Optimal Detection of Discrete Markov
Sources Over Discrete Memoryless
Channels - Applications to
Combined Source-Channel Coding

by N. Phamdo and N. Farvardin

TECHNICAL
RESEARCH
REPORT

SYSTEMS
RESEARCH
C E N T E R

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 92-25



Optimal Detection of Discrete Markov Sources Over Discrete
Memoryless Channels — Applications to

Combined Source-Channel Coding f

Nam Phamdo and Nariman Farvardin

Electrical Engineering Department
and Systems Research Center
University of Maryland
College Park, Maryland 20742

Abstract

We consider the problem of detecting a discrete Markov source which is transmit-
ted across a discrete memoryless channel. The detection is based upon the mazimum
a posteriori (MAP) criterion which yields the minimum probability of error for a
given observation. Two formulations of this problem are considered: (i) a sequence
MAP detection in which the objective is to determine the most probable transmit-
ted sequence given the observed sequence and (ii) an instantaneous MAP detection
which is to determine the most probable transmitted symbol at time n given all the
observations prior to and including time n. The solution to the first problem results
in a “Viterbi-like” implementation of the MAP detector (with large delay) while the
latter problem results in a recursive implementation (with no delay). For the special
case of the binary symmetric Markov source and binary symmetric channel, simula-
tion results are presented and an analysis of these two systems yields explicit critical
channel bit error rates above which the MAP detectors become useful.

Applications of the MAP detection problem in a combined source-channel coding
system are considered. Here it is assumed that the source is highly correlated and
that the source encoder (in our case, a vector quantizer (VQ)) fails to remove all of the
source redundancy. The remaining redundancy at the output of the source encoder
is referred to as the “residual” redundancy. It is shown, through simulation, that the
residual redundancy can be used by the MAP detectors to combat channel errors. For
small block sizes, the proposed system beats Farvardin and Vaishampayan’s channel-
optimized VQ by wide margins. Finally, it is shown that the instantaneous MAP
detector can be combined with the VQ decoder to form a minimum mean-squared
error decoder. Simulation results are also given for this case.

Index Terms: Markov source; discrete memoryless channel; MAP detection; com-
bined source-channel coding.
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I. Introduction

In his celebrated paper [1], Shannon stated that in information transmission over
a noisy channel, “redundancy must be introduced in the proper way to combat the
particular noise structure involved. However, any redundancy in the source will usu-
ally help if it is utilized at the receiving point. In particular, if the source already
has a certain redundancy and no attempt is made to eliminate it in matching to the
channel, this redundancy will help combat noise.”

This statement, though made more than forty years ago, forms the foundation of
the present paper. The principle assumption here is that the source to be transmit-
ted has a certain redundancy' and due to certain constraints (for example, on the
complexity), the transmitter makes no attempt to “match” the source to the channel.
Instead, the source is transmitted directly over the channel. The problem thus is to
design a receiver which fully “utilizes” the source redundancy to combat the effect
of channel noise. Because of the constraint on the transmitter, the system described
above inevitably suffers from a loss of optimality. Nevertheless, given this constraint,
we seek to obtain the optimum receiver for a given source and channel.

First, discrete sources and channels are considered. It is hypothesized that the
source is in the form of a discrete Markov chain [2] and that the channel is a discrete
memoryless channel [2]. The receiver is a mazimum a posteriori (MAP) receiver
(detector) which is optimum in the sense of minimizing the probability of error [3].
Here, the redundancy between successive symbols of the Markov source is used (by
the MAP detector) to provide some protection against channel errors — in a manner
not unlike error correction used in convolutional coding.

The above formulation has been considered before by several authors. Bahl et

al. [4] looked at the problem of determining the a posteriori probabilities of a finite-

'The term “redundancy” usually has three connotations: (i) the source has memory, (ii) the
source distribution is non-uniform and (iii) the source has memory and a non-uniform distribution.
In this paper, “redundancy” implies cases (i) or (iii).



state Markov source (this is a generalization of the discrete Markov source considered
in this paper) observed through a discrete memoryless channel in the context of decod-
ing linear block and convolutional codes. Devore [5] considered observing a binary
Markov source through a binary symmetric channel and gave necessary and suffi-
cient conditions for the optimality of certain detectors. More recently, Sayood and
Borkenhagen [6] considered the detection of a discrete Markov source over a discrete
memoryless channel in a joint source-channel DPCM image coding system. The main
difference between the current paper and [6] is that the detector in [6] is subopti-
mum, hence, it is not a MAP detector. Furthermore, we consider two variations of
this problem: (i) sequence MAP detection which involves a large delay and (ii) in-
stantaneous MAP detection which involves no delay. In [6], only sequence detection
was considered. In sequence MAP detection, the objective is to determine the most
probable transmitted sequence given an observed sequence while the objective of in-
stantaneous MAP detection is to determine the most probable transmitted symbol at
a particular time given all the observations up to that time.

Upon solving these two problems, we apply their solutions to a combined source-
channel coding system in which the source is no longer discrete but is continuous-
valued. The channel remains discrete. In this case, the use of an explicit source
encoder is unavoidable since the source entropy (which is infinite) is higher than the
channel capacity (which is finite) [2]. The purpose of the source encoder is to reduce
the source entropy to a level lower than the channel capacity by introducing some
distortion [2]. If the source encoder is optimum in the sense that it has the lowest
possible rate for a given distortion criterion, then it must remove all of the source
redundancy — that is, the source encoder output must have no redundancy. However,
similar to [6], we assume that the source encoder (in our case, a vector quantizer
(VQ) with a small block size) is suboptimum, i.e., it fails to remove all of the source

redundancy. Again, this may be attributed to some complexity constraint. The re-



dundancy which remains at the output of the source encoder is called the residual
redundancy [6]. Here, MAP detection is applied to exploit the residual redundancy.
More specifically, the VQ encoder output is modeled as a discrete Markov source and
the problem reduces to that of discrete sources and channels mentioned previously.
Simulation results for this system on a Gauss-Markov source are obtained and com-
parisons are made with Farvardin and Vaishampayan’s channel-optimized VQ [7, 8].
It is then shown that the instantaneous MAP detector can be combined with the VQ
decoder to form an optimum (minimum mean-squared error) decoder.

The rest of this paper is organized as follows. In Section II, preliminary notations
are established. The two MAP detection problems and their solutions are given in
Section III. In Section IV, the special case of the binary symmetric Markov source and
binary symmetric channel is studied and simulation results are provided for this case.
Section V includes a study of combined source-channel coding using MAP detection.

Finally, conclusions are stated in Section VI.

II. Preliminaries
A stationary stochastic process, {I,,}°2,, with alphabet Jx 2 {0,1,...,N—1} of

size IV is said to be a discrete Markov source if Vn > 1,
Pr{l, = i,|I}7' = i7"} = Pr{l,, = in|lp_y = 1n_1}, (1)

Vi € In, k=1,2,...,n, where

1>

n—1
Il

(]17]27"'7In—1)7 (2)
R )
I 1 = (215227---7271—1)' (3)
Because of stationarity, the conditional probability function, Pr{l,, = i,|l,—1 = i,_1},

is independent of n. Thus, the Markov source can be completely characterized by the

gource transition probability matrix,
. N . . .
ID(ZnIZn..]) = Pr{In = anl -1 = Zn—l}, tnytn—1 € jN? (4)
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and the initial source distribution,
Py (i) e Pr{l; = 41}, @ € In. (5)

The simplest example of a discrete Markov source is the binary symmetric Markov

source (BSMS) with N = 2, transition matrix,

AN R T A M
P(Z"IZ”"I)_{ L=p ifig#iny 2 W €T ©)

and initial distribution P,(0) = Pi(1) = 0.5. Note that for a given BSMS, we may
construct a 2™-ary Markov source by taking m successive samples of the binary source
and appropriately renaming each letter of the alphabet J;m. We will make use of this
construction in a later section.

It is assumed that the Markov source,{I,}32,, is transmitted across a discrete
memoryless channel (DMC) with the same alphabet, Jy, as the source. The re-
ceived sequence (at the output of the channel) is denoted by {J,}22,. The channel

is described by the channel transition probability matrix,
Q(nltn) = Pr{Jy = jull. = i}, tn,jn € IN. (7)

The simplest example of a DMC is the binary symmetric channel (BSC) with N = 2

and transition matrix,

1—e¢ if jo =iy,

Again, note that we may construct a 2™-ary DMC through m uses of a BSC.

IT1. Statement of Problems and Solutions

The two problems to be considered in this paper are as follows. Given N, P, P, Q

and an observation sequence J} = j7, determine (i) the most probable transmitted

sequence,

i, = arg max Pr{I} =if|J} =j}, (9)
1, 6.717\;



and (ii) the most probable transmitted symbol at time n,
= arg max Pr{l, = i,|J7 =j7}. (10)

These two problems are referred to as the sequence MAP detection and the instanta-
neous MAP detection problems, respectively.
We first address the sequence MAP detection problem. Using Bayes’ Theorem,

equation (9) can be re-written as

 aug g PP RIE =) PR = i1)

iyesn Pr{J} =i}

(11)

Since the term in the denominator does not depend on i7, it suffices to maximize only
the numerator:
1711 = arg max Pr{J} =j7|I} =i} Pr{I} =if}. (12)
irerp
By using the fact that the channel is memoryless and by successively applying con-
ditional probability and the Markovian property of the source, the above can be
expressed as
11 = arg max [H Q(Jx|x) ] [ﬁ P(ik|ik_1)P1(i1)] . (13)
iveqy Lis k=2
Since the logarithm is monotonic, the above is equivalent to
f e o | loglQUul) Pliicn)] + oglQUAG] - (19
ery L=
In the above form, the sequence MAP detector can be implemented straightforwardly
using the well-known Viterbi algorithm [9]. The trellis has N states. There are (at
most) N branches entering and leaving each state. The path metric of the branch
leaving state 14_; at time k—1 and entering state ;. at time & is log[Q (ji|2%) P(tk|2k—1)]-
This metric is similar to that of Sayood and Borkenhagen [6] except that they have an

additional term —log[Pr{Jx = jk|lk—1 = ix—1}] which requires more computational



burden than our metric. Unlike [6], the metric given here is optimum. We point
out that the objective here is to minimize the sequence error probability rather than
the symbol error probability. To minimize the symbol error probability for the given
(large) delay, an approach similar to [4] can be taken. However, this requires large
complexity and in most applications yields little or no improvement [4]. Therefore,
we will not consider it.

The delay of the sequence MAP detector is quite large (n — 1 samples). That is,
the sequence MAP detector must wait to observe the entire sequence ji before making
a decision on the value of ;. In the following, we show how this delay problem? can
be alleviated.

We now turn to the instantaneous MAP detection problem. The instantaneous
MAP detector is different from the sequence MAP detector in that it makes a decision
on i, as soon as j, is received. Also, the symbol error probability is minimized in this

case. Using similar arguments as earlier, equation (10) is re-written as

1, = arg max Pr{J7 =j7|l, =i} Pr{l, = i,},
in€JN

= arg max Pr{J} =j7, 1, = i.}. (15)
tn€IN
Let us denote by
(i) & Pr{I} =3, L = in}, (16)

the objective function® that is to be maximized at time n. f(®(i,) can be expressed

as the sum of the joint probabilities:

M6) = ¥ P =i L= =i,
7 egpt
= Y Pe{I=jnI =if} (17)

sn—1
I egnt

2 Another way of reducing the delay is to limit the trellis path memory using some symbol release
rule [10]. This will be explored in a later section.

3Actually, the objective function also depends on the observations jT. However, for notational
simplicity we will not explicitly express this dependency.



Each term in the summation can be expanded using the definition of conditional

probability,
0= 3 Pr{It =i =i} Pr{I} = i}}. (18)

on—1
i, egpt

Note that the two terms in (18) are the same as those in (12). We thus proceed as

before, yielding

fME) = 3 [ﬁ Q(jk|ik)J [ﬁ P(iklik_l)P(il)]. (19)

i;‘*lejjy\;_l k=1 k=2

Taking out the common factor Q(j,|é,) results in

FO) = QUalin) 32 Plinlin-)

tn-1€JN
Y nlj Q(]@ﬁk)} [nlj P(ik|ik—1)P(i1):! : (20)

ir egn?
Comparing equations (19) and (20), we can see that the second summation in (20) is
nothing but f(*=V(4,_;), the objective function that was maximized at time n — 1.
Hence, the instantancous MAP detector can be implemented using the following

recursion,

fOGE) = QUali)Pi(in),

FOUi) = QUalin) X Plalin-0)f" i), n=23,..., (21)
in—1€JN
where
tn = arg max fM(,), forn=1,2,.... (22)
in€JN

It is noted that (21) is a special case of a similar equation in [4]. Implementation of
the instantaneous MAP detector using the recursion (21) requires 2(N?* + N) words
of memory, N? -+ N floating point operations and N — 1 comparisons per unit time.

We should point out that there is an obvious gap between the sequence and

the instantaneous MAP detectors. One has a very large delay while the other has

7



no delay. It would be useful to have a detector whose delay is in between that of
the instantaneous and the sequence MAP detectors. We will show how this can be

accomplished in the next section.

IV. Special Case: BSMS and BSC

In this section, we consider the special case of BSMS and BSC. Simulation results
for the sequence and instantaneous MAP detectors for BSMSs with p = 0.9,0.95
and 0.99 are plotted in Figures 1, 2 and 3, respectively, for various values of e. The
simulation was performed on 10,000 samples of the BSMS and the experiment was
repeated 50 times. In Figures 1-3, é 2 Pr{error} = Pr{l, # I,} and the average
values of € (over the 50 experiments) are shown with the error bars indicating the
minimum and maximum values of €. The curve labeled “w/o MAP” indicates the
probability of error when no MAP detection is performed (hence € = ¢).

We also present in these figures the result of the instantaneous MAP detector for
a 2™-ary Markov source (constructed from m successive samples of the BSMS) and a
2™-ary DMC (constructed through m uses of the BSC) for m = 4. Actually, we just
transmitted the BSMS directly over the BSC and allowed the instantaneous MAP
detector to operate on a block of m samples at a time. Hence, we have accomplished
the task of bridging the delay gap between the instantaneous and sequence MAP
detectors. In this case, the delay is m — 1 samples (of the BSMS). Note that the
performance curve of the instantaneous MAP (with m=4) lies in between that of the
instantaneous MAP (with m=1) and the sequence MAP.

Observe that for small values of ¢ all four curves coincide with each other. In
fact, we found that in these cases, I, = J,, i.e., the MAP detector does absolutely
nothing. At a certain point on the graph, the “Inst. MAP (m=4)" and the “Seq.
MAP?” curves diverge from the others. At another point, the “Inst. MAP (m=1)”

curve diverges from the “w/o MAP” curve. This phenomena can be explained by the



following theorems and corollaries.

Theorem 1 Givenp € (3,1),e € (0,3). Forn >3, I, = J7 is the optimum sequence

detection rule if and only if

1 — 2
e < ¢ é _(_.ﬁ)___z (23)
p*+(1—p)
Proof: We first show that if € < ¢, then V j} € J7,
Prilf =ji37 =i} 2 Pe{ly = 7J7 =Ji'},  ViieJ; (24)

Define d £ dpu(i},]7) = Hamming distance between the two sequences (0 < d < n).

Then
a Pr{ly =§7137 =J1} (1= )" iz PUklir-1)P1(51)

o= Ty = — — . 25
PHT =R =i} @0 = o iy Pl AG)
The terms P;(j;) and Pi(21) cancel because they are both % Now define,
é {2,3,-..,”}’
A ) . )
A = {]C = O e = Jkylk—1 :]k‘—l}a
2 (keK:kg¢A). (26)
Hence
(1= e\ Trea PUrlie-1) Tres PGklir-1)
a= — — . (27)
¢ ke P(iklte-1) Tres P(iklin-1)
By definition of A, the products over A are equal and they cancel out,
_ d . .
o= (1 6) H [P(]’k|]'k—1):| _ (28)
c keB P(zklzk_l)

Note that each term inside the product is either 1—%, 1 or %2. The smallest of these

e 1—p : 1
is =P (since p > 7). Thus

(7 (5)" @



A moment of reflection would reveal that |B| < 2d (equality is achieved if the set

{k € KU{1} :ix # jix} does not contain either any pair of consecutive integers, {1}

2 () (5> g

The last inequality follows from our assumption on € (< €).

or {n}). Hence

To prove the converse, we note that 3 sequences 17,j7 € J3* such that if € > ¢,

.- (1;6)d(1;1’)2d<1. 1)

Here we use the fact that n > 3.0

For instantaneous MAP detection, we have the following theorem and corollaries;

the proof of the theorem is provided in [5].

Theorem 2 Given p € (3,1),e € (0,3). Forn > 1, I, = J, is the optimum

instantaneous detection rule if and only if

(1 —2¢)* > 4p — 3. (32)
Corollary 1 Giwen p € (3,3]. Forn > 1, I, = J, is the optimum instantaneous

detection rule Ve € (0, 3).

Corollary 2 Given p € [3,1),e € (0,1). Forn > 1, I, = J, is the optimum

2
/ 3

The above theorems* state that under certain conditions, the simple detection

instantaneous detection rule if and only if

11>
B |

€S€2

rule I, = J, is optimum. Hence, any detection algorithm would be useless under

4Theorem 1 can be extended to a class of non-binary Markov sources. This class consists of
discrete Markov sources with alphabet size N = 2™, p = the probability of returning to the same
state and ¢ = (1 — p)/(N — 1) = the probability of going to any other state (p > ¢). The channel is
obtained through m uses of a BSC. In this case, the critical BER is ¢; = (1—p)?/[(N—1)?p?+(1-p)?].
The proof of this is similar to that of Theorem 1 and is omitted.

10



these conditions. For a given BSMS with parameter p, €; is defined to be the critical
channel BER for the sequence MAP detector. If p > 0.75, then ¢, is defined to be the
critical BER for the instantaneous MAP detector. Sequence (instantaneous) MAP
detection is useful if and only if € > ¢; (¢ > €3). The values of ¢ and €; are indicated
in each Figures 1-3. It can be seen that the simulation results in these figures agree
with Theorem 1 and Corollary 2.

Although the critical BER for the “Inst. MAP (m=4)” curve has not heen derived,
it seems from Figures 1-3 that this value is close to €; (not €z). This is due mainly to
the m — 1 samples of delay in this case. Also, notice the change in the slope of this

curve at € = €.

V. Combined Source-Channel Coding

We now apply the solutions of the MAP detection problems to a combined source-
channel coding system. The system to be considered is depicted in Figure 4. The
source code is a VQ with blocklength k and rate R = £log, N bits/sample (or
bits/dimension), where N is the size of the VQ codebook. The VQ is memoryless in
the sense that it operates on a block of k source samples independent of every other
samples. The source, {X,,}52,, is assumed to be correlated from block to block and,
therefore, the V() encoder output, {7,}2,, is also correlated. This correlation is called
the residual redundancy [6]. We model the residual redundancy by assuming that the
sequence, {I,}5,, forms a discrete Markov source. As before, {I,}52, is transmitted
across a DMC. At the receiver, either sequence or instantaneous MAP detection is
performed. The MAP detector output, {IAn};j":l, is then provided to the V(Q decoder
to obtain the reconstructed vector, X, = ¢; , where C = {co,€1,...,Cn_1} is the VQ
codebook. The system in Figure 4 is similar to that of Sayood and Borkenhagen [6]

except that in [6], they used DPCM rather than VQ for the source code.
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Though the purpose of the VQ encoder is to remove all of the source redundancy,
it fails to do so mainly because of the limitation on the complexity and hence on the
blocklength k [11]. Since, by assumption, the source is highly correlated and since k
is small, the V() encoder output is also correlated from one block to the next. This
inherent redundancy in the data is exploited by the MAP detector to combat channel
errors. The VQ encoder can be thought of as a combined source-channel encoder. It
acts like a source encoder because it reduces the source entropy. It also functions like
a channel encoder since its output contains redundancy. Thus, in Figure 4, there is
no explicit channel encoder (though the MAP detector can be thought of as a channel
decoder). Note that the system in Figure 4 does not require an increase in bandwidth
like those of traditional channel coding techniques.

Simulation results for a first-order Gauss-Markov source, i.e., an autoregressive
(AR(1)) source, with correlation coefficient p = 0.9 are given in Figures 5-9. The
transition probability matrix, P(-|:), was estimated using a long training sequence
(1.2 million source samples). The initial distribution, Pi(-), was chosen to be the
equilibrium distribution [2]. The simulation was performed for 50,000 vectors® from
outside the training sequence and the experiment was repeated 50 times using 50
different realizations of the channel. The average squared-error distortion (averaged
over the 50 trials) are shown (in dB). The variation between the minimum and max-
imum average distortion is quite small and is not shown in these figures. For & = 1
and R = 1.0 (Figure 5), the estimated transition matrix for {/,}2, is close to that of
a BSMS with p = 0.856; the corresponding values of €¢; and €; are shown in Figure 5.
Note the dip in the performance curve at the critical BERs. For comparison, we also

present the results of Farvardin and Vaishampayan’s channel-optimized VQ (COVQ)

SDue to the large complexity in the case of sequence MAP detection, we have limited the trellis
path memory to K = 50N vectors. The symbol release rule is as follows. The best path at time
instant n 1s traced backward R time units. The symbol on this path is then released. We found
that there was no loss of optimality for this large value of K.

12



[7, 8]6. In many cases, both the sequence and instantaneous MAP detection systems
beat the COV(Q by wide margins. For completeness, these results are tabulated in
Tables 1 and 2.

Next, we consider a method of improving the performance of the system in Fig-
ure 4. Observe that, similar to hard-decision convolutional decoding [10], there is an
irreversible loss of information due to the “hard decision” made by the MAP detector.
For example, the instantaneous MAP detector provides the most probable index 7,
to the V(Q decoder; but it does not tell the decoder how much confidence it has that
this choice is correct. This information is embedded in the objective function f™(,).
The remedy, therefore, is to combine the MAP detector and the V(Q decoder into a
single minimum mean-squared error (MMSE) decoder. In this case, the MMSE de-
coder can be thought of as a combined source-channel decoder. We consider only the
instantaneous MMSE decoding problem; the sequence MMSE problem is left open.

From classical estimation theory [3], the MMSE estimate of X,, given J} = jT is
%, = E[X, 37 = §7]. (34)
Using conditional expectation, (34) is equivalent to

o= Y EXulln = in, 37 = JJ1Pr{Ly = inl37 = j1}. (35)
2n€\7N

Note that the expectation in (35) is just the centroid of the encoding region ¢,, denoted
by ¢;, (for LBG-VQ [12], ¢;, = c;, is a codevector). Furthermore, the second term in
the summation in (35) is, up to a scale factor, equal to f{™(3,,). Thus equation (35)

can be re-written as,

1 .
%o == > €, [ (i), (36)
n€JN
where

B= Y ™), (37)

6The results taken from [7] are for a memoryless Gaussian source. However, since k& = 1, we
assume that the same results hold for a Gauss-Markov source.

13



is the scale factor. Implementation of the MMSE decoder requires only an additional
kN 4+ N multiply-add per vector over the instantaneous MAP system in Figure 4.

Simulation results for the instantaneous MMSE decoder are given in Figures 5-9
and in Tables 1 and 2. Note that, in most cases, the result for the instantaneous
MMSE decoder is close to that of the sequence MAP decoder. However, when the
channel is very noisy, the MMSE decoder is considerably better. Of course, the delay
of the instantaneous MMSE decoder is much less than that of the sequence MAP
decoder.

Finally, we combine the ideas presented in this paper with that of COVQ [8]. Since
these two ideas are, loosely speaking, independent, combining them should lead to a
system that is better than one which uses only one of those two ideas. The system
considered consists of a COVQ encoder and a MMSE decoder. Simulation results
for this system are given in Table 3 for a few selected cases. Here, ¢, is the design
BER of the COVQ encoder and ¢, is the actual channel BER (the MMSE decoder
was designed for ¢,). It can be seen that for all positive ¢; considered the proposed
system beats the COV(Q). However, the best result does not occur for ¢; = ¢, but for
€4 slightly smaller than ¢,. One possible explanation for this is the following. Suppose
that instead of using the MMSE decoder, we use the system in Figure 4 with COVQ
replacing VQ. Since the effective channel (between [,, and fn) will be less noisy than
the actual channel (between I, and J,), the COVQ should be design for a channel
with a lower level of noise than the actual channel. Of course, a possible improvement
to the present system is to jointly design the COVQ encoder and the MMSE decoder

using some training sequence approach. We have not tried this in the present work.

VI. Conclusions
We have presented two formulations for MAP detection of discrete Markov sources

over discrete memoryless channels. The first, sequence MAP detection, involves large
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delay and results in a “Viterbi-like” implementation. The second, instantaneous MAP
detection, requires no delay and results in a recursive implementation. For the special
case of the binary symmetric Markov source and binary symmetric channel, we have
shown that the two MAP detectors are useful for only a certain range of channel bit
error rates. The MAP detection problem was applied to a combined source-channel
coding system in which the source code is a small-block-size VQ which does not remove
all of the source redundancy. The MAP detectors were applied to utilize the residual
redundancy at the output of the V@) encoder. Improvements of the combined source-
channel coding system were proposed in the form of instantaneous MMSE decoding
and combined COV() encoding with MMSE decoding. For the Gauss-Markov source
with correlation coeflicient 0.9, the proposed system beats the COV(Q with the same
(small) blocklength (hence same delay).

Future research directions may include alternate methods for estimating the tran-
sition probabilities of the Markov source. This is particularly important for large
alphabet sizes (/N > 128) since training-data approaches are impractical for these
cases. Further studies on channel mismatch and source mismatch (because of the
inaccuracy in estimating the transition matrix of the Markov source) are needed. Ex-
tensions of Theorems 1 and 2 to general N-ary Markov sources would be of interest.
Methods of reducing the MAP detector’s complexity and applications to real-world
data, such as speech or image, should also be investigated.

Finally, we mention that the systems proposed in this paper are particularly useful
in applications, such as remote telemetry, in which there is a hard constraint on the

transmitter complexity.
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F=1,R=10 k=1,R=20 F=1,R=30

logyp € VQ+([VQ+ VQ+ VQ+ | VQ+ VQ+ VQ+ | VQ+ VQ+
VQ | Inst. | Seq. [covQ| Inst. VQ | Inst.| Seq. |covq| Inst. vQ Inst. | Seq. | covq | Inst.

MAP |[MAP| [7] [MMsE MAP [ MAP | [7] |MMSE MAP | MAP | [7] | MMSE

—00 | 4.38 [4.3814.38/4.40[4.38|(9.27 {9.279.27 |9.30|9.27|14.53|14.53{14.53|14.62{14.53
-3.0 {4.35(4.35{4.35| - [4.37({/9.09(9.1119.19| - [9.18({13.75/14.08|14.30| - |14.22
-2.9 1 4.354.3514.35| - [4.37(9.05(9.07{9.17| - }9.16|13.57|13.97|14.25| - |14.15
-2.8 |4.34 (4.34/4.34] - |4.36([8.99(9.02({9.14| - [9.13{13.36(13.87{14.18| - [14.07
-2.7 14.32(4.3214.32| - {4.36({8.92(8.95(9.11| - [9.10({13.09{13.77{14.11| - |13.98
-2.6 [4.31(4.31]4.31] - [4.35|/8.84(8.87|9.07| — |9.07((12.79|13.60{14.04| - [13.86
-2.514.29 [4.2914.29| - [4.34|8.73|8.78(9.02| - [9.03({12.44{13.41|13.95| - |13.72
-2.4 |4.27(4.2714.27| - [4.33(8.60(8.77|8.96| - |8.98(12.03|13.18(13.83] - [13.56
2.3 4.244.24|4.24|4.25|4.32 |1 8.44 [8.67[8.92|8.52| 8.92{/11.56|12.91|13.69|12.04|13.38
-2.2 14.20 (4.20({4.20] - {4.30}8.25|8.54|8.84 | — |8.85|11.04{12.57{13.51| - {13.15
-2.1 {4.1514.15|4.15| — [4.27(/8.03(8.51|8.77| - |8.77(10.46{12.20({13.29| - |12.89
-2.0 [ 4.09 [4.0914.09|4.11|4.25( 7.75(8.36|8.67 | 7.88(8.67 | 9.83 |11.86|13.03{10.50{12.60
-1.9 14.02 (4.02|4.02{ - [4.21]|7.448.22/8.56| — [8.54]9.14 |11.49(12.72| — |12.25
-1.8 (3.93(3.93(3.93| - [4.16]7.07{8.02{8.41| - |8.39| 8.41(10.96{12.43| - |11.86
-1.713.82(3.82(3.82| ~ [4.11(6.64|7.77|8.23| - |8.21| 7.64|10.38|12.07| - |11.43
-1.6 | 3.69 (4.68]3.68| — |4.04|/6.16|7.48|8.01| — |8.00( 6.84(9.95(11.63; - {10.93
-1.5 [ 3.52(3.52(3.97{ - |3.96|5.637.11{7.73| — |7.73]6.00|9.39 |11.14] - [10.40
-1.4 13.32(3.32(3.90| - |3.86(5.04(6.69|7.39| — |7.42| 5.14 | 8.68 |{10.67| - [9.80
-1.3 [ 3.09(3.08]3.82(3.15|3.73 |/ 4.40 |6.19]|6.97 | 5.20{ 7.05 || 4.26 | 7.90 |10.03| 6.47 | 9.13
-1.2 (2.80(2.80(3.70f - [3.59]|3.71|5.61|6.56| — [6.61| 3.37|7.07[9.29| — |8.40
-1.112.47(2.48(3.53] — [3.42{2.98{4.95/6.26| ~ |6.11]2.47|6.188.40 | — |7.60
-1.0 [ 2.09{2.09(3.29(2.27{3.20 {| 2.22 |4.24| 5.75 | 3.63 [ 5.54 || 1.56 | 5.31 | 7.34 | 4.67 | 6.73
-0.9 11.65(1.65/2.96| — (2.94|1.43(3.43|5.02| - |4.87]0.65|4.35|6.23 | - |5.79
-0.8 [1.16]1.16(2.92{ — 12.61]/0.61,2.57|4.09| — |4.12(|-0.25}3.30|5.04 | — |4.79
-0.7 [ 0.61 [1.48(2.44| - |2.20(-0.21|1.96|2.95| - |[3.30([-1.15{2.26 |3.50| - |3.73
-0.6 [-0.00(/0.93]1.96] -~ |1.69]|-1.05|1.18]1.70{ - {2.40(-2.02| 1.23 |1.40| - |2.64
-0.5 {-0.67(0.05(1.07] — {1.06}-1.88{0.27|-0.01| — |1.44(-2.87|0.26 |-2.21| - | 1.56

Table 1: SNR (in dB) Performances of Combined Source-Channel Coding Schemes
Using MAP Detection for AR(1) Source with p = 0.9; k¥ = Dimension; & = Rate
(Bits/Sample); ¢ = Channel Bit Error Rate.
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k=2,R=1.0 k=4,R=1.0

log,, € VQ+ | VQ+ VQ+ VQ+ | VQ+ VQ-+
VQ | Inst. | Seq. | covqQ | Inst. VQ | Inst. | Seq. | covqQ | Inst.

MAP | MAP | [8] | MMSE MAP | MAP 18] | MMSE

—o00 | 7921792 | 792 | 787 | 7.92 | 10.19]10.19|10.1910.18 | 10.19
-3.0 | 7.80 | 7.86 | 7.87 - 7.88 9.94 | 10.01 ] 10.06 - 10.04
-29 [ 7.77 | 7.84 | 7.86 - 7.86 9.88 | 9.96 | 10.03 - 10.00
-2.8 | 774 | 7.82 | 7.84 - 7.85 9.81 | 9.91 | 10.00 - 9.96
-2.7 | 7.69 | 7.79 | 7.82 - 7.83 9.71 | 9.83 | 9.95 - 9.90
-26 | 763 | 7.76 | 7.81 - 7.81 9.60 | 9.76 | 9.90 - 9.83
-2.5 | 7.56 | 7.72 | 71.78 - 7.78 9.46 | 9.66 | 9.83 - 9.76
-24 | 748 | 7.67 | 7.75 - 7.75 9.29 | 9.54 | 9.75 - 9.66
-23 | 737 | 7.61 | 7.70 § 7.31 7.71 9.08 | 940 | 9.64 | 9.15 | 9.54
-22 [ 7.23 | 7.53 | 7.65 - 7.66 8.84 | 9.22 { 9.51 - 9.39
-2.1 | 7.07 | 7.43 | 7.58 - 7.59 8.55 | 9.01 | 9.37 - 9.22
20 | 688 | 7.30 | 7.49 | 6.83 7.51 8.21 § 876 | 9.18 | 837 | 9.01
-1.9 [ 6.65 | 7.15 | 7.39 - 7.42 7.82 | 8.46 | 8.97 - 8.76
-1.8 [ 6.37 | 6.97 | 7.25 - 7.30 7.37 | 8.11 | 8.72 - 8.48
-1.7 | 6.05 | 6.74 | 7.19 - 7.16 6.87 | 7.70 | 8.43 - 8.14
-1.6 | 5.67 | 6.47 | 7.06 - 6.99 6.31 | 7.24 | 8.08 - 7.77
-1.5 | 5.24 | 6.14 | 6.86 - 6.77 5.69 | 6.72 | 7.66 - 7.34
-14 | 4.75 ] 5.92 | 6.62 - 6.52 5.02 | 6.14 | 7.18 - 6.85
-1.3 [ 4.21 1 5651 631 | 437 | 6.21 4.31 | 5.51 | 6.62 | 6.23 | 6.31
-1.2 | 3.61 | 5.17 | 5.95 - 5.85 3.56 | 4.82 | 6.00 - 5.72
-1.1 | 2.97 | 4.63 | 5.50 - 5.42 2.77 | 4.06 | 5.29 - 5.08
-1.0 | 2.27 | 4.01 | 5.04 | 2.76 | 4.91 1.95 | 3.27 | 4.49 | 4.65 | 4.39
-09 1 1.54 | 3.30 | 4.44 - 4.30 1.11 | 2.42 | 3.55 - 3.66
-0.8 [ 0.77 | 2.50 | 3.82 - 3.60 0.25 | 1.56 | 2.49 - 2.90
-0.7 1-0.03 | 1.67 | 2.82 - 2.83 |1 -0.62 | 0.69 | 1.28 - 2.14
-0.6 [-0.85| 0.79 | 1.42 - 1.98 | -1.49 | -0.15 | -0.16 - 1.41
-0.5 [-1.68]-0.13 |-0.23 - 1.11 || -2.37 | -0.78 | -2.34 - 0.74

Table 2: SNR (in dB) Performances of Combined Source-Channel Coding Schemes
Using MAP Detection and MMSE Decoding for AR(1) Source with p = 0.9; k£ =
Dimension; R = Rate (Bits/Sample); e = Channel Bit Error Rate.
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k=1;R=3.0 k=4;,R=1.0
logg €a | logyg€a | COVQ+ | COVQ || COVQ+ | COVQ
MMSE [7] MMSE (8]
—00 9.14 - 6.31 -
-1.9 9.62 - 6.87 -
-1.8 9.62 - 6.90 -
-1.7 9.63 - 6.96 -
-1.3 -1.6 9.63 - 6.86 -
-1.5 9.61 — 6.87 -
-1.4 9.58 - 6.82 -
-1.3 9.54 6.47 6.52 6.23
—00 6.73 - 4.39 -
-1.6 7.45 - 5.30 -
-1.5 7.47 - 5.33 -
-1.4 7.48 - 9.39 -
-1.0 -1.3 7.49 - 5.23 -
-1.2 7.12 - 5.18 -
-1.1 7.03 - 5.11 -
-1.0 6.23 4.67 5.02 4.65

Table 3: SNR (in dB) Performances of Combined Source-Channel Coding Scheme
Using COVQ Encoding and MMSE Decoding for AR(1) Source with p = 0.9; k =
Dimension; R = Rate (Bits/Sample); ¢; = Design Bit Error Rate of COVQ Encoder;
¢, = Actual Channel Bit Error Rate.
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Simulation Results (p=0.9)
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Figure 1: Performances of Instantaneous and Sequence MAP Detectors for Binary
Markov Source with p=0.9; e=Channel Bit Error Rate; é = Pr{error}; m=Block Size
of Instantaneous MAP Detector; Error Bars Indicate the Minimum and Maximum
Values of ¢ in the Simulation.
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Simulation Results (p=0.95)
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Figure 2: Performances of Instantaneous and Sequence MAP Detectors for Binary
Markov Source with p=0.95; e=Channel Bit Error Rate; ¢ = Pr{error}; m=Block Size
of Instantaneous MAP Detector; Error Bars Indicate the Minimum and Maximum
Values of € in the Simulation.
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Simulation Results (p=0.99)
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Figure 3: Performances of Instantaneous and Sequence MAP Detectors for Binary
Markov Source with p=0.99; e=Channel Bit Error Rate; € = Pr{error}; m=Block Size
of Instantaneous MAP Detector; Error Bars Indicate the Minimum and Maximum
Values of ¢ in the Simulation.

22



k VQ ]n
X, € R Encoder in
DMC
% — | VQ I, MAP A
n Decoder " Detector In

Figure 4: Block Diagram of Combined Source-Channel Coding System Using MAP
Detection.
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Figure 5: SNR (in dB) Performances of Combined Source-Channel Coding Schemes
Using MAP Detection and MMSE Decoding for AR(1) Source with p = 0.9; k£ =

Dimension; R = Rate (Bits/Sample); ¢ = Channel Bit Error Rate.
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Figure 6: SNR (in dB) Performances of Combined Source-Channel Coding Schemes
Using MAP Detection and MMSE Decoding for AR(1) Source with p = 0.9; k£ =

Dimension; R = Rate (Bits/Sample); ¢ = Channel Bit Error Rate.
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Figure 7: SNR (in dB) Performances of Combined Source-Channel Coding Schemes
Using MAP Detection and MMSE Decoding for AR(1) Source with p = 0.9; k =

Dimension; R = Rate (Bits/Sample); ¢ = Channel Bit Error Rate.
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Figure 8: SNR (in dB) Performances of Combined Source-Channel Coding Schemes
Using MAP Detection and MMSE Decoding for AR(1) Source with p = 0.9; k =
Dimension; R = Rate (Bits/Sample); ¢ = Channel Bit Error Rate.
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Figure 9: SNR (in dB) Performances of Combined Source-Channel Coding Schemes
Using MAP Detection and MMSE Decoding for AR(1) Source with p = 0.9; k =

Dimension; R = Rate (Bits/Sample); ¢ = Channel Bit Error Rate.
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