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1 IntroductionSorting is arguably the most studied problem in computer science, both because of its intrinsic theo-retical importance and its use in so many applications. Its signi�cant requirements for interprocessorcommunication bandwidth and the irregular communication patterns that are typically generatedhave earned its inclusion in several parallel benchmarks such as NAS [7] and SPLASH [35]. Moreover,its practical importance has motivated the publication of a number of empirical studies seeking toidentify the most e�cient sorting routines. Yet, parallel sorting strategies have still generally falleninto one of two groups, each with its respective disadvantages. The �rst group, using the classi�cationof Li and Sevcik [24], is the single-step algorithms, so named because data is moved once betweenprocessors. Examples of this include sample sort [20, 10], parallel sorting by regular sampling [32, 25],and parallel sorting by overpartitioning [24]. The price paid by these single-step algorithms is anirregular communication scheme and di�culty with load balancing. The other group of sorting algo-rithms is the multi-step algorithms, which include bitonic sort [9], column sort [23], rotate sort [26],hyperquicksort [29], 
ashsort [30], B-
ashsort [19], smoothsort [28], and Tridgell and Brent's sort [33].Generally speaking, these algorithms accept multiple rounds of communication in return for betterload balancing and, in some cases, regular communication.In this paper, we present a novel variation on the sample sort algorithm which addresses thelimitations of previous implementations. We exchange the single step of irregular communicationfor two steps of regular communication. In return, we reduce the problem of poor load balancingbecause we are able to sustain a very high oversampling ratio at virtually no cost. Second, we obtainpredictable, regular communication requirements which are essentially invariant with respect to theinput distribution. The importance of utilizing regular communication has become more importantwith the advent of message passing standards, such asMPI [27], which seek to guarantee the availabilityof very e�cient (often machine speci�c) implementations of certain basic collective communicationroutines.Our algorithm was implemented in a high-level language and run on a variety of platforms, includ-ing the Thinking Machines CM-5, the IBM SP-2, and the Cray Research T3D. We ran our code usinga variety of benchmarks that we identi�ed to examine the dependence of our algorithm on the inputdistribution. Our experimental results are consistent with the theoretical analysis and illustrate thescalability and e�ciency of our algorithm across di�erent platforms. In fact, it seems to outperformall similar algorithms known to the authors on these platforms, and its performance is indi�erent tothe set of input distributions unlike previous e�cient algorithms.The high-level language used in our studies is Split-C [14], an extension of C for distributedmemory machines. The algorithm makes use of MPI-like communication primitives but does notmake any assumptions as to how these primitives are actually implemented. The basic data transport2



is a read or write operation. The remote read and write typically have both blocking and non-blocking versions. Also, when reading or writing more than a single element, bulk data transports areprovided with corresponding bulk read and bulk write primitives. Our collective communicationprimitives, described in detail in [6], are similar to those of the MPI [27], the IBM POWERparallel [8],and the Cray MPP systems [13] and, for example, include the following: transpose, bcast, gather,and scatter. Brief descriptions of these are as follows. The transpose primitive is an all-to-allpersonalized communication in which each processor has to send a unique block of data to everyprocessor, and all the blocks are of the same size. The bcast primitive is used to copy a block of datafrom a single source to all the other processors. The primitives gather and scatter are companionprimitives. Scatter divides a single array residing on a processor into equal-sized blocks, each ofwhich is distributed to a unique processor, and gather coalesces these blocks back into a single arrayat a particular processor. See [3, 6, 4, 5] for algorithmic details, performance analyses, and empiricalresults for these communication primitives.The organization of this paper is as follows. Section 2 presents our computation model foranalyzing parallel algorithms. Section 3 describes in detail our improved sample sort algorithm.Finally, Section 4 describes our data sets and the experimental performance of our sorting algorithm.2 The Parallel Computation ModelWe use a simple model to analyze the performance of our parallel algorithms. Each of our hardwareplatforms can be viewed as a collection of powerful processors connected by a communication networkthat can be modeled as a complete graph on which communication is subject to the restrictionsimposed by the latency and the bandwidth properties of the network. We view a parallel algorithmas a sequence of local computations interleaved with communication steps, and we allow computationand communication to overlap. We account for communication costs as follows.Assuming no congestion, the transfer of a block consisting of m contiguous words between twoprocessors takes O(� + �m) time, where � is an upper bound on the latency of the network and �is the time per word at which a processor can inject or receive data from the network. The cost ofeach of the collective communication primitives will be modeled by O(� + � max (m; p)), where mis the maximum amount of data transmitted or received by a processor. Such a cost (which is anoverestimate) can be justi�ed by using our earlier work [22, 21, 6, 5]. Using this cost model, we canevaluate the communication time Tcomm(n; p) of an algorithm as a function of the input size n, thenumber of processors p , and the parameters � and �. The coe�cient of � gives the total number oftimes collective communication primitives are used, and the coe�cient of � gives the maximum totalamount of data exchanged between a processor and the remaining processors.This communication model is close to a number of similar models (e.g. [16, 34, 1]) that have3



recently appeared in the literature and seems to be well-suited for designing parallel algorithms oncurrent high performance platforms.We de�ne the computation time Tcomp as the maximum time it takes a processor to perform all thelocal computation steps. In general, the overall performance Tcomp+Tcomm involves a tradeo� betweenTcomp and Tcomm. Our aim is to develop parallel algorithms that achieve Tcomp = O �Tseqp � such thatTcomm is minimum, where Tseq is the complexity of the best sequential algorithm. Such optimizationhas worked very well for the problems we have looked at, but other optimization criteria are possible.The important point to notice is that, in addition to scalability, our optimization criterion requiresthat the parallel algorithm be an e�cient sequential algorithm (i.e., the total number of operations ofthe parallel algorithm is of the same order as Tseq).3 A New Sample Sort AlgorithmConsider the problem of sorting n elements equally distributed amongst p processors, where we assumewithout loss of generality that p divides n evenly. The idea behind sample sort is to �nd a set of p� 1splitters to partition the n input elements into p groups indexed from 0 up to p� 1 such that everyelement in the ith group is less than or equal to each of the elements in the (i + 1)th group, for0 � i � p�2. Then the task of sorting each of the p groups can be turned over to the correspondinglyindexed processor, after which the n elements will be arranged in sorted order. The e�ciency of thisalgorithm obviously depends on how well we divide the input, and this in turn depends on how wellwe choose the splitters. One way to choose the splitters is by randomly sampling the input elementsat each processor - hence the name sample sort.Previous versions of sample sort [20, 10, 17, 15] have randomly chosen s samples from the npelements at each processor, routed them to a single processor, sorted them at that processor, and thenselected every sth element as a splitter. Each processor Pi then performs a binary search on thesesplitters for each of its input values and then uses the results to route the values to the appropriatedestination, after which local sorting is done to complete the sorting process. The �rst di�culty withthis approach is the work involved in gathering and sorting the splitters. A larger value of s results inbetter load balancing, but it also increases the overhead. The other di�culty is that no matter howthe routing is scheduled, there exist inputs that give rise to large variations in the number of elementsdestined for di�erent processors, and this in turn results in an ine�cient use of the communicationbandwidth. Moreover, such an irregular communication scheme cannot take advantage of the regularcommunication primitives proposed under the MPI standard [27].In our solution, we incur no overhead in obtaining np2 samples from each processor and in sortingthese samples to identify the splitters. Because of this very high oversampling, we are able to replacethe irregular routing with exactly two calls to our transpose primitive.4



The pseudo code for our algorithm is as follows:� Step (1): Each processor Pi (0 � i � p � 1) randomly assigns each of its np elements to one ofp buckets. With high probability, no bucket will receive more than c1 np2 elements, where c1 is aconstant to be de�ned later.� Step (2): Each processor Pi routes the contents of bucket j to processor Pj , for (0 � i; j � p�1).Since with high probability no bucket will receive more than c1 np2 elements, this is equivalent toperforming a transpose operation with block size c1 np2 .� Step (3): Each processor Pi sorts the (�1np � c1np ) values received in Step (2) using anappropriate sequential sorting algorithm. For integers we use the radix sort algorithm, whereasfor 
oating point numbers we use the merge sort algorithm.� Step (4): From its sorted list of (� np � c1 np ) elements, processor P0 selects each (j� np2 )thelement as a splitter, for (1 � j � p� 1). By default, the �rst and last splitters are respectivelythe smallest and largest values allowed by the data type used.� Step (5): Processor P0 broadcasts the p�1 intermediate splitters to the other p�1 processors.� Step (6): Each processor Pi �nds the positions of the splitters in its local array of sortedelements by performing a binary search for each of these splitters.� Step (7): Each processor Pi routes the subsequence falling between splitter j and splitter j + 1to processor Pj , for (0 � i; j � p� 1). Since with high probability no sequence will contain morethan c2 np2 elements, where c2 is a constant to be de�ned later, this is equivalent to performing atranspose operation with block size c2 np2 .� Step (8): Each processor Pi merges the p sorted subsequences received in Step (7) to producethe ith column of the sorted array. Note that, with high probability, no processor has receivedmore than �2 np elements, where �2 is a constant to be de�ned later.We can establish the complexity of this algorithm with high probability - that is with probability� (1 � n��) for some positive constant �. But before doing this, we need to establish the results ofthe following four lemmas.Lemma 1: At the completion of Step (1), the number of elements in each bucket is at most c1 np2with high probability, for any c1 � 2 and p2 � n3 lnn .Proof: The probability that exactly c1 np2 elements are placed in a particular bucket in Step (1) isgiven by the binomial distribution b(s; r; q) =  rs ! qs(1� q)r�s; (1)5



where s = c1 np2 , r = np , and q = 1p . Using the following Cherno� bound [12] for estimating the tail ofa binomial distribution Xs�(1+�)rq b(s; r; q)� e� �2rq3 ; (2)the probability that a particular bucket will contain at least c1 np2 elements can be bounded bye�(c1�1)2 n3p2 . Hence, the probability that any of the p2 buckets contains at least c1 np2 elements can bebounded by p2e�(c1�1)2 n3p2 , and Lemma 1 follows.Lemma 2: At the completion of Step (2), the total number of elements received by processorP0, which comprise the set of samples from which the splitters are chosen, is at most � np with highprobability, for any � > 1 and p2 � n3 lnn .Proof: The probability that processor P0 receives exactly � np elements is given by the binomialdistribution b(� np ;n; 1p). Using the Cherno� bound for estimating the tail of a binomial distribution,the probability that processor P0 receives at least � np elements can be bounded by e�(��1)2 n3p andLemma 2 follows.Lemma 3: At the completion of Step (7), the number of elements received by each processor is atmost �2 np with high probability, for any �2 � 1:33 and p2 � n3 lnn .Proof: Establishing a bound on the number of elements received by any processor in Step (7) isequivalent to establishing a bound on the number of elements which fall between any two consecutivesplitters in the sorted order. But as Blelloch et al. [10] observed, the number of elements which fallbetween any two consecutive splitters in the sorted order can only be greater than �2 np if in the sortedorder there are less than np2 samples drawn from the �2 np elements which follow the �rst splitter.Since every element has an equal and independent probability of being a sample, the probability thatexactly np2 samples will be found amongst the next �2 np elements is given by the binomial distributionb( np2 ;�2np ; 1p). Using the following \Cherno�" type bound [18] for estimating the head of a binomialdistribution Xs��rq b(s; r; q)� e�(1��)2 rq2 ; (3)where s = np2 , r = �2 np , and q = 1p , the probability that np2 or less samples will be found amongst thenext �2 np elements following any of the p splitters can be bounded by pe�(1� 1�2 )2 �2n2p2 and Lemma 3follows.Lemma 4: The number of elements exchanged by any two processors in Step (7) is at most c2 np2with high probability, for any c2 � 2:48 and p2 � n3 lnn .Proof: Since with high probability no processor can receive more than �2 np elements in Step (7),and since the randomization in Step (1) means that each of these elements can originate with equal6



probability from any of the p processors, the probability that exactly c2 np2 elements are exchanged byany two particular processors is given by the binomial distribution b(c2 np2 ;�2np ; 1p). Using the Cherno�bound for estimating the tail of the binomial distribution, the probability that any of the p processorsexchange at least c2 np2 elements can be bounded by p2e�( c2�2�1)2 �2n3p2 and Lemma 4 follows.With these bounds on the values of c1, �2, and c2, the analysis of our sample sort algorithm is asfollows. Steps (1), (3), (4), (6), and (8) involve no communication and are dominated by the costof the sequential sorting in Step (3) and the merging in Step (8). Sorting integers using radix sortrequires O(np ) time, whereas sorting 
oating point numbers using merge sort requires O(np log np ) time.Step (8) requires O(np log p) time if we merge the sorted subsequences in a binary tree fashion. Steps(2), (5), and (7) call the communication primitives transpose, bcast, and transpose, respectively.The analysis of these primitives in [6] shows that with high probability these three steps requireTcomm(n; p) � (�+2 np2 (p�1)�), Tcomm(n; p) � (� +(p�1)�), and Tcomm(n; p) � (�+2:48 np2 (p�1)�),respectively. Hence, with high probability, the overall complexity of our sample sort algorithm is given(for 
oating point numbers) byT (n; p) = Tcomp(n; p) + Tcomm(n; p)= O�np logn + � + np�� (4)for p2 < n3 lnn .Clearly, our algorithm is asymptotically optimal with very small coe�cients. But a theoreticalcomparison of our running time with previous sorting algorithms is di�cult, since there is no consensuson how to model the cost of the irregular communication used by the most e�cient algorithms.Hence, it is very important to perform an empirical evaluation of an algorithm using a wide varietyof benchmarks, as we will do next.4 Performance EvaluationSample sort was implemented using Split-C [14] and run on a variety of machines and processors,including the Thinking Machines CM-5, the IBM SP-2-WN and SP-2-TN2, and the Cray ResearchT3D. For every platform, we tested our code on six di�erent benchmarks, each of which had both a32-bit integer version (64-bit on the Cray T3D) and a 64-bit double precision 
oating point number(double) version.4.1 Sorting BenchmarksOur six sorting benchmarks are de�ned as follows, in which MAX is (231 � 1) for integers andapproximately 1:8� 10308 for doubles: 7



1. Uniform [U], a uniformly distributed random input, obtained by calling the C library randomnumber generator random(). This function, which returns integers in the range 0 to �231 � 1�,is initialized by each processor Pi with the value (23 + 1001i). For the double data type, we\normalize" these values by �rst assigning the integer returned by random() a randomly chosensign bit and then scaling the result by MAX(231�1) .2. Gaussian [G], a Gaussian distributed random input, approximated by adding four calls torandom() and then dividing the result by four. For the double type, we �rst normalize thevalues returned by random() in the manner described for [U].3. Zero [Z], a zero entropy input, created by setting every value to a constant such as zero.4. Bucket Sorted [B], an input that is sorted into p buckets, obtained by setting the �rst np2elements at each processor to be random numbers between 0 and �MAXp � 1�, the second np2elements at each processor to be random numbers between MAXp and �2MAXp � 1�, and soforth.5. g-Group [g-G], an input created by �rst dividing the processors into groups of consecutiveprocessors of size g, where g can be any integer which partitions p evenly. If we index thesegroups in consecutive order, then for group j we set the �rst npg elements to be random num-bers between ��jg+ p2� mod p�MAXp and ���jg+ p2 + 1� mod p�MAXp � 1�, the second npgelements at each processor to be random numbers between ��jg + p2 + 1� mod p�MAXp and���jg + p2 + 2� mod p� MAXp � 1�, and so forth.6. Staggered [S], created as follows: if the processor index i is < p2 , then we set all np elementsat that processor to be random numbers between (2i+ 1) MAXp and �(2i+ 2) MAXp � 1�, andso forth. Otherwise, we set all np elements to be random numbers between �i� p2�MAXp and��i� p2 + 1�MAXp � 1�, and so forth.We selected these six benchmarks for a variety of reasons. Previous researchers have used theUniform,Gaussian, and Zero benchmarks, and so we too included them for purposes of comparison.But benchmarks should be designed to illicit the worst case behavior from an algorithm, and in thissense the Uniform benchmark is not appropriate. For example, for n � p, one would expect thatthe optimal choice of the splitters in the Uniform benchmark would be those which partition therange of possible values into equal intervals. Thus, algorithms which try to guess the splitters mightperform misleadingly well on such an input. In this respect, the Gaussian benchmark is more telling.But we also wanted to �nd benchmarks which would evaluate the cost of irregular communication.Thus, we wanted to include benchmarks for which an algorithm which uses a single phase of routingwould �nd contention di�cult or even impossible to avoid. A naive approach to rearranging thedata would perform poorly on the Bucket Sorted benchmark. Here, every processor would try to8



route data to the same processor at the same time, resulting in poor utilization of communicationbandwidth. This problem might be avoided by an algorithm in which at each processor the elementsare �rst grouped by destination and then routed according to the speci�cations of a sequence ofp destination permutations. Perhaps the most straightforward way to do this is by iterating overthe possible communication strides. But such a strategy would perform poorly with the g-Groupbenchmark, for a suitably chosen value of g. In this case, using stride iteration, those processorswhich belong to a particular group all route data to the same subset of g destination processors. Thissubset of destinations is selected so that, when the g processors route to this subset, they choose theprocessors in exactly the same order, producing contention and possibly stalling. Alternatively, onecan synchronize the processors after each permutation, but this in turn will reduce the communicationbandwidth by a factor of pg . In the worst case scenario, each processor needs to send data to a singleprocessor a unique stride away. This is the case of the Staggered benchmark, and the result is areduction of the communication bandwidth by a factor of p. Of course, one can correctly object thatboth the g-Group benchmark and the Staggered benchmark have been tailored to thwart a routingscheme which iterates over the possible strides, and that another sequences of permutations might befound which performs better. This is possible, but at the same time we are unaware of any singlephase deterministic algorithm which could avoid an equivalent challenge.4.2 Experimental ResultsFor each experiment, the input is evenly distributed amongst the processors. The output consists ofthe elements in non-descending order arranged amongst the processors so that the elements at eachprocessor are in sorted order and no element at processor Pi is greater than any element at processorPj , for all i < j.Two variations were allowed in our experiments. First, radix sort was used to sequentially sortintegers, whereas merge sort was used to sort double precision 
oating point numbers (doubles).Second, di�erent implementations of the communication primitives were allowed for each machine.Wherever possible, we tried to use the vendor supplied implementations. In fact, IBM does provideall of our communication primitives as part of its machine speci�c Collective Communication Library(CCL) [8]. As one might expect, they were faster than the high level Split-C implementation.The graphs in Figures 1 and 2 display the performance of our sample sort as a function of inputdistribution for a variety of input sizes. In each case, the performance is essentially independent of theinput distribution. These �gures present results obtained on a 64 node Cray T3D; results obtainedfrom other machines validate this claim as well. Because of this independence, the remainder of thissection will only discuss the performance of our sample sort on the single benchmark [U].9



Figure 1: Performance is independent of input distribution for integers.

Figure 2: Performance is independent of input distribution for doubles.10



Sample Sorting of 4M IntegersNumber of ProcessorsMachine 4 8 16 32 64 128CRAY T3D - 1.66 0.894 0.486 0.272 0.149IBM SP2-WN 2.04 1.03 - - - -IBM SP2-TN2 2.97 1.34 0.755 - - -TMC CM-5 - - 3.61 1.67 0.761 0.444Table I: Total execution time (in seconds) for sorting 4M integers on a variety of machines and processors.A hyphen indicates that that particular platform was unavailable to us.The results in Tables I and II together with their graphs in Figure 3 examine the scalability ofour sample sort as a function of machine size. Results are shown for the CM-5, the SP-2-WN, theSP2-TN2, and the T3D. Bearing in mind that these graphs are log-log plots, they show that for agiven input size n the execution time scales almost inversely with the number of processors p. Whilethis is certainly the expectation of our analytical model for doubles, it might at �rst appear to exceedour prediction of an O(np log p) computational complexity for integers. However, the appearance ofan inverse relationship is still quite reasonable when we note that this O(np log p) complexity is entirelydue to the merging in Step (8), and in practice, as we show later with Figure 6, Step (8) onlyaccounts for about 25% of the observed execution time. Note that the complexity of Step 8 could bereduced to O(np ) for integers using radix sort, but the resulting execution time would be slower.Figures 4 and 5 examine the scalability of our sample sort as a function of problem size, for di�er-ing numbers of processors. They show that for a �xed number of processors there is an almost lineardependence between the execution time and the total number of elements n. While this is certainlythe expectation of our analytic model for integers, it might at �rst appear to exceed our prediction ofa O(np log n) computational complexity for 
oating point values. However, this appearance of a linearrelationship is still quite reasonable when we consider that for the range of values shown logn di�ersby only a factor of 1:2.Next, the graphs in Figures 6 and 7 examine the relative costs of the eight steps in our samplesort on a 64 node T3D. Notice that the sequential sorting and merging performed in Steps (3) andSample Sorting of 4M DoublesNumber of ProcessorsMachine 4 8 16 32 64 128CRAY T3D - 2.61 1.32 0.683 0.361 0.191IBM SP2-WN 6.96 3.67 - - - -IBM SP2-TN2 8.78 4.43 2.28 - - -TMC CM-5 - - 6.51 3.31 1.85 0.915Table II: Total execution time (in seconds) for sorting 4M doubles on a variety of machines and processors.A hyphen indicates that that particular platform was unavailable to us.11



Figure 3: Scalability of sorting integers and doubles with respect to machine size.(8) consume nearly 80% of the execution time, whereas the two transpose operations in Steps(2) and (7) together consume only about 20% of the execution time (and less for doubles). Similarresults were obtained for all of our benchmarks, showing that our algorithm is extremely e�cient inits communication performance.Finally, Table III shows the experimentally derived expected value (E) and sample standarddeviation (STD) of the coe�cients c1, �1, c2, and �2 used to describe the complexity of our algorithmin Section 3. For each input size, the values were obtained by analyzing data collected while sortingthe [G], [B], [2-G], [4-G], and [S] benchmarks. Each of these benchmarks was generated and sortedkeys/proc E(c1) STD(c1) E(�1) STD(�1) E(c2) STD(c2) E(�2) STD(�2)4K 2.02 0.091 1.08 0.017 2.64 0.94 1.55 0.188K 1.70 0.066 1.06 0.012 1.98 0.40 1.37 0.1116K 1.48 0.040 1.04 0.007 1.66 0.23 1.25 0.0732K 1.33 0.031 1.03 0.005 1.43 0.13 1.18 0.0564K 1.23 0.025 1.02 0.003 1.29 0.08 1.12 0.03128K 1.16 0.012 1.01 0.002 1.20 0.05 1.09 0.02256K 1.11 0.011 1.01 0.002 1.14 0.04 1.06 0.02512K 1.08 0.008 1.01 0.001 1.10 0.02 1.05 0.011M 1.06 0.004 1.00 0.001 1.07 0.02 1.03 0.01Table III: Statistical evaluation of the experimentally observed values of the algorithm coe�cients on a 64node T3D. 12



TMC CM-5 IBM SP-2-WN

IBM SP-2-TN2 Cray T3DFigure 4: Scalability of sorting integers with respect to problem size, for di�ering numbers of processors.13



TMC CM-5 IBM SP-2-WN

IBM SP-2-TN2 Cray T3DFigure 5: Scalability of sorting doubles with respect to problem size, for di�ering numbers of processors.14



Figure 6: Distribution of execution time amongst the eight steps of sample sort for integers. Times areobtained on a 64 node T3D.

Figure 7: Distribution of execution time amongst the eight steps of sample sort for doubles. Times areobtained on a 64 node T3D. 15



20 times, each time using a di�erent seed for the random number generator. The experimentallyderived values for c1, �1, c2, and �2 agree closely with the theoretically derived values of c1 (2),�1 � c1, c2 (2.48), and �2 (1.33) for p2 � n3 lnn .4.3 Comparison with Previous ResultsDespite the enormous theoretical interest in parallel sorting, we were able to locate relatively fewempirical studies. Of these, only a few were done on machines which either were available to us forcomparison or involved code which could be ported to these machines for comparison. In TablesIV and V, we compare the performance of our sample sort algorithm with two other sample sortalgorithms. In all cases, the code was written in Split-C. In the case of Alexandrov et al. [1], thetimes were determined by us directly on a 32 node CM-5 using code supplied by the authors whichhad been optimized for a Meiko CS-2. In the case of Dusseau [17], the times were obtained from thegraphed results reported for a 64 node CM-5.[U] [G] [2-G] [B] [S]int./proc. HBJ AIS HBJ AIS HBJ AIS HBJ AIS HBJ AIS4K 0.051 0.153 0.050 0.152 0.051 1.05 0.055 0.181 0.049 y8K 0.090 0.197 0.090 0.192 0.092 1.09 0.094 0.193 0.087 y16K 0.183 0.282 0.182 0.281 0.184 1.16 0.189 0.227 0.179 y32K 0.360 0.450 0.359 0.449 0.363 1.34 0.364 0.445 0.361 y64K 0.725 0.833 0.730 0.835 0.735 1.76 0.731 0.823 0.740 y128K 1.70 2.02 1.70 2.02 1.70 2.83 1.72 1.99 2.02 y256K 3.81 4.69 3.80 4.59 3.80 5.13 3.81 4.56 4.69 y512K 8.12 10.0 8.04 9.91 8.11 9.58 8.10 9.98 10.0 yTable IV: Total execution time (in seconds) required to sort a variety of benchmarks and problem sizes,comparing our version of sample sort (HBJ) with that of Alexandrov et al. (AIS) on a 32-node CM-5.yWe were unable to run the (AIS) code on this input.[U] [B] [Z]int./proc. HBJ DUS HBJ DUS HBJ DUS1M 16.6 21 12.2 91 10.6 11Table V: Time required per element (in microseconds) to sample sort 64M integers, comparing our results(HBJ) with those obtained from the graphed results reported by Dusseau (DUS) on a 64 node CM-5.
16



Finally, there are the results for the NAS Parallel Benchmark [31] for integer sorting (IS). Thename of this benchmark is somewhat misleading. Instead of requiring that the integers be placed insorted order as we do, the benchmark only requires that they be ranked without any reordering, whichis a signi�cantly simpler task. Table VI compares our results on the Class A NAS Benchmark withthe best times reported for the TMC CM-5 and the Cray T3D. We believe that our results, which wereobtained using high-level, portable code, compare favorably with the other reported times, which wereobtained by the vendors using machine-speci�c implementations and perhaps system modi�cations.Comparison of Class A NAS (IS) Benchmark TimesNumber Best OurMachine of Processors Reported Time TimeCM-5 32 43.1 29.464 24.2 14.0128 12.0 7.13Cray T3D 16 7.07 12.632 3.89 7.0564 2.09 4.09128 1.05 2.26Table VI: Comparison of our execution time (in seconds) with the best reported times for the Class A NASParallel Benchmark for integer sorting. Note that while we actually place the integers in sorted order, thebenchmark only requires that they be ranked without actually reordering.The only performance studies we are aware of on similar platforms for generalized sorting are thoseof Tridgell and Brent [33], who report the performance of their algorithm using a 32 node CM-5 on auniformly distributed random input of signed integers, as described in Table VII.Problem [U]Size (HBJ) (TB)8M 4.57 5.48Table VII: Total execution time (in seconds) required to sort 8M signed integers, comparing our results(HBJ) with those of Tridgell and Brent (TB) on a 32 node CM-5.5 ConclusionIn this paper, we introduced a novel variation on sample sort and conducted an experimental studyof its performance on a number of platforms using widely di�erent benchmarks. Our results illustratethe e�ciency and scalability of our algorithm across the di�erent platforms and appear to improve onall similar results known to the authors. Our results also compare favorably with those reported forthe simpler ranking problem posed by the NAS Integer Sorting (IS) Benchmark.17
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