek prophylaxis. In the case

of larger β, many of these people that seek and receive prophylaxis do not actually

need it and could be taking it away from people who do need it. Because the supply

of prophylaxis is limited, especially early in the scenario, many people who need

prophylaxis are forced to wait for it. Beginning prophylaxis as early as possible

is key to survival, so when these people must wait, their risk of death increases

greatly. The greatest benefit of the MedKits is that most of the people who have

them can begin prophylaxis immediately upon becoming aware. They do not get in

the queue, and the queue remains small for the remaining people who do have to seek

this source of prophylaxis. As a result, distributing any number of MedKits reduces

the deaths, but distributing them to the entire population virtually eliminates the

differences in death percentages caused by exposure size or β size with all other

parameters equal.

The MedKits reduce the number of deaths in every scenario. They have the

largest effect on scenarios in which the number of people exposed or potentially

exposed is high. They also act as a defense against unexpected delays in prophylaxis

dispensing.

5.2 Simulation Model

The goal of the stochastic Simulation Model is to generate data which can

be compared to the MedKits model data to evaluate its accuracy. Because of the
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increased runtime from generating so many random variables, it is impractical to

test all 396 scenarios presented for the deterministic model. Instead we choose a

selection of scenarios that are representative of the whole collection. We run the

Simulation Model for the following nine scenarios. For all, we let α = 0.65, β = 0.1

and t = 12. We test each of the three values of N with M = 0, 2,500,000, and

5,000,000. For each scenario, we run 100 replications. We determine the average

number of deaths for the 100 replications of the scenario and compare this with the

deterministic result. Table 5.4 shows the results of this analysis.

The data in Table 5.4 shows that even when all transitions not based on

capacity are allowed to vary, there is very little change in the results. Seven of the

nine scenarios tested have the deterministic result fall within the 95% confidence

interval of the average result from the simulation model. Even for those in which the

deterministic result was not within this confidence interval, the percent difference

between the deterministic and average number of deaths is extremely small (the

largest percent difference being only about 1/3 of a percent). These results provide

confidence that the MedKits model can accurately predict the expected number of

deaths in an attack scenario.

The deterministic MedKits model is the more valuable model for decision-

making purposes. However, the simulation model adds credibility to the results of

the MedKits model. It shows that across a variety of scenarios, the MedKits model

consistently and accurately predicts the expected number of deaths.
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5.3 Run Time Results

Both models were run in Matlab, version 2009a on a 2.8GHz Intel Pentium 4

processor with 512MB RAM and Fedora Core 5 operating system. For the MedKits

model, the time per run was relatively consistent over all scenarios with an average

time of 1.238 seconds. The simulation model was much slower due to the generation

of thousands of binomial random variables. The time per replication was directly

related to the number of people exposed. For the scenarios with 50,000 people

exposed, the average run time was approximately 14.7 seconds. For 500,000 exposed,

the time increased to an average of 26.8 seconds. And for 1,250,000 exposed, the

times averaged 49.4 seconds. The average times were slightly lower for the scenarios

with more MedKits distributed. Table 5.5 contains a summary of all the runtime

results.

Table 5.5: We show the runtime results for both models. The top portion shows
the number of seconds for a single run in each scenario calculated as the average
over the 100 runs of that scenario. The bottom portion shows the average number
of seconds for a single run of the MedKits model.

Averages over 100 Simulation Model Runs

M values

N values 0 2,500,000 5,000,000

50,000 15.118 14.594 14.319
500,000 27.835 26.343 26.124

1,250,000 54.489 47.743 46.073

Average over 396 MedKit Model scenarios

1.238
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While the simulation model can take hours to run enough replications to obtain

an average result, the deterministic model is very fast. Given a specific scenario, the

expected number of deaths can be calculated in a matter of seconds, making this

model very practical as a tool for predicting attack scenario outcomes.
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Chapter 6

Conclusions

6.1 Summary

We have discussed two new compartmental models to simulate anthrax attacks.

The first is based on the model developed by Zaric et al. [18]. It has significant

changes that clarify aspects of the original model and extend it to consider the effect

of distributing MedKits prior to attack on the expected number of deaths. The

model contains 28 compartments representing various disease and treatment stages.

Transitions between the compartments are calculated deterministically based on

probabilities of progressing (for disease stages, recovery, death, and awareness) and

capacity (for prophylaxis and treatment).

We ran the model on a variety of attack scenarios, and showed that in every

case, distributing more MedKits prior to an attack reduces the expected number

of people who die. We saw that the number of people exposed and the number

of unexposed people who believe they were have the largest affect on the number

of deaths. When these numbers are large, the number of deaths, as well as the

percentage of those exposed who die are both larger. Distributing MedKits to

the entire population minimizes the effects of these parameters. With all other

parameters the same, a scenario with a small number exposed and a scenario with

large number exposed have large differences in percent of exposed who die without
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MedKits, but when MedKits are distributed to the whole population, the percent

who die is almost identical between the scenarios. A similar result occurs in like

scenarios where β is varied. The most valuable benefit of MedKits seems to be

that they reduce the competition for prophylaxis. They remove people from the

prophylaxis queue, making that medication available to others who need it.

These results show that MedKits are always effective in reducing the number

of deaths in an anthrax attack, but the impact is amplified in situations where large

numbers of people are exposed or believe they are. Further research may show that

MedKits are particularly desirable in large cities, where both these parameters are

likely to be high and the competition for prophylaxis will be greater.

The second model is used to verify that the MedKits model results are accu-

rate. This model considers stochastic transition equations rather than the determin-

istic probability based transitions of the MedKits model. We model the transitions

relating to disease progression, recovery, death, and awareness using binomial ran-

dom variables. We reformulate the initial conditions as well as the prophylaxis and

treatment transitions to ensure that every compartment always contains an integer

number of people (a requirement for the binomial random variable).

We ran this model over a selection of the scenarios used for the MedKits model.

We used 100 replications for each scenario and calculated the average number of

deaths. Analysis showed that in every case the deterministic result yielded by the

MedKits model was very close to the average from the simulation model. In seven

of the nine scenarios tested, the deterministic result was within a 95% confidence

interval around the average result, and in all of the cases the percent difference
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between the two was less than 1/2 of a percent.

The MedKits model runs very quickly, allowing the results of a scenario to be

calculated in just seconds. The simulation model is much slower, but we were able

to use it to gather results verifying the MedKits results.

The MedKits model is limited by the accuracy of the input parameters. In

particular, it is difficult to be certain how many people are infected in an attack

because those that never leave the incubation stage appear the same as those who

are not infected. At best, the parameters N and β are estimates based on the current

available data. Also, we consider two prophylaxis adherence rates, 65% and 90%,

but is difficult to predict what the actual adherence rate will be as it depends on

the individuals in the population. Obviously the more precise the scenario and the

flow variables are, the more accurate the result will be. The model is designed in

such a way that new data about disease progression assumptions or other scenarios

could easily be incorporated.

From these results, we conclude that the MedKits model is a good approx-

imation of what happens in an anthrax attack and can be trusted as a source of

estimated deaths. Local governments can be confident that, assuming input param-

eters are chosen carefully, the MedKits model will give reliable results quickly.

6.2 Contributions

The main contribution of this model is the integration of both disease progres-

sion and emergency logistics. The original model [18] does this, and the MedKits

68



model extends it to include another element of emergency preparedness. The model

could be extended further to consider other aspects as well. Although both com-

partmental models and simulation models have been used to model anthrax attack

response logistics, we believe this to be the first use of stochastic simulation to

enhance a compartmental model in this setting.

The model provides a good balance of detail with simplicity. The compart-

mental design makes the model intuitive while still allowing the many intricacies of

attack scenarios to be modeled. This allows the model to be accessible to public

officials that may not have a rigorous mathematical modeling background, but still

incorporates enough detail to make it useful. The model does make some assump-

tions that are more simplistic than the situation being modeled (e.g. making the

number infected an input parameter rather than using a diffusion model to deter-

mine who would be affected by a specific point source attack). However it is designed

in such a way that more complexity can be added if desired without redesigning the

entire model.

The model gives national, state, and local public health officials a tool to eval-

uate plans for implementing MedKit distribution into emergency planning. While

officials still need to carry out their own investigations and cost evaluations, this

gives them a source of data about the effects of the MedKits in particular scenarios.
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6.3 Future Work

There are several clear extensions to this work. One of the goals of the model is

to aid local governments in making decisions about whether to distribute MedKits

in their communities. The model shows the benefits of MedKit distribution, but

another big aspect of the decision making process is the cost. This is something

that varies by community based on its size and its plans to pay for the MedKits, so

we leave the cost analysis to individual jurisdictions. Some things that would need

to be included in the decision is how to handle expiration dates of the medication

as well as the fear that people would take the pills without being told and develop

resistance to them. Bicknell discusses these kinds of issues [2].

Another consideration in developing a response plan is the public’s attitude.

Studies have been carried out to evaluate such public perceptions. Rincuiuso-

Hasslemann et al. [14] discuss a series of surveys conducted in New York to evaluate

the public’s opinions about various response measures. Thoughts are presented on

how to increase the prophylaxis adherence rate. The CDC’s study of MedKit distri-

bution [8] included a survey of participants’ opinions about MedKits. In that study,

94% of participants said they would like to have MedKits in their homes.

For the models in this report, we assumed most of the parameters to be con-

stant. For example, we assumed a constant adherence rate throughout the model,

but it could be easily adjusted to incorporate α changing over time. Also, the time

of detection is fixed at t = 48 hours after attack. However, an attack is typically dis-

covered only when a person becomes ill. To make the model more realistic, the time
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of detection could be determined by considering transitions to the prodromal stage.

The BioSense system has been developed to track outpatient visits, prescriptions

and laboratory orders with an eye toward detecting attacks as early as possible [6].

Including this system in the model would lead to dynamic detection time simulation.

For the simulation model we varied the transitions. Another logical simulation

would be to vary the arrival times of the push pack and VMI. For example, we

consider two possibilities for arrival time of the push pack (12 and 24 hours), however

[7] states that the push pack can be delivered within 12 hours. So there is some

probability that it could arrive in under 12 hours depending on the distance it has

to travel, traffic, and other unpredictable factors. Because time is a huge factor in

preventing deaths, simulation of these time variations would be of great interest.

The MedKits model could be integrated with a dispersion model for the spread

of spores [6, 16]. This dispersion model could include weather data as well as pop-

ulation density in different areas to determine the likely number of people infected.

This would allow for health officials to determine the likely results of an attack in

a specific location without having to do their own study of how many people would

be affected to determine an input number of infected individuals.

While the MedKits model is specifically designed to model an anthrax at-

tack, it could be adjusted to model different noncommunicable diseases. With more

elaborate changes, the model could be made to reflect endemic diseases as well.

Obviously the possibilities for further advances are endless. As new emergency

plans are developed they will need to be modeled and evaluated. The model we have

developed provides a stand-alone tool for health officials to use in evaluating their
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own emergency preparedness plans and hopefully provides enough flexibility to be

integrated with other models as needed in the future.
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