
ABSTRACT

Title of Dissertation: ALGORITHMS AND DATA STRUCTURES
FOR INDEXING, QUERYING, AND
ANALYZING LARGE COLLECTIONS OF
SEQUENCING DATA IN THE
PRESENCE OR ABSENCE
OF A REFERENCE

Fatemeh Almodaresi
Doctor of Philosophy, 2020

Dissertation Directed by: Professor Rob Patro
Department of Computer Science

High-throughput sequencing has helped to transform our study of biological

organisms and processes. For example, RNA-seq is one popular sequencing assay

that allows measuring dynamic transcriptomes and enables the discovery (via assem-

bly) of novel transcripts. Likewise, metagenomic sequencing lets us probe natural

environments to profile organismal diversity and to discover new strains and species

that may be integral to the environment or process being studied. The vast amount

of available sequencing data, and its growth rate over the past decade also brings

with it some immense computational challenges. One of these is how do we design

memory-efficient structures for indexing and querying this data. This challenge is

not limited to only raw sequencing data (i.e. reads) but also to the growing collection

of reference sequences (genomes, and genes) that are assembled from this raw data.

We have developed new data structures (both reference-based and reference-free)

to index raw sequencing data and assembled reference sequences. Specifically, we

describe three separate indices, “Pufferfish”, an index over a set of genomes or tran-

scriptomes, and “Rainbowfish” and “Mantis” which are both indices for indexing a

set of raw sequencing data sets. All of these indices are designed with consideration

of support for high query performance and memory efficient construction and query.

The Pufferfish data structure is based on constructing a compacted, colored,

reference de Bruijn graph (ccdbg), and then indexing this structure in an efficient

manner. We have developed both sparse and dense indexing schemes which allow

trading index space for query speed (though queries always remain asymptotically

optimal). Pufferfish provides a full reference index that can return the set of refer-

ences, positions and orientations of any k-mer (substring of fixed length “k”) in the

input genomes. We have built an alignment tool, Puffaligner, around this index for

aligning sequencing reads to reference sequences. We demonstrate that Puffaligner

is able to produce highly-sensitive alignments, similar to those of Bowtie2, but much

more quickly and exhibits speed similar to the ultrafast STAR aligner while requiring

considerably less memory to construct its index and align reads.

The Rainbowfish and Mantis data structures, on the other hand, are based on

reference-free colored de Bruijn graphs (cdbg) constructed over raw sequencing data.

Rainbowfish introduces a new efficient representation of the color information which

is then adopted and refined by Mantis. Mantis supports graph traversal and other

topological analyses, but is also particularly well-suited for large-scale sequence-level

search over thousands of samples. We develop multiple and successively-refined

versions of the Mantis index, culminating in an index that adopts a minimizer-

partitioned representation of the underlying k-mer set and a referential encoding of

the color information that exploits fast near-neighbor search and efficient encoding

via a minimum spanning tree. We describe, further, how this index can be made

incrementally updatable by developing an efficient merge algorithm and storing the

overall index in a multi-level log-structured merge (LSM) tree. We demonstrate the

utility of this index by building a searchable Mantis, via recursive merging, over

10,000 raw sequencing samples, which we then scale to over 15,000 samples via

incremental update. This index can be queried, on a commodity server, to discover

the samples likely containing thousands of reference sequences in only a few minutes.

ALGORITHMS AND DATA STRUCTURES FOR
INDEXING, QUERYING, AND ANALYZING

LARGE COLLECTIONS OF SEQUENCING DATA
IN THE PRESENCE OR ABSENCE OF A REFERENCE

by

Fatemeh Almodaresi

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2020

Advisory Committee:
Professor Rob Patro, Chair/Advisor
Professor Stephen Mount, University Chair Representative
Professor David Mount
Professor Hector Corrada Bravo
Professor Mihai Pop

© Copyright by
Fatemeh Almodaresi

2020

Dedication

I dedicate this work to Khanoom, my grandma, that if it wasn’t for her I

couldn’t image myself be the person I am now or better said, even be!

ii

Acknowledgments

“And whatever of blessings and good things you have, it is from Allah.” Quran

(16:53)

There are many people to whom I owe my gratitude for helping me during

my PhD years and making this thesis a piece of work that I will be thrilled about

forever.

First and foremost, I would like to express my deepest appreciation to my

advisor, Professor Patro. I started my work with him as someone who “believed”

is incapable of any achievements and if it wasn’t for his profound belief in my work

and my abilities and for his patience and relentless support I would not be where I

am now. He has not only guided me to become a critical thinker and a professional

scientist but also a better and stronger person. Taking his class was the pivotal

moment of my life that changed it entirely. I now see myself as a proficient researcher

who is now able and passionate to work on novel problems and he is my role model

for all of that. I have watched him and learned a lot from his extensive knowledge

in his area of expertise, persistence in accomplishing the task, and his constructive

advice and ingenious contributions. The work in this thesis was impossible without

him.

I had great pleasure of collaborating with many researchers and scientists in the

field during my PhD and I thank them all for the precious experience they offered.

iii

I would like to thank all the members of Mantis project, specially Michael Ferdman

and Robert Johnson for fruitful conversations and insightful suggestions during the

three years of collaboration and Prashant Pandey for his invaluable contribution.

I would like to thank my thesis committee members for all of their guidance

through this process; your discussion, ideas, and feedback have been absolutely

invaluable.

Many thanks to my colleagues in our lab and CBCB that had made my PhD

journey full of fun and exciting. Special thanks to Laraib Iqbal Malik who was like a

sister to me and I miss her deeply as well as Mohsen Zakeri for being the brother that

was always there for me. I would also like to acknowledge help and support from

some of the staff members, specifically Kathy Germana, Tom Hurst, and Barbara

Lewis for their kindness, patience and guidance for all the administrative tasks with

a constant smile always on their faces.

I cannot begin to express my thanks to my husband, Hamid, for his unwavering

support, encouragement and accommodation throughout the past years. He gave

up the life back in our country and his career for me to pursue my dream which

has now become a reality. He has my deepest appreciation for never giving up

on me. I would also like to extend my deepest gratitude to my parents for the

love, support, and constant encouragement I have gotten over the years. I want to

specifically thank my mother who has gone through a lot of struggle and pain but

has never surrender nurturing and supporting me. In the end, many thanks to my

little siblings, specially Gazelle for her relentless support.

Finally, I am extremely thankful to all my friends and family for their per-

iv

manent and unfailing support. Specifically, Leila Khatami, who is always my fuel

and motivator. Her help cannot be overestimated as she was always there for me

throughout the hard time when I was alone and far from family. Also, my deepest

appreciation goes to Zohreh Sadeghi and Shohreh Tabesh whom never wavered in

their support. I would like to specifically thank our Iranian and religion community

in NY, who were the most welcoming people one could imagine. Our friends at

Stony Brook always make us feel at home and our friends in NY enriched us with

a lot of knowledge and love that could not have been achieved otherwise. I was

the luckiest person to have them in my life and will always owe a great part of my

mindset, and perspective to them.

Funding: I gratefully acknowledge support from NSF grants BBSRC-NSF/BIO-

1564917, IIS-1247726, IIS-1251137, CNS- 1408695, CCF-1439084, CCF-1617618,

CCF-1716252, and from Sandia National Laboratories. The following grants specif-

ically funded the Mantis line of work discussed in chapters 5 and 6: National Science

Foundation grants CSR- 1763680, CCF-1439084, CCF-1716252, CCF-1750472,

CNS-1408695, CNS-1763680 National Institutes of Health grants R01HG009937,

and R01GM122935. The experiments were conducted with equipment purchased

through NSF CISE Research Infrastructure Grant Number 1405641.

v

Table of Contents

Dedication ii

Acknowledgements iii

Table of Contents vi

List of Tables ix

List of Figures x

List of Abbreviations xii

1 Introduction 1
1 Sequence Indexing . 2

1.1 Reference-based Indices . 2
1.2 Reference-free Indices . 4

2 De Bruijn Graph . 5
2.1 Compacted de Bruijn graph 7
2.2 Colored de Bruijn graph . 9

3 Sequence Search . 10
4 Overview of this document and contribution 12

2 Pufferfish 15
1 Introduction . 15
2 Preliminaries . 17
3 Method . 19

3.1 The dense Pufferfish index . 21
3.1.1 𝑘-mer query in the dense Pufferfish index 25

3.2 The sparse Pufferfish index . 26
3.2.1 𝑘-mer query in the sparse Pufferfish index 28

4 Evaluation . 32
5 Applying the Pufferfish index to taxonomic read assignment 38
6 Discussion & Conclusion . 40

3 Puffaligner 44
1 Introduction . 44
2 Method . 47

vi

2.1 Exact matching in the Pufferfish index 48
2.2 Finding promising MEM chains 51
2.3 Computing base-to-base alignments between MEMs 54

2.3.1 Enhancing alignment computation 57
2.4 Joining mappings for read ends and orphan recovery 59

3 Evaluation . 61
3.1 Configurations of aligners in the experiments 62
3.2 Alignment of whole genome sequencing reads 64
3.3 Alignment of simulated DNA-seq reads in the presence of vari-

ation . 68
3.4 Quantification of RNA-seq reads 72
3.5 Alignment to a collection of microorganisms— simulated short

reads . 75
3.5.1 Single-strain Experiment 77
3.5.2 Bulk Experiment . 79

3.6 Scalability . 84
3.7 Why use an aligner when we have a light-weight and fast

pipeline like Kraken2 + Bracken 86
4 Discussion & Conclusion . 91
5 Supplementary Material . 94

4 Rainbowfish 101
1 Introduction . 101
2 Background and definitions . 104
3 Method . 105

3.1 Design . 106
3.2 Space analysis . 109
3.3 Lower bound for color representation 110
3.4 Implementation . 112

4 Evaluation . 115
4.1 Experimental setup . 116
4.2 Data . 119
4.3 Performance . 121

5 Discussion & Conclusion . 125

5 Mantis 128
1 Introduction . 128
2 Method . 132

2.1 Colored de Bruijn graphs . 132
2.2 A similarity-based colored de Bruijn graph representation . . . 134
2.3 Implementation of the MST data structure 136
2.4 Integration in Mantis . 138
2.5 Comparison with brute-force and approximate-nearest-neighbor-

based approaches . 142
3 Evaluation . 143

vii

3.1 Experimental procedure . 144
3.2 Evaluation results . 147

4 Discussion & Conclusion . 152

6 Updatable Partitioned MST-based Mantis 155
1 Introduction . 155
2 Method . 161

2.1 Merging Classic Mantis indices 163
2.2 Merging MSTs . 168

2.2.1 Static cache . 175
2.3 Constructing and merging minimizer-partitioned counting quo-

tient filters . 183
2.3.1 Merging partitioned CQFs 187

3 Evaluation . 192
3.1 Experimental Setup . 192

3.1.1 System Specifications 192
3.1.2 Input Data . 193

3.2 Merging Benchmarks . 193
3.3 Query Benchmarks . 195
3.4 LSM-Tree Benchmarks . 197

4 Discussion and Conclusion . 200
5 Supplementary Material . 202

5.1 partitioned CQF merge pipeline 202
5.2 Detailed design of the memory-efficient structure to store the

weighted adjacency list for the MST 202

7 Conclusion 208
1 Reference-based Indexing . 209
2 Reference-free Indexing . 211

7 List of Projects 214

Bibliography 217

viii

List of Tables

1 Pufferfish index construction performance 33
2 The time and memory required to load the index and query all 𝑘-mers in

reads of the input FASTQ files for different datasets. 35

3 Performance of different tools for aligning experimental DNA-seq reads. 66
4 Abundance estimation of simulated RNA-seq reads based on different

tools’ alignment outputs. 73
5 Alignment distribution of simulated reads from reference sequence of

covid19. 79
6 Accuracy of abundance estimations for a mock metagenomic sample

based on different tools’ alignment outputs. 82
7 The percentage of aligner engine calls skipped in the alignment cal-

culation pipeline. 94
8 The construction benchmark and final index size for each of the tools

over 4000 selected bacteria . 95
9 Basic information for samples selected for simulating mock bulk metage-

nomic samples. 95
10 Alignment Distribution for samples of 500,000 simulated reads from

SARS and Bat Coronavirus . 96
11 Alignment accuracy of different tools on mock metagenomic sample . 97

12 Different datasets information . 116
13 Construction and bubble calling time for Rainbowfish and VARI for

different datasets. 116
14 Color class representation size by Rainbowfish and VARI 123

15 Cutoffs for adding a 𝑘-mer to an index for a sample based on the
𝑘-mer’s frequency and sample size . 147

16 Comparing the color representation size using RRR and MST encodings150
17 MST construction memory . 150
18 MST construction time . 150
19 MST-based Mantis query benchmark 152

ix

List of Figures

1 de Bruijn Graph . 6

2 Pufferfish query pipeline . 21
3 Pufferfish sparse query pipeline . 31
4 Taxonomy classification Evaluation of the three tools of Kraken, Clark,

and Pufferfish . 37

5 Puffaligner main alignment steps . 52
6 Upset plot showing the agreement of the alignments found by different

tools . 67
7 Comparing the accuracy of different aligners in the presence of dif-

ferent rates of variations in the reference genome 69
8 Time performance of different aligners in the bulk and single micro-

biome experiments. 84
9 Scalability of different aligners over disk space, construction memory,

and construction running time . 85
10 Alignment accuracy in single-strain metagenomic experiment 89
11 Upset plot showing the agreement of the alignments found by different

tools based on the location of the mappings 94
12 The difference in count of assigned reads between Puffaligner+Salmon

pipeline vs Kraken2+Bracken reads on 34 samples 98
13 Species-level heatmap for Puffaligner+Salmon and Kraken2+Bracken 99
14 Genus-level heatmap for Puffaligner+Salmon and Kraken2+Bracken . 100

15 The representation of color information in Rainbowfish. 105
16 Distribution of 𝑘-mer frequencies across equivalence class labels in

Rainbowfish. 112

17 Encoding color classes by finding the MST of the color class graph. . 137
18 Query the MST representation of colors 139
19 Size of the MST-based color-class representation vs. the RRR-based

color-class representation. 148

20 LSM-Tree . 162

x

21 Merging MSTs . 172
22 Merging Partitioned CQFs . 189
23 Comparing the merging performance of Mantis and Vari 195
24 Comparing query performance of the new Mantis with partitioned

CQFs and the Mantis with one giant CQF 197
25 LSM-Tree updating benchmark . 199

xi

List of Abbreviations

ALSOME-SBT All-Some Sequence Bloom Tree
BV Bit Vector
CCDBG Compacted Colored de Bruijn Graph
CDBG Colored de Bruijn Graph
CIGAR Concise Idiosyncratic Gapped Alignment Report
CQF Counting Quotient Filter
CSEQ Contig Sequence
CTAB Contig Table
DBG de Bruijn Graph
EQ Equivalence Classes
ETAB Extension Table
FN False Negative
FP False Positive
MEM Maximally Extended Match
MMP Maximum Mappable Prefix
MPHF Minimum Perfect Hash Function
MST Minimum Spanning Tree
NCBI National Center for Biotechnology Information
PCQF Partitioned Counting Quotient Filter
POS Position Table
SBT Sequence Bloom Tree
SRA Sequence Read Archive
SSBT Split Sequence Bloom Tree
TN True Negative
TP True Positive
UNI-MEM Unique Maximally Extended Match

xii

Chapter 1: Introduction

Modern RNA-seq protocols, driven by short-read sequencing by synthesis tech-

niques, produce tens of millions or more short reads per sample, and have become

a great asset for tasks such as transcriptome abundance estimation and assembly.

The data produced by these protocols and made publicly-available comprises a rich

database of information over hundreds of thousands of individuals samples, with

associated meta-data and extensive variation. In other words, this well-established

and low-cost protocol for producing short reads has provided the community with a

massive collection of raw sequence samples. In addition to the large collections of raw

sequence samples, there exist large databases of assembled genomes, metagenomes

and transcriptomes. There has been a lot of effort and research in organizing and

indexing sequence databases and extracting information from them efficiently [125].

To extract and analyze this information, a dynamic and efficient search index, with

fast queries, over such big databases is essential. In addition to all these applica-

tions, these databases themselves are a great resource of information to find out

sequence-based novelties, differences, disparities and abnormalities across different

species, individuals, tissues, or even among single cells.

1

1 Reference-based and Reference-free Indexing

The inherent differences in the properties of raw (short-read) sequence samples and

assembled reference sequences necessitate different computational strategies and

brings about two different lines of work called reference-based and reference-free

indexing respectively. A reference-based index is defined as an index over a collec-

tion of assembled sequences (typically longer than thousands of bases). Such indices

have been used in various computational and biological applications, such as to per-

form alignment and mapping for genome and transcriptome abundance estimation,

or to compare a sample to a reference to discover or catalog variation. A reference-

free index, on the other hand, is an index over the collection of raw sequencing reads

themselves.

1.1 Reference-based Indices

Aligning and mapping sequence reads to a reference genome or transcriptome is

an important and unavoidable step of many pipelines in genome and transcriptome

analysis. For almost all types of quantification and gene and RNA sequence expres-

sion analyses, we first need to align short reads to the reference transcript. However,

in many analyses, this step is a time-consuming bottleneck. To speed up the align-

ment process, researchers have developed seed-and-extend methodologies to first

find an exact match to a seed from read and continue aligning from that point.

Many popular indices are used for the seed-and-extend approach including 𝑘-mer-

based indices used in tools such as [89], full-text self indices such as the FM-index

2

used in Bowtie2 [79] and the FMD-index used in BWA-MEM [83], and the suffix

array-based index used in tools such as STAR [39]. There have been recent efforts

to extend both approaches to the context of indexing different types of sequence

graphs [125], with tradeoffs between space and time efficiency. On the succinct

self-index side, one notable example is gramtools, the tool in which the graph itself

is represented as a modified BWT [101]. For the recently developed 𝑘-mer lookup

based approaches, however, it is more prevalent to use graphs as the underlying

data structure. Tools like deBGA [95], genomeMapper [143], and BGREAT [92]

are examples of such a methodology.

A wide variety of tools have been developed for indexing references and query-

ing large collections of sequencing reads against them in the past [39, 57, 74, 79,

80, 83, 87, 88, 89]. One way we can divide these indices into two main categories of

full-text and hash-based indices. In the full-text approaches, the series of sequences

are put together and treated as one large text and then indexed based on well-

known data structures for indexing large-text sequences such as FM-index or suffix

array [39, 74, 79, 80, 83, 87]. These indices are usually very small, compared to the

size of the raw data they index but can be slow to query. On the other hand, those

based on indexing fixed-length patterns of size k (𝑘-mers) by putting them in a hash

table are quite fast to query but grow large quickly. Therefore, having an index with

a balance between the memory and query time is still a continuing computational

challenge. Reference-based indices are the main focus of chapters 2 and 3. In chap-

ter 2, we introduce Pufferfish [6] as a reference-based indexing scheme which couples

a practically (and asymptotically) fast hash-based scheme with moderate memory

3

encoding by pairing a graph-based representation for the list of sequences with min-

imum perfect hash functions (MPH) [93]. In chapter 3 we expand the Pufferfish

index to a full short-read aligner that produces highly-accurate results compared to

the most sensitive aligners in the field such as Bowtie2 [79] and STAR [39] in much

less time than Bowtie2 and using much less memory than STAR.

1.2 Reference-free Indices

There is also a different line of work focused on building various types of indices

over the raw short-read data to solve a problem commonly called “large-scale se-

quence search.” The main property of raw sequence databases that makes them

fundamentally different from assembled sequences is that the sequences are short,

incomplete, unprocessed (and thus contain artifacts and contaminants) and highly-

redundant. Specifically, this redundancy grows extensively when dealing with the

short sequences in the form of collections of 𝑘-mers. Graph-based indices make use

of factoring out the repeats in the sequences to reduce the size of the index and

provide faster queries, and thus are particularly suitable for this type of data. In

these approaches, a sequence is split into sub-sequences of size k (called a 𝑘-mer)

where each 𝑘-mer is presented only once in the index. One of the mostly common

types of sequence graphs is the de Bruijn graph and its variants, the colored de

Bruijn graph (cdbg), the compacted de Bruijn graph, and the compacted colored

de Bruijn graph. I have worked on two particular problems in this domain. The

first is to develop a succinct representation of membership information in a colored

4

de Bruijn graph, and the second is an efficient indexing for 𝑘-mers in a compacted

colored de Bruijn graph. Below, I provide a brief overview of previous works on

graph-based representation, along with common use cases of the various algorithms

and methods developed.

2 De Bruijn Graph

A de Bruijn graph (dbg) is a directed graph representing a set of sequences. This

type of graph has two variants, node-centric and edge-centric. In the edge-centric

de Bruijn graph, each directed edge is a unique substring of length 𝑘 in the sequence

set, which we call a 𝑘-mer. Each edge has a prefix overlap of 𝑘 − 1 bases with the

source node and a suffix overlap of length 𝑘 − 1 with the destination node [125].

Figure 1a shows a simple de Bruijn graph for a sample with one string. This type of

graph is designed so that by having a walk through edges and putting all edges next

to each other with overlaps of 𝑘 − 1, we are able to build the reference sequence,

such as a gene or transcript, as shown in 1b. Of course it is worth noting that such

“perfect assembly” is not always possible due to sequencing errors, repeats, and

other complexities that arise. In the node-centric variant of a de Bruijn graph, each

node represents a 𝑘-mer, and the adjacency relationship is defined by overlapping

prefixes and suffixes in the same manner.

The de Bruijn graph is a useful representation of a reference or set of sequencing

reads that helps faster assessment of the sequence similarity in biological tasks such

as assembly or variation detection.

5

CTTGTGTACGTA

CTT TTG TGT GTA

TAC

ACG

GTG

CGT

Sample:

CTTG

(a) de Bruijn graph for a sample with one sequence.

CTTGTGTACGTA
CTTG

TTGT

TGTG

GTGT

TGTA

GTAC

TACG

ACGT

CGTA
(b) (k+1)-mers and
assembled sequence
retrieved walking
the de Bruijn
graph.

Figure 1: Building a de Bruijn graph and reconstructing the reference sequence from it.
This example shows how one can reconstruct the reference sequence having a walk through
nodes and edges in a de Bruijn graph and taking care of overlaps.

One drawback is that for the 𝑘 − 1 overlaps between consequent edges, the

obvious data structures to store this graph are very space-inefficient. For example,

ABYSS [146] represents the de Bruijn graph as a hash table with each 𝑘-mer as

the key and a byte keeping all the connections to other nodes as its value. It

needs 1 bit to show the existence of each of the edges in the forward or reverse-

complement direction (as we have four characters in our alphabet, we can expand

the current node to reach to the next one in at most four different ways in forward

direction). The space such a data structure takes is |𝐸𝑠| (𝑘
4

+ 1) 1
𝛾
bits where 𝛾 ≤ 1,

is the hash table loading factor. This storage is large for even one moderately-sized

genome data set, such as the human genome (starting from 40GB and depending

on the loading factor it can grow to 100GB or more). Yet, a few different data

structures and algorithms have been proposed to reduce the size of a de Bruijn

6

graph and represent it efficiently. One category of these data structures use the

Bloom Filter [16] to represent a de Bruijn graph [28, 29, 63, 128, 138]. Also, there

are a few proposed representations that rely on succinct data structures [52] and

rank and select operations including the original work by Conway and Bromage [35]

and later the work in [18] that is called the BOSS representation of de Bruijn graph

from the authors’ initials. BOSS is an efficient, edge-centric representation of de

Bruijn graph that takes around 3 bits per 𝑘-mer, which is considerably smaller

than the hash table representation. This representation provides a mechanism for

navigation through the de Bruijn graph and also an interface to interact and get

access to the ID of each 𝑘-mer. In section 4, I explain in more detail, our work on

the color representation for a de Bruijn graph built on top of the BOSS structure,

using the interface it provides.

2.1 Compacted de Bruijn graph

The main advantage of a colored compacted de Bruijn graph is being more space-

efficient compared to the classic representation of the de Bruijn graph due to the

nodes representing paths with no branches rather than 𝑘-mers. The process of

compacting the de Bruijn graph is meant to merge all 𝑘-mers in a non-branching

path in the de Bruijn graph with outgoing and incoming degrees of one into a single

node which is called a unitig. The output of this step is called a compacted de Bruijn

graph, that connects these unitigs. It is a variant of the original de Bruijn graph

with unitigs as nodes rather than the 𝑘-mers. This can be used in the same way as a

7

de Bruijn graph for different downstream applications, such as mapping, alignment,

variant detection, etc. This method reduces memory by eliminating the potentially

large amount of overlaps of 𝑘−1 bases repeated in consequent 𝑘-mers. For instance,

the output node after merging two consequent nodes in a node-centric de Bruijn

graph with overlap of 𝑘− 1 would be a unitig of length 𝑘 + 1 where the node starts

with the first base in the source node, continues with the 𝑘−1 overlapping bases and

ends in the last base of the destination. This compaction step can greatly reduce

the memory required to represent the graph and is very useful in cases where we are

dealing with repeat-heavy sequences [95]. Recently, researchers have designed and

implemented algorithms for building a colored compacted de Bruijn graph directly

from raw data instead of building the memory-inefficient de Bruijn graph first and

then compacting it [31, 105]. However, indexing a colored compacted de Bruijn

graph is still a challenge that needs further investigation.

A number of tools exist that use the de Bruijn graph as an index for various

purposes including kallisto [22], deBGA [95], deSALT [96] that are used for indexing

compacted de Bruijn graphs. While most of these indices provide fast query, the

memory they need is large, so that in the case of large datasets their memory

requirements become impractical or intractable. In section 2, we propose a memory-

efficient indexing data structure for a colored compacted de Bruijn graph that has

an asymptotically constant (and pratically fast) expected 𝑘-mer lookup time. We

first use TwoPaCo to build the colored compacted de Bruijn graph [105], and then

develop a novel data structure to index such compacted de Bruijn graphs while

8

keeping a balance between space and query time. One great advantage of a specific

variant of our indexing structure (sparse indexing) is the flexibility that it provides

by giving the option of trading time for space by means of a tunable parameter.

2.2 Colored de Bruijn graph

A colored de Bruijn graph is a generalized form of a de Bruijn graph that allows

representing multiple samples in one unified graph while keeping the identity of

(and information specific to) each sample [66]. The samples may be the result of

different experiments for the same species, known variants of the same sequence, or

different sequencing samples. By counting all of the samples together as one and

building a de Bruijn graph from them, we will lose information about the variations

happening across samples. Colored de Bruijn graphs were originally proposed by

Iqbal et. al [66] in a tool named cortex, useful for variant discovery and genotyping.

Each sample is represented with a unique color in a colored de Bruijn graph and

hence all the 𝑘-mers coming from that sample will carry that color with them. To be

exact, each 𝑘-mer or edge in a colored de Bruijn graph has a color set showing all the

samples that this 𝑘-mer has appeared in. Maintaining each color separately, we can

differentiate between bubbles that are induced by repeats when we see the coverage

evenly distributed along different paths from those induced by errors where one side

of the branch has a much lower coverage [66]. There are other data structures to

represent colored de Bruijn graphs as well, implemented in tools such as BFT [63]

and VARI [109]. However, such data structures, the color information itslef is the

9

dominant part in the total space the colored de Bruijn graph takes compared to the

small portion that is taken by the de Bruijn graph representation.

In chapter 4 we propose a succinct data structure to represent colors in a colored

de Bruijn graph paired with any de Bruijn graph representation that provides a

unique index for each 𝑘-mer. We prove the succinctness of our data structure and

compare our space and query time results with VARI, which uses a similar API (and

the same de Bruijn graph data structure, BOSS) to construct the index and find

bubbles in the colored de Bruijn graph.

3 Sequence Search

The ability to issue sequence-level searches over publicly available databases of as-

sembled genomes and known proteins has played an instrumental role in many stud-

ies in the field of genomics, and has made BLAST [11] and its variants some of the

most widely-used tools in all of science. However, these indices are defined over

a database of reference sequences. Yet, the vast majority of publicly-available se-

quencing data (e.g., the data deposited in the SRA [76]) exists in the form of raw,

unassembled sequencing reads for which the reference-based indices are not a suit-

able choice. Such indices are unsuitable, first, because they do not scale well as

the amount of data grows to the size of the SRA (which today is ≈ 4 petabases of

sequence information) and second, because relatively long queries (e.g., genes) are

unlikely to be present in their entirety as an approximate substring of the input in

the raw sequence reads (which are usually less than 200 nucleotides long).

10

This problem was first introduced and tackled by Solomon and Kingsford

[149]. They introduced a data structure that enables an efficient type of search

over thousands of sequencing experiments. Specifically, they re-phrase the query

and each separate experiment of reads in terms of 𝑘-mer set membership in a way

that is robust to the fact that the target sequences have not been assembled. The

resulting problem is coined as the experiment discovery problem, where the goal is

to return all experiments that contain at least some user-defined fraction 𝜃 of the

𝑘-mers present in the query string. The space and query time of the SBT structure

has been further improved by [150] and [153]. However, scaling this representation

is still an issue which leads us to the next tool that we’ve worked on called Mantis.

In chapter 5, we introduce Mantis, a space- and time-efficient index for searching

sequences in large collections of experiments which is based on colored de Bruijn

graphs. The “color” associated with each 𝑘-mer in a colored de Bruijn graph is the

set of experiments in which that 𝑘-mer occurs. We use an exact counting quotient

filter [121], an Approximate Membership Query (AMQ) structure to store a table

mapping each 𝑘-mer to a color ID, and another table mapping color IDs to the

actual set of experiments containing that 𝑘-mer. We achieve 20% times smaller

memory footprint, and up to 108𝑋 improvement in query time compared to the

split sequence bloom tree representation [150]. We also describe how we reduce the

size of the index even further by developing a new encoding of the color information

representation in an improved variant of the Mantis index that we call MST-based

Mantis.

11

The MST-based Mantis data structure is able to scale to 10, 000 or more raw se-

quencing samples on a moderate server. However, scaling the index further remains

a challenge and the main bottleneck preventing further scaling is the large count-

ing quotient filter holding the 𝑘-mer to color identifier mapping. In chapter 6, we

tackle this problem by partitioning the counting quotient filter into smaller blocks

based on the 𝑘-mer minimizers. This partitioning scheme is particularly effective

in sequencing data, as the index of the counting quotient filter partition for each

𝑘-mer is self-contained and thus there is no need to an additional structure. We

also enable updatability for Mantis by incorporating the MST-based Mantis index

into an LSM-tree structure [120, 136, 137]. This feature is important since it allows

an existing index to be updated rather than requiring the index be rebuilt as new

samples are added. We develop a methodology for merging two MST-based Mantis

indices as prerequisite for the LSM-tree. The details of the memory-and-time aware

merging process is explained in chapter 6.

4 Overview of this document and contribution

I start the document by introducing indices on databases of reference-based se-

quences. In the next chapter, chapter 2, I cover the details of data structures used

for indexing and querying in a database of long assembled sequences and the chal-

lenges specific to this type of data. I talk about the index structure we designed in

Pufferfish [6] for indexing a set of assembled genomes or transcriptomes. In chap-

ter 3 I explain how we develop a seqeuence aligner around the Pufferfish index. In

12

chapter 4, I switch to reference-free indices and remain on that subject for the rest

of the document. I explain in detail the new color representation we introduced for

the 𝑘-mers’ color information in a colored compacted de Bruijn graph in our tool,

Rainbowfish. In chapter 5, I go over the data structure we present in the Mantis

paper for indexing a colored compacted de Bruijn graph combining the previously

introduced representation of colors from Rainbowfish and the counting quotient fil-

ter filter for mapping the 𝑘-mers to their corresponding color ID. In chapter 6, I

describe the algorithmic and engineering improvements we make to be able to scale

Mantis to a larger number of samples. I also cover the design that enables the up-

datability feature for the index to support dynamic insertion of the new samples.

Finally, I give a short summary of my PhD journey, my accomplished projects and

results, and potential future extensions or utilization of the results in the Conclusion,

chapter 7.

Contribution:

• Chapter 2: Joint work with Hirak Sarkar. I contributed equally in the design,

coding and writing.

• Chapter 3: Joint work with Mohsen Zakeri. In the coding I contributed in

writing the sections related to mapping and chaining as well as filling gaps

in the alignment. In the experiments, I mainly contributed in designing the

metagenomic experiemnts (last two sections of the results). We both partici-

pated equally in writing.

• Chapter 4: I wrote almost all the code and ran the experiments. Other con-

13

tributors helped with the writing.

• Chapter 5: This is a work with the Mantis team. All the brainstorming and

development of the ideas have happened throughout our weekly brainstorming

sessions with almost all the members participating. I was responsible for

majority of the coding, and testing as well as running all the experiments. I

also participated in some sections of the writing.

• Chapter 6: This is a work with the Mantis team. All the brainstorming and

development of the ideas have happened throughout our weekly brainstorming

sessions with almost all the members participating. I was responsible for most

(more than 80%) of the implementation, and testing as well as running all the

experiments. I was also the main writer and others helped with revising the

text in the chapter.

14

Chapter 2: Pufferfish: A space and time-efficient compacted de Bruijn

graph index [6]∗

1 Introduction

Motivated by the tremendous growth in the availability and affordability of high-

throughput genomic, metagenomic and transcriptomic sequencing data, the past

decade has seen a large body of work focused on developing data structures and algo-

rithms for efficiently querying large texts (e.g. genomes or collections of genomes) [39,

57, 74, 79, 80, 83, 87, 88, 89]. While numerous approaches have been proposed,

many fall into one of two categories — those based on indexing fixed-length pat-

tern occurrences (i.e., 𝑘-mers, which are patterns of length 𝑘) in the reference se-

quences [57, 88, 89] (most commonly using hashing), and those based on building

full-text indices such as the suffix array or FM-index over the references [39, 74, 79,

80, 83, 87].

Recently, there have been efforts to extend both categories of approaches from

the indexing of linear reference genomes to the indexing of different types of se-

quence graphs [125], with various tradeoffs in the resulting space and time efficiency.

On the full-text index side, examples include approaches such as those of Maciuca
∗A joint work with Hirak Sarkar published in ISMB2018

15

et al. [101] and Beller and Ohlebusch [14] which encode the underlying graph using

variants of the BWT, and the approach of Sirén [147], which indexes paths in the

variation graph (again making use of a substantially modified BWT). There have

also been recent approaches based on 𝑘-mer-indices that adopt graphs as the un-

derlying representation of the text being searched. Examples of such tools include

genomeMapper [143], BGREAT [92], Kallisto [22] and deBGA [95].

Rather than general variation graphs, we focus in this manuscript on the de

Bruijn graph. The de Bruijn graph is a widely-adopted structure for genome and

transcriptome assembly [54, 56, 130]. However, the compacted variant of the de

Bruijn graph has recently been gaining increasing attention both as an indexing

data structure—for use in read alignment [95] and pseudoalignment [22]—as well

as a structure for the analysis of variation (among multiple genomes) [105] and a

reference-free structure for pan-genome storage [63]. The colored compacted de

Bruijn graph [30, 106, 107] (see Section 2 below) is particularly attractive for repre-

senting and indexing repetitive sequences, since exactly repeated sequences of length

at least 𝑘 are represented only once in the set of unique, non-branching paths. As

has been demonstrated by Liu et al. [95], this considerably speeds up alignment to

repeat-heavy genomes (e.g., the human genome) as well as to collections of related

genomes. Here, we consider collections of genomes to be represented as color infor-

mation on the de Bruijn graph (as described by Iqbal et al. [66]; see Section 2 below

for details). Efficient representation of multiple references encoded as colors in a de

Bruijn graph has been investigated in tools such as VARI [109] and Rainbowfish [5].

Both VARI and Rainbowfish have implemented a data structure to efficiently index

16

color encoding on top of a succinct navigational representation of a de Bruijn graph,

proposed in BOSS [18]. However none of these tools are equipped with membership

queries and sequence search and are, hence, regarded as out of scope in the present

paper.

The query speed of existing colored compacted de Bruijn graph indices comes

at a considerable cost in index size and memory usage. Specifically, the need to build

a hash table over the 𝑘-mers appearing in the de Bruijn graph unipaths requires a

large amount of memory, even for genomes of moderate size. Typically, these hash

functions map each 𝑘-mer (requiring at least 8 bytes) to the unipath in which it

occurs (typically 4 or 8 bytes) and the offset where the 𝑘-mer appears in this unipath

(again, typically 4 or 8 bytes). A number of other data structures are also required,

but, most of the time, this hash table dominates the overall index size. For example,

an index of the human genome constructed in such a manner (i.e., by deBGA or

kallisto) may require 40—100GB of RAM (see Table 2). This already exceeds the

memory requirements of moderate servers (e.g., those with 32G or 64G of RAM),

and these requirements quickly become untenable with larger genomes or collections

of genomes.

2 Preliminaries

In this brief section, we formally define the preliminary terms and notations that

are used throughout the manuscript. We consider all strings to be over the alphabet

Σ = {𝐴, 𝐶, 𝐺, 𝑇}. A 𝑘-mer is a string of length 𝑘 over Σ (i.e. 𝑘 ∈ Σ𝑘). Given a

17

𝑘-mer, 𝑥, we define the reverse complement of 𝑥 by 𝑥̄; this is a string obtained by

reversing 𝑥 and then complementing each character according to the rule 𝐴 = 𝑇, 𝐶 =

𝐺, 𝐺̄ = 𝐶, 𝑇 = 𝐴. We define the canonical representation of a 𝑘-mer, 𝑥, by 𝑥̂ =

min(𝑥, 𝑥̄), where the minimum is taken according to the lexicographic ordering. In

this manuscript, we are fundamentally interested in indexing a collection of reference

sequences (be they pre-existing, or assembled de novo); we therefore adopt the

following definitions with respect to the de Bruijn graph and its variants. The de

Bruijn graph is a graph, 𝐺 = (𝑉, 𝐸), built over the 𝑘-mers of some reference string,

𝑠. We define 𝑠(𝑘) as the set of 𝑘-mers present in 𝑠, and assume that 𝑠 is of length

at least 𝑘 (i.e. |𝑠| ≥ |𝑘|). The vertex set of 𝐺 is given by 𝑉 = {𝑥̂ | 𝑥 ∈ 𝑠(𝑘)}.

There exists an edge {𝑢, 𝑣} ∈ 𝐸 between two vertices 𝑢 and 𝑣 if and only if there

exists some (𝑘 + 1)-mer, 𝑧, in 𝑆 such that 𝑢 is a prefix of 𝑧 and 𝑣 is a suffix of 𝑧.

The colored de Bruijn graph associates each 𝑣 ∈ 𝑉 with some specific set of colors.

When building the de Bruijn graph over a collection of reference strings 𝑠1, . . . , 𝑠𝑀 ,

we define the color set for a vertex to be the set of references in which it appears (i.e.

colors(𝑣) = {𝑖 | 𝑣 ∈ 𝑠𝑖(𝑘) ∨ 𝑣 ∈ 𝑠𝑖(𝑘)}). Finally, we define the compacted colored

de Bruijn graph to be the color-coherent compaction of a colored de Bruijn graph.

A compacted de Bruijn graph replaces each non-branching path, 𝑝 = 𝑢 𝑣, in 𝐺

with a single edge (which no longer represents a single 𝑘-mer, but instead represents

the entire string that would be spelled out by walking from 𝑢 to 𝑣 in an orientation

consistent manner). We say that such a compaction is color-coherent if and only if

all vertices 𝑢 ∈ 𝑝 share the same color set. The compacted colored de Bruijn graph

is the graph obtained by performing a maximal color-coherent compaction of the

18

colored de Bruijn graph.

3 Method

We present Pufferfish, a software tool implementing a novel indexing data structure

for the colored compacted de Bruijn graph and the colored colored compacted de

Bruijn graph. We focus on making the colored compacted de Bruijn graph index

practical in terms of disk and memory resources for genomic and metagenomic data

while maintaining very fast query speeds over the index. While we are conscious of

memory usage, we don’t aim to build the smallest possible index. Furthermore, we

introduce two different variants of our index, the dense and sparse Pufferfish indices.

Similar to the FM-index [47], in the sparse Pufferfish index, there is a sampling factor

that can be tuned to trade off search speed for index size. The dense index is, in

a sense, just a variant of the sparse index tuned for maximum speed (and, hence,

taking maximum space). However, as we believe the dense index will be a popular

choice, we implement a few optimizations and describe the structures separately.

Pre-processing We assume as input to Pufferfish the colored compacted de Bruijn

graph on the reference or set of references to be indexed. The Pufferfish software it-

self accepts as input a graphical fragment assembly (GFA) format∗ file that describes

the colored compacted de Bruijn graph. Specifically, this file encodes the unipaths

(i.e., non-branching paths) of the colored compacted de Bruijn graph as “segments”

and the mapping between these unipaths and the original reference sequences as
∗https://github.com/GFA-spec/GFA-spec

19

https://github.com/GFA-spec/GFA-spec

“paths”. Each path corresponds to an input reference sequence (e.g., a genome),

and is spelled out by an ordered set of unipath IDs and the orientation with which

these unipaths map to the reference, so that each unipath has an overlap of 𝑘 − 1

with its following unipath in the path (either in the forward or reverse-complement

direction).

GFA is an evolving standard that is meant to be a common format used by

tools dealing with graphical representations of genomes or collections of genomes.

We note that there are a number of software tools for building the colored compacted

de Bruijn graph directly (i.e., without first building the un-compacted de Bruijn

graph). We adopt TwoPaCo [105], which employs a time and memory-efficient

parallel algorithm for directly constructing the colored compacted de Bruijn graph,

and whose output can be easily converted into GFA format. We note that, due to

a technical detail concerning how TwoPaCo constructs the colored compacted de

Bruijn graph and the GFA file, the output cannot be directly used by Pufferfish.

Therefore, the current workflow of Pufferfish includes a GFA-to-GFA converter that

prepares the TwoPaCo-generated GFA file for indexing by Pufferfish. We note that

TwoPaCo (and therefore Pufferfish) consider the edge-explicit de Bruijn graph. That

is, two 𝑘-mers will be connected if and only if the input reference contains a (𝑘 +1)-

mer having one of these 𝑘-mers as its left 𝑘-mer and the other as its right 𝑘-mer.

Conversely, other tools, like BCALM2 [31] and Kallisto consider the induced-edge

de Bruijn graph, where there will be an edge between any pair of 𝑘-mers overlapping

by 𝑘 − 1 nucleotides, regardless of whether or not a (𝑘 + 1)-mer containing them

exists in the input. This leads to small but persistent differences in the topology of

20

these graphs.

3.1 The dense Pufferfish index

useq

GAGGGGTAACGTGAAGCACCTGGTTCTCTTCCTCACGGCGGCTGTCCTGGTGCAGTATGTGGACACGCT

MPHF (h)

 = ACGGC
pos

ph()

utab

{ref1, p10, o10}, {ref6, p60, o60}

…

…

…

…

{ref80, p80M, o80M}, {ref3, p3M, o3M}, {ref12, p12M, o12M}

rank(bv, ph()) = 3

bv

h()

1 1 1 1

1

etab
fw: 00010000
rev: 00000100

fw: 01010000
rev: 00000111

…

…

…

…

x̂

x̂

x
x̂

Figure 2: An illustration of searching for a particular 𝑘-mer, 𝑥, in the dense Pufferfish
index. The minimum perfect hash yields the index, 𝑝h(𝑥̂) in the pos vector where the 𝑘-mer
appears in the unipath array. The 𝑘-mer is validated against the sequence recorded at this
position in cseq (and, in this case, it matches). A rank operation on 𝑝h(𝑥̂) is performed in
the boundary vector (bv), which yields the corresponding unipath-level information in the
unipath table (ctab). If desired, the relative position of the 𝑘-mer within the unipath can
be retrieved with an extra select and rank operation. Likewise, the rank used to determine
this unipath’s ctab entry can also be used to look up the edges adjacent to this unipath
in the etab table if desired.

The index consists of 6 components (and an optional 7th component), and the

overall structure is similar to what is explained by Liu et al. [95]. Here, we provide

a detailed description of the components of the dense Pufferfish index:

cseq: The unipath sequence array (cseq) consists of the (2-bit encoded) sequence

of all unipaths of the colored compacted de Bruijn graph packed together into

a single array. Typically, the size of this structure is close to (or smaller than)

21

the size of the 2-bit encoded reference sequence, since redundant sequences

are represented only once in this structure. We note that the unipath array

contains the sequence of every valid 𝑘-mer, as well as that of potentially invalid

𝑘-mers (those which span unipath boundaries in the packed array, as the

sequences in the array follow each other without any delimiters or gaps.).

We denote by 𝐿𝑠 the total length (in nucleotides) of the unipath array.

bv: The boundary vector (bv) is a bit-vector of length 𝐿𝑠. The bits of this vector

are in one-to-one correspondence with the nucleotides of the unipath array,

and the boundary vector contains a one at each nucleotide corresponding to

the end of a unipath in cseq, and a zero everywhere else. We can retrieve the

index of each unipath in cseq using the rank operation on bv. rank(bv, 𝑖)

returns the number of 1s in bv before the current index, 𝑖, or, in other words,

the index of the current unipath. This can be used to get reference information

for the current unipath from ctab, which is explained below. We note that bv

is typically very sparse, and so can likely be compressed (using e.g., RRR [132]

or Elias-Fano encoding), though we have not explored this yet.

h : The minimum perfect hash function (h) maps every valid 𝑘-mer in the unipath

array (i.e., all 𝑘-mers not spanning unipath boundaries) to a unique number in

[0, 𝑁), where 𝑁 is the number of distinct valid 𝑘-mers in cseq. We make use

of the highly-scalable minimum perfect hash function (MPHF) construction

algorithm of Limasset et al. [93]. We also note that we build the MPHF on

the canonicalized version of each 𝑘-mer.

22

pos: The position vector (pos) stores, for each valid 𝑘-mer 𝑥, the position where this

𝑘-mer occurs in cseq. Specifically, for 𝑘-mer 𝑥, let 𝑥̄ be the reverse complement

of 𝑥 and let 𝑥̂ be the canonical form of 𝑥 (the lexicographically smaller of 𝑥

and 𝑥̄). Then pos [h(𝑥̂)] contains the starting position of 𝑥 in cseq such that

cseq [h(𝑥̂) : h(𝑥̂) + 𝑘] = 𝑥.

ctab: The unipath table (ctab) stores, for each unipath appearing in cseq, the

reference sequences (including reference ID (ref), offset (p) and orientation

(o) in Fig. 2) where this unipath appears in the reference. This is similar to a

“posting list” in traditional inverted indices, where all occurrences of the item

(in this case, an entire colored compacted de Bruijn graph unipath) are listed.

The order of the unipaths in ctab is the same as their order in cseq, allowing

the information for a unipath to be accessed via a simple rank operation on

bv.

etab: The edge table (etab) stores, for each unipath appearing in cseq, the nu-

cleotides that encode the edges to the left and right of this unipath. The edge

table maintains a byte for each unipath, where each byte encodes which of

the left and right extensions of this unipath produce a valid 𝑘-mer in the de

Bruijn graph. Specifically, the first four bits of the byte are set to 1 if there is

a left neighbor that can be reached by taking the leftmost (𝑘 − 1)-mer of the

current unipath and pre-pending A, C, G, and T respectively, and these bits

are 0 otherwise. The last 4 bits of the byte likewise encode the connectivity

for the right end of the unipath. This edge table is useful for speeding up

23

navigation in the graph, because we find that the compacted de Bruijn graph

is often sparse, so that querying for all potential neighbors of a unipath can

be wasteful, since many unipaths have few neighbors.

eqtab: Optionally, an equivalence class table that records, for each unipath, the

set of reference sequences where this unipath appears. Pre-computation and

storage of these equivalence classes can speed up certain algorithms (e.g., pseu-

doalignment [22]).

These structures allow us to index every 𝑘-mer in the colored compacted de

Bruijn graph efficiently, and to recall, on demand, all of the reference loci where

a given 𝑘-mer occurs. We note here that the 𝑘-mers of the colored compacted de

Bruijn graph constitute only a subset of the 𝑘-mers in cseq. We refer to all 𝑘-mers in

cseq that do not span the boundary between two unipaths as valid 𝑘-mers; these are

in one-to-one correspondence with the 𝑘-mers of the colored compacted de Bruijn

graph.

Additionally, we note that navigation among the unipaths in the index could

be accomplished without an explicit edge table. Specifically, upon reaching the end

of a unipath, one could query the index with all possible extensions to see which are

supported by the indexed sequence, and potentially spurious overlaps (i.e., unipaths

which overlap by 𝑘 − 1 nucleotides but are not actually adjacent in any reference

sequence) can be filtered out by traversing the relevant entries of ctab. However,

this process is not efficient, and is particularly wasteful if the average degree of

each unipath is small since, in this case, most queries for neighbors would fail or

24

return spurious overlaps which would then be filtered out. An empirical analysis of

the compacted colored de Bruijn graph of the datasets we analyze suggested that

these graphs do, in fact, tend to have a skewed degree distribution, and that most

unipaths exhibit a small degree. This motivates the utility of etab, especially given

that it takes relatively small space.

3.1.1 𝑘-mer query in the dense Pufferfish index

By using a minimum perfect hash function (MPHF), h, to index the valid 𝑘-mers,

we avoid the typically large memory burden associated with standard hashing ap-

proaches. Instead, the identity of the hashed keys is encoded implicitly in cseq.

Given a 𝑘-mer 𝑥, we can check for its existence and location in the following way.

We first compute 𝑖 = ℎ(𝑥̂), the index assigned to the canonicalized version of 𝑘-mer

𝑥 by ℎ. If 𝑖 ≥ 𝑁 , where 𝑁 is the number of unique valid 𝑘-mers, then we immedi-

ately know that 𝑥 is not a valid 𝑘-mer. Otherwise, we retrieve the position 𝑝𝑖 stored

in pos[𝑖]. Finally, we check if the encoded string cseq[𝑝𝑖 : 𝑝𝑖 + 𝑘] is identical to 𝑥 (or

𝑥̄). If so, we have found the unipath location of this 𝑘-mer. Otherwise, 𝑥 is not a

valid 𝑘-mer. Here, we use the notion 𝑆[𝑖 : 𝑗] to mean the substring of 𝑆 from index

𝑖 (inclusive) to index 𝑗 (exclusive) with length 𝑗 − 𝑖− 1.

Given 𝑝𝑖, we can retrieve the reference positions by computing 𝑟𝑝𝑖
= rank(bv, 𝑝𝑖),

which provides an index into ctab that is associated with the appropriate uni-

path. This provides all of the reference sequences, offsets and orientations where

this unipath appears. We compute the offset of 𝑘-mer 𝑥 in the unipath as 𝑜𝑖 =

25

𝑝𝑖 − select(𝑟𝑝𝑖
), where select(𝑟𝑝𝑖

) returns the start position of the unipath in

ctab. This allows us to easily project this 𝑘-mer’s position onto each reference se-

quence where it appears. We note that querying a 𝑘-mer in the Pufferfish index is

an asymptotically constant-time operation, and that the reference loci for a 𝑘-mer

𝑥 can be retrieved in 𝒪(occ(𝑥)) time, where occ(𝑥) is the number of occurrences of

𝑥 in the reference.

3.2 The sparse Pufferfish index

The Pufferfish index, as described above, is relatively memory-efficient. Yet, what is

typically the biggest component, the pos vector, can still grow rather large. This is

because it requires ⌈lg(|cseq|)⌉ bits for each of the 𝑁 valid 𝑘-mers in cseq. However,

at the cost of a slight increase in the practical (though not asymptotic) complexity

of lookup, the size of this structure can be reduced considerably. To see how, we

first make the following observation:

Observation 1. In the colored compacted de Bruijn graph (and hence, in cseq),

each valid 𝑘-mer occurs exactly once (𝑘-mers occuring between unipath boundaries

are not considered). Hence, any valid 𝑘-mer in the colored compacted de Bruijn

graph is a complex 𝑘-mer (i.e., it has an in or out degree greater than 1), a terminal

𝑘-mer (i.e., it appears at the beginning or end of some input reference sequence),

or it has a unique predecessor and / or successor in the orientation defined by the

unipath.

We can exploit this observation in Pufferfish to allow sampling of the 𝑘-mer

26

positions. That is, rather than storing the position of each 𝑘-mer in the unipath

array, we store the position only for some subset of 𝑘-mers, where the rate of sam-

pling is given by a user-defined parameter 𝑠. For those 𝑘-mers that are not sampled,

we store, instead, three pieces of information; the extension that must be applied

to move toward the closest 𝑘-mer at a sampled position (the QueryExt vector),

whether or not the corresponding 𝑘-mer in cseq is canonical (the isCanon vector),

and whether the extension to reach the nearest sampled position should be applied

by moving to the right or the left (the Direction vector). The QueryExt vector

encodes the extensions in a 3-bit format so that variable-length extensions can be

encoded, though every entry in this vector is reserved to take the same amount of

space (3 times the maximum extension length, 𝑒). The isCanon vector is set to 1

whenever the corresponding 𝑘-mer appears in cseq in the canonical orientation, and

is set to 0 otherwise. The Direction vector is set to 1 whenever the corresponding,

non-sampled, 𝑘-mer should be extended to the right, and it is set to 0 when the

corresponding 𝑘-mer should be extended to the left. We additionally store an extra

bit vector with the same size as cseq (the isSamp vector) that is set to 1 for any

𝑘-mer whose position is sampled and 0 for all other 𝑘-mers.

This idea of sampling the positions for the 𝑘-mers is similar to the idea of

sampling the suffix array positions that is employed in the FM-index [47], and the

idea of walking to the closest sampled position to verify a 𝑘-mer occurs is closely

related to the shallow forest covering idea described by Belazzougui et al. [13] for

verifying membership of a 𝑘-mer in their fully-dynamic variant of the de Bruijn

graph. This scheme allows us to trade off query time for index space, to allow the

27

Pufferfish index to better scale to large genomes or collections of genomes.

3.2.1 𝑘-mer query in the sparse Pufferfish index

𝑘-mer query in the sparse Pufferfish index is the same as that in the dense index,

except for the first step — determining the position of the 𝑘-mer 𝑥 in cseq. When

we query the MPHF with 𝑥 to obtain 𝑖 = ℎ(𝑥̂), there are three possible results.

1. In the first case, if 𝑖 ≥ 𝑁 , this implies, just as in the dense case, that 𝑥 is not

a valid 𝑘-mer.

2. In the second case, if 𝑖 < 𝑁 and isSamp[𝑖] = 1, this implies that we have

explicitly stored the position for this 𝑘-mer. In this case we can retrieve that

position as 𝑝𝑖 = pos[rank(isSamp, 𝑖)] and proceed as in the dense case to

validate 𝑥 and retrieve its reference positions.

3. In the third case, if 𝑖 < 𝑁 and isSamp[𝑖] = 0, this implies we do not know the

position where 𝑥 would occur in cseq, and we must find the closest sampled

position in order to decode the position of 𝑥 (if it does, in fact, occur in cseq).

This is accomplished by Algorithm 1.

Intuitively, Algorithm 1 appends nucleotides stored in the QueryExt array to

𝑥 to generate a new 𝑘-mer, 𝑥′, which either has a sampled position, or is closer to a

sampled position than is 𝑥. The extension process is repeated with 𝑥′, 𝑥′′, etc. until

either an invalid position is returned by h, or a sampled position is reached. If an

invalid position is returned at any point in the traversal, the original 𝑘-mer cannot

28

Algorithm 1 Find Query Offset
procedure FindQueryOffset

𝑥← the query 𝑘-mer

𝑥̂𝑞 ← 𝑥̂
𝑖← h(𝑥̂)

𝑜𝑓𝑓𝑠𝑒𝑡← 0

while 𝑖 < 𝑁 and not isSamp[𝑖] do
𝑒𝑥𝑡𝐼𝑑𝑥← i-rank(isSamp, i)

𝑒𝑥𝑡𝑁𝑢𝑐← QueryExt [extIdx]

𝑒𝑥𝑡𝐿𝑒𝑛← len(extNuc)

if isCanon[𝑒𝑥𝑡𝐼𝑑𝑥] and Direction[𝑒𝑥𝑡𝐼𝑑𝑥] then
𝑥← 𝑥̂[𝑒𝑥𝑡𝐿𝑒𝑛 :] + 𝑒𝑥𝑡𝑁𝑢𝑐
𝑜𝑓𝑓𝑠𝑒𝑡← 𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑒

end if
if not isCanon[𝑒𝑥𝑡𝐼𝑑𝑥] and Direction[𝑒𝑥𝑡𝐼𝑑𝑥] then

𝑥← ¯̂𝑥[𝑒𝑥𝑡𝐿𝑒𝑛 :] + 𝑒𝑥𝑡𝑁𝑢𝑐
𝑜𝑓𝑓𝑠𝑒𝑡← 𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑒

end if
if isCanon[𝑒𝑥𝑡𝐼𝑑𝑥] and not Direction[𝑒𝑥𝑡𝐼𝑑𝑥] then

𝑥← 𝑒𝑥𝑡𝑁𝑢𝑐 + 𝑥̂[: −𝑒𝑥𝑡𝐿𝑒𝑛]

𝑜𝑓𝑓𝑠𝑒𝑡← 𝑜𝑓𝑓𝑠𝑒𝑡− 𝑒
end if
if not isCanon[𝑒𝑥𝑡𝐼𝑑𝑥] and not Direction[𝑒𝑥𝑡𝐼𝑑𝑥] then

𝑥← 𝑒𝑥𝑡𝑁𝑢𝑐 + ¯̂𝑥[: −𝑒𝑥𝑡𝐿𝑒𝑛]

𝑜𝑓𝑓𝑠𝑒𝑡← 𝑜𝑓𝑓𝑠𝑒𝑡− 𝑒
end if
𝑖← h(𝑥̂)

end while
if 𝑖 ≥ 𝑁 then return −1

end if
𝑝𝑖 ← pos [rank(isSamp,i)] - offset

if cseq[𝑝𝑖 : 𝑝𝑖 + 𝑘] == 𝑥̂𝑞 or cseq[𝑝𝑖 : 𝑝𝑖 + 𝑘] == ¯̂𝑥𝑞 then
return 𝑝𝑖

else
return −1

end if
end procedure

29

have been a valid query. On the other hand, if a sampled position is reached, one

still needs to verify that the 𝑘-mer implied by the query procedure is identical to

the original 𝑘-mer query 𝑥 (or 𝑥̄). To check this, one simply traverses back to the

position in cseq for the original 𝑘-mer 𝑥 that is implied by the sampled position and

sequence of extension operations. The rest of the search proceeds as for the dense

case. The whole process of a (successful) 𝑘-mer query in sparse index is illustrated

in Figure 3 through an example.

By altering the stored extension size 𝑒 and the maximum sampling rate 𝑠, one

can limit the maximum number of extension steps (and hence the maximum number

of hash lookups) that must be performed in order to retrieve the potential index of

𝑥 in cseq. A denser sampling and longer extensions require fewer possible extension

steps, while a sparser sampling and shorter extensions require less space for each

non-sampled position. If 𝑒 ≥ 𝑠−1
2
, one can guarantee that at most a single extension

step needs to be performed for any 𝑘-mer query, which allows 𝑘-mer queries to

remain practically very fast while still reducing the index size for large reference

sequences.

Even though the sparse index maintains a number of extra bit vectors not

required by the dense index, it is usually considerably smaller. Assume a case where

the extension length 𝑒 = 𝑠−1
2

is approximately half of the sampling factor (the

minimum length that will guarantee each query requires at most a single extension

step). Since we keep the extension required to get to the closest position in the left

or right direction, we need to keep 𝑒 bases for a 𝑘-mer, with each base represented

using 3 bits (since we need to allow encoding extensions of length < 𝑒, for which

30

GCGGCTG

TCACGGCGGCTGTCCTG
1000000001000 T000

CT00

ACT0

CACT

CCT0

CT00

T000

TCCT

…
…

IsSamp

Direction

GCGGCTG

MPHF h(x)x=

h(x) - rank(IsSamp[h(x)])

TCCT =x’

h(x’)

k’

Extension Vectorx … …Unipath Array

pos[rank(IsSamp[h(x’)])]

x - queried k-mer (not sampled)

x’- sampled k-mer (nearest)

-00001111-000

pos(x) = pos[rank(IsSamp[h(x’)])] - 4

0110000001000
IsCanon

CAGCCGC
pos[rank(IsSamp, h(x’))]

rank(IsSamp, h(x))

pos[rank(IsSamp, h(x’))] - 4

Figure 3: An illustration of searching for a particular 𝑘-mer in the sparse pufferfish index
with sample factor (𝑠) of 9 and extension size (𝑒) of 4. Vector isSamp has length equal
to the number of valid 𝑘-mers, and isCanon and Direction have length equal to the total
number of non-sampled 𝑘-mers. The minimum perfect hash yields the index h(𝑥̂) for
𝑥 = CAGCCGC in isSamp, where we discover that the 𝑘-mer’s position is not sampled.
Since isCanon [h(𝑥̂)− rank(isSamp, h(𝑥̂))] = 0 we know that the 𝑘-mer, if present, is
not in the canonical orientation in cseq. Since 𝑥 is in the canonical orientation, we must
reverse-complement it as 𝑥̄ = GCGGCTG before adding the extension nucleotides. Then,
based on the value of Direction[h(𝑥̂)− rank(isSamp, h(𝑥̂))], we know that to get to the
closest sampled 𝑘-mer we need to append the extension nucleotides to the right of 𝑥̄.
The extension is extracted from the QueryExt vector. Since extensions are recorded only
for non-sampled 𝑘-mers, to find the index of the current 𝑘-mer’s extension, we need to
determine the number of non-sampled 𝑘-mers preceding index h(𝑥̂). This can easily be
computed as h(𝑥̂) − rank(isSamp, h(𝑥̂), which is the index into QueryExt from which
we retrieve this 𝑘-mers’s extension. We create a new 𝑘-mer, 𝑥′, by appending the new
extension to 𝑥̄, and also removing its first 𝑒 = 4 bases. Then, we repeat the same process
for the new 𝑘-mer 𝑥′. This time, the 𝑘-mer is sampled. Hence, we go directly to the
index in cseq suggested by pos[rank(isSamp, h(𝑥′))]. To check if the original 𝑘-mer we
searched for exists, we need to compare the 𝑘-mer starting from 𝑒 = 4 bases to the left
of the current position with the non-canonical version of the original 𝑘-mer (since the
sampled 𝑘-mer 𝑥′ was arrived at by extending the original query 𝑘-mer by 4 nucleotides
to the right). Generally speaking, once we reach a sampled position, to check the original
query 𝑘-mer, we need to move in cseq to either the right or the left by exactly the distance
we traversed to reach this sample, but in the opposite direction.

31

the encoding must allow a delimiter). Hence, this requires 3𝑒 bits per 𝑘-mer for

the QueryExt vector. The isCanon and Direction vectors each require a single

bit per non-sampled 𝑘-mer, and the isSamp vector requires a single bit for all

𝑁 of the valid 𝑘-mers. Assume, for simplicity of analysis, that the sampled 𝑘-

mers are perfectly evenly-spaced (which is not possible in practice since e.g., we

must require to sample at least one 𝑘-mer from each unipath), so that the number

of sampled 𝑘-mers is simply given by 𝑁
𝑠

= 𝑁
2𝑒+1

. Further, since we are ignoring

unipath boundary effects, assume that 𝑁 = 𝐿𝑠. Since the space required by the

rest of the index components (e.g. the MPHF, and ctab, etc.) is the same for

the dense and sparse index, the sparse index will lead to a space savings whenever

𝑁
2𝑒+1
⌈lg(𝑁)⌉+

[︁
𝑁 +

(︁
𝑁 −

(︁
𝑁

2𝑒+1

)︁)︁
(3𝑒 + 2)

]︁
< 𝑁 ⌈lg(𝑁)⌉. Under this analysis, in a

typical dataset, such as the human genome with lg(𝐿𝑠) ≈ lg(𝑁) ≈ lg(3× 109) ≥ 30

bits, and choosing 𝑠 = 9 and 𝑒 = 4, so that we sample every 9th 𝑘-mer on average,

and require at most one extension per query, we save, on average, ∼ 14.5 bits per

𝑘-mer. Of course, the practical savings are less because of the boundary effects we

ignored in the above analysis.

4 Evaluation

We explored the size of the index along with the memory and time requirements

for index building and 𝑘-mer querying (a fundamental building block of many map-

ping and alignment algorithms) using Pufferfish and two other tools, BWA (BWA-

MEM [83], specifically) and Kallisto.

32

Tool Memory (MB) Time (h:m:s)
Human

Transcriptome
Human
Genome

Bacterial
Genomes

Human
Transcriptome

Human
Genome

Bacterial
Genomes

BWA 292 4,443 32,213 0:02:56 0:58:27 13:11:45
Kallisto 3,552 150,657 315,387 0:03:05 3:27:42 9:07:35
pufferfish dense 1,466 27,438 75,342 0:04:13 2:09:25 13:10:00
pufferfish sparse 1,466 27,438 75,342 0:04:41 2:28:53 13:46:11
TwoPaCo 1,466 9,380 17,407 0:02:47 0:34:43 9:59:05
pufferize 584 27,438 75,342 0:0:10 0:21:53 1:03:17
pufferfish dense index 438 20,000 50,459 0:01:16 0:51:20 2:07:38
pufferfish sparse index 331 17,745 50,457 0:01:44 1:10:48 2:43:49

Table 1: Upper half of the table shows construction time and memory requirements for
BWA, Kallisto and Pufferfish (dense and sparse) on three different datasets. In the lower
half of the table, the construction statistics are provided for different phases of Pufferfish
pipeline. The time requirement for Pufferfish is the sum of different sub parts of the
workflow, where the memory requirement is the 𝑚𝑎𝑥 of the same.

Though BWA is not a graph-based index, it was chosen as it implements the

highly memory-efficient FMD-index [83], which is representative of a memory-frugal

approach. It is also worth noting that, although we only test querying for fixed-

length 𝑘-mers here, BWA is capable of searching for arbitrary length patterns — an

operation not supported by the Kallisto or Pufferfish indices. On the other hand,

Kallisto [22] adopts a graph-based index, and provides very fast 𝑘-mer queries. Both

BWA and Kallisto implement all phases of index construction (i.e., the input to these

tools is simply the FASTA files to be sequenced). For Pufferfish, however, we first

need to build the colored compacted de Bruijn graph. We build the colored com-

pacted de Bruijn graph and dump it in GFA format using TwoPaCo [105]. Then (as

the output does not satisfy our definition of a colored compacted de Bruijn graph) we

need to further prepare the GFA file for indexing. We call this process pufferization.

It converts the GFA file to the format accepted by Pufferfish (i.e., each 𝑘-mer should

appear only once in either orientation among all the unipaths, and all unipaths con-

nected in the colored compacted de Bruijn graph should have an overlap of exactly

33

𝑘− 1 bases). Finally, we build both dense and sparse Pufferfish indexes and bench-

mark the time and memory for all steps of the pipeline individually. All experiments

were performed on an Intel(R) Xeon(R) CPU (E5-2699 v4 @2.20GHz with 44 cores

and 56MB L3 cache) with 512GB RAM and a 4TB TOSHIBA MG03ACA4 ATA

HDD running ubuntu 16.10, and were carried out using a single thread except for

colored compacted de Bruijn graph building step using TwoPaCo. For all datasets,

we consider 𝑘 = 31, and the sparse Pufferfish index was constructed with 𝑠 = 9 and

𝑒 = 4.

References and query datasets We performed benchmarking on three different ref-

erence datasets, selected to demonstrate how the different indices scale as the under-

lying reference size and complexity increases. Specifically, we have chosen a com-

mon human transcriptome (GENCODE version 25, 201 MB, having 79,334,030

distinct 𝑘-mers), a recent build of the human genome (GRCh38, 2.9 GB, hav-

ing 2,652,229,049 distinct 𝑘-mers), and an ensemble of > 8000 bacterial genomes

and contigs (18G, having 5,350,807,438 distinct 𝑘-mers) downloaded from RefSeq

(ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/). The human transcrip-

tome represents a small reference sequence (which nonetheless exhibits considerable

complexity due to e.g., alternative splicing), the human genome represents as a

moderate (and very common) size reference, and the collection of bacterial genomes

acts as a large reference set. For the 𝑘-mer query experiments, we search for all the

𝑘-mers from an experimental sequencing dataset associated with each reference. To

query the human transcriptome, we use 𝑘-mers from SRA accession SRR1215997,

34

ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/

Tool Memory (MB) Time (h:m:s)
Human
Transcriptome

Human
Genome

Bacterial
Genome

Human
Transcriptome

Human
Genome

Bacterial
Genome

BWA 308 4,439 27,535 0:17:35 0:50:31 0:14:05
Kallisto 3,336 110,464 232,353 0:02:01 0:19:11 0:22:25
pufferfish dense 454 17,684 41,532 0:02:46 0:10:37 0:06:03
pufferfish sparse 341 12,533 30,565 0:08:34 0:22:11 0:08:26

Table 2: The time and memory required to load the index and query all 𝑘-mers in reads
of the input FASTQ files for different datasets.

with 10,683,470 reads, each of length 100 bases. To query the human genome, we

use 𝑘-mers from SRA accession SRR5833294 with 34,129,891 reads, each of length

76 bases. Finally, to query the bacterial genomes, we use 𝑘-mers from SRA accession

SRR5901135 (a sequencing run of E. coli) with 2,314,288 reads of variable length.

Construction time The construction time for various methods depends, as ex-

pected, on the size and complexity of the references being indexed (Table 1). No tool

exhibits faster index construction than all others across all datasets, and the differ-

ence in construction time between the fastest and slowest tools for any given dataset

is less than a factor of 3. All tools perform similarly for the human transcriptome.

For indexing the human genome, BWA is the fastest, followed by Pufferfish and

then Kallisto. For constructing the index on all bacterial genomes, Kallisto finished

most quickly, followed by BWA and then Pufferfish. The time (and memory) bot-

tleneck of index construction for Pufferfish is generally TwoPaCo’s construction of

the colored compacted de Bruijn graph. This is particularly true for the bacterial

genomes dataset where TwoPaCo’s colored compacted de Bruijn graph construction

accounts for ∼ 85% of the total index construction time. This motivates considering

potential improvements to the TwoPaCo algorithm for large collections of genomes

35

(as well as considering other tools which may be able to efficiently construct the

required colored compacted de Bruijn graph input for Pufferfish).

Construction memory usage Unlike construction time, the memory required by

the different tools for index construction follows a clear trend; BWA requires the

least memory for index construction, followed by Pufferfish, and Kallisto requires

the most memory. There are also larger differences in the construction memory

requirements than the construction time requirements. For example, to construct

an index on the human genome, Kallisto requires ∼ 34 times more memory than

BWA (and ∼ 5.5 times more memory than Pufferfish). With respect to the current

pipeline used by pufferfish, we see that TwoPaCo is the memory bottleneck for the

human transcriptome and bacterial genomes datasets, while pufferize consumes the

most memory for the human genome. For the bacterial genomes dataset in partic-

ular, TwoPaCo consumes over 3 times as much memory as the next most intensive

step (pufferize) and ∼ 4.8 times as much memory as actually indexing the input

colored compacted de Bruijn graph. We note that TwoPaCo implements a multi-

pass algorithm, which can help control the peak memory requirements in exchange

for performing more passes (and therefore taking longer to finish). However, we did

not thoroughly explore different parameters for TwoPaCo’s Bloom filter size (which

indirectly affects the number of passes).

36

puff kraken clark
tools

0.2

0.3

0.4

0.5

0.6

F1

(a)

puff kraken clark
tools

0.5

0.6

0.7

0.8

0.9

Sp
ea

rm
an

(b)

puff kraken clark
tools

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
ar

d

(c)

puff kraken clark
tools

0.3

0.4

0.5

0.6

0.7

0.8

F1

(d)

puff kraken clark
tools

0.6

0.7

0.8

0.9

1.0

Sp
ea

rm
an

(e)

puff kraken clark
tools

0.4

0.5

0.6

0.7

0.8

M
ar

d

(f)Figure 4: Full taxonomy classification evaluation for three tools of Kraken, Clark, and
Pufferfish. In a, b, and c we compare the F-1, spearman correlation, and mean absolute
relative difference (mard) metrics for the results of the three tools over the 10 simulated
read datasets of LC1-8 and HC1,2 without using any filtering options. In the plots in
the second row, we evaluate accuracy of reports after running each tool with their default
filtering option. (which filters out any mapping with less than 20% kmer coverage for
Kraken, 44 nucleotide coverage for Pufferfish and without a “high-confidence” for Clark.)

37

5 Applying the Pufferfish index to taxonomic read assignment

In addition to benchmarking index construction and the primitive lookup operations,

we also decided to apply the Pufferfish index to a problem where we thought its

characteristics might be useful. To this end, we implemented a prototype system

for taxonomic read assignment based on Pufferfish and a minor modification of the

kraken algorithm, described in the seminal work of Wood and Salzberg [160].

Specifically, we consider a Pufferfish index built over complete bacterial and ar-

chaeal genomes (this is Kraken’s bacteria database), and we implement a lightweight

mapping algorithm where, for each read, we seek a consistent (i.e. co-linear) chain of

unique maximal exact matches (uni-MEMs [95]). To determine to which node in the

taxonomy a read should be assigned, we adopt Kraken’s basic algorithm with the fol-

lowing modification. Instead of scoring each root-to-leaf path based on the number

of 𝑘-mers shared between the read and the taxa along the path, we consider the union

of all the intervals of the read that are covered by consistent chains of uni-MEMs (i.e.

number of nucleotides covered in the mapping). For example, consider a read 𝑟 that

has uni-MEM matches with respect to the genomes of two species 𝑠1 and 𝑠2, where

the corresponding intervals of the read covered by matches to 𝑠1 are [𝑖, 𝑗] , [𝑖′, 𝑗′] and

with respect to 𝑠2 are [𝑘, ℓ] , [𝑘′, ℓ′] such that the covered intervals on each genome are

consistent (i.e., co-linear and nearby in the reference). In this case, we define the cov-

erage score of the read with respect to 𝑠1 to be 𝑆(𝑟, 𝑠1) = |{𝑖, . . . , 𝑗} ∪ {𝑖′, . . . , 𝑗′}|,

and likewise for 𝑆(𝑟, 𝑠2). Further, let 𝑔 be the parent genus of 𝑠1 and 𝑠2. We

define 𝑆(𝑟, 𝑔) = |{𝑖, . . . , 𝑗} ∪ {𝑖′, . . . , 𝑗′} ∪ {𝑘, . . . , ℓ} ∪ {𝑘′, . . . , ℓ′}|. This process is

38

repeated up to the root of the tree such that the score for any given node 𝑛 is deter-

mined by the union of the covered intervals for the subtree rooted at 𝑛. Using this

definition for the score, we then simply adopt Kraken’s algorithm of assigning the

read to the node with the highest-scoring root-to-leaf path (or assigning the read to

the LCA of all such nodes in the case of ties.

The main potential benefit of this approach over the 𝑘-mer-based approach

of kraken is that this notion enforces positional consistency among the substrings

of the read and leaf taxa that are used as evidence of a match. Additionally, this

approach favors greater coverage of the read instead of simply a larger shared 𝑘-mer

count — a notion that we believe is likely to be more indicative of a good alignment

when these measures disagree.

We implemented our prototype tool for taxonomic read assignment and bench-

marked it against both kraken [160] and Clark [119]. We adopt a subset of the

benchmarks, and simulated data (LC1-8, HC1, HC2) considered by McIntyre et al.

[104]. The metrics under which we evaluate the tools are the Spearman correlation,

MARD, and the F1 score. However, rather than considering these metrics at any

specific taxonomic rank, which leads to the problem of how to evaluate false pos-

itives that are assigned at a different rank, we consider these metrics aggregated

over the entire taxonomy. In this full-taxonomy evaluation, we consider the max-

imally specific predictions made by each method. Then, we recursively aggregate

the counts up the taxonomy to higher ranks (such that a parent node receives the

sum of the assigned reads of its children, plus any reads that were assigned directly

to this node). The same aggregation was performed on the true counts.

39

This metric provides a single statistical evaluation, over the entire taxonomic

tree, that prefers reads mapped (1) along the correct root-to-leaf path and (2) closer

along this path to the true node of origin compared to assignments that are either

on the wrong path entirely, or further from the true node of origin. In addition

to this comprehensive measure, we provide further collection of different accuracy

metrics on this data.

We evaluate the output of these tools in both their unfiltered modes (which

assign any read with a single 𝑘-mer/ uni-MEM match between the query and ref-

erence) and using their default filtering criteria (where some score or confidence

threshold must be attained before a read can be assigned to a taxon. The results

depicted in Fig. 4 show that Pufferfish provides the best estimates under all met-

rics, followed by Clark in unfiltered mode and by kraken in filtered mode. We also

consider the time and memory required by these tools to perform taxonomic read

assignment on a real experimental dataset consisting of ∼ 100𝑀 reads.

6 Discussion & Conclusion

In this paper we proposed a new efficient data structure for indexing compacted col-

ored de Bruijn graphs, and implement this data structure in a tool called Pufferfish.

We showed how Pufferfish can achieve a balance between time and space resources.

By building upon a MPHF [93], we provide practically fast 𝑘-mer lookup, and by

carefully organizing our data structure and making use of succinct representations

where applicable, we greatly reduce the space compared to traditional hashing-based

40

implementations. The main components of the data structures are a minimum per-

fect hash function (MPHF) built on 𝑘-mers, the concatenated unipath array from

which the 𝑘-mers are sampled, a bit vector that marks the boundary of unitigs

in the concatenated array, a vector containing the offset position for the 𝑘-mers,

and a unipath table enumerating the occurrences of each unipath in the reference

sequences.

Moreover, we presented two variants of the Pufferfish data structure; namely,

a dense and a sparse variant. The first is optimized for fast queries and the second

provides the user with the ability to trade off space for speed in a fine-grained man-

ner. In the sparse index, we only keep offset positions for a subset of 𝑘-mers. To

query a 𝑘-mer whose position is not sampled, the sparse representation is aided with

a few auxiliary data structures of much smaller size. Since the largest component

of the index is the position vector, adopting this sparse representation significantly

reduces the required memory and disk space. Our analyses suggest that Pufferfish

(dense) achieves similar speed to existing hash-based approaches, while greatly re-

ducing the memory and disk space required for indexing, and that Pufferfish (sparse)

reduces the required space even further, while still providing fast query capabilities.

We consider indexing and querying on both small (human transcriptome) and large

(> 8000 bacterial genomes) reference datasets. Pufferfish strikes a desirable bal-

ance between speed and space usage, and allows for fast search on large reference

sequences, using moderate memory resources.

Finally, we demonstrate the application of Pufferfish to the problem of tax-

onomic read assignment. We show that, using essentially the same algorithm as

41

kraken, Pufferfish can enable faster and more accurate taxonomic read assignment

while using less memory. The accuracy benefit mostly results from replacing the

𝑘-mer-centric scoring of reads to taxa with a score based on the coverage of reads by

taxa under consistent chains of uni-MEMs. This scoring scheme enforces positional

consistency, and is enabled by the Pufferfish index. It more closely approximates a

natural intuition of what it means for a read to match a taxon well, but can still be

computed very efficiently.

Having built an index for a reference genome, transcriptome, or metagenome

using Pufferfish, the immediate future work consists of implementing more relevant

applications based on this index. Many of these applications fall into the categories

of problems that need mapping or alignment as their initial step. In our prototype

taxonomic read assignment system, we have already implemented a basic mapping

procedure, and this could easily be extended into a selective-alignment-style algo-

rithm [140] to provide true edit distances or edit scripts. An aligner based around

the Pufferfish index could be used to quickly align against collections of transcripts

and genomes, and this could be useful in downstream tasks, such as contaminant

detection, metagenomic abundance estimation (related to but distinct from taxo-

nomic read assignment), etc. Finally, we believe that having a single graph against

which we can align reads that is capable of representing many sequences simultane-

ously will admit an efficient approach for the joint alignment of RNA-seq reads to

both the genome and the transcriptome. We can construct a de Bruijn graph that

contains both the reference genome as well as the annotated transcript sequences.

Reads which are then well-explained by annotated transcripts can be aligned effi-

42

ciently and accurately, while the genomic sequence can simultaneously be searched

for evidence of new splice junctions; potentially improving both the efficiency and

accuracy of existing RNA-seq alignment methods. We expect the memory efficiency

of Pufferfish will be beneficial in working with larger collections of genomic, tran-

scriptomic, and metagenomic datasets.

43

Chapter 3: Puffaligner: A Fast, Efficient, and Accurate Aligner Based

on the Pufferfish Index∗

1 Introduction

Since its introduction, next generation sequencing (NGS) has been widely used as

a low-cost and accessible technology to produce high-throughput sequencing reads

for many important biological assays. The sequencing data that is generated in the

form of short reads, drawn from longer molecular fragments, and finding the optimal

alignments of these short reads to some reference is a necessary first step for many

downstream biological analyses. The process of finding the segment on the reference

that is most similar to the query read, and therefore most likely to be the source

of the fragment from which the read was drawn, is known as read mapping or read

alignment.

The main goal in read alignment is to find alignments of contiguous sub-string

of the underlying reference that yields a minimum edit distance (or maximum align-

ment score) between the read and the reference sequence at the alignment position.

If the reads are paired-end, characteristics other than the alignment score can be

used to filter spurious alignment locations, such as orientation of each end of the
∗A joint work with Mohsen Zakeri

44

alignment pair (forward or reverse) or distance between the alignments correspond-

ing to reads that are ends of the same fragment.

Short-read aligners are a major workhorse of modern genomics. Given the

importance of the alignment problem, a tremendous number of different tools have

been developed to tackle this problem. Some widely used examples are BWA [86],

Bowtie2 [78], Hisat2 [73, 75] and STAR [40]. Existing alignment tools use a variety

of indexing methods. Some tools, such as BWA, Bowtie2, and STAR use a full-text

index over the reference sequences; BWA and Bowtie2 use variants of the FM-index,

while STAR uses a suffix array.

A popular alternative approach to full-text indices is to instead, index sub-

strings of length 𝑘 (𝑘-mers) from the reference sequence. Trading off index size for

potential sensitivity, such indices can either index all of the 𝑘-mers present in the

underlying reference, or some uniform or intelligently-chosen sampling of 𝑘-mers.

There are a large variety of 𝑘-mer-based aligners, including tools like the Subread

aligner [90], SHRiMP2 [37], mrfast [3], and mrsfast [58]. To reduce the index

size, one can choose to select specific 𝑘-mers based on a winnowing (or minimizer)

scheme. This approach has been particularly common in tools designed for long-read

sequence alignment like mashmap [71] and minimap2 [85].

Recently, a set of new indices for storing 𝑘-mers have been proposed based

on graphs, specifically de Bruijn graphs (dBg). A de Bruijn graph is a graph over

a set of distinct 𝑘-mers where each edge connects two neighboring 𝑘-mers that

appear consequently in a reference sequence and therefore, overlap on “𝑘−1” bases.

Kallisto [23], deBGA [94], BGreat [91], BrownieAligner [61], and Pufferfish [7] are

45

some tools which use an index constructed over the de Bruijn graph built from the

reference sequences. Cortex [67], Vari [111], rainbowfish [5], and mantis [123] are

also tools that use a colored compacted de Bruijn graph for building their index over

a set of raw experiments. All these approaches cover a wide range of the possible

design space, and different design decisions yield different performance tradeoffs.

Generally, the fastest aligners (like STAR) have very large memory require-

ments for indexing, and make some sacrifices in sensitivity to obtain their speed.

On the other hand, the most sensitive aligners (like Bowtie2) have very moderate

memory requirements, but obtain their sensitivity at the cost of very high runtime.

Maintaining the balance between time and memory is especially more critical while

aligning to a large set of references, like a large collection of microbial and viral

genomes which may be used as an index in microbiome or metagenomic studies. As

both the collection of reference genomes and the amount of sequencing data growth

quickly, it is import for alignment tools to achieve a time-space balance without

loosing sensitivity.

Based on the compact Pufferfish [7] index, we introduce a new aligner PuffAligner,

that we believe strikes an interesting and useful balance in this design space. PuffAligner

is designed to be a highly-sensitive alignment tool while, simultaneously, placing a

premium on computational overhead. By using the colored compacted de Bruijn

graph to factor out repeated sub-sequences in the reference, it is able to leverage

the speed and cache friendliness of hash-table based aligners while still controlling

the growth in the size of the index; especially in the context of redundant reference

sequences. By carefully exploring the alignment challenges that arise in different

46

assays, including single-organism DNA-seq, RNA-seq alignment to the transcrip-

tome, and metagenomic sequencing, we have engineered a versatile tool that strikes

desirable balance between accuracy, memory requirements and speed. We compare

PuffAligner to some other popular aligners and show how it navigates these different

tradeoffs.

2 Method

PuffAligner is an aligner on top of the Pufferfish index. Pufferfish is a space-efficient

and fast index for the colored compacted de Bruijn graph (ccdBg). A colored com-

pacted de Bruijn graph is defined as a graph where its vertices are the results

of compacting the nodes (𝑘-mers) in every non-branching path of the de Bruijn

graph into a single node. The nodes in the colored compacted de Bruijn graph

are called “unitig”s. Now, each unitig which contains all the 𝑘-mers in a longest

monochromatic non-branching path in the de Bruijn graph can be mapped to a list

of <reference ID, position, orientation> tuples. The output of Pufferfish index for a

query sequence of length 𝑘 (𝑘-mer) is a list of raw hits or exact matches indicating

the positions where each 𝑘-mer shows up in the underlying de Bruijn graph. This

output is retrieved with one level of indirection for first finding the unitig contain-

ing the 𝑘-mer and then listing all the associated tuples. In PuffAligner, starting

from these raw hits, we end up reporting a base-to-base alignment for each query

to the reference sequences throughout a number of steps. Then, each raw hit is

extended until reaching the end of the unitig or a mismatch happens. The exact

47

matches to the unitigs, called uni-MEMs, are then projected to the positions on the

references associated to that unitig. Then, on each reference, the chains of exact

matches with the highest coverage are selected. In the case of paired-end reads, the

chains of the left and right ends are paired with respect to their distance, orienta-

tion, etc. Finally, rather than fully aligning each query sequence to the anchored

position on the reference, only the sub-sequences from the query that are not part of

the uni-MEMs (exact matches) are aligned to the reference, we call this procedure

the between-MEM alignment. Each of these steps are explained in details in the

following sections.

2.1 Exact matching in the Pufferfish index

Pufferfish index provides PuffAligner an efficient method for looking up 𝑘-mers

within a list of references. Therefore, for each 𝑘-mer, all the references it appears in

(with positions and orientations of the 𝑘-mer on that reference) are discovered very

rapidly. Specifically, the core component of the index consist of (1) a minimal perfect

hash function (MPHF), (2) a unitig sequence vector, (3) a unitig-to-reference table,

and (4) a vector storing the position associated with each 𝑘-mer in the unitig se-

quence vector. The unitig sequence vector contains all the unitigs in the ccdBg. The

Pufferfish index admits efficient exact search for 𝑘-mers, as well as longer matches

that are unique in both the query string and colored compacted de Bruijn graph.

These matches, called uni-MEM, were originally defined in deBGA [94]. A uni-MEM

is a Maximal Extended Match (MEM) between the query sequence and a unitig.

48

Using the combination of the MPHF and the position vector, a 𝑘-mer is mapped to

a unitig in the unitig sequence vector. The 𝑘-mer is then extended to a uni-MEM.

Each uni-MEM can appear in different references. A MEM is then defined as a

uni-MEM combined with a specific tuples of <reference, position, orientation>. A

uni-MEM extension is terminated upon meeting any of these three conditions: (1)

reaching a mismatch between the query and reference sequence (as the result of

sequencing error or genomic variation), (2) reaching the end of the query, or (3)

reaching the end of the unitig.

uni-MEM collection: The first step in read alignment is to collect exact matches

shared between the query (single end or paired end reads) and the reference. In

PuffAligner, this is accomplished by collecting the set of uni-MEMs that co-occur

between the query and reference. PuffAligner starts processing the read from the

left-end and looks up each 𝑘-mer that is encountered until a match to the index

is found. Once a match is discovered, it is extended in both directions until a

mismatch is encountered, or the end of the query or the unitig is reached. This

process results in a uni-MEM match shared between the query and reference. If the

uni-MEM extension is not terminated as a result of reaching the end of the query,

then,the same procedure is repeated for the next 𝑘-mer on the read. This process

continues until either the uni-MEM extension terminates because the end of the

query is reached, or the last 𝑘-mer of the query is searched in the index. Here, we

recall an important property of uni-MEM extension that is different from e.g. MEM

extension or maximum mappable prefix (MMP) extension [40]; due to the definition

49

of the ccdBg, it is guaranteed that any 𝑘-mer appearing within a uni-MEM cannot

appear in any other contig in the ccdBg. Thus, extending 𝑘-mers to maximal uni-

MEMs is, in some sense, safe with respect to greedy extension, as such extension will

never cause missing a 𝑘-mer that would lead to another distinct uni-MEM shared

between the query and reference.

Filtering highly-repetitive uni-MEMs: In order to avoid expending a lot of compu-

tation on performing the subsequent steps on parts of the read mapping to highly-

repeated regions of the reference, any uni-MEM that appears in more than a user-

defined number of times in the reference is discarded. In this manuscript, we use the

threshold of 1000. This filter has a strong impact on the performance, since, even

if one 𝑘-mer from the read maps to a highly-repetitive region of the reference, the

following expensive steps of the alignment procedure should be performed for every

mapping position of the uni-MEM to find the right alignment for the read, while the

less repetitive uni-MEMs also map to the true origin of the read on the reference

too. The drawback of this filter is that for a very small fraction of the reads which

are truly originating from a highly-repetitive region, all of the matched uni-MEMs

will be filtered out and no 𝑘-mer hit remains for aligning the read. However, we

find that in the case of aligning paired-end reads, usually one end of the read maps

to a non-repetitive region, then, the alignment of the other end can be recovered

using orphan recovery (explained in Section 2.4). Furthermore, using the option

–allowHighMultiMappers, mitigates the effect of this filter by a very slight impact

on the performance.

50

uni-MEM compaction: For paired-end reads, PuffAligner aligns each end the read

pairs individually. For each end, all the uni-MEMs are sorted on the basis of their

positions on the reference. Consecutive uni-MEMs with no gap (both on the ref-

erence and the read) are merged into larger MEMs. The compactable uni-MEMs

are resulted from terminating the extension process due to reaching the end of a

unitig, therefore, jumping to a new uni-MEM starting from the first base of another

unitig for matching the rest of the query. Such consecutive uni-MEMs can be safely

compacted to form longer MEMs that will be used later in the MEM chaining algo-

rithm. After the compaction of uni-MEMs, there is a list of MEMs which are shared

sequences between the query and a set of reference positions, that are sorted based

on the reference positions.

2.2 Finding promising MEM chains

As shown in figure 5, having all the MEMs (maximal perfect matches) from a read

to each target reference, the goal of this step is to find promising chains of MEMs

that cover the most unique bases in the read and can potentially lead to a high

quality alignment. To do so, we adopt the dynamic programming approach used in

minimap2 [85] for finding co-linear chains of MEMs that are likely candidates to

support high-scoring read alignments. As mentioned in minimap2, all the MEMs

from a read 𝑟 to the reference 𝑡, are sorted by the ending position of the MEMs

on the reference. Then, this algorithm computes a coverage score for each set of

MEMs based on the number of unique covered bases in the read, the coverage score

51

is also penalized by the length of the gaps, both in the read and reference sequence,

between each two consecutive MEMs. Then, the set of the chains which yields the

highest coverage from the read 𝑟 to the reference 𝑡 are selected through a dynamic

programming approach.

left read right read

reference

m1 m2 m3 m4 m5

Chaining the mems on each end
- right chains: "m4" and "m5"

one pair: (m1-m2,m4)

- left chains: "m1-m2"

Joining left and right chains Between-Mem alignment

left read right read

reference

Figure 5: This figure shows the main steps of chaining and between-MEM alignment in the
PuffAligner procedure via an example. In this example, m1, m2 and m3 are the projected
MEMs from the left end of the read to the reference and m4 and m5 are the projected
MEMs from the right end of the read. In the first step, the chaining algorithm chooses
the best chain of MEMs that provide the highest coverage score for each end of the read,
that is the m1-m2 chain for the left end and two single MEM chain for the right end.
Then, the selected chains from each end are joined together to find the concordant pairs
of chains, that is the (m1-m2, m4) pair for this read as m5 is too far from m1-m2. Then,
the chain from each end will go through to the next step, between-MEM alignment. For
the green areas (MEMs) no alignment is recalculated as they are exact matches. Only the
un-matched blue parts of the chains (those nucleotides not occurring within a MEM) are
aligned using a modified version of KSW2.

In puffaligner, if the distance between two MEMs, 𝑚1 and 𝑚2, on the read

and the reference is 𝑑𝑟 and 𝑑𝑡 respectively, these two MEMs should not be chained

together if |𝑑𝑟 − 𝑑𝑡| > 𝐶, where 𝐶 is the maximum allowed splice gap. So, the

penalization term, the 𝛽 value in [85], in the coverage score computation is modified

52

accordingly to prevent pairing of such MEMs.

Also, unlike what is done in minimap2 [85], rather than considering together

the MEMs that are discovered on both ends of a paired-end read, we consider the

chaining and chain filtering for each end of the read separately. This is done in order

to make it easier to enforce the orientation consistency of the individual chains.

Specifically, the chaining algorithm that is presented in [85] introduces a transition

in the recursion that can be used to switch between the MEMs that are part of one

read and those that are part of the other. However, such switching makes it difficult

to enforce the orientation consistency of the chains that are being built for each end

of the read. A solution one can propose is to add another dimension to the dynamic

programming table, encoding if one has switched from the MEMs of one read end to

the other, the recurrence can be modified to allow only one switch from the one read

end to the other, and to retain orientation consistency. However, we found that, in

practice, simply chaining the read ends separately led to better performance.

Finally, we also adopt the heuristic proposed by [85] when calculating the

highest scoring chains. That is, when a MEM is added to the end of an existing

chain, it is unlikely that a higher score for a chain containing this MEM will be

obtained by adding it to a preceding chain. Thus, we consider only a small fixed

number of rounds (by default 2) of preceding chains once we have found the first

chain to which we can add the current MEM.

The chaining algorithm described above finds the best chains of MEMs shared

between the read 𝑟 and the reference 𝑡 in orientation 𝑜. A chain is accepted if its

coverage score is greater than a configurable fraction, which we call the consensus-

53

Fraction, times the maximum coverage score found for the read 𝑟 to any reference.

Throughout all the experiments in this manuscript the consensusFraction is set to

0.65. If a chain passes the consensus fraction threshold, we call it a valid chain.

Additionally, rather than keeping all valid chains, we also filter highly-suboptimal

chains with respect to the highest scoring chain per reference. All valid chains

shared between 𝑟 and 𝑡 are sorted by their coverage scores, and chains having scores

within 10 percent of the highest scoring chain for reference 𝑡 are selected as poten-

tial mappings of the read 𝑟 to the reference 𝑡. While these filters are essential for

improving the throughput of the algorithm in finding the right alignment, they are

carefully selected to have very little effect on the sensitivity of PuffAligner. For all

the experiments in this manuscript, the same default settings of these parameters

are used if not mentioned otherwise.

2.3 Computing base-to-base alignments between MEMs

After finding the high-scoring MEM chains for each reference sequence, a base-to-

base alignment of the read to each of the candidate reference sequences is computed.

Each selected chain implies a position on the reference sequence where the read might

exhibit a high quality alignment. Thus, we can attempt to compute an optimal

alignment of the read to the reference at this implied position, potentially allowing

a small bit of padding on each side of the read. This approach utilizes the positional

information provided by the MEM chains. However, the starting position of the

alignments is not the only piece of information embedded in the chains. Rather

54

each chain of MEMs consists of sub-sequences of the read (of size at least 𝑘) which

match exactly to the reference. While the optimal alignment of the read to the

reference at the position being considered is not guaranteed to contain these exact

matches as alignments of the corresponding substrings, this is almost always the

case.

In PuffAligner, we aim to exploit the information from the long matches to

accelerate the computation of the alignments. In fact, since only chains with the

relatively high coverage score are selected, a large portion of the read sequences

are typically already matched to the positions in the reference with which they will

be matched in the final optimal alignment. For instance, in Fig. 5, for the final

chains selected on the reference sequence, it is already known for the light blue,

dark blue and green sub-sequences on the left end of the read precisely where they

should align to the reference. Likewise for the yellow and purple sub-sequences on

the right read. The unmapped regions of the reads are either bordered by the exact

matches on both reference and read, or they occur at the either ends of the read

sequence. PuffAligner skips aligning the whole read sequence by considering the

exact matches of the MEMs to be part of the alignment solution. As a result, it

is only required to compute the alignment of the small unmapped regions, which

reduces the computation burden of the alignments.

When applying such an approach, two different types of alignment problems

are introduced, which we call bounded sub-sequence alignment and ending sub-

sequences. For bounded sub-sequence alignment, we need to globally align some

interval 𝑖𝑟 of the read to an interval 𝑖𝑡 of the reference. If 𝑖𝑟 and 𝑖𝑡 are of different

55

lengths, the alignment solution will necessarily include insertions or deletions. If

𝑖𝑟 and 𝑖𝑡 are of the same length, then the optimal global alignment between them

may or may not include indels. For each such bounded sub-sequence alignment,

we determine the optimal alignment of 𝑖𝑟 to 𝑖𝑡 by computing a global pair-wise

alignment between the intervals, and stitching the resulting alignment together with

the exact matches that bound these regions.

Gaps at the beginning or the end of the read are symmetric cases, and so we

describe, without loss of generality, the case where there is an unaligned interval of

the read after the last MEM shared between the read and the reference. In this case,

we need to solve the ending sub-sequence alignment problem. Here, the unaligned

interval of the read consists of the substring spanning from the last nucleotide of

the terminal MEM in the chain, up through the last nucleotide of the read. There

is not a clearly-defined interval on the reference sequence. While the left end of the

relevant reference interval is defined by the last reference nucleotide that is part of

the bounding MEM, the right end of the reference interval should be determined by

actually solving an extension or “end-free” alignment problem. We address this by

performing extension alignment of the unaligned interval of the read to an interval

of the reference that begins on the reference at the end of the terminal MEM,

and extends for the length of the unaligned query interval plus the length of some

problem-dependent buffer (which is determined by the maximum length different

between the read and reference intervals that would still admit an alignment within

the acceptable score threshold).

An example of both of these cases is displayed in Figure 5. Specifically, align-

56

ment of the read could be obtained by only solving two smaller alignment problems;

one is the ending sub-sequence alignment of the unmapped region after the green

MEM on the left read and the other is the bounded sub-sequence alignment of region

on the right read bordered by the yellow and purple MEMs.

PuffAligner uses KSW2 [85, 154] for computing the alignments of the gaps

between the MEMs. KSW2 exposes a number of alignment modes such as global

and extension alignments. For aligning the bounded regions, KSW2 alignment in

the global mode is performed, and for the gaps at the beginning or end of reads,

PuffAligner uses the extension mode to find the best possible alignment of that

region. PuffAligner, by default, uses a match score of 2 and mismatch penalty of 4.

For indels, PuffAligner uses an affine gap scoring schema with gap open penalty of 5

and gap extension penalty of 3. In PuffAligner, after computing the alignment score

for each read, only the alignments with a score higher than 𝜏 times the maximum

possible score for the read are reported. The value of 𝜏 is controlled by the option

–minScoreFraction, which is set to 0.65 by default.

2.3.1 Enhancing alignment computation

Although, by only aligning the read’s sub-sequences that are not included in the

MEMs, the size of alignment problems being solved in PuffAligner are often much

shorter than the length of the read, we also incorporate a number of other techniques

to improve the performance of the alignment calculation even further. We describe

the most important of these below:

57

• Skipping alignment calculation by recognizing perfect chains and

alignment caching: It is possible to avoid the alignment computation com-

pletely in a considerable number of cases. In fact, it has been explored in pre-

vious work [141] that the alignment calculation step can be completely skipped

if the set of exact matches for each chain covers the whole read. PuffAligner

skips alignment for cases where the coverage score of chains of MEMs is the

length of the read, and assigns a total matched CIGAR string for that align-

ment. Alignment computation of a read might be also skipped if the same

alignment problem has been already detected and computed for this read. For

example, in the case of RNA seq data, reads often map to the same exons on

different transcripts. In such cases, each alignment solution for a read is stored

in a cache (a hash table) so that if the same alignment problem is detected, the

solution can be directly retrieved from the cache, and no further computation

is required (see supplementary Table 7).

• Early stopping of the alignment computation when a valid score

cannot be achieved: While care is taken to produce only high-scoring chains

between the read and reference, it is nonetheless the case that the majority

of the chains do not lead to an alignment of acceptable quality. Since the

minimum acceptable alignment score is immediately known based on 𝜏 and the

length of the read, the base-to-base alignment calculation can be terminated

at any point where it becomes apparent that the minimum required alignment

score cannot be obtained. This approach can be applied both during the

58

KSW2 alignment calculation, and also after the alignment calculation of each

gap is completed. During this procedure, for each base at position 𝑖, starting

from 1 on the read of length 𝑛, if the best alignment score 𝑝 up to the 𝑖-th

position is 𝑠𝑖, we can calculate the maximum possible alignment score, 𝑠𝑚𝑎𝑥,

that might be achieved starting at this location given the current alignment

score by:

𝑠𝑚𝑎𝑥 = 𝑠𝑖 + 𝑀𝑆 * (𝑛− 𝑠𝑖), (3.1)

where 𝑀𝑆 is the score assigned to each match. If 𝑀𝑆 is smaller than minimum

required score for accepting the alignment, the alignment calculation can be

immediately terminated, since it is already known that this anchor is not going

to yield a valid alignment for this read.

• Maximum allowed gap length: KSW2 is able to perform banded align-

ment to make alignment calculation more efficient. By calculating the maxi-

mum number of gaps (insertions or deletions) allowed in each sub-alignment

probem, in a way that the total alignment score does not drop below the ac-

cepted threshold, we utilize the banded alignment in KSW2 without losing

any sensitivity.

2.4 Joining mappings for read ends and orphan recovery

Finally, once alignments have been computed for the individual ends of a read,

they must be paired together to produce valid alignments for the entire fragment.

At this point in the process, on each reference sequence, there are a number of

59

locations where the left end of each read or the right end of each read or both

map. For the purpose of determining which mappings will be reported as a valid

pair, the mappings are joined together only if they occur on opposite strands of the

reference, and if they are within a maximum allowed fragment length. There are

two different types of paired-end alignments that can be reported by PuffAligner;

concordant and discordant. If PuffAligner is disallowed from reporting discordant

alignments, then the mapping orientation of the left and right end should agree

with the library preparation protocols of the reads. PuffAligner first tries to find

concordant mapping pairs on a reference sequence, and if no concordant mapping

is discovered and the tool is being run in a mode where discordant mappings are

allowed, then PuffAligner reports pairs that map discordantly. Here, discordant

pairs may be pairs that do not, for example, obey the requirement of originating

from opposite strands. While this is not expected to happen frequently, it may

occur if there has been an inversion in the sequenced genome with respect to the

reference.

Orphan recovery: If there is no valid paired-end alignment for a fragment (either

concordant or discordant, if the latter is allowed), then PuffAligner will attempt to

perform orphan recovery. The term “orphan” refers to one end of paired-end read

that is confidently aligned to some genomic position, but for which the other read

end is not aligned nearby (and paired). To perform orphan recovery, PuffAligner

examines the reference sequence downstream of the mapped read (or upstream if

the mapped read is aligned to the reverse complement strand) and directly performs

60

dynamic programming to look for a valid mapping of the unmapped read end. For

this purpose, we use the “fitting” alignment functionality of edlib [151] to perform

a simple 0/1 edit-distance based alignment that will subsequently be re-scored by

KSW2. Finally, if, after attempting orphan recovery, there is still no valid paired-

end mapping for the fragment, then orphan alignments are reported by PuffAligner

(unless the “–noOrphans” flag is passed).

3 Evaluation

For measuring the performance of PuffAligner and comparing it to other aligners,

we have designed a series of experiments using both simulated and experimental

data from different sequencing assays. We compare PuffAligner with Bowtie2 [78],

STAR [40] and deBGA [94]. Bowtie2 is a popular, sensitive and accurate aligner

with the benefit of having very modest memory requirements. STAR requires a much

larger amount of memory, but is much faster than Bowtie2 and can also perform

“spliced alignment" against a reference (which PuffAligner, Bowtie2, and deBGA

currently do not allow). deBGA, is most-related tool to PuffAligner conceptually,

as it is an aligner with a colored compacted de Bruijn graph-based index that is

focused on exploiting redundancy in the reference sequence.

We use different metrics to assess both the performance and accuracy of each

method on a variety of types of sequencing samples. These experiments are designed

to cover a variety of different use-cases for an aligner, spanning the gamut from

situations where most alignments are expected to be unique (DNA-seq), to situations

61

where each fragment is expected to align to many loci with similar quality (RNA-

seq and metagenomic sequencing), and spanning the range of index sizes from small

transcriptomes to large collections of genomes.

First, we show PuffAligner’s exhibits similar accuracy for aligning DNA-seq

reads to Bowtie2, but it is considerably faster. In the case of experimental reads,

since the true origin of the read is unknown, we use measures such as mapping

rate and concordance of alignments to compare the methods. Furthermore, we

evaluate the accuracy of aligners by aligning simulated DNA-seq reads that include

variation (single-nucleotide variants and small indels with respect to the reference).

For aligning RNA-seq reads, we compare the impact of alignments produced by

each aligner on downstream analysis such as abundance estimatation. Finally, we

show PuffAligner is very efficient for aligning metagenomic samples where there is a

high degree of shared sequence among the reference genomes being indexed. We also

illustrate that using alignments produced by PuffAligner yields the highest accuracy

for abundance estimation of metagenomic samples.

3.1 Configurations of aligners in the experiments

The performance of each tool is impacted by the different alignment scoring schemes

they use, e.g. different penalties for mismatches, and indels. To enable a fair

comparison, we attempted to configure the tools so as to minimize divergences

that simply result from differences in the scoring schemes. For the experiments in

this paper, we use Bowtie2 in a near-default configuration (though ignoring quality

62

values), and attempt to configure the other tools, as best as possible, to operate in

a similar manner.

The deBGA scoring scheme is not configurable, so we use this aligner in the

default mode (unfortunately, the inability to disable local alignment and forcing just

computation of end-to-end alignments in deBGA makes certain comparisons partic-

ularly difficult). For PuffAligner we use a scheme as close to Bowtie2 as possible.

The maximum possible score for a valid alignment in Bowtie2 is 0 (in end-to-end

mode) and each mismatch or gap subtracts from this score. Bowtie2 uses an affine

gap penalty scoring scheme, where opening and extending a gap (insertion or dele-

tion) have a cost of 5 and 3 respectively. For DNA-seq reads, we configure STAR

to allow as many mismatches as Bowtie2 and PuffAligner by setting the options

“–outFilterMismatchNoverReadLmax 0.12” and “–outFilterMismatchNmax 1000”.

Also, we use the option “–alignIntronMax 1” in STAR to perform non-spliced align-

ments while aligning genomic reads. For RNA-seq reads, STAR has a set of param-

eters which we change in our result evaluations, and which are detailed below in the

relevant sections.

In Bowtie2 we also use the option –gbar 1 to allow gaps anywhere on the

read except within the first nucleotide (as the other tools have no constraints on

where indels may occur). Furthermore, for consistency, we also run Bowtie2 with

the option “–ignore-quals”, since the other tools do not utilize base qualities when

computing alignment scores.

As explained in Section 2.1, for the sake of performance, highly repeated an-

chors (more than a user-defined limit) will be discarded before the alignment phase.

63

This threshold is by default equal to 1000 in PuffAligner. We set the threshold

to the same value for STAR and deBGA using options –outFilterMultimapNmax

1000 and -n 1000 respectively. There is no such option exposed directly in Bowtie2.

Since PuffAligner finds end-to-end alignments for the reads, we are also run-

ning other tools in end-to-end mode, which is the default alignment mode in Bowtie2

as well. In STAR we enable this mode using the option –alignEndsType EndToEnd.

In the case of deBGA, although the documentation suggests it is not supposed to

find local alignments by default, the output SAM file contains many reads with rel-

atively long soft clipped ends, so if a read is not aligned end-to-end, deBGA reports

the local alignment for that. We were not able to find any option to force deBGA

to perform end-to-end alignments for all reads, and so we have compared it in the

configuration in which we were able to run it.

For aligning DNA-seq samples, each aligner is configured to report a single

alignment, which is the primary alignment, for each read. Bowtie2 outputs one

alignment per read by default. To replicate this in the other tools, we use the option

–outSAMmultNmax 1 in STAR, -o 1 -x 1 in deBGA, and –primaryAlignment in

PuffAligner.

3.2 Alignment of whole genome sequencing reads

First, we evaluate the performance of PuffAligner with a whole genome sequencing

(WGS) sample from the 1000 Genomes project [32].We downloaded the ERR013103

reads from sample HG00190, which is a low-coverage sample from a Finnish male,

64

sequenced in Finland.∗. There are 18, 297, 585 paired-end reads, each of length 108

nucleotides in this sample. Using fastp [27], we remove low quality ends and adapter

sequences from these reads. After trimming, there are 15, 404, 412 reads remaining

in the sample. Indices for each of the tools are built over all DNA chromosomes of

the latest release of the human genome (v33) by gencode† [48].

In this experiment, all aligners are configured report only concordant align-

ments, i.e., only pairs of alignments that are cocordant and within the “maximum

fragment length” shall be reported. The maximum fragment length in all aligners is

set to 1000, using the option –alignMatesGapMax 1000 in STAR, –maxins 1000 in

Bowtie2 and -u 1000 -f 0 in deBGA. The default value for the maximum fragment

length in PuffAligner is set to 1000, the user can cofigure this value by using the

flag –maxFragmentLength. This concordance requirements also prevents Bowtie2,

PuffAligner, and STAR from aligning both ends of a paired end read to the same

strand.

The alignment rate, run-time memory usage and running time for all the

aligners are presented in 3. The reason that deBGA has the highest mapping rate

in 3 compared to other tools is that it is local alignments for the reads that are

not alignable end-to-end under the scoring parameters for the other tools. Bowtie2

and PuffAligner are both able to find end-to-end alignments for about ∼ 95% of

the reads. STAR and PuffAligner are the fastest tools, with STAR being somewhat

faster than PuffAligner. On the other hand, PuffAligner is able to align more reads
∗https://www.internationalgenome.org/data-portal/sample/HG00190
†https://www.gencodegenes.org/human/release_33.html

65

than STAR, while requiring less than half as much memory. The memory usage

of Bowtie2 is the smallest, since Bowtie2’s index does not contain a hash table.

However, this comes at the cost of having the longest running time compared to

other methods. Overall, PuffAligner benefits from the fast query of hash based

indices while its run-time memory usage, which is mostly dominated by the size of

the index, is significantly smaller than other hash based aligners. Although deBGA’s

index is based on the de Bruijn graphs, similar to the Pufferfish index, the particular

encoding for it is not as space-efficient as that of Pufferfish.

aligner mapping-rate(%) time (mm:ss) memory (GB)
PuffAligner 95.58 6:14 13.09
deBGA 99.75 10:46 41.04
STAR 93.88 4:29 30.36
Bowtie2 95.44 16:15 3.50

Table 3: The performance of different tools for aligning experimental DNA-seq reads. The
time reports are benchmarked after warming up the system cache so that the influence of
index loading time is mitigated.

66

14235351

403680 135935 69405 42224 21108 15580
0.0e+00

5.0e+06

1.0e+07

1.5e+07

In
te

rs
ec

tio
n

S
iz

e

●

●

●

●

●

●

●

●

● ●

●

●puffaligner

bowtie2

star

0.0e+005.0e+061.0e+071.5e+07
Set Size

Figure 6: Upset plot showing the agreement of the alignments found by different tools

To look more closely how the mappings between the tools differ, we investi-

gate the agreement of the reads which are mapped by each tool and visualize the

results in an upset plot in Fig. 6 using the UpsetR library [34]. We are only com-

paring the three methods which perform end-to-end alignment in this plot, since

outliers from the local alignments computed by deBGA would otherwise dominate

the plot. The first bar shows that the majority of the reads are mapped by all three

tools.The next largest set represents the reads which are only mapped by Bowtie2

and PuffAligner. All the other sets are much smaller compared to the first two sets.

This fact illustrates that the highest agreement in the aligners is between Bowtie2

67

and PuffAligner. Exploring a series of individual reads from the smaller sets in the

upset plot, suggests that some of these differences happen as a result of small differ-

ences in the scoring configuration, while some result from different search hueristics

adopted by the different tools. Supplementary Fig. 11 shows the coherence between

the alignments reported by the tools by also including the exact location to which

the reads are aligned in the reference.

3.3 Alignment of simulated DNA-seq reads in the presence of varia-

tion

To further investigate the accuracy of the aligners, we used simulated DNA-seq

reads.One of the main differences between simulated reads and experimental reads

is that simulated reads are often generated from the same reference sequences to

which they are aligned, with the only differences being due to (simulated) sequencing

error. While (simulated) sequencing error prevents most reads from being exact

substrings of the reference, it actually does not tend to complicate alignment too

much. On the other hand, while dealing with experimental data, the genome of

the individual from which the sample is sequenced might include different types

of variations with respect to the reference genome to which we are aligning [152].

Therefore, it is desirable to introduce variations in the simulated samples, and to

measure the robustness and performance of the different aligners in the presence

of the variation. Mason [64] is able to introduce different kinds of variations to

the reference genome, such as SNVs, small gaps, and also structural variants (SV)

68

such as large indels, inversions, translocations and duplications. We use Mason to

simulate 9 DNA-seq samples with different variation rates ranging from 1𝑒 − 7 to

1𝑒 − 3. Each sample includes 1𝑀 paired-end Illumina reads of 100bp length from

chromosome 21 of the human genome, ensembl release 98∗.

0.
00

00
00

1

0.
00

00
00

5

0.
00

00
01

0.
00

00
05

0.
00

00
1

0.
00

00
5

0.
00

01

0.
00

05

0.
00

1

variation ratio

0.90

0.92

0.94

0.96

0.98

1.00

pr
ec

isi
on

puffaligner
bowtie2
deBGA
STAR

(a) The precision of the alignments reported
by each aligner. True positives (TP) are the
compatible reads that are aligned to the orig-
inal location, and the FP set consists of both
the compatible reads aligned to sub-optimal
locations (alignments with larger edit dis-
tance than the alignment to the original lo-
cation) and the non-compatible reads that
are aligned with high (>25) edit distance.

0.
00

00
00

1

0.
00

00
00

5

0.
00

00
01

0.
00

00
05

0.
00

00
1

0.
00

00
5

0.
00

01

0.
00

05

0.
00

1

variation ratio

0.89

0.90

0.91

0.92

0.93

0.94

0.95

re
ca

ll

puffaligner
bowtie2
deBGA
STAR

(b) The ratio of the alignments in the true
SAM file that are recovered by each aligner.
The recall is the result of dividing the num-
ber of TP reads by the total number of com-
patible reads.

Figure 7: Comparing the accuracy of different aligners in the presence of different rates
of variations in the reference genome

For this analysis, we do not restrict the aligners to only report concordant

alignments, since the structural variations in the samples can lead to valid discordant

alignments, such as those on the same strand or with inter-mate distances larger

than the maximum fragment length. To be specific, we do not use the options which

limit Bowtie2 and PuffAligner to report only concordant alignments, in addition,

we use the option “–dovetail” in Bowtie2 to consider dovetail pairs as concordant

pairs.

The alignments reported by deBGA already include discordant pairs and also
∗ftp://ftp.ensembl.org/pub/release-98/fasta/homo_sapiens/dna/

69

orphan mappings. Furthermore, To remove any restrictions on the fragment length

in the alignments reported by deBGA, we set the minimum and maximum insert

size, respectively to 0 and the 50000, since setting a larger value resulted in the

tool running into segmentation fault.

To allow dovetail pairs and also larger gaps between the pairs in STAR,

we use the following options: “–alignEndsProtrude 1000000 ConcordantPair”,

“–alignMatesGapMax 1000000”. By default there is not a specific option in STAR

for allowing orphan alignment of paired end reads. Instead, we can increase the num-

ber of allowed mismatches to be as large as one end of the read by using the following

options:

“–outFilterMismatchNoverReadLmax 0.5”,

“–outFilterMismatchNoverLmax 0.99”,

“–outFilterScoreMinOverLread 0”,

“–outFilterMatchNminOverLread 0”.

For each sample, Mason produces a SAM file which includes the alignment

of the simulated reads to the original, non-variant version of the reference — the

version which was used for building the aligner’s indices in this experiment. Based on

the alignments reported in the truth file, some reads did not have a valid alignment

to the original reference. This was the result of a high rate of variations at some

sequencing sites. We called the set of reads that, according to the truth SAM file,

were aligned to the original reference as compatible reads.

We compared the performance of aligners based upon how well they are able to

align the compatible reads. We computed the precision and recall of the alignments

70

reported for these reads as follows. True positives are considered the reads that are

mapped by the aligner to the same location stated by the truth file. Then, recall is

computed by dividing the number of true positives by the number of all compatible

reads. Furthermore, we considered an alignment as a false positive in two different

cases. First, an alignment was considered discordant if the reported alignment had

a large edit distance (larger than 25) for the non-compatible reads. Second, in the

case that an aligner reported an alignment to a location other than the one in the

truth file, it was considered as a false positive if the edit distance of the reported

alignment is greater than the edit distance of the true alignment. Having defined

the set of TP and FP for the alignments, and also having considered the set of all

compatible reads as the set we are trying to recover, we computed precision and

recall for the set of alignments reported by each aligner.

Figure 7 shows the precision and recall of the aligners for different samples.

According to Fig. 7, for lower variation ratios up until 10𝑒− 5, most of the tools are

able to make accurate alignment calls with a high specificity. As the variation ratio

introduced in the sample is increased, all the tools start to have lower precision and

recall. deBGA and STAR perform worse in higher variation samples, as they fail to

recover the true alignment for more reads, while Bowtie2 and PuffAligner are able

to align most of the reads to their true location on the original reference.

These results show that PuffAligner’ accuracy is stable in the face of variation

which makes the tool suitable for datasets that are known to have substantial varia-

tion, such as when aligning reads to microbial genomes where the specific sequenced

strain may not be represented in the reference set.

71

3.4 Quantification of RNA-seq reads

Mapping sequencing reads to target transcriptomes is the initial step in many

pipelines for reference-based transcript abundance estimation. While lightweight

mapping approaches [23, 127] greatly speed-up abundance estimation by, in part,

eliding the computation of full alignment between reads and transcripts, there is

evidence that alignments still yield the most accurate abundance estimates by pro-

viding increased sensitivity and avoiding spurious mappings [141, 152]. Thus, the

continued development of efficient methods for producing accurate transcriptome

alignments of RNA-seq reads remains a topic of interest. In this section, we com-

pare the effect of alignments produced by each tool on the accuracy of RNA-seq

abundance estimation.

We generated 9,968,245 paired-end RNA-seq reads using the polyester [49]

read simulator. The reads are generated by the simulate experiment countmat

module in polyester. The input count matrix is calculated based on the estimates

from the Bowtie2-Salmon pipeline on the sample SRR1085674 (where reads are

first aligned with Bowtie2 and then the alignments are quantified using Salmon).

This sample is a collection of paired-end RNA-seq reads sequenced from human

transcriptome using an Illumina HiSeq [98]. The human transcriptome from gencode

release (33) is used to build all the aligners’ indices. Also, for building STAR’s index

in the genome mode, the human genome and the comprehensive gene annotation

(main annotation file) is obtained from the same release of gencode.

As the reads in this experiment are RNA-seq reads sequenced from the hu-

72

aligner spearman MARD time (mm:ss) memory (GB)
PuffAligner 0.92 0.05 1:17 2.54
deBGA N/A N/A 5:19 9.96
STAR- transcriptome 0.92 0.05 1:57 8.73
STAR- genome 0.90 0.06 3:30 32.57
Bowtie2 0.92 0.05 32:59 1.15

Table 4: Abundance estimation of simulated RNA-seq reads, computed by Salmon, using
different tools’ alignment outputs. The time and memory are only for the alignment step
of each tool and the time for abundance estimation by Salmon is not considered.

man transcriptome, it is important to account for multi-mapping, as often, a read

might map to multiple transcripts which share the same exon or exon junction. This

property makes the direct evaluation of performance at the level of alignments diffi-

cult. Therefore, a typical approach in evaluating the accuracy of the transcriptomic

alignments is to assess the accuracy of downstream analysis such as abundance esti-

mations by computing the correlation and relative differences of the estimates with

the true abundance of the transcripts. To compare the accuracy of each tool we give

the alignments produced by each aligner, which are in the SAM format, as input to

Salmon to estimate the transcript expressions.

PuffAligner, by default, outputs up to 200 alignments with an alignment score

greater than 0.65 times the best alignment score, i.e., the alignment for the read

in the case that all bases are perfectly matched to the reference. To enable the

multi-mapping to take into account the characteristics of alignment to the tran-

scriptome, Bowtie2 is run with the option -k 200 which lets the tool output up to

200 alignments per read. The value of 200 is adopted from the suggested parameters

for running RSEM [82] with Bowtie2 alignments. We note that running Bowtie2

with this option makes the tool considerably slower than the default mode, as many

73

more alignments will be computed and output to the SAM file under this configu-

ration. For both Bowtie2 and PuffAligner, and also for STAR by default, orphan

and discordant mappings are not allowed.

We ran STAR with the ‘ENCODE‘ options, which are recommended in the

STAR manual for RNA-seq reads. STAR is also run in two different modes, one is

by building the STAR index on human genome, while it is also provided a GTF file

for gene annotation. In this mode, STAR performs spliced alignment to the genome,

then projects the alignments onto transcriptomic coordinates. The other mode is

building the STAR index on the human transcriptome directly, which allows STAR

to align the RNA-seq reads directly to the transcripts in an unspliced manner. We

chose to run STAR in the transcriptomic mode as well, since we find that it yields

higher accuracy, though this increases the running time of STAR.

The deBGA index is built on the transcriptome, as are the Bowtie2 and

PuffAligner indices, since these tools do not support spliced read alignment. de-

BGA is run in the with options -o 200 -x 200, which nominally has the same effect

as -k 200 in Bowtie2, according to the documentation of deBGA.

Accuracy of abundance estimation by Salmon, when provided the SAM output

generated by each aligner, is displayed in Table 4. The timing and memory bench-

marks provided in this table is only for the alignment step. Alignments produced by

PuffAligner, Bowtie2 and STAR in the transcriptomic mode produce the best abun-

dance estimates. deBGA’s output alignments are not suitable for any abundance

estimation as many reads are aligned only to the same strand which are later filtered

during the abundance estimation by Salmon, so we could not provide a meaning-

74

ful correlations for abundance estimation using deBGA’s alignments. Aligning the

reads by STAR to genome and then projecting to transcriptomic coordinates does

not generate as high correlation as directly aligning the reads to the transcriptome

by STAR. However, we note that, as described by Srivastava et al. [152], there are

numerous reasons to consider alignment to the entire genome that are not necessar-

ily reflected in simulated experiments. While the memory usage by PuffAligner is

only 2 fold larger than memory used by Bowtie2, it computes the alignments much

more quickly.

According to the results in Table 4 PuffAligner is the fastest aligner in these

benchmarks, and the accuracy as high as Bowtie2 and STAR for aligning RNA-seq

reads. Here, PuffAligner leads to the most accurate abundance estimates, while

being 30 times faster than Bowtie2. Moreover, The memory usage is much less than

other fast aligners such as STAR.

3.5 Alignment to a collection of microorganisms — simulated short

reads

To demonstrate the performance and accuracy of PuffAligner for metagenomic sam-

ples, we designed two different experiments. One main property of metagenomic

samples is the high similarity of the reference sequences against which one typically

aligns, where a pair (or more) of references may be more than 90% identical. The

first experiment we designed for this scenario, to specifically evaluate issues related

to this challenge, we call the “single strain” experiment. Additionally, metagenomic

75

samples also have the property of containing reads from a variety of genomes, some

of which are not even assembled yet – and hence unknown. This leads to the second

experiment, which we call the “bulk” experiment, that compares the aligners in the

presence of a high variety of species in the sample in addition to the high similarity

of references.

For simplicity and uniformity, all the experiments have been run in the con-

cordant mode for both PuffAligner and Bowtie2 (both of which support such an op-

tion), disallowing orphans and discordant alignments. All aligners are run in three

different confiurations, allowing three specific maximum numbers of alignments per

fragment; 1 (primary output with highest score, breaking ties randomly), 20, and

200. PuffAligner and STAR, as the only tools that support this option, also are

run in the bestStrata mode. In this mode, the aligner outputs all equally-best align-

ments for a read with highest score without the limitation on number of reported

alignments. This option is inspired by the similarly-named option in Bowtie1 [77].

However, unlike Bowtie1, PuffAligner and STAR only make a best-effort attempt

to find the score of the best stratum alignments, and do not guarantee to find the

best stratum (though the cases in which they fail to seem to be exceedingly rare).

This option is especially useful in the metagenomic analyses, as we will report only

the best-score alignments without having an arbitrary limitation on the number of

allowed alignments. This allows proper handling of highly multi-mapping metage-

nomic reads. In other words, using this option, one can achieve a high sensitivity

without the need to hurt specificity. The details of each experiment is explained in

the following sections.

76

3.5.1 Single-strain Experiment

For this experiment, we download the viral database from NCBI, and choose three

similar coronavirus genomes. This set includes one of the recently-uploaded samples

from Wuhan [12, 162]. We select three very similar viral genomes to simulate reads

from which are: NC_045512.2, NC_004718.3, and NC_014470.1. There are also

a lot of literature discussing the similarity in sequence and behavior for these three

species of coronavirus [157, 159, 167]. The first is the complete genome for severe

acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1 known as Covid19

with length of 29, 904 bases. NC_004718.3 is the ID of SARS coronavirus complete

genome (length: 29, 752) and finally, NC_014470.1 is a Bat coronavirus BM48-

31/BGR/2008 complete genome (length: 29, 277).

We use Mason [64] to generate three simulated samples, each sample contains

500, 000 reads only from one of the three viral references we mentioned earlier. Then,

reads were aligned back to the database of viral sequences using each of the four

aligners. The results are shown in table 5 for covid19 and table 10 for the other two

simulations.

As the results show, the alignments of all aligners, except for deBGA, are dis-

tributed only across the three references of interest out of all the reference sequences

in the complete viral database. deBGA reports only a few alignments to a forth

virus. The results show that as we allow more alignments to be reported, sensitivity

increases for all the tools, while specificity decreases, meaning more alignments to

the wrong reference are reported. However, the results do not change when allowing

77

more than 20 alignments, which means no more than 20 alignments ever pass the

alignment score threshold for these reads in the viral database.

The results indicate that, when allowing more than one alignment to be re-

ported for every read, Bowtie2 reports a lot of false positive alignments compared

to other tools. These are alignments that are accepted within the alignment score

threshold, but are to another target than the one the read originates from.

Interestingly, there is one read that all tools, except for PuffAligner miss.

Inspecting this alignment reveals it is a valid alignment within the range of the

acceptable scoring threshold, and it is unclear why it is not discovered by the other

tools. Overall, most aligners perform well here, specifically PuffAligner shows a good

balance in sensitivity and specificity. Furthermore, based on the result in figure 8,

section 8a, PuffAligner has the best performance in terms of running time even

when the number of allowed alignments per read increases.

BestStrata Mode As expected, the sensitivity of all tools improve when allowing

more alignments to be reported, since there is a higher chance for all aligners to

report the alignment to the true origin of the read. PuffAligner, however, achieves

the perfect sensitivity even in the primary mode, when it reports one alignment per

read. After increasing the number of reported alignments per read, it still reports

all of the right alignments, while reporting some false positive alignments to other

reference sequences, which hurts its specificity in this case.

This is a small test for multi-mapping cases, but in larger samples, allowing

more alignments usually yields better sensitivity. To control the false positive rate,

78

PuffAligner supports the “best strata” option – also available to STAR, which allows

only the alignments with the best calculated score to be reported (as a replacement

for maximum allowed number of alignments). Using this option, PuffAligner can

reach perfect specificity and sensitivity in this experiment 5. The same results are

achieved for the other two simulated single-strain samples shown in the supplemen-

tary table 10. We further demonstrate the postitive impact of this option on the

alignment of bulk metagenomic samples in the next section.

Alignment
Mode Tool

NC_045512.2
(Covid19)

NC_004718.3
(SARS Coron-
avirus)

NC_014470.1
(Bat Coron-
avirus)

Other As-
sembled
References

Primary

PuffAligner 500,000 0 0 0
Bowtie2 499,981 18 0 0
STAR 499,999 0 0 0
deBGA 499,991 0 0 9

Up to 20

PuffAligner 500,000 134 46 0
Bowtie2 499,999 21,461 2,311 0
STAR 499,999 0 0 0
deBGA 499,991 0 0 9

Up to 200

PuffAligner 500,000 134 46 0
Bowtie2 499,999 21,461 2,311 0
STAR 499,999 0 0 0
deBGA 499,991 0 0 9

Best strata PuffAligner 500,000 0 0 0
STAR 499,999 0 0 0

Table 5: Alignment distribution for 500000 simulated reads from reference sequence
NC_045512.2 (known as covid19). The best specificity is achieved by PuffAligner in
bestStrata mode (as well as the primary mode). In this simulated sample, many align-
ments are not ambiguous, resulting in the good performance observed when using only pri-
mary alignments. However, typically in metagenomic analysis, many equally-good align-
ments exist, and selecting only one is equivalent to making a random choice.

3.5.2 Bulk Experiment

We chose a random set of 4000 complete bacterial genomes downloaded from the

NCBI microbial database and constructed the indices of PuffAligner, Bowtie2,

STAR, and deBGA on the selected genomes. Supplementary Table 8 shows the

79

time and memory required for constructing each of the indices, in addition to the

size of the final index on disk. Overall, PuffAligner and Bowtie2 show a pretty

similar trend in time and memory requirements while STAR and deBGA require an

order of magnitude more memory.

For simulating a bulk metagenomic sample, we generated a list of simulated

whole genome sequencing (WGS) reads through the following steps:

• Select a real metagenomic WGS read sample

• Align the reads of the chosen real experiment to the 4000 genomes using

Bowtie2, limiting Bowtie2 to output one alignment per read.

• Choose all the references with count greater than C from the quantification

results. This defines the read distribution profile that we will use to simulate

data.

• For each of the expressed references, use Mason [64], a whole genome sequence

simulator, to simulate 100𝑏𝑝 paired-end reads with counts proportional to the

reported abundance estimates so that total number of reads is greater than a

specified value n. In this step we ran Mason with default options.

• Mix and shuffle all of the simulated reads from each reference into one sample

which is used as the mock metagenomic sample.

We selected three Illumina WGS samples that are publicly available on NCBI.

A soil experiment with accession ID SRR10948222 from a project for finding sub-

biocrust soil microbial communities in the Mojave Desert. The sample has ∼ 27𝑀

80

paired-end reads, containing a mixture of genomes from various genera and families.

However, less than 200𝑘 of the reads in the sample were aligned to the strains present

in our database, leading the selection of 98 species from a variety of genera. We

scaled the read counts in the simulation to ∼ 50𝑀 reads. The other two selected

samples are SRR11283975 and SRR11496426 the details of which are explained

in supplementary 9. In this section we only report the performance of the tools on

the first sample. The analysis results for the other samples (which shows similar

relative accuracy and performance for different tools) are provided in 11.

The interpretation of the alignment results is not a trivial task to assess accu-

racy. Because of the large amount of multi-mapping, in some of our experiments,

we configure aligners to report many alignments per read, to increase the chance of

finding the correct alignment in a tradeoff for time. Therefore, to have a practically

useful evaluation that can better hide the noise in the alignment and provide a more

stable set of results, we calculate the accuracy over the estimated abundances using

a quantification tool such as Salmon. In Table 6 the accuracy metrics are calculated

over the abundance estimations obtained over the alignments produced running the

aligners in different modes. The list of metrics for metagenomic expression evalua-

tions have been chosen similar to previous works such as [99] and [134].

The metrics selected are Spearman Correlation, Mean Absolute Relative Differ-

ence (MARD), Mean Absolute Error (MAE), and Mean Squared Log Error (MSLE).

Each indicating different characteristics of the predicted abundance estimations. For

example, lower MARD indicates better distribution of the reads among the refer-

ences relative to the abundance of each reference, while MAE shows the quality of

81

Alignment
Mode Tool Spearman MARD MAE MSLE

Primary

PuffAligner 0.69 0.028 1.39 0.08
Bowtie2 0.58 0.053 2.91 0.15
STAR 0.727 0.023 1.493 0.05
deBGA 0.28 0.616 656.08 6.53

Up to 20

PuffAligner 0.9 0.006 0.40 0.01
Bowtie2 0.85 0.01 0.22 0.01
STAR 0.929 0.004 0.303 0.00
deBGA 0.28 0.573 637.60 5.65

Up to 200

PuffAligner 0.97 0.002 0.36 0.00
Bowtie2 0.99 0.001 0.19 0.00
STAR 0.929 0.004 0.299 0.00
deBGA 0.28 0.571 637.83 5.55

Best strata PuffAligner 0.97 0.002 0.36 0.00
STAR 0.929 0.004 0.3 0.00

Table 6: Accuracy of abundance estimation with Salmon using alignments reported by
each aligner over different accuracy metrics for the mock sample simulated from a real
sample with accession ID SRR10948222. We have ran all the aligners in three main
modes; allowing only one best alignment with ties broken randomly (Primary), up to 20
alignments reported per read, and up to 200 alignments. PuffAligner and STAR support
a fourth mode that allows reporting all equally best alignments (bestStrata). This option
improves the performance while keeping or even slightly improving the accuracy of the
results.

the distribution of the reads in an absolute way regardless of the difference between

the abundance of the references. In this case, one misclassified read has the same

impact on the MAE metric both for an abundant or low-quantity references. The

mathematical definition of each of these metrics is provided in equation 3.2 in the

supplementary material.

The three main observations in this experiment are as follows. First of all,

regardless of the alignment mode, deBGA reports a vastly underestimated list

of counts (considering valid alignments according to the definition). However,

PuffAligner, STAR and Bowtie2, show very similar behavior with respect to ac-

curacy. STAR is the best in primary mode as well as allowing 20 alignments closely

82

followed by PuffAligner while Bowtie2 is the winner allowing up to 200 alignments

again with PuffAligner being the close runner-up. This represents PuffAligner as

a reliable alignment tool showing a stable pattern of being comparable to the best

aligner in all the cases. Moreover, due to the nature of the metagenomic data – the

high amount of ambiguity and multi-mapping – we expect to see improvement in

the accuracy metrics as more alignments are reported per read, because, this leads

to a higher recall. While STAR’s accuracy changes only slightly from 20 alignments

to 200 alignments (only improving MAE) the results for PuffAligner and Bowtie2

improve considerably allowing more alignments per read. However, this higher ac-

curacy comes in the cost of alignment time for Bowtie2. As shown in figure 8,

section 8b, Bowtie2 alignment time increases allowing more alignments per read

while PuffAligner, as a hash-based seed and extend method, exhibits a constant

alignment time regardless of number of alignments being reported per read. The

difference becomes specifically evident while allowing up to 200 alignments per read,

where PuffAligner is 4 times faster than Bowtie2. In addition to all this, in real data,

many of the alignments reported do not necessarily have a high quality and only

appear in the output as one of the 200 alignments for the read. This leads us to

the last but not least observation: the similar accuracy achieved by PuffAligner in

bestStrata mode compared to when allowing up to 200 alignments. In bestStrata

mode, PuffAligner limits the reported alignments to only those with the highest

score for each read, which in the face of no errors covers all the multi-mapped reads

without reporting the sub-optimal alignment as a byproduct. The observations are

pretty similar in the other two simulated samples in the supplementary table 11 this

83

time with PuffAligner being the most accurate aligner beating both Bowtie2 and

STAR in different modes for both samples.

Overall, these results along with other similar experiments in supplementary

table 11 indicate that PuffAligner is a highly-sensitive and fast aligner. Specif-

ically PuffAligner is an appropriate choice of interest for metagenomic analysis,

since it is as accurate as well-known aligners like Bowtie2 and STAR with close

memory requirements to Bowtie2, while being much faster.

(a) Time performance for aligning a single
strain sample averaged over all three sam-
ples.

(b) Time performance for aligning a mock
experiment simulated from bulk read sample
SRR10948222.

Figure 8: Time performance of different alignments in the two microbiome experiments.
In 8a, the results are averaged over the three alignment processes for the samples covid19,
sars, and bat2008 each having ∼ 1𝑀 paired-end reads. In 8b the performance shown
is for aligning reads in mock sample simulated from SRR10948222 with 5𝑀 paired-end
reads. As shown in the bulk experiment, the alignment time increases in Bowtie2 asking
for more alignments per read while the other tools show a constant alignment time scaling
over number of reads. The dashed area shows fraction of the time spent purely on aligning
reads where the remaining is possessed by the index loading time. PuffAligner is by far
the fastest tool and yet most of its alignment time is dedicated to loading the index. This
demonstrates the efficiency of the hash-based alignment methodology in PuffAligner which
results its fast alignment time to stand out even more when the index is already loaded
in memory.

3.6 Scalability

Figure 9 represents how the construction time and index size of each tool scales

over different types of sequences from human transcriptome toward 4000 bacterial

84

Transcriptome Genome Collection of Genomes
(4k Bacteria)

Data Type

0

20

40

60

80

100

120

140

Si
ze

(G
)

Metric = Index Disk
Tool

Puffaligner
Bowtie2
deBGA
Star

Transcriptome Genome Collection of Genomes
(4k Bacteria)

Data Type

0

20

40

60

80

100

120

140

Metric = Construction Memory

(a) Scalability over index disk space and construction memory

Transcriptome Genome Collection of Genomes
(4k Bacteria)

Data Type

0

200

400

600

800

M
in

ut
es

Metric = Construction Time

(b) Scalability over construction time

Figure 9: Scalability of different tools over the final index disk space, construction memory,
and construction running time for three different datasets, human transcriptome (gencode
version 33), human genome (GRCh38 primary assembly), and collection of genomes (4000
random bacterial complete genomes). All tools are run with 16 threads.

genomes. The trend shows the effect of database size as well as redundancy and

sequence similarity on the scalability of each of the tools. Tools such as PuffAligner

and deBGA, which build a de Bruijn graph based index on the input sequence,

specifically compress similar sequences into unitigs and are more prune to the se-

quence repetition, as a result, these tools are better scalable for databases with high

85

redundancy such as microbiomes. It is of course necessary to mention that Bowtie2

requires a switch from a 32-base structure to a 64-base one as the total count of the

input bases increases which is another reason why the size is growing super-linearly.

It is also worth mentioning that since all the aligners require loading the whole index

in memory at the time of alignment, since PuffAligner’s index is scaling better in

the presence of high similarity between reference sequences compared to Bowtie2,

the runtime memory requirement for PuffAligner gets closer to Bowtie2.

3.7 Why use an aligner when we have a light-weight and fast pipeline

like Kraken2 + Bracken

In this section, we highlight the use case of PuffAligner in the metagenomic world

for the upstream step to analyze real data as an accurate, memory-efficient, and fast

aligner. Specifically, we approach the problem from the perspective of comparing the

correlation of the PuffAligner results, as an aligner, with a 𝑘-mer-based abundance

estimation approach, namely Bracken. For that purpose, we construct an index over

all bacteria, viral, archae, and fungi obtained from NCBI taxonomy database [45]

on May 21, 2020 using both Pufferfish and Kraken2. we run both pipelines of

Kraken2 +Bracken and PuffAligner +Salmon over 34 randomly selected samples

from different categories of metagenomic analyses. Ten of the samples are selected

from non-human projects such as the “metasub project” [33] as well as metagenomic

samples of submarine or soil analyses [100] and the rest are selected from “human

metagenome project (hmp)” [50]. The human samples are chosen from different

86

tissue categories of plasma, tongue dorsal, gingiva, vaginal, and fecal. We then

compare the abundance of the reported references through each of the two pipelines

of PuffAligner +Salmon and Kraken2 +Bracken.

We run PuffAligner in two modes; the default mode does not allow any orphan,

discordant, or dovetail alignments, Filters any mapping with minScoreFraction less

than 0.65 of the maximum possible coverage (covering the full read pair) and reports

only alignments with highest score (bestStrata). We also run PuffAligner allowing

orphans, discordant, and dovetail alignments but keeping the rest of the parameters

as default. We use Salmon as a well-known and well-established abundance estima-

tion tool to be able to compare the results with Kraken2 +Bracken reports. It is

important to note that the pipeline, although for now being our proposed pipeline for

metagenomic analysis on short reads, can be improved by incorporating the specific

features of the metagenomic data in abundance estimation step such as the taxon-

omy tree information and marker genes expression. We also run Kraken2 in two

different modes, first the “default” which would allow all reads with even one single

𝑘-mer match to be classified and second with setting the confidence option to 0.65

which would prevent reporting reads that have a confidence lower than 0.65. As per

authors’ definition∗, this number is calculated based on the ratio of unique 𝑘-mers

mapped to a taxa in the taxonomy tree over all the non-ambiguous 𝑘-mers of the

read (𝑘-mers without “N”s). There is not a one to one correspondence between con-

fidence threshold here and the “minScoreFraction” in PuffAligner. However, both of

these options are necessary for providing a more reliable reference abundance report
∗https://github.com/DerrickWood/kraken2/wiki/Manual

87

by removing the reads with small evidence showing the initial sign that the read

belongs to the list of indexed references. Filtering orphaned, discordant, or dovetail

reads is a feature only available to the alignment-based procedures and not 𝑘-mer

counting approaches.

Assuming there were no technical errors and no variation across species, if

the read was coming from a subset of references in the index, then there would

be at least one exact match for it. The edit distance and the scoring criteria for

insertion/deletion and mismatch demonstrate the potential technological errors and

the variation across individuals in alignment procedure. That along with a thresh-

old for discarding reads with low alignment scores is the established computational

approach for deciding which alignment to report. The semi-alignment approaches,

break the read into 𝑘-mers and instead of full alignment, look for exact 𝑘-mer

matches, considering the high correlation of this approach and the alignment. This

approach is super fast and memory efficient and provides highly correlated abun-

dances with full alignment. However, we believe that in metagenomic analyses this

approach is not as highly accurate and correlated as transcriptomic and genomic

analyses. The main reason is the variation among genomes goes to its extreme in

metagenomics such that two strains could be 99% similar and yet represent two

different subtypes of the species.

88

0.0

0.2

0.4

0.6

0.8

1.0

D
ef

au
lt

P
uf

fa
lig

ne
r

Read count difference of Bracken and Puffaligner
 relative to Puffaligner reported value

Kraken2 Options
confidence=0.65
no confidence

hm
p/

bl
oo

dc
el

l/S
R

S
07

22
12

hm
p/

bl
oo

dc
el

l/S
R

S
07

22
92

hm
p/

bl
oo

dc
el

l/S
R

S
07

22
99

hm
p/

bl
oo

dc
el

l/S
R

S
07

23
74

hm
p/

bl
oo

dc
el

l/S
R

S
07

24
10

hm
p/

bl
oo

dc
el

l/S
R

S
07

24
19

hm
p/

do
rs

um
O

fT
on

gu
e/

S
R

S
01

65
01

hm
p/

do
rs

um
O

fT
on

gu
e/

S
R

S
01

65
29

hm
p/

do
rs

um
O

fT
on

gu
e/

S
R

S
05

54
95

hm
p/

do
rs

um
O

fT
on

gu
e/

S
R

S
14

43
96

hm
p/

fe
ca

l/S
R

S
04

22
84

hm
p/

fe
ca

l/S
R

S
05

46
59

hm
p/

fe
ca

l/S
R

S
05

70
49

hm
p/

fe
ca

l/S
R

S
14

43
93

hm
p/

gi
ng

iv
a/

S
R

S
01

46
87

hm
p/

gi
ng

iv
a/

S
R

S
01

70
88

hm
p/

gi
ng

iv
a/

S
R

S
01

90
25

hm
p/

gi
ng

iv
a/

S
R

S
04

43
66

hm
p/

gi
ng

iv
a/

S
R

S
15

00
38

hm
p/

va
gi

na
l/S

R
S

01
44

66

hm
p/

va
gi

na
l/S

R
S

01
50

72

hm
p/

va
gi

na
l/S

R
S

06
55

47

hm
p/

va
gi

na
l/S

R
S

07
22

43

hm
p/

va
gi

na
l/S

R
S

14
30

14

no
nh

um
an

/N
Y

S
ub

w
ay

/S
R

R
17

48
78

4

no
nh

um
an

/N
Y

S
ub

w
ay

/S
R

R
17

48
79

2

no
nh

um
an

/N
Y

S
ub

w
ay

/S
R

R
17

49
21

4

no
nh

um
an

/N
Y

S
ub

w
ay

/S
R

R
17

49
86

0

no
nh

um
an

/N
Y

S
ub

w
ay

/S
R

R
17

49
86

1

no
nh

um
an

/N
Y

S
ub

w
ay

/S
R

R
17

49
87

0

no
nh

um
an

/N
Y

S
ub

w
ay

/S
R

R
17

49
87

1

no
nh

um
an

/U
H

on
gK

on
g/

B
io

fil
m

/S
R

R
10

22
36

1

no
nh

um
an

/U
H

on
gK

on
g/

E
st

ua
ry

­S
ed

im
en

t/S
R

R
10

22
37

8

no
nh

um
an

/U
H

on
gK

on
g/

F
is

h­
F

ar
m

­S
ed

im
en

t/S
R

R
10

22
34

9

Sample accession ID

0.0

0.2

0.4

0.6

0.8

1.0

A
llo

w
in

g
O

rp
ha

n,
 D

is
co

rd
an

t,
 a

nd
 D

ov
et

ai
l a

lig
nm

en
ts

Figure 10: This plot shows, for each of the 34 samples, the difference in count of assigned
reads between Puffaligner+Salmon pipeline vs Kraken2+Bracken relative to the reported
read count by Puffaligner. The reads are aligned/classified to the Pufferfish/Kraken2
index on the reference sequences of bacteria, viral, archae, and fungi obtained from NCBI.
The first and second row compare the results of different Puffaligner runs. In the first row,
we run Puffalinger with default parameters and in the second row, Puffaligner also reports
orphan, discordant, or dovetail alignments as valid alignments if they pass the alignment
score threshold. As the plot shows, there is no well-defined pattern of behavior between
Kraken as a kmer counting based classifier and Puffaligner as a full aligner.

Considering the alignment-based as the most representative model for vari-

ation and errors in the reads, the plots in figure 10-a show the inefficiency of the

semi-alignment approach to be a simplified version of alignment with consistent be-

havior across individual samples. We run Kraken2 +Bracken pipeline in the two

modes described earlier, with applying the confidence of 0.65 and with no conif-

dence. In figure 10, we compare the effect of this option on the count of accepted

89

reads with PuffAligner +Salmon reported read count In contrary, we do not see a

similar pattern in all the samples, with either the threshold making the reported

read counts closer to the alignment pipeline or further from it. It is expected that

the same threshold value in the two pipelines of Kraken2 +Bracken and PuffAligner

+Salmon, do not provide us with the same read set and therefore a different (higher

or lower) threshold might be needed to achieve less read count difference in the

alignment and semi-alignment approaches. On the other hand, we should at least

see a similar relative effect of applying the threshold over all the samples, i.e. the

read count consistently getting closer to the alignment approach or further from it.

The options of orphan, discordant, and dovetail reads, although important, are only

available to the alignment procedures which consider the relationship of the ends in

a paired-end read. That is why we also do the same comparison between the two

modes of Kraken2 with PuffAligner discarding the three filtering options so that

now the only prohibiting option from reporting a read is related to the reads cover-

age. The results are shown in the bottom plot of figure 10. Interestingly, the read

counts reported in both modes of Kraken2 have got further from the PuffAligner

results compared to the plot on top. But the trend of inconsistency in the ratio

of the reads reported by Kraken2 over PuffAligner across samples. We provide the

absolute read count difference in supplementary figure 10. However, it is not possi-

ble to scale the plot so that we can both see the difference for smaller samples and

larger ones. We also look at the top 5 highly reported species for each sample and

their abundance in supplementary figure 13 for Kraken2 +Bracken in two modes

and PuffAligner (default) to see the effect of the pipelines on the list of discovered

90

species and their abundances. There we similar highly abundant species in Kraken2

with no confidence value as well as PuffAligner, that are not as abundant in Kraken2

with confidence=0.65 for some samples (Streptococcus gordonii for one of the sub-

way samples) whereas for others applying the confidence threshold puts the results

closer to PuffAligner (e.g. Lactobocillus Crispatus for two vaginal sample). We do

the same analyses at the level of genus in figure 14 and there we observe the same

inconsistency. To summarize, through the experiments in this section, we show that

the semi-alignment approaches can result in different reported abundant references

than alignment approaches per metagenomic sample depending on the quality of

the sample and the technological biases particular to that sample. That is why we

believe, having a sensitive, and highly efficient alignment pipeline in PuffAligner, it

is now a reasonable and required tradeoff of query speed for accuracy to switch from

a semi-aligner pipeline to an aligner one for metagenomic analyses.

4 Discussion & Conclusion

In this paper we introduce PuffAligner, an aligner for short read sequences, suitable

for the contiguous alignment of short-read sequencing data. We demonstrate its

use in aligning single-species DNA-seq reads to the genome, RNA-seq reads to the

transcriptome, and multi-species DNA-seq reads to a metagenomic reference. It is

built on top of the Pufferfish index, which constructs a colored compacted de Bruijn

graph using the input reference sequences. PuffAligner begins read alignment by

collecting maximal exact matches, querying 𝑘-mers from the read in the Puffer-

91

fish index. The aligner then chains together the collected MEMs using a dynamic

programming approach, choosing the chains with the highest coverage as potential

alignment positions for the reads. Finally, PuffAligner is able to efficiently compute

the exact alignments, exploiting the information from long matches in the chains.

We compare the accuracy and efficiency of PuffAligner against two widely

used alignment methods, Bowtie2 and STAR, that perform unspliced and spliced

alignments of reads, respectively. We also compare the results against deBGA, an

aligner that also utilizes an index built over the compacted de Bruijn graph.

We analyze the performance of these tools on both simulated and experimental

DNA and RNA sequencing datasets. The accuracy of PuffAligner is particularly

comparable to Bowtie2, which exhibits both as high sensitivity, and specificity in

terms of read alignment, and generally performing better than STAR and deBGA

(though, unlike STAR, none of these other tools yet support spliced read alignment).

In terms of speed and memory, PuffAligner reaches a tradeoff between the relatively

high memory usage of STAR and deBGA and the slower speed of Bowtie2. Hence,

while the memory requirement is more than that of Bowtie2, the speed gain is

significant, with STAR being the only tested tool that is sometimes faster.

An additional advantage of the Pufferfish index utilized in PuffAligner is that

it can be built on a mixed collection of genomes, transcriptomes, or both. We utilize

this feature of Pufferfish in a specific pipeline for aligning experimental RNA-seq

reads where reads might originate from genomic sequences as well in [152]. The

analysis shows how we can improve the specificity of the alignments by discarding

potentially intronic reads or reads aligning from processed pseudogenes with similar

92

sequence to annotated protein coding transcripts. This allows further improving the

accuracy of alignments compared to a highly sensitive tool such as Bowtie2. Further-

more, the use of de Bruijn graphs in the design of the Pufferfish index structure and

the highly accurate and fast alignment procedure of the PuffAligner makes it par-

ticularly useful for indexing and aligning to a highly similar collection of sequences,

potentially making it a powerful approach in metagenomic analyses.

We have provided a proof of concept to this fact in our experimental design

over a collection of bacteria and plan to specifically use PuffAligner for metagenomic

analyses in the future.

93

5 Supplementary Material

Table 7: The percentage of aligner engine calls skipped in the alignment calculation
pipeline.
sample Cache Hits Perfect Chains None Alignable Total Skipped
DNA-seq experimental 52.89% 19.01% 0.71% 72.67%
RNA-seq simulated 28.69% 50.80% 0.97% 80.46%
Metagenomic simulated 61.10% 31.33% 0.00 % 92.43%

13516229

678471 631742 624652 381395 194650 126268
0.0e+00

5.0e+06

1.0e+07

1.5e+07

In
te

rs
ec

tio
n

S
iz

e

●

●

●

●

●

●

●

●

●

●

●

●

puffaligner

bowtie2

star

0.0e+005.0e+061.0e+071.5e+07
Set Size

Figure 11: Upset plot showing the agreement of the alignments found by different tools
based on the location of the mappings

94

Table 8: The construction benchmark and final index size for each of the tools over 4000
selected bacteria

Tool Time (hh:mm) Memory (GB) Index Size (GB)
PuffAligner 01:40 61.30 46
deBGA 04:42 129.40 59
Bowtie2 04:03 50.70 27
STAR 14:50 147.70 134

Table 9: Basic information for samples selected for simulating mock bulk metagenomic
samples.

Accession Project description # of reads
of reads
aligned to
4k selected
reference

of simulated reads

of ref-
erences of
origin
for the
simulated
reads

SRR10948222

Finding sub-biocrust
soil microbial commu-
nities
in Mojave Desert,
California, United
States

27,296,270 200k 5,550,650 98

SRR11283975

The impact of dif-
ferent acidification
degrees
on the bacterial
community in the
Jiaodong Peninsula,
China

35.5k 8,333 1,012,176 92

SRR11496426

The composition,
genetics characteris-
tics
and structure
of the microbial com-
munities
of the oil site of Uzon
Caldera

42.3k 30,203 1,029,382 179

95

Table 10: Alignment Distribution for two samples of 500,000 simulated reads from ref-
erence sequences NC_004718.3 (known as SARS Coronavirus) and NC_014470.1 (Bat
Coronavirus assembled in 2008) respectively.

Sample’s
Origin

Alignment
Mode Tool

NC_045512.2
(Covid19)

NC_004718.3
(SARS Coron-
avirus)

NC_014470.1
(Bat Coron-
avirus)

Other As-
sembled
References

SARS

Primary

PuffAligner 0 500,000 0 0
Bowtie2 24 499,975 0 0
STAR 0 499,998 0 0
deBGA 0 499,995 0 5

Up to 20

PuffAligner 116 500,000 486 0
Bowtie2 21,546 499,999 7,205 0
STAR 0 499,998 0 0
deBGA 0 499,995 0 5

Up to 200

PuffAligner 116 500,000 486 0
Bowtie2 21,546 499,999 7,205 0
STAR 0 499,998 0 0
deBGA 0 499,995 0 5

Best strata PuffAligner 0 500,000 0 0
STAR 0 499,998 0 0

Bat2008

Primary

PuffAligner 0 0 500,000 0
Bowtie2 0 0 499,999 0
STAR 0 0 499,999 0
deBGA 0 0 499,991 9

Up to 20

PuffAligner 32 494 500,000 0
Bowtie2 2,343 7,127 499,999 0
STAR 0 0 499,999 0
deBGA 0 0 499,991 0

Up to 200

PuffAligner 32 494 500,000 0
Bowtie2 2,343 7,127 499,999 0
STAR 0 0 499,999 0
deBGA 0 0 499,991 9

Best strata PuffAligner 0 0 500,000 0
STAR 0 0 499,999 0

MARD(𝑦, 𝑦) = 1
𝑛refs

𝑛refs−1∑︁
𝑖=0

|𝑦𝑖 − 𝑦𝑖|
𝑦𝑖 + 𝑦𝑖

.

MAE(𝑦, 𝑦) = 1
𝑛refs

𝑛refs−1∑︁
𝑖=0

|𝑦𝑖 − 𝑦𝑖| .

MSE(𝑦, 𝑦) = 1
𝑛refs

𝑛refs−1∑︁
𝑖=0

(𝑦𝑖 − 𝑦𝑖)2.

(3.2)

96

Table 11: Alignment accuracy of the tools over different accuracy metrics for the mock
sample simulated from real samples with accession IDs SRR11283975 and SRR11496426.

Accession ID Alignment
Mode Tool Spearman MARD MAE MSLE

SRR11283975
Jiandong Penin-
sula

Primary

PuffAligner 0.71 0.024 0.43 0.04
Bowtie2 0.615 0.04 0.64 0.07
STAR 0.727 0.02 0.406 0.04
deBGA 0.274 0.521 106.78 3.79

Up to 20

PuffAligner 0.942 0.003 0.07 0.00
Bowtie2 0.909 0.005 0.05 0.00
STAR 0.946 0.003 0.087 0.00
deBGA 0.277 0.489 101.39 3.37

Up to 200

PuffAligner 0.979 0.001 0.07 0
Bowtie2 0.97 0.002 0.04 0.00
STAR 0.951 0.003 0.086 0.00
deBGA 0.278 0.483 100.96 3.29

Best strata PuffAligner 0.979 0.001 0.063 0
STAR 0.951 0.003 0.086 0.00

SRR11496426
Uzon Caldera

Primary

PuffAligner 0.568 0.112 32.55 0.95
Bowtie2 0.53 0.14 38.06 1.10
STAR 0.559 0.118 31.823 0.83
deBGA 0.367 0.566 115.88 3.57

Up to 20

PuffAligner 0.789 0.03 7.43 0.24
Bowtie2 0.74 0.042 10.83 0.30
STAR 0.713 0.049 6.939 0.17
deBGA 0.368 0.554 109.29 3.32

Up to 200

PuffAligner 0.865 0.017 5.64 0.11
Bowtie2 0.879 0.015 7.21 0.13
STAR 0.724 0.045 6.496 0.13
deBGA 0.369 0.549 108.99 3.27

Best strata PuffAligner 0.85 0.019 5.571 0.09
STAR 0.723 0.046 6.544 0.13

97

0

200000

400000

600000

800000

1000000

D
ef

au
lt

P
uf

fa
lig

ne
r

Absolute read count difference of Bracken and Puffaligner

Kraken2 Options
confidence=0.65
no confidence

hm
p/

bl
oo

dc
el

l/S
R

S
07

22
12

hm
p/

bl
oo

dc
el

l/S
R

S
07

22
92

hm
p/

bl
oo

dc
el

l/S
R

S
07

22
99

hm
p/

bl
oo

dc
el

l/S
R

S
07

23
74

hm
p/

bl
oo

dc
el

l/S
R

S
07

24
10

hm
p/

bl
oo

dc
el

l/S
R

S
07

24
19

hm
p/

do
rs

um
O

fT
on

gu
e/

S
R

S
01

65
01

hm
p/

do
rs

um
O

fT
on

gu
e/

S
R

S
01

65
29

hm
p/

do
rs

um
O

fT
on

gu
e/

S
R

S
05

54
95

hm
p/

do
rs

um
O

fT
on

gu
e/

S
R

S
14

43
96

hm
p/

fe
ca

l/S
R

S
04

22
84

hm
p/

fe
ca

l/S
R

S
05

46
59

hm
p/

fe
ca

l/S
R

S
05

70
49

hm
p/

fe
ca

l/S
R

S
14

43
93

hm
p/

gi
ng

iv
a/

S
R

S
01

46
87

hm
p/

gi
ng

iv
a/

S
R

S
01

70
88

hm
p/

gi
ng

iv
a/

S
R

S
01

90
25

hm
p/

gi
ng

iv
a/

S
R

S
04

43
66

hm
p/

gi
ng

iv
a/

S
R

S
15

00
38

hm
p/

va
gi

na
l/S

R
S

01
44

66

hm
p/

va
gi

na
l/S

R
S

01
50

72

hm
p/

va
gi

na
l/S

R
S

06
55

47

hm
p/

va
gi

na
l/S

R
S

07
22

43

hm
p/

va
gi

na
l/S

R
S

14
30

14

no
nh

um
an

/N
Y

S
ub

w
ay

/S
R

R
17

48
78

4

no
nh

um
an

/N
Y

S
ub

w
ay

/S
R

R
17

48
79

2

no
nh

um
an

/N
Y

S
ub

w
ay

/S
R

R
17

49
21

4

no
nh

um
an

/N
Y

S
ub

w
ay

/S
R

R
17

49
86

0

no
nh

um
an

/N
Y

S
ub

w
ay

/S
R

R
17

49
86

1

no
nh

um
an

/N
Y

S
ub

w
ay

/S
R

R
17

49
87

0

no
nh

um
an

/N
Y

S
ub

w
ay

/S
R

R
17

49
87

1

no
nh

um
an

/U
H

on
gK

on
g/

B
io

fil
m

/S
R

R
10

22
36

1

no
nh

um
an

/U
H

on
gK

on
g/

E
st

ua
ry

­S
ed

im
en

t/S
R

R
10

22
37

8

no
nh

um
an

/U
H

on
gK

on
g/

F
is

h­
F

ar
m

­S
ed

im
en

t/S
R

R
10

22
34

9

Sample accession ID

0

200000

400000

600000

800000

1000000

A
llo

w
in

g
O

rp
ha

n,
 D

is
co

rd
an

t,
 a

nd
 D

ov
et

ai
l a

lig
nm

en
ts

Figure 12: The difference in count of assigned reads between Puffaligner+Salmon pipeline
vs Kraken2+Bracken reads on 34 samples. Puffaligner is run in the mode that does not
allow any orphan, discordant, or dovetail alignments.

98

(a) Bracken with

no confidence

hmp/dorsumOfTongue/SRS016501
hmp/dorsumOfTongue/SRS016529
hmp/dorsumOfTongue/SRS055495
hmp/dorsumOfTongue/SRS144396
hmp/fecal/SRS042284
hmp/fecal/SRS054659
hmp/fecal/SRS057049
hmp/fecal/SRS144393
hmp/gingiva/SRS014687
hmp/gingiva/SRS017088
hmp/gingiva/SRS019025
hmp/gingiva/SRS044366
hmp/gingiva/SRS150038
hmp/vaginal/SRS014466
hmp/vaginal/SRS015072
hmp/vaginal/SRS065547
hmp/vaginal/SRS072243
hmp/vaginal/SRS143014
nonhuman/NYSubway/SRR1748784
nonhuman/NYSubway/SRR1748792
nonhuman/NYSubway/SRR1749214
nonhuman/NYSubway/SRR1749860
nonhuman/NYSubway/SRR1749861
nonhuman/NYSubway/SRR1749870
nonhuman/NYSubway/SRR1749871
nonhuman/UHongKong/Biofilm/SRR1022361
nonhuman/UHongKong/Estuary-Sediment/SRR1022378
nonhuman/UHongKong/Fish-Farm-Sediment/SRR1022349

Sa
m

pl
e

ac
ce

ss
io

n
ID

0

200000

400000

600000

800000

(b) Bracken with

confidence=0.65

hmp/dorsumOfTongue/SRS016501
hmp/dorsumOfTongue/SRS016529
hmp/dorsumOfTongue/SRS055495
hmp/dorsumOfTongue/SRS144396
hmp/fecal/SRS042284
hmp/fecal/SRS054659
hmp/fecal/SRS057049
hmp/fecal/SRS144393
hmp/gingiva/SRS014687
hmp/gingiva/SRS017088
hmp/gingiva/SRS019025
hmp/gingiva/SRS044366
hmp/gingiva/SRS150038
hmp/vaginal/SRS014466
hmp/vaginal/SRS015072
hmp/vaginal/SRS065547
hmp/vaginal/SRS072243
hmp/vaginal/SRS143014
nonhuman/NYSubway/SRR1748784
nonhuman/NYSubway/SRR1748792
nonhuman/NYSubway/SRR1749214
nonhuman/NYSubway/SRR1749860
nonhuman/NYSubway/SRR1749861
nonhuman/NYSubway/SRR1749870
nonhuman/NYSubway/SRR1749871
nonhuman/UHongKong/Biofilm/SRR1022361
nonhuman/UHongKong/Estuary-Sediment/SRR1022378
nonhuman/UHongKong/Fish-Farm-Sediment/SRR1022349

Sa
m

pl
e

ac
ce

ss
io

n
ID

0

200000

400000

600000

800000

(c) Puffaligner

default + Salmon

CP
M-

Ac
id

ov
or

ax
 sp

. J
S4

2
CP

M-
Ac

in
et

ob
ac

te
r n

os
oc

om
ial

is
CP

M-
Ac

in
et

ob
ac

te
r r

ad
ior

es
ist

en
s

CP
M-

Ac
tin

om
yc

es
 o

ris
CP

M-
Al

icy
cli

ph
ilu

s d
en

itr
ifi

ca
ns

CP
M-

Ba
cil

lu
s c

er
eu

s
CP

M-
Ba

ct
er

oid
es

 d
or

ei
CP

M-
Ba

ct
er

oid
es

 o
va

tu
s

CP
M-

Ba
ct

er
oid

es
 th

et
aio

ta
om

icr
on

CP
M-

Ba
ct

er
oid

es
 v

ul
ga

tu
s

CP
M-

Ca
nd

id
at

us
 N

itr
os

op
um

ilu
s s

ed
im

in
is

CP
M-

Cl
oa

cib
ac

te
riu

m
 n

or
m

an
en

se
CP

M-
Co

ry
ne

ba
ct

er
iu

m
 m

at
ru

ch
ot

ii
CP

M-
Cu

tib
ac

te
riu

m
 a

cn
es

CP
M-

De
su

lfo
sa

rc
in

a
alk

an
ivo

ra
ns

CP
M-

Do
los

ig
ra

nu
lu

m
 p

ig
ru

m
CP

M-
En

te
ro

ba
ct

er
 ro

gg
en

ka
m

pi
i

CP
M-

En
te

ro
co

cc
us

 fa
ec

ali
s

CP
M-

Es
ch

er
ich

ia
vir

us
 La

m
bd

a
CP

M-
Fu

sa
riu

m
 p

se
ud

og
ra

m
in

ea
ru

m
CP

M-
Ge

m
ell

a
ha

em
oly

sa
ns

CP
M-

Ha
em

op
hi

lu
s h

ae
m

oly
tic

us
CP

M-
Ha

em
op

hi
lu

s s
p.

 o
ra

l t
ax

on
 0

36
CP

M-
La

ct
ob

ac
illu

s c
ris

pa
tu

s
CP

M-
La

ct
ob

ac
illu

s i
ne

rs
CP

M-
La

ct
ob

ac
illu

s s
p.

 C
25

CP
M-

Le
cle

rc
ia

ad
ec

ar
bo

xy
lat

a
CP

M-
Ly

sin
ib

ac
illu

s s
p.

 Y
S1

1
CP

M-
Ma

gn
et

os
pi

ril
lu

m
 g

ry
ph

isw
ald

en
se

CP
M-

Me
th

ylo
cy

st
is

ro
se

a
CP

M-
Mo

ra
xe

lla
 ca

ta
rrh

ali
s

CP
M-

My
co

lic
ib

ac
te

riu
m

 in
su

br
icu

m
CP

M-
Ne

iss
er

ia
su

bf
lav

a
CP

M-
Ni

tro
so

pu
m

ilu
s m

ar
iti

m
us

CP
M-

Pa
nt

oe
a

sp
. P

SN
IH

1
CP

M-
Pa

ra
ba

ct
er

oid
es

 sp
. C

T0
6

CP
M-

Pa
st

eu
re

lla
 m

ul
to

cid
a

CP
M-

Plu
ra

lib
ac

te
r g

er
go

via
e

CP
M-

Ps
eu

do
m

on
as

 a
er

ug
in

os
a

CP
M-

Ps
eu

do
m

on
as

 sp
. F

DA
AR

GO
S_

38
0

CP
M-

Ps
eu

do
m

on
as

 st
ut

ze
ri

CP
M-

Ps
yc

hr
ob

ac
te

r a
lim

en
ta

riu
s

CP
M-

Ps
yc

hr
ob

ac
te

r s
p.

 P
11

F6
CP

M-
Ra

lst
on

ia
so

lan
ac

ea
ru

m
CP

M-
Rh

izo
bi

um
 sp

. Y
9

CP
M-

Ru
br

ivi
va

x
ge

lat
in

os
us

CP
M-

Sa
lm

on
ell

a
en

te
ric

a
CP

M-
So

ra
ng

iu
m

 ce
llu

los
um

CP
M-

Sp
hi

ng
ob

ac
te

riu
m

 sp
. D

R2
05

CP
M-

St
ap

hy
loc

oc
cu

s a
ur

eu
s

CP
M-

St
en

ot
ro

ph
om

on
as

 a
cid

am
in

ip
hi

la
CP

M-
St

en
ot

ro
ph

om
on

as
 n

itr
iti

re
du

ce
ns

CP
M-

St
en

ot
ro

ph
om

on
as

 sp
. 3

64
CP

M-
St

en
ot

ro
ph

om
on

as
 sp

. K
CT

C
12

33
2

CP
M-

St
re

pt
oc

oc
cu

s g
or

do
ni

i
CP

M-
St

re
pt

oc
oc

cu
s m

iti
s

CP
M-

St
re

pt
oc

oc
cu

s p
ne

um
on

iae
CP

M-
St

re
pt

oc
oc

cu
s p

yo
ge

ne
s

CP
M-

St
re

pt
oc

oc
cu

s s
an

gu
in

is
CP

M-
St

re
pt

oc
oc

cu
s s

p.
 FD

AA
RG

OS
_5

22
CP

M-
St

re
pt

oc
oc

cu
s s

p.
 o

ra
l t

ax
on

 4
31

CP
M-

St
re

pt
om

yc
es

 liv
id

an
s

CP
M-

Sy
ne

ch
oc

oc
cu

s s
p.

 R
CC

30
7

CP
M-

Th
er

m
om

on
as

 sp
. S

Y2
1

CP
M-

Ve
illo

ne
lla

 d
isp

ar
CP

M-
W

oe
se

ia
oc

ea
ni

Species

hmp/dorsumOfTongue/SRS016501
hmp/dorsumOfTongue/SRS016529
hmp/dorsumOfTongue/SRS055495
hmp/dorsumOfTongue/SRS144396
hmp/fecal/SRS042284
hmp/fecal/SRS054659
hmp/fecal/SRS057049
hmp/fecal/SRS144393
hmp/gingiva/SRS014687
hmp/gingiva/SRS017088
hmp/gingiva/SRS019025
hmp/gingiva/SRS044366
hmp/gingiva/SRS150038
hmp/vaginal/SRS014466
hmp/vaginal/SRS015072
hmp/vaginal/SRS065547
hmp/vaginal/SRS072243
hmp/vaginal/SRS143014
nonhuman/NYSubway/SRR1748784
nonhuman/NYSubway/SRR1748792
nonhuman/NYSubway/SRR1749214
nonhuman/NYSubway/SRR1749860
nonhuman/NYSubway/SRR1749861
nonhuman/NYSubway/SRR1749870
nonhuman/NYSubway/SRR1749871
nonhuman/UHongKong/Biofilm/SRR1022361
nonhuman/UHongKong/Estuary-Sediment/SRR1022378
nonhuman/UHongKong/Fish-Farm-Sediment/SRR1022349

Sa
m

pl
e

ac
ce

ss
ion

 ID

0

200000

400000

600000

800000

Figure 13: Heatmap showing 5 most popular species over 28 samples through three pipelines of Kraken2(no con-

fidence)+Bracken, Kraken2(confidence=0.65)+Bracken and default Puffaligner+Salmon. Overall, we observe more

similarity between Puffaligner and Bracken with confidence of 0.65. However, there are cases where applying the

confidence filter to Kraken make the results diverge from Puffaligner pipeline for example “Screptococcus gorbanii”

considered abundant in a subway sample in the first and third heatmap, whereas Kraken2(confidence=0.65) does

not detect the microorganism as abundant. 99

(a) Bracken with

no confidence

hmp/dorsumOfTongue/SRS016501
hmp/dorsumOfTongue/SRS016529
hmp/dorsumOfTongue/SRS055495
hmp/dorsumOfTongue/SRS144396
hmp/fecal/SRS042284
hmp/fecal/SRS054659
hmp/fecal/SRS057049
hmp/fecal/SRS144393
hmp/gingiva/SRS014687
hmp/gingiva/SRS017088
hmp/gingiva/SRS019025
hmp/gingiva/SRS044366
hmp/gingiva/SRS150038
hmp/vaginal/SRS014466
hmp/vaginal/SRS015072
hmp/vaginal/SRS065547
hmp/vaginal/SRS072243
hmp/vaginal/SRS143014
nonhuman/NYSubway/SRR1748784
nonhuman/NYSubway/SRR1748792
nonhuman/NYSubway/SRR1749214
nonhuman/NYSubway/SRR1749860
nonhuman/NYSubway/SRR1749861
nonhuman/NYSubway/SRR1749870
nonhuman/NYSubway/SRR1749871
nonhuman/UHongKong/Biofilm/SRR1022361
nonhuman/UHongKong/Estuary-Sediment/SRR1022378
nonhuman/UHongKong/Fish-Farm-Sediment/SRR1022349

Sa
m

pl
e

ac
ce

ss
io

n
ID

0

200000

400000

600000

800000

(b) Bracken with

confidence=0.65

hmp/dorsumOfTongue/SRS016501
hmp/dorsumOfTongue/SRS016529
hmp/dorsumOfTongue/SRS055495
hmp/dorsumOfTongue/SRS144396
hmp/fecal/SRS042284
hmp/fecal/SRS054659
hmp/fecal/SRS057049
hmp/fecal/SRS144393
hmp/gingiva/SRS014687
hmp/gingiva/SRS017088
hmp/gingiva/SRS019025
hmp/gingiva/SRS044366
hmp/gingiva/SRS150038
hmp/vaginal/SRS014466
hmp/vaginal/SRS015072
hmp/vaginal/SRS065547
hmp/vaginal/SRS072243
hmp/vaginal/SRS143014
nonhuman/NYSubway/SRR1748784
nonhuman/NYSubway/SRR1748792
nonhuman/NYSubway/SRR1749214
nonhuman/NYSubway/SRR1749860
nonhuman/NYSubway/SRR1749861
nonhuman/NYSubway/SRR1749870
nonhuman/NYSubway/SRR1749871
nonhuman/UHongKong/Biofilm/SRR1022361
nonhuman/UHongKong/Estuary-Sediment/SRR1022378
nonhuman/UHongKong/Fish-Farm-Sediment/SRR1022349

Sa
m

pl
e

ac
ce

ss
io

n
ID

0

200000

400000

600000

800000

(c) Puffaligner

default + Salmon

CP
M-

Ac
id

ov
or

ax
CP

M-
Ac

in
et

ob
ac

te
r

CP
M-

Ac
tin

om
yc

es
CP

M-
Ag

gr
eg

at
ib

ac
te

r
CP

M-
Al

icy
cli

ph
ilu

s
CP

M-
Al

ist
ip

es
CP

M-
Ba

cil
lu

s
CP

M-
Ba

ct
er

oid
es

CP
M-

Bl
au

tia
CP

M-
Br

ad
yr

hi
zo

bi
um

CP
M-

Bu
rk

ho
ld

er
ia

CP
M-

Ca
pn

oc
yt

op
ha

ga
CP

M-
Ca

sim
icr

ob
iu

m
CP

M-
Ch

ry
se

ob
ac

te
riu

m
CP

M-
Cl

oa
cib

ac
te

riu
m

CP
M-

Co
pr

ot
he

rm
ob

ac
te

r
CP

M-
Co

ry
ne

ba
ct

er
iu

m
CP

M-
Cu

pr
iav

id
us

CP
M-

Cu
tib

ac
te

riu
m

CP
M-

De
flu

vii
to

ga
CP

M-
De

su
lfo

sa
rc

in
a

CP
M-

Do
los

ig
ra

nu
lu

m
CP

M-
En

te
ro

ba
ct

er
CP

M-
En

te
ro

co
cc

us
CP

M-
Es

ch
er

ich
ia

CP
M-

Ex
ig

uo
ba

ct
er

iu
m

CP
M-

Fla
vo

ba
ct

er
iu

m
CP

M-
Fu

sa
riu

m
CP

M-
Fu

so
ba

ct
er

iu
m

CP
M-

Ge
m

ell
a

CP
M-

Ha
em

op
hi

lu
s

CP
M-

Kl
eb

sie
lla

CP
M-

La
ct

ob
ac

illu
s

CP
M-

La
ct

oc
oc

cu
s

CP
M-

Ly
sin

ib
ac

illu
s

CP
M-

Ly
so

ba
ct

er
CP

M-
Ma

gn
et

os
pi

ril
lu

m
CP

M-
Me

di
te

rra
ne

ib
ac

te
r

CP
M-

Me
th

an
oc

oc
co

id
es

CP
M-

Me
th

ylo
ba

ct
er

iu
m

CP
M-

Mi
cr

om
on

os
po

ra
CP

M-
Mi

cr
op

ru
in

a
CP

M-
Mo

ra
xe

lla
CP

M-
My

co
ba

ct
er

iu
m

CP
M-

My
co

ba
ct

er
oid

es
CP

M-
My

co
lic

ib
ac

te
riu

m
CP

M-
Ne

iss
er

ia
CP

M-
Ni

tro
so

pu
m

ilu
s

CP
M-

Oc
hr

ob
ac

tru
m

CP
M-

Pa
en

ib
ac

illu
s

CP
M-

Pa
nt

oe
a

CP
M-

Pa
ra

ba
ct

er
oid

es
CP

M-
Pa

ra
gl

ac
iec

ola
CP

M-
Pa

st
eu

re
lla

CP
M-

Plu
ra

lib
ac

te
r

CP
M-

Pr
ev

ot
ell

a
CP

M-
Ps

eu
do

m
on

as
CP

M-
Ps

yc
hr

ob
ac

te
r

CP
M-

Ra
lst

on
ia

CP
M-

Rh
izo

bi
um

CP
M-

Ro
th

ia
CP

M-
Sa

cc
ha

ro
m

yc
es

CP
M-

Sa
lm

on
ell

a
CP

M-
Sc

ha
ali

a
CP

M-
Sh

ig
ell

a
CP

M-
Sp

hi
ng

ob
ac

te
riu

m
CP

M-
St

ap
hy

loc
oc

cu
s

CP
M-

St
en

ot
ro

ph
om

on
as

CP
M-

St
re

pt
oc

oc
cu

s
CP

M-
St

re
pt

om
yc

es
CP

M-
Sy

ne
ch

oc
oc

cu
s

CP
M-

Th
er

m
om

on
as

CP
M-

Tu
ric

ib
ac

te
r

CP
M-

Ve
illo

ne
lla

CP
M-

Xa
nt

ho
m

on
as

CP
M-

ro
ot

Genus

hmp/dorsumOfTongue/SRS016501
hmp/dorsumOfTongue/SRS016529
hmp/dorsumOfTongue/SRS055495
hmp/dorsumOfTongue/SRS144396
hmp/fecal/SRS042284
hmp/fecal/SRS054659
hmp/fecal/SRS057049
hmp/fecal/SRS144393
hmp/gingiva/SRS014687
hmp/gingiva/SRS017088
hmp/gingiva/SRS019025
hmp/gingiva/SRS044366
hmp/gingiva/SRS150038
hmp/vaginal/SRS014466
hmp/vaginal/SRS015072
hmp/vaginal/SRS065547
hmp/vaginal/SRS072243
hmp/vaginal/SRS143014
nonhuman/NYSubway/SRR1748784
nonhuman/NYSubway/SRR1748792
nonhuman/NYSubway/SRR1749214
nonhuman/NYSubway/SRR1749860
nonhuman/NYSubway/SRR1749861
nonhuman/NYSubway/SRR1749870
nonhuman/NYSubway/SRR1749871
nonhuman/UHongKong/Biofilm/SRR1022361
nonhuman/UHongKong/Estuary-Sediment/SRR1022378
nonhuman/UHongKong/Fish-Farm-Sediment/SRR1022349

Sa
m

pl
e

ac
ce

ss
ion

 ID

0

200000

400000

600000

800000

Figure 14: Heatmap showing 5 most popular genera over 28 samples through three
pipelines of Kraken2(no confidence)+Bracken, Kraken2(confidence=0.65)+Bracken and
default Puffaligner+Salmon.

100

Chapter 4: Rainbowfish: A Succinct Colored de Bruijn Graph Rep-

resentation [4]∗

1 Introduction

This paper proposes a new representation of the colored de Bruijn graph. The

colored de Bruijn graph is a variant of the de Bruijn graph where each edge (i.e.,

𝑘-mer) is associated with some set of colors. Here, each color is used to encode the

source of the corresponding 𝑘-mers (e.g., different source genomes, transcriptomes,

sequenced samples, etc.). From this perspective, it is a flexible and powerful com-

binatorial structure for representing a collection of sequences while maintaining the

identity of each. This structure gained popularity in the work of Iqbal et al. [66],

which demonstrated the utility of the colored de Bruijn graph for representing and

assembling a collection (population) of genomes, and for detecting both simple and

complex genetic variants with high accuracy. Analysis of the colored de Bruijn

graph exhibits particular promise for analyzing complex population-level variation,

since topological structures (e.g., bubbles) can be associated with variation in the

underlying sub-populations. The representation adopted by Iqbal, as implemented

in the tool Cortex, is optimized for speed, and so requires a considerable amount
∗published in WABI2017

101

of memory to represent both the topology of the de Bruijn graph and the colors

associated with each edge.

The memory usage of the colored de Bruijn graph representation adopted in

Cortex precludes this approach from being adopted when the underlying genomes

and color sets become too large. In order to overcome such limitations, Muggli et

al. [109] introduced the VARI representation of the colored de Bruijn graph. This

approach sacrifices some of the speed of the Cortex representation for a considerable

reduction in the required space. VARI achieves this space savings in two ways. First,

rather than using a hash-table-based representation of the de Bruijn graph topology,

it adopts the highly-efficient BOSS representation. The BOSS [18] representation

(named based on the initials of the authors) makes use of the FM index [46] to

encode the topology of the de Bruijn graph. BOSS uses 4𝑁 +𝑜(𝑁) bits to represent

a de Bruijn graph with 𝑁 edges (empirically, this often works out to be as few as

4-6 bits per edge).

VARI couples the BOSS representation of the de Bruijn graph topology with a

compressed representation of the color information. By its nature, BOSS assigns to

every de Bruijn graph edge a distinct rank in the range [0, 𝑁). So, VARI represents

the color information as a 𝑁 ×𝐶 bit matrix where 𝐶 is the number of input colors.

Conceptually, each of the 𝑁 rows of this matrix is simply a bit vector that encodes

which of the 𝐶 colors label the corresponding edge. To reduce the space required

to store this color information, VARI concatenates these rows into a single vector

over 𝑁 × 𝐶 coordinates and stores them in an Elias-Fano [42, 44] encoded bit vec-

tor, allowing for a (sometimes substantial) reduction in the size while still enabling

102

efficient point queries (i.e., is a particular edge labeled with a given color?). Muggli

et al. [109] demonstrate that the VARI representation can be built on data sets

consisting of large numbers of 𝑘-mers, large input color sets, or both. Specifically,

the space efficiency of VARI makes it possible to build and query the colored de

Bruijn graph on datasets that are orders of magnitude larger than what is possible

with Cortex. This is an exciting development that opens up this methodology for

increasingly large-scale analysis.

Though VARI achieves a substantial improvement in space over Cortex, there

is still a considerable amount of redundancy present in its representation. Both of

these rainbowfishs represent the color set corresponding to each 𝑘-mer independently

of other 𝑘-mers. Hence a considerable amount of redundant information can be

present when the color set for each 𝑘-mer is represented independently. In fact, some

existing colored de Bruijn Graph representations, like the Bloom Filter Trie [63]

exploit this redundancy to compress shared color information, and share certain

ideas and motivation with the representation proposed in this paper. However,

many of the possible subsets of colors do not occur in practice, and there is an

inherent (often extreme) skewness in the distribution of the color sets that do appear.

It becomes even more important to exploit this skewness for large metagenomic

datasets because the space usage of VARI for these datasets can become impractical.

In this paper, we introduce a succinct representation, called Rainbowfish, of

the color sets associated to each edge in the de Bruijn graph. We also adopt the

BOSS representation of the de Bruijn graph topology, and focus, specifically, on

how to concisely represent the color information. Rainbowfish’s colored de Bruijn

103

graph representation is entropy compressed and exploits the high skewness present

in the distribution of color sets. By exploiting a more efficient decomposition of the

set of present colors (i.e., in terms of equivalence classes), we achieve a considerable

reduction over the space required by VARI (up to 20× depending on the dataset),

while still retaining efficient (i.e., constant time) queries.

2 Background and definitions

Rainbowfish is a succinct representation of the color information, and uses rank and

select operations to lookup the color class corresponding to 𝑘-mers in the de Bruijn

graph. Here, we briefly recapitulate the definition of a succinct data structure and

the rank and select operations.

A succinct data structure consumes an amount of space that is close to

the information-theoretic optimum. More precisely, if 𝑍 denotes the information-

theoretic optimal space usage for a given data structure, then a succinct data struc-

ture uses 𝑍 + 𝑜(𝑍) space [69].

rank and select [69] are operations that are commonly used for navigating

within succinct data structures. For a bit vector 𝐵[0, . . . , 𝑛 − 1], rank(𝑗) returns

the number of 1s in the prefix 𝐵[0, . . . , 𝑗] of 𝐵. select(𝑟) returns the position of

the 𝑟th 1, that is, the smallest index 𝑗 such that rank(𝑗) = 𝑟. For example, for the

12-bit vector 𝐵[0, . . . , 11] =100101001010, rank(5) = 3, because there are three

bits set to one in the 6-bit prefix 𝐵[0, . . . , 5] of 𝐵, and select(4) = 8, because 𝐵[8]

is the fourth 1 in the bit vector.

104

Equivalence Bitvector

Label Bitvector

Boundary Bitvector1 1 0 1 1 1 0 1

0 1 0 1 0 1 1 0
0 2 1 0 1 3 4 0

Select(i=2)=1 next(i=2)=3

Label_BV[1-3]=2

Eq_BV[2]=0011110000

K-mer Color Set
ACTG
ACTT
CTTG
TTTC
GCGT
AGCC

0110010101
0011110000
1111110101
0110010101
1010101011
0110010101

Color Matrix

Label Color Set
0

1

2

3

0110010101
1111110101

0011110000

1010101011

Figure 15: The representation of color information in Rainbowfish. The “Color Matrix” at
the top represents 6 distinct 4-mers, each assigned a color set. 3 of these 4-mers (ACTG,
TTTC, AGCC) have the same color class, labeled 0, and the other 3 (CTTG, ACTT, and
GCGT) each have color classes labeled 1, 10, and 11 respectively. To retrieve the color
set for a 𝑘-mer, we first perform select on the boundary bit vector (BBV) using rank 𝑟
of the corresponding edge (𝑘-mer). This returns the label’s starting position, 𝑖. We then
look for the next set bit BBV to find the label’s ending position, 𝑗. Then, we fetch the
label at indices 𝑖 to 𝑗 in label bit vector (LBV). Finally, we lookup the label 𝑙 in the
equivalence class table (ECT) and return the color class corresponding to the label. A
detailed explanation of the data structure and its construction is given in Section 3.1.

3 Method

In this section we first describe the design of Rainbowfish. We then analyze the

space usage and provide a lower bound for the representation of sets of colors given

a ranking of de Bruijn graph edges. Finally, we discuss the Rainbowfish implemen-

tation.

105

3.1 Design

Rainbowfish’s compact representation of color information is based on two particular

observations. First, it is often the case that many of the 𝑘-mers in a colored de Bruijn

graph share the same set of colors. More formally, we define an equivalence relation

∼ over the set of 𝑘-mers in the de Bruijn graph. Let Col(·) denote the function

that maps each 𝑘-mer to its corresponding set of colors. We say that two 𝑘-mers

are color-equivalent (i.e., 𝑘1 ∼ 𝑘2) if and only if Col(𝑘1) = Col(𝑘2). We will refer

to the set of colors shared by the 𝑘-mers related by ∼ as a color class. If 𝐶, the

number of input colors, is large, it is often the case that the number of distinct color

classes is far less than the number of possible color classes (which is bounded above

by min(𝑁, 2𝐶)).

Second, it is often the case that the frequency distribution of color classes is

far from uniform. Hence, it will often be useful to record a frequently occurring

color class using a short description (i.e., a small number of bits) while reserving

larger descriptions for less frequent color classes.

The design of Rainbowfish is motivated by the above observations. Instead

of storing the color set for each 𝑘-mer separately, Rainbowfish stores each distinct

color class only once and assigns to each distinct class a label (which, practically, is

much smaller than the unary encoding of the color class itself). It then stores, for

each 𝑘-mer, the label of the color class to which it belongs.

The approach we use to assign variable-length labels to color classes is similar

in spirit to the construction of a Huffman code, where the message is a string of

106

color class symbols. However, we do not build a prefix code, and instead opt to

store an additional bit vector to allow the efficient selection of an arbitrary label

from the list. We generate the labels according to the following procedure. We first

sort, in descending order, all the color classes based on their frequency (i.e., the

number of 𝑘-mers in this color equivalence class). We then assign labels to each

color class starting from the class with the largest cardinality, so that the color class

represented by the most frequent label will have the shortest label length etc.

The color class representation in Rainbowfish has three components. Rain-

bowfish stores the mappings between labels and color classes in an equivalence

class table (ECT). As labels are assigned sequentially, this is simply an array of

bit vectors encoding the corresponding color sets. Apart from the equivalence class

table, Rainbowfish maintains two bit vectors, a boundary bit vector (BBV) and

a label bit vector(LBV).

All color classes are stored in the equivalence class table (with their correspond-

ing labels implicitly being their position). However, we now need to store a mapping

from 𝑘-mers to the variable-length labels. Rainbowfish stores variable-length labels

corresponding to each 𝑘-mer in the label bit vector. The labels are stored in the

order in which 𝑘-mers are stored in the de Bruijn graph representation. Specifically,

the 𝑘-mers are stored in the rank order induced by BOSS. However, since these

labels are variable-length, we can not directly read the label corresponding to the

𝑘-mer of a specific rank, since we do not know where such a label begins or how

long it is.

To address this, Rainbowfish maintains another bit vector — the boundary

107

bit vector (BBV) — to mark the boundary of each variable-length label in LBV.

The BBV is the same size as the LBV and has a bit set to 1 at each index where a

new label starts in the LBV. Thus, the starting position for the label corresponding

to the 𝑟th 𝑘-mer can be obtained by issuing a select(r) query on BBV, and the

length of this label can be obtained by simply scanning BBV until we encounter the

next set bit.

Figure 15 shows how the color classes are represented in Rainbowfish. To

perform a query for the color class corresponding to a 𝑘-mer in the colored de

Bruijn graph, we first get the rank 𝑟 of the 𝑘-mer in the de Bruijn graph. We then

perform a select operation using 𝑟 on BBV. The result of the select operation 𝑖 is

the start index of the label of the color class in LBV to which the 𝑘-mer belongs.

To find the length of the label we determine the index 𝑖′ of the next bit set in

BBV using the tzcnt instruction. tzcnt returns the number of trailing zeros

in its argument. If 𝐵 is a 12-bit vector such that 𝐵[0, 11] =110010100000 then

tzcnt(𝐵) = 5. Using 𝑖 and 𝑖′ we retrieve the label from LBV, and using the label

we lookup the corresponding color class in ECT. We also note that, as we never have

> 264 distinct 𝑘-mers in practice, and number of distinct labels is at max equal to

the number of distinct 𝑘-mers (when each 𝑘-mer has a unique label), then we never

have > 264 labels. Hence, we can always represent a label using a single machine

word. Consequently, we will always reach the next set bit in the LBV after scanning

at most a single machine word when starting from current label. This ensures we

need only issue a single tzcnt instruction per label decoding call.

108

3.2 Space analysis

The color class representation in Rainbowfish is entropy compressed, i.e., the space

is bounded by the entropy (𝐻(𝑋𝑐)) of the color class distribution. For a dataset

in which number of 𝑘-mers belonging to each distinct color class are similar, the

entropy of the color class distribution will be high. On the other hand, if most

of the 𝑘-mers in a dataset belong to a small number of distinct color classes, the

entropy of the color class distribution will be low.

Lemma 1. The size of each color class label is bounded by log2 𝑀 bits, where 𝑀

is the total number of distinct color classes. For a dataset with 𝑁 distinct 𝑘-mers

coming from 𝐶 input samples (i.e., colors), we have that 𝑀 ≤ min(𝑁, 2𝐶).

Theorem 1. Given an ordering of edges (or 𝑘-mers) in a de Bruijn graph, the space

needed by Rainbowfish to represent a set of colors attached to each edge is 𝑂(𝑀𝐶 +

𝑁𝐻(𝑋𝑐)) bits, where 𝑀 is the number of distinct color classes, 𝐶 is the number

of colors, 𝑁 is the number of distinct 𝑘-mers, and 𝐻(𝑋𝑐) = −∑︀𝑀
𝑖=1 𝑃 (𝑥𝑖) log 𝑃 (𝑥𝑖)

is the entropy (i.e., order-0 or Shannon’s entropy) over random variable 𝑋𝑐, which

distributed according to the frequency distribution of the color classes.

Proof. The space needed by Rainbowfish can be analyzed as follows. There are

three bit vectors in Rainbowfish, the equivalence class table, label bit vector, and

boundary bit vector. To store an equivalence class table containing 𝑀 distinct color

classes each having 𝐶 colors we need 𝑀𝐶 bits. To store a label bit vector (as

stated in Lemma 1), for 𝑁 𝑘-mers, where each label corresponds to one of the 𝑀

109

distinct color classes, takes 𝑁 log2 𝑀 bits. However, as explained in Section 3.1, in

Rainbowfish we assign (optimal) variable-length labels based on the frequency of

color classes. Therefore, the space needed to store the label bit vector is dependent

on the 0th-order entropy of the color class variable, 𝐻(𝑋𝑐), and the size of the label

bit vector is upper bounded by 𝑁 log2 𝑀 . The boundary bit vector has the same

number of bits as the label bit vector. �

3.3 Lower bound for color representation

We now provide a lower bound to store a color class representation for a set of edges

in a colored de Bruijn graph. In the color class representation, the equivalence class

table takes 𝑀𝐶 bits to store 𝑀 bit vectors each having 𝐶 bits, which is optimal.

The other two bit vectors, the boundary and label bit vector, map 𝑘-mers given an

ordering in the de Bruijn graph to their corresponding color classes. The theorem

below gives the lower bound to store such a mapping.

Theorem 2. The lower bound to represent a mapping from an ordered list of 𝑘-mers

in a de Bruijn graph to a set of color classes is log2 (𝑀𝑁−𝑀 ·𝑀 !) bits, where 𝑀

is the number of distinct color classes, 𝑁 is the number of edges, and for a dataset

with 𝑁 distinct 𝑘-mers coming from 𝐶 input samples (i.e., colors), we have that

𝑀 ≤ min(𝑁, 2𝐶).

Proof. We can analyze the lower bound using a counting argument. We count the

number of ways to map a set of 𝑀 distinct color classes to a set of 𝑁 edges. The

space required to store the color class representation should be less than or equal to

110

the space required to store these mappings.

Edges can be mapped to color classes using a surjective (onto) function. Thus,

we wish to count the total number of surjections from 𝑀 color classes to 𝑁 edges.

Rather than counting this number exactly, we instead provide a lower bound. First,

we must ensure that each of the 𝑀 color classes maps to at least one edge — so,

we select a set of 𝑀 edges and label each with a distinct color class. There are

𝑀 ! ways to assign 𝑀 color classes to a set of 𝑀 edges. We will then allow the

remaining 𝑁 −𝑀 edges to be colored in any possible manner. We can assign 𝑀

colors to 𝑁 − 𝑀 edges (the remaining number) in 𝑀𝑁−𝑀 ways. Therefore, the

total number of different mappings is bounded below by 𝑀𝑁−𝑀 ·𝑀 !. To be able to

represent each such mapping, and distinguish it from the others, we need at least

log2 (𝑀𝑁−𝑀 ·𝑀 !) bits. �

The lower bound can be expanded using Sterling’s approximation as

(𝑁 −𝑀) log2 𝑀 + 𝑀 log2 𝑀 − 0.44𝑀 + 𝑂(log2 𝑀),

which, ignoring the additive term 𝑂(log2 𝑀), is greater or equal to 𝑁 log2 𝑀 −

0.44𝑀 . Given the range of 𝑀 (i.e., 1 ≤ 𝑀 ≤ 𝑁), 𝑁 log2 𝑀 always dominates the

lower bound.

Now, we show that the space needed by Rainbowfish to store the variable-

length labels assigned to color classes is equal to the lower bound. As explained in

Lemma 1, the upper bound to store any label is log2 𝑀 bits, and for 𝑁 edges, it is

given by 𝑁 log2 𝑀 bits. Rainbowfish also stores a boundary bit vector which has

111

0 1 2 3 4 5 6 7 8 9 101112131415

103

104

105

106

107

108

109

Equivalence class labels

#k
-m

er
s

in
ea

ch
eq

ui
va

le
nc

e
cl

as
s

Color class dist. in 1-pass
Color class dist. in 2-pass

Figure 16: Distribution of 𝑘-mer frequencies across equivalence class labels in Rainbowfish
after 1-pass and 2-pass algorithm on plant dataset Table 12. The 2-pass algorithm assigns
the smallest label to color class with maximum number of 𝑘-mers. The distribution in
2-pass algorithm is monotonically decreasing.

the same number of bits as the label bit vector. Therefore, the space required to

store the label mappings is strictly ≤ 2𝑁 log2 𝑀 . Note that the extra overhead to

store the metadata to perform a select operation in constant time on the boundary

bit vector is bounded by 𝑜(𝑁), where 𝑁 is the numbers of bits in the bit vector [53].

However, Rainbowfish’s representation of color classes is entropy compressed

(see Section 3.1) and the space required depends on the entropy of the color class

distribution. For a highly skewed distribution, the entropy is low and the space

required to store labels is much smaller than 𝑁 log2 𝑀 bits. On the other hand,

when the distribution is near-uniform, i.e., the entropy is high, Rainbowfish makes

all labels to be log2 𝑀 bits and dispenses with BBV. Therefore, the space required

by Rainbowfish is always smaller than or equal to the lower bound.

3.4 Implementation

Considerations due to the underlying de Bruijn graph representation We re-

call here that we make use of the BOSS representation of the underlying de Bruijn

112

graph topology. To build the BOSS representation, 𝑘-mer counting is first performed

using KMC2 [38], canonicalizing 𝑘-mers during counting. Though the BOSS rep-

resentation inserts both forward and reverse complement 𝑘-mers into the graph,

it associates only a single color vector with this pair. Moreover, BOSS creates

“dummy” edges (real 𝑘-mers prepended or appended with $) to allow encoding 𝑘-

mers that appear near terminal nodes in the de Bruijn graph. In the colored de

Bruijn graph these dummy edges are assigned the empty color set. All of this infor-

mation is encoded by both VARI and Rainbowfish. However, as we discuss in more

detail in Section 5, the Rainbowfish representation can work with any de Bruijn

graph representation that can assign distinct ranks to each 𝑘-mer in the de Bruijn

graph. Thus, we would expect this encoding scheme to work well with, e.g., a de

Bruijn graph representation based on minimum perfect hashing of the 𝑘-mers [41].

Storing bit vectors. In Rainbowfish, we use bit vector implementations from

the SDSL library [51] to store the three bit vectors from Figure 15. We use the

𝑟𝑟𝑟_𝑣𝑒𝑐𝑡𝑜𝑟 implementation from SDSL to store the equivalence class table and

boundary bit vector, and the 𝑏𝑖𝑡_𝑣𝑒𝑐𝑡𝑜𝑟 implementation from SDSL to store the

label bit vector.

The 𝑟𝑟𝑟_𝑣𝑒𝑐𝑡𝑜𝑟 of SDSL is an implementation of RRR encoding [132]. RRR

encoding is an entropy compressed encoding and also supports constant time rank

and select operations on the compressed bit vector. The space reduction depends

on the entropy of the bit vector. For high entropy bit vectors, the compression is

not noticeable and in fact “negative” in some cases because of the extra metadata

113

overhead to support rank and select operations.

The equivalence class table and boundary bit vector often have fairly low

entropy, and can be compressed efficiently using RRR encoding. However, the label

bit vector often has high entropy, and compressing it using RRR encoding is not

effective. In our representation, the average order-0 entropy of the label bit vector

for four different datasets is 0.94. This is a quite high, and hence we did not see any

reduction in the space using RRR encoding. However, for the other two bit vectors,

the order-0 entropy is lower (e.g., for boundary bit vector the average entropy over

same four datasets is 0.56) and, in practice, we achieve a considerable space reduction

using RRR encoding.

Construction. We use a 2-pass algorithm to construct the three bit vectors.

In the first pass, we read the color matrix, compute the distinct color classes, and

count the frequency of each class. Once we have the frequency information, we sort

color classes in descending order based on their frequency. We then assign labels

to color classes starting from zero. In the second pass, we read the uncompressed

color matrix again, and add the label of each 𝑘-mer to the label bit vector. While

building the label bit vector, we also build the boundary bit vector by storing a 1 at

every index where a new label starts in the label bit vector. The labels are stored

in the same order as the 𝑘-mers in the BOSS representation.

To reduce the space required for the labeling even further, we implemented

our label encoding in the following way. Every time that the label size increases

from 𝑥 bits to 𝑥 + 1 bits, we restart the counter of that label in label bit vector to 0.

114

For example, we store 0 and 1 for labels 0 and 1 respectively, then we store 00, 01,

10 and 11 for labels 2, 3, 4 and 5 respectively. For label value 6 we again restart the

counter to 0 and store 000 to represent 6 in the label bit vector, etc. Later, when

we want to retrieve the actual value of a label, we first recover the stored label 𝑙′

from the label bit vector and then calculate the actual label 𝑙 using the equation

𝑙 = 𝑙′ + 2𝑑 − 2 where d is length of label 𝑙 in bits.

As explained in Section 3.2, the 2-pass algorithm minimizes the space used

to represent color class labels by sorting the classes based on their frequencies and

assigning labels to color classes to minimize the length of the resulting code path,

similar to Huffman coding. However, one could also imagine assigning labels to color

classes as we see them in the order 𝑘-mers appear in the BOSS representation. This

way, we can construct all three tables in a single pass (i.e., a 1-pass algorithm).

However, as shown in Figure 16, this 1-pass algorithm can end up assign-

ing long labels to frequent 𝑘-mers, and hence produce poor (i.e., large) encodings.

However, the 2-pass algorithm always assigns labels according to the corresponding

frequency distribution of the color classes. Sometimes, the 1-pass algorithm does

well, but we chose to adopt the 2-pass algorithm in Rainbowfish.

4 Evaluation

In this section we evaluate Rainbowfish, and compare it to VARI [108], a state-of-

the-art colored de Bruijn graph representation. We evaluate both rainbowfishs in

terms of space and running time. We address the following questions about the

115

Datasets # of edges # of colors (samples) # of distinct color classes
E. coli 10 28,273,951 10 479
E. coli 1000 157,737,064 1000 2,669,157
E. coli 5598 435,705,390 5598 7,000,715
E. coli 1000 (k=63) 258,893,268 1000 2,530,253
Plant 2,520,140,426 4 16
Beef safety 97,096,576,010* 87 623,022,532
Human transcriptome 159,441,804* 95,146 340,762

Table 12: The number of edges (include 𝑘-mers and dummy edges in the BOSS represen-
tation), samples and color classes for different datasets used in the experiments. 𝑘 = 32
unless otherwise specified. *# of edges excluding dummies.

Datasets Construction Time (secs) Bubble Calling Time (secs)
VARI Rainbowfish VARI Rainbowfish

E. coli 10 44 31 344 366
E. coli 1000 340 270 2,610 2,356
E. coli 5598 3,141 4,021 8,796 8,201
Plant 108 339 47,040 48,537
Beef safety 15,378 30,478 NA NA
Human transcriptome 13,961 30,804 NA NA

Table 13: Construction and bubble calling time for Rainbowfish and VARI for different
datasets.

performance of Rainbowfish: How does Rainbowfish compare to VARI in terms of

the space required to represent color information?; How does Rainbowfish compare

to VARI in terms of the construction time?; How does Rainbowfish compare to VARI

in terms of typical queries (e.g., in bubble calling)? We are particularly concerned

with ensuring that Rainbowfish produces small encodings of the color information

and remains practically efficient to query.

4.1 Experimental setup

To answer the above questions, we perform two different benchmarks. First, we

evaluate the time taken to construct the color class representation. The construction

time is the time taken to construct the color class representation from a list of color

116

classes stored in the order of the edges in the de Bruijn graph (this is the same

input used by VARI). During construction, we adopt a two-pass algorithm. In the

first pass, we use a sparse hash-table to determine the distinct color classes and the

cardinality of each such class.

We note that the space taken in this first pass is within a small constant factor

of the final space required by the final ECT table itself, since we need only store

each color class once in the hash table (as a key), and store the associated count (a

machine word) as the value. Thus, the memory required by this first pass is almost

always a small fraction of the total memory usage of the construction algorithm.

Given this information, we know exactly the number of bits that will be re-

quired to store the label and boundary vectors. In the second pass, we fill in both

the label and boundary vectors and then save all three structures to file. As with

most succinct representations, the space required for our data structure in memory

and on disk is almost the same (as the two-pass algorithm allows us to allocate only

the space we need for our final representation). The construction time recorded here

does not include (for either Rainbowfish or VARI) the time taken to build the de

Bruijn graph and color list corresponding to edges in the de Bruijn graph (since this

is the same for both methods).

We also report the space needed by both Rainbowfish and VARI to store the

color class representation on disk. We do not include the space needed to represent

the actual de Bruijn graph in our space comparisons because both Rainbowfish and

VARI use BOSS to store the actual de Bruijn graph, and the BOSS representation

itself tends to take less space than the color information.

117

Second, we evaluate the time taken to perform the bubble calling benchmark as

described in [109], using both the VARI and Rainbowfish representations. Finding

bubbles in a colored de Bruijn graph enables one to detect regions in the de Bruijn

graph where different samples (i.e., colors) diverge from each other. As originally

suggested by Iqbal et al. [66], such algorithms can form the basis for analyzing

certain types of genetic variants in populations of genomes. We note that we adopt

the exact bubble calling algorithm implemented in VARI, and the only variable

being altered in our bubble-calling benchmark is the data structure being used to

determine the set of colors present for each 𝑘-mer. Since VARI and Rainbowfish are

both built upon the BOSS representation, which is based on the edge-centric view

of de Bruijn graph, they consider 𝑘-mers as edges in the de Bruijn graph, meaning

that each edge is associated with a 𝑘-mer, and its corresponding rank and color

set. Briefly, the bubble calling algorithm takes as input a pair 𝑐1, 𝑐2 of colors and

traverses edges in the de Bruijn graph to find bubbles in which the edges in one

sub-path are colored with 𝑐1 and the edges in the other sub-path are colored with

𝑐2 (see [109] for further details).

For all experiments in this paper, unless otherwise noted, we consider the 𝑘-

mer size to be 32 to match the parameters adopted by Muggli et al. [109]. We carry

out these benchmarks on a number of datasets as described in Sect. 4.2. The time re-

ported for construction and bubble calling are averaged over two runs, and the time

is measured as the wall-clock time using the /usr/bin/time executable. All exper-

iments were performed on an Intel(R) Xeon(R) CPU (E5-2699 v4 @2.20GHz with

44 cores and 56MB L3 cache) with 512GB RAM and a 4TB TOSHIBA MG03ACA4

118

ATA HDD running ubuntu 16.10, and were carried out using a single thread. We

note that, while the construction of the color set representation in Rainbowfish (and

VARI) are serial operations, queries are trivially parallelizable, as each label can be

queried and decoded independently.

4.2 Data

We run our benchmarks on the datasets mentioned in Table 12. The first three

datasets, E. coli, Plant, and Beef safety are slight variants of those used for evalua-

tion in VARI [109]. Each of these data sets exhibits different characteristics in terms

of the number of 𝑘-mers, the number of input samples (i.e., colors) and the homo-

geneity of the underlying samples (i.e., how different are the de Bruijn graph for

each of the individual samples). The first dataset consists of the assemblies of 5,598

different strains of E. coli obtained from GenBank [116]. Here, each “color” repre-

sents a specific E. coli assembly. Since these assemblies are from different strains

of the same species, they exhibit a small degree of heterogeneity. In other words, a

large fraction of the union de Bruijn graph is expected to occur in all samples.

To evaluate the scalability of Rainbowfish when primarily changing the under-

lying number of input colors, we have evaluated three variants of the E. coli dataset.

These consist of a dataset containing only 10 different strains, another containing

1,000 different strains and the final containing all 5,598 strains. We also performed

experiments with 𝑘-mer size to be 63 for E. coli 1000 dataset to evaluate the space

usage for higher 𝑘-mer sizes.

119

The second dataset (i.e., Plant) consists of the genome assemblies of four dif-

ferent plant species. Hence, this dataset contains only four colors, but has more than

≈ 2 billion distinct 𝑘-mers. The plant species considered are, A. thaliana ∗ [155],

Corn† [142], Rice‡ [156], and Tomato§ [25]. These genomes exhibit considerable di-

versity and heterogeneity. Given the diverse regions in the colored de Bruijn graph,

this dataset is a good candidate for the bubble calling benchmark. Further, Muggli

et al. [109] found that this was the only of the three original datasets on which they

were able to construct the original Cortex representation of the colored de Bruijn

graph. They validated Cortex produces the same bubble calls as VARI [109] (which,

of course, produces the same bubble calls as Rainbowfish). For more detailed anal-

ysis of Cortex’s construction and processing time and space on this dataset, please

refer to [109].

The third dataset, Beef safety, is considerably different from the prior data.

Instead of the input samples consisting of assembled genomes, they consist of 87

metagenomic samples sequenced from cattle in the commercial process of beef pro-

duction [115]. Hence, this dataset yields a considerably larger and more complex

de Bruijn graph since it is built upon many un-assembled (and non-error-corrected)

reads. Thus, the de Bruijn graph will encode portions of the relevant metagenomes

as well as the effects of sequencing errors. This dataset also has many more 𝑘-mers
∗ftp://ftp.ensemblgenomes.org/pub/plants/release-34/fasta/arabidopsis_thaliana/dna/

Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz
†ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/005/GCF_000005005.1_B73_

RefGen_v3/GCF_000005005.1_B73_RefGen_v3_genomic.fna.gz
‡http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_

dbs/pseudomolecules/version_7.0/all.dir/all.con
§ftp://ftp.solgenomics.net/tomato_genome/assembly/build_2.50/SL2.50ch00.fa.tar.gz

120

ftp://ftp.ensemblgenomes.org/pub/plants/release-34/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/005/GCF_000005005.1_B73_RefGen_v3/GCF_000005005.1_B73_RefGen_v3_genomic.fna.gz
http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/all.con
ftp://ftp.solgenomics.net/tomato_genome/assembly/build_2.50/SL2.50ch00.fa.tar.gz
ftp://ftp.ensemblgenomes.org/pub/plants/release-34/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz
ftp://ftp.ensemblgenomes.org/pub/plants/release-34/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/005/GCF_000005005.1_B73_RefGen_v3/GCF_000005005.1_B73_RefGen_v3_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/005/GCF_000005005.1_B73_RefGen_v3/GCF_000005005.1_B73_RefGen_v3_genomic.fna.gz
http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/all.con
http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/all.con
ftp://ftp.solgenomics.net/tomato_genome/assembly/build_2.50/SL2.50ch00.fa.tar.gz

than the others, ≈ 97 billion. It exhibits a large degree of heterogeneity and an

intermediate number of input colors (87).

In addition to the three datasets used in the VARI paper, we also consider

building the colored de Bruijn graph on the human transcriptome∗ (Gencode v26

protein coding transcripts) [60]. Here, we consider each transcript as an individual

sample (i.e., a distinct input color). This data consists of ≈ 95, 000 colors, but

only ≈ 159 million 𝑘-mers. Hence, this dataset will give an idea about how the

representations will perform when the number of colors becomes very large (though

the number of distinct color classes remains orders of magnitude smaller than the

number of 𝑘-mers). Further, we note that this dataset highlights some of the similar-

ities between the color class encoding adopted by Rainbowfish and the 𝑘-mer-based

equivalence class decomposition adopted by certain transcript quantification meth-

ods (e.g. [126]).

4.3 Performance

Table 13 shows the time taken by Rainbowfish and VARI to construct the color class

representation for different datasets. Rainbowfish uses a 2-pass algorithm to con-

struct the color class representation, and hence the construction time is dominated

by the steps to read the color list file twice. For small datasets like E. coli 10 and

E. coli 1, 000, the input file size is small and does not affect the overall construction

time compared to VARI. However, for large datasets like Plant and Beef safety, the
∗ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_26/gencode.v26.pc_

transcripts.fa.gz

121

ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_26/gencode.v26.pc_transcripts.fa.gz
ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_26/gencode.v26.pc_transcripts.fa.gz
ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_26/gencode.v26.pc_transcripts.fa.gz

time to read the color file twice dominates the construction time and Rainbowfish is

1.9×—3× slower. We note that this time can be considerably reduced by avoiding

the uncompressed color matrix representation currently used upstream of Rainbow-

fish and VARI, and integrating determination and encoding of the color classes into

the de Bruijn graph construction directly. However, this is outside the scope of the

current paper.

Space Table 14 shows the space usage of Rainbowfish and VARI for the different

datasets we consider. Among these data, there are a range of characteristics in terms

of the number of 𝑘-mers, the number of colors, and the complexity and heterogeneity

of the de Bruijn graph. We find that, for all datasets, Rainbowfish requires less

space to store the color information than VARI. The magnitude of the improvement

depends on the number of distinct equivalence classes and their distribution, but is

as large as ∼ 20×. We see the same trend with higher values of 𝑘-mer sizes.

In particular, Rainbowfish’s space usage is particularly impressive for datasets

with a large number of input colors but a relatively small number of distinct 𝑘-

mers. In this case, we usually find that the number of distinct color classes is very

small compared to the universe of possibilities, and so each label can be encoded

in much fewer than 𝐶 bits. However, the space VARI consumes depends greatly

on the sparsity of the color matrix. The color matrix itself grows rapidly as the

number of 𝑘-mers and colors increases, but VARI’s compression mechanism (Elias-

Fano encoding) is very effective if the color matrix is sparse (e.g., each 𝑘-mer is

labeled with only a small subset of colors). This is exactly the case for the Human

122

Datasets uncompressed color matrix VARI Rainbowfish
E. coli 10 34 58 20
E. coli 1000 18,804 8,848 475
E. coli 5598 290,761 58,718 2,938
E. coli 1000 (k=63) 185,669 8,872 637
Plant 1,202 1,603 497
Beef safety 1,007,009 210,998 144,564
Human transcriptome 1,808,435 841 817

Table 14: The space required by Rainbowfish and VARI to store the color class represen-
tation for different datasets. The first column shows space required for the uncompressed
color matrix (𝑁 ×𝐶 bits). All space is reported in MB. 𝑘 = 32 unless otherwise specified.

transcriptome, where the color matrix has an entropy of ∼ 0.0004 (compared to E.

coli 5,598 and E. coli 1,000 with entropies of ∼ 0.16 and ∼ 0.34 respectively). Thus,

in the E. coli dataset, VARI can save space up to a factor of ∼ 5 compared with

the uncompressed representation, while in the Human transcriptome it can save a

factor of ∼ 2, 150 because of the low entropy of the color matrix. Rainbowfish does

well in all experiments, even when the number of input colors is small (e.g., in the

Plant dataset). Rainbowfish achieves the most impressive compression when the

color class distribution has low entropy and the number of color classes is small

relative to the upper bound. In such cases, the entropy compressed representation

of Rainbowfish is able to represent a large fraction of all labels using a very small

number of bits.

Bubble calling Table 13 shows the time taken by Rainbowfish and VARI to perform

the bubble calling benchmark on different datasets. We run the bubble calling

benchmark on the E. coli and Plant datasets (as in the VARI paper). We note that

the current bubble calling algorithm is too slow to run on the Beef safety data set

(the time in [109] was estimated at > 3, 000 hours). It is possible, however, that

123

optimizations to the underlying algorithm might lift this restriction. We also did not

perform bubble calling on the human transcriptome dataset as here, we were unable,

given the resources on our server, to even run the de Bruijn graph construction to

completion. Specifically, due to the large amount of external memory that VARI

uses to build the uncompressed color matrix and the de Bruijn graph on these larger

(either in terms of the number of 𝑘-mers, the number of colors, or both) datasets (on

order of Terabytes), we exhausted the available disk space. For these datasets, to

approximate the relevant sizes and construction times, we produced a uncompressed

color matrix that lists the colors for each 𝑘-mer and its reverse complement, and

we use this to build both the VARI and Rainbowfish color representations. While

very similar to the full color matrix that VARI would produce, this file is slightly

different in that it does not include entries for dummy edges (a detail of the BOSS

representation), and the order of the color matrix rows can be different from what

will appear in the BOSS representation. However, we still believe these numbers,

provided in Table 12, give a reasonable approximation of how the respective methods

would perform were we able to construct the de Bruijn graph completely.

For bubble calling, both representations require a very similar amount of time.

This is likely due, in part, to the fact that navigating the BOSS representation of the

de Bruijn graph may be the performance bottleneck in the bubble calling algorithm.

Thus, both VARI and Rainbowfish provide sufficiently fast access to the color sets

for each edge that they do not represent bottlenecks in this regard.

124

5 Discussion & Conclusion

In this paper, we propose an entropy-compressed, succinct data structure to store

the color information of a colored de Bruijn graph. To represent the topology of the

de Bruijn graph itself, we adopt the BOSS [18] representation. However, we note

that, for our representation of the color sets, we only require that the underlying de

Bruijn graph representation is able to associate a unique rank between 0 and 𝑁 − 1

with each edge. Hence, it is possible to use the Rainbowfish representation with

other representations of the de Bruijn graph topology (e.g., those based on minimal

perfect hashing).

We demonstrate that the inherent skewness in the distribution of color classes

can be exploited to reduce the size of the color information. This allows Rainbowfish

to represent the colored de Bruijn graph, even for large datasets with many colors,

in a reasonably small space. In fact, for representing the color information itself, we

show that Rainbowfish is succinct, and hence requires only 𝑍 + 𝑜(𝑧) bits where 𝑍 is

the number of bits required by an information-theoretically optimal representation.

Moreover, it may be possible for the color information stored in the equivalence

class table to be further compressed to reduce the space. For example, one could

imagine an encoding of color sets that takes advantage of their shared subsets, e.g.,

storing the shared prefixes of membership vectors only once.

While we have described here a rainbowfish for efficiently representing the color

information in a colored de Bruijn graph, our encoding scheme can be generalized

to store any type of attribute attached to the edges. For example, one could use

125

the same (or a related) scheme to encode information like the 𝑘-mer count or set of

positions associated with a given edge. Moreover, it will be interesting to explore

how multiple attributes could be efficiently stored simultaneously, and how potential

correlations between these attributes might be exploited. For example, there may

be natural extensions of similar coding schemes to the compacted de Bruijn graph,

where one might also be able to take advantage of the coherence in annotation (i.e.,

color or count information) shared among the constiuent 𝑘-mers of a contig, allowing

one to store only the information where these annotations change during traversal.

Finally, in our current implementation, the input to the rainbowfish is a color

matrix file generated by VARI. This implementation requires first building the un-

compressed color matrix, and then permuting the rows of this matrix along with the

edges of the de Bruijn graph during the BOSS construction procedure. This process

can require a large amount of space, as the uncompressed color matrix can become

extremely large (on the order of Terabytes for some of the datasets we considered

here). Consequently, in most cases, the construction algorithm must resort to mak-

ing extensive use of external memory (i.e., disk), which increases building time and

consumes a large amount of disk space. However, we note that the Rainbowfish

representation can be built without direct access to the uncompressed color matrix.

Specifically, the current VARI algorithm uses a mergesort-like approach to

construct the uncompressed color matrix, where the 𝑘-mers in each sample are sorted

lexicographically (independently), and the rows of the color matrix are constructed

one by one by asking for each 𝑘-mer, in lexicographic order, which samples contain

it. The working memory of this approach is very small compared to the size of

126

the full color matrix itself. One could imagine using the same merge-based scheme

to construct the Rainbowfish representation directly. In the first pass, the distinct

color classes and a counter for each would be stored, resulting in a small, sparse

hash table rather than a large, uncompressed color matrix. In the second pass, one

would simply associate the relevant labels, rather than uncompressed color vectors,

with each edge. This would vastly reduce the time and space required to construct

the colored de Bruijn graph.

Thus, in the future, we are interested in both incorporating the Rainbowfish

representation more tightly inside the existing VARI codebase, as well as pairing the

Rainbowfish representation with other compatible representations of the de Bruijn

graph topology.

127

Chapter 5: Mantis: An Efficient, Scalable and Exact Representation

of High-Dimensional Color Information Enabled via de

Bruijn Graph Search [9, 124]∗

1 Introduction

The colored de Bruijn graph (colored de Bruijn graph) [68], an extension of the

classical de Bruijn graph [30, 129, 130], is a key component of a growing num-

ber of genomics tools. Augmenting the traditional de Bruijn graph with “color”

information provides a mechanism to associate meta-data, such as the raw sam-

ple or reference of origin, with each 𝑘-mer. Coloring the de Bruijn graph en-

ables it to be used in a wide range of applications, such as large-scale sequence

search [20, 123, 149, 150, 153] (though some [149, 150, 153] do not explicitly couch

their representations in the language of the colored de Bruijn graph), population-

level variation detection [5, 63, 109], traversal and search in a pan-genome [63], and

sequence alignment [95]. The popularity and applicability of the colored de Bruijn

graph has spurred research into developing space-efficient and high-performance

data-structure implementations.
∗A collaboration with members of the Mantis team with two published papers in RE-

COMB2018 and RECOMB2019

128

An efficient and fast representation of colored de Bruijn graph requires op-

timizing both the de Bruijn graph and the color information. While there ex-

ist efficient and scalable methods for representing the topology of the de Bruijn

graph [19, 28, 30, 36, 122, 139] with fast query time, a scalable and exact represen-

tation of the color information has remained a challenge. Recently, Mustafa et al.

[113] has tackled this challenge by relaxing the exactness constraints — allowing

the returned color set for a 𝑘-mer to contain extra samples with some controlled

probability — but it is not immediately clear how this method can be made exact.

Specifically, existing exact color representations suffer from large sizes and a

fast growth rate that leads them to dominate the total representation size of the

colored de Bruijn graph with even a moderate number of input samples (see Fig-

ure 19b). As a result, the color information grows to dominate the space used by

all these indexes and limits their ability to scale to large input data sets.

Iqbal et al. introduced colored de Bruijn graphs [68] and proposed a hash-

based representation of the de Bruijn graph in which each 𝑘-mer is additionally

tagged with the list of reference genomes in which it is contained.

Muggli et al. reduced the size of the colored de Bruijn graph in VARI [109] by

replacing the hash map with BOSS [19] (a BWT-based [24] encoding of the de Bruijn

graph that assigns a unique ID to each 𝑘-mer) and using a boolean matrix indexed by

the unique 𝑘-mer ID and genome reference ID to indicate occurrence. They reduced

the size of the occurrence matrix by applying off-the-shelf compression techniques

RRR [132] and Elias-Fano [43] encoding. Rainbowfish [5] shrank the color table

further by ensuring that rows of the color matrix are unique, mapping all 𝑘-mers

129

with the same color information to a single row, and assigning row indices based on

the frequency of each occurrence pattern.

However, despite these improvements, the scalability of the resulting structure

remains limited because even after eliminating redundant colors, the space for the

color table grows quickly to dominate the total space used by these data structures.

We observe that, in real biological data, even when the number of distinct color

classes is large, many of them will be near each other in terms of the set of samples

or references they encode. That is, the color classes tend to be highly correlated

rather than uniformly spread across the space of possible colors. There are intuitive

reasons for such characteristics. For example, we observe that adjacent 𝑘-mers in the

de Bruijn graph are extremely likely to have either identical or similar color classes,

enabling storage of small deltas instead of the complete color classes. This is because

𝑘-mers adjacent in the de Bruijn graph are likely to be adjacent (and hence present)

in a similar set of input samples. In the context of sequence-search, because genomes

and transcriptomes are largely preserved across organs, individuals, and even across

related species, we expect two 𝑘-mers that occur together in one sample to be highly

correlated in their occurrence across many samples. Thus, we can take advantage of

this correlation when devising an efficient encoding scheme for the colored de Bruijn

graph’s associated color information.

In this paper, we develop a general scheme for efficient and scalable encoding

of the color information in the colored de Bruijn graph by encoding color classes

(i.e., the patterns of occurrence of a 𝑘-mer in samples) in terms of their differences

(which are small) with respect to some “neighboring” color class. The key technical

130

challenge, solved by our work, is efficiently searching for the neighbors of color

classes in the high-dimensional space of colors by leveraging the observation that

similar color classes tend to be topologically close in the underlying de Bruijn graph.

We construct a weighted graph on the color classes in the colored de Bruijn graph,

where the weight of each edge corresponds to the space required to store the delta

between its endpoints. Finding the minimum spanning tree (MST) of this graph

gives a minimal delta-based representation. Although reconstructing a color class

on this representation requires a walk to the MST root node, abundant temporal

locality on the lookups allows us to use a small cache to mitigate the performance

impact, yielding query throughput that is essentially the same as when all color

classes are represented explicitly.

An alternative would have been to try to limit the depth (or diameter) of the

MST. This problem is heavily studied in two forms: the unrooted bounded-diameter

MST problem [131] and the rooted hop-constrained MST problem [10]. Neither is in

APX, i.e., it is not possible to approximate them to within any constant factor [102].

Althaus et al. gave an 𝑂(log 𝑛) approximation assuming the edge weights form a

metric [10]. Khuller et al. show that, if the edge lengths are the same as the edge

weights, then there is an efficient algorithm for finding a spanning tree that is within

a constant of optimal in terms of both diameter and weight [72]. Marathe et al.

show that in general we can find trees within 𝑂(log 𝑛) of the minimum diameter

and weight [103]. We can’t use Khuller’s approach (because our edge lengths are

not equal to our edge weights), and even a 𝑂(log 𝑛) approximation would give up a

potentially substantial amount of space.

131

We showcase the generality and applicability of our color class table com-

pression technique by demonstrating it in two computational biology applications:

sequence search and variation detection. We compare our novel color class table

representation with the representation used in Mantis [123], a state-of-the-art large-

scale sequence-search tool that uses a colored de Bruijn graph to index a set of

sequencing samples, and the representation used in Rainbowfish [5], a state-of-the-

art index to facilitate variation detection over a set of genomes.

We show that our approach maintains the same query performance while

achieving over 11× and 2.5× storage savings relative to the representation pre-

viously used by these tools.

2 Method

This section describes our compact colored de Bruijn graph representation. We

first define colored de Bruijn graphs and briefly describe existing compact colored

de Bruijn graph representations. We then outline the high-level idea behind our

compact representation and explain how we use the de Bruijn graph to efficiently

build our compact representation. Finally, we describe implementation details and

optimizations to our query algorithm.

2.1 Colored de Bruijn graphs

de Bruijn graphs are widely used to represent the topological structure of a set of

𝑘-mers [26, 55, 97, 122, 130, 144, 145, 166]. The de Bruijn graph induced by a set

132

of 𝑘-mers is defined below.

Definition 2.1. Given a set 𝐸 of 𝑘-mers, the de Bruijn graph induced by 𝐸

has edge set 𝐸, where each 𝑘-mer (or edge) connects its two (𝑘−1)-length substrings

(or vertices).

Colored de Bruijn Graphs extend the de Bruijn graph by assigning a color

class 𝐶(𝑥) to each edge (or node) 𝑥 of the de Bruijn graph. The color class 𝐶(𝑥)

is a set drawn from some universe 𝑈 . Examples of 𝑈 and 𝐶(𝑥) are

• Sometimes, 𝑈 is a set of reference genomes, and 𝐶(𝑥) is the subset of reference

genomes containing 𝑘-mer 𝑥 [5, 7, 95, 109].

• Sometimes, 𝑈 is a set of reads, and 𝐶(𝑥) is the subset of reads containing

𝑥 [1, 2, 158].

• Sometimes, 𝑈 is a set of sequencing experiments, and 𝐶(𝑥) is the subset of

sequencing experiments containing 𝑥 [123, 149, 150, 153].

The goal of a colored de Bruijn graph representation is to store 𝐸 and 𝐶 as compactly

as possible∗, while supporting the following operations efficiently:

• Point query. Given a 𝑘-mer 𝑥, determine whether 𝑥 is in 𝐸.

• Color query. Given a 𝑘-mer 𝑥 ∈ 𝐸, return 𝐶(𝑥).

Given that we can perform point queries, we can traverse the de Bruijn graph

by simply querying for the 8 possible predecessor/successor edges of an edge. This

enables us to implement more advanced algorithms, such as bubble calling [68].
∗The nodes of the de Bruijn graph are typical stored implicitly, because the node set is simply

a function of 𝐸.

133

Many colored de Bruijn graph representations typically decompose, at least

logically, into two structures: one structure storing a de Bruijn graph and associating

an ID with each 𝑘-mer, and one structure mapping these IDs to the actual color

class [5, 109, 121]. The individual color classes can be represented as bit-vectors, lists,

or via a hybrid scheme [164]. This information is typically compressed [118, 132, 168].

Our paper follows this standard approach, and focuses exclusively on reducing

the space required for the structure storing the color information. We propose a

compact representation that, given a color ID, can return the corresponding color

efficiently. Although we pair our color table representation with the de Bruijn graph

structure representation of the counting quotient filter [121] as used in Mantis [123],

our proposed color table representation can be paired with other de Bruijn graph

representations.

2.2 A similarity-based colored de Bruijn graph representation

The key observation behind our compressed color-class representation is that the

color classes of 𝑘-mers that are adjacent in the de Bruijn graph are likely to be

very similar. Thus, rather than storing each color class explicitly, we can store only

a few color classes explicitly and, for all the remaining color classes, we store only

their differences from other color classes. Because the differences are small, the total

space used by the representation will be small.

Motivated by the observation above, we propose to find an encoding of the

color classes that takes advantage of the fact that most color classes can be repre-

134

sented in terms of only a small number of edits (i.e., flipping the parity of only a

few bits) with respect to some neighbor in the high-dimensional space of the color

classes. This idea was first explored by Bookstein and Klein [17] in the context

of information retrieval. Bookstein and Klein showed how to exploit the implicit

clustering among bitmaps in IR to achieve excellent reduction in storage space to

represent those bitmaps using an MST as the underlying representation. Unfortu-

nately, the approach taken by Bookstein and Klein cannot be directly used in our

problem, since it requires computing and optimizing upon the full Hamming dis-

tance graph of the bitvectors being represented, which is not tractable for the scale

of data we are analyzing. Hence, what we need is a method to efficiently discover

an incomplete and highly-sparse Hamming distance graph that, nonetheless, sup-

ports a low-weight spanning tree. We describe below how we apply and modify this

approach in the context of the set of correlated bit vectors (i.e., color classes) that

we wish to encode.

We construct our compressed color class representation as follows (see Fig-

ure 17). For each edge 𝑥 of the de Bruijn graph, let 𝐶(𝑥) be the color class of 𝑥. Let

𝒞 be the set of all color classes that occur in the de Bruijn graph. We first construct

an undirected graph with vertex set 𝒞 and edge set reflecting the adjacency relation-

ship implied by the de Bruijn graph. In other words, there is an edge between color

classes 𝑐1 and 𝑐2 if there exist adjacent edges (i.e., incident on the same node) 𝑥 and

𝑦 in the de Bruijn graph such that 𝑐1 = 𝐶(𝑥) and 𝑐2 = 𝐶(𝑦). These edges indicate

color classes that are likely to be similar, based on the structure of the de Bruijn

graph. We then add a special node ∅ to the color class graph, which is connected

135

to every node. We set the weight of every edge in the color class graph to be the

Hamming distance between its two endpoints (where we view color classes as bit

vectors and ∅ is the all-zeros bit vector).

We then compute a minimum spanning tree of the color class graph and root

the tree at the special ∅ node. Note that, because the ∅ node is connected to every

other node in the graph, the graph is connected and hence an MST is guaranteed

to exist. By using a minimum spanning tree, we minimize the total size of the

differences that we need to store in our compressed representation.

We then store the MST as a table mapping each color class ID to the ID of

its parent in the MST, along with a list of the differences between the color class

and its parent. For convenience we can view the list of differences between color

class 𝑐1 and color class 𝑐2 as a bit vector 𝑐1⊕ 𝑐2, where ⊕ is the bit-wise exclusive-or

operation. To reconstruct a color class given its ID 𝑖, we simply xor all the difference

vectors we encounter while walking from 𝑖 to the root of the MST.

2.3 Implementation of the MST data structure

Assuming we have |𝒞| color classes, |𝑈 | colors, and an MST with total weight of

𝑤 over the color class graph, we store all the information required to retrieve the

original color bit-vector for each color class ID based on the MST structure into

three data structures:

• Parent vector: This vector contains |𝒞| slots, each of size ⌈log2 𝒞⌉. The value

stored in index 𝑖 represents the parent color class ID of the color class with

136

(a) A colored de Bruijn graph.
Each rectangle node represents a
𝑘-mer. Each vector represents
a color class (equal color classes
have the same color).

(b) The color class graph from the
colored de Bruijn graph. There is
an edge between each pair of color
classes that correspond to adja-
cent 𝑘-mers in colored de Bruijn
graph. Weights on the edges rep-
resent the Hamming distances of
the color class vectors.

(c) The color class graph we
achieve from 17b by removing du-
plicate edges and its corresponding
MST.

(d) The complete color class graph
and its derived MST which has the
minimum achievable total weight.

Figure 17: Encoding color classes by finding the MST of the color class graph, an undi-
rected graph derived from colored de Bruijn graph. The order of the process is 17a, 17b,
and 17c. The arrows in 17a and 17b show the direction of edges in the de Bruijn graph
which is a directed graph. The optimal achievable MST is shown in 17d for comparison.
Since we never observe the edge between any 𝑘-mers from color classes green and yellow
in colored de Bruijn graph, we won’t have the edge between color classes green and yellow
and therefore, our final MST is not equal to the best MST we can get from a complete
color class graph.

index 𝑖 in the MST.

• Delta vector: This vector contains 𝑤 slots, each of size ⌈log2 |𝑈 |⌉. For each

pair of parent and child in the parent vector, we compute a vector of the indices

at which they differ. The delta vector is the concatenation of these per-edge

delta vectors, ordered by the ID of the source of the edge. Note that the per-

edge delta vectors will not all be of the same length, because some edges have

137

larger weight than others. Thus, we need an auxiliary data structure to record

the boundaries between the per-edge deltas within the overall delta vector.

• Boundary bit-vector: This vector contains 𝑤 bits, where a set bit indicates

the boundary between two delta sets within the delta vector. To find the

starting position, within the delta vector, of the per-edge delta list for the

MST edge with source ID 𝑖, we perform select(𝑖) on the boundary vector.

Select returns the position of the 𝑖th one in the boundary vector.

Query of the MST-based representation. Figure 18 shows how queries proceed

using this encoding. We start with an empty accumulator bit vector and a color

class ID 𝑖 for which we want to compute the corresponding color class. We perform

a select query for 𝑖 and 𝑖 + 1 in the boundary bit-vector to get the boundaries of

𝑖’s difference list in the delta vector. We then iterate over its difference list and

flip the indicated bits in our accumulator. We then set 𝑖 ← parent[𝑖] and repeat

until 𝑖 becomes 0, which indicates that we have reached the root. At this point, the

accumulator will be equal to the bit vector for color class 𝑖.

2.4 Integration in Mantis

Once constructed, our MST-based color class representation is a drop-in replacement

for the current color class representations used in several existing tools, including

Mantis [123] and Rainbowfish [5]. Their existing color class tables support a single

operation—querying for a color class by its ID—and our MST-based representation

supports exactly the same operation.

138

10101

1011111111

10000

c3

00000 c0

c1

c2

c4

Root
Node

0 0 1 2 2

0 4 0 2 1 1 3

1 1 0 1 1 0 1

Build BV for C3

00000

00010

00111

10111

Parent Vector

Delta Vector

Boundary
Bit-vector

1 - Select(3)

Each index represents information for
color with the same ID as index

0 - start

with an empty

bit-vector

2 - Select(3+1)

3 -
fetch delta

indices

5 -
Update current index “3” to its

parent “2” for next iteration

4 - Flip index “1”

in the current bit-vector

Reached the dummy node.

Stop

10111Final Output for
C3

Figure 18: The conceptual MST (top-left), the data structure to store the color information
in the format of an MST (right). This figure also illustrates the steps required to build
one of the color vectors (𝐶3) at the leaf of the tree. Note that the query process shown
here does not depict the caching policy we apply in practice.

For this paper, we integrated our MST-based representation into Mantis. The

same space savings can be achieved in other tools, particularly Rainbowfish, which

has a similar color-class encoding as Mantis.

Construction. We construct our MST-based color-class representation as follows.

First, we run Mantis to build its default representation of the colored de Bruijn

graph. We then build the color-class graph by walking the de Bruijn graph and

adding all the corresponding edges to the color-class graph. The edge set is typically

much smaller than the de Bruijn graph (because many de Bruijn graph edges may

map to the same edge in the color-class graph), so this can be done in RAM. Note

that we do not compute the weights of the edges during this pass, because that

would require having all of the large color-class bit vectors in memory in order to

compute their Hamming distance.

139

In the second pass, we traverse the edge set and compute the weight of each

edge. To minimize RAM usage during this phase, we sort the edges and iterate over

them in a “blocked” fashion. Specifically, Mantis stores the color class bit vectors

on-disk sequentially by ID, grouped into blocks of roughly 6GBs each. We sort

the edges lexicographically by their source and destination block. We then load all

pairs of blocks and compute the weights of all the edges between the two blocks

currently in memory. At all times, we need only two blocks of color class vectors in

memory. Given the weighted graph, we compute the MST and make one final pass

to determine the relevant delta lists and encode our final MST structure.

Parallelization. We note that, after having constructed the Mantis representa-

tion, most phases of the MST construction algorithm are trivially parallelized. MST

construction decomposes into three phases: (1) color-class graph construction, (2)

MST computation, and (3) color-class representation generation. We parallelize

graph construction and color-class representation generation. The MST computa-

tion itself is not parallelized.

We parallelized the determination of edges in the color-class graph by assign-

ing each thread a range of the 𝑘-mer-to-color-class-ID map. Each thread explores

the neighbors of the 𝑘-mers that appear in its assigned range, and any redundant

edges are deduplicated when all threads are finished. Similarly, we parallelized the

computation of edge weights and the extraction of the delta vectors that correspond

to each edge in the MST. Given the list of edges sorted lexicographically by their

endpoints (determined during the first phase), it is straightforward to partition the

140

work for processing batches of edges across many threads. It is possible, of course,

that the batches will display different workloads and that some threads will complete

their assigned work before others. We have not yet made any attempt to optimize

the parallel construction of the MST in this regard, though many such optimizations

are likely possible.

Accelerating queries with caching. The encoded MST is not a balanced tree,

so decoding a color bit-vector might require walking a long path to the root, which

negatively impacts the query time. Attempting to explicitly minimize the depth or

diameter of the MST is, as discussed in Section 1, not generally approximable within

a constant factor. However, considering the fact that the frequency distribution of

the color classes is very skewed, some of the color classes are more popular or

have more children and, therefore, are in the path of many more nodes. We take

advantage of these data characteristics by caching the most recent queried color bit-

vectors. Every time we walk up the tree, if the color bit-vector for a node is already

in the cache, our query algorithm stops at that point and applies all the deltas

to this bv instead of the zero bv of the root. This caching approach significantly

improves the query time, resulting in the final query time required to decode a color

class being marginally faster than direct RRR access.

The cache policy is designed with the tree structure of our color-class repre-

sentation in mind. Specifically, we want to cache nodes near the leaves, but not so

close to the leaves that we end up caching essentially the entire tree. Also, we don’t

want to cache infrequently queried nodes. Thus we use the following caching policy:

141

all queried nodes are cached. Furthermore, we cache interior nodes visited during

a query as follows. If a query visits a node that has been visited by more than 10

other queries and is more than 10 hops away from the currently queried item, then

we add that node to the cache. If a query visits more than one such node, we add

the first one encountered.

In our experiments, we used a cache of 10,000 nodes and managed the cache

using a FIFO policy.

2.5 Comparison with brute-force and approximate-nearest-neighbor-

based approaches

Our MST-based color-class representation uses the de Bruijn graph as a hint as to

which color classes are likely to be similar. This leads to the natural question: how

good are the hints provided by the de Bruijn graph?

One could imagine alternatively constructing the MST on the complete color-

class graph. This would yield the absolutely lowest-weight spanning tree on the

color classes. Unfortunately, no MST algorithm runs in less than Ω(|𝐸|) time, so

this would make our construction time quadratic in the number of color classes. The

number of color classes in our experiments range from 106 to 109, so the number

of edges in the complete color-class graph would be on the order of 1012 to 1018,

or possibly even more, making this algorithm impractical for the largest data sets

considered in this paper.

Alternatively, we could try to use an approximate nearest-neighbor algorithm

142

to find pairs of color classes with small Hamming distance. As an experiment,

we implemented an approximate nearest neighbor algorithm that bucketed color

classes by their projection into a smaller-dimensional subspace. Nearest-neighbor

queries were computed by searching within the queried item’s bucket. Results were

disappointing. Even on small data sets, the average distance between the queried

item and the returned neighbor was several times larger than the average distance

found using the neighbors suggested by the de Bruijn graph. Thus, we did not

pursue this direction further.

3 Evaluation

In this section we evaluate our MST-based representation of the color information

in the colored de Bruijn graph. All our experiments use Mantis with our integrated

MST-based color-class representation.

Evaluation Metrics We evaluate our MST-based representation on the following

parameters:

• Scalability. How does our MST-based color-class representation scale in

terms of space with increasing number of input samples, and how does it

compare to the existing representations of Mantis?

• Construction time. How long does it take — in addition to the original

construction time for building colored de Bruijn graph— to build our MST-

based color-class representation?

143

• Query performance. How long does it takes to query the colored de Bruijn

graph using our MST-based color-class representation?

3.1 Experimental procedure

System Specifications Mantis takes as input a collection of squeakr files [121].

Squeakr is a 𝑘-mer counter that takes as input a collection of fastq files and produces

as output, a single file with a compact hash table mapping each 𝑘-mer to the number

of times it occurs in the input files. As is standard in evaluations of large-scale

sequence search indexes, we do not benchmark the time required to construct these

filters.

The data input to the construction process was stored on 4-disk mirrors (8

disks total). Each is a Seagate 7200rpm 8TB disk (ST8000VN0022). They were

formatted using ZFS and exported via NFS over a 10Gb link. We used different

systems to run and evaluate time, memory, and disk requirements for the two steps

of preprocessing and index building as was done by Pandey et al. [123].

For index building and query benchmarks, we ran all the experiments on

the same system used in Mantis [123], an Intel(R) Xeon(R) CPU (E5-2699 v4

@2.20GHz with 44 cores and 56MB L3 cache) with 512GB RAM and a 4TB

TOSHIBA MG03ACA4 ATA HDD running Ubuntu 16.10 (Linux kernel 4.8.0-59-

generic). Constructing the main index was done using a single thread, and the

MST construction was performed using 16 threads. Query benchmarks were also

performed using a single thread.

144

Data to evaluate scalability and comparison to Mantis We integrated and

evaluated our MST-based color-class representation within Mantis, so we briefly

review Mantis here. Mantis builds an index on a collection of unassembled raw

sequencing data sets. Each data set is called a sample. The Mantis index enables

fast queries of the form, “Which samples contain this 𝑘-mer,” and “Which samples

are likely to contain this string of bases?” Mantis takes as input one squeakr file

per sample [121]. A squeakr file is a compact hash table mapping each 𝑘-mer to

the number of times it occurs within that sample. Squeakr also has the ability

to serialize a hash that simply represents the set of 𝑘-mers present at or above

some user-provided threshold; we refer to these as filtered Squeakr files. Using the

filtered Squeakr files vastly reduces the required intermediate storage space, and

also decreases the construction time required for Mantis considerably. For example,

for the breast, blood, and brain dataset (2586 samples), the unfiltered Squeakr

files required ∼ 2.5TB of space while the filtered files require only ∼ 108GB. To

save intermediate storage space and speed index construction, we built our Mantis

representation from these filtered Squeakr files.

Given the input files, Mantis constructs an index consisting of two files: a

map from 𝑘-mer to color-class ID, and a map from color-class ID to the bit vector

encoding that color class. The first map is stored as a counting quotient filter

(CQF), which is the same compact hash table used by Squeakr. The color-class map

is an RRR-compressed bit vector.

Recall that our construction process is implemented as a post-processing step

on the standard Mantis color-class representation. For construction times, we re-

145

port only this post-processing step. This is because our MST-based color-class

representation is a generic tool that can be applied to many colored de Bruijn graph

representations other than Mantis, so we want to isolate the time spent on MST

construction.

To test the scalability of our new color class representation, we used a randomly-

selected set of 10, 000 paired-end, human, bulk RNA-seq short-read experiments

downloaded from European Nucleotide Archive(ENA) [114] in gzipped FASTQ for-

mat. Additionally, we have built the proposed index for 2, 586 sequencing sam-

ples from human blood, brain, and breast tissues (BBB) originally used by [149]

and also used in the subsequent work [150, 153, 164], including Mantis [123], as

a point of comparison with these representations. The set of 10, 000 experiments

does not overlap with the BBB samples. The full list of 10, 000 experimental identi-

fiers can be obtained from https://github.com/COMBINE-lab/color-mst/blob/

master/input_lists/nobbb10k_shuffled.lst. The total size of all these experi-

ments (gzipped) is 25.23TB.

In order to eliminate spurious 𝑘-mers that occur with insignificant abundance

within a sample, the squeakr files are filtered to remove low-abundance 𝑘-mers. We

adopted the same cutoff policy originally proposed by Solomon and Kingsford [149],

by discarding 𝑘-mers that occur less than some threshold number of time. The

thresholds are determined according to the size (in bytes) of the gzipped sample,

and the thresholds are given in Table 15. We adopt a value of 𝑘 = 23 for all

experiments.

146

https://github.com/COMBINE-lab/color-mst/blob/master/input_lists/nobbb10k_shuffled.lst
https://github.com/COMBINE-lab/color-mst/blob/master/input_lists/nobbb10k_shuffled.lst

Min size Max size Cutoff # of experiments
with specified threshold

0 ≤ 300MB 1 2,784
> 300MB ≤ 500MB 3 798
> 500MB ≤ 1GB 10 1,258

> 1GB ≤ 3GB 20 2,296
> 3GB ∞ 50 2,864

Table 15: Minimum number of times a 𝑘-mer must appear in an experiment in order to
be counted as abundantly represented in that experiment (taken from the SBT paper).
Note, the 𝑘-mers with count of “cutoff” are included at each threshold.

3.2 Evaluation results

Scalability of the new color class representation Figure 19a and Table 16

show how the size of our MST-based color-class representation scales as we increase

the number of samples indexed by Mantis. For comparison, we also give the size

of Mantis’ RRR-compression-based color-class representation. Figure 19a also plots

the size of the CQF that Mantis uses to map 𝑘-mers to color class IDs. We can

draw several conclusions from this data:

• The MST-based representation is an order-of-magnitude smaller than the

RRR-based representation.

• The gap between the RRR-based representation and the MST-based represen-

tation grows as we increase the number of input samples. This suggests that

the MST-based representation grows asymptotically slower than the RRR-

based representation.

• The MST-based color-class representation is, for large numbers of samples,

about 5× smaller than the CQF. This means that representing the color classes

is no longer the scaling bottleneck.

147

●
●

● ●

●

●

0

50

100

150

200

0 2500 5000 7500 10000
of samples

si
ze

 in
 G

B Representation

● CQF
MST
RRR

(a) Sizes of the RRR and MST-based color
class representations with respect to the
number of samples indexed from the human
bulk RNA-seq data set. The counting quo-
tient filter component is the Mantis repre-
sentation of the de Bruijn graph.

asymptotics

Page 1

2.000 2.500 3.000 3.500 4.000 4.500

log(# of samples)

−1.000

0.000

1.000

2.000

3.000

lo
g
(s

iz
e
 i
n
 G

B
)

y = 1.54707x − 3.89823
R² = 0.999506

y = 1.19349x − 3.5311
R² = 0.999957

RRR compressed CC table
MST compressed CC table

(b) Empirical asymptotic analysis of the
growth rates of the sizes of RRR-based
color class representation and the MST-
based color class representation. The RRR-
based representation grows at a rate of ≈
Θ(𝑛1.5), where 𝑛 is the number of samples.
The MST-based representation grows at a
rate of ≈ Θ(𝑛1.2).

Figure 19: Size of the MST-based color-class representation vs. the RRR-based color-class
representation.

Table 16 also shows the scaling rate of all elements of the MST representation,

in addition to the ratio of MST over the color bit-vector. As expected, the list of

deltas dominate the MST representation both in terms of total size and in terms of

growth. Table 16 also shows the average edge weight of the edges in the MST. The

edge weight grows approximately proportional to Θ(log(# of samples)) (i.e., every

time we double the number of samples, the average edge weight increases by almost

exactly 1). This suggests that our de Bruijn graph-based algorithm is able to find

pairs of similar color classes. The time column shows the time required to build the

MST representation (which is in addition to the Mantis construction time required

to produce the input to the MST compression algorithm).

To better understand the scaling of the different components of a colored de

Bruijn graph representation, we plot the sizes of the RRR-based color-class repre-

sentations and MST-based representations on a log-log scale in Figure 19b. Based

on the data, the RRR-based representation appears to grow in size at a rate of

148

roughly Θ(𝑛1.5), whereas the new MST-based representation grows roughly at a

rate of Θ(𝑛1.2). This explains why the RRR-based representation grows to dwarf

the CQF (which grows roughly linearly) and become the bottleneck to scaling to

larger data sets, whereas the MST-based representation does not. With the MST-

based representation, the CQF itself is now the bottleneck.

Finally, the last two rows in Table 16 show the size of the RRR- and MST-based

color-class representations for the human blood, brain, breast (BBB) and E. coli data

sets respectively. BBB is the data set used in SBT and its subsequent tools [150, 153,

164], as well as in Mantis [123] and E. coli is the data set analyzed in the Rainbowfish

paper. This dataset, which has been obtained from GenBank [116], consists of 5, 598

distinct E. coli strains. Since the strain assemblies are all from the same species, E.

coli, each strain shares a large portion of its sequence with the others. We specifically

chose this dataset since Rainbowfish has already demonstrated a large improvement

in size for it compared to Vari [109].

As the table shows, our MST-based color-class representation is able to effec-

tively compress genomic color data in addition to RNA-seq color data.

Index Building Evaluation The “Build time” column in Table 16 shows the

time required to build our MST-based color-class representation from Mantis’ RRR-

based representation. All builds used 16 threads. Table 18 shows how the MST

construction time for a 1000 sample dataset scales as a function of the number of

build threads. The memory consumption is not affected by number of threads and

remains fixed for all trials. The memory usage for both the main Mantis build

149

MST
Dataset #

samples
RRR
matrix

Total
space

Parent
vector

Delta
vector

Boundary
bit-

vector

Build
time

(hh:mm:ss)

Expected
edge
weight

size(𝑀𝑆𝑇)

size(RRR)

H. sapiens

RNA-seq
samples

200 0.42 0.15 0.08 0.06 0.01 0:05:42 2.42 0.37
500 1.89 0.46 0.2 0.24 0.03 0:12:15 3.42 0.24

1,000 5.14 1.03 0.37 0.6 0.06 0:25:03 4.39 0.2
2,000 14.2 2.35 0.71 1.5 0.14 0:51:58 5.38 0.17
5,000 59.89 7.21 1.72 5.1 0.39 3:52:34 6.61 0.12
10,000 190.89 16.28 3.37 12.06 0.86 10:17:42 7.68 0.085

Blood, Brain,
Breast (BBB) 2586 15.8 2.66 0.63 1.88 0.16 00:57:43 6.98 0.17

E. coli strain
reference genomes 5,598 2.06 0.83 0.02 0.76 0.06 00:03:15 7.8 0.4

Table 16: Space required for RRR and MST-based color class encodings over different
numbers of samples (sizes in GB) and time and memory required to build MST. Central
columns break down the size of individual MST components.

Dataset #
samples

Mantis Build
memory (GB)

MST
Build

memory
(GB)

H. sapiens

RNA-seq
samples

200 5 8
500 10 16

1,000 18 29
2,000 25 29
5,000 58 59
10,000 111 111

Blood, Brain,
Breast (BBB) 2586 28 29

Table 17: The memory required for Mantis build and MST compression phases on human
RNA-seq data. The overall memory required to construct the full index is the max of the
two columns which, for these datasets, is always the MST memory.
and the MST construction steps is shown in Table 17. Since these phases are run

independently, and since the MST phase follows the Mantis construction phase, the

peak memory for the whole build pipeline is the maximum of the memory required

for each of the two construction phases.

of threads 1 2 4 8 16 32

Run time (hh:mm:ss) 02:47:08 01:38:26 01:02:42 00:31:57 00:22:00 00:14:17

Table 18: The MST construction time for 1000 experiments using different number of
threads. Memory stays the same across all the runs.

150

Overall, the MST construction time is only a tiny fraction of the overall time

required to build the Mantis index from raw fastq files. The vast bulk of the time

is spent processing the fastq files to produce filtered squeakrs. This step was per-

formed on a cluster of 150 machines over roughly one week. Thus MST construction

represents less than 1% of the overall index build time. The memory required to

build the MST is dependent on the size of the CQF and grows proportional to that.

In fact, due to the multi-pass construction procedure, the peak MST construction

memory is essentially the size of the CQF plus a relatively small (and adjustable)

amount of working memory. For the run over 10𝑘 experiments, where the CQF size

was the largest (98𝐺), the peak memory required to build MST is 111𝐺.

Query Evaluation We evaluate query speed in the following manner. We select

random subsets, of increasing size, of transcripts from the human transcriptome,

and query the Mantis index to determine the set of experiments containing each of

these transcripts. Mantis answers transcript queries as follows. For each 𝑘-mer in

the transcript, it computes the set of samples containing that 𝑘-mer. It then reports

a sample as containing a transcript if the sample contains more than Θ fraction of

the 𝑘-mers in the transcript, where Θ is a user-adjustable parameter. Note that, for

Mantis, the Θ threshold is applied at the very end. Mantis first computes, for each

sample, the fraction of 𝑘-mers that occur in that sample, and then filters as a last

step. Thus the query times reported here are valid for any Θ.

151

Mantis Mantis

index load + query query space(GB) index load + query query space(GB)

10 Transcripts 1 min 10 sec 0.3 sec 118 32 min 59 sec 0.5 sec 290

100 Transcripts 1 min 17 sec 8 sec 119 34 min 33 sec 11 sec 290

1000 Transcripts 2 min 29 sec 79 sec 120 46 min 4 sec 80 sec 290

Table 19: Query time and resident memory for mantis using the MST-based representation
for color information and the original mantis (using RRR-compressed color classes) over
10, 000 experiments. The “query” column provides just the time taken to execute all
queries (as would be required if the index was already loaded in e.g. a server-based search
tool). Note that, in resident memory usage for the MST-based representation, the counting
quotient filter always dominates the total required memory.

Table 19 reports the query performance of both the RRR and MST-based

Mantis indexes. Despite the vastly-reduced space occupied by the MST-based index,

and the fact that the color class decoding procedure is more involved, query in the

MST-based index is slightly faster than querying in the RRR-based index. The

average query time in both RRR-based and MST-based index is 0.08 sec / query.

Once the index has been loaded into RAM, Mantis queries are much faster than

the three SBT-based large-scale sequence search data structures, and our MST-based

color-class representation doesn’t change that.

4 Discussion & Conclusion

We have introduced a novel exact representation of the color information associated

with the colored de Bruijn graph. Our representation yields large improvements in

terms of representation size when compared to previous state-of-the-art approaches.

While our MST-based representation is much smaller, it still provides rapid query

and can, for example, return the query results for a transcript across an index of

152

10, 000 RNA-seq experiments in ∼ 0.08 sec / query. Further, the size benefit of our

proposed representation over that of previous approaches appears to grow with the

number of color classes being encoded, meaning it is not only much smaller, but

also much more scalable. Finally, the representation we propose is, essentially, a

stand-alone encoding of the colored de Bruijn graph’s associated color information,

making this representation conceptually easy to integrate with any tool or method

that needs to store color information over a large de Bruijn graph.

Though it is not clear how much further the color information can be com-

pressed while maintaining a lossless representation, this is an interesting theoretical

question. It may be fruitful to approach this question from the perspective sug-

gested by Yu et al. [163], of evaluating the metric entropy, fractal dimension, and

information-theoretic entropy of the space of color classes. Practically, however, we

have observed that, at least in our current system, Mantis, for large-scale sequence

search, the counting quotient filter, which is used to store the topology of the de

Bruijn graph and to associate color class labels with each 𝑘-mer, has become the

new scalability bottleneck. Here, it may be possible to reduce the space required

by this component by making use of some of the same observations we relied upon

to allow efficient color class neighbor search. For example, because many adjacent

𝑘-mers in the de Bruijn graph share the same color class ID, it is likely possible to

encode this label information sparsely across the de Bruijn graph, taking advantage

of the coherence between topologically nearby 𝑘-mers. Further, to allow scalability

to truly-massive datasets, it will likely be necessary to make the system hierarchical,

or even to adopt a more space-efficient (and domain-specific) representation of the

153

underlying de Bruijn graph. Nonetheless, because we have designed our color class

representation as essentially orthogonal to the de Bruijn graph representation, we

anticipate that we can easily integrate this approach with improved representations

of the de Bruijn graph.

Mantis with the new MST-based color class encoding is written in C++17

and is available at https://github.com/splatlab/mantis.

154

https://github.com/splatlab/mantis

Chapter 6: An incrementally-updatable and scalable system for large-

scale sequence search using LSM-trees∗

1 Introduction

The databases that house large public collections of sequencing experiments have

been growing exponentially throughout the past decade, owing to cost-efficient and

accessible high-throughput sequencing technologies. Many of these experiments are

publicly available and widely accessed — for example, in the Sequence Read Archive

(SRA) [76, 81]. The experiments contained in such databases range across differ-

ent species, including human, bacteria, viruses and plants, and are associated to a

variety of studies, such as tracking the effect of a genetic disease, drug treatment,

or the environment on the studied genome or transcriptome. Considering the meta-

information coming with the reads, such a database is a rich resource for exploratory

analyses and novel sequence-level discoveries to answer biological questions. For in-

stance, having a newly-assembled transcript or gene, a question of interest is “what

are the list of experiments that contain this sequence?” Such a question can be

classified as a search problem. Specifically, this is the problem of searching for a

sequence, across a large database, for experiments that contain identical or highly-
∗A collaboration with members of the Mantis team

155

similar sequences to the query sequence. The problem of finding similar sequences

has been tackled in the field of sequence alignment which is a well-studied sub-

ject with many popular solutions, indices, and tools available [6, 40, 78, 85, 86]. In

fact, through BLAST [11] and its variants, one can access and search (either through

the web interface or in a locally-installed database) the vast catalog of assembled

genomes.

However, the problem of searching for a sequence in a database of raw, unassem-

bled sequencing reads is fundamentally different from the problem of searching

through a database of assembled genomes. One main difference is that the se-

quenced reads themselves are highly fragmented and repetitive compared to long

assembled genomes and transcripts that usually act as the reference in typical for-

mulations of the sequence alignment algorithm problem. This renders an attempt

at calculating the edit distance of two sequences using dynamic programming (even

with efficient heuristics), essentially ineffective as a long query sequence may not be

present in its entirety in an experiment. Furthermore, the size of the database of

raw data is much larger than that of the assembled sequences for many reasons in-

cluding, the fact that many more individuals have been sequenced than those whose

genomes have been assembled, as well as the fact that even the same individual (or

cell line) may have its dynamic transcriptome sequenced many times under differ-

ent conditions or stimuli. Even more, since the vast majority of the diverse life on

earth cannot be reliably cultivated in a laboratory, we have evidence of the genomes

of such organisms only though shotgun metagenomic sequencing, resulting in frag-

156

mented and incomplete coverage of the underlying genomes; though such data is

not presented to us in the ideal form, it is, nonetheless, valuable data.

As a result of the collection of such data, the SRA currently has ∼ 4 peta-

bases of publicly-available sequencing data. This has led to the proposal, over

the past few years, of new algorithms and data structures for indexing these large

databases of short read sequencing experiments. This problem was first introduced

by Solomon and Kingsford [149], and they suggested the Sequence Bloom Tree

(SBT) as a data structure for indexing such sequencing databases for “experiment

discovery”. Since this original work, many tools, algorithms, and data structures

have been proposed to index large databases of short-read sequences [8, 15, 21, 59,

124, 150, 153, 165]. Almost all of these approaches start with breaking the sequences

in the given sample into sub-sequences of size 𝑘, known as 𝑘-mers, and defining the

intersection of the query 𝑘-mer set and each sample’s 𝑘-mer set as the criterion

for determining the likelihood of query presence in the sample. Among the tools

proposed in this space, only Mantis is exact [124]. Most of the other indices that

have been designed specifically for large-scale sequence search yield approximate

search results. That is, all samples that truly meet the intersection criterion will be

returned, but so will some (theoretically-controllable) fraction of samples that do

not satisfy this search criterion. This behavior of reporting a query as present at

the requisite level, while, in reality, it is not, is analogous to a false-positive results.

As explained by Harris and Medvedev [59], raw sequence indices can be divided

into two main categories: those that aggregate 𝑘-mers at the level of experiments

157

(experiment-based) and those that aggregate experiments at the level of 𝑘-mers

(𝑘-mer-based). In the first category (experiment aggregation), there is usually a

separate structure for each experiment such as a small filter for the 𝑘-mers in the

experiment (e.g. Bloom filters). These data structures are then aggregated either

in a hierarchical manner [59, 149, 150, 153, 165] or in a flat fashion [15, 21] into one,

unified index. In the second approach (𝑘-mer aggregation), unique 𝑘-mers across

all experiments are aggregated into one structure which maps the 𝑘-mer to another

structure containing a list per 𝑘-mer which indicates its presence/absence in each

experiment (called the “color” of the 𝑘-mer) [110, 112, 124]. In the later design, the

challenges of identifying 𝑘-mers and the that of storing the appropriate colors, can be

looked as two fundamentally different problems, and the approaches to tackle these

problems can be developed and improved independently. On the other hand, in the

experiment aggregation approach, since there is a separate structure for each exper-

iment, the index can be loaded into memory in parts, which maintains a low query

memory. For the same reason, updating the index (e.g. adding a new experiment)

is a more straightforward task in the experiment aggregation approaches.

For example Mantis, an index from the 𝑘-mer aggregation category, is up to two

orders of magnitude faster to query than state-of-the-art experiment aggregation-

based approaches. However, given that it combines the 𝑘-mers of all experiments into

a single structure to associate metadata with each that spans across all experiments,

is not immediately clear how an index such as that implemented in Mantis can be

updated. On the other hand, updates in experiment aggregation-based tools such as

SBT and its SBT-variants [59, 149, 150, 153] are conceptually more clear. However,

158

though these approaches admit a more theoretically straightforward update proce-

dure, to our knowledge, only the original SBT tool (the simplest of the SBT-based

variants) actually implements such updates. On the other hand, Pandey et al. [124]

describe how a potential update scheme may be applied to the Mantis structure by

integrating the index into a multi-tier data structure that facilitates low-cost inser-

tions, namely, making use of log-structured merge trees (LSM-trees) [120, 136, 137].

In this work, we put the original suggestion of [124] into practice, while simul-

taneously incorporating the subsequent improvements that have been made to the

Mantis data structure since the original work (that make the data structure more

efficient, but also more complex). “Log-structured Merge” is a general and well-

understood technique used in various storage schemes to support fast insertion of

stream of data [120]. The main operation that an index must support to allow for

the use of an LSM-tree is merging — building a new index from two smaller ones

without the need to reconstruct the whole index from scratch. Accordingly, we pro-

vide an algorithm for merging two Mantises into one larger index, and tackle the

main obstacles of scalability and efficiency along the way. We note that the idea

of enabling a raw sequence index to scale to larger collections of data via merging

is not new to the field, and has been recently explored in previous work such as

Varimerge [112]. The focus of this work, however, is to design a merging methodol-

ogy specialized for Mantis data structures. We present efficient merging algorithms

for both Classic Mantis and MST-based Mantis. In Classic Mantis, although the

merging algorithm may at first seem simple, a naïve implementation is very resource

159

intensive. We use insights about the empirical distributions of data and careful en-

gineering to make the merging memory scale moderately with the growth of the

index. Specifically, we break the singular 𝑘-mer “map” (implemented via the count-

ing quotient filter (CQF) [121] in Mantis) into smaller partitions based on 𝑘-mer

minimizer values. This idea has been comprehensively explained and used previ-

ously in BCALM2 [31] for extracting non-branching paths of the de Bruijn graph

over a set of raw experiments without the need to construct the full de Bruijn graph

itself. For the MST-based Mantis data structure, we go further to design an efficient

algorithm for merging two MSTs, which is the encoding used in MST-based Mantis

to compress color information. This vastly reduces the intermediate disk space as

well as improves the total merging time. Furthermore, with careful engineering to

make efficient use of multi-threading, we retain a time-efficient construction pro-

cess. Comparing the merging benchmarks with Varimerge, a recent state-of-the-art

colored de Bruijn graph representation utilizing a merge-based construction, we ob-

serve better performance in merge time, merge memory, intermediate disk space,

and final index size. We also benchmark the query time in this new index that

makes use of the partitioned 𝑘-mer map structure with MST-based Mantis (one of

the fastest existing raw sequence search indices). We observe similar total query

time while obtaining up to a 7𝑥 improvement in memory for the largest indices.

160

2 Method

There are a number of steps required to enable a dynamically-updatable Mantis

index that is scalable to large collections of data. As explained in 1, the way we

achieve this goal is by use of LSM-trees. Figure 20 shows how an LSM-tree of

multiple Mantises operate. The update process is comprised of two main steps:

insertion, and compaction. Every time we add a new experiment of raw sequences

to the database, we call insert which adds the sample to the list in RAM in the

form of a squeakr [121]. A squeakr is basically a multiset representation holding the

list of distinct 𝑘-mers in the experiment. If the first level in the LSM-tree is full,

we flush the Squeakrinto a Mantis index and merge it into the first level on disk

(level 1) in the compaction. This could trigger a cascading merge of the indices to

higher levels until the destination level is no longer full. For this design to work, the

one primary requirement to satisfy is that the merge operation be support by the

Mantis indices atop which this structure is built. Therefore, the rest of this section

covers to the details of the process that has been developed to enable an efficient

and scalable merging operation for the Mantis index.

A Mantis index [124] is essentially a colored de Bruijn graph (colored de Bruijn

graph) representation. In a colored de Bruijn graph, each 𝑘-mer has an associated

color, which lists the experiments containing that 𝑘-mer. Mantis uses counting quo-

tient filter [121], a key-value filter, combined with a color-encoding scheme adopted

from [4] to map each 𝑘-mer to the color bit-vector of size equal to number of ex-

periments encoding the presence/absence of the 𝑘-mer in an experiment. Subse-

161

Level
0

Level
1

Level
2

Level
3

Level
0

Level
1

Level
2

Level
3

Level
0

Level
1

Level
2

Level
3

Level
0

Level
1

Level
2

Level
3

Compact

RAM RAM

DISK DISK

RAM

DISK

RAM

DISK

Insert

Insert
squeakr MergeBuild

Mantis

Figure 20: The two main steps during an LSM-tree update with slight modifications
specializing it for the Mantis index. In insertion step, we only add a new Squeakr to
the list of Squeakrin memory. In compaction step, which is triggered whenever number of
Squeakrpasses the threshold for level 0, we first build a Mantis index over all the Squeakrin
level 0 and then do a cascading merge of Mantis indices up to the point that no levels are
full anymore. We should note that the levels are not drawn to scale for having a better
graphical representation.

quently, the MST-based Mantis index [9] was introduced as the successor of Mantis.

It focuses primarily on reducing the index size by performing referential encoding

of related color vectors, rather than requiring identical 𝑘-mer occurrence vectors.

This allows an even smaller index that can be effectively scaled larger even larger

databases.

In section 2.1, we explain the merging process over “Classic Mantis”, which

although algorithmically simple, is quite resource intensive. We further explore the

particular challenge we face for having a memory-scalable merge in section 2.3.

This challenge, in particular, is representing all unique 𝑘-mers in a single counting

162

quotient filter that grows linearly with the number of unique 𝑘-mers. The existing

Mantis indices (both Classic Mantis and MST-based Mantis) require this mono-

lithic counting quotient filter to be present in memory during both construction and

query. To replace this component of the index, we propose a data-driven partition-

ing scheme based on minimizers that breaks the single counting quotient filter into

smaller partitions that can be loaded in memory and processed independent of other

partitions during construction, merge, and also query time. We then explain how

this greatly improves the memory required for counting quotient filter merging. We

then describe an efficient algorithm for merging two MSTs in section 2.2. Direct

merge of the MSTs allows us to skip the construction and storage of the very large

intermediate color class matrix to disk and to avoid the extra step of compressing

this matrix into the final MST representation. This helps reduce the intermediate

disk space as well as improves the total time required for merge. Finally, we explain

how we design the construction and merge procedures to be parallelizable allowing

for practically fast construction.

2.1 Merging Classic Mantis indices

The Mantis merge algorithm takes 𝑐𝑑𝑏𝑔1 and 𝑐𝑑𝑏𝑔2 as inputs, and produces an

output Mantis index over all the experiments of the union of the input indices.

The merge algorithm can be sequenced into three major steps: (1) gathering all

the distinct color-id pairs for the union set of 𝑘-mers of the input graphs, where

each color-id pair represents a distinct color for the 𝑘-mers of the output graph; (2)

163

assigning color-ids to these pairs and building the color-class table for these colors

and (3) building the merged de Bruijn graph, (i.e. the output counting quotient

filter containing the union 𝑘-mer set). Note that the sets of experiments for the

two input indices should be disjoint; otherwise each copy of an experiment will be

treated as a different experiment at the merged index. We describe these steps

below.

Gathering distinct color-id pairs. Each 𝑘-mer 𝑘𝑒𝑦 in a Mantis index has an asso-

ciated non-zero color-ID 𝑖𝑑. If some 𝑘-mer 𝑘𝑒𝑦 has color-ID 𝑖𝑑1 at the first input

index 𝑐𝑑𝑏𝑔1 and color-ID 𝑖𝑑2 at the second input index 𝑐𝑑𝑏𝑔2, then this 𝑘-mer 𝑘𝑒𝑦

will be assigned a unique color-ID 𝑛𝑒𝑤𝑖𝑑 corresponding to the pair (𝑖𝑑1, 𝑖𝑑2) at the

merged index. It is possible that the 𝑘-mer is absent in either of the indices. In such

a case, the color-ID value of the 𝑘-mer in the input index which it is not present

is considered to be zero, i.e. 𝑖𝑑1 = 0 or 𝑖𝑑2 = 0. At the end of this phase, we will

have all the distinct (𝑖𝑑1, 𝑖𝑑2) color-ID pairs for the union 𝑘-mer set of the two input

indices.

The color class matrix is partitioned and stored as fixed-size blocks of color

classes to the disk, instead of storing the table as a whole. This facilitates in keeping

the working memory low, as a color class is not required to be present during the

full lifetime of the Mantis merge algorithm. Let the input indices 𝑐𝑑𝑏𝑔1 and 𝑐𝑑𝑏𝑔2

have partitions 𝑑1 and 𝑑2 in the color class table. For simplicity, we assume color

class partitions to be 1− 𝑏𝑎𝑠𝑒𝑑 indexed. We initialize (𝑑1 +1)× (𝑑2 +1) files on disk

(called disk-buckets) to temporarily store color-ID pairs of 𝑘-mers. A disk-bucket

164

𝑏𝑖,𝑗 with 𝑖, 𝑗 > 0 contains the color-ID pairs (𝑖𝑑1, 𝑖𝑑2) where 𝑖𝑑1 belongs to color class

partition 𝑖 and 𝑖𝑑2 belongs to color class partition 𝑗. In the case the 𝑘-mer is not

present in one of the inputs, the color-ID pair would end up in a disk-bucket with

𝑖 = 0 or 𝑗 = 0. Disk-bucket 𝑏0,0 is empty as it is, by definition, associated to the

color-ID pairs where the associated 𝑘-mer is neither present in 𝑐𝑑𝑏𝑔1, nor in 𝑐𝑑𝑏𝑔2.

Since the counting quotient filters of the indices 𝑐𝑑𝑏𝑔1 and 𝑐𝑑𝑏𝑔2 contain the

hash-values of the 𝑘-mers in sorted order, we make simultaneous linear scans over the

two counting quotient filters for the distinct 𝑘-mers of the union counting quotient

filter. For each distinct 𝑘-mer 𝑘𝑒𝑦 of the union counting quotient filter, let its

color-IDs be 𝑖𝑑1 and 𝑖𝑑2 from 𝑐𝑑𝑏𝑔1 and 𝑐𝑑𝑏𝑔2. If 𝑖𝑑1’s color class is in partition 𝑥

and 𝑖𝑑2’s color class is in partition 𝑦, then we store the pair (𝑖𝑑1, 𝑖𝑑2) to bucket 𝑏𝑥,𝑦,

with possible repetitions of the pairs. Having completed the union process, we filter

out the unique 𝑘-mers at each bucket (by sorting and discarding duplicates of the

𝑘-mer hashes in the buckets).

Simply following this scheme to collect the distinct pairs results in too much

repetition of pairs and, thus, a high memory demand. Since we store a color-

pair per 𝑘-mer, the disk-buckets will cumulatively contain exactly 𝑛𝑘 pairs if the

merged colored de Bruijn graph has 𝑛𝑘 𝑘-mers, whereas the number of color classes

is actually much smaller. In reality, not only can multiple 𝑘-mers can share the same

color, but also the majority of 𝑘-mers actually belong to a small subset of colors, less

than 1% of total colors [124] in a typical dataset. The original Mantis data structure

leverages this highly skewed abundance distribution of color classes by sorting the

color classes based on their abundance values, and assigning IDs in reverse order

165

of the abundance — at least for the colors observed in a sample subset. Since in

the final space required to store each color-ID correlates with the ID value itself,

assigning smaller IDs to more abundant colors results in smaller size representation

of the color-IDs. This utilization of the highly-skewed color distribution is popular

in many other tools in the field as well [4, 6, 62]. We perform a sampling phase in

which we analyze the color class abundance distribution of a subset of the 𝑘-mers.

We sort the color class based on their abundances in the sample set, and keep a fixed

number of the (approximately) most abundant pairs in a hash-map 𝐻 which maps

a color-ID pair to its abundance. Given the uniform-randomness property of the

hash function used to hash 𝑘-mers, in expectation, we will see the most abundant

color classes in the first few million 𝑘-mers. After this sampling phase, we make

the simultaneous linear scan over the counting quotient filters and for each color-ID

pair (𝑖𝑑1, 𝑖𝑑2) of a 𝑘-mer, we only add the pair to its corresponding bucket if it is

not present at 𝐻.

Assignment of color-IDs and building the color class table. At this point of the

algorithm, we have all the distinct color-ID pairs for the output Mantis index in the

hash-set 𝐻 and in the disk-buckets. We assign a unique integer as the color-ID of

each pair and then build the output color class table. As explained in the previous

paragraph, we assign IDs to the colors in the hash-set 𝐻 in reverse order of the

abundances. Then we assign color-IDs to the rest of the pairs present at the disk-

buckets. Later, throughout the process, we would need to have a constant access

from each input color-ID pair to its associated output color-ID. However, using a

166

naive hash-map on all the non-sampled color pairs as keys is very memory-inefficient.

Instead, we use a space-efficient hashing scheme, in our case the Minimal Perfect

Hash Function(MPHF) implemented by Limasset et al. [93]. Knowing the count

of color pairs in each bucket, we build a MPH table 𝑀𝑃𝐻 𝑖,𝑗 on it. That is, if the

bucket 𝑏𝑖,𝑗 has 𝑠 pairs, then each pair from 𝑏𝑖,𝑗 gets mapped to a unique value in the

range [0, 𝑠− 1] by 𝑀𝑃𝐻 𝑖,𝑗. Then the color-ID of a pair (𝑖𝑑1, 𝑖𝑑2) present at bucket

𝑏𝑖,𝑗 is computed as the sum of the following: count of abundance-sampled pairs (i.e.

|𝐻|), cumulative size of all the buckets up-to this bucket (exclusive and in row-major

order), and the pair’s MPH value. This scheme ensures a unique color-ID for each

pair present at each disk-bucket.

After the color-ID assignment, we sort the color-ID pairs (𝑖𝑑1, 𝑖𝑑2) present at

𝐻 in such a way that all the pairs that have 𝑖𝑑1’s color class at some partition 𝑥 of

𝑐𝑑𝑏𝑔1 and 𝑖𝑑2’s color class at some partition 𝑦 get grouped together. Then we scan

over this sorted order, load the color class table partitions of the input indices only

when required (i.e. we switch from one group to other), and build the color classes

for the pairs. Finishing 𝐻, we go over each disk-bucket 𝑏𝑖,𝑗, load the color classes

table partition (𝑖−1) of 𝑐𝑑𝑏𝑔1 (if 𝑖 > 0) and partition (𝑗−1) of 𝑐𝑑𝑏𝑔2 (if 𝑗 > 0), and

build the color classes for each pair present at 𝑏𝑖,𝑗, in order of their newly assigned

color-IDs. Also, partitions of the output color class table are serialized to disk once

they reach a certain threshold, as was originally described in [124]. This color class

building scheme for 𝐻 and the 𝑏𝑖,𝑗’s ensures that we only need to load two color

class buckets at a time in memory.

167

Building the merged counting quotient filter At this point of the algorithm, we

have all the distinct color-ID pairs for the union 𝑘-mer set and their associated

color-ID. Similar to the first phase, we make simultaneous linear scans over the

input counting quotient filters, this time for each distinct 𝑘-mer in the union of the

two inputs, storing the ⟨< 𝑘 −𝑚𝑒𝑟, 𝑐𝑜𝑙𝑜𝑟𝐼𝐷⟩ pair to the output counting quotient

filter. For each distinct 𝑘-mer 𝑘𝑒𝑦, we get its color-ID pair (𝑖𝑑1, 𝑖𝑑2), query for the

pair’s assigned color-ID in the hash-map 𝐻, and if absent, compute its color-ID from

its corresponding MPH table as discussed earlier.

2.2 Merging MSTs

A Classic Mantis index over 𝑛 samples (also considered a colored de Bruijn graph

representation), consist of two main sub-structures, a counting quotient filter which

maps each distinct 𝑘-mer to a color-ID and a color class matrix that maps the

color-ID to a color bit-vector. One can then construct an MST-based Mantis index

from a Classic Mantis index by compressing the color class matrix into a relative

encoding of the color bit-vectors as described in [9]. The idea is to exploit the

inherent similarity of the rows in the color class matrix. Rather than directly storing

the full matrix on disk, each color bit-vector (a row in the matrix) is encoded as a list

of deltas from neighboring color bit-vector. Applying this idea globally results in a

tree structure (a MST) over a derived color graph from Classic Mantis that connects

similar color bit-vectors. In the rest of the section we call this encoding a MST

for short. When applied, this compression technique significantly reduces the space

168

occupied by the color information and is progressively more effective with increasing

numbers of samples to the extent that in previous experiments it achieves more than

80% saving on the color information and close to 50% global saving compared to

Classic Mantis for an index on 10𝑘 samples.

At query time, for each color-ID 𝑐𝑖, the color bit-vector needs to be recon-

structed by traversing the path node color-ID 𝑐𝑖 up to the root and flipping the bits

whose positions are encoded by the deltas observed along the traversed path. Al-

though this process is not a constant-time observation, it has been shown that using

a small LRU cache (Least-Recently-Used cache) to explicitly represent a dynamic

subset of nodes of the MST yields practically the same query time as direct access to

the color-vector in Classic Mantis. The color classes in the LRU cache get updated

based on the frequency of access request to the color classes either by direct query

for the corresponding color-ID or along the path to the root for other color-IDs.

To avoid lengthy (re-)construction of the MST representation from a color

class matrix after every merge of two Classic Mantis indices, it would be highly-

preferable to directly merge MSTs instead. Not only does this save time, but it

eliminates the large disk-space requirements of the color class matrix. The process

we propose for achieving this goal is similar to that of the MST construction from

the color class matrix itself, but with appropriate modifications to account for lack

of direct access to color bit-vectors.

Therefore, we first provide a summary of the MST construction process as ex-

plained in [9], and then go over the modifications made to enable direct construction

of the final MST from input MSTs.

169

The following are the main steps of MST construction process:

1. Construct a “color-graph”(⟨𝑉, 𝐸⟩) where 𝑉 is the set of all color-IDs in the

colored de Bruijn graph and 𝐸 filled by walking the colored de Bruijn graph

and storing an edge between the colors of the neighboring 𝑘-mers in the colored

de Bruijn graph if they have distinct color-IDs (self-loops are not allowed in

the color-graph).

2. Creating an edge from all color nodes to a dummy node. The dummy node

represents an empty bv with all bits reset to 0. Assuming the colored de

Bruijn graph has 𝑛 distinct color classes, the color-graph will contain 𝑛 + 1

nodes (including the dummy bv node). This guarantees the color graph will

be one connected component.

3. Calculate the weight of each edge of the color-graph as shown in part (a) of 21.

The weight of an edge ⟨𝑐𝑖, 𝑐𝑗⟩ is defined as the hamming distance between the

color bit-vectors associated to 𝑐𝑖 and 𝑐𝑗 (exclusive-or of the two bit-vectors

as shown in part (b) of figure 21). At this point, each color bit-vector 𝐶𝑖 in

the color-graph has at least one edge to another color bit-vector 𝐶𝑗 where the

edge weight represents number of indices required to be stored to retrieve color

bit-vector 𝐶𝑖 from 𝐶𝑗 if we already have the color bit-vector of 𝐶𝑗.

4. Find the MST of the color-graph, which is the tree with minimum total weight

that spans all the color-IDs. Therefore, the vertices of the color-graph remain

connected, while the weight of the resulting spanning tree (which allows re-

construction of each color bit-vector) is minimised.

170

5. Knowing the root of the tree (the dummy node), orient the edges of the tree

by walking the tree and assigning the parent-child directions to each edge.

6. For each edge ⟨𝑐𝑖, 𝑐𝑗⟩ in the MST, calculate the offsets of the unequal bits

between the color bit-vectors associated to color-IDs 𝑐𝑖 and 𝑐𝑗.

7. Store the tree representation as the “Parent vector” and “Delta vector”. The

parent vector stores the structure of the tree by pointing each color-ID to

its parent color-ID and the delta vector encodes the list of indices for the

nonidentical bits between the color-ID and its parent’s corresponding color

bit-vector.

The MST construction steps (subsequent to color-graph construction) are also

depicted in 21, part (a). It is important to note that the first step of merging two

colored de Bruijn graphs, i.e., the counting quotient filter merge, remains the same

in both Classic Mantis and MST-based Mantis. The two outputs of the counting

quotient filter merge step are “the output counting quotient filter” and “the color-

map”. The counting quotient filter maps each unique 𝑘-mer in the union of the left

and right samples to its associated color-ID, and the color-map maps each color-ID

to the pair of corresponding color-IDs in the left and right input index 𝑐→ ⟨𝑐𝑙, 𝑐𝑟⟩.

Therefore, the available structures before starting the MST construction are the

merged counting quotient filter, the color-map connecting the new color-IDs to pair

of colors for the left and right indices (𝑐 → ⟨𝑐𝑙, 𝑐𝑟⟩) and the two MSTs of the left

and right indices.

The majority of the steps in MST merge are the same as the ones in MST

171

1. Find

weights

2. Find

MST

3. Assign

directions

4. Find

deltas

4

23

1

0
1

1
42

Dummy

4

23

1

0
1

1
42

Root: Dummy

4

23

1

0

Dummy Dummy

12

1
42

5
7

4

23

1

06

4

23

1

0

[3]

[7]

[0,2,5,7][3,5]

Root: Dummy

Fill Parent vector

Fill Delta and Boundary

vectors

1 3 4 2
0 1 2 3

3 5 0 2 5 7 3 7

1 0 1 0 0 0 1 1

Color graph

1

Color-map

c1

c2
Query MST

CDBG1..…

MST Static

color cache

CDBG2..… ..…
MST Static

color cache

c <c1, c2>

<c
1,

c 2
>

Query MST

4

[0,2,5,7]

4. Delta List

3

1

Color-class

ID

Color bit-vector

3

1

3

1

1. Weight

Xor bit-vectors

Find indices of

non-identical bits

Fetch color bit-vector

Zoom in

Steps 1 or 4

Zo
om

 in

(a) (b)MST construction process “Find weights”

&

 “Find deltas”

Constructing color bit-vector
using the two input MSTs(c)

Figure 21: The full MST construction process (a) which is zoomed in two levels down in
(b) and (c). The process in (a) basically follows the same steps as for MST construction
in the MST-based Mantis index. The main point of difference is reconstruction of the
color bit-vectors by querying the two input MSTs as shown in (c) rather than fetching the
vector from the color class matrix. During the MST construction, step (c) will be repeated
for each end of the edge in (b) and eventually for all the edges in the original color-graph
(step 1) and later the final MST (step 4) in (a). Consequently, the main challenge is to
make the color bit-vector reconstruction process as efficient as directly querying the color
class matrix for the corresponding row (i.e., constant time).

construction. In the next few paragraphs We discuss the pipeline for MST con-

struction/merge describing individual steps in figure 21.a and point out the specific

differences between color class matrix merge and MST merge. The color-graph pop-

ulating step is exactly the same when constructing an MST or merging two MSTs.

We walk the counting quotient filter in order of the 𝑘-mer hash values and for each

pair of ⟨𝑘𝑚𝑒𝑟𝑖, 𝑐𝑜𝑙𝑜𝑟𝐼𝐷𝑖⟩, we find all neighboring pairs ⟨𝑘𝑚𝑒𝑟𝑗, 𝑐𝑜𝑙𝑜𝑟𝐼𝐷𝑗⟩ and add

the color-ID pair ⟨𝑐𝑜𝑙𝑜𝑟𝐼𝐷𝑖, 𝑐𝑜𝑙𝑜𝑟𝐼𝐷𝑗⟩ to the edge list if 𝑐𝑜𝑙𝑜𝑟𝐼𝐷𝑖 , 𝑐𝑜𝑙𝑜𝑟𝐼𝐷𝑗.

For step 1, finding the weight of the color-graph edges, we need to access the

172

color bit-vectors associated to each end of the edge. If we have the full color class

matrix available, this only requires a (constant-time) lookup to fetch the correspond-

ing row in the matrix that a color-ID references. However, this step is not trivial

when we only have access to the two input MSTs. We know from section 2.1 that, in

the merging process, each color bit-vector in the output is a concatenation of some

color bit-vector from the left and right inputs. We store the mapping of the output

color bit-vector IDs to the ID pair of the two constituent input color bit-vectors in

a map called color-map. So, for each color-ID 𝑐𝑖 that maps to two input color-IDs

(i.e. 𝑐𝑖 → ⟨𝑐𝑙
𝑚, 𝑐𝑟

𝑛⟩), if we are able to construct the color bit-vector associated to 𝑐𝑙
𝑚

in the left index, 𝑐𝑏𝑣𝑙
𝑚, and 𝑐𝑟

𝑛 in the right index, 𝑐𝑏𝑣𝑟
𝑛, we can construct the 𝑐𝑏𝑣𝑜

𝑖 by

concatenating them (𝑐𝑏𝑣𝑜
𝑖 = 𝑐𝑏𝑣𝑙

𝑚|𝑐𝑏𝑣𝑟
𝑛). In the case of in which we have MST-based

Mantis indices as the left and right input, to retrieve the color bit-vector associated

to a color-ID, we need to query the MST of each of these indices (the process for

which is explained in details in [9]). To summarize, to calculate the weight of an

edge ⟨𝑐𝑖, 𝑐𝑗⟩, we first extract the color bit-vectors for the associated id pair to 𝑐𝑖,

𝑐𝑖 → ⟨𝑐𝑙
𝑚, 𝑐𝑟

𝑛⟩, by querying the left and right input MSTs. Then we concatenate the

two vectors to make the color bit-vector 𝑐𝑏𝑣𝑖. We repeat the same process for node

𝑐𝑗 to construct 𝑐𝑏𝑣𝑗. Then the weight of the edge would be the Hamming distance

between the two vectors (𝑐𝑏𝑣𝑖, 𝑐𝑏𝑣𝑗). We need to repeat the same process for all

edges in color-graph.

At this step, however, we encounter a challenge. Although, the LRU cache

was sufficient to enable querying speed in MST-based Mantis that is practically

equivalent to the constant-time access to the color class matrix, we do not observe

173

such behavior during merging of the input MSTs. In this case, the query pattern

that is dictated by the color-graph is fundamentally different in its distribution

compared to (later) querying the index with specific query sequences. Thus, the

LRU cache is insufficient to enable efficient use of the input MSTs as color vector

representations during the merge process. Instead, we design a static caching scheme

that is optimized to make the queries we require practically fast. This scheme is

described in subsection 2.2.1.

Step 2 is a straightforward and purely algorithmic process of finding the MST

of a weighted graph, i.e. the color-graph. At step 3, we assign the directions of

the edges in the MST to be able to traverse the tree (as a requirement for the final

encoding representation of the colors). We start a BFS (Breathe-First-Search) or

DFS (Depth-First-Search) walk from the root of the tree which is known (dummy

node) and fill the parent vector accordingly. The parent vector has ‖𝑉 ‖ slots,

equal to number of nodes in the tree. For each 𝑐𝑖 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑐𝑝) in the MST,

we set the value at index 𝑐𝑖 in the parent vector to 𝑐𝑝. To complete the output

MST construction, we need to store the delta indices between the color bit-vectors

for each parent-child pair in the last step, step 4. This process also requires, for

each edge of 𝑐𝑝 → 𝑐𝑐 in the MST, to construct the color bit-vectors of the two

nodes 𝑐𝑝 and 𝑐𝑐 and store the indices of the non-identical bits. The color bit-vector

construction follows the exact same protocol as followed for calculating edge weights.

The associated color bit-vectors for the left and right input color-IDs are fetched and

and concatenated to build the output color bit-vector. Since the list of delta indices

varies across the edges, we use another bit-vector to denote the start index for each

174

delta set. At this point, we have constructed the output MST without having had

to to construct the intermediate color class matrix at all.

2.2.1 Static cache

As explained in [9], to query a color-ID from an MST, we need to walk a path

on the MST from the color-ID node to the root to assemble the color bit-vector

applying the relative bit differences between the parent and child color-IDs along

the path. This will lead to a color-ID query time for MSTs that scales with the

height of the MST, and would in an unpredictable way with the number of color

classes. The idea proposed to practically overcome this issue was to adopt an LRU

cache (Least-Recently-Used cache) to always keep a subset of the fully decoded color

classes in memory. The policy for populating this LRU cache was based on the query

popularity of color classes, as well as on how many times internal nodes of the tree

are visited during the query procedure. Queried color-IDs were selected and added

to the LRU cache if not already there, as were nodes along the path from the queried

color-IDs to the root depending on the number of times they’d been traversed. If

the LRU cache is full, the color class that has not been requested for the longest

amount of time would be evicted from the cache. Practically, the more a color-ID

is requested, the higher the probability that it would be found in the LRU cache.

This dynamic cache worked well to accelerate query in the MST.

Unfortunately, in the case of querying an input MST in the MST merging

process, the the LRU cache is not very effective. This is primarily the case because,

175

during the MST merging process, many pairs of input color-IDs are accessed, and

the probability of accessing a color-ID is unrelated (at least in any obvious way) to

it’s popularity among 𝑘-mers. Specifically, during merge, every single color-ID from

each input must be queried at least once, because otherwise, a color class pattern

would be missing in the merged output. This immediately changes the scope of the

problem from, for instance querying only 10% of the color classes 90% of the time,

to querying 100% of color classes, regardless of their frequency. Also, each color-ID

will be queried whenever it appears as one end of an edge. Assuming we have 𝑛

color classes in our color-graph, each color-ID 𝑐𝑙
𝑖 can be paired with up to 𝑛−1 other

color-IDs in the color-graph. This inherent multiplicity further reduces the efficacy

of an LRU-caching scheme. Even if one sorted the edges, the issue of multiplicity

still remains. For example, consider the following case; we have an LRU cache of

size 𝐿 for our MST and each color class is connected to 𝐿 other color classes where

𝐿 << 𝑛 total number of color classes. Assume the best-case scenario where the

edges are sorted based on source and destination color-IDs. When we observe an

edge ⟨𝑐𝑖, 𝑐𝑗⟩, we insert both color classes into the LRU cache. For the next 𝐿 − 1

edges, we would have the 𝑐𝑖 in the cache an not require to walk the tree, but, we

query all the destination color-IDs and also add them to the LRU cache. After 𝐿

edges starting with 𝑐𝑖, we would go to the edges with a different source node 𝑐𝑛

(lets say starting from edge ⟨𝑐𝑛, 𝑐𝑗⟩), although we have already observed 𝑐𝑗 but right

before the current edge, 𝑐𝑗 has been kicked out of the cache as the longest recently

used color-ID. So, the nodes we are searching for would not be in the LRU cache,

and we would need to reconstruct 𝑐𝑗 again. This would occur as many times as we

176

observe 𝑐𝑗 as the destination node of some edge, so that in the worst case we need

to query MST for 𝑐𝑗 for all the 𝐿 times that it occurs.

To manage the MST query time without the need to keep all the color bit-

vectors in memory, we must design a cache that is more aware of the characteristics

of the queries. One important advantage of querying the MST during merging

compared to regular sequence queries, is that the color-IDs to be queried are known

ahead of time. Since we have list of the edges (as pairs of color-IDs), we know

exactly what color-ID pairs appear and how many times each color-ID would be

queried. We use this information to design a “static cache” that is filled once before

the start of the query step and then used during the entire MST merge process. It

can be tuned for the lookup cost that the user wants to achieve, trading off memory

for more efficient lookup.

In this cache, we define “cost” as the number of steps required to get from the

queried color-ID to the root, including the color-ID itself. We then design the cache

as follows: We consider two types of cost for each node in the tree; (1) the local

cost is the total number of times the node is directly queried and (2) the sub-tree

cost is the total cost of the sub-tree rooted at the current node. We also define the

parameter 𝑐 as the average cost per query. This is average number of steps required

to walk in the MST tree before either (1) reaching the root or (2) hitting a node

whose corresponding color bit-vector exists in the “static cache”.

Now we can fill the “static cache” so that we guarantee the average cost of 𝑐

per query. The cache is constructed as follows:

177

1. Walk over the edges and calculate the local cost for each color-ID. That is,

start from cost 0 and every time the color-ID shows up as one of the edge

ends, increase the cost by 1.

2. Start a post-order traversal on the MST. For each node 𝑐𝑖:

(a) Set the sub-tree cost as the sum of the sub-tree costs of its children

added to the local cost of the node: 𝑠𝑢𝑏𝑡𝑟𝑒𝑒_𝑐𝑜𝑠𝑡𝑖 = 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡𝑖 +

∑︀#𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑖
𝑗=1 𝑠𝑢𝑏𝑡𝑟𝑒𝑒_𝑐𝑜𝑠𝑡𝑐ℎ𝑖𝑙𝑑𝑗(𝑐𝑖).

(b) If 𝑠𝑢𝑏𝑡𝑟𝑒𝑒_𝑐𝑜𝑠𝑡𝑖 > 𝑐, reset both node costs to 0; add the color-ID to the

list of “static IDs”.

3. Query the color-IDs in the “static IDs” list and put the color bit-vectors in

the “static cache”. Since the list has been filled through a post-order walk,

the ancestors of each node appear after the node in the list. Therefore, if we

construct the color bit-vectors starting from last color-ID to first in the list,

we can even use the “static cache” while constructing it.

Interestingly, in all our experiments, we observe a strong correlation between

the color-ID query time (negative correlation) and memory (positive correlation)

with the value of cost 𝑐, the former increasing as the time cost 𝑐 increases and the

later decreasing as fewer nodes need to be cached.

It is important to note that, at query time we still augment this “static cache”

with a dynamic LRU cache. For each color-ID, we first look it up in the “static

cache”, and then, if it is not found, in the LRU cache. If the color-ID is not found

178

in either, we then traverse to the node’s parent and continue the walk until either

we reach the root or until we reach a color-ID encoded in any of the caches.

Memory management: Although encoding the color class representation in Classic

Mantis using a MST in MST-based Mantis improves the index scalability, both in

terms of query memory and disk usage, still the high memory consumption dur-

ing MST construction remains a bottleneck for scaling the index to more samples.

Almost all the steps of constructing the MST are memory-expensive if we prohibit

intermediate disk usage. During the construction process, first, we construct a

sparse graph of colors by only adding a subset of edges we believe are potentially

low-weight edges. There we only add an edge between two colors if their corre-

sponding 𝑘-mers are neighbors in the colored de Bruijn graph. This idea is based

on the observation that neighboring 𝑘-mers in a colored de Bruijn graph tend to

have similar colors. Practically, the stated heuristic helps reduce the order of the

color-graph edges from 𝒪(𝑛2) down to 𝒪(𝑛). This change in order, makes the whole

MST construction practical in the first place. However, due to the large number of

colors, 𝑛, the pipeline is still memory-hungry if implemented naively. We explain

below a number of optimizations we adopt to improve the construction of the MST:

• Store serially-accessed structures on disk. Large structures, such as the color-

graph edges, which are accessed once through serialized scanning can be stored

on disk. The tradeoff of random access memory for time (and external mem-

ory) in such cases seems a practical way to improve scalability.

• Discard edges with weight greater than a global threshold during edge weight

179

calculation for the color-graph. The input list of edges to Kruskal’s algo-

rithm [65], which is used to construct the MST, should be sorted based on

weights. Since the weight value is bounded above by the number of samples

in the index (which we know ahead of time), during the weight calculation

process, we perform a bucket sort on-the-fly, moving the edges into the cor-

responding weight bucket, which is a file on disk. We only store edges with

a weight up to a predefined threshold based on the heuristic that, eventually,

most of the high-weight edges would be discarded during MST construction.

This decision will not affect the functionality of the MST construction, since

the presence of the dummy node ensures a connected spanning tree can always

be built. Thresholding the input edge weights can only lead to a sub-optimal

spanning tree compared to one constructed on the full set of color-graph edges.

Practically, we observed only a small effect of this heuristic on the size of the

final MST.

• Store dummy-edges in a different data structure than non-dummies. As per

our definition, one end of a dummy edge is always the zero vector, and as a

result, for each dummy edge of ⟨𝑐𝑖, 𝑐𝑑𝑢𝑚𝑚𝑦⟩, the weight is the number of set

bits in 𝑐𝑖, and the edge delta is the indices of the set bits in 𝑐𝑖. Hence, we can

store these edges, which are a considerable fraction of edges in a data structure

specialized for dummies, and keep them always in memory. The structure to

store weights is simply a bit-packed int-vector with 𝑛 slots of width ⌈log2 𝑛⌉.

• Design a memory-efficient structure to store the weighted adjacency list for

180

the MST. The result of Kruskal’s algorithm is the list of edges in the MST,

and each edge’s weight, in the form of an adjacency list. The required space

to store the adjacency list is linear in the number of nodes (or edges) in the

MST (i.e. number of colors in the colored de Bruijn graph). This can be quite

costly if implemented naiëvely. We adopt an efficient representation of the

weighted adjacency list that is explained in supplementary section 5.2.

• Fill parent vector via a hybrid DFS-BFS walk. To fill out the parent vector

from the adjacency list, we need to perform a DFS or BFS over the tree starting

from the root. However, because the MST is large both in width and height

when constructed over many samples, both BFS and DFS traversals require

substantial memory to perform. A BFS or iterative DFS procedure require a

lot of memory for book-keeping, and a recursive DFS would fail as a result of

stack overflow. Instead, we use a hybrid traversal to fill out the parent vector.

The idea is similar to iterative deepening search [133], keeping the memory

constraint in mind. We set a depth limit for DFS. We start a DFS from the

root and set the parent-child relationship in parent vector. Every time we

reach our the limit, we keep the list of nodes at that limit (similar to the

bookkeeping in BFS, but only in one level), and restart a DFS from each node

at the level up to the next level where the difference again passes the limit.

We continue this, iteratively, until we observe all the nodes in the tree and

complete filling the parent vector. Rather than storing the actual IDs of the

nodes each time we stop the DFS, we keep a bv of size 𝑛 (the total number of

181

colors/nodes in the tree) and set the related bits for the nodes that are going

to be the root for the next DFS start. In every iteration of the iterative DFS,

starting from node 𝑖, we reset bit 𝑖 in the bv. We find the set bits in each

round by traversing the bv. This DFS procedure can also be parallelized.

Parallelization: Given the scale of the data structures being constructed, it is prac-

tically important that construction be parallelized even if the construction procedure

itself is designed to be efficient. In our implementation, we have kept this in mind,

and the following steps of the algorithm have been parallelized:

• Walking the partitioned CQFs to construct the edges. If we assume that we

have 𝑡 threads, each partitioned CQF is divided into 𝑡 equal-size parts. Each

thread walks over the 𝑘-mers in its designated part of the partitioned CQF

searching for the neighbors of the 𝑘-mer in the entire partitioned CQF. The

edges are stored on disk to keep working memory low. Therefore, we make

use of a multi-producer queue to store batches of edges on disk every often.

• Calculating edge weights. We simply divide the edges between threads. Each

thread is responsible for calculating the weights of the assigned subset of edges.

For this, each thread needs to access the MST structure, and the associated

structures mainly the static cache. The static cache is constructed only once

before the start of this step and will not be modified at any subsequent point,

so it can be safely shared across threads to read from. When storing these

edge weights (temporarily) to disk, we again need to buffer the edges and

then flush them to disk in batches. Practically, we have observed considerable

182

unevenness in the distribution of edge weights. The vast majority of edges

have small weight values and the weight distribution is highly-skewed. For

example, for an index over 2𝑘 samples with close to 1 billion edges, less than

200, 000 of them had a weight > 1000. To keep the balance in frequency of

flushing the buffers for each weight bucket, we used a geometric distribution

(common ratio = 1
2
) of the buffer sizes where the files assigned to smaller

weights have larger buffers that take up more of the allocated space in RAM.

• Filling Delta and Boundary vectors. Although the process of querying the

input MSTs is the same as calculating the weights, there is an additional

complexity filling the delta vector. The size of the delta vector and the order

of the deltas are already predetermined; the size is total weight of the MST

and the order is the same as the edges in parent vector. This means that each

thread can be assigned a start and end of the range it is allowed to fill in

the delta vector. The goal is achieved by performing one extra pass over the

parent vector to sum up the weights of all the edges belonging to the same

thread segment, assuming each thread is responsible for extracting deltas of

edges in a consequent section of the parent vector.

2.3 Constructing and merging minimizer-partitioned counting quo-

tient filters

The efficiency of the MST-based color representation shifts the memory bottleneck

from the color classes to the counting quotient filter representation itself, which now

183

represents the dominant part of the data structure. One immediate solution for

the case of serial access to the counting quotient filter is to use mmap to let the

system page in the required memory and simultaneously “suggesting” it free the

previous pages from the counting quotient filter while iterating over the structure.

Specifically, such a design allows to prevent loading 3 large counting quotient filters

at the same time in memory during the counting quotient filter merging process as

that merge operation traverses the input (and output) counting quotient filters in

order. However, such a solution is inadequate when random-access to the counting

quotient filter is needed, as is the case during MST construction and later during

index query.

To circumvent the need to hold a single counting quotient filter containing

all 𝑘-mers in memory at once, we make use of minimizers [135] to separate 𝑘-

mers into smaller blocks of counting quotient filters. Defining an ↕ − 𝑚𝑒𝑟 as a

sub-string of length 𝑙 in a sequence of length 𝑘 where 𝑙 < 𝑘 and considering some

ordering for the ↕−𝑚𝑒𝑟𝑠, A minimizer of the sequence is formulated as the smallest

↕ − 𝑚𝑒𝑟 of all the sequence ↕ − 𝑚𝑒𝑟𝑠 [135]. This concept is commonly used for

partitioning sequences (specifically 𝑘-mers) into smaller groups with smaller memory

consumption for different tasks such as assembly [31], and alignment [70, 84, 117,

161]. For this type of sequence, the minimizer is defined over the canonical form

of the 𝑘-mer (smallest of the 𝑘-mer sequence and its reverse complement). The

main benefit for this type of partitioning is that the partition ID for a 𝑘-mer can be

retrieved only by having access to the 𝑘-mer sequence. We basically adopt such an

approach for partitioning the counting quotient filter into smaller components which

184

we call partitioned CQFs, where all 𝑘-mers with the same minimizer go to the same

partitioned CQF. To query a 𝑘-mer in the new data structure, we first calculate 𝑘-

mer’s minimizer value and query the partitioned CQF that represents the minimizer

which results in reducing the query memory from the size of a counting quotient

filter down to the largest partitioned CQF’s size. To keep the distribution of 𝑘-mers

into minimizer blocks close to uniform we use a random order for the minimizers.

One could, in theory, create a separate partitioned CQF corresponding to

each minimizer, but this approach has two main issues: (1) it requires storing 4↕

partitioned CQF files on disk for partitioning based on a minimizer of length 𝑙;

and (2) it may lead to partitioned CQFs with very small numbers of 𝑘-mers, which

leads to small counting quotient filters with few slots and large remainders. This

would in turn, result in using the counting quotient filter in its most inefficient way.

To overcome these issues, we place the 𝑘-mers for multiple consecutive minimizers

into the same partitioned CQF. Assuming we know the distribution of minimizers

across 𝑘-mers ahead of time, a partitioned CQF, 𝑝𝑐𝑞𝑓𝑝, is defined as follows: For

a threshold value 𝑡 (the maximum number of 𝑘-mers allowed in each partitioned

CQF), 𝑝𝑐𝑞𝑓𝑝 contains all 𝑘-mers with a minimizer in the range of [𝑚𝑖..𝑚𝑗), where

• ∀ 𝑘𝑞 ∈ pcqf𝑝 , ∀ 𝑘𝑡 ∈ pcqf(𝑝+1) (minimizer(𝑘𝑞) < minimizer(𝑘𝑡)),

• 𝑚𝑗 > 𝑚𝑖 and

• either 𝑚𝑗 = 𝑚𝑖 + 1 or |pcqf𝑝| < 𝑡, where |pcqf𝑝| is the total number of 𝑘-mers

in pcqf𝑝

The above conditions guarantee that no partitioned CQF contains more than

185

𝑡 𝑘-mers, except for the special cases where a single minimizer represents a larger

number of 𝑘-mers than the threshold. Each partitioned CQFmay contain a represent

range of minimizers based on the distribution of 𝑘-mers across minimizers. We store

the range as auxiliary information which is part of the index. These modifications

solve the two main issues that would arise by naïvely assigning each minimizer to

its own partitioned CQF, but this construction can still not be effectively used for

MST construction since it does not support efficient query for the neighbors of a

𝑘-mer.

For building the color-graph during the MST construction, we need to access

all the neighbors of a 𝑘-mer which might not have the same minimizer value of the

𝑘-mer and thus be in a different partition than the 𝑘-mer. In such cases, we need

to search for the neighbor in its corresponding partition which requires loading a

potentially different partition from disk. We tackle this problem by adding one more

condition to the definition of a partitioned CQF. For any 𝑘-mer whose minimizer

is assigned to pcqf𝑖, all the neighbors of the 𝑘-mer should also be in the same

partitioned CQF. If the neighbor 𝑘-mer’s minimizer is one of the minimizers the

covered by 𝑝𝑐𝑞𝑓𝑖, then it already ends up in the same partitioned CQF, otherwise,

we would insert the neighbor 𝑘-mer into 𝑝𝑐𝑞𝑓𝑖 in addition to the partitioned CQF

that it belongs to based on its minimizer value. This requires that some of the 𝑘-

mers are duplicated and put in two different partitioned CQFs, one that they belong

to based on the minimizer value and one that their neighbor 𝑘-mer belongs to. To

determine the duplicated 𝑘-mers we follow the same process explained by Chikhi

et al. [31] for compacting the non-branching paths in a de Bruijn graph in a memory-

186

efficient manner, which requires the same constraint to be satisfied. With this final

modification, the color-graph construction that is required for building the MST is

made efficient.

2.3.1 Merging partitioned CQFs

The process of merging two sets of partitioned CQFs is essentially the same as that

of merging two counting quotient filters, which is described in section 2.1. We follow

the same steps, walking the two input lists of partitioned CQFs in order:

1. Sample for popular color pairs for the union of the 𝑘-mers in left and right

input and put them in a map with key of a color-pair to value being the

abundance of the pair in the sampled list.

2. Store the rest of the color pairs to disk.

3. Construct a MPH over the list of unique color pairs.

4. Finally, merge the two inputs’ partitioned CQF lists into the output parti-

tioned CQF list which contains the union of the 𝑘-mers in the left and right

and the associated color ID. For each 𝑘-mer’s new color ID, follow the same

protocol as in Classic Mantis merge (i.e. look up the color pair in the popular

color map first and if not found, construct the ID via the MPH).

After merger, the output partitioned CQFs can be used for MST merger as

explained in section 2.2. The one main difference between partitioned CQF and

regular counting quotient filter merging is how to find the union 𝑘-mers in a list of

187

partitioned CQFs compared to a pair of regular counting quotient filters. In Classic

Mantis this process was as straightforward as walking two sorted list and outputting

the union of them into another list which is by definition also sorted. In the new

scheme, if we had the one-to-one relationship between a partitioned CQF and a

minimizer, the process would be the same as walking one counting quotient filter,

except now we would be walking over multiple counting quotient filters in order of

minimizers. Each partitioned CQF with the same minimizer from the two inputs

would be loaded into memory, and we would store the union of the 𝑘-mers from

both into the output partitioned CQF corresponding to the same minimizer. When

multiple minimizers are assigned to a single partitioned CQF, this process is not

trivial.

Based on the first item in the definition of a partitioned CQF in 2.3, the

partitioned CQFs are sorted based on minimizers so that for 𝑖 < 𝑗, all the minimizers

that map to pcqf𝑖 are essentially smaller than the minimizers in pcqf𝑗. However,

there is no guarantee for any specific relationship between the two input Mantis

partitioned CQFs with the same ID. Thus the intersection of the minimizers each

of the two partitioned CQFs cover could be anything from zero minimizers to all

minimizers of one of the two input partitioned CQFs. This makes it difficult to

walk any pair of partitioned CQFs to obtain the union list. At the same time, we

know that each 𝑝𝑐𝑞𝑓 is a 𝑐𝑞𝑓 containing 𝑘-mers sorted based on their hash values,

so if a partitioned CQF contains a range of minimizers, the 𝑘-mers with different

minimizers are interspersed within the partitioned CQF, without any guarantee

that the 𝑘-mers of the same minimizer appear next to each other. Figure 22 shows

188

2. Merge

Minimizer blocks

of left and right input

m1

m1

m1

m2

m2

m2

m3

m3

m3

m4

m4

m4

m5

m5

m5 m6

CQFjright
Minimizer range: <m1 .. m6>

CQFileft

Minimizer range: <m1 .. m5>

3. C
ombine minimize

r-p
artiti

oned

k-m
ers f

rom inputs

CQFkout

Minimizer range: <m1 .. m3>

4.Flush to disk

when full

5.Initialize a new CQF

CQF(k+1)out
Minimizer range: <m4 .. >

6. Combine the rest

1. Split-up k-mers

Based on minimizer

1. Split-up k-mers

Based on minimizer

5
4

3
2

1

3
2

1

Left input

Partitioned CQFs

Right input

Partitioned CQFs

all

0. Next CQF (i)

0. Next CQF (j)

left

Repeat the process for partitioned CQFs in and right input Mantis

Figure 22: A toy example, illustrating the steps for merging two partitioned CQFs. The
two arrows on top and bottom are indicative of the loop over each input partitioned
CQF. For each partitioned CQF in each of the left and right inputs, first the 𝑘-mers are
parted based on their minimizers. For each minimizer that its associated 𝑘-mers have
been processed in both inputs, we merge the 𝑘-mers of the two input minimizer buckets.
Then we walk over all the minimizer buckets for which we have the merged result, and
insert the ⟨k−𝑚𝑒𝑟, 𝑐𝑜𝑙𝑜𝑟⟩ pair into output counting quotient filter. Anytime the counting
quotient filter is full, we flush it into disk, reinitialize a new partitioned CQF and continue
inserting into the new partitioned CQF. We may reach the end of our merged minimizer
buckets in the current round while our output counting quotient filter is not yet full; in
that case, we continue filling it in next iterations.

the steps required to merge 𝑘-mers from two input partitioned CQFs into one (or

possibly more) output partitioned CQF (s). In addition, we provide the pseudo-code

for the merge operation in algorithm 2 in the supplementary material.

The methodology is as follows. To begin, we load the first partitioned CQF

from left and right input into memory and separate the 𝑘-mers in each into their

corresponding minimizer block by a linear traversal of the partitioned CQF, finding

189

the minimizer of the 𝑘-mer and inserting it into the minimizer block (step 1 in figure

and line 61 of the algorithm, procedure “walk_partition”). Since the 𝑘-mers are

sorted by hash values, it is guaranteed that the 𝑘-mers in each minimizer block are

also sorted. At this point, we are in the case of one-to-one map from a minimizer to

the list of 𝑘-mers. Now, on a second linear pass over the 𝑘-mers per each minimizer

in the intersection of the completed minimizer blocks in the left and right input,

we find the union of the 𝑘-mers and put them in the union block with the same

minimizer value along with their color IDs (step 2 of the figure and line 8 of the

algorithm, procedure “compare_sorted_list”). At this point, we can follow the same

steps as in Classic Mantis, either store the color pairs for the union 𝑘-mer list or

store the 𝑘-mer and color ID into the output counting quotient filter (procedures

“find_uniq_colorPairs” and “store2cdbg” in the algorithm). We fill the output

partitioned CQF walking the merged minimizer blocks in order throughout steps 3

to 6 in the figure. During the traversal, we flush each output partitioned CQF to

disk when we can no longer add a new minimizer since it would pass the threshold.

We also store the associated minimizer range to the output partitioned CQF and

reinitialize a new empty partitioned CQF for the rest of the minimizer blocks. We

free the memory from each minimizer block as soon as we are done processing it.

Memory requirements: Since the connection point of the left and right inputs are

the minimizer blocks rather than the partitioned CQFs themselves, we do not need

to load two partitioned CQFs into memory at the same time. We switch between

inputs looking at the maximum minimizer covered by each input. If we have more

190

minimizer blocks from left input, we load the next partitioned CQF from the right

input and vice versa. This strategy guarantees that, at each point of the process,

the total number of 𝑘-mers loaded into blocks does not pass twice the threshold for a

partitioned CQF because at each point, we make sure that we can get rid of a subset

of minimizer blocks by carefully choosing which input to process. Also, we would

have at most two partitioned CQFs in memory when filling the output partitioned

CQF (one input counting quotient filter and the output counting quotient filter).

Altogether, the total memory requirement for the procedure based on the threshold

𝑡 for a partitioned CQF is 2 * 𝑡 * 𝑠𝑖𝑧𝑒𝑂𝑓(𝑘𝑚𝑒𝑟, 𝑐𝑜𝑙𝑜𝑟𝐼𝐷) + 2 * 𝑠𝑖𝑧𝑒𝑂𝑓(𝑝𝑐𝑞𝑓).

Parallelization : A single partitioned CQF is simply a counting quotient filter,

and we can divide the range of hash values in a counting quotient filter into 𝑡

equal size segments (𝑡 being number of threads given by the user) and let each

thread separately walk the assigned segment and collect the 𝑘-mer and color pairs

and partition them into their associated minimizer block. Walking the partitioned

CQF and collecting the 𝑘-mers into different minimizers is performed many times

throughout the merging process, and making this process work in parallel has a

large effect in the final performance of the merge.

191

3 Evaluation

3.1 Experimental Setup

3.1.1 System Specifications

As with prior work [8, 124], the input to Mantis is a list of squeakr files [121].

The squeakrs are each constructed from a specific FASTQ file selected from human

RNA short read sequences publicly available via the SRA [81]. The system for

all the experiments is an Intel(R) Xeon(R) CPU (E5-2699 v4 @2.20GHz with 44

cores and 56MB L3 cache) with 512GB RAM and a 4TB TOSHIBA MG03ACA4

ATA HDD running Ubuntu 16.10 (Linux kernel 4.8.0-59-generic). Constructing

and merging Mantis were both conducted using 16 threads. However, VARI only

support a single-thread and therefore, was benchmarked on a single thread. Query

benchmarks were performed using a single thread for both tools. Specific to VARI,

since the limit on the number of samples is hard-coded as a compile-time constant

in the Makefile (which has a direct effect on the data structures allocated and thus

the construction/merge memory consumption), we have used a distinct executable

file for each of our experiments. This was done to minimize the memory and disk

use of VARI for each of the experiments (rather than using one executable with this

constant hard coded to the largest number of samples).

192

3.1.2 Input Data

For the input to our experiments, downloaded 15, 000 FASTQ files from NCBI [116].

The list of accessions can be accessed through github repository of the project from

file “shuffled_10k_paired.for-recomb”. In the first step, we needed to construct

the Squeakr files for all the samples. This step was performed on a cluster of 150

machines roughly three weeks. For each file, only the 𝑘-mers with abundance value

more than a predefined threshold are selected. The value of the threshold is decided

based on the size of the FASTQ file (gzipped). This prefiltering step is useful to

eliminate spurious 𝑘-mers that occur with insignificant abundance and has been

adopted from the original SBT paper [148]. The 𝑘 chosen for the 𝑘-mers across all

the experiments is fixed at 𝑘 = 23. The total space required to store all FASTQ

files and their corresponding Squeakr file is 2.9𝑇𝐵 and 970𝐺𝐵 respectively.

3.2 Merging Benchmarks

For each of the merging experiments of two Mantis with 𝑛 and 𝑚 samples, we

construct the 𝑛 and 𝑚 samples first and then execute the merging procedure over

the two. To save the runtime for all the experiments, at each level of merging except

for the first, the left input is the results of the previous merge. For example for the

results of the merge into 5𝑘, we merged the mantis over 2𝑘 samples from the previous

merge with the mantis on the remaining 3𝑘 samples. We benchmark the max RSS

value for merging memory. Unfortunately we were not able to perform Vari merge

further than 2𝑘 samples. Constructing Vari index requires a massive amount of

193

https://github.com/splatlab/mantis/blob/mergeMSTs/data/shuffled_10k_paired.for-recomb

disk space because they utilize the external sorting algorithm implemented in stxxl

library which starts from a user-defined size on disk and extends the size during the

process if required (this could be due to the specific settings defined in Vari). The

final stxxl file size after constructing the Vari index over 1𝑘 samples was over 2𝑇𝐵.

We dedicated a disk of 3.5𝑇𝐵 to these experiments which was not enough for the

experiments above 1𝑘. One thing we noticed is the lower intermediate disk usage

of Varimerge compared to Vari itself. Therefore contructing many Varis over small

subset of samples and then building the final Vari over all via recursive merge could

be a solution to get the results. In fact, we use the same pipeline for building the

Mantis with partitioned CQFs. Constructing both Vari with and without merge, the

size of the indices are slightly different for smaller experiments. Running Varimerge

recursively to construct larger samples, we might observe more divergence between

the size of the final indices via merge vs constructed from scratch. However, this

and the longer construction time are the two things that must be tradeoff for the

gigantic disk required to enable scaling Vari index to larger samples. As the results

show, Mantis merge does a better job with respect to all three metrics and the

results become further running merge over larger number of samples. Looking at

the memory results, it seems unlikely that Vari would be able scale to 10𝑘 samples

due to the super-linear growth in required memory.

194

200 500 1k 2k 5k 10k
0

25

50

75

100

125

150

175

va
lu

e

Benchmark Type = index size (G)
Tools

Mantis
Vari

200 500 1k 2k 5k 10k
Samples

0

25

50

75

100

125

150

175

Benchmark Type = memory (G)

200 500 1k 2k 5k 10k
Samples

0

200

400

600

800

va
lu

e

Benchmark Type = merge time (min)

Figure 23: Benchmarking Vari and Mantis merge for building different number of samples
from 200 up to 10k. We were unable to construct input Vari indices for merging into
10k samples. The results show Mantis merge is superior in all the metrics; specifically
the construction memory. Mantis’s required memory for merging two 5k samples into a
10k one is similar to merging two 1ks for VariMerge. Moreover, the size of the VariMerge
index for 5k is already larger than the space required for Mantis index on 10 samples.

3.3 Query Benchmarks

For evaluating the query performance, we compared the query time and memory

requirement over the current Mantis index with partitioned CQFs with the MST-

based Mantis, which has already been shown to be among the sequence search indices

with the fastest search capabilities. We have performed query for both the index

described in this paper and MST-based Mantis in bulk mode, and have benchmarked

the total query time including the index loading time (but using a warmed-cache —

each experiment was run twice, with only the second time being recorded).

In bulk query mode, we extract the distinct 𝑘-mers of all the sequenced queries,

195

and find the color-ID and the corresponding color bit-vector for each which signifies

the experiments in which they are present. This allows us to have a map from each

distinct 𝑘-mer to the list of queries that contain it, which we can use to find the

total number of 𝑘-mers in each query that are present in an experiment. In a bulk

query procedure, each partitioned CQF is loaded only once and each color bit-vector

is also constructed only once. As the plots show, the query time is very similar to

that of MST-based Mantis while the memory is more efficient (up to 7𝑥). The

partitioned CQF design, however, is not as efficient for continuous single queries

as it is for bulk except if all the partitioned CQFs are loaded into memory (which

eliminates the memory benefit). In fact, assuming a cold-cache run of the query

process, on the system we ran the experiments on with an I/O bound ∼ 800𝑀𝑏𝑝𝑠 it

takes ∼ 12 seconds to load each partitioned CQF which is of size 1.2𝐺. Therefore,

for example for an index on 10𝑘 samples, it would take more than 30 minutes to

just go over the partitioned CQFs looking for the 𝑘-mers. Repeating the process for

each single query does not seem efficient. One interesting idea to speed up individual

query time is to use a distributed systems, loading some subset of partitioned CQFs

on each, and broadcasting the query. This idea can both maintain a low-memory

requirement for each individual system as well as allowing fast bulk and individual

queries.

196

10.0 100.0 1000.0
Transcripts

0

20

40

60

80

100

120

va
lu

e

Benchmark Type = Memory (G)

10.0 100.0 1000.0
Transcripts

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Benchmark Type = Time (min)
Single Cqf
Partitioned Cqfs

Figure 24: Comparing query performance of the new Mantis with partitioned CQFs and
the Mantis with one giant CQF in a warmed-cache state. The query time is similar while
the query memory is now limited to the MST size rather than the giant CQF.

3.4 LSM-Tree Benchmarks

The Mantis-based LSM tree consists of a sequence of levels where each level 𝑖 either

contains a Mantis index 𝑀𝑖, or is empty. The depth of the LSM tree is 𝑑 if 𝑀𝑑−1 is

the highest-level nonempty Mantis index in the tree. Each of these indices in the tree

covers a disjoint subset of the total samples set. We also maintain a “RAM” level

𝐿𝑟 in the LSM tree that does not contain a Mantis index, but rather stores the CQF

files as is, of the samples corresponding to this level. Conceptually, this “RAM”

level sits atop the entire tree, and is usually bounded to store a small number 𝑠 of

samples. Cumulatively, the “RAM” level 𝑟 and the Mantis indices 𝑀0, . . . , 𝑀𝑑−1

cover the entire set of samples.

If the LSM tree contains 𝑑 levels with the mantis indices 𝑀0, . . . , 𝑀𝑑−1 (except

𝑀𝑑−1, some of the rest might be empty), each non-empty level contains an index

on an increasingly larger subset of the total sample set. Each level has a maximum

allowed size, defined by a threshold parameter 𝑡 and a scaling factor (fanout) pa-

197

rameter 𝑐. Specifically, we bound the size of Mantis indices at each level 𝑖 using the

number of partitioned CQFs that this level contains, defining the maximum CQFs

count to (𝑐𝑖 × 𝑡). The 𝑡 parameter is the maximum number of CQF files to keep

at the lowest level index 𝑀0, and 𝑐 is the growth factor of the tree. When a new

sample is to be added to the LSM tree, it is put into the “RAM” level 𝐿𝑟, and if

the number of samples at 𝐿𝑟 exceeds 𝑠, then a Mantis index 𝑀𝑟 is built from these

samples, 𝐿𝑟 is emptied, and 𝑀𝑟 is merged into 𝑀0. A propagation of a Mantis index

from a level 𝑖 to level (𝑖 + 1) is triggered when the number of CQFs at the index 𝑀𝑖

exceeds (𝑐𝑖 × 𝑡), and the index 𝑀𝑖 is merged into index 𝑀𝑖+1 of level (𝑖 + 1).

For our benchmarking purposes, we used the “RAM”-level threshold as 𝑠 = 100

samples, the level-0 threshold as 𝑡 = 5, and the scaling factor as 𝑐 = 4. To evaluate

the scalability of Mantis merge beyond 10𝑘, we started the LSM-tree updating

experiment from the available Mantis index over 10𝑘 at previous step. We calculated

the level that the index belongs to considering the size of the index and assumed

the LSM-tree be occupied at that level by a Mantis with partitioned CQFs over 10𝑘

samples. Figure 25 shows the memory consumption and time for adding the sample

after every 100𝑡ℎ insertions. That is the insertion that triggers the compaction

procedure. As the results show we observe a steady behavior in insertion time for

the first 4000 samples after 10𝑘. We observe a close to constant insertion for most

of the samples and there is a regular peak of longer time (∼ 20, 000 seconds) about

every 500 samples. That is when we need to continue the merge more than 1 level

up to level 2. There is a big peak ∼ 4000𝑡ℎ insertion when the cascading merge will

go one level deeper into level 3 where everything gets merged into the 10𝑘 index.

198

These spikes also show up in the cumulative time plot as the steps that impact the

close to linear total time increase over number of samples (which would again mean

a constant time insert for other samples except for those that cause the steps in

the cumulative plot). The memory story is however different as it is more steady

and close to constant for all the insertions except for the one that requires the big

merging. At that point the memory increases based on the size of both number

of samples i hand as well as the 10𝑘 index sitting on disk. The bottleneck in this

process happens during the merging process and still has space to improve. Overall,

we can say that the results are promising and as follow the expectations based on

the definition of the LSM-tree.

10000 12500 15000 17500 20000 22500 25000 27500
0

20000

40000

60000

80000

100000

120000

140000

va
lu

e

Benchmark Type = Time (s)

10000 12500 15000 17500 20000 22500 25000 27500
0

25

50

75

100

125

150

Benchmark Type = Max RSS (GB)

10000 12500 15000 17500 20000 22500 25000 27500
Samples

150

200

250

300

350

400

va
lu

e

Benchmark Type = Index Size (GB)

10000 12500 15000 17500 20000 22500 25000 27500
Samples

0

100000

200000

300000

400000

500000

600000

700000
Benchmark Type = Cumulative Time (s)

Figure 25: Performance of the LSM-tree update process starting from an LSM-Tree with
10k samples and adding batches of 100 samples up to 29k. The spikes in time and memory
show up when the cascading merge happens with deeper and thus larger index merging.
The cumulative construction time otherwise is linear.

199

4 Discussion and Conclusion

In this work, we have described an incrementally-updatable sequence search data

structure that maintains many of the favorable properties of the previous index

(MST-based Mantis), but also advances the index with respect to its scalability and

memory requirements. By incorporating the Mantis index into an LSM tree struc-

ture, we enable insertion of a new experiment without requiring reconstruction of

the index. We initially add experiments with the cost of only constructing a Squeakr

in memory. In cases where the number of Squeakrpasses a threshold, a cascading

process of index creation and merging takes place. We provide a memory-efficient

and highly-parallelized merging algorithm for the direct merge of the two (parti-

tioned CQF-based) MST-based Mantis inputs. This greatly reduces the required

disk space compared to merging Classic Mantis inputs, which requires the creation

of a large color class matrix. This reduced intermediate disk usage is important

for scalability itself, since even if we were to use the MST-based Mantis at query

time, without direct merge of the MSTs, index construction would require the cre-

ation of very large intermediate color class tables, which would dominate the storage

requirements for the index.

We also replace the counting quotient filter filter in Mantis with a collection

of partitioned CQFs that are (individually) much smaller in size and can be loaded

individually during the MST construction and query processes. This substantially

reduces the query memory requirements significantly and ensures that the counting

quotient filter data structure is no longer the memory bottleneck in MST construc-

200

tion and merging process anymore. As observed in the benchmarks, for bulk query,

the memory requirements are reduced by 7𝑥 for an index on 10𝑘 samples without

increasing the overall query time. We compare the merging of our new data struc-

ture witht he merging procedure introduced in Varimerge, that to our knowledge,

is the only colored de Bruijn graph representation which can be updated via merge

(Varimerge). We find that the construction time, memory, and final index size of

our new index are smaller than those of Varimerge. We also provide benchmarks for

incremental updating of our data structure using LSM trees to show the amortized

cost of adding new experiments to our data strucutre. Using this procedure, we

were able to construct an LSM tree index over 15𝑘 raw sequencing samples which

takes 375𝐺 of space and can be extended to larger number of samples.

As future work, we would like to explore building a distributed index that

would allow indexing all unrestricted human RNA-seq data in the SRA which could

then be used to produce a system for online query. One property of the partitioned

CQF in the new Mantis representation is the ability to easily distribute the in-

dex across multiple systems with relatively low memory and cpu requirements. As

the partitioned CQFs are distinct, for each query sequence, the 𝑘-mers can be dis-

tributed to the corresponding sub-indices. Further, the merging can happen under

the same circumstance where the 𝑘-mers of the two inputs can be separated based

on minimizers and merged in different systems in parallel. The merging process

however, would require considerable network bandwidth, which raises the question

of which Mantis data structure one is best suited for a distributed system (e.g. one

could instead maintain a completely separate MST-based Mantis indices on each

201

distributed node). We note that the query in our LSM tree structure depends on

the depth of the tree and also the hardware used to support the out-of-RAM level.

In particular, the use of SSD hard disks would improve the performance consider-

ably by reducing cost of I/O access to the indices in higher levels of the tree that are

stored on disk. Comprehensive benchmarking of the query time over different types

of hardware is left as future work. Finally, one may also think of some smaller-size

approximate data structure that would point the 𝑘-mer directly to the level that it

should be search in.

The incrementally-updating Mantis is written in C++17 and is available at

https://github.com/splatlab/mantis/tree/mergeMSTs.

5 Supplementary Material

5.1 partitioned CQF merge pipeline

5.2 Detailed design of the memory-efficient structure to store the

weighted adjacency list for the MST

As explained in section 2.2, the MST merge process is highly memory-intensive.

We pointed out some of the optimizations we consider during the implementation

to improve memory consumption, one of which was using a succinct representation

of the weighted adjacency list. Here we explain this idea in more details.

By the end of the MST finding process, we would have a list of selected edges

and their weights. As shown in figure 21, the next step is assigning directions from

202

https://github.com/splatlab/mantis/tree/mergeMSTs

Algorithm 2 Merging two sets of partitioned CQFs from left and right colored de Bruijn graphs
(𝑐𝑑𝑏𝑔𝑙 and 𝑐𝑑𝑏𝑔𝑟) into output colored de Bruijn graph (𝑐𝑑𝑏𝑔𝑜). Code simplified.

colorMap : Map(⟨𝑐𝑜𝑙𝑜𝑟𝑜𝑢𝑡; ⟨𝑐𝑜𝑙𝑜𝑟𝑙𝑒𝑓𝑡, 𝑐𝑜𝑙𝑜𝑟𝑟𝑖𝑔ℎ𝑡⟩⟩)
procedure Merge_Pcqfs(𝑐𝑑𝑏𝑔𝑙, 𝑐𝑑𝑏𝑔𝑟, 𝑐𝑑𝑏𝑔𝑜)

compare_sorted_list(𝑐𝑑𝑏𝑔𝑙, 𝑐𝑑𝑏𝑔𝑟, find_uniq_colorPairs) ◁ Fills colorMap

compare_sorted_list(𝑐𝑑𝑏𝑔𝑙, 𝑐𝑑𝑏𝑔𝑟, store2cdbg) ◁ Uses colorMap

end procedure

𝑘𝑐𝐿𝑖𝑠𝑡𝑖
𝑚: List of ⟨𝑘𝑚𝑒𝑟, 𝑐𝑜𝑙𝑜𝑟⟩ pairs in a CQF partition for input 𝑐𝑑𝑏𝑔𝑖 where 𝑚𝑛𝑚𝑧𝑟(𝑘𝑚𝑒𝑟) = 𝑚.

procedure compare_sorted_list(𝑐𝑑𝑏𝑔𝑙, 𝑐𝑑𝑏𝑔𝑟, process)

𝑚𝑖𝑛𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟 ← 0

for 𝑝 in Max(# of counting quotient filter partitions for 𝑐𝑑𝑏𝑔𝑙 and 𝑐𝑑𝑏𝑔𝑟) do
for 𝑖 in 𝑙, 𝑟 do 𝑚𝑎𝑥𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟𝑖 ← 𝑐𝑑𝑏𝑔𝑖.walk_partition(𝑝, 𝑘𝑐𝐿𝑖𝑠𝑡𝑖)

end for
𝑚𝑎𝑥𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟 ← Min(𝑚𝑎𝑥𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟𝑙, 𝑚𝑎𝑥𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟𝑟)

for 𝑚 in 𝑚𝑖𝑛𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟..𝑚𝑎𝑥𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟 do
𝑘𝑐𝑙 = 𝑘𝑐𝐿𝑖𝑠𝑡𝑙

𝑚.GetCurrent() ◁ 𝑘𝑐 = ⟨𝑘𝑚𝑒𝑟, 𝑐𝑜𝑙𝑜𝑟⟩
𝑘𝑐𝑟 = 𝑘𝑐𝐿𝑖𝑠𝑡𝑟

𝑙 .GetCurrent()

repeat
if 𝑘𝑐𝑙.𝑘𝑚𝑒𝑟 < 𝑘𝑐𝑟.𝑘𝑚𝑒𝑟 then

process(𝑘𝑐𝑙, 𝑁𝐴) ◁ NA: Not Available

𝑘𝑐𝑙.Next()

else if 𝑘𝑐𝑙.𝑘𝑚𝑒𝑟 > 𝑘𝑐𝑟.𝑘𝑚𝑒𝑟 then
process(𝑁𝐴, 𝑘𝑐𝑟)

𝑘𝑐𝑟.Next()

else
process(𝑘𝑐𝑙, 𝑘𝑐𝑟)

𝑘𝑐𝑙.Next()

𝑘𝑐𝑟.Next()

end if
until 𝑘𝑐𝑙.HasNext() or 𝑘𝑐𝑟.HasNext()

Delete(𝑘𝑐𝐿𝑖𝑠𝑡𝑙
𝑚)

Delete(𝑘𝑐𝐿𝑖𝑠𝑡𝑟
𝑚)

end for
𝑚𝑖𝑛𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟 ← 𝑚𝑎𝑥𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟

end for
end procedure

203

procedure find_uniq_colorPairs(𝑘𝑐𝑙, 𝑘𝑐𝑟) ◁ 𝑘𝑐 = ⟨𝑘𝑚𝑒𝑟, 𝑐𝑜𝑙𝑜𝑟⟩
if ⟨𝑘𝑐𝑙.𝑐𝑜𝑙𝑜𝑟, 𝑘𝑐𝑟.𝑐𝑜𝑙𝑜𝑟⟩ <colorMap then

𝑖𝑛𝑑𝑒𝑥←colorMap.length

colorMap.Add(⟨𝑘𝑐𝑙.𝑐𝑜𝑙𝑜𝑟, 𝑘𝑐𝑟.𝑐𝑜𝑙𝑜𝑟⟩ → 𝑖𝑛𝑑𝑒𝑥)

end if
end procedure

procedure store2cdbg(𝑘𝑐𝑙, 𝑘𝑐𝑟) ◁ 𝑘𝑐 = ⟨𝑘𝑚𝑒𝑟, 𝑐𝑜𝑙𝑜𝑟⟩
𝑐𝑜𝑙𝑜𝑟𝐼𝐷 ←colorMap

[︀
⟨𝑘𝑐𝑙.𝑐𝑜𝑙𝑜𝑟, 𝑘𝑐𝑟.𝑐𝑜𝑙𝑜𝑟⟩

]︀
if 𝑘𝑐𝑙! = 𝑁𝐴 then

𝑘𝑚𝑒𝑟 ← 𝑘𝑐𝑙.𝑘𝑚𝑒𝑟
else

𝑘𝑚𝑒𝑟 ← 𝑘𝑐𝑟.𝑘𝑚𝑒𝑟
end if
𝑐𝑞𝑓𝑜 ← 𝑐𝑑𝑏𝑔𝑜.CurrentPartition()

if 𝑐𝑞𝑓𝑜.IsFull then
𝑐𝑞𝑓𝑜.Store2Disk()

𝑐𝑞𝑓𝑜 ← 𝑐𝑑𝑏𝑔𝑜.NewPartition()

end if
𝑐𝑞𝑓𝑜.Insert(⟨𝑘𝑚𝑒𝑟, 𝑐𝑜𝑙𝑜𝑟⟩)

end procedure

l : minimizer length, “8” in our case

procedure walk_partition(𝑝, 𝑘𝑐𝐿𝑖𝑠𝑡) ◁ 𝑝: partition ID

𝑝𝑐𝑞𝑓𝑝 ← load 𝑝𝑡ℎ CQF partition from disk

if 𝑝𝑐𝑞𝑓𝑝 == 𝑁𝑈𝐿𝐿 then
return MAXiNT

end if
for 𝑘𝑐 in 𝑝𝑐𝑞𝑓𝑝 do

𝑚← find_minimizer(𝑘𝑐.𝑘𝑚𝑒𝑟) ◁ (Between 0 and 4𝑙)

𝑘𝑐𝐿𝑖𝑠𝑡𝑚.Insert(𝑘𝑐)
𝑚𝑎𝑥𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟 ←Max(𝑚𝑎𝑥𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟, 𝑚)

end for
return 𝑚𝑎𝑥𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟

end procedure

204

parents to children in the tree starting from the dummy-node as the root for which

we need a constant access from any node to all its adjacent ones. As we are storing

the adjacency for a tree which is the most sparse possible graph representation for

𝑛 nodes, we would choose the adjacency list over matrix. Although the order for

storing the tree adjacency list is𝒪(𝑛), the 𝑛 is considerably big and with high growth

rate over samples that implementation-wise, the constant for the 𝑛 also matters. In

a naive implementation, storing a weighted adjacency list of a tree with 𝑛 vertices

assuming 𝑘 bytes to store an empty list in the language (at least 16 to store the

start pointer and size) and the largest word size (8 bytes) to cover color-IDs greater

than 232 as well as a word size of 4 bytes for weights to cover number of samples

greater than 216 (both of which emerge in the scales we run Mantis on), requires

2*𝑛* (16+8+4) bytes. For example for indexing 80, 000 samples with 𝑛 ∼ 4e9, the

required memory would be ∼ 208𝐺𝐵. We note that this adjacency list should be

in memory during the time filling the final structure of the MST which itself takes

space.

We design a more thoughtful succinct representation of the adjacency list

which eventually reduces the constant noticeably so that in practice the memory

for that section is reduced in orders of magnitudes while still allowing constant-time

access from each node to its neighbors. Assuming to have a tree with 𝑛 nodes where

node IDs are in the range of (0..𝑛 − 1), we define the adjacency list through four

succinct vectors; two of which are used to store information for the smaller end of

an edge ⟨𝑐𝑖, 𝑐𝑗⟩ and the other two for the larger end. We mention that since we do

not have self-loops in the tree (edges with equal end IDs), therefore, for 𝑛 edges

205

each of the four vectors are of size 𝑛. However, the width of the elements in each

vector is different and basically the main reason that results in a total allocated

space reduction.

In the first vector, 𝑛𝑒𝑖𝑠𝑚_𝑒𝑛𝑑, we store the IDs of the adjacent nodes of each

node, if the node ID is smaller than its adjacent node ID, in sorted order of the

node IDs along with the weight of the edge in a succinct form. Each word of

the vector is of width log2 𝑛 + log2 𝑚𝑎𝑥(𝑤𝑒𝑖𝑔ℎ𝑡𝑠) bits where 𝑚𝑎𝑥(𝑤𝑒𝑖𝑔ℎ𝑡𝑠) = 𝑠,

total number of samples. Since nodes can have different degrees as well as different

number of connected nodes with the described condition, it is required to store the

index of the start of the neighbor list for each node in 𝑛𝑒𝑖𝑠𝑚_𝑒𝑛𝑑. That takes us

to the second vector, 𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑𝑒𝑥𝑠𝑚_𝑒𝑛𝑑 in which at index 𝑖, we store the starting

index of neighbor list for node 𝑖 in 𝑛𝑒𝑖𝑠𝑚_𝑒𝑛𝑑. In this way, to look up the neighbors

of node 𝑖 and fetch the weights, we first fetch the start index of node 𝑖 at index

𝑖 of the 𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑𝑒𝑥𝑠𝑚_𝑒𝑛𝑑, say its value is 𝑠𝑡𝑎𝑟𝑡𝑖; then jump to index 𝑠𝑡𝑎𝑟𝑡𝑖 in

𝑛𝑒𝑖𝑠𝑚_𝑒𝑛𝑑 for the first neighbor of node 𝑖. The count of the neighbors with greater

ID value for each node 𝑖 is calculated by subtracting the start index of neighbors

for 𝑖 and 𝑖 + 1. If 𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑𝑒𝑥𝑠𝑚_𝑒𝑛𝑑[𝑖] == 𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑𝑒𝑥𝑠𝑚_𝑒𝑛𝑑[𝑖 + 1] this means

@𝑒𝑑𝑔𝑒 = ⟨𝑐𝑖, 𝑐𝑗⟩ | 𝑐𝑖 < 𝑐𝑗.

The other two vectors, 𝑛𝑒𝑖𝑔𝑟_𝑒𝑛𝑑, 𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑𝑒𝑥𝑔𝑟_𝑒𝑛𝑑 follow the exact same

results for storing the neighbors of node 𝑖 with IDs smaller than the ID of the node.

In this way, we still are storing adjacency list for all the nodes in the tree to support

constant-time access. However, we store the edge weights only in one of the vectors,

for example in our case only in vector 𝑛𝑒𝑖𝑠𝑚_𝑒𝑛𝑑. The memory consumption in

206

this succinct representation would be 𝑛 * (log2 𝑛 * 2 + log2 𝑚𝑎𝑥(𝑤𝑒𝑖𝑔ℎ𝑡𝑠)) for the

first pair vectors plus 𝑛 * (log2 𝑛 * 2) for the second pair of vectors with total of

𝑛 * (4 * log2 𝑛 + log2 𝑠) which in the same example of indexing 80, 000 samples with

𝑛 ∼ 4e9 would result in ∼ 67𝐺𝐵. We can still improve this design by replacing the

vectors indicating the start indices of neighbors for each node with a bv of size 𝑛

and a rank data structure on top of it which in the same example would reduce the

total memory down to ∼ 38𝐺𝐵 which is 0.2𝑡ℎ of the naive implementation memory.

207

Chapter 7: Conclusion

The main focus of this work and of my PhD has been on the design and development

of reference-based and reference-free sequence indexes. When working at the scale of

whole genomes, populations of genomes, and collections of raw seqeuncing samples,

the problem of extending indexing strategies to graphs becomes very important.

In this document, we presented three data structures for indexing a collection of

genomes, transcriptomes, or sample reads in the form of a colored de Bruijn graph

or a compacted colored de Bruijn graph. In developing all of the indices presented

in this work, the main focus was to achieve scalability over more and larger input

sequences or samples while maintaining a reasonable construction and query memory

and providing and high-speed queries.

Pufferfish is our index designed for a collection of reference sequences. We

extend the index into a full-fledged aligner, Puffaligner, by adding the required

steps to find the best chain of uni-MEMs found in the index and by aligning the

gaps between the exact matches on the chains. We have also developed Rainbowfish

and Mantis as two different indices over a collection of short read sequences. They

both demonstrate outstanding performance compared to prior work. We described

numerous improvements upon the original Mantis index, which make it both more

208

space-efficient and scalable in the work on MST-based Mantis, and partitioned CQF-

based Mantis. We also add the support for low-cost insertion of new samples by

integrating Mantis into the dynamically updatable LSM-tree framework.

1 Reference-based Indexing

In chapter 2 I describe our reference indexing approach, Pufferfish. The index

makes use of minimum perfect hashing, and uses succinct representations where

applicable to reduce the final size of the index. The index shows lookup performance

comparable to traditional hashing-based implementations while using considerably

less space. We propose two variants of the Pufferfish index; dense and sparse. In

the sparse variant, the user can trade off query speed for index size (i.e. query

memory). This variant is enabled by a sampling scheme that take advantage of

the unique successor / predecessor relationship between 𝑘-mers in a unitig, and

allows for fast search on large reference sequences. The desirable properties of the

Pufferfish index make it an ideal foundational data structure on which to build a

seqeuence aligner. PuffAligner begins read alignment by collecting unique maximal

exact matches (uni-MEMs) which are extracted by querying 𝑘-mers from the read

in the Pufferfish index and extending them to maximality. Then via a dynamic

programming approach adopted from Minimap2 [], PuffAligner finds the best chains

of uni-MEMs and later aligns the gaps between the chains of exact matches. Through

out the process, PuffAligner uses various heuristics for reporting a likely set of

alignments per read. The results demonstrate PuffAligner as a highly accurate and

209

fast alignment tool modest memory requirements. PuffAligner is particularly useful

for indexing and aligning to a highly similar collection of sequences, potentially

making it a powerful approach in metagenomic analyses, which we also demonstrate

via a set of experiments.

A Multi-Purpose Index and Aligner: The main advantage of a data structure like

Pufferfish compared to a linear index is the ability to efficiently map reads to a

population of genomes or individual genomes with annotated variants. Current tools

that are used for alignment and mapping are either mostly suitable for genome or

transcriptome alignment, but not both. Pufferfish fills the gap by allowing fast and

accurate mapping to a collection of genomes and annotated transcripts at the same

time, achieveing the sensitivity of transcriptome-based aligners and the robustness of

genome-based aligners. While we have not built a spliced-aligner on top of Pufferfish

yet, meaning that it cannot be easily used to derive new splicing junctions, we

can already make use of it’s ability to align reads against the transcriptomic and

genomic tagets simultaneously beyond it’s ability to produce improved accuracy

alignments. One immediate outcome of having short reads mapped to both genome

and transcriptome is in RNA-seq quality control. If we just look at the transcriptome

mapping outcome, we could simply throw all the non-mapped reads out, ignoring

the fact that not being mapped at all is a different observation than being mapped to

an intron or an intergenic region. A large fraction of reads mapping to introns could

be the evidence that the RNA-seq experiment failed to provide the required quality

(poor selection) or it could be evidence of the biological signal of intron retention.

210

The utility of performing joint genome and transcriptome alignment is demonstrated

in recent work [152](a paper that is the teamwork of almost all the members of the

Combine-Lab). We demonstrate the improvement in accuracy that results from

aligning reads to both the genome and transcriptome simultaneously. As another

use of the Pufferfish index for efficient alignment, we focus on applying Pufferfish,

along with a probabilistic model, to metagenomic data to improve accuracy, space

and time requirements for abundance estimation. The tool implementing these ideas

is under active development in our new tool, “Cedar”, which also takes advantage

of certain domain-specific characteristics of the underlying data.

2 Reference-free Indexing

We also discussed different methods and indices for sequence search in chapter 5 and

introduced our tool Mantis. Mantis is an exact indexing data structure (no false pos-

itives) for querying massive RNA-sequencing databases. It enables sequence search

queries that are efficient in space and time compared to other tools. It uses the

counting quotient filter to index 𝑘-mers and the representation introduced in Rain-

bowfish and explained in chapter 4 to represent the samples containing the 𝑘-mer.

As shown in chapter 5, Mantis was orders of magnitude faster than existing state-

of-the-art tools, while also being somewhat smaller. We were able to scale Mantis

to 10, 000 raw sequencing samples through modifications introduced in MST-based

Mantis. However, even then, challenges to scalability remained. Comparing the

Classic Mantis with the MST-based Mantis representation, we observed a turning

211

point in the scalability bottleneck from the color information to the 𝑘-mer filter rep-

resentation (counting quotient filter) as the indexed datasets grew larger. Further,

the necessity of having the (compressed) color bit matrix available as a prerequisite

to construct the MST over the color bit-vectors was another obstacle to achieving

improved scalability.

In chapter 6, we explored the details of the algorithms to merge each of the

Classic Mantis and the MST-based Mantis data structures. We devised an efficient

methodology for direct merge of the MSTs, which gives us the opportunity to discard

the construction/merging step for the large color matrix, and thus saves an immense

amount of intermediate disk space. The only challenge for scaling that construction

process is keeping the memory usage low. To address this concern, we propose a

scheme for partitioning the counting quotient filter into a set of disjoint partitioned

CQFs and substitute the loading of one massive counting quotient filter with the

loading of many small partitioned CQFs, one at a time. Through an intelligent multi-

pass algorithm that avoids holding all data for the input and output structures in

memory at once, we address the scalability challenge.

In fact, we show that the memory for merging the input partitioned CQFs

and also using the output partitioned CQF during the MST merge is constant

and bounded to a multiple of the size of a partitioned CQF block. Given the

ability to efficiently merge both classic and MST-based Mantis data structures, we

demonstrate that one way to dynamize the structure is using the framework of log-

structured merge trees. Achieving a scalable and updatable cosntruction process for

MST-based Mantis allowed us to extend the index to over 15𝑘 samples by adding

212

experiments incrementally. The future work in the line of Mantis indexing is to

(1) achieve aggressive memory reduction for construction query by giving up the

exactness and (2) set up a distributed Mantis index over a network of low-cost

commodity systems on a large number of samples. A distributed mantis index could

conceivably be built over all publicly-available RNA-seq data, and would provide a

sequence-queryable and updatable online index for searching over the vast public

repository of available RNA-seq data.

213

Chapter 7: List of Projects

In this chapter I list all the completed and ongoing projects that I have participated

in throughout my PhD and list the venue if the work has been published.

List of Publications:

1. On the distribution of lexical features at multiple levels of analysis, F

Almodaresi, L Ungar, V Kulkarni, M Zakeri, S Giorgi, HA Schwartz, Proceed-

ings of the 55th Annual Meeting of the Association for Computational Linguistics

(Volume 2: Short Papers) 2 2017

2. Rainbowfish: a succinct colored de Bruijn graph representation, F Almodaresi,

P Pandey, R Patro, 17th International Workshop on Algorithms in Bioinformatics

(WABI 2017), 36, 2017

3. Improved data-driven likelihood factorizations for transcript abundance es-

timation, M Zakeri, A Srivastava, F Almodaresi, R Patro, Bioinformatics 33 (14),

i142-i151 12 2017

4. A space and time-efficient index for the compacted colored de Bruijn graph,

F Almodaresi, H Sarkar, A Srivastava, R Patro, Bioinformatics 34 (13), i169-i177

17 2018

5. Mantis: A fast, small, and exact large-scale sequence-search index, P

214

Pandey, F Almodaresi, MA Bender, M Ferdman, R Johnson, R Patro, Cell systems

7 (2), 201-207. e4 39 2018

6. Grouper: graph-based clustering and annotation for improved de novo tran-

scriptome analysis, L Malik, F Almodaresi, R Patro, Bioinformatics 34 (19), 3265-

3272 6 2018

7. Alignment and mapping methodology influence transcript abundance esti-

mation, A Srivastava, L Malik, H Sarkar, M Zakeri, F Almodaresi, C Soneson, MI

Love, C Kingsford, R Patro, BioRxiv, 657874 4 2019

8. An efficient, scalable and exact representation of high-dimensional color

information enabled via de Bruijn graph search, F Almodaresi, P Pandey, M Fer-

dman, R Johnson, R Patro, International Conference on Research in Computational

Molecular Biology, 1-18 6 2019

9. An Efficient, Scalable, and Exact Representation of High-Dimensional

Color Information Enabled Using de Bruijn Graph Search, F Almodaresi, P Pandey,

M Ferdman, R Johnson, R Patro, Journal of Computational Biology 27 (4), 485-499

1 2020

Current (Unpublished) Work:

1. AGAMEMNON: an Accurate metaGenomics And MEtatranscriptoMics

quaNtificatiON analysis suite, G Skoufos, F Almodaresi, M Zakeri, JN Paulson,

R Patro, AG Hatzigeorgiou, and IS Vlachos.

2. Puffaligner : A Fast, Efficient, and Accurate Aligner Based on the Pufferfish

Index, F Almodaresi, M Zakeri, R Patro.

215

3. An incrementally-updatable and scalable system for large-scale sequence

search using LSM-trees, F Almodaresi, J Khan, S Madaminov, P Pandey, M

Ferdman, R Johnson, and R Patro.

4. Cedar, A metagenomic abundance estimation pipeline, F Almodaresi, M

zakeri, R Patro.

216

Bibliography

[1] Bahar Alipanahi, Alan Kuhnle, and Christina Boucher. Recoloring the Col-
ored de Bruijn Graph. In International Symposium on String Processing and

Information Retrieval, pages 1–11. Springer, 2018.

[2] Bahar Alipanahi, Martin D Muggli, Musa Jundi, Noelle Noyes, and Christina
Boucher. Resistome SNP calling via read colored de Bruijn graphs. bioRxiv,
page 156174, 2018.

[3] Can Alkan, Jeffrey M Kidd, Tomas Marques-Bonet, Gozde Aksay, Francesca
Antonacci, Fereydoun Hormozdiari, Jacob O Kitzman, Carl Baker, Maika Ma-
lig, Onur Mutlu, et al. Personalized copy number and segmental duplication
maps using next-generation sequencing. Nature genetics, 41(10):1061, 2009.

[4] Fatemeh Almodaresi, Prashant Pandey, and Rob Patro. Rainbowfish: a suc-
cinct colored de bruijn graph representation. In 17th International Work-

shop on Algorithms in Bioinformatics (WABI 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[5] Fatemeh Almodaresi, Prashant Pandey, and Rob Patro. Rainbowfish: A suc-
cinct colored de Bruijn graph representation. In LIPIcs-Leibniz International

Proceedings in Informatics, volume 88. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

[6] Fatemeh Almodaresi, Hirak Sarkar, Avi Srivastava, and Rob Patro. A space
and time-efficient index for the compacted colored de bruijn graph. Bioinfor-
matics, 34(13):i169–i177, 2018.

[7] Fatemeh Almodaresi, Hirak Sarkar, Avi Srivastava, and Rob Patro. A space
and time-efficient index for the compacted colored de Bruijn graph. Bioinfor-
matics, 34(13):i169–i177, 2018.

[8] Fatemeh Almodaresi, Prashant Pandey, Michael Ferdman, Rob Johnson, and
Rob Patro. An efficient, scalable and exact representation of high-dimensional
color information enabled via de bruijn graph search. In International Confer-

ence on Research in Computational Molecular Biology, pages 1–18. Springer,
2019.

217

[9] Fatemeh Almodaresi, Prashant Pandey, Michael Ferdman, Rob Johnson, and
Rob Patro. An efficient, scalable, and exact representation of high-dimensional
color information enabled using de bruijn graph search. Journal of Computa-

tional Biology, 27(4):485–499, 2020.

[10] Ernst Althaus, Stefan Funke, Sariel Har-Peled, Jochen Könemann, Edgar A.
Ramos, and Martin Skutella. Approximating k-hop minimum-spanning trees.
Operations Research Letters, 33(2):115 – 120, 2005. ISSN 0167-6377. doi:
https://doi.org/10.1016/j.orl.2004.05.005. URL http://www.sciencedirect.

com/science/article/pii/S0167637704000719.

[11] Stephen F Altschul, Warren Gish, Webb Miller, Eugene WMyers, and David J
Lipman. Basic local alignment search tool. Journal of molecular biology, 215
(3):403–410, 1990.

[12] Pavel V Baranov, Clark M Henderson, Christine B Anderson, Raymond F
Gesteland, John F Atkins, and Michael T Howard. Programmed ribosomal
frameshifting in decoding the sars-cov genome. Virology, 332(2):498–510,
2005.

[13] Djamal Belazzougui, Travis Gagie, Veli Mäkinen, and Marco Previtali. Fully
dynamic de bruijn graphs. In International Symposium on String Processing

and Information Retrieval, pages 145–152. Springer, 2016.

[14] Timo Beller and Enno Ohlebusch. A representation of a compressed de bruijn
graph for pan-genome analysis that enables search. Algorithms for Molecular

Biology, 11(1), July 2016.

[15] Timo Bingmann, Phelim Bradley, Florian Gauger, and Zamin Iqbal. Cobs:
a compact bit-sliced signature index. In International Symposium on String

Processing and Information Retrieval, pages 285–303. Springer, 2019.

[16] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[17] A Bookstein and ST Klein. Compression of correlated bit-vectors. Information

Systems, 16(4):387–400, 1991.

[18] Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya.
Succinct de Bruijn graphs. In Proceedings of the International Workshop on

Algorithms in Bioinformatics, pages 225–235. Springer, 2012.

[19] Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya.
Succinct de bruijn graphs. In International Workshop on Algorithms in Bioin-

formatics, pages 225–235. Springer, 2012.

[20] Phelim Bradley, Henk den Bakker, Eduardo Rocha, Gil McVean, and Zamin
Iqbal. Real-time search of all bacterial and viral genomic data. bioRxiv, page
234955, 2017.

218

http://www.sciencedirect.com/science/article/pii/S0167637704000719
http://www.sciencedirect.com/science/article/pii/S0167637704000719

[21] Phelim Bradley, Henk C Den Bakker, Eduardo PC Rocha, Gil McVean, and
Zamin Iqbal. Ultrafast search of all deposited bacterial and viral genomic
data. Nature biotechnology, 37(2):152–159, 2019.

[22] Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal
probabilistic RNA-seq quantification. Nature Biotechnology, 34(5):525–527,
2016.

[23] Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal
probabilistic RNA-seq quantification. Nature Biotechnology, 34(5):525, 2016.

[24] Michael Burrows and David J Wheeler. A block-sorting lossless data compres-
sion algorithm. 1994.

[25] Mathilde Causse, Nelly Desplat, Laura Pascual, Marie-Christine Le Paslier,
Christopher Sauvage, Guillaume Bauchet, Aurélie Bérard, Rémi Bounon,
Maria Tchoumakov, Dominique Brunel, et al. Whole genome resequencing
in tomato reveals variation associated with introgression and breeding events.
BMC genomics, 14(1):791, 2013.

[26] Zheng Chang, Guojun Li, Juntao Liu, Yu Zhang, Cody Ashby, Deli Liu, Ca-
role L Cramer, and Xiuzhen Huang. Bridger: a new framework for de novo
transcriptome assembly using rna-seq data. Genome Biol, 16(1):30, 2015.

[27] Shifu Chen, Yanqing Zhou, Yaru Chen, and Jia Gu. fastp: an ultra-fast
all-in-one fastq preprocessor. Bioinformatics, 34(17):i884–i890, 2018.

[28] Rayan Chikhi and Guillaume Rizk. Space-efficient and exact de bruijn graph
representation based on a bloom filter. In International Workshop on Algo-

rithms in Bioinformatics, pages 236–248. Springer, 2012.

[29] Rayan Chikhi and Guillaume Rizk. Space-efficient and exact de bruijn graph
representation based on a bloom filter. Algorithms for Molecular Biology, 8
(1):22, 2013.

[30] Rayan Chikhi, Antoine Limasset, Shaun Jackman, Jared T Simpson, and Paul
Medvedev. On the representation of de bruijn graphs. In International confer-

ence on Research in computational molecular biology, pages 35–55. Springer,
2014.

[31] Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de bruijn
graphs from sequencing data quickly and in low memory. Bioinformatics, 32
(12):i201–i208, 2016.

[32] 1000 Genomes Project Consortium et al. A global reference for human genetic
variation. Nature, 526(7571):68–74, 2015.

219

[33] MetaSUB International Consortium et al. The metagenomics and metade-
sign of the subways and urban biomes (metasub) international consortium
inaugural meeting report, 2016.

[34] Jake R Conway, Alexander Lex, and Nils Gehlenborg. UpSetR: an R package
for the visualization of intersecting sets and their properties. Bioinformatics,
33(18):2938–2940, 2017.

[35] Thomas C Conway and Andrew J Bromage. Succinct data structures for
assembling large genomes. Bioinformatics, 27(4):479–486, 2011.

[36] Victoria Crawford, Alan Kuhnle, Christina Boucher, Rayan Chikhi, Travis
Gagie, and John Hancock. Practical dynamic de bruijn graphs. Bioinformat-

ics, 2018.

[37] Matei David, Misko Dzamba, Dan Lister, Lucian Ilie, and Michael Brudno.
Shrimp2: sensitive yet practical short read mapping. Bioinformatics, 27(7):
1011–1012, 2011.

[38] Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, and Agnieszka
Debudaj-Grabysz. KMC 2: Fast and resource-frugal k-mer counting. Bioin-

formatics, 31(10):1569–1576, 2015.

[39] Alexander Dobin, Carrie A Davis, Felix Schlesinger, Jorg Drenkow, Chris
Zaleski, Sonali Jha, Philippe Batut, Mark Chaisson, and Thomas R Gingeras.
Star: ultrafast universal rna-seq aligner. Bioinformatics, 29(1):15–21, 2013.

[40] Alexander Dobin, Carrie A Davis, Felix Schlesinger, Jorg Drenkow, Chris
Zaleski, Sonali Jha, Philippe Batut, Mark Chaisson, and Thomas R Gingeras.
STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1):15–21, 2013.

[41] Erwan Drezen, Guillaume Rizk, Rayan Chikhi, Charles Deltel, Claire
Lemaitre, Pierre Peterlongo, and Dominique Lavenier. Gatb: Genome as-
sembly & analysis tool box. Bioinformatics, 30(20):2959–2961, 2014.

[42] Peter Elias. Efficient storage and retrieval by content and address of static
files. Journal of the ACM (JACM), 21(2):246–260, 1974.

[43] Peter Elias. Efficient storage and retrieval by content and address of static
files. Journal of the ACM (JACM), 21(2):246–260, 1974.

[44] Robert Mario Fano. On the number of bits required to implement an associative

memory. Massachusetts Institute of Technology, Project MAC, 1971.

[45] Scott Federhen. The ncbi taxonomy database. Nucleic acids research, 40(D1):
D136–D143, 2012.

[46] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with
applications. In Foundations of Computer Science, 2000. Proceedings. 41st

Annual Symposium on, pages 390–398. IEEE, 2000.

220

[47] Paolo Ferragina and Giovanni Manzini. An experimental study of an oppor-
tunistic index. In Proceedings of the twelfth annual ACM-SIAM symposium

on Discrete algorithms, pages 269–278. Society for Industrial and Applied
Mathematics, 2001.

[48] Adam Frankish, Mark Diekhans, Anne-Maud Ferreira, Rory Johnson, Irwin
Jungreis, Jane Loveland, Jonathan M Mudge, Cristina Sisu, James Wright,
Joel Armstrong, et al. Gencode reference annotation for the human and mouse
genomes. Nucleic acids research, 47(D1):D766–D773, 2019.

[49] Alyssa C Frazee, Andrew E Jaffe, Ben Langmead, and Jeffrey T Leek.
Polyester: simulating rna-seq datasets with differential transcript expression.
Bioinformatics, 31(17):2778–2784, 2015.

[50] Dirk Gevers, Rob Knight, Joseph F Petrosino, Katherine Huang, Amy L
McGuire, Bruce W Birren, Karen E Nelson, Owen White, Barbara A Methé,
and Curtis Huttenhower. The human microbiome project: a community re-
source for the healthy human microbiome. PLoS Biol, 10(8):e1001377, 2012.

[51] Simon Gog. Succinct data structure library. https://github.com/simongog/

sdsl-lite, 2017. [online; accessed 01-Feb-2017].

[52] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to
practice: Plug and play with succinct data structures. In 13th International

Symposium on Experimental Algorithms, (SEA 2014), pages 326–337, 2014.

[53] Rodrigo González, Szymon Grabowski, Veli Mäkinen, and Gonzalo Navarro.
Practical implementation of rank and select queries. In Poster Proceedings

Volume of 4th Workshop on Efficient and Experimental Algorithms (WEA),
pages 27–38, 2005.

[54] Manfred G Grabherr, Brian J Haas, Moran Yassour, Joshua Z Levin, Dawn A
Thompson, Ido Amit, Xian Adiconis, Lin Fan, Raktima Raychowdhury, Qian-
dong Zeng, et al. Full-length transcriptome assembly from rna-seq data with-
out a reference genome. Nature biotechnology, 29(7):644–652, 2011.

[55] Manfred G Grabherr, Brian J Haas, Moran Yassour, Joshua Z Levin, Dawn A
Thompson, Ido Amit, Xian Adiconis, Lin Fan, Raktima Raychowdhury, Qian-
dong Zeng, et al. Full-length transcriptome assembly from rna-seq data with-
out a reference genome. Nature biotechnology, 29(7):644–652, 2011.

[56] Brian J Haas, Alexie Papanicolaou, Moran Yassour, Manfred Grabherr,
Philip D Blood, Joshua Bowden, Matthew Brian Couger, David Eccles, Bo Li,
Matthias Lieber, et al. De novo transcript sequence reconstruction from rna-
seq: reference generation and analysis with trinity. Nature protocols, 8(8),
2013.

221

https://github.com/simongog/sdsl-lite
https://github.com/simongog/sdsl-lite

[57] Faraz Hach, Fereydoun Hormozdiari, Can Alkan, Farhad Hormozdiari, Inanc
Birol, Evan E Eichler, and S Cenk Sahinalp. mrsFAST: a cache-oblivious
algorithm for short-read mapping. Nature Methods, 7(8):576–577, 2010.

[58] Faraz Hach, Fereydoun Hormozdiari, Can Alkan, Farhad Hormozdiari, Inanc
Birol, Evan E Eichler, and S Cenk Sahinalp. mrsfast: a cache-oblivious algo-
rithm for short-read mapping. Nature methods, 7(8):576, 2010.

[59] Robert S Harris and Paul Medvedev. Improved representation of sequence
bloom trees. Bioinformatics, 36(3):721–727, 2020.

[60] J. Harrow, A. Frankish, J. M. Gonzalez, E. Tapanari, M. Diekhans,
F. Kokocinski, B. L. Aken, D. Barrell, A. Zadissa, S. Searle, I. Barnes,
A. Bignell, V. Boychenko, T. Hunt, M. Kay, G. Mukherjee, J. Rajan,
G. Despacio-Reyes, G. Saunders, C. Steward, R. Harte, M. Lin, C. Howald,
A. Tanzer, T. Derrien, J. Chrast, N. Walters, S. Balasubramanian, B. Pei,
M. Tress, J. M. Rodriguez, I. Ezkurdia, J. van Baren, M. Brent, D. Haus-
sler, M. Kellis, A. Valencia, A. Reymond, M. Gerstein, R. Guigo, and
T. J. Hubbard. GENCODE: The reference human genome annotation for
the ENCODE project. Genome Research, 22(9):1760–1774, sep 2012. doi:
10.1101/gr.135350.111. URL https://doi.org/10.1101%2Fgr.135350.111.

[61] Mahdi Heydari, Giles Miclotte, Yves Van de Peer, and Jan Fostier. Brown-
iealigner: accurate alignment of illumina sequencing data to de bruijn graphs.
BMC bioinformatics, 19(1):311, 2018.

[62] Guillaume Holley and Páll Melsted. Bifrost–highly parallel construction and
indexing of colored and compacted de bruijn graphs. BioRxiv, page 695338,
2019.

[63] Guillaume Holley, Roland Wittler, and Jens Stoye. Bloom filter trie: an
alignment-free and reference-free data structure for pan-genome storage. Al-

gorithms for Molecular Biology, 11(1):3, 2016.

[64] Manuel Holtgrewe. Mason: a read simulator for second generation sequencing
data. 2010.

[65] Ellis Horowitz and Sartaj Sahni. Fundamentals of computer algorithms. Com-
puter Science Press, 1978.

[66] Zamin Iqbal, Mario Caccamo, Isaac Turner, Paul Flicek, and Gil McVean.
De novo assembly and genotyping of variants using colored de Bruijn graphs.
Nature genetics, 44(2):226, 2012.

[67] Zamin Iqbal, Mario Caccamo, Isaac Turner, Paul Flicek, and Gil McVean.
De novo assembly and genotyping of variants using colored de bruijn graphs.
Nature genetics, 44(2):226, 2012.

222

https://doi.org/10.1101%2Fgr.135350.111

[68] Iqbal Zamin, Caccamo Mario, Turner Isaac, Flicek Paul, and McVean Gil. De
novo assembly and genotyping of variants using colored de Bruijn graphs. Na-
ture Genetics, 44:226—232, January 2012. doi: http://dx.doi.org/10.1038/
ng.102810.1038/ng.1028.

[69] Guy Jacobson. Space-efficient static trees and graphs. In Foundations of

Computer Science, 1989., 30th Annual Symposium on, pages 549–554. IEEE,
1989.

[70] Chirag Jain, Alexander Dilthey, Sergey Koren, Srinivas Aluru, and Adam M
Phillippy. A fast approximate algorithm for mapping long reads to large ref-
erence databases. In International Conference on Research in Computational

Molecular Biology, pages 66–81. Springer, 2017.

[71] Chirag Jain, Alexander Dilthey, Sergey Koren, Srinivas Aluru, and Adam M.
Phillippy. A fast approximate algorithm for mapping long reads to large ref-
erence databases. Journal of Computational Biology, 25(7):766–779, July
2018. doi: 10.1089/cmb.2018.0036. URL https://doi.org/10.1089/cmb.

2018.0036.

[72] Samir Khuller, Balaji Raghavachari, and Neal E. Young. Balancing minimum
spanning and shortest path trees. CoRR, cs.DS/0205045, 2002. URL http:

//arxiv.org/abs/cs.DS/0205045.

[73] Daehwan Kim, Ben Langmead, and Steven L Salzberg. Hisat: a fast spliced
aligner with low memory requirements. Nature methods, 12(4):357–360, 2015.

[74] Daehwan Kim, Ben Langmead, and Steven L Salzberg. HISAT: a fast spliced
aligner with low memory requirements. Nature methods, 12(4):357–360, 2015.

[75] Daehwan Kim, Joseph M Paggi, Chanhee Park, Christopher Bennett, and
Steven L Salzberg. Graph-based genome alignment and genotyping with hisat2
and hisat-genotype. Nature biotechnology, 37(8):907–915, 2019.

[76] Yuichi Kodama, Martin Shumway, and Rasko Leinonen. The sequence read
archive: explosive growth of sequencing data. Nucleic acids research, 40(D1):
D54–D56, 2011.

[77] Ben Langmead. Aligning short sequencing reads with bowtie. Current proto-
cols in bioinformatics, 32(1):11–7, 2010.

[78] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with
Bowtie 2. Nature Methods, 9(4):357, 2012.

[79] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with
bowtie 2. Nature methods, 9(4):357–359, 2012.

223

https://doi.org/10.1089/cmb.2018.0036
https://doi.org/10.1089/cmb.2018.0036
http://arxiv.org/abs/cs.DS/0205045
http://arxiv.org/abs/cs.DS/0205045

[80] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast
and memory-efficient alignment of short DNA sequences to the human genome.
Genome Biology, 10(3):R25, 2009.

[81] Rasko Leinonen, Hideaki Sugawara, Martin Shumway, and International Nu-
cleotide Sequence Database Collaboration. The sequence read archive. Nucleic
acids research, 39(suppl_1):D19–D21, 2010.

[82] Bo Li and Colin N Dewey. RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12
(1):323, 2011.

[83] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with
bwa-mem. arXiv preprint arXiv:1303.3997, 2013.

[84] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinfor-

matics, 34(18):3094–3100, 2018.

[85] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinfor-

matics, 34(18):3094–3100, 2018.

[86] Heng Li and Richard Durbin. Fast and accurate short read alignment with
Burrows–Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[87] Heng Li and Richard Durbin. Fast and accurate short read alignment with
burrows–wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[88] Heng Li, Jue Ruan, and Richard Durbin. Mapping short DNA sequencing
reads and calling variants using mapping quality scores. Genome Research, 18
(11):1851–1858, 2008.

[89] Yang Liao, Gordon K Smyth, and Wei Shi. The subread aligner: fast, accurate
and scalable read mapping by seed-and-vote. Nucleic acids research, 41(10):
e108–e108, 2013.

[90] Yang Liao, Gordon K Smyth, and Wei Shi. The subread aligner: fast, accurate
and scalable read mapping by seed-and-vote. Nucleic acids research, 41(10):
e108–e108, 2013.

[91] Antoine Limasset, Bastien Cazaux, Eric Rivals, and Pierre Peterlongo. Read
mapping on de bruijn graphs. BMC bioinformatics, 17(1):237, 2016.

[92] Antoine Limasset, Bastien Cazaux, Eric Rivals, and Pierre Peterlongo. Read
mapping on de bruijn graphs. BMC bioinformatics, 17(1):237, 2016.

[93] Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo. Fast
and scalable minimal perfect hashing for massive key sets. arXiv preprint

arXiv:1702.03154, 2017.

224

[94] Bo Liu, Hongzhe Guo, Michael Brudno, and Yadong Wang. debga: read
alignment with de bruijn graph-based seed and extension. Bioinformatics, 32
(21):3224–3232, 2016.

[95] Bo Liu, Hongzhe Guo, Michael Brudno, and Yadong Wang. debga: read
alignment with de bruijn graph-based seed and extension. Bioinformatics, 32
(21):3224–3232, 2016.

[96] Bo Liu, Yadong Liu, Tianyi Zang, and Yadong Wang. desalt: fast and accurate
long transcriptomic read alignment with de bruijn graph-based index. bioRxiv,
page 612176, 2019.

[97] Juntao Liu, Guojun Li, Zheng Chang, Ting Yu, Bingqiang Liu, Rick Mc-
Mullen, Pengyin Chen, and Xiuzhen Huang. Binpacker: Packing-based de
novo transcriptome assembly from rna-seq data. PLOS Comput Biol, 12(2):
e1004772, 2016.

[98] John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund
Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando Garcia, Nancy
Young, et al. The genotype-tissue expression (gtex) project. Nature genetics,
45(6):580, 2013.

[99] Jennifer Lu, Florian P Breitwieser, Peter Thielen, and Steven L Salzberg.
Bracken: estimating species abundance in metagenomics data. PeerJ Com-

puter Science, 3:e104, 2017.

[100] Liping Ma, Bing Li, and Tong Zhang. Abundant rifampin resistance genes and
significant correlations of antibiotic resistance genes and plasmids in various
environments revealed by metagenomic analysis. Applied microbiology and

biotechnology, 98(11):5195–5204, 2014.

[101] Sorina Maciuca, Carlos del Ojo Elias, Gil McVean, and Zamin Iqbal. A nat-
ural encoding of genetic variation in a burrows-wheeler transform to enable
mapping and genome inference. In International Workshop on Algorithms in

Bioinformatics, pages 222–233. Springer, 2016.

[102] Prabhu Manyem and Matthias F. M. Stallmann. Some approximation results
in multicasting. Technical report, Raleigh, NC, USA, 1996.

[103] Madhav V. Marathe, R. Ravi, Ravi Sundaram, S. S. Ravi, Daniel J.
Rosenkrantz, and Harry B. Hunt III. Bicriteria network design problems.
CoRR, cs.CC/9809103, 1998. URL http://arxiv.org/abs/cs.CC/9809103.

[104] Alexa B. R. McIntyre, Rachid Ounit, Ebrahim Afshinnekoo, Robert J. Prill,
Elizabeth Hénaff, Noah Alexander, Samuel S. Minot, David Danko, Jonathan
Foox, Sofia Ahsanuddin, Scott Tighe, Nur A. Hasan, Poorani Subramanian,
Kelly Moffat, Shawn Levy, Stefano Lonardi, Nick Greenfield, Rita R. Colwell,
Gail L. Rosen, and Christopher E. Mason. Comprehensive benchmarking and

225

http://arxiv.org/abs/cs.CC/9809103

ensemble approaches for metagenomic classifiers. Genome Biology, 18(1), sep
2017.

[105] Ilia Minkin, Son Pham, and Paul Medvedev. Twopaco: An efficient algo-
rithm to build the compacted de bruijn graph from many complete genomes.
Bioinformatics, page btw609, 2016.

[106] Ilya Minkin, Anand Patel, Mikhail Kolmogorov, Nikolay Vyahhi, and Son
Pham. Sibelia: a scalable and comprehensive synteny block generation tool for
closely related microbial genomes. In International Workshop on Algorithms

in Bioinformatics, pages 215–229. Springer, 2013.

[107] Narjes S. Movahedi, Elmirasadat Forouzmand, and Hamidreza Chitsaz. De
novo co-assembly of bacterial genomes from multiple single cells. In 2012 IEEE

International Conference on Bioinformatics and Biomedicine. IEEE, October
2012.

[108] Martin D. Muggli. Vari. https://github.com/cosmo-team/cosmo/tree/

VARI, February 2017. Viewed Feb 3, 2017.

[109] Martin D. Muggli, Alexander Bowe, Noelle R. Noyes, Paul Morley, Keith Belk,
Robert Raymond, Travis Gagie, Simon J. Puglisi, and Christina Boucher.
Succinct Colored de Bruijn Graphs. 2017.

[110] Martin D Muggli, Alexander Bowe, Noelle R Noyes, Paul Morley, Keith Belk,
Robert Raymond, Travis Gagie, Simon J Puglisi, and Christina Boucher. Suc-
cinct colored de bruijn graphs. Bioinformatics, page btx067, 2017.

[111] Martin D Muggli, Alexander Bowe, Noelle R Noyes, Paul S Morley, Keith E
Belk, Robert Raymond, Travis Gagie, Simon J Puglisi, and Christina Boucher.
Succinct colored de bruijn graphs. Bioinformatics, 33(20):3181–3187, 2017.

[112] Martin D Muggli, Bahar Alipanahi, and Christina Boucher. Building large
updatable colored de bruijn graphs via merging. Bioinformatics, 35(14):i51–
i60, 2019.

[113] Harun Mustafa, Ingo Schilken, Mikhail Karasikov, Carsten Eickhoff, Gunnar
Rätsch, and André Kahles. Dynamic compression schemes for graph color-
ing. Bioinformatics, page bty632, 2018. doi: 10.1093/bioinformatics/bty632.
URL http://dx.doi.org/10.1093/bioinformatics/bty632.

[114] NIH. SRA. https://www.ncbi.nlm.nih.gov/sra, 2017. [online; accessed 06-
Nov-2017].

[115] Noelle R Noyes, Xiang Yang, Lyndsey M Linke, Roberta J Magnuson, Adam
Dettenwanger, Shaun Cook, Ifigenia Geornaras, Dale E Woerner, Sheryl P
Gow, Tim A McAllister, et al. Resistome diversity in cattle and the environ-
ment decreases during beef production. 5:e13195, 2016.

226

https://github.com/cosmo-team/cosmo/tree/VARI
https://github.com/cosmo-team/cosmo/tree/VARI
http://dx.doi.org/10.1093/bioinformatics/bty632
https://www.ncbi.nlm.nih.gov/sra

[116] Nuala A O’Leary, Mathew W Wright, J Rodney Brister, Stacy Ciufo, Diana
Haddad, Rich McVeigh, Bhanu Rajput, Barbara Robbertse, Brian Smith-
White, Danso Ako-Adjei, et al. Reference sequence (refseq) database at
ncbi: current status, taxonomic expansion, and functional annotation. page
gkv1189, 2015.

[117] Brian D Ondov, Todd J Treangen, Páll Melsted, Adam BMallonee, Nicholas H
Bergman, Sergey Koren, and Adam M Phillippy. Mash: fast genome and
metagenome distance estimation using minhash. Genome biology, 17(1):132,
2016.

[118] Giuseppe Ottaviano and Rossano Venturini. Partitioned Elias-Fano Indexes.
In Proceedings of the 37th international ACM SIGIR conference on Research

& development in information retrieval, pages 273–282. ACM, 2014.

[119] Rachid Ounit, Steve Wanamaker, Timothy J Close, and Stefano Lonardi.
Clark: fast and accurate classification of metagenomic and genomic sequences
using discriminative k-mers. BMC genomics, 16(1):1, 2015.

[120] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The
log-structured merge-tree (lsm-tree). Acta Informatica, 33(4):351–385, 1996.

[121] Prashant Pandey, Michael A Bender, Rob Johnson, and Rob Patro. Squeakr:
An exact and approximate k-mer counting system. Bioinformatics, page
btx636, 2017. doi: 10.1093/bioinformatics/btx636. URL +http://dx.doi.

org/10.1093/bioinformatics/btx636.

[122] Prashant Pandey, Michael A Bender, Rob Johnson, and Rob Patro. debgr:
an efficient and near-exact representation of the weighted de bruijn graph.
Bioinformatics, 33(14):i133–i141, 2017.

[123] Prashant Pandey, Fatemeh Almodaresi, Michael A. Bender, Michael Ferdman,
Rob Johnson, and Rob Patro. Mantis: A Fast, Small, and Exact Large-Scale
Sequence-Search Index. Cell Systems, 7(2):201–207.e4, Aug 2018. doi: 10.
1016/j.cels.2018.05.021. URL https://doi.org/10.1016/j.cels.2018.05.021.

[124] Prashant Pandey, Fatemeh Almodaresi, Michael A Bender, Michael Ferdman,
Rob Johnson, and Rob Patro. Mantis: A fast, small, and exact large-scale
sequence-search index. Cell systems, 7(2):201–207, 2018.

[125] Benedict Paten, Adam M Novak, Jordan M Eizenga, and Erik Garrison.
Genome graphs and the evolution of genome inference. Genome research,
27(5):665–676, 2017.

[126] Rob Patro, Stephen M Mount, and Carl Kingsford. Sailfish enables alignment-
free isoform quantification from RNA-seq reads using lightweight algorithms.
Nature biotechnology, 32(5):462–464, 2014.

227

+ http://dx.doi.org/10.1093/bioinformatics/btx636
+ http://dx.doi.org/10.1093/bioinformatics/btx636
https://doi.org/10.1016/j.cels.2018.05.021

[127] Rob Patro, Geet Duggal, Michael I Love, Rafael A Irizarry, and Carl Kings-
ford. Salmon provides fast and bias-aware quantification of transcript expres-
sion. Nature Methods, 14(4):417, 2017.

[128] Jason Pell, Arend Hintze, Rosangela Canino-Koning, Adina Howe, James M
Tiedje, and C Titus Brown. Scaling metagenome sequence assembly with prob-
abilistic de bruijn graphs. Proceedings of the National Academy of Sciences,
109(33):13272–13277, 2012.

[129] Pavel A Pevzner and Haixu Tang. Fragment assembly with double-barreled
data. Bioinformatics, 17(suppl_1):S225–S233, 2001.

[130] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An eulerian path
approach to dna fragment assembly. Proceedings of the National Academy of

Sciences, 98(17):9748–9753, 2001.

[131] Günther R. Raidl. Exact and Heuristic Approaches for Solving the Bounded

Diameter Minimum Spanning Tree Problem. PhD thesis, 2008.

[132] Rajeev Raman, Venkatesh Raman, and S Srinivasa Rao. Succinct index-
able dictionaries with applications to encoding k-ary trees and multisets. In
Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete al-

gorithms, pages 233–242. Society for Industrial and Applied Mathematics,
2002.

[133] A. Reinefeld and T. A. Marsland. Enhanced iterative-deepening search. IEEE
Trans. Pattern Anal. Mach. Intell., 16(7):701–710, July 1994. ISSN 0162-
8828. doi: 10.1109/34.297950. URL https://doi.org/10.1109/34.297950.

[134] Mark Reppell and John Novembre. Using pseudoalignment and base quality
to accurately quantify microbial community composition. PLoS computational

biology, 14(4):e1006096, 2018.

[135] Michael Roberts, Wayne Hayes, Brian R Hunt, Stephen M Mount, and
James A Yorke. Reducing storage requirements for biological sequence com-
parison. Bioinformatics, 20(18):3363–3369, 2004.

[136] Mendel Rosenblum and John K. Ousterhout. The design and implementation
of a log-structured file system. In Proceedings of the 13th ACM Symposium on

Operating Systems Principles (SOSP91), pages 1–15, October 1991.

[137] Mendel Rosenblum and John K. Ousterhout. The design and implementation
of a log-structured file system. ACM Transactions on Computer Systems, 10
(1):26–52, February 1992. doi: 10.1145/146941.146943. , Volume 10, Num-
ber 1, February.

228

https://doi.org/10.1109/34.297950

[138] Kamil Salikhov, Gustavo Sacomoto, and Gregory Kucherov. Using cascading
bloom filters to improve the memory usage for de brujin graphs. In Interna-

tional Workshop on Algorithms in Bioinformatics, pages 364–376. Springer,
2013.

[139] Kamil Salikhov, Gustavo Sacomoto, and Gregory Kucherov. Using cascading
bloom filters to improve the memory usage for de brujin graphs. Algorithms

for Molecular Biology, 9(1):2, 2014.

[140] Hirak Sarkar, Mohsen Zakeri, Laraib Malik, and Rob Patro. Towards selective-
alignment: Producing accurate and sensitive alignments using quasi-mapping.
bioRxiv, page 138800, 2017.

[141] Hirak Sarkar, Mohsen Zakeri, Laraib Malik, and Rob Patro. Towards
selective-alignment: Bridging the accuracy gap between alignment-based and
alignment-free transcript quantification. In Proceedings of the 2018 ACM In-

ternational Conference on Bioinformatics, Computational Biology, and Health

Informatics, pages 27–36, Washington DC, USA, 2018. ACM. URL http:

//doi.acm.org/10.1145/3233547.3233589.

[142] Patrick S Schnable, Doreen Ware, Robert S Fulton, Joshua C Stein, Fusheng
Wei, Shiran Pasternak, Chengzhi Liang, Jianwei Zhang, Lucinda Fulton,
Tina A Graves, et al. The b73 maize genome: complexity, diversity, and
dynamics. science, 326(5956):1112–1115, 2009.

[143] Korbinian Schneeberger, Jörg Hagmann, Stephan Ossowski, Norman Warth-
mann, Sandra Gesing, Oliver Kohlbacher, and Detlef Weigel. Simultaneous
alignment of short reads against multiple genomes. Genome biology, 10(9):
R98, 2009.

[144] Marcel H Schulz, Daniel R Zerbino, Martin Vingron, and Ewan Birney. Oases:
Robust de novo RNA-seq assembly across the dynamic range of expression
levels. Bioinformatics, 28(8):1086–1092, 2012.

[145] Jared T Simpson, Kim Wong, Shaun D Jackman, Jacqueline E Schein,
Steven JM Jones, and Inanç Birol. Abyss: a parallel assembler for short
read sequence data. Genome research, 19(6):1117–1123, 2009.

[146] Jared T Simpson, Kim Wong, Shaun D Jackman, Jacqueline E Schein,
Steven JM Jones, and Inanç Birol. Abyss: a parallel assembler for short
read sequence data. Genome research, 19(6):1117–1123, 2009.

[147] Jouni Sirén. Indexing variation graphs. In 2017 Proceedings of the Ninteenth

Workshop on Algorithm Engineering and Experiments (ALENEX). Society for
Industrial and Applied Mathematics, January 2017.

[148] Brad Solomon and Carl Kingsford. Fast search of thousands of short-read
sequencing experiments. Nature biotechnology, 2016.

229

http://doi.acm.org/10.1145/3233547.3233589
http://doi.acm.org/10.1145/3233547.3233589

[149] Brad Solomon and Carl Kingsford. Fast search of thousands of short-read
sequencing experiments. Nature biotechnology, 34(3):300–302, 2016.

[150] Brad Solomon and Carl Kingsford. Improved search of large transcriptomic
sequencing databases using split sequence bloom trees. In International Con-

ference on Research in Computational Molecular Biology, pages 257–271.
Springer, 2017.

[151] Martin Šošić and Mile Šikić. Edlib: a C/C++ library for fast, exact sequence
alignment using edit distance. Bioinformatics, 33(9):1394–1395, 2017.

[152] Avi Srivastava, Laraib Malik, Hirak Sarkar, Mohsen Zakeri, Fatemeh
Almodaresi, Charlotte Soneson, Michael I Love, Carl Kingsford, and Rob
Patro. Alignment and mapping methodology influence transcript abundance
estimation. BioRxiv, page 657874, 2019.

[153] Chen Sun, Robert S Harris, Rayan Chikhi, and Paul Medvedev. Allsome
sequence bloom trees. In International Conference on Research in Computa-

tional Molecular Biology, pages 272–286. Springer, 2017.

[154] Hajime Suzuki and Masahiro Kasahara. Introducing difference recurrence rela-
tions for faster semi-global alignment of long sequences. BMC Bioinformatics,
19(1):45, 2018.

[155] David Swarbreck, Christopher Wilks, Philippe Lamesch, Tanya Z Berardini,
Margarita Garcia-Hernandez, Hartmut Foerster, Donghui Li, Tom Meyer,
Robert Muller, Larry Ploetz, et al. The arabidopsis information resource
(tair): gene structure and function annotation. Nucleic acids research, 36
(suppl 1):D1009–D1014, 2008.

[156] Tsuyoshi Tanaka, Baltazar A Antonio, Shoshi Kikuchi, Takashi Matsumoto,
Yoshiaki Nagamura, Hisataka Numa, Hiroaki Sakai, Jianzhong Wu, Takeshi
Itoh, Takuji Sasaki, et al. The rice annotation project database (rap-db):
2008 update. Nucleic Acids Research, 36(Supp 1):D1028–D1033, 2008.

[157] Xiaolu Tang, Changcheng Wu, Xiang Li, Yuhe Song, Xinmin Yao, Xinkai Wu,
Yuange Duan, Hong Zhang, Yirong Wang, Zhaohui Qian, et al. On the origin
and continuing evolution of sars-cov-2. National Science Review, 2020.

[158] Isaac Turner, Kiran V Garimella, Zamin Iqbal, and Gil McVean. Integrating
long-range connectivity information into de Bruijn graphs. Bioinformatics,
34(15):2556–2565, 2018. doi: 10.1093/bioinformatics/bty157. URL http:

//dx.doi.org/10.1093/bioinformatics/bty157.

[159] Yixuan Wang, Yuyi Wang, Yan Chen, and Qingsong Qin. Unique epidemio-
logical and clinical features of the emerging 2019 novel coronavirus pneumonia
(covid-19) implicate special control measures. Journal of medical virology, 92
(6):568–576, 2020.

230

http://dx.doi.org/10.1093/bioinformatics/bty157
http://dx.doi.org/10.1093/bioinformatics/bty157

[160] Derrick E Wood and Steven L Salzberg. Kraken: ultrafast metagenomic se-
quence classification using exact alignments. Genome biology, 15(3):1, 2014.

[161] Derrick E Wood and Steven L Salzberg. Kraken: ultrafast metagenomic
sequence classification using exact alignments. Genome biology, 15(3):1–12,
2014.

[162] Fan Wu, Su Zhao, Bin Yu, Yan-Mei Chen, Wen Wang, Zhi-Gang Song, Yi Hu,
Zhao-Wu Tao, Jun-Hua Tian, Yuan-Yuan Pei, et al. A new coronavirus asso-
ciated with human respiratory disease in china. Nature, 579(7798):265–269,
2020.

[163] Y William Yu, Noah M Daniels, David Christian Danko, and Bonnie Berger.
Entropy-scaling search of massive biological data. Cell systems, 1(2):130–140,
2015.

[164] Ye Yu, Jinpeng Liu, Xinan Liu, Yi Zhang, Eamonn Magner, Erik Lehnert,
Chen Qian, and Jinze Liu. SeqOthello: querying RNA-seq experiments at
scale. Genome Biology, 19(1):167, Oct 2018. ISSN 1474-760X. doi: 10.1186/
s13059-018-1535-9. URL https://doi.org/10.1186/s13059-018-1535-9.

[165] Ye Yu, Jinpeng Liu, Xinan Liu, Yi Zhang, Eamonn Magner, Erik Lehnert,
Chen Qian, and Jinze Liu. Seqothello: querying rna-seq experiments at scale.
Genome biology, 19(1):167, 2018.

[166] Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome research, 18(5):821–829, 2008.

[167] Tao Zhang, Qunfu Wu, and Zhigang Zhang. Probable pangolin origin of sars-
cov-2 associated with the covid-19 outbreak. Current Biology, 2020.

[168] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on information theory, 23(3):337–343, 1977.

231

https://doi.org/10.1186/s13059-018-1535-9

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Sequence Indexing
	Reference-based Indices
	Reference-free Indices

	De Bruijn Graph
	Compacted de Bruijn graph
	Colored de Bruijn graph

	Sequence Search
	Overview of this document and contribution

	Pufferfish
	Introduction
	Preliminaries
	Method
	The dense Pufferfish index
	The sparse Pufferfish index

	Evaluation
	Applying the Pufferfish index to taxonomic read assignment
	Discussion & Conclusion

	Puffaligner
	Introduction
	Method
	Exact matching in the Pufferfish index
	Finding promising MEM chains
	Computing base-to-base alignments between MEMs
	Joining mappings for read ends and orphan recovery

	Evaluation
	Configurations of aligners in the experiments
	Alignment of whole genome sequencing reads
	Alignment of simulated DNA-seq reads in the presence of variation
	Quantification of RNA-seq reads
	Alignment to a collection of microorganisms — simulated short reads
	Scalability
	Why use an aligner when we have a light-weight and fast pipeline like Kraken2 + Bracken

	Discussion & Conclusion
	Supplementary Material

	Rainbowfish
	Introduction
	 Background and definitions
	 Method
	 Design
	 Space analysis
	 Lower bound for color representation
	 Implementation

	 Evaluation
	 Experimental setup
	 Data
	 Performance

	 Discussion & Conclusion

	Mantis
	Introduction
	Method
	Colored de Bruijn graphs
	A similarity-based colored de Bruijn graph representation
	Implementation of the MST data structure
	Integration in Mantis
	Comparison with brute-force and approximate-nearest-neighbor-based approaches

	Evaluation
	Experimental procedure
	Evaluation results

	Discussion & Conclusion

	Updatable Partitioned MST-based Mantis
	Introduction
	Method
	Merging Classic Mantis indices
	Merging MSTs
	Constructing and merging minimizer-partitioned counting quotient filters

	Evaluation
	Experimental Setup
	Merging Benchmarks
	Query Benchmarks
	LSM-Tree Benchmarks

	Discussion and Conclusion
	Supplementary Material
	partitioned CQF merge pipeline
	Detailed design of the memory-efficient structure to store the weighted adjacency list for the MST

	Conclusion
	Reference-based Indexing
	Reference-free Indexing

	List of Projects
	Bibliography

